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CHAPTER I

INTRODUCTION

The textile industry is comprised of a diverse, fragmented group of

establishments that produce and/or process textile-related products (fiber, yarn, and

fabric) for further processing into apparel, home furnishings, and industrial goods.

Textile manufacturing begins with the production or harvest of raw fiber. Fiber used

in textiles can be harvested from natural sources or manufactured from regenerative

cellulosic materials or it can be entirely synthetic. Then the raw natural or

manufactured fibers pass through several stages to change these fibers to the various

stages of production. The stages can be divided in four main stages as follow:

1. Yarn formation,

2. Fabric formation,

3. Wet processing,

4. Fabrication.

Woven and knit fabrics, product from fabric formation, cannot be processed

into apparel and other finished goods until the fabrics have passed through several

water-intensive wet processing stages. Wet processing enhances the appearance,

durability, and serviceability of fabrics by converting undyed and unfinished goods,

known as gray or greige goods, into finished consumers’ goods. Also collectively

known as finishing, wet processing has been broken down into four stages in this

section for simplification: fabric preparation, dyeing, printing, and finishing.

Most fabric that is dyed, printed, or finished must first be prepared, with the

exception of denim and certain knit styles. Fabric preparation, also known as

pretreatment, consists of a series of various treatment and rinsing steps critical to

obtaining good results in subsequent textile finishing processes. In preparation, the

mill removes natural impurities or processing chemicals that interfere with dyeing,

printing, and finishing. Improper preparation is often the cause of problems
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encountered in the dyeing, printing and finishing steps. Therefore the fabric

preparation is one of the important and influences to the next processes in the wet

processing.

In the fabric preparation, many fabrics go through a three-section range where

each section is dedicated to desizing, scouring and bleaching. Preparation steps can

also include processes, such as singeing and mercerizing, designed to chemically or

physically alter the fabric. However, some fabrics may only require one or two steps

to complete the preparation process. The fabric preparation process can be carried out

as either batch or continuous processes. In batch processing, the entire load of fabric

is immersed in the total amount of liquid needed for that process. In continuous

preparation, the fabric moves continuously through stages and compartments, which

provide the chemical concentration, time, and temperature to improve the

performance of cleaning fabric. Due to the effect of the operating temperature, which

influences the chemical activity through the water solubility of sizing, it is necessary

to control the temperature in preparation process.

In this work, a continuous fabric preparation process is considered. The single-

step of fabric preparation is implemented to accommodate the steps is studied.

Rinsing step is counter flow of the fabric and fresh water. The mathematical model of

this process is developed based on material and energy balances. A steam flow rate is

to manipulate the temperature. Model Predictive Control (MPC) coupled with Kalman

filter is implemented to control the temperature in this process.

1.1 Objectives of Research

The objectives of this research are:

1. To develop a mathematical model of a continuous fabric preparation process

based on material balance and energy balance,

2. To design a control configuration for a continuous fabric preparation process to

control the temperature.
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1.2 Scope of Research

The scope of this research can be listed as follows.

1. Model of a continuous fabric preparation process is developed based on material

balance and energy balance.

2. A continuous fabric preparation process is considered. The study is aimed the

single-step of fabric preparation in the first tank and the counter flow washing of

rising step in the second and the third tanks.

3. A Kalman filter is used to estimate the uncertain parameters in the model.

4. A model predictive control (MPC) coupled with the Kalman filter is implemented

to control the temperature of a continuous fabric preparation process.

5. Programs written to simulate and control the reactor are based on Matlab

Program.

1.3 Contribution of Research

The expected contribution of this research can be enumerated as follows.

1. Mathematical model of a continuous fabric preparation process has been

developed.

2. A computer program simulation has been developed to study the behavior of a

continuous fabric preparation process.

3. Uncertain parameters of a continuous fabric preparation process have been

estimated.

1.4 Activity Plan

Activity plan of this research can be enumerated as follows.

1. Relevant information regarding fabric preparation process and is reviewed.

2. Mathematical model of a continuous fabric preparation process is developed.

3. Relevant information regarding a model predictive control (MPC) is studied.
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4. MPC coupled with the Kalman filter is implemented to control the temperature of

a continuous fabric preparation process.

5. Simulation results are collected and summarized.

This thesis is divided into five chapters.

Chapter I is an introduction to this research. This chapter consists of research

objectives, scope of research, contribution of research, and activity plan.

Chapter II reviews the work carried out on fabric preparation process, model

predictive control, and Kalman filter.

Chapter III covers some background information of textile industry

processes, fabric preparation process, model predictive control, and Kalman filter.

Chapter IV describes process and mathematical model of a continuous fabric

preparation, and control configuration.

Chapter V presents the control simulation results that obtained by simulating

the process under the proposed strategy.

Chapter VI presents the conclusions of this research and makes the

recommendations for future work.

This is followed by:

References

Appendix A: System test

Appendix B: Tuning of GMC controller

Appendix C: Integral error criteria



CHAPTER II

LITERATURE REVIEW

2.1 Fabric Preparation Process

The term “Preparation” has two implications in textile processing. In greige

manufacturing, it is used to describe the processes, which prepare yarns for weaving

and knitting. Mostly, it is used to describe slashing operations that ready warp yarns

for weaving. In wet processing, the term is used to describe those processes that ready

fabric for the steps that follow, coloration and finishing. Fabric preparation is the first

of the wet processing steps where greige fabric is converted into finished fabric.

Improper preparation is often the cause of problems encountered in the dyeing and

finishing steps. There are many different fabrics, many different plant set-ups and

many different machines used in wet processing. There is no universally accepted best

method for each of the wet processing steps. Nonetheless every set-up is expected to,

and more often than not, accomplish the same goals. To deal with this seemingly

infinite number of permutations, a fundamental understanding of what happens at

each step and how to control the chemical and physical parameters becomes

paramount.

Anon  (1990) presented the single-stage of fabric preparation process.

Preparation of 100% cotton woven fabrics is normally done in three separate stages. It

would save time, energy and labor costs if a chemical system could be designed to

desize, causticize and bleach in one operation. For this study, a medium weight 100%

cotton twill fabric sized with starch and PVA was prepared by the conventional three-

stage procedure for comparison purposes. Several single-stage chemical formulations

were evaluated to determine an acceptable oxidative desize procedure for the fabric.

The study showed that selected 100% cotton fabrics can be prepared in a single stage

and plant trials noted a 40% reduction in preparation costs using the new procedure.
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El-Rafie et al., (1991) proposed the fast desizing/scouring/bleaching system

for cotton-based textiles. Treatment of loomstate all-cotton or cotton/polyester

blended fabrics with NaClO2/KMnO4 oxidizing system results in (a) conversion of the

starch size to oxidized easily removable products, (b) destruction and disintegration of

impurities such as natural fats, pectins, and residual motes, and (c) breaking down the

coloring matter without seriously degrading the fiber substance. Owing to this, the

system is adequate for effecting desizing, scouring, and bleaching in a one-step

process.

Abou-iiana (1998) studied the effect of scouring parameters (pH,

temperature), and the scouring method on the dimensional changes of cotton interlock

fabrics. As an initial study, scouring processes were performed where a complete

range of pH and temperature were examined. The relaxation procedures

recommended by the International Institute for Cotton were followed to relax the

samples. It was found that in the case of scouring in pots, the temperature variation

affected the fabric dimensions. No significant effect of the pH was indicated on the

fabric dimensions. The relaxation treatment indicated that most of the dimensional

changes occur in the initial wetting processes, and the dimensional changes due to

further relaxations were relatively limited.

Csiszar et al., (1998) studied bioscouring of cotton fabrics with cellulase

enzyme. When traditional alkaline scouring of desized cotton fabrics was preceded by

cellulase enzymatic treatment, two benefits were observed. Beside significant increase

in whiteness of fabrics, enhanced removal and alkaline degradation of seed-coat

fragments were achieved. Enzyme treatment alone resulted in 14-21% increase in

Berger-whiteness. When consecutive cellulase treatment and conventional alkaline

scouring were combined, the increase in whiteness was even more significant.

Applying cellulase enzyme in concentrations of 1, 5 and 10 g/l, respectively, in

biotreatment followed by conventional caustic scouring, a maximum of 18, 25, and

29% increase in whiteness was observed. Cellulase pretreatment also allowed the

reduction of the hydrogen-peroxide consumption in the chemical bleaching step.
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Hartzell and Hsieh (1998) applied pectinase enzymes to scouring the cotton

fabric. A pectinase was found to improve the surface wetting properties of greige

cotton fabrics following a water pretreatment at 100 oC. This study further evaluated

seven pectin-degrading enzymes, i.e., four pectinases, two pectinesterases, and a

pectin lyase, for scouring raw cotton fabrics. Three of the pectinases significantly

improved the wettability of cotton fabrics following a 100 oC water pretreatment to

the same extent as alkaline scouring. The other pectinase, pectinesterases and pectin

lyase had no beneficial effects on improving the wettability of raw cotton fabrics.

Reaction conditions for the three pectinase treatments were optimized in respect to

temperature, concentration, pH, and time. The pectinase treated fabrics did not exhibit

additional shrinkage, color change, nor significant strength loss from the fabrics

pretreated in water at 100 oC.

Min and Huang (1998) proposed the possibility of desizing, scouring and

dyeing cotton fabrics with no alkaline agent and in a single bath. Based on the results,

the color of the treated fabrics is 3-5% lighter than that of the conventionally treated

fabrics, but this method will actually save time, energy and water by over one third.

Durden et al., (2001) reviewed progress in bio-friendly textile chemistry and

information supplied on early cotton processes. Alkaline scouring of cotton is still the

most widely used commercial technique, with sodium hydroxide replacing potash and

acetic acid replacing buttermilk. Pollution is a key issue, and a bio-friendly enzymatic

preparation eliminating traditional alkaline is desirable. Cotton fiber structure is

explained and factors which cause wet processing problems. Pectinase use is reported

with improved absorbency from mixed pectinase and cellulase. The composition of

alkaline pectinase is recounted, and uses and required storage conditions. Enzymatic

scouring produced savings in dyeing time, electricity, water and steam.

Tzanov et al., (2001) introduced the bio-processes in the conventional

scouring and bleaching preparation of cotton. The scouring with two types of

pectinases and acting under acidic, and alkaline conditions respectively, were as

efficient as the chemical process in terms of obtained adequate water absorbency of

the fabrics. The necessity of surfactants application in scouring was outlined.
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Bleaching of the fabrics was performed with hydrogen peroxide, which was

enzymatically produced by glucose oxidase during oxidation of glucose. The aeration

plays an important role in the enhancement of the enzyme reaction, so that the

quantity of generated peroxide is sufficient to overcome the stabilizing effect of the

glucose and protein in the subsequent bleaching. A closed-loop process reusing starch

containing desizing baths in a single step scouring/bleaching operation with enzyme-

generated peroxide was performed.

Yachmenev et al., (2001) studied effect of sonication on cotton preparation

with alkaline pectinase. This research has shown that at the laboratory scale,

introducing ultrasonic energy into the reaction chamber during enzymatic scouring of

the greige cotton fabric significantly improves pectinase efficiency, but does not

decrease the tensile strength of cotton fabric. That alkaline pectinase appears to be a

more efficient agent for biopreparation of greige cotton than acidic pectinase,

resulting in better wettability and whiteness. Also establish that the combination of

pectinase bioscouring with desizing and after-washing insures sufficient fabric

wettability with adequate uniformity. The results are comparable to or better than

those for fabric after traditional alkaline scouring. Introducing ultrasonic energy could

help overcome the major disadvantage of pectinase scouring-a longer processing time

compared to conventional alkaline scouring.

Waddell (2002) studied bioscouring of cotton with pectinase enzyme. The role

of enzymes in the processing of natural fabrics is reviewed with alkaline stable

pectinase a recent addition. Alkaline scouring and its attendant effects are described,

followed similarly by bioscouring. Three factors determine pectinase activity and

efficiency: time, temperature and pH. Batch processed cotton and poly/cotton knits

were selected for study. Three treatments of cotton woven fabrics were covered: pad

batch, batch or continuous preparation with the adaptation of the bioscour procedure

to each of those covered. It was shown that many advantages surfaced: similar cost

comparisons with chemical processes; reduced scouring time; improves scouring

efficiency; smoother dyeing among others.
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2.2 Model Predictive Control

The idea of model predictive control (MPC) appears to have been proposed

long before MPC came to the forefront (Propoi, 1963). MPC was the first

implemented in industry under various guises and names long before a thorough

understanding of its theoretical properties was available. The first MPC techniques

were developed on the 1970s because conventional single-loop controllers were

unable to satisfy increasingly stringent performance requirements (Qin and Badgwell,

1977). In the late 1970s Richalet et al. described a successful application of a

technique that called Model Heuristic Predictive Control (MHPC) or Model

Algorithmic Control (MAC). In 1979 Shell engineers describe the Dynamic Matrix

Control  (DMC) technique and the results of its application. MPC has established

itself over the past decade as an industrially important form of advanced control.

Ricker (1990) developed a state space formulation of the multivariable model-

predictive controller with provisions for state estimation. Hard constraints on the

manipulated variables and outputs were accommodated, as in Quadratic Dynamic

Matrix Control (QDMC) and related algorithms. For unconstrained problems, a low-

order analytical form of the controller is obtained. The potential benefits of MPC with

state estimation are demonstrated for the case of dual-composition, LV control of the

high-purity distillation column problem studied previously by Skogestad and Morari,

which is an especially challenging problem for MPC-type algorithms. It is shown that

the use of the state estimator with a single tuning parameter (beyond that required for

standard MPC) provides robust performance equivalent to the best p-optimal

controller designed by Skogestad and Morari.

Eaton and Rawlings (1992) purposed Model Predictive Control (MPC) a

scheme in which an open-loop performance objective is optimized over a finite

moving time horizon. MPC is shown to provide performances superior to

conversional feedback control for nonminimum phase systems or systems with input

constraints when future set points are known. Stabilizing unstable linear plants and

controlling nonlinear plants with multiple steady state are also discussed.
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Sistu et al., (1993) discussed the implementation of different nonlinear

strategies in a MPC framework to control an exothermic continuous stirred tank

reactor. The computational efficiency of an MPC strategy depends on the method

used to predict model outputs within the optimization loop. The computational

requirements of collocation and numerical-based methods to solve nonlinear

differential modeling equations are compared with the nonlinear quadratic dynamic

matrix control (NLQDMC) formulation. The convolution coefficients for NLQDMC

are obtained using analytical and numerical methods and their computational time

requirements are compared.

Patwardhant and Madhavan (1993) presented the development of an

approximate second-order perturbation model, which can be used for single step and

multistep predictive control. The algorithm has been successfully implemented on two

continuously stirred tank reactors (CSTRs) control problem where the control

objective is to operate the reactor at an extremum point. The control problem is

associated with the singular nature of the operating point has been successful tackled

by the purposed algorithm. The MPC algorithm based on the proposed second-order

model is shown to improve the closed loop performance when compared to other

nonlinear MPC algorithms. The proposed algorithm has been found to be robust for

moderate variations in the kinetic parameters.

Masoud et al., (1995) used the short horizon nonlinear model predictive

control that concerns nonlinear model predictive control of the multivariable, open-

loop stable processes whose delay-free part is minimum-phase. The control law is

derived by using a discrete-time state-space formulation and the shortest useful

prediction horizon for each controlled output. This derivation allows to establish the

theoretical connections between the derived nonlinear model predictive control law

and the discrete-time globally linearizing control, and to deduce the conditions for

nominal closed-loop stability under the model predictive control law. Under the

nonlinear model predictive controller, the closed-loop system is partially governed by

the zero dynamics of the process, which is the nonlinear analog of placing a subset of

closed-loop poles at the zeros of a process by a model algorithmic controller.
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Phupaichitkun (1998) applied model predictive control (MPC) to control the

temperature of a batch reactor with exothermic reactions and its performance is

compared with generic model control (GMC) to that of individually/simultaneously

plant/model mismatches. In addition, Kalman Filter that used to estimate the heat

released of chemical reactions is incorporated into the MPC and GMC. Simulation

studies are shown that MPC to be as good as GMC for all cases for which both

controllers are well tuned.

Ruksawid (1999) used model predictive control (MPC) with Kalman filter for

the control of the temperature and the concentration of a reversible exothermic, The

design MPC with Kalman filter which can give a good control performance and

guarantee the stability of closed loop nonlinear continuous time systems subject to

constraints. Several different problems have been considered, such as control

performance, disturbance rejection, set point tracking and parametric model/plant

mismatch. Simulation results have shown that the MPC with Kalman filter provides

better control performances than the conventional PID controller does for the control

of the temperature and the concentration of a continuous stirred tank reactor in the

cases of disturbance rejection and set point tracking. In addition, the MPC is more

robust than the PID in presence of model/plant mismatch.

Ralhan and Badgwell (2000) presented two robust model predictive control

algorithms for linear integrating plants described by a state space model. The first

formulation focused on steady state offset whereas the second minimizes output

deviations over the entire prediction horizon. The input matrix parameters of the plant

are assumed to lie in a set defined by an ellipsoidal bound. Robustness is achieved

through the addition of constraints that prevent the sequence of the optimal controller

costs from increasing for the true plant. The resulting optimization problems solved at

each time step are convex and highly structured. Simulation example compared the

performance of these algorithms with those based on minimizing the worst-case

controller cost.



12

Tongmeesee (2000) presented the application of MPC to control the

temperature of a batch polymerization reactor. The performance of MPC with Kalman

filter is compared to that of a simple nonlinear control technique named generic

model control (GMC). Simulation results have shown in normal case and presence of

plant/model mismatch (decrease in heat transfer coefficient and rate of termination

reaction and increase of the monomer concentration and heat of reactions), MPC with

Kalman filter give a better control performance than GMC with Kalman filter.

Brempt et al. (2001) presented the advanced model predictive control

technology based on rigorous dynamic models. Key requirements of the new

technology are the realization of a flexible process operation, a large bandwidth

control enabling tight quality control and low application costs. The flexible operation

is realized by the combination of a dynamic optimizer over a rigorous model together

with a model predictive controller in delta-mode. A large bandwidth control is

enabled by the use of high frequent prediction models. Ultimately, reuse of large parts

of rigorous models for different applications together with low frequency testing on

these rigorous models reduces the application cost. The application of the before

mentioned technology is shown successfully on a polyethylene gasphase reactor

simulator. A considerable economic benefit can be obtained optimizing the transition

trajectory as well as the throughput at that time.

Weerachaipichasgul (2003) applied MPC to control the flux of liquid-solid

cross flow ultrafiltration membrane separator. This process used the transmembrane

pressure is manipulated to control the permeated flux of water in two cases; to control

the flux at a constant set point obtained from an overall optimization and to control

the flux at three interval constant set points obtained from a dynamic optimization.

Simulation results have shown that the PID controller cannot control the permeated

flux of water to the set point for both cases. Although the GMC controller is able to

control the flux in the first case but it cannot control the flux in the second case. For

MPC controller, it can control the flux at the set points obtained from both overall and

dynamic optimization.
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2.3 Kalman Filter

In most industrial processes, the process parameters and state variables are not

all measurable or, not with sufficient accuracy for control purposes. Furthermore,

measurements that are available often contain significant amounts of random noise

and systematic errors.

State variables of a process determine uniquely the state of the process and are

either measured directly or estimated using a state estimator. On the other hand,

process parameters provide a mathematical model with flexibility to fit process

measurements, are often of great physical importance, and are usually not measured

directly. Information on unknown process parameters can be obtained indirectly by

means of a parameter estimator. In 1960, Kalman published a famous paper

describing a recursive solution to the discrete data linear filtering problem. The

Kalman filter has been the subject of extensive research and application, particularly

in the area of autonomous or assisted navigation.

Tan et al. (1991) applied two estimation techniques, the extended Kalman

filter (EKF) and the iterative extended Kalman filter (IEKF), to a nonlinear time

varying system that had non-measurable state variables. An iterative solution to a fed

batch fermentation process was reported using the EKF based on measurements of the

oxygen and carbon dioxide concentrations. The results demonstrated that this

estimation technique could be successfully applied to complex biological processes.

Wang et al. (1993) presented an adaptive control of input-output linearizable

systems, together with an extended Kalman filter (EKF), was applied to a simulated

batch polymerization reactor to realize the output (monomer conversion) tracking in

the presence of model parameter uncertainties. Simulation results showed that this

technique was robust and the output tracking performance could be ensured even in

the presence of large model parameter errors and disturbances.
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Sargantanis and Karim (1994) applied adaptive control with an iterative

extended Kalman filter (IEKF) to control the solid substrate fermentation process. In

solid substrate fermentation (SSF), the online measurements of the states of the

fermentation like biomass content, dry matter content, and moisture content are not

possible. Also, the control of the temperature and the moisture content is critical for

optimization of the process. A multivariable adaptive control structure along with

state estimation using an iterative extended Kalman filter (IEKF) is proposed for the

control. The IEKF uses the measurements of total wet weight and C02 evolution rate

to estimate the states. The simulation results show that a better control of the moisture

content can be achieved when compared to the single input-single output (SISO)

control strategy.

Gudi et al. (1995) presented the design and development of a multirate

software sensor for use in the chemical process industry. The measurements of

process outputs that arrived at different sampling rates were formally accommodated

into the estimation strategy by using the multirate formulation of the iterated extended

Kalman filter. Measurement delays associated with some of the process outputs were

included in the system description by addition of delayed states. Observability issues

associated with state and parameter estimation in a multirate framework were

discussed and modified measurement equations were proposed for systems with

delayed measurements to ensure relatively strong system observability.

Sirohi and Choi (1996) persented two different on-line parameter estimation

methods applied to estimate key kinetic parameters of transition-metal-catalyzed in a

continuous fluidized bed olefin copolymerization process. The extended Kalman filter

and the nonlinear dynamic parameter estimation technique have been used.

Simulation results show that both methods yield quite acceptable performance.

Parameter estimation using an extended Kalman filter is shown to perform robustly

even in the presence of substantial measurement noise because of greater flexibility in

tuning parameters. The nonlinear dynamic parameter estimation technique which

utilizes nonlinear programming (NLP) can be made robust to measurement noise by

taking frequent samples of the polymer properties.
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Tatiraju and Soroush (1997) applied the nonlinear reduced order observer

design method to a continuous polymerization reactor where free-radical solution

polymerization of methyl methacrylate takes place. Initiator and solvent

concentrations and the leading moments of the molecular weight distribution of the

polymer are estimated in three measurement cases. In each case, the implementation

and performance of the nonlinear observer are compared with those of a deterministic

extended Kalman filter.

Bamrungwongdi (1998) presented the design and develop a Kalman Filter

State and Parameter Estimation (kSTAPEN) software. This program is written in

Borland C++ Builder who simplifies the algorithm by dividing into simple steps with

each step corresponding to an input window or dialog. And it is tested with a level

control system, a batch exothermic reactor and a stirred-tank reactor. Simulation

results show that the kSTAPEN can give satisfactorily good estimates for all cases. It

can be used for the demonstration of both state and parameter estimation applications.

Ahn et al. (1999) used the extended Kalman filter (EKF) based nonlinear

model predictive controller (NLMPC) that implemented experimentally to control the

conversion and the weight-average molecular weight of the polymer product in a

continuous methyl methacrylate (MMA) polymerization reactor. To measure the

properties of the polymer on line, the densitometer and the viscometer were utilized in

such a way that the measured values of density were used to calculate the conversion

and the viscosity measurement along with conversion data was used to determine the

weight-average molecular weight. On the basis of the experimental results, EKF

based NLMPC performed quite satisfactorily for the property control of the

continuous polymerization reactor.

Lersbamrungsuk (2000) designed and developed two software programs based

on Kalman filter. The first one, named kSTAPEN+, was a software component based

on Kalman filter. In kSTAPEN+, users could define their own systems including

states and parameters to be estimated. After running the program, estimation results

are given. The estimates obtained from the kSTAPEN+ had been compared to those

obtained from the program written on Matlab. Furthermore, the program had been
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tested with a heater, a stirred-tank reactor and a microfeeder. The other one is

kSTAPEN-C, the component is developed by technology of Component Object

Model (COM). The estimates obtained from kSTAPEN-C had been compared to

those obtained from kSTAPEN+. Results had shown that both kSTAPEN-C and

kSTAPEN+ were equivalent.

Moolasartsatorn (2002) used an extented Kalman filter to estimate the heat

release of pervaporative membrane reactor.  A generic model control (GMC) coupled

with an extended Kalman filter is implemented to track both optimal temperature set

point and optimal temperature profile obtained in the off-line optimization.

Application of these control strategies to control the pervaporative membrane reactor

shows that the proposed control strategy provides good control performances in a

nominal case. The GMC coupled with Kalman filter has been found to be effective

and robust with respect to changes in process parameters.



CHAPTER III

THEORY

The textile industry is one of the oldest in the world. Broadly defined, the

textile industry consists of establishments engaged in spinning natural and manmade

fibers into yarns and threads. These are then converted into fabrics. Finally, the

fabrics and in some cases the yarns and threads used to make them, are dyed, printed,

and finished. Product development and innovation in this industry are vital. Success in

the industry has always hinged on the ability of producers to innovate.

This chapter provides a brief overview of the textile industry process in

Section 3.1 and fabric preparation in Section 3.2. Some background information

necessary for understanding Model Predictive Control (MPC) and Kalman filter are

presented in Section 3.3 and 3.4, respectively.

3.1 Textile Industry Process

The textile industry is comprised of a diverse, fragmented group of

establishments that produce and/or process textile-related products (fiber, yarn, and

fabric) for further processing into apparel, home furnishings, and industrial goods.

Textile manufacturing begins with the production or harvest of raw fiber. Fiber used

in textiles can be harvested from natural sources (wool, cotton) or manufactured from

regenerative cellulosic materials (rayon, acetate), or it can be entirely synthetic

(polyester, nylon). Then the raw natural or manufactured fibers pass through several

stages to change these fibers to the various stages of production. The stages can be

divided in four main stages as follow:

1. Yarn formation

2. Fabric formation

3. Wet processing

4. Fabrication
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Figure 3.1 Production stages of textile industry process.

In its broadest sense, the textile industry includes the production of yarn,

fabric, and finished goods. These sections below focuses on the following four

production stages, with a brief discussion of the fabrication of non-apparel goods.

3.1.1 Yarn Formation

Yarn formation is preparing and spinning raw materials (natural and synthetic)

or texturizing man-made filament fibers. Textile fibers are converted into yarn by

grouping and twisting operations used to bind them together. Although most textile

fibers are processed using spinning operations, the processes leading to spinning vary

depending on whether the fibers are natural or manmade. Natural fibers need to go

through different preparation steps before being spun into yarn but for manmade

fibers, just one step of texturizing is needed before spinning (the process used

resembles the manufacture of silk).

3.1.2 Fabric Formation

The major methods for convert yarn to fabric are weaving and knitting.

Weaving, or interlacing yarns, is the most common process used to create fabrics,

while knitting is the second most frequently used method of fabric formation.

Fabrics are formed from weaving by interlacing one set of yarns with another

set oriented crosswise. The length-wise yarns that form the basic structure of the

fabric are called the warp and the crosswise yarns are called the filling or weft. While

the knitted fabrics may be constructed by using hooked needles to interlock one or

more sets of yarns through a set of loops. The loops may be either loosely or closely

constructed, depending on the purpose of the fabric.
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Yarn can be processed directly through knitting operations but typically

requires preparation before weaving operations because while the filling yarns

undergo little strain in the weaving process, warp yarns undergo much strain during

weaving and must be processed to prepare them to withstand the strain. Preparation

for weaving includes warping and slashing (sizing).

3.1.3 Wet Processing

Woven and knit fabrics cannot be processed into apparel and other finished

goods until the fabrics have passed through several water-intensive wet processing

stages. Wet processing enhances appearance, durability, and serviceability of the

fabrics by converting undyed and unfinished goods, known as gray or greige goods,

into finished consumers’ goods. Also collectively known as finishing, wet processing

has been broken down into four main stages in this section for simplification: fabric

preparation, dyeing and/or printing, and finishing. These stages involve treating gray

goods with chemical baths and often require additional washing, rinsing, and drying

steps. Note that some of these steps may be optional depending on the style of fabric

being manufactured.

3.1.4 Fabrication

The fabrication step includes cutting and sewing of the fabric to form the

finished product that a variety of apparel, household and industrial products. The

cutting trades usually fabricate apparel and more complex housewares. Before cutting,

fabrics must be carefully laid out. Accuracy in cutting the lay fabric is important since

any defects created at this point may be carried through other operations and end up in

the final product. For simple household and industrial products, sewing is relatively

straightforward. The product may then be pressed to flatten the fabric and create crisp

edges.
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Figure 3.2 Textiles processing flow chart
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3.2 Fabric Preparation Process

Wet processing includes several steps that involve preparation step, imparting

colors or patterns to the fabric, along with a variety of finishing steps that provide

certain desired characteristics to the end product. Fabric preparation or pretreatment

step is greatly influenced with the next steps (dyeing and/or printing, and finishing).

Improper preparation is often the cause of problems encountered in the dyeing and

finishing steps. Most fabric must be prepared before dyeing, printing or finishing.

Fabric preparation is the first of the wet processing that may be taken to

removes impurities or processing chemical that interfere with dyeing, printing, and

finishing from the fabric. It consists of a series of various preliminary cleaning

treatments and rinsing steps. The main steps can be listed as follows.

1. Desizing

2. Scouring

3. Bleaching

There are many different fabric types in the textile industry. Perhaps, fabric

preparation can also include processes, such as singeing and mercerizing, designed to

chemically or physically depend on the fabric and the fiber type.

3.2.1 Desizing

Desizing is an important preparation step used to remove sizing materials

applied to warp yarns prior to weaving. Different removal methods are used, based on

the type of size that was applied to the yarn. It is therefore necessary to know what

type of size is on the fabric before desizing.

Size materials are applied to warp yarns to improve their strength before they

are woven into cloth in the weaving process. The sizing materials form a protective

coating over the yarns and prevent chafing or break-age during weaving. Chemicals

used as sizing agents may be divided into two categories:
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1. Water-soluble sizes, such as PVA and CMC.

2. Water-insoluble sizes, such as starch.

Other additives such as oils and waxes are often used in conjunction with

sizing agents to increase the softness and pliability of the yarns. The material coated

the yarns can act as a dye and chemical resist in textile wet processing. It must

therefore be removed before any subsequent wet processing of the fabric.

Manmade fibers are generally sized with water-soluble sizes that are easily

removed by a hot-water wash or in the scouring process. On the other hand, natural

fibers such as cotton are most often sized with water-insoluble starches or mixtures of

starch and other size materials.

3.2.1.1 Desizing Starch

Starch is the most difficult size to remove. It does not readily dissolve in water

and must be broken down chemically into water-soluble compounds by enzymes, or

oxidizing agents, or acids. Enzymes breakdown starch into water soluble sugars and

dextrines, oxidizing agents oxidize starch into compounds that are soluble in alkaline

solution, while acids hydrolyze starch into water soluble compounds. Enzymes are

specific in their action in that they do not attack cotton, while oxidizing agents and

acids can degrade cotton in addition to starch. Starch is therefore usually desized with

enzymes.

3.2.1.2 Desizing PVA

Synthetic polymer sizes such as polyvinyl alcohol (PVA) and carboxy-methyl

cellulose (CMC) are very popular because in most cases they are very easy to remove

compared to starch. Care must be taken in desizing these sizes because they are

available in many grades with varying solubility properties.

PVA is desized with a hot water and rinsing in hot water to complete the

removal. The optimum wash temperature is a function of the grade used to size the

warp yarns. Lower molecular weight, partially hydrolyzed grades require lower
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temperatures than fully hydrolyzed, high molecular weight ones. Temperatures near

the boil are required for the fully hydrolyzed grades.

After desizing, the fabric should be systematically analyzed by ‘Iodine spot

test’ to determine the uniformity and thoroughness of the treatment. It should first be

weighed to determine the percent size removed. The results should be compared to

those obtained in the lab.

3.2.2 Scouring

Natural fibers contain oils, fats, waxes, minerals, leafy matter and motes as

impurities. Synthetic fibers contain producer spin finishes, coning oils and/or knitting

oils. Mill grease used to lubricate processing equipment mill dirt, temporary fabric

markings and the like may contaminate fabrics as they are being produced. These

impurities coat fibers and inhibit rapid wetting, absorbency and absorption of dye and

chemical solutions.

Scouring is a cleaning process that removes impurities from fibers, yarns, or

cloth through washing. Oils and fats are removed by saponification with hot sodium

hydroxide solution. This process breaks the compounds down into water-soluble

glycerol and soaps and is the same process traditionally used in the home to make

soaps from animal fat. Unsaponifiable materials such as waxes and dirt are removed

by emulsification. This process requires the use of surfactants to disperse the water

insoluble material into fine droplets or particles in the aqueous medium. The specific

scouring procedures, chemicals, temperature, and time vary with the type of fiber,

yarn, and cloth construction.

Properly scoured fabric should wet out faster and be more water absorbent.

After scouring, the fabric should be checked for thoroughness of scouring. ‘AATCC

Test Method No.79’ is used to measure fabric wetting. This method is using a clean

eyedropper place a drop of water on the fabric and measure the time required for the

drop to penetrate the fabric. The faster the wetting time, the more absorbent the fabric.
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3.2.3 Bleaching

The whiteness of fiber is an important market color so the whitest white has

commercial value. Yellow is a component of derived shades. For example, when

yellow is mixed with blue, the shade turns green. A consistent white base fabric has

real value when dyeing light to medium shades because it is much easier to reproduce

shade matches on a consistent white background than on one that varies in amount of

yellow.

Bleaching is a chemical process that eliminates unwanted colored matter from

fibers, yarns, or cloth to produce the whitened fabric. Bleaching can be decolorizes

colored impurities, which are not removed by scouring, and prepares the cloth for

further the next processes. Several different types of chemicals are used as bleaching

agents, and selection depends on the type of fiber present in the yarn, cloth, or

finished product and the subsequent finishing that the product will receive.

The major bleaching agents used in textile preparation are sodium

hypochlorite, hydrogen peroxide and sodium chlorite. All of these are oxidative

bleaches. Oxidative bleaches are also known to degrade cellulose so the objective in

bleaching is to optimize whitening and minimize fiber damage.

3.2.3.1 Sodium Hypochlorite

Hypochlorite bleaching agent ( )-OCl  is the oldest industrial method of

bleaching cotton. Originally, calcium hypochlorite 2Ca(OCl)  was used. Sodium

hypochlorite ( )NaOCl  is the strongest oxidative bleach used in textile processing.

Prior to bleaching with hypochlorite, it is necessary to thoroughly scour fabrics to

remove fats, waxes and pectin impurities. These impurities will deplete the available

hypochlorite, reducing its effectiveness for whitening fabric.

This agent is used mainly to bleach cellulosic fabrics. It cannot be used on

wool, polyamide (nylon), acrylics or polyurethane (spandex). These fibers will yellow

from the formation of chloramides. Bleaching with hypochlorite is performed in batch
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equipment. It is not used in continuous operations because chlorine is liberated into

the atmosphere. Over time, the pad bath decreases in active chlorine causing non-

uniform bleaching from beginning to end of the run.

3.2.3.2 Hydrogen Peroxide

Hydrogen peroxide ( )2 2H O  was first used to bleach cotton in the 1920's. It is

the bleach most widely used for cellulosic fibers and well as wool, silk, nylon and

acrylics. Today, it is estimated that 90 to 95% of all cotton and cotton/synthetic blends

are bleached with hydrogen peroxide. Unlike hypochlorites, peroxide bleaching does

not require a full scour. Residual fats, oils, waxes and pectines do not reduce the

bleaching effectiveness of hydrogen peroxide. Additionally it can be used on

continuous equipment.

Hydrogen peroxide is an extremely weak acid and ionizes in water to form a

hydrogen ion ( )+H  and perhydroxyl ion ( )-HOO . The perhydroxyl ion is the active

bleaching agent.
+ -

2 2 2H O +H O H +HOO↔ (3.1)

On the other hand, the reaction below is not desired in bleaching because it is

an ineffective use of hydrogen peroxide and causes fiber damage.

2 2 2 2
1H O H O+ O
2

→ (3.2)

Neutral hydrogen peroxide is not an effective bleaching agent. It must be

activated by adding alkali, such as sodium hydroxide ( )NaOH , to increase pH and

generate the perhydroxyl ion that shown in equation (3.3) and (3.4), respectively.

2 2 2 2H O +NaOH NaHO +H O↔ (3.3)

+ -
2NaHO Na +HOO↔ (3.4)

Sodium hydroxide is used to obtain the proper pH. At pH higher than 11, there

is a rapid generation of perhydroxyl ions. When the pH reaches 11.8, all of the

hydrogen peroxide is converted to perhydroxyl ions and bleaching is out of control.
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After bleaching, the fabric should be measured the whiteness and fluidity.

AATCC Test Method 110 measures the amount of blue light reflected by the goods,

against a white standard (usually a ceramic tile). This gives a measure of how well the

yellow impurities were removed by bleaching. Whiteness is measured by reflectance

of green light and by the removal of yellow impurities.

While the fluidity is measured the damaged cellulose that has a lower

molecular weight than undamaged cellulose. Fluidity is measured by dissolving

cotton in cupriethylene diamine and determining the solutions’s viscosity. Viscosity

of polymer solutions is directly related to the polymer’s molecular weight so a fluidity

measurement, in reality, is a viscosity measurement. The difference between viscosity

and fluidity is the units used to express the results. Viscosity measurements use water

as the reference standard, setting it equal to 1 centipoise. Therefore the higher the

polymer molecular weight, the higher the viscosity number. The fluidity scale (Rhes)

is just the opposite of the viscosity scale. Low numbers are used to describe high

viscosity solutions while high numbers describe low viscosity (more fluid) ones.

Undamaged cellulose will have low fluidity numbers and damaged cellulose will have

high ones.

3.3 Model Predictive Control

Model Predictive Control (MPC) refers to a class of control algorithms in

which a dynamic process model is used to predict and optimize process performance.

The first MPC techniques were developed in the 1970s because conventional single-

loop controllers were unable to satisfy increasingly stringent performance

requirements (Qin and Badgwell, 1997).

Optimizer Plant
outputinput

measurement

reference

Figure 3.3 Basic structure of MPC
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From the diagram that shown in figure 3.3, the came MPC originates from the

idea of employing an explicit model of the plant to be controlled to predict the future

output behavior. The prediction is used to determine optimal control moves that will

bring the plant to a desired condition. The current control action is obtained by

solving an on-line finite horizon open loop optimal control problem, using the current

state of the plant as the initial state. The optimization problem is solved subject to

constraints imposed by the model equations as well as in put and output constraints,

and yields an optimal control sequence. However, only the first control in this

sequence is applied to the plant. Once some feedback information is available, the

optimization is then repeated for the next sampling time interval. Figure 3.3 illustrates

the basic idea of MPC that called “receding horizon implementation”.

Desired set point

Manipulated variables  u(k)
Predicted
outputs

Prediction horizon

k k+1 k+2 k+p

past future

y

Control horizon

( )y k+1  k
∧

k+m

Computed manipulated variables profile

Figure 3.4 Receding horizon strategy

Figure 3.4 depicts the basic idea receding horizon behind model predictive

control. Predict the future dynamic behavior of the system or the predicted output

values over a prediction horizon ( )p , and determines a set of future control input

minimizing a predetermined objective function (performance index). It has been

known that if there were no disturbance and no plant-model mismatch, and if the

optimization problem could be solved for infinite horizons, ones could apply the
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sequence of the control input profile calculated at time k  to the system. However, in

the presence of unknown disturbance and/or plant-model mismatch, the dynamic

system behavior is different from the predicted behavior. To make use some feedback

information e.g. measurement and estimation, only the initial value of the control

profile computed is applied to the system and then, after obtaining new information at

the next sampling time, the optimization procedure is repeated to find a new control

input with the control and prediction horizons shifting ahead one sampling time step.

This results in a feedback control law; closed loop inputs are computed by solving on-

line the optimization problem at each sampling time based on new feedback

information from the system.

It is noted that as the MPC determines the manipulated variables by solving

the optimization problem, it can naturally take into account constraints on state and

control variables in the MPC formulation. This makes the MPC controller very

attractive for real industrial application.

3.3.1 MPC Formulation

State space: [ ]( ), ( )x f x t u t=& (3.5)

Objective function: ( ) ( ){ }2 2
1 20

min f

p

t
w x x w u dt− +∫ � (3.6)

Constraint’s manipulated variable: ( )min maxu u t u< < (3.7)

Fix’s control variable: ( )f spx t t x+ = (3.8)

where 1 2,w w  is weighting factors, ft  is end time,  and min max,u u  are minimum and

maximum of constraint’s manipulated variable, respectively.

.
3.3.2 Process Model

General form of process model for representing the real process can be written

as below.

( , )x f x u=& (3.9)

( , )y g x d= (3.10)
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where f  is process dynamic, x  is state variable vector, u is manipulated variable

vector, and y  is output variable vector.

State equation in this research is in state space form, which is a linear model.

In case the process model is a nonlinear type, after linearization, state equation of the

model both continuous and discrete form can be written as below.

Continuous equation

x Ax Bu= +& (3.11)

y Cx= (3.12)

where A ,B andC  are constant matrixes.
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Discrete equation

1k k kx Gx Hu+ = + (3.13)

k ky Cx= (3.14)

when G ,H andC  are constant matrixes.

3.3.3 Process Constraint

An important characteristic of process control problems is the presence of

constraint on input and output variables. Input constraints arise due to actuator

limitations such as saturation and rate of change restrictions. Output constraints

usually are associated with operational limitations such as equipment specifications

and safety considerations.

There are many different methods to classify constraints. One possible method

is categorized to equality constraint and inequality constraint. The inequality
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constraint can be divided to hard constraint and soft constraint. Hard constraints has

no dynamic violations of the bounds are allowed at any time, while soft constraints,

violations of the bounds are temporarily permitted on order to satisfy other heavily

weighted criteria.

Control constraints generally appear in the MPC problem because, in real

application, an ability to manipulate the control variables in always limited. Path

constraints are included in the MPC formulation if some of state variables cannot

exceed a given limit during the course of process operation. From equation (3.13) and

(3.14), model predictive control system can be cooperated with equality constraint

and inequality constraint as shown below.

Equality constraint: 1 0k k kGx Hu x ++ − = (3.15)

Inequality constraint: ,min ,maxk k ku u u≤ ≤ (3.16)

3.3.4 Objective Function

Model predictive control (MPC) is closely related to linear quadratic optimal

control. MPC leads to an optimization problem that is solved on-line in real time at

each sampling interval. The optimization problem is formulated to minimize a

quadratic objective. The objective function is remainders power two of state variable

and manipulated variable. Efficiency objective function is stipulated by optimization.

The objective function of dynamic matrix control (DMC) (Prett and Gillette, 1979) is

in this form

1 1
1 ( ) ( ) ( ) ( )
2

T T
sp sp k k k kJ x x Q x x u u R u u− − = − − + − −  (3.17)

or 1
2

T TJ x Qx u Ru = +  (3.18)

where Q  and R  are weighting factor matrix of state variable and  manipulated

variable, respectively.  These two matrixes are essential in process tuning.

MPC could control to target into control horizon mN step and compute resolute

of process response pN step. The objective function can be write index form as

follow.
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Continuos equation: 1
2

pt N
T T

t

J x Qx u Ru dt
+

 = + ∫ (3.19)

MPC can be control the controlled variables to be their set point within time

mk N+ . The movement of manipulated variables and state variables change is zero

after time is mk N+ . From equation (3.17), the objective function can be rewritten in

form below.

Discrete equation: 2
1
2

mk N
T T

k
J x Qx u R u

+

 = + ∑ (3.20)

3.3.5 Process Optimization

When applying method of optimization, Lagrange Multiplier’s principle, then

the objective function can be written as follow.

Continuos equation: 1( , ) ( ) ( )
2

mt N
T T

t
L x u x Qx u Ru Gx Hu xλ

+

 = + + + − ∑ & (3.21)

Discrete equation: 1 1
1( , ) ( ) ( )
2

mk N
T T
k k k k k k k k

k
L x u x Qx u Ru Gx Hu xλ

+

+ + = + + + − ∑ (3.22)

where ( ) nt Rλ ∈ is Largrange Multiplier n  equation.

After solving the equation by fixed k k kP xλ = , we obtained Ricatti equation in

equation (3.23).

1 1 1 1[ ]T T T T
k k k k kP Q G P G G P H R H P H H P G+ + + += + − + (3.23)

From close loop, k ku Kx= − (3.24)

Then the controller gain ( )K  is 1 1( ) ( )T T
kK R H G P Q− −= − − (3.25)

3.3.6 MPC Algorithm

In this thesis, the model predictive control algorithm can be written as follow.

1. Guess manipulated variable j
k iu +  ( j

k i ku u+ = , when 0,1,..., mi N= ).

2. Calculated next step state space 1k k kx Gx Hu+ = + .
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3. Set optimize objective function

1 1
1( , ) ( ) ( )
2

mk N
T T
k k k k k k k k

k
L x u x Qx u Ru Gx Hu xλ

+

+ + = + + + − ∑ .

4. Used the necessary condition and fixing k k kP xλ = .

5. Calculated the controller gain ( ) ( )11 T T
kK R H P QG

−−= − − .

6. Calculated manipulated variable k i k iu Kx+ += − .

7. Go to step 1.

3.4 Kalman Filter

The Kalman filter is a set of mathematical equations that provides an efficient

computational (recursive) solution of the least-squares method. The filter is very

powerful in several aspects: it supports estimations of past, present, and even future

states, and it can do so even when the precise nature of the model system is unknown.

The Kalman filter addresses the general problem of trying to estimate the state nx∈ℜ

of a discrete time controlled process that is governed by the linear stochastic

difference equation

-1 -1k K k K k kx A x B u w= + + (3.26)

with a measurement my∈ℜ  that is

,k K k k ky C x η= + (3.27)

The random variables kw  and kη  represent the process and measurement noise

(respectively) and assume to be independent (of each other), white, and with normal

probability distributions

( ) ( )0,K KP w N Q≈ (3.28)

( ) ( )0,K KP N Rη ≈ (3.29)

In practice, the process noise covariance ( )KQ  and measurement noise

covariance ( )KR  matrix might change with each time step or measurement, however

here they are assumed to be constant.
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The n n×  matrix KA  in the difference equation (3.26) relates the state at the

previous time step 1k −  to the state at the current step k , in the absence of either a

driving function or process noise. Note that in practice KA  might change with each

time step, but here it is assumed to be constant. The 1n×  matrix KB  relates the

optional control input 1u∈ℜ  to the state x . The m n×  matrix KC  in the measurement

equation (3.27) relates the state to the measurement ky . In practice KC  might change

with each time step or measurement, but here it is assumed to be constant.

3.4.1 Computational Origins of the Filter

Define ˆ n
kx
− ∈ℜ  to be a priori state estimate at step k  given knowledge of the

process prior to step k , and ˆ n
kx
− ∈ℜ  to be a posteriori state estimate at step k  given

measurement ky . A priori and a posteriori estimate errors can be defined as

ˆk k ke x x− −≡ −  and ˆk k ke x x≡ − . The a priori estimate error covariance is then

, [ ]TK k k kP E e e− − −= (3.30)

and the a posteriori estimate error covariance is

, [ ]TK k k kP E e e= (3.31)

An a posteriori state estimate ˆkx  is computed as a linear combination of an a

priori estimate ˆkx
−  and a weighted difference between an actual measurement ky  and

a measurement prediction ˆK kC x−  as shown below in equation (3.32). Some

justification for equation (3.32) is given in the probabilistic origins of the filter found

below.

ˆ ˆ ˆ( )k k k K kx x K y C x− −= + − (3.32)

The difference ˆk K ky C x−−  in equation (3.32) is called the measurement

innovation, or the residual. The residual reflects the discrepancy between the

predicted measurement ˆK kC x−  and the actual measurement ky . A residual of zero

means that the two are in complete agreement.
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The n m×  matrix KK  in equation (3.32) is chosen to be the gain or blending

factor that minimizes the a posteriori error covariance equation (3.31). This

minimization can be accomplished by first substituting equation (3.32) into the above

definition for ke , substituting that into equation (3.31), performing the indicated

expectations, taking the derivative of the trace of the result with respect to KK ,

setting that result equal to zero, and then solving for KK . One form of the resulting

KK  that minimizes equation (3.31) is given by:

1
, , ,( )T T

K k K k K K K k K KK P C C P C R− − −= + (3.33)

From equation (3.33) as the measurement error covariance KR  approaches

zero, the gain KK  weights the residual more heavily.

,

1
,0

lim
K k

K k KR
K C−

→
= (3.34)

Another way of thinking about the weighting by KK  is that as the

measurement error covariance KR  approaches zero, the actual measurement ky  is

trusted more and more, while the predicted measurement ˆK kC x−  is trusted less and

less. On the other hand, as the a priori estimate error covariance ,K kP−  approaches zero

the actual measurement ky  is trusted less and less, while the predicted measurement

ˆK kC x−  is trusted more and more.

3.4.2 Kalman Filter Algorithm

The Kalman filter estimates a process by using a form of feedback control: the

filter estimates the process state at some time and then obtains feedback in the form of

(noisy) measurements. As such, the equations for the Kalman filter fall into two

groups: time update equations and measurement update equations. The time update

equations are responsible for projecting forward (in time) the current state and error

covariance estimates to obtain the a priori estimates for the next time step. The

measurement update equations are responsible for the feedback−i.e. for incorporating

a new measurement into the a priori estimate to obtain an improved a posteriori
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estimate. The specific equations for the time and measurement updates are presented

as follow.

1. Time update equations (predict equations).

Project the state ahead: 1ˆ ˆk K k K kx A x B u−
−= + (3.35)

Project the error covariance ahead: , , 1
T

K k K K k K KP A P A Q−
−= + (3.36)

2. Measurement update equations (correct equations).

Compute the Kalman gain: 1
, , ,( )T T

K k K k K K K k K KK P C C P C R− − −= + (3.37)

Update estimate with measurement ky : ,ˆ ˆ ˆ( )k k K k k K kx x K y C x− −= + − (3.38)

Update the error covariance: , , ,( )K k K k K K kP I K C P−= − (3.39)

The time update equations can also be thought of as predictor equations, while

the measurement update equations can be thought of as corrector equations. Indeed

the final estimation algorithm resembles that of a predictor-corrector algorithm for

solving numerical problems as shown in Figure 3.5

1( )T T
k k kK P C CP C R− − −= +

Compute Kalman gain

ˆ ˆ ˆ( )k k k k kx x K y Cx− −= + −

Measurement update

( )k k kP I K C P −= −

Compute error covariance

1

1

ˆ ˆk k k
T

k k

x Ax Bu
P AP A Q

−
−

−
−

= +
= +

Time update

Figure 3.5 Kalman filter loop

3.4.3 Kalman Filter Parameters Tuning

In the actual implementation of the filter, the measurement noise covariance

R  is usually measured prior to operation of the filter. Measuring the measurement
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error covariance R  is generally practical and is supposed to be able to measure the

process anyway (while operating the filter).

The determination of the process noise covariance KQ  is generally more

difficult because it does not have the ability to directly observe the estimating process.

Sometimes a relatively simple (poor) process model can produce acceptable results if

one injects enough uncertainty into the process via the selection of KQ .

The tuning of the parameters KQ  and KR  is usually performed off-line,

frequently with the help of another (distinct) Kalman filter in a process generally

referred to as system identification. Under conditions where KQ  and KR  are in fact

constant, both the estimation error covariance ,K kP  and the Kalman gain ,K kK  will

stabilize quickly and then remain constant.



CHAPTER IV

A CONTINUOUS FABRIC PREPARATION PROCESS

Fabric preparation consists of a series of various preliminary cleaning

treatments and rinsing steps critical to obtaining good results in subsequent textile

finishing processes. Typical preparation treatments include desizing, scouring, and

bleaching. Preparation steps can also include processes, such as singeing and

mercerizing, designed to chemically or physically alter the fabric. However, some

fabric may only require one or two steps to complete the preparation process.

The preparation steps can be carried out as either batch or continuous

processes. In batch processing, the entire load of fabric is immersed in the total

amount of liquid needed for that process. The fabric is moving through the liquor or

both the liquid and the fabric move in relation to each other. This method is limited

for total volume of fabric that used in each time. While continuous preparation, the

fabric passes non-stop through compartments or stages. It increases the rate of

interchange between the liquid and fabric therefore it can be receive larger volume of

fabric than the batch processing.

4.1 Process Description

In this work, a continuous fabric preparation process is considered. The study

is aimed the single-step fabric preparation in the first tank and the counter flow

washing of rising step in the second and the third tanks. The fabric fed through each

tank as a continuous rope or as an open width sheet. An open width range has the

stacked rollers to handle the fabric where the lower rollers are submerged in the wash

water and the upper rollers used to remove the liquid from the fabric. In the first tank,

the fabric is impregnated with chemicals solution that reacted the sizing and

impurities in the fabric. Hydrogen peroxide ( )2 2H O  and sodium hydroxide ( )NaOH ,

which feed in the first tank, are reacted to form perhydroxyl ion ( )-HOO as follow in
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equation (4.1) and (4.2). The perhydroxyl ion is the active agent to react with the

impurities in fabric.

2 2 2 2H O +NaOH NaHO +H O↔ (4.1)

+ -
2NaHO Na +HOO↔ (4.2)

S1

T1

F5F0

F1 F2

F3

C0 C1 C2

S2 S3

C3

F4

T2 T3

Figure 4.1 Flow sheet of a continuous fabric preparation process.

The rinsing step in the second and the third tank is the counter flow washing.

The water flow and fabric flow is countercurrent. Technically, the use of multiple

cascade rinse tanks is very effective in reducing the volume of the rinse water used.

According to present by Tomasino (1992), one way to reduce water consumption is

by counter flow washing. Water flow through the wash boxes counter to the flow of

the fabric. Fresh water is fed to the exit compartment to insure that the fabric exits

through the cleanest water. The water from the last box is pumped to the preceding

wash box, which in turn is pumped to the one preceding it. The water from the entry

box is dumped into the drain since it is the most heavily contaminated wash water.

In continuous preparation, the fabric moves continuously through stages and

compartments, which provide the chemical concentration, time, and temperature to

improve the performance of cleaning fabric. Chemical activity increases with

temperature up to maximum and then decreases. Due to the effect of the operating

temperature, which influences the chemical activity through the water solubility of

sizing, it is necessary to control the temperature in preparation process.
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4.2 Mathematical Model

Several key assumption are made for the purpose of this study:

1. The system is supposed to be perfectly mixed.

2. All state variables are measured directly.

3. Density, latent heat of vaporization of steam, and specific heat capacity are

supposed to be constant.

4. The fabric flow is supposed to be constant through the process.

4.2.1 Material Balance

The material balance of a continuous fabric preparation process as illustrated

in figure 4.1 can be derived in term of liquid level as follow:

1st tank: ( ) ( )1
0 1 0 5 1

1
C

t

dh v W W F F F
dt A

ρ
ρ

= − + + −   (4.3)

2nd tank: ( ) ( )2
1 2 3 2

1
C

t

dh v W W F F
dt A

ρ
ρ

= − + −   (4.4)

3rd tank: ( ) ( )3
2 3 4 3

1
C

t

dh v W W F F
dt A

ρ
ρ

= − + −   (4.5)

Liquid in each tank is overflow. Then left-hand side of equation (4.3), (4.4),

and (4.5) are equal to zero then the flow rate of liquid output in each tank is calculated

as following equation.

1st tank: ( ) ( )1 0 1 0 5
CvF W W F F
ρ

= − + + (4.6)

2nd tank: ( )2 1 2 3
CvF W W F
ρ

= − + (4.7)

3rd tank: ( )3 2 3 4
CvF W W F
ρ

= − + (4.8)

4.2.2 Component Balance

The component balance of concentration hydrogen peroxide is shown as

follow.
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1st tank: ( )1 1
0 0 5 1 1 1 ,1

1 1

1 C
u

vdX XX F YF r F W P
dt V V ρ

 
= − − − + 

 
(4.9)

2nd tank: 2 2
3 3 1 1 ,1 2 2 2 ,2

2 2

1 C C
u u

v vdX XX F X W P r F W P
dt V Vρ ρ

   
= + − − +   

   
(4.10)

3rd tank: ( )3 3
2 2 ,2 3 3 3 ,3

3 3

1 C
C u u

dX X vX v W P r F W P
dt V V ρ

 
= − − + 

 
(4.11)

where 1V , 2V , and 3V  are liquid volume in each tank and determined by i i tV h A= .

And the equation of the reaction rate in each tank is based on the oxidation

reaction of polyvinyl alcohol (PVA) (Oji, n.d.) that used to be sizing. According to the

Arrhenius’s equation, the rate of reaction depends on the temperature and it can be

written by the following equation.
/

0
E RT

i ir k e X−= (4.12)

Hydrogen peroxide is weak acid. Then the concentration in equation (4.9),

(4.10), and (4.11) are derived in terms of H +  based on equilibrium acid then

converted in term of pH by following equation:

pH log H + = −   (4.13)

4.2.3 Energy Balance

For the temperature control in this process, the energy balance around each

tank is given by the following equations:

( ) ( )

( ) ( ) ( )

,1
0 5 0 1 1 0 0 1 1

1 1

1
1 1 1 1 1 0 1

1 1

1

1

C P C

P

P b
P P

v CdT F F T FT W T WT
dt V C V

SH rV U A T T C T T
C V C V

ρ

λ
ρ ρ

= + − + −  

+ −∆ − − + + −       (4.14)

( ) ( )

( ) ( ) ( )

,2
3 3 2 2 1 1 2 2

2 2

2
2 2 2 2 2 0 2

2 2

1

1

C P C

P

P b
P P

v CdT FT F T WT W T
dt V C V

SH rV U A T T C T T
C V C V

ρ

λ
ρ ρ

= − + −

+ −∆ − − + + −       (4.15)
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( ) ( )

( ) ( ) ( )

,3
4 0 3 3 2 2 3 3

3 1

3
3 3 3 3 3 0 3

3 3

1

1

C P C

P

P b
P P

v CdT F T FT W T W T
dt V C V

SH rV U A T T C T T
C V C V

ρ

λ
ρ ρ

= − + −

+ −∆ − − + + −       (4.16)

All the parameters, constant values and initial condition (Anon, 1990) used in

the model are given in Table 4.1 and 4.2.

Table 4.1 Parameters and constant values in model

Parameter Value Parameter Value

1A 4.565 2m 5F 0.040 3m h

2A 4.565 2m −∆H 1174 kJ kmol

3A 4.565 2m 0k 1.056 1 h

tA 1.87 2m aK 121.5 10−×

PC 4.208 kJ kg K⋅ L 2114.3 kJ kg

,P CC 1.15 kJ kg K⋅ ,1uP 0.8 %

E 3138 kJ mol ,2uP 0.6 %

oF 0.035 3m h ,3uP 0.4 %

4F 0.040 3m h R 8.314 kJ mol K⋅

0T 303 K 1W 0.09 kg m

bT 418 K 2W 0.07 kg m

2U 103.02 2kJ h m⋅ oX 0.1 3kmol m

3U 103.02 2kJ h m⋅ Y 0.05 3kmol m

Cv 840 m h ρ 965.34 3kg m

oW 0.05 kg m
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Table 4.2 Initial condition in model

Parameter Value Parameter Value

1h 0.5 m 1S 8 kg h

2h 0.5 m 2S 20 kg h

3h 0.5 m 3S 20 kg h

1X 0 3kmol m 1T 343 K

2X 0 3kmol m 2T 343 K

3X 0 3kmol m 3T 343 K

4.3 Control Configuration

In this work, the manipulated variable is the liquid temperature in each tank

( 1T , 2T , and 3T ). It is controlled by the steam flow rate ( 1S , 2S , and 3S ). The overall

heat transfer coefficient and heat transfer area ( 1 1U A , 2 2U A , and 3 3U A ) are

uncertainty parameter that used the Kalman filter to estimate. The parameters

mismatch that used to test robustness of controller are the heat of reaction ( )−∆H  and

the velocity of fabric ( )Cv .

4.3.1 PID Configuration

The digital PID controller in the continuous and discrete form as shown as

follows.

Continuous form: [ ]* *

0

( )1( ) ( ) ( )
t

c d
i

d e t
p t p K e t e t dt

dt
τ

τ
 

= + + + 
 

∫ (4.17)

Discrete form: ( ) ( ) ( )1 1 1 22D
n n c n n n n n n

I

tp p K e e e e e e
t

τ
τ− − − −

 
= + − + + − + 

 

�

�
(4.18)

Then the manipulated equations can be rearranged in discrete form as follow:
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1st tank: ( ) ( ) ( ),
1, 1, 1 ,1 1, 1, 1 1, 1, 1, 1 1, 2

,1

2D i
n n c n n n n n n

I

tS S K e e e e e e
t

τ
τ− − − −

 
= + − + + − + 

  

�

�

(4.19)

2nd tank: ( ) ( ) ( ),2
2, 2, 1 ,2 2, 2, 1 2, 2, 2, 1 2, 2

,2

2D
n n c n n n n n n

I

tS S K e e e e e e
t

τ
τ− − − −

 
= + − + + − + 

  

�

�

(4.20)

3rd tank: ( ) ( ) ( ),3
3, 3, 1 ,3 3, 3, 1 3, 3, 3, 1 3, 2

,3

2D
n n c n n n n n n

I

tS S K e e e e e e
t

τ
τ− − − −

 
= + − + + − + 

  

�

�

(4.21)

The tuning parameters of PID controller are comprised of the controller gain

( )cK , the integral time ( )Iτ , and the derivative time ( )Dτ .

4.3.2 GMC Configuration

The general form of the GMC control algorithm can be written as:

1 2( ) ( )sp sp
dy K y y K y y dt
dt

= − + −∫ (4.22)

Substituting 1T , 2T , and 3T  for y  and ,1spT , ,2spT , and ,3spT  for spy  in equation

(4.22) to give the following:

1st tank 1
1,1 ,1 2,1 ,1( ) ( )sp sp

dT K T T K T T dt
dt

= − + −∫ (4.23)

2nd tank 2
1,2 ,2 2,2 ,2( ) ( )sp sp

dT K T T K T T dt
dt

= − + −∫ (4.24)

3rd tank 3
1,3 ,3 2,3 ,3( ) ( )sp sp

dT K T T K T T dt
dt

= − + −∫ (4.25)

Then solving equation (4.23), (4.24), and (4.25) for the manipulated equations

in discrete form.
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1st tank
( ) ( )( ) ( )

( ) ( )

1 1,1 ,1 2,1 ,1
0

1, 0 5 0 1 1, , 0 0 1 1,
1

1, 1 1 1 1, 0

 ( ) ( )

1  -  
-

*

k

P sp sp
k

k P k P C C k
P b

k k

V C K T T K T T t

S C F F T FT C v W T WT
L C T T

H r V U A T T

ρ

ρ
=

  
− + −  

  
 = − + − −
 +
 − −∆ + −
 
  

∑ �

(4.26)

2nd tank
( ) ( ) ( )

( ) ( )

2 1,2 ,2 2,2 ,2
0

2, 3 3, 2 2, , 1 1, 2 2,
2

2, 2 2 2 2, 0

 ( ) ( )

1  -  
-

*

k

P sp sp
k

k P k k P C C k k
P b

k k

V C K T T K T T t

S C FT F T C v WT W T
L C T T

H r V U A T T

ρ

ρ
=

  
− + −  

  
 = − − −
 +
 − −∆ + −
 
  

∑ �

(4.27)

3rd tank
( ) ( ) ( )

( ) ( )

2 1,3 ,3 2,3 ,3
0

3, 4 0 3 3, , 2 2, 3 3,
3

3, 3 3 3 3, 0

 ( ) ( )

1  -  
-

*

k

P sp sp
k

k P k P C C k k
P b

k k

V C K T T K T T t

S C F T FT C v W T W T
L C T T

H r V U A T T

ρ

ρ
=

  
− + −  

  
 = − − −
 +
 − −∆ + −
 
  

∑ �

(4.28)

where t�  is the sampling time of the controller.

Choose parameters ξ  and τ  from figure B.1 (see in Appendix B) to

determined GMC parameters using the equations (B.9) and (B.10).

1
2ξ
τ

=K (B.9)

2 2

1
τ

=K (B.10)

4.3.3 MPC Configuration

State equation in state space form as shown below

x Ax Bu= +& (3.11)

y Cx= (3.12)

Define x& , x , u , y , and C  as the following equations:
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3 31 2 1 2 =   
&

TdX dTdX dX dT dTx
dt dt dt dt dt dt

(4.29)

[ ]1 2 3 1 2 3= Tx X X X T T T (4.30)

[ ]1 2 3= Tu S S S (4.31)

[ ]1 2 3= Ty T T T (4.32)

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

C
 
 =  
  

(4.33)

Convert equation (4.9) to (4.11) and (4.14) to (4.16) in state space form to

given matrix A  and B  as follow.

1 1

2 2

32

1

377 / 377 /
12

1

377 / 377 /
22

2

377 /377 /
32

3

377 /

398.571.056 0.1169,0,0, ,0,0

398.570.0712, 1.056 0.1166,0.0553,0, ,0

398.570,4.1530, 1.056 0.0791,0,0,

0.3052 ,0,0, 0.2016 0.001

T T

T T

TT

T

e e x
T

e e x
T

e e x
T

A
e

− −

− −

−−

−

−
− −

−
− −

−
− −

=
− − − 1

2 2

3 3

377 /
1 12

1

377 / 377 /
2 22

2

377 / 377 /2
3 32

3

115.192 ,0,0

115.190, 0.3052 ,0,0.0243, 0.2256 0.0012 ,0.0553

115.190,0, 0.3052 ,0,1.8916 10 , 0.2031 0.0012

T

T T

T T

S e x
T

e S e x
T

e S e x
T

−

− −

− −−

 
 
 
 
 
 
 
 
 
 

− 
 
 

− − − −



− × − − −
 







(4.34)

1

2

3

0 0 0
0 0 0
0 0 0

1.0835 0.0012 0 0
0 1.0835 0.0012 0
0 0 1.0835 0.0012

B
T

T
T

 
 
 
 

=  − 
 −
 

−  

(4.35)

Substituting x& , u , y , A , B , and C  in equation (3.11) and (3.12), then

rearranged in discrete form as equation (3.13) and (3.14).
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When applying method of optimization, Lagrange Multiplier’s principle, and

then the new objective function can be written as follow.

Discrete equation:

1 1
1( , ) ( ) ( )
2

mk N
T T
k k k k k k k k

k
L x u x Qx u Ru Gx Hu xλ

+

+ + = + + + − ∑ (3.22)

where ( ) nt Rλ ∈ is Largrange Multiplier n equation..

Selecting the number prediction horizontal ( )pN  and the number control

horizontal ( )mN , then tuning parameters of Q  and R , square matrix dimension 6 6×

and 3 3×  respectively.

After solving the equation by fixed k k kP xλ = , the manipulated variable and

controller gain are obtained as equation (3.24) and (3.25).

k ku Kx= − (3.24)

1 1( ) ( )T T
kK R H G P Q− −= − − (3.25)

Calculating through MPC algorithm. Finally, the first manipulated variable

that is in calculated manipulated set is selected to apply in system.

4.3.4 Kalman Filter Configuration

In this work, the Kalman filter is used to estimate 1 1U A , 2 2U A , and 3 3U A . The

Kalman Filter model is state space form. In addition, the state variable is raised as

follow.

( )1 1 0
d U A
dt

= (4.36)

( )2 2 0
d U A
dt

= (4.37)

( )3 3 0
d U A
dt

= (4.38)

0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0

KC
 
 =  
  

(4.39)
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Convert equation of state variables (equations (4.9) to (4.11), (4.14) to (4.16),

and (4.38) to (4.40)) in state space form to given matrix KA  and KB . Then checking

the observability of Kalman filter model (see in appendix A), the determinant of

observability matrix is not zero. Hence the Kalman Filter model could observe.

Tuning parameters of Kalman filter are KP , KQ , and KR that is the estimation error

covariance matrix, process noise covariance matrix, and measurement noise

covariance matrix, respectively.



CHAPTER V

SIMULATION RESULTS

This chapter presents the control results of the liquid temperature of a

continuous fabric preparation process. The open loop behavior and close loop

behavior of system are shown in section 5.1 and 5.2, respectively. The simulation

results in section 5.2 are studied in two case, nominal case and parameter mismatch

case. The performance of PID, GMC, and MPC controller to control the liquid

temperature are simulated in nominal case. The performance of GMC with Kalman

filter and MPC with Kalman filter are illustrated in case of parameter mismatch

5.1 Open Loop Behavior

The simulation as shown in figure 5.1 to 5.3 illustrates the open loop behavior

of the liquid level, pH, and the liquid temperature in a continuous fabric preparation

process where all parameters and constant values used to simulate are given in table

4.1 and 4.2.
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Figure 5.1 Open loop behavior of liquid level in each tank
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Figure 5.2 Open loop behavior of pH in each tank
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Figure 5.3 Open loop behavior of liquid temperature in each tank

In figure 5.1, due to effect of liquid output flow rate in each tank is overflow,

liquid level in each tank is equal to 0.5 m . The pH value of liquid in each tank shown

in figure 5.2. Sodium hydroxide that is strong base is fed to the first, the pH value in

this tank is higher than the other tank. In the third tank, due to the concentration of

hydrogen peroxide is lower than the other tank and the water is fed to this tank, the

pH value is lowest In figure 5.3, the liquid temperature convert to the constant value

but this value is not a desired set point.
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5.2 Control Study

Product quality from fabric preparation process depends on the activity of

chemical that used to cleans and rid of impurities in the process. Higher chemical

activity is higher performance to clean the fabric. Due to the effect of the operating

temperature, which influences the chemical activity through the water solubility of

sizing, it is necessary to control the temperature in fabric preparation process.

The purpose of this study is to design a control configuration to control the

liquid temperature in a continuous fabric preparation process at desired set point. The

set point of liquid temperature of the first tank is 85 Co  or 378K  and the other tanks

are 80 Co  or 373K . Due to the difference of the initial temperature and the desired set

point in each tank, which influences the control performance index in each tank is not

equivalent, the control performance index must be divided by the difference of the

initial temperature and the desired set point in each tank. The integral of the absolute

value of error (IAE) and integral of the square of error (ISE) are given as follow.

( )
( )
, at time 

, initial

IAE
sp i i t

sp i i

T Tsum

T T−

−
= (5.1)

( )
( )

2
, at time 

, initial

ISE
sp i i t

sp i i

sum T T

T T−

−
= (5.2)

5.2.1 Nominal Case

In this case, PID controller, a generic model control (GMC) and a model

predictive control (MPC) are implemented to control the liquid temperature.

For PID controller, the manipulated equations can be rearranged in discrete

form as given in equation (4.19) to (4.21) and the appropriate values of the tuning

parameter of PID controller are shown in table 5.1.
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Table 5.1 Parameter of PID controller

PID parameter 1st tank 2nd tank 3rd tank

cK 22 27 20

Iτ 50 70 100

Dτ 0.005 0.01 0.006

For GMC controller, after choose ξ  to give desired shape of response and

choose τ  to give appropriate timing of response, then it can be calculated the GMC

parameter tuning ( 1K  and 2K ) by using equations (B.9) and (B.10) and substituting in

the manipulated equations as shown in equations (4.26) to (4.28).

Table 5.2 GMC parameter tuning

Parameter 1st tank 2nd tank 3rd tank

1K 0.428 0.345 0.414

2K 32.27 10−× 31.19 10−× 34.76 10−×

For MPC controller, weighting factors of the state variables and manipulated

variables matrix (Q  and R ), dimension 6 6×  and 3 3×  respectively, are given as

follow.

[ ]5 4 4 5 6 6diag 5 10 1 10 2 10 1.6 10 3 10 8 10Q = × × × × × × (5.3)

[ ]diag 1 1 1R = (5.4)

Control response of PID, GMC, and MPC controllers in nominal case are

shown in figures 5.4, 5.5, and 5.6, respectively.
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Figure 5.4 Control response of PID controller (nominal case)
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Figure 5.5 Control response of GMC controller (nominal case)



54

0 0.5 1 1.5 2 2.5 3 3.5 4
340

350

360

370

380
MPC

T1
 (K

)

T1sp
T1

0 0.5 1 1.5 2 2.5 3 3.5 4
2

4

6

8

10

S
1 

(k
g/

h)

Time (h)

(a) 1st tank

0 0.5 1 1.5 2 2.5 3 3.5 4
340

345

350

355

360

365

370
MPC

T2
 (K

)

T2sp
T2

0 0.5 1 1.5 2 2.5 3 3.5 4
16

17

18

19

20

21

S
2 

(k
g/

h)

Time (h)

(b) 2nd tank

0 0.5 1 1.5 2 2.5 3 3.5 4
340

345

350

355

360

365

370
MPC

T3
 (K

)

T3sp
T3

0 0.5 1 1.5 2 2.5 3 3.5 4
16

17

18

19

20

21

S
3 

(k
g/

h)

Time (h)

(c) 3rd tank

Figure 5.6 Control response of MPC controller (nominal case)
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5.2.2 Parameter Mismatch Case

The process parameters are not all known. The UA  term is the unmeasured

term. Then the Kalman filter is implemented to estimate term 1 1U A , 2 2U A , and 3 3U A .

The GMC with Kalman filter and the MPC with Kalman filter are implemented to

control the temperature. The Kalman filter tuning parameters are given as follow.
5 5 5diag 1 1 1 1 1 1 1 10 5 10 4 10KP =  × × ×  (5.5)

6 6 6diag 1 1 1 1 1 1 1 10 6 10 5 10KQ =  × × ×  (5.6)

[ ]diag 1 1 1KR = (5.7)

where the matrixes ,  ,  and K K KP Q R  have dimension 9 9× , 9 9× , and 3 3×

respectively.

Table 5.3 Conditions of parameter mismatch

Case Condition

I 130% U+

II ( )1 230%  and U U+

III ( )1 330%  and U U+

IV ( )1 2 330% , , and U U U+

V ( ) ( )1 2 330% , ,  and 30% U U U H+ + −∆

VI ( ) ( )1 2 330% , ,  and 30% CU U U v+ +

VII ( ) ( )1 2 330% , ,  and 30% CU U U v+ −

Table 5.3 shown the conditions of parameter mismatch. Parameter mismatch

consists of the overall heat transfer coefficient in each tank ( )iU , the heat of reaction

( )H−∆ , and the fabric velocity ( )Cv .

The Estimate of i iU A  and the control response of GMC with Kalman filter and

MPC with Kalman filter are shown in figures 5.7 to 5.34.
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Figure 5.7 Estimate of 1 1U A  for 130% U+  change
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Figure 5.8 Control response of GMC with Kalman filter for 130% U+  change
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Figure 5.9 Estimate of 1 1U A  for 130% U+  change
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Figure 5.10 Control response of MPC with Kalman filter for 130% U+  change
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Figure 5.11 Estimate of 1 1 2 2,  U A U A  for ( )1 230%  and U U+  change
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Figure 5.12 Control response of GMC with Kalman filter for ( )1 230%  and U U+

change
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Figure 5.13 Estimate of 1 1 2 2,  U A U A  for ( )1 230%  and U U+  change
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Figure 5.14 Control response of MPC with Kalman filter for ( )1 230%  and U U+

change
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Figure 5.15 Estimate of 1 1 3 3,  U A U A  for ( )1 330%  and U U+  change
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Figure 5.16 Control response of GMC with Kalman filter for ( )1 330%  and U U+

change
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Figure 5.17 Estimate of 1 1 3 3,  U A U A  for ( )1 330%  and U U+  change
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Figure 5.18 Control response of MPC with Kalman filter for ( )1 330%  and U U+

change



62

0 0.5 1 1.5 2 2.5 3 3.5 4
450

500

550

600

650

U
1A

1

Time (h)

Real
Esimated

0 0.5 1 1.5 2 2.5 3 3.5 4
450

500

550

600

650

U
2A

2

Time (h)

Real
Esimated

0 0.5 1 1.5 2 2.5 3 3.5 4
450

500

550

600

650

U
3A

3

Time (h)

Real
Esimated

Figure 5.19 Estimate of 1 1 2 2 3 3,  ,  U A U A U A  for ( )1 2 330% , , and U U U+  change
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Figure 5.20 Control response of GMC with Kalman filter for 1 230% ( , ,  andU U+

3 )U change
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Figure 5.21 Estimate of 1 1 2 2 3 3,  ,  U A U A U A  for ( )1 2 330% , , and U U U+  change
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Figure 5.22 Control response of MPC with Kalman filter for ( )1 2 330% , , and U U U+

change
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Figure 5.23 Estimate of 1 1 2 2 3 3,  ,  U A U A U A  for ( )1 2 330% , , U U U+  and +30%

( )H−∆  change
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Figure 5.24 Control response of GMC with Kalman filter for ( )1 2 330% , , U U U+

and +30% ( )H−∆  change
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Figure 5.25 Estimate of 1 1 2 2 3 3,  ,  U A U A U A  for ( )1 2 330% , , U U U+  and +30%

( )H−∆  change
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Figure 5.26 Control response of MPC with Kalman filter for ( )1 2 330% , , U U U+  and

+30% ( )H−∆  change
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Figure 5.27 Estimate of 1 1 2 2 3 3,  ,  U A U A U A  for ( ) ( )1 2 330% , ,  and 30% CU U U v+ +

change
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Figure 5.28 Control response of GMC with Kalman filter for ( )1 2 330% , , U U U+

and +30% ( )Cv  change
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Figure 5.29 Estimate of 1 1 2 2 3 3,  ,  U A U A U A  for ( ) ( )1 2 330% , ,  and 30% CU U U v+ +

change
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Figure 5.30 Control response of MPC with Kalman filter for ( )1 2 330% , , and U U U+

and +30% ( )Cv  change
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Figure 5.31 Estimate of 1 1 2 2 3 3,  ,  U A U A U A  for ( ) ( )1 2 330% , ,  and 30% CU U U v+ −

change
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Figure 5.32 Control response of GMC with Kalman filter for ( )1 2 330% , , U U U+

and ( )30% Cv−  change
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( )30% Cv−  change



78

Table 5.4 IAE and ISE of the temperature in nominal case

PID GMC MPC
Tank

IAE ISE IAE ISE IAE ISE

1 0.25241 1.9935 0.25774 1.9077 0.21107 1.5550

2 0.30239 1.8135 0.31910 1.5833 0.26123 1.2909

3 0.28001 1.4862 0.30153 1.4814 0.24235 1.1811

Table 5.5 IAE and ISE of the temperature in parameter mismatch case

GMC with KF MPC with KF
Case Tank

IAE ISE IAE ISE

1 0.29707 2.2076 0.27254 2.0217

2 0.32088 1.5925 0.26147 1.2924I

3 0.30153 1.4815 0.24235 1.1811

1 0.29707 2.2076 0.27254 2.0217

2 0.41423 2.0629 0.28441 1.4090II

3 0.30191 1.4835 0.24259 1.1824

1 0.29707 2.2076 0.27254 2.0217

2 0.31914 1.5843 0.26125 1.2918III

3 0.44080 2.2028 0.31962 1.5820

1 0.29707 2.2076 0.27254 2.0217

2 0.41425 2.0643 0.28443 1.4101IV

3 0.44080 2.2030 0.32636 1.6161

1 0.29709 2.2077 0.27257 2.0219

2 0.41426 2.0643 0.28443 1.4101V

3 0.44080 2.2030 0.32636 1.6161

1 0.29386 2.1613 0.28362 2.1037

2 0.41831 2.1042 0.30196 1.5060VI

3 0.44234 2.2180 0.33240 1.6512
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Table 5.5 (continued) IAE and ISE of the temperature in parameter mismatch case

GMC with KF MPC with KF
Case Tank

IAE ISE IAE ISE

1 0.30027 2.2544 0.28316 2.1082

2 0.41019 2.0247 0.27437 1.3584VII

3 0.43927 2.1881 0.31869 1.5736

5.2.3 Discussion

5.2.3.1 Nominal case

All controllers can control the liquid temperature in each tank of a continuous

fabric preparation process to the desired set point. Although the control performance

index (IAE) and time to reach the set point of the PID controller are less than the

GMC controller, the control respond of PID controller is oscillate and has overshoot

while the control response of GMC has smooth and no overshoot.

Both control responses of GMC controller and MPC controller have no

overshoot. The control response of MPC has time to reach the set point shorter than

the control response of GMC controller and the control performance index of MPC

controller is the better than GMC controller. Then MPC controller is the best control

in a continuous fabric preparation process.

5.2.3.2 Overall heat transfer coefficient change

In this case, the results are given in figures 5.7 to 5.22. The Kalman filter is

implemented to estimate UA  terms in each tank. GMC with Kalman filter and MPC

with Kalman filter are implemented to control the liquid temperature in each tank.

Increase the overall heat transfer coefficient ( )U , the steam flow rate that used is

increase and its effect influences to the liquid temperature. Increasing 2U  and 3U  are

not effect to the liquid temperature in the first tank.
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From the simulation results, a both of controllers can deliver the liquid

temperature in each tank to the desired set point with no overshoot. The control

response of MPC with Kalman filter has time to reach the set point shorter than GMC

with Kalman filter and the control performance index of MPC controller is the better

than GMC controller.

5.2.3.3 Overall heat transfer coefficient and heat of reaction change

The simulation results in this case are shown in figures 5.23 to 5.26. The

Kalman filter is implemented to estimate UA  terms in each tank. GMC with Kalman

filter and MPC with Kalman filter are implemented to control the liquid temperature

in each tank. Increase heat of reaction, it does not influence to the liquid temperature

in each tank, but influences to the value of using steam flow rate.

A both of controllers can deliver the liquid temperature in each tank to the

desired set point with no overshoot. From control response, MPC with Kalman filter

has time to reach the set point shorter than GMC with Kalman filter and the control

performance index of MPC controller is the better than GMC controller.

5.2.3.4 Overall heat transfer coefficient and fabric velocity change

In this case, the results are given in figures 5.27 to 5.34. The fabric velocity

that increased is influence to the liquid temperature in all tanks. Increase the fabric

velocity, time to reach the set point of the first tank is rapidly and the other tank is

slowly. Decrease the fabric velocity, time to reach the set point of the first tank is

slowly and the other tank is rapidly.

The Kalman filter can not be to estimate UA  term, the results of estimation

has the offset. However, MPC with Kalman filter and GMC with Kalman filter have

still to control the liquid temperature in each tank to reach the set point. The

manipulated variables from the control response of GMC with Kalman filter are

change more and faster than MPC with Kalman filter. The control performance index

of MPC controller is the better than GMC controller.



CHAPTER VI

CONCLUSION AND RECOMMENDATION

The work presented in this thesis studies on a model predictive control (MPC)

to control the liquid temperature of a continuous fabric preparation process. The study

is aimed the single-step of fabric preparation with the counter flow washing of rising

step. Since the MPC controller uses a model of the process to be controlled in its

algorithm to determine manipulated variables, the modeling of the process is of

important. Therefore, a mathematical model of the continuous fabric preparation

process is developed.

6.1 Conclusion

In this work, the temperature control can be studied in two cases. One is

nominal case that implemented control algorithm of PID, GMC, and MPC controllers

to control the liquid temperature of the continuous fabric preparation process to the

desired set point. The other one is parameter mismatch case that implemented MPC

with Kalman filter and GMC with Kalman filter to control the liquid temperature in

several conditions as shown in Table 5.3.

The results in nominal case demonstrated the MPC controller is able to control

the liquid temperature at its desired set point and provides a better control

performance when compared with a GMC controller and PID controller. In parameter

mismatch case, The Kalman filter that implemented with a both controllers can

estimate UA  terms when changes in the overall heat transfer coefficient and heat of

reaction. While changes in the fabric velocity, estimate of UA  terms has offset. The

robustness of the controllers is evaluated by changing process parameters such as the

overall heat transfer coefficient, heat of reaction. It has been shown that the MPC with

Kalman filter can control the liquid temperature at desired set point for all case in the

parameter mismatch and provides a better control performance when compared with
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GMC with Kalman filter. Therefore, the MPC coupled with Kalman filter has been

found to be effective and robust with respect in process parameters mismatch.

6.2 Recommendation

1. Some limitations have been investigated. The various assumptions in

simplified process simulations are the limitations in study of process model.

2. Typical fabric preparation includes desizing, scouring, and bleaching.

Preparation steps can also include processes, such as singeing and mercerizing, The

single-step fabric preparation that studied is appropriate for some fabric, designed to

chemically or physically alter kind of the fabric.

3. The performance of the continuous fabric preparation depends not only

upon the operating temperature but also upon the chemical concentration, pH, and

time. The researchers must take the effect of the above parameters into account in

order to optimize design parameters and operating conditions.
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APPENDIX A

SYSTEM TEST

State space equation is linearlization of system from equation (3.11) and

(3.12) as shown below.

= +&x Ax Bu (3.11)

=y Cx (3.12)

where A ,B andC  are constant matrices
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A.1 Controllability Testing

A mathematically based definition is that a system is completely state

controllable if it is possible to cause the state vector to move from any initial value, to

any other value, in a finite time.

Method of testing controllability involves finding the rank of the following

partitioned matrix made up of combinations of the A  and B  matrices:
2 1−  L nB AB A B A B (A.1)

where n  is number of state variable.

This matrix will often be rectangular. If the test matrix is of full rank (that is,

the rank equal to the number of rows in B ), the system is completely state

controllable. If it is not full rank, then the system is only partially state controllable,

that is subset of elements of the state vector.
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Rank of matrix can be calculated by the determinate of matrix as shown in

equation (A.1). The determinate of controllability not equal zero, the matrix in

equation (A.1) has rank equal full rank and the system has controllability.

A.2 Observability Test

A system is said to be completely observable if it is to reconstruct the state

vector completely from measurements made at the system’s output ( )y .

( ) ( )2 1− 
  

L
nT T T T T T TC A C A C A C (A.2)

where n  is number of state variable.

If this matrix is of full rank (that is, the rank equal to the number of rows in

C ), then the system is completely observable (so that the values of all the states can

be found from information available at the system’s output). If it is not full rank, then

the system is only partially observable (meaning that some, but not all, of the

system’s state information can be obtained from output measurements).



APPENDIX B

TUNING OF GMC CONTROLLER

Lee and Sullivan (1988) have generalized many of the model-based

techniques into a generic structure called the generic model control, which allows the

incorporation of nonlinear process models directly in the control algorithm. Consider

a process described by:

( )x f x,u,t=& (B.1)

( )y g x= (B.2)

where
.
x  is a state variable, u  is the manipulated input variable, and y  is the output

of the process model.

In general, f and g  are nonlinear functions. From equations (B.1) and (B.2),

y&  can be written as

( ), ,xy G f x u t=& (B.3)

where x
gG
x
∂

=
∂

In a classical optimal control, the trajectory of y  is usually compared against

a nominal trajectory, *( )y t , as a measure of system performance. As an alternative,

consider the performance of the system to be such that:

( ) ( ) ( )* *y t r y=& (B.4)

where *r  represents some arbitrary function to be specified.

When the process is away from its desired steady state *y , the rate of change

of *,y y  is selected to be such that the process moves towards steady state, i.e.

( )( )*
1y K t y y= −& (B.5)

where ( )1K t  is some diagonal matrix.
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The process is selected to have zero offset, i.e.

( ) ( )*
2y K t y y dt= −∫& (B.6)

where ( )2K t  is some diagonal matrix.

( )1K t  and ( )2K t  are constant with respect to time. Good control

performance will be given by some combination of these objectives, i.e.

( ) ( ) ( )* * *
1 2y K y y K y y dt= − + −∫& (B.7)

It can be seen that by different choices of 1K  and 2K  the performance

specification can be altered for each variable separately. One can use these values to

select any “reasonable” desired response for the system. “Reasonable” implies that

the parameters are chosen in relation to the system’s natural dynamic response. How

well the system matches this performance index is governed by how closely the

chosen model matches the plant behavior.

Taking Laplace transform of the equation (B.7), transfer function of this

equation becomes:

* 2 2

2 1
2 1

y s
y s s

τξ
τ τξ

+
=

+ +
(B.8)

where
2

1
K

τ =  and 1

22
K
K

ξ = .

This system does not yield the same response as a classical second-order

system (Stephanopoulos, 1984). However, similar plots to the classical second-order

response showing the normalized response of the system *y y  vs. normalized time

t τ  with ξ  as a parameter can be produced and is shown in Figure B.1.
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t /τ

y/y*
ξ = 10

ξ = 1 .0
ξ = 0 .5

ξ = 3 .0

Figure B.1 Generalized GMC profile specification

The design procedure can be specified as follows:

1. Choose ξ from Figure B.1 to give desired shape of response,

2. Choose τ from Figure B.1 to give appropriate timing of response in relation to

known or estimated plant speed of response,

3. Calculate K1 and K2 using the following equations:

1
2K ξ
τ

= (B.9)

2 2
1K
τ

= (B.10)

GMC has several advantages that make it a good framework for developing

reactor controllers:

1. The process model appears directly in the control algorithm.

2. The process model does not need to be linearized before use, allowing for the

inherent nonlinearity of exothermic batch reactor operation to be taken into

account.
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3. By design, GMC provides feedback control of the rate of change of the controlled

variable. This suggests that the rate of temperature change, which as mentioned

above is very important in heat-up operations, can be used directly as a control

variable.

4. The relationship between feed-forward and feedback control is explicitly stated in

the GMC algorithm.

5. Finally and importantly, the GMC framework permits for developing a control

algorithm that can be used for both heat-up and temperature maintenance and

therefore eliminates the need for a switching criterion between different

algorithms; this should result in a much more robust control strategy.



APPENDIX C

INTEGRAL ERROR CRITERIA

Integral error measures indicate the cumulative deviation of the controlled

variable from its set point during the transient response. The following formulations

of the integral can be proposed.
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Figure C.1 Definition of error integrals

Integral of the absolute value of error (IAE)

0

( )IAE e t dt
∞

= ∫ (C.1)

Integral of the square of error (ISE)

2

0

( )ISE e t dt
∞

= ∫ (C.2)

Integral of time-weighted absolute error (ITAE)

0

( )ITAE e t tdt
∞

= ∫ (C.3)

where e  is the usual error (i.e., set point – control variable).

Each of the three figures of merit given by equation (C.1), (C.2), and (C.3)

has different purposes. The ISE will penalize (i.e., increase the value of ISE) the

response that has large errors, which usually occur at the beginning of a response,
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because the error is squared. The ITAE will penalize a response, which has errors that

persist for a long time. The IAE will be less severe in penalizing a response for large

errors and treat all errors (large and small) in a uniform manner. The ISE figure of

merit is often used in optimal control theory because it can be used more easily in

mathematical operations (for example differentiation) than the figures of merit, which

use the absolute value of error. In applying the tuning rules to be discussed in the next

section, these figures of merit can be used in comparing responses that are obtained

with different tuning rules.
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