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CHAPTER 1

INTRODUCTION

The 3x + 1 problem concerns the behavior of the iterates of the function which

takes odd integers x to (37 +1)/2 and even integers x to z/2 :

(3z 4.1)/2 if x =1 (mod 2),

T(z) =
x/2 if =0 (mod 2).
The 3x 41 Conjecture asserts that, starting from any positive integer o, repeated
iteration of this function eventually produces the value 1. We call the sequence
of iterates (o, T(a),T*(c),...) the trajectory of a. There are three possible

behaviors for such trajectories when a > 0.
(i) Convergent trajectory. The iterate 7" (a) = 1 for some natural number n.

(ii) Non-trivial cyclic trajectory. The sequence (T”(a)) eventually becomes

periodic and 7" («a) # 1 for any n > 1.

(iii) Divergent trajectory. lim 7" (a) = oc.

n—soo
The 3z + 1 Conjecture asserts that all trajectories of positive o are convergent.
Note that in both cases (i) and (ii) the trajectory of « is cyclic . The difference is
that in case (i) the trajectory of « contains the special value 1. ([1], Lagarias, J. C.)

At present, no one has been able to prove the 3x + 1 Conjecture or find a
counterexample. In order to gain new insights into this problem and make it
more tractable as well, we will extend our study as follows, and consider all cyclic

trajectories, instead of just convergent ones.



Let Z, denote the set of all nonnegative integers. Let k be any fixed prime
number and D = [’8 2} Let A be any 2 x 2 matrix of positive integers. For a
fixed B € Z2, let T : Z2 — 72 be defined by,
for each o € Z2,

D la if D~ 'aeZ?
T(a) =
Aa+ otherwise.
The objective of this thesis is to find some sufficient conditions on A and/or
« which ensure that for an appropriate (3 the trajectory (o, T'(a), T?(c),...) is
cyclic.

The remainder of this thesis is organized as follows. In Chapter 2 we summarize
some essential facts and give some notations which will be used in the succeeding
chapters.

In Chapter 3 some conditions on A, @ and [ are investigated. In particular, a
few theorems concerning situations guaranteeing that the trajectory is cyclic are
proved in this chapter.

Finally, in Chapter 4 we give examples and conclude our work. The first and
the second sections of the chapter provide some concrete examples, while the third

one summarizes our results and discusses topics for further researeh.



CHAPTER II

BACKGROUND AND NOTATIONS

Notation. For any set X, let X denote the set of all column vectors [} ] where

x1, 22 € X and let My(X) denote the set of all 2 x 2 matrices whose entries are

elements in X.

Definition 2.1. Let X be a nonempty set, and let (z,,) be a sequence in X. The
sequence (z,,) is said to be cyclic if there exist m,l € N such that x,, = Ty

for all n € N.

Definition 2.2. Let X be a nonempty set and f : X — X. For each oy € X,
the sequence (ap, f(ao), f2(@p), - . .) is called a trajectory (of ap).
For any n € N, we denote the value f"(ap) by a,,. In particular, the trajectory

{ao, (), [*(ap), . ) will usually be written as (ag, a1, as, . . .).

Proposition 2.3. Let X be a nonempty set, f +: X — X and (ap, a1, 9,...) a

trajectory of cg. Then the following are equivalent:
(i) {ap, a1, an,...) is cyclic;
(i) there exist 1,7 € N such thati < j and a; = .

Proof. (i)=(ii) Assume that the trajectory (ag, a1, as,...) is cyclic. Then there
exist m, [ € N such that a,,, = a,,4,; for alln € N. Since [ € N;m < m+1. Hence
there exist ¢« = m, j = m + [ € N such that i < j and o; = ;.

(i)<=(ii) Assume that there exist 7, j € N such that ¢ < j and o = a;. We

will show that there exist m,l € N such that a,, = ay, 4, for all n € N. Since



i < j,j —1 € N. We will prove by mathematical induction that o; = ;4(j—s) for
all n € N. Since o; = aj,0; = a;(j—;). Let k € N. Assume that a; = a;p—i)-
We will show that a; = it (e1)(j—i)- Since o = i (j—iy = [77 () = 77 (Qign(i—i)
= Qith(j—i)(j—i) = Qi (k41)(j—i)> Qi = Qj = Qi (k41)(j—i)- By mathematical induction,
Qi = Qipn(j—i) for all n € N. Hence there exist m = 4, = j —¢ € N such that

Oy = Qi for all n € N. ]

Notation. Let k be a prime number, € Z,,a = [£1] € Z2, and A = [a;;] € M5 (N).
We define the following notations:
Z is the equivalent class of z in Z,

a = [g] in Z3,

A= [C_Lw] in Mg(Zk)
Notation. Let R be a ring. For any A € My(R), let Im(A) = {Azx | z € R?*}.

Theorem 2.4 (Cayley-Hamilton Theorem [2]|, page 194 ). If A is a square
matriz over a commutative ring with-identity and x(x) is its characteristic polynomial,

then x(A) = 0.

Definition 2.5. ( [3], page 198 ) A Fermat number is an integer of the form

F, =2%" 4+ 1, where n > 0. If F, is prime, F}, is called a Fermat prime.

Theorem 2.6 (Fermat's Theorem - [3], page 74).- Let p be-any prime number,
and a be an integer such that p{a. Then a?~' =1 (mod p). Equivalently, if a is

any integer such that p 1 a, then a? = a (mod p).

Theorem 2.7. ( [2], page 79 ) Let V and W be vector spaces over field F' and
let T':V — W be a linear transformation from V into W.

T is 1 — 1 if and only if for any v € V, if T(v) = 0, then v = 0.

Lemma 2.8. Let o be an element of the symmetric group S, andb € {1,2,...,n}.

Then {o'(b) | 1 € N} = {o7(b) | | € N}.



Proof. We will prove this by considering cases based on |S,].
Case 1. |S,| = 1. Then S, = {e} and 0! = e = o~ for all | € N where ¢ is the
identity map.
Case 2. |5,| > 1.
(C) Let = € {o'(b) | | € N}. Then x = o'(b) for some ¢t € N. Since ol = e,

it follows that o~ = ¢/%1=1 and thus

- (UISnI—l)—t<b)

_ oS- ).

Because t(|5,| — 1) € N, this shows = € {g7/(b) | | € N}.

(2) Let # € {o7'(b) | | € N}. Then # = ¢ '(b) for some t € N. As above,
z =0 "(b)
=G
(UISnI—l)t(b)

A O-t(lsn‘_l)(b)‘

Hencex € {o'(b) | 1 € N}. O

Definition 2.9. Let ¢ be an element of S,,. We say that ¢ can be represented
by a single cycle if o can be represented by a cycle (i; iy --- 1i,), where

i1,19,...,1, are distinct elements of {1,2,...,n}.

Proposition 2.10. Let 0 € S,,. If 0 cannot be represented by a single cycle, then
for any a € {1,2,...,n}, there exists b € {1,2,...,n} such that oa'(b) # a for all

leN.



Proof. Assume that o cannot be represented by a single cycle. Let a € {1,2,...,n}.
Then {o'(a) | | € N} § {1,2,...,n}. Thus there exists b € {1,2,...,n} such
that o'(a) # b for all | € N. Therefore for all [ € N, a # (¢!)71(b) since (¢!)~! is
injective. Since {o'(b) | 1 € N} = {o7/(b) | I € N}, it follows that a # ¢'(b) for

all l € N. ]



CHAPTER III
SUFFICIENT CONDITIONS FOR CYCLIC

TRAJECTORIES

Let Z, denote the set of all nonnegative integers. Let k be any fixed prime number
and D = [£9]. Let A be any 2 X 2 matrix of positive integers , i.e., A = [2}],
where a,b,c,d € N. For a fixed 3 € Z2, let T : 72 — Z? be defined by, for each
a € 72,

D la if D~ta € 72,

T(a) =
Aa+ otherwise.
As stated above the objective of this thesis is to find some sufficient conditions

on A and/or « which ensure that for an appropriate [ the trajectory
{a, T(), T*(x),...) is cyclic. In this chapter we will derive some general conditions
of this type, then investigate a few more specific situations.

It is obvious that if & = [9] = 0, then the trajectory is certainly cyclic , so we

confine our investigation to the caserov # 0.

We first note a necessary condition for the trajectory (o, 1, s,...) to be

cyclic as follows:

Proposition 3.1. If T"(ay) # D 'a, 1 for all n € N, then the trajectory
(v, a1, v, .. .) is mot cyclic. Hence the trajectory (oo, a1, e, ...) can be cyclic

only if T"(ap) = D™ ey, for some n € N.

Proof. Assume that T"(ap) # D',y for alln € N, but the trajectory (ag, ay, as, . ..)



is cyclic. Then og # 0 since otherwise T"(cg) = D 'ag for all n € N, and
T (o) = A"ag + A" 13 + -+ + 3 for all n € N. Since (g, ay, as, ...) is cyclic,

there exist [,m € N such that [ < m and o; = ay,, so
Alao—i_Alilﬁ—i_"'_'_ﬁ:al:Oém:AmOéo—i_AmilB_'_"'—*—ﬁ?

and hence

=1
I

ATy + A" B+ AT B AR — Al
= AA™T L h)ag+ A™TIB 4 ATTIE 4 ALB. (3.1)
Because A € My(N), A" € My(N) for all i € N, so A™! — I, € My(N) or

Am=t— [, = [98] for some b, ¢ € N. In either case equation (3.1) can be true only

when oy = 0 and 0= 0. Hence we have a contradiction. Il

We now consider the situation when T"(ag) = D~ 'a,,_; for some n € N. By

simple verification we have the following assertions.
(a) The following are equivalent for any n € N:
(i) T™(evp) = D7 v,
(i) D™'a,,_, € Z2,
(ifi) ‘an_1 € (KZ)?,
(iv) @p_y = 0 in Z2.

(b) If ap € (kZ)?, then there exists an [ € N such that oy = T' () ¢ (kZ)?,

and (g, a1, ag, .. .) is cyclic if and only if (ay, ayi1, ype,...) is cyclic.

According to the assertion (b), from now on we may assume that ag ¢ (kZ)2.



Definition 3.2. For each A € M,(N) and for each 3 € Z2, define ¢ : Z2 — 72
by ¢(v) = Av + 3 for all v € Z2.
We say that the ordered pair (A, ) satisfies the condition (x) if for any

v € 72, there exists an [ € N such that ¢'(v) = 0.
Proposition 3.3. If (A, 3) satisfies the condition (x), then

(i) for any ag € Z* — (kZ)?*, there exists ann € N such that T"(ag) = D™ av,, 1,
and

(ii) B € Im(A).
Proof. (i) Assume that (4, (3) satisfies the condition (x), i.e., for any v € Z2,
there exists an [ € N such that ¢/(v) = 0. Let ag € Z? — (kZ)2. If there exists
an m € N such that m < [ and 7" (ap) = D ', 1, then the proof is done.
Suppose that T™(ag) # D 'a,,  for all m < 1. So a,, = T™(ap) = Aay_1 + 3
for 1 < m <, hence a; = ¢!(ay) = 0. Since @; = 0 if and only if oy € (kZ)?, it
follows that oy, 1 = T () = D 'ay. Hence there exists an n = [ + 1 € N such
that T" () = D', 1.

(ii) Note that for any.v € Z2-and-any I.€ N,

0=¢(v) = (¥ '(v) = A" (v) + 5.
This implies that 3 € Im(A), so (A, 3) satisfies the condition (%) implies 3 € Im(A).
0
The following results show the important role that det(A) plays in determining

whether the ordered pair (A, ) satisfies the condition (x).

Lemma 3.4. If det(A) # 0 and ¢ is the identity map, then T" (o) # D 'ay, 1

for all m € N, and hence the trajectory (g, a1, e, . ..) is not cyclic.
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Proof. Assume that det(A) # 0 and ¢ is the identity map. Then for any v € Z?
and [ € N, ¢!(v) = v, and ¢'(v) = 0 if and only if v = 0 and § = 0. Hence (A, 3)
does not satisfy the condition (x). Next we will prove by using mathematical
induction that when 3 = 0, for any ag € Z2 — (kZ)?, T"(c) # D 'ay,_; for all
n € N, and hence by Proposition 3.1, the trajectory (ag, aq, as, . ..) is not cyclic.
Let =0 and o € 7% — (kZ)?. Then T(ag) # D'y since agy # 0. Let k € N.
Assume that T*(ag) # D~ 'ay ;. This means that a,_; # 0. We will show that
T* () # D™ tay. By induction hypothesis we have, oy, = T%(ag) = Aag_1 + 3,
so oy = Adg_1 + B3 = o(@21) = @ 1. Thus ay, # 0, and hence ayy, # Doy,

By mathematical induction, T"(ag) # D ‘e, for all n € N. O

Lemma 3.5. If ¢ is a bijection that is not the identity map, then ¢ can be

represented by a single cycle if and only if (A, ) satisfies the condition (x).

Proof. Assume that ¢ is a bijection that is not the identity map. We will prove
that ¢ can be represented by a single cycle if and only if (A, ) satisfies the
condition (x).

(=) Suppose ¢ can be represented by a single cycle. Then for any v € Z3,
{¢'(v)| | € N} = Z and since 0 € 73, there exists an [ € N'such that ¢!(v) = 0.
Hence (A, 3) satisfies the condition ().

(<) Suppose @ cannot be represented by a single cycle. By Proposition 2.10,
there exists an element u € Z? such that ¢'(u) # 0 for all I € N. Hence (A, 3)

does not satisfy the condition (x). O

a,b,¢,d € Zy,.

Proof. Assume that det(A4) = 0. By definition, the characteristic polynomial of



11

A'is x4(r) = det(xl, — A), where z is an indeterminate. Then

xilz) = det(zly — A)

= 2° — (a+d)z + (ad=bc)

= 2 — (a+d)z since ad —bé = det(A) = 0.

By the Cayley-Hamilton Theorem, x 4(A) = 0, which implies (A)?— (a+d)A =

(@]

)

so (A)? = (a+d)A.

U

Lemma 3.7. If det(A) =0 and (A)* #0, then Aljua) and @l a) are bijective.

If in addition 3 € Tm(A), then ©|1m(a) € Sym (Im(fl))

Proof. Assume that det(A) = 0 and (A)? # 0. We will show that Al is
bijective. To simplify the notation we will write f for fl|lm( 4)- Since Im(A) is
finite, it suffices to show that [ is injective. Since f is linear, it is enough to show
that for any w € Im(A), f(w) = 0 implies w = 0. Let w € Im(A) be such that

w) = 0. Since w € Im(A)..w = Av for some v € Z2. so
f() ) k>

0= f(w) = Aw = (A)*v =(a+ d)Av = (a +d)w.

Because (A)? # 0 and (A)? = (a+ d)A, (a+ d) # 0, s0 we can conclude that w
must be 0. Hence f is bijective.

Next, we will show that [y, is bijective. Since Im(A) is finite, again it
suffices to show that ¢y, 1) is injective. Let wi,wy € Im(A) be such that
Plimay(w1) = @lmea)(w2). Then Aw; + B = Aw, + 3, so Aw, = Aw,. Since
Alim(ay is injective, wy = wy. This implies that |, 4 is injective. Hence ¢|14)

is bijective. If in addition 3 € Im(A), then Olm(a) Im(A) — Im(A), and thus

QO|1m(A) € Sym (Im(A)) O]
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Lemma 3.8. If det(A) =0, (A)? # 0, (A)?2 # A and 3 € Im(A), then (A, )
does not satisfy the condition (*).

Proof. Assume that det(4) = 0, (A)? # 0, (A)? # A and 3 € Im(A). By
Lemma 3.6, @ +d # 1 and @+ d # 0. Since k is prime and (a + d) € Z; — {0},

kt (a+ d), hence by Fermat’s Theorem,
(a +d)* = (a +d) ( mod k),

therefore
(at+d)F <1= <(a+d) - 1) (mod k).
Since (a +d)f —1 = ((a +d) — 1> <(a +d) " (a+d) 2+ + 1) and

<k,(a+d)—1> —1,

(a+d)f ' +(a+d)*?+--+1=1(mod k),

so (a+d)* '+ (a+d)*2+---+1=11in Z;, and hence

((a +d" T @+ )+ i)B = . (3.2)

It is easy to check that (gp|1m(g))l(6) o3 ((& +d) (@ +d) 4+ 1)5 for all
[ € N, and thus equation (3.2) implies that |{(g0|1m(g))l(6)} leN} <k-1<k,
80 |aea) cannot be represented by a single cycle.

We will show that (A, 3) does not satisfy the condition (x), i.e., there exists
v € Z2 such that ¢!(v) # 0 for all [ € N. Since ¢|1m(a) cannot be represented by a
single cycle, by Proposition 2.10 there exists w € Im(A) such that (¢ 1) (w) # 0
for all I € N. By Lemma 3.7 @i 1) € Sym (Im(A)), so there exists u € Im(A)
such that ¢[p,a)(v) = w. If w = 0, then (¢|Im(A))‘Im(A)“(w) —e(w)=w=20
where e € Sym (Im(f_l)) is the identity, a contradiction. Therefore w # 0. We will

show that ¢'(u) # 0 for all [ € N. Let [ € N. If [ = 1, then ¢'(u) = p(u) = w # 0.
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—

Now we assume [ > 1. We have ¢'(u)= (¢|m)" " ((w)= (@lma)) " (w) # 0.

Hence (A, 3) does not satisfy the condition () in this case. O
Lemma 3.9. If det(A) =0, then we have the following.
(i) If dim (Im(A)) = 0, then (A, () satisfies the condition (x) if and only if
3=0.
(ii) If B € Im(A) and (A)> =0, then (A, ) satisfies the condition (x) if and

only if § = 0.

(iii) If dim (Im(A)) = 1, 3 € Im(A) and (A)? = A, then (A, 3) satisfies the

condition (x) if and only if B # 0.

Proof. Assume that det(A) = 0.
(i) Suppose dim(Im(A)) = 0. Then A = 0, s0 ©(v) = 3 for all v € Z2, and hence
(A, 3) satisfies the condition (%) if and only if 3 = 0.
(ii) Suppose 3 € Im(A) and (4)* = 0 and observe that for any v € Z? we have
¢o(v) = Av + B € Im(A). Furthermore, for any w € Im(A) we can write w as Av
for some v € Z2, so p(w) = Aw + 3 = (A)*v + 3 = 3. In particular, ¢'(v) = 3
for all v € Z} and-all 1 € N with ¢ >2: Hence (A, 3) satisfies the condition () if
and only if 3 = 0.
(iii) Suppose dim (Im(A)) = 1, 3 € Im(A4) and (4)* = A,

(=) Suppose 3 = 0. Then ©lim(ay is the identity map, since for any w € Im(A)
we have w = Av for some v € Z2, 50 |5y (w) = Aw + = (A)?v = Av = w.
Hence for any w € Im(A) and any | € N, (@|(4))'(w) = w. Since dim (Im(4)) = 1,
there exists an element w € Im(A) such that w # 0, and hence (@lim(ay) (w) # 0
for all [ € N. Since w € Im(A),w = Av = ¢(v) for some v € Z2. We have
P(0) = (Pl (£(0)) = (Plinga) = (w) # 0 for all £ € N. Hence (4, 3) does

not satisfy the condition (x).
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(<=) Suppose 3 # 0. Since dim (Im(A)) = 1and 3 € Im(A), Im(A) = {18 | | € Z}.

An argument similar to the one used for the direction (=) shows that p(w) = w+3
for all w € Im(A). In particular, p(I3) = I3+3 = (I+1)3 for all | € Z,. It follows
that @[, = (B 26 -+ kB) as an element of Sym(Im(A)). Since 3,23, ...,k3
are k distinct elements in Ini(A) and [Im(A)| = k, @|ina) can be represented by a
single cycle. Thus for any w € Tm(A), {(gp]lm(/j))l(w)] | € N} =Im(A), and hence
there exists an [ € N such that (¢]y, 1)) (w) = 0. We can now show that (A, 3)
satisfies the condition (x) as follows: Let v € Z?. Since p(v) = Av + 3 € Im(A),
there exists an | € Nsuchthat (¢]y,.1)" (©(v) = 0. But o"'(v) = (@lim(a) (2(v)),

so we are done. O

Now we summarize all of the above lemmas as follows:

Theorem 3.10. Let k be a given prime number, A € My(N) be arbitrary and
B be any element in Z,2. Then for ¢ defined as in Definition 3.2, we have the

following.
(i) If det(A) # 0 and ¢ is the identity map, then {cg, oy, a, ...) is not cyclic.

(ii) If ¢ is @ bijection that is not the identity map, then @ can be represented
by a single cycle if and only if (A, B) satisfies the condition (*).

(iii) If-det(A) =0 and dim (Im(A)) = 0, then (A, 3) satisfies the condition ()
if and only if 3 = 0.

(iv) If det(A) =0 and dim (Im(A)) = 1, then (A, 8) satisfies the condition (*)
only if 3 € Tm(A).

(v) If det(A) =0,dim (Im(/_l)) =1 and 3 € Im(A), then

(v.1) (A)? =0, implies (A, B) satisfies the condition (x) if and only if 5 = 0,
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(v.2) (A)? #£ 0 and (A)? # A, implies (A, 3) does not satisfies the condition(x),
(v.3) (A)? # 0 and (A)? = A, implies (A, B) satisfies the condition (x) if

and only if 5 # 0.

According to the results in Propositions 3.1 and 3.3(i) we will consider only
the cases where (A, 3) satisfies the condition (k) because these are the cases most
likely to yield success. By investigating those cases, we have found that if A
has a positive integer eigenvalue A\, and § and «,, are positive multiples of the
corresponding eigenvector € for some m € Z,, then it has a greater chance that
(A, 3) might satisfy the eondition (x). Precisely, we will consider the following

conditions on A, A\, €, f and «, :

A= )\é, 3 = K/ dé and o, = aé for some a,d,j € Z,, kta, ktd
(3.3)

where in addition we write A as K'A\jwith i € Z, and k1 A;.

We will proceed to investigate all possibilities for ¢, 7, @ and d.

Notation. For any r €¢ X C Z,, we denote {n e X ‘ n < r} by X(r). In

particular, N(r) = {n € N | n<r}and Z.(r) = {n € Z,

ngr}.

Theorem 3.11. Let A, A\, €, 3 and a,, be as in (3.3) andj < i. Then for all

t € Zand '€ Z.(5) we have

. o by ki—j t+1 1 .
Ot (t41)+H = [ a(\ k) 4 (A j d)e. (3.4)
MEkimT —1

In particular, when a = d we have

)\ki—jt+2_1
kY

et =k —
Qe+ (t+1)+ a < kT — 1

Therefore the trajectory {ag, oy, v, . ..} is not cyclic.
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Proof. We first note that for each s € N, for any n € N,

s\n ()\lk.s)n —1 )
Bt (aOuk) + 25— d), (3.5)
AMESHT —1
since k % d). To prove equation (3.4) we will use induction on ¢ as
AMks —1
ks —

follows: For any t € Z,, let p(t) be the sentence: for all [ € Z,(j),

(Alk,i—j)t+1 -1 p
MEi=7 —1

€.

g (t1) 11 =k (a(>\1/~€i_j)ﬂrl -
Basis step: We will show that p(0) is true, i.e., for all [ € Z.(j),
141 = (@K ) + d) (3.6)

We will prove that equation (3.6) is true by induction on I. For [ = 0: Since

Qmi141 = Qmy1 and D7 'ay,, & 72, we have

Oyt - =" Ac,, + 3
= aAé+ kde
= ale+k'de
= ak'\e+ K dé

Ay (a(Alki—j) 3 d) g

Thus equation (3.6) is true when [ = 0. Assume that equation (3.6) is true for

l € Z.(j —1). We will show that equation (3.6) is true for [ + 1, i.e.,
141y = kI~ (a(Alki—j) + d) g
By the induction hypothesis for [,
Ampips = k7 (a(AlkH ) + d) g
Since | € Z,(j — 1), j —1 €N, so D 'a,,4 141 € Z%, and hence

Ot s1) = D g0 = K9~ (a()\lki‘j) + d)g.
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Thus equation (3.6) is true for [ 4+ 1. By induction on [, equation (3.6) is true for
all | € Z.(j). Thus p(0) is true.

Induction step: To simplify the notation, for any t € Z, let

Alki—j)t—l-l -1

) — ahd 4 ( )
C( ) a()‘lk ) r 3 A k=i —1

Assume that p(t) is true. We will show that p(t + 1) is true, i.e., for all I € Z,.(j),

i—j\t+2
(Mk*™7) 1d> ,

Qg (- 1)+ (4 2) 40 = K (G(Alki_j)HQ = N —1 €

(3.7)
= 0@t +1)e
We will show that equation (3.7) is true by induction on .

Basis step for [: [ = 0. Since p(t) is true, we have a1+ (t41)4n = k77" C(t)€ for

all n € Z,(j). In particular, when n = j

Om+tj+(t+D)+n =  Fmt(t+1)j+(+1)
= KC(t)e

= G
From (3.5), k{ C(t), 50 D™ (4 1)j+e41) € 2%, and hence

miern)jtes2)c T | Admierngren) + 08
— AC(t)E+
— C()AG+ K de
= C)Ae+ K de
= C)k'\E+ K de

= (Alki—jC(t) + d)a

But

(Alk,z‘—j)t—&-l —1)

i—j _ i—j\t+2 i—j
MEIC() +d = a(uk'™) 4 Ak

d+d
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Alki_j —1
AkiT)H2 1
Alkifj -1

o O S AT A W S
= a(A k) + (( L — + 1) d

— a()\lki—j)t-i-z + ( d
= C(t+1),

SO
Ot 1)+ (t42) = K C(t + 1)E.

Thus equation (3.7) is true when [ = 0.
Induction step for {: Assume that equation (3.7) is true for [ € Z.(j — 1). We

will show that equation (3.7) is true for [ + 1, i.e.,
O+ (1) 24 101) = K- EDC(E+ 1)
By the induction hypothesis for [,
O+ 1)j 4 (241 = BTC(E + 1)e.
Since | € Z,(j — 1), J —l € N, 50 D™ tpi (41)i+(t+2)+1 € Z*, and hence
O (t41) 4 (t4+2)+ (14+1) = IO+ 1)e

Thus equation (3.7) is true for [ + 1. By induction on [, equation (3.7) is true for
all [ € Z.(j). Hence p(t + 1) is true.” By induction on ¢, p(t) is true for all t € Z,,

i.e., for all't € Z, and all'l € Z.(j),

€.

(Alki_j>t+1 -1 d)

Ry (a()\lk‘i_j)t+1 R W
g —

In particular, when a = d we have

. ()\lkifj)tJrZ -1 .
U tjt(t+1)+1 = K ‘a < NET 1 é.

Next we will show that the oy, 1, are distinct for all n € Z,. It suffices to show

that
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I) for each t € Z,, the a1 11)41 are distinct for all [ € Z,(j) and
+tj+(t+1)+

(IT) for any ty,ty € Z,, with t; # t,
{amitjrmrnm | 1€ Zu(i)} D {Ominjitarn | 1€ Zu(f)} = 2.

We will prove (I) as follows: Let ¢ € Z,. Suppose that v, i)t (t41)+1,
= Qmitji(t+1)+1, for some li,ly € Z.(j). Then k' 1C(t)e = ki~2C(t)€. This
implies that k'~ = k7= and hence l; = l,. Therefore (I) is true.

Next we will prove (II) as follows: Suppose that cisy i+ 4+1)41 = Cmatoj+(ta+1)+e
for some Iy, 1y € Z,(j) and ¢y, ts € Z, witht; # to. Then ¥~ C(t))e = kI~ 2C(ty)e.
This implies that k2C(t,) = k" C(ty). Suppose that I; # l,. Without loss of
generality, we may assume [; < Iy, so that k274 C(t;) = C(ty). Thus k | C(t),
which contradicts (3.5). Hence Iy = l,. Therefore C(t;) = C(t2), i.e.,

1 to+1
ILLt1+ e d:CL/,Lt2+1+M2+ -1

t1+1
ap + o1 W4l

d,

where = M\ k7, so

iy ML e ot

w—1 w—1

t1+1 _

a(p 1t

This implies that a(p — 1) = —d, a contradiction since a(p — 1) > 0 but —d < 0.
Hence (1I) is true:
Therefore the trajectory (o, mi1, ®mae,...) is not cyclic, and hence the

trajectory (o, aq, g, .. .) is not cyclic. O

Theorem 3.12. Let A\, e, and o, be as in (3.3) and i < j. Then for all

t €7, andl € Z,(i),

) >\t+1 -1 o
kit (mﬁ“ + (i—1) dkH) e if M #1,
1= (3.8)

A tit(t4+1)+ =
kit <a +(t+ 1)dkj_i> ¢ otherwise.
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In particular, when a = d we have

. ANy
E-la ([ AT+ [V i) k=t e if A\ #1,
_ A —1

Ot ti+(t+1)+H =

ki*la<1 + (t+ 1)k:j*i> e otherwise.
Therefore the trajectory (o, aq, e, . . .) is not cyclic.

Proof. We first note that for each s,n € N,

kJ((aXf—i—( N A;)dkS), (3.9)

O<v<n—1
since k 1 a\! and k | ( Z /\T)dkrs. To prove equation (3.8) we will use

or<n—1
induction on t as follows: For any t € Z,, let p(t) be the sentence: for all l € Z,(7),

Cmtit (t41)1 =k (a)\iﬂ + ( Z A7) dk’jfi)g-

o<t
To simplify the notation, for any ¢ € Z,, let O(t) = a\i*! + < Z /\’f) dk?~".

o<t
Basis step: We will show that p(0) is true, i.e., for all [ € Z. (i),

Uiy = kC(0)E (3.10)

We will show that equation (3.10) is true by induction on /. For [ = 0: Since

Omg140 = Oy and D7 tay, & Z2, we have

i1 = Ay, + 6
= aAé+ K de
= a\é+ k'de
= ak'\ €+ K de
= k'(a\ + dkW e

= k'C(0)e.
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Thus equation (3.10) is true when [ = 0. Assume that equation (3.10) is true for

l € Z.(i —1). We will show that equation (3.10) is true for [ + 1, i.e.,
Ot 14(141) = K-Hhe(o)e.
By induction hypothesis for [,
Qms141 = k' THC(0)E
Since | € Z,(i — 1),i—1 &N, s0o D™ a4 14 € 72, and hence
Q14 (141) = D 10 = K- HVC(0)e.

Thus equation (3.10) is true for [ + 1. By induction on [, equation (3.10) is true
for all I € Z.(i). Thus p(0) is true.

Induction step: Assume that p(t) is true. We will show that p(t + 1) is true, i.e.,
for all | € Z.(i),

D =k O+ 1)e. (3.11)

We will show that equation (3.11) is true by induction on /.

Basis step for [ : [ = 0. Since p(t) is true, we-have
Uit (t+1)n = B "C(t)€
for all n € Z, (7). In particular, when n = i

Amttit(t+1)+n = Cmd(t4+1)i+(t+1)
=k"'O(t)e

=C(t)e.
From (3.9), k1 C(t), s0 D™ e+ 1yi4 41y ¢ Z*, and hence

Ut (14 1)it (t42) = AQmg )iy + 0
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C(t)é + K de

A
C(t)\é+ K de
C

()NE' N €+ K de

A 4 (30 X ak ) nE+ K dE

(2’

0gr<t

= kl(
= k(X (D0 A )x + i~
—# (a4 (X Ak )z

0v<t+1

=k'C(t+1)e

Then equation (3.11) is true when [ = 0.
Induction step for [: Assume that equation (3.11) is true for [ € Z,(i —1). We

will show that equation (3.11) is true for [ + 1, i.e.,
O (41 )it (E4+2) +(141) = KOOt + 1)e.
By induction hypothesis for [,
Qs (4 1)i (4211 = K TC(E+ 1)E.

Since | € Z.(i = 1),i — L € N, 30, D7 @y (t41)i+(t+2)1 € Z7, and hence

O (t41)i+(E4+2)+(141) = Dilam+(t+1)z’+(t+2)+l

= KDt + 1),

Thus equation (3.11) is true for [ + 1. By induction on [, equation (3.11) is true
for all [ € Z.(i). Hence p(t + 1) is true. By induction on ¢, p(t) is true for all
t € Z,. For any t € Z,,

AL

Z}\l{z A —1

Osvst t+1 if \y = 1.

if A\ £ 1,
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Hence for any ¢t € Z, and all | € Z,(i),

4 AN
kit (axﬁl + ﬁ dk:“) e if N #1,
Omtti+(t+1)+H — 2

kit (a + (t+ 1)dk:j_i) € otherwise.

In particular, when a = d we have

. N —
Ot tit(t4+1)+ = _—

k"‘la<1 + (t+ 1)/{33'*")6’ otherwise.
Next we will show that the «,,., are distinct for all n € Z,. It suffices to show

that
(I) for each t € Z,, the cpsiy(1+1)+ are distinct for all [ € Z, (i) and

(IT) for any ty,ty € Z, with ¢y # to,
{amtis+n+ | 1€ Zu(i)} O {tmttpitotryss | | € Z.(i)} = 2.

We will prove (I) as follows: Let ¢ € Z,. Suppose that cu, tit(t41)+1,
= Qi tit(141)41, T0r some Iy, ly € Z.(i). Then k' 1C(t)e = k"2C(t)e. So
ki=h = k=2 and hence [} = ly. Therefore (I) is true.

Next we will prove (II) as follows:"Suppose that Ottt (141D = Qmtoit (fat+1)+o
for some [y, ls € Z,(i) and t,,ts € Z, with t; # t5.-Without loss of generality we
may assume t; < ty. Then k"0C(t)e = ki72C0(ty)é, so k2C(t) = kK1C(ty).
Suppose that [; # l,. Without loss of generality, we may assume [y < [s, so that
k2=hC(t)) = CO(ty). Thus k | C(ty), which contradicts (3.9). Hence I, = Iy.
Therefore C(t1) = C(ts), i.e.,

X (3 A = it (3 A )k

or<ts 0t
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SO

A=A =N (S A
o<r<ta—t1—1

Thus

al=n") = (Y Aar

0utg—t1—1

Since \27 > 1, a(l - Ath‘tl) < 0 but ( Z Xf)dk’j_i > 1, so we have a
orta—t1—1
contradiction. Hence (II) is true.

Therefore the trajectory (au,, Qmi1, Amaio, - -.) is not cyclic, and hence the

trajectory (o, aq, au, . . .) is not cyclic. O

Theorem 3.13. Let A\ €, 5 and e, be as in (3.3). Assume that a = d and

i=7j. Then a1 = k'a(A + 1)e. Write Ay + 1 as k" Xy where k{ Xy and r € Z,.

(i) For eacht € N, if k4 (AQMI i A;) for all 1€ N(t —2), then

0<v<i—1
AT -1
a A t+=2—F)é& if M # 1,
— Ap—1
Omttit(r+t) —
a(Ae+t—1)e otherwise.

(ii) If there exists t € N with the property thatk { ()\2)\11 + Z /\T> for all
0<v<i—1
1 € N(t—2) and M\t + Z Al = k* for some s € N, then the trajectory
0<v<t—2
(g, 0, e, . o) i cyclic.

Proof. (i) For each t € N, let p(t) be the sentence: if k 1 ()\2)\[1 + Z )\‘1’> for
0<v<i-1

all [ € N(t — 2), then
Ot tin(rie) = a(AQX;—l + Y A;)é
0<v<t-2
Basis step: We will show that p(1) is true. It suffices to show that o, it (1) = adz€.
Since

Umy1 = kla(\ + 1) = k™ a)qe,
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D™ apy14n € Z% for all n € Z,(i +1 — 1), so

O 1+4(nt1) = D g1n = U=t g\

for all n € Z,.(i + r — 1). In particular, when n =i +r — 1

Qmtit(r+1) = Umtl4(ntl) = B0t g )8 = adgé.

Induction step: Assume that p(?) is true. We will show that p(t + 1) is true, i.e.,
if

Kt (mﬁ AN X{) for all 1€ N(t— 1),

0<w<i-1
then
(141 )it (r4t41) = a()‘2)‘§ o Z Xf) €.
0<v<t—1

Suppose that

kt (mg ) Aq) forall [ e N(t—1).

0<v<i-1

Then

m(mlﬁ 3 A;) for all 1€ N(t—2),

0<v<i-1

and since p(t) is true we have

LA A a(mﬁ—l + ¥ A;)a

0<v<t—2

By assumption, k 1 ()\2)\3‘1 + Z Xf), and since k1 a we have
0<v<t-2

k t a(A2A§—1 + Y A;),

0<v<t-2

80 D™ v tig (i) € 27, and hence

Ctit (rt41) = A ptiv(re) + B

—Aa(QATT DD A)E kel

0<v<t-2
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a(mt;l + > X;) A+ kia@

0<v<t—-2

a(A2A§-1+ 3 AT)kiA1€+kia€

0<v<t—-2

—ka(QXT + 3 M)+ 1)e

0<p<t—2
:kia(A2A§+ 3 A;)g.
0<v<t-1

Since D_lam+ti+(7«+t+1)+n = ZQ for all n € Z*(Z — 1)/

Ot 4t (4 A i 1) = DT Ot (r4t4+1)
- ki—(n—‘rl)a</\2)\t1 L\ Z X{)g
0<v<t—1

for all n € Z,(i — 1). In particular, when n =i — 1 we have

g (£ 1)t (r+t41) = D_lam+(t+1)i+(r+t)

:ki_ia()\g)\’i—l— - A;)g

0<v<t—1

:a<A2A§+ == )\’1’)5.

0<v<t—1

Thus p(t + 1) is true. By mathematical induction, p(t) is true for all ¢ € N. For

any n € N, we have

b1+
—_ if 2\ #£1,
Z AV = A —1
71" n 41 if | Ay/=1.

Hence for each ¢t € N, if k 1 <)\2/\ll + Z Xf) for all [ € N(t —2), then

0<v<i-1
AT -1
a4 2—— ) if A\ # 1,
N _ A —1
mAti+(r+t) —
a(Ag +t—1)¢ otherwise.

(ii) Assume that there exists ¢ € N with the property that

kt (AQAQ + > Aq)

0<r<i—1
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for all | € N(t — 2) and M\ + Z A7 = k® for some s € N. From (i) we
0<v<t—-2
have

Ottt (r4t) = a<>\2>\t1_1 + Z /\l{)(?: ak’e.

0<v<t—2

Since D™ upptit (rtt)1n € Z* for all n € Zy (s — 1),

=
Ottt (rpt) +(n+1), = D7 Qlmtiy (r4+£)+n

_ /{:S_(”H)aé’
for all n € Z.(s — 1). In particular, when n = s — 1

A ttit(r+t)+(n+1) = Cmttit+(r+t)+s

and hence the trajectory (ag, aq,ag,...) is cyclic. O

Theorem 3.14. Let A, \ €, and «,, be as in (3.3). Assume that a # d and

i=j. Then apmy1 = k'(aXy+d)éWrite al; +d as k" \o, where k{ Xy and r € Z,.

(i) For eacht € N, if k1 <)\2>\l1 + ( Z Xf)d) for all l € N(t — 2), then

0<v<i-1
AT -1
MNP —d)e if M £ 1,
— A —1
Cmttit(r+t) —
()\2 + (t — 1)d>€ otherwise.

(i) If there exists t € N with the property that k { (/\2/\l1 + ( Z AY) d) for all
0<v<i-1
I € N(t—2) and M\ + ( Z Xf)d = ak® for some s € Z,, then the
0<y<t—2
trajectory (ao, a1, as, .. .) is cyclic.
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Proof. (i) For each t € N, let p(t) be the sentence: if k { ()\2)\11 + ( Z X{)d)
0<v<i-1

for all [ € N(t — 2), then
Ottt (r+t) = <)\2)\§71 + ( Z M) d) é.
0<v<t-2
Basis step: We will show that p(1) is true. It suffices to show that ot (-41) = A2€.
Since

et = (ahy + d)E = K" N52,
D™ o, 110 € Z2 for all n € Z.(i + 7 — 1), s0

At 14t t) = DT O 14 = KRB )8

for all n € Z,(i +r — 1). In particular, when n =i +r — 1
Qi 14 (nt1) = Qnibiv(ril) = RUI=0 N8 = Ao

Induction step: Assume that p(t) is true. We will show that p(t + 1) is true, i.e.,
if
(/\QAZ Y )d ) for all 1€ N(t— 1),

0<v<i-1
then

Qo (t4+1)i4-(r+t+1) = <)\2 >\t Z )\T) d) €.
Ogugtfl

Suppose that

(AQAZ 3 A)d ) for all 1€ N(t—1).

O<V<l 1
Then
m(mlﬁ( Y A;)d) for all 1€ N(t —2),
0<v<i-1

and since p(t) is true we have

ottt (r+) = (Azxf Y Ag)d)g

0<v<t-2
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By assumption, k& { ()\2){_1 + ( Z ){) d>, 50 D™ oty igit (i) ¢ Z*, and hence

0<v<t—-2

Omtti (r4t41) = AQmitiy(rg) + 5

= QX (XD Ad)AE KaE

0<vr<t-2

:ki(A2A§—1+( P )\’f)d))\lé—kkie“

0<v<t-2
— kX + (X MWa)e
0<v<t-1

Since D™y tit(rrir1)4m €L for all n € Z,(i — 1),

Ot tit (rt+1)+ (n1) — D_lam+ti+(r+t+1)+n
= e+ (Y X)a)E
0<v<t—-1

for all n € Z,(i — 1). In particular, when n =i — 1 we have

Ot (t4-1)i+ (rHt41) = ki_i(AZAi + ( Z ){)d)é

0<v<t—1

:<A2A§+( == A;)d)a

0<v<t—1

Thus p(t + 1) is true. By mathematical induction, p(t) is true for all t € N. For

any n € N, we have

) 4 d =gl

oy if A\ #1,
> A=y Aol
Osv<n n+1 ift M =1l

Hence for each t € N, if k 1 (AQ/\ll + ( Z Xf)d) for all 1 € N(t — 2), then

0<v<i—1
AN -1
AN+ —q)e if A\ #£1,
A — A —1
Omttit(r+t) =
()\2 + (t — 1)d>€ otherwise.

(ii) Assume that there exists ¢ € N with the property that

k t (AQAQ +( Y X;)d)

0<r<i-1
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for all [ € N(t — 2) and M\ + ( Z X{)d = ak® for some s € N. By (i) we

0<v<t—2
have

Qmttit(r+t) = ()\QAﬁ_l + ( Z X{)d)8= ak®e.

0<v<t—2

and hence the tra

o
oA

:

.

AOUUINBUINT

Qmmmﬂimﬁmné’ﬂ



CHAPTER IV

EXAMPLES AND CONCLUSION

In this chapter we will provide a few concrete examples of matrices A and vectors
o and [ that satisfy the conditions in each of the Theorems 3.13 and 3.14 and

the hypotheses in Theorem 3.10.

4.1 Existence of Matrices as in Theorems 3.13-3.14 and
3.10(iii)

We will provide concrete examples of matrices A and vectors ag and 3 that satisfy

the conditions in Theorem 3.13 and satisfy the hypotheses in Theorem 3.10(iii).

Proposition 4.1.1. Let A=k [}, ¢ | and B = K a[1] for somea,b,c,u,j €N,
where k t abc, u < b+c, k{(b+c) and kt (b+c+1); and let oy € Z* — (kZ)?
be such that cu, =-ali] for-some m € Z,.. Then A satisfies the hypotheses in

Theorem 3.10(ui1). Note that k # 2. If there exists t € N such that

b+c)frt=1

Al 1 t&l
E=0+c+1)(b+e)T + AR e

Y

then the trajectory {(ag, oy, as,...) is cyclic. In particular, if k is the Fermat
prime k = 22" + 1 for somen € Z, and a = b = ¢ = 22"~!, we have that the

trajectory (ag, a, as, .. .) is cyclic.

Proof. Clearly, A = 0, so A trivially satisfies the hypotheses in Theorem 3.10(iii).
Furthermore, since b+ ¢ and b+ ¢+ 1 are consecutive integers, one of them must

be even, and thus the assumptions &t (b+¢) and k { (b+ ¢+ 1) implies k # 2.
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. g b+ttt —1
Assume that there exists ¢t € N such that k = (b+c+1)(b+c) +b—|——1'
C_
We will show that
b+c) —1
1 ! (—
k’[((b+c+ J(b+c¢) + T )
for all [ € N(t — 2). Since
- b+c)i=t—1 (b+c) —1
k= (b 1)(b O Y — & b 1)(b R
(b+c+1)(b+c)  + ~ ] >(b4ct+1)(b+c) + A—
and
b+c) -1
b 1)(b L RS N
0+ c+1)(b+c) + Ay
for all | € N(t — 2),
(b+e)t—1

(b4 c+1)(b+c)+ c{1,2,....,k—1}

b+e=1

for all [ € N(t — 2), so

kf((b+c+1)(b+c)l+a;j_cc—>__11)

for all I € N(t —2). Given o € Z* — (kZ)* such that o, = a[1] for some m € Z,,
it is straightforward to check that e = [}1], A = ki (b+¢), i = j, Ay =b+c and
Ay = b+ c+ 1,80 by Theorem 3.13(ii) we have that the trajectory (g, o, ag, .. .)
is cyclie.

In particular, if k is the Fermat prime k¥ = 2*" 4 1 for some n € Z, and
a=b=c=2"1 we have

((b +c)t - 1)

b+c—1 ’

k=2 +1=2-2""1"4+1=2a+1=0b+c+1)(b+c)" "' +

and hence by the above result the trajectory (ag, o, o, .. .) is cyclic. O
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Lemma 4.1.2. Let k = 2, let A\, Ao € N be such that k1 Ay and k1 Xa and let

teN.

Q) If H(AQAH 3 Aq) foralll € N(t —2), thent =1 ort = 2.

o<r<i—1
(i) If k¢ ()\2)\11 + Z Xf) for all | € N(t — 2) and XA + Z N = k*
ori—1 ogrt—2

for some s € N, then t = 2.

Proof. (i) Assume that & 4 ()q)xll + Z Xf) for all [ € N(t — 2). Suppose
0<r<i-1

t > 3. Then t — 2 > 1. By assumption, k { (AgA; + 1). Since k = 2, k1 A\; and

k 1 Ay, the product A2 Ay is odd, so Ao A + 1 is even, and hence k | (AA; + 1), a

contradiction. Therefore t = 1 or 2.

(ii) Assume that & { </\2>\ll+ B X{) forall i€ N(t—2) and A1+ 57 A = ke

oLrLi-1 0<r<t—2
for some s € N. By part (i), t must be 1 or 2. If ¢ = 1, then A1 + Z A7 = Ao,
0Lrt—2
so Ay = k®, contrary to k1 A\y. Hence ¢ = 2. O

Proposition 4.1.3. Lel k=2, A = k=1 [ 000 ] and 8 = Kall] for
some a,j,n,u € N, where j > 1, kta and u < 2(2" +1); and let ap€ Z* — (kZ)?
be such that o, = al}] for some m € Z,. Let A\, \1, A2, © and r be as in Theorem
8.13. Then A = 29(2"+ 1), \y = 2" +1 and i = j, and furthermore X\, \1, Ao, i and

r satisfy the hypotheses in Theorem 3.13(ii) precisely when n € {1,2}.

Proof. Let € ="[1]. Since A¢'=27(2" + 1)&, A\ ='2/(2" +1). Since 2/ (2" + 1),
M =2"4+1andi=j.
We will prove that A\, A1, g, and r satisfy the hypotheses in Theorem 3.13(ii)
precisely when n € {1,2}.

Assume that A\, A\, A9, i and r satisfy the hypotheses in Theorem 3.13(ii), i.e.,

there exists t € N with the property that 2 { (A2A11+ 3 X{) for all | € N(t—2)
ogrgi-1
and A AT + Z A7 = 2° for some s € N. By Lemma 4.1.2(ii), ¢ = 2. Thus

0Lrt—2
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25 = MMy + 1. Suppose n > 3. Then \; +1 = 2" +2 = 2(2"7! +1). Since

2421 +1), \a=2""1+1and r = 1. Thus

M +1=2" 1 +1)(2"+1)+1
A 22n~1 _|_ 2n~1 + 2n + 2

= 2(2277,72 + 27172 + 2n71 + 1)
Since 2n —2, n—2,n—1 e N,
24 (2242072 g2 1) and 2 242" 2 42" 41> 1,

contrary to AgA; + 1 = 2%. Hence the only possibilities for n are 1 and 2.

Next we will show that the hypotheses in Theorem 3.13(ii) are satisfied in both
cases.
Case 1.n=1. Then A=2"-3,50 \y = 3. Since \y +1 =4 =22 Xy =1 and
r = 2. We choose t = 2. Clearly, 2 1 (Ag)\ll + Z Xf) for all [ € N(t — 2),
and since AMgA\; +1=1-3+1 =4 = 22 the hy;())ityﬁé;s in Theorem 3.13(ii) are
satisfied.
Case 2. n=2. Then A =27 -5,50 A\ = 5. Since \; + 1 =6=2-3, Ay = 3 and
r = 1. Again we choose t = 2. Clearly, 21 ()\zx\ll + Z Xf) for all [ € N(t —2),

o<ri-1

and since A\g\y+ 1= 3.- 54 1.= 16 = 2%, the hypotheses in Theorem 3.13(ii) are

satisfied. O

Proposition 4.1.4. Let k = 2, A = k7 [*"F0 L, 200, ] and B = Kal[}]
for some a,j1,j,n1,n9,u € N, where k 1 a and u < 2™ + 2" + 2 and let
ag € Z* — (kZ)? be such that o, = a[1] for some m € Z,. Let X\, A\, \g, i and
r be as in Theorem 3.13. Suppose ny # ny. Then \ = 291TH(2m=1 4 gn2=1 4 1)
and furthermore X, A1, Ao, i and r satisfy the hypotheses in Theorem 3.13(ii) for

appropriate values of 71 precisely when ny,ny satisfy 3 < ny +ny < 5.
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Proof. Suppose n; < ny. Let &€ = [}]. Since Ae'= 2/1T1(2m~1 4 27271 4 1)¢, we
have \ = 2/1+1(2m—1 4 gna=1 4 1),
We will prove that A, A\;, Ao, i and r satisfy the hypotheses in Theorem 3.13(ii)

precisely when nq, nsy satisfy 3 < n; + ns < 5, i.e., when

(n1,m2) € {(1,2),(1,3),(1,4),(2,3):(3,2), (4,1), 3, 1), (2, 1) }.

Assume that A, A1, Ao, ¢ and 7 satisfy the hypotheses in Theorem 3.13(ii). As
can be seen from the proof of Proposition 4.1.3, the only possible choice for ¢
is 2, and thus it suffices to show that A\oA; + 1 is a power of 2 precisely when
3<ng+ny <O,
Case 1. n; = 1. Then ny > 2 and A = 20 F1(1 + 2m272 4 1) = 21 F2(2n2—1 4 1),
Case 1.1. ny = 2. Then A = 2"2(1 +1) =23 so \y =1 and i = j; + 3.
Since \1+1=141=2 A=1landr=1. Thus o\ +1=1-14+1=2.
Case 1.2. ny =3. Then A = 211 72(2+1) = 21172.3,50 \y =3 and i = j; +2.
Since \j+1=34+1=4=22 Xy =1landr = 2. Thus o\ +1=1-3+1 =4 = 22,
Case 1.3. ny =4. Then A = 27172(4+1) = 2172.5 50 Ay =5 and i = j; + 2.
Since \{ +1=6=2-3, Mo =3 and r=1. Thus \o\, +1=3-5+1=16 = 2%
Case 1.4. ny > 5. Then A = 2717227272 + 1) and since 2 { (2272 + 1),
A =222 41 and i = j; +2. Since \{ £1 = 2272 £ 2 = 2(22% + 1) and
24 (27273 £ 1), Ay = 27273 + 1 and r = 1. Thus
M +1=(2"73+1)(2m 2 +1) +1
= 22275 4 gn2=3 4 gn2=2 4 9
= 2(2%270 4 gna—d 4 gna=3 4 ),

Since 2ny — 6,19 — 4,19 — 3 € N,

24 (22270 4 2memt 4 9™ 1) and 22270 4 2m 4 2mY 1 >
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and hence \y\; + 1 is not a power of 2.

Case 2. n; = 2. Then ny > 3 and A\ = 2/171(2 4 2271 4 1) = 21+ (2m2—1 4 3),

Case 2.1.ny = 3. Then A\ = 27171(224-3) = 211717 so A\ = Tand i = j; + 1.

Since \i+1=74+1=8=23 g =1landr = 3. Thus o\ +1=1-T+1 =8 =23,

Case 2.2.m5 > 4. Then \; = 22 143 and i = j; + 1 since A = 21 71(2m2~1 4 3)
and 24 (27271 + 3). Since My =1 = 221 4 =22(2723 1 1), Ay =224 1+ 1 and

r = 2. Thus

oA+ 1= (2773 1)(27 +3) + 1
L 22n2f4 + 3 Y 27L2~3 + 2n271 + 3 + 1

= 2(22M2=5 L g gremd 4 gre=2 4 9)

If ny = 4, then MM\ +1 = 34 = 2 - 17 which is not a power of 2. If ny = 5,
then Ao\; +1 = 96 = 2° - 3 which is not a power of 2. If ny > 6, then \g)\; + 1

= 22(2%1276 4 3. 9ma=d - 9ne=3 41y and since 2ny — 6, 1y — 5,1y — 3 € N,
24 (22270 £3.2™75 1. 9m73 1 1) and (22270 4 3.2m2 0 4 9m273 1) >,
A2A1 + 1 is not.a power of 2.

Case 3. ny > 3. Then ny > 4. Since ) = 2/1F1(2m =1 4 9m2—1 4 1) and

24 (2m 7t 42 1), A = 20 e 4 ] and ' = i+ 1. Then
AM+1= gni—1 + gn2—1 +2= 2<2n1—2 + gn2—2 + 1)

and

2 ,i, (2n1—2 + 2'rL2—2 + 1>7

SO g =2M72 49272+ 1 and r = 1. Thus

Mo+ 1=(2m 24 2m2 )2t 4277 4 1)+ 1
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— 2271173 + 2n1+n273 + 2?1172 + 2n1+n273 + 22n273 + 2n272
+ 2n1—1 + 2n2—1 _|_ 2
— 22n1—3 + 2n1+n2—2 + 2711—2 + 22n2—3 + 2712—2 + 2n1—1 + 2n2—1 + 2

— 2(22n1—4 + 2n1+n2—3 L 277,1—3 o 22n2—4 + 2n2—3 + 2n1—2 + 2n2—2 + 1)

Case 3.1. n; = 3. Then
Aodp +1=2(2% 42" 41 4220277 4 2™ 4 2 4 2™ 72 4 1)
4 2(2%2 14 22%274 e 2n273 h 277,272 N 8)
4 22(2712;1 + 22712—5 8 2n274 L 2TL2~3 + 4)
Since ny — 1,2n9 — 5,n9 — 3 € N, 272-1 4 92n2-5 | 9gna—4 | 9m2=3 | 4 g even
only if no —4 € N, and thus AA; + 1 ean be a power of 2 only if ny > 4. If
ne = 5, then Ao\ + 1 = 232 = 23 29 which is not a power of 2. If ny = 6, then

A + 1 = 704 = 26 .11 which is not a power of 2. If ny > 7, then Ao)A; + 1

= 24(2n2=3 4 22n2=T 4 9n2=6 4 9m2=5 | 1) and since ng — 3,2ny — 7,ny — 6,15 — 5 € N,
2,1/(2n2—3+22n2—7+2n2—6+2n2—5+1) and 2712—3+22n2—7+2n2—6+2n2—5+1 > 17

A2A1 + 1 is not a power of 2.

Case 3.2. n; > 4. Then ny > 5. Since
/\2>\1 Q 1 = 2(2211174 4 2n1+n273 + 2n173 4 2211274 4 2n273 4 2n172 + 211272 + 1)

and
2N — 4, n1 +n9 — 3,01 — 3,2n9 —4,TL2 —3,n1—2,n9—2€ N,
2 ,1, (22711—4 + 2n1+n2—3 + 2n1—3 + 22n2—4 + 2n2—3 + 2n1—2 =+ 2n2—2 + 1)

and

2271,174 + 2n1+n273 + 2n173 + 22n274 + 2n273 + 2n172 + 27L272 + 1 > 17
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A2A1 + 1 is not a power of 2.

By cases 1-3, we have (ny,ns) € {(1, 2),(1,3),(1,4),(2, 3)} As can be seen from
above, interchanging the roles of n; and ns does not affect the proof. Therefore if
ny < nq, then A, A1, \a, 7 and r satisfy the hypotheses in Theorem 3.13(ii) precisely

when (n1,n2) € {(2,1),(3,1), (4,1),(3,2)}. O

Now we summarize Propositions 4.1.3 and 4.1.4 as follows:

Corollary 4.1.5. Let k = 2,A = k' [*" 0 L, 200 ] and 6 = Ka[1] for
some a, j1, j,m1, N2, u € N, where k {a and u < 2™ +2"2+2; and let o € Z*—(kZ)?
be such that o, = all] for some m € Z.. Then A satisfies the hypotheses in
Theorem 3.10(i1i). Let X, A1, Ao, @ and r be as in Theorem 3.13. Then X\, Ay,
o, i and v satisfy the hypotheses in Theorem 3.13(ii) for appropriate values of
J1 (1 = j — 1 when ny = ny) precisely when ny,ne satisfy 2 <ny +ny <5. In
particular, for appropriate values of j; (j1 = j — 1 when.n, = ny) the trajectory
(g, aq, g, .. .Y 18 cyelic for all pairs (ni,ng) € N x N such that nqy,ny satisfy

2§7’L1+’ﬂ2§5

Proof. This follows directly from Propositions 4.1.3 and 4.1.4 and Theorem
3.13(ii), since ny + noy = 2 implies ny = ny =1 and n; = ny together with

ni + ny <5 implies ny =1 orn; = 2. O

Next we will provide concrete examples for the existence of matrices A and
vectors oy and 3 that satisfy the conditions in Theorem 3.14 and satisfy the

hypotheses in Theorem 3.10(iii).

Proposition 4.1.6. Let A=FkI [} .2 ] and 8 = kid[}] for someb,c,d,u,j € N,

where k 1 be, u < b+c, k1t (b+c), d # 1 and k § (b+c+d); and let ag € Z?—(kZ)? be
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such that o, = [1] for some m € Z,. Then A satisfies the hypotheses in Theorem
3.10(iii). Note that k # 2. If there exists t € N such that

((b +c)tt — 1)

_ t—1
kE=0O+c+d)(b+c) " + p—

)

then the trajectory (o, aq, o, ...y is cyclic. In particular, if k is the Fermat
prime k = 22" 41 for somen € N, b= 1 and ¢ = d = 22"~1, we have that the

trajectory (ao, a1, g, ...) 1s cyclic.

Proof. As in Proposition 4.1.1, it easy to check that A satisfies the hypotheses
in Theorem 3.10(iii) and %k cannot equal 2. Assume that there exists ¢ € N such
that

e Lol Ligcoind <(b—|—c)t*1 — 1>'

b+c—1
: ;o (b+o)f—1
We will show that k1 | (b+c+d)(b+¢) +b+—1 for all [ € N(t — 2).
c_
Since
_ i1 b+t =1 b+t -1
k=((b+c+d)(b+c) +—b—|—c—1 >(b+C+d)(b+0)+—b+0_1
and
b+e)t—1
b PR Ui S S
(b4c+d)(b+c) + MITake
b+c)—1
foralllEN(t—Q),(b—i—c—l—d)(b—l—c)l—i-(l:i__c—)lE{l,2,...,k—1}f0rall
C_

l e N(t=2),s0

e)t —
k{((b+c+d)(b+c)l+(l;ic—)_11)

for all [ € N(¢t — 2). By Theorem 3.14(ii), since € = [}], A = K (b+¢), i = j,
A1 = b+ cand Ay = b+ c+d, we have that the trajectory (ag, aq, ag, . ..) is cyclic.

In particular, if § is the Fermat prime £ = 22" + 1 for some n € N, b = 1, and
c=d=2%"1 we have

(00 )

k=2"+1=1+42-2"""1=14+2c=(b+c+d)(b+c) '+
b+c—1

Y
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and hence by the above result the trajectory (ag, o, o, .. .) is cyclic. O]

Proposition 4.1.7. Let k = 2, A = k=1 [ 2(2{:&%_“} and 3 = K d[1] for
some d,j,n,u € N, where j > 1, k{d and u < 2(2" +1); and let oy € Z* — (kZ)?
be such that o, = a[1] for some a,m € Z., where a # d, kta and a(2"+ 1) +d
= a-2° for some s € N. Then A satisfies the hypotheses in Theorem 3.10(iii).
Let X\, A1, Ao, @ and 7 be as in Theorem 3.1J. Then A\ = 27(2" + 1), \;y = 2" + 1

and i = j, and furthermore the trajectory (o, aq, @, .. .) is cyclic.

Proof. It is easy to check that A satisfies the hypotheses in Theorem3.10(iii).
Let €= [1]. Since A¢'= 24(2"+ 1), A = 29(2"+1). Since 21 (2" +1), \; = 2" +1
and i = j. Since a\; +d =a(2"+1)+d=a-2°, Ay =a and r = s. For t = 2, we

have

()\2/\1 (S0 A)d )

o1

for all [ € N(t — 2) and

)\2)\1t‘1+< 3 A§)d=A2A1+d=a-(2"+1)+d=a-28.

0<rt—2

Thus by Theorem 3.14(ii) the trajectory (o, 150, ...) is cyclic. O

4.2 Existence of Matrices as in Theorems 3.13—3.14 and
3.10(v)
Before we provide concrete examples for the existence of matrices A and vectors

ap and [ that satisfy the conditions in Theorems 3.13 and 3.14 and satisfy the

hypotheses in Theorem 3.10(v), we will prove the following lemma.

Lemma 4.2.1. Let A € My(N) be such that det(A) = 0,dim(Im(A)) = 1 and

(A)2 =0.
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(i) Im(A) = span [}] if and only if A = [97] for some n € N with k { n. In

ki mi1 mo

this case we have A = [mmg ki3m4] , where iy,19,13, M1, My, m3, my € N and

ktmy-mg-ms-my.

(ii) Im(A) = span [?] if and only if A = [20] for some n € N with k {n. In

ki1 m1 k2 mo

this case we have A = [ ;
m3  k'3my

], where 11,12, 13, M1, Mo, Mg, my € N and
k)fml'm2'm3'm4.

(iii) Im(A) = span [%] if and only if A = [Z %] for somen € N with k{n. In

this case we have A = [} 2], where my, ma, ms3, my € N, k { mq-mg-mg-my,

n =1my; =ms andkz—n:mz:m4.

Proof. (i) We will show that Im(A) = span [} ] if and only if A = [37] for some
n € N with & t n. The form of A follows easily from this result.

(=) Assume that Im(A) = span | [ |. Write A as [71} 2], where ny, na, n3,ns € N.

Since [(1)} € 7>,

This implies that 713 = 0."Similarly, since [?] €(Z)? iy = 0. From (4)* =0

Thus Im(A) C span [ 1]. To prove that Im(A) = span [ }], it suffices to show that

Im(A) # {6}, because span | 1] is one-dimensional vector space and Im(A4) is a

subspace. Since A [2] =[] # 0, Im(A) # {6} Thus Im(A) = span [}].

(i) This is similar to the proof of (i).
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‘w‘

(iii) We will show that Im(A) = span [!] if and only if A = [ﬁ _”] for some

n

B

3

n € N with £ t n. Again, the form of A follows easily from this result.
(=) Assume that Im(A) = span [1]. Write A as [} 2], where ny, na, n3,n4 € N.

Since [%} € 7>,

(7] =[5 ma] [§] €Im(A) = span |

==

]

This implies 7; = ng. Similarly, since [?] € (Zy)?, iy = ny. Thus A = (B2,

Suppose 71; = 0. If ip = 0, then 4 = 0, so dim(Im(A)) = 0, a contradiction. Thus

Ny # 0 which implies 75 # 0. Hence

a contradiction. Therefore fi; # 0. Similarly, we can show that i, # 0. Thus
A= [172] where k { ni,k  na. To find the relationship between 7i; and 7,

observe that

A A R0 R0 n1)2+n1fe  1ng+(7g)?
OZ(A)2:[n1n2Hn1n2]:[(1)-1—12 12+(2)]‘

i Rzl lng niy (n1)?+ning - 1ng+(n2)?

Thus 0 = (71)? + fiyne = 1y (Ry + fiz). Since n; # 0, 0 = Ay + Ny, which implies

vhmmd Cwhere k.
1 k—ny

(<) Assume that A = [ﬁ @} for some n € N with k {n. For any p,q € Zy,

]

Thus Im(A) C span [ﬂ . As above, to prove equality it suffices to show that

==

=] () = e ) (g 4 BT 1] spow |

Im(A) # {6} Since A [L] =[2] # 0, we have that Im(A) = span [1]. O
Proposition 4.2.2. Let A = [,fg ,16] and 3 = kal}] for some a € N with k 1 a;
and let oy € Z* — (kZ)? be such that o, = a[}] for some m € Z.. Then A
satisfies the hypotheses in Theorem 3.10(v.1). Let A\, \i, Ao, i and r be as in
Theorem 3.13. Then \ = 2k, and the trajectory {ag, a1, aa, . ..) is cyclic if k = 2

or k= 3.
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Proof. It is easy to check that A satisfies the hypotheses in Theorem 3.10(v.1).
Let €= [4]. Since A€ =2k [i], A = 2k.
Case 1. k=2 Then \=4=2%so A =1landi=2. Since \; + 1 =1+1=2,

Ay =1and r = 1. For t = 2, we have 2 ¢ ()\2)\l1—|— Z )\’1’) for all | € N(t — 2)
ogrgi-1
and AT+ ) A = XA + 1 =11+ 1 =2 By Theorem 3.13(ii), the
0LV <t—2
trajectory (o, v, (g, . ..} is cyclic.

Case 2. k=3. Then A =3-2,s0 \y =2and 2= 1. Since \y +1 =2+1 = 3,

Ay =1and r=1. Fort:2,wehave3)(()\2)\l1+ Z Xf) for all | € N(t — 2)

or<i—1
and MoA' + Y M =\ +1=1-2+1 =3 By Theorem 3.13(ii), the
0Ly<t—2
trajectory (o, aq, (g, . ..) is cyclic. O

Proposition 4.2.3. Let A = [,5, || and 3 = kd[,}] for some n,d € N with
ktdandn > 2; and let ag € Z* — (KZ)?* be such that o, = al,b] for some
a,m € Z,, where k{a, a #d and a(l + k" 1) +d=a-k* for some s € N. Then
A satisfies the hypotheses in Theorem 3.10(v.1). Let X, A1, Ao, i and r be as in
Theorem 3.14. Then X = k(1+k""1), \{ = 1+ k"' and i =1, and the trajectory

(v, 1, g, . . .Y is cyclic.

Proof. As usual, it is easy to check that A satisfies the hypotheses in Theorem
3.10(v.1). Let € =[,5]. Since A¢ = k(1 + k" 1) [ 5], A=k(1L+ k"), and since
n>2, kt(1+k"1), so \y =1+k"Tandi = 1. Since aXi +d = a(l+ k" 1) +d
=a-k% A =aand r =s. For t =2, we have

(AQM Y )

0<I/<l 1

for all [ € N(t — 2) and

A2A§—1+( 3 A{)d:)\g)\mtd:a)\mtd:a-k;s.

o<r<t—2

By Theorem 3.14(ii) the trajectory (g, o, aa, .. .) is cyclic. O
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Proposition 4.2.4. Let A= [ ;="] and 3 = ka[}] for somen € {1,2,...,k — 1}
and a € N with k { a; and let oy € Z* — (kZ)? be such that a,, = a[}] for some
m € Z,. Then A satisfies the hypotheses in Theorem 3.10(v.1). Let X\, A1, Ao,
1 and r be as in Theorem 3.13. Then A\ = k, \y = 1, i = 1, and the trajectory

(v, 1, g, . . .Y is cyclic.

Proof. Again, it is easy to check that A satisfies the hypotheses in Theorem

3.10(v.1). Let &€= [1]. Since A¢ = ke, A=k, so \y =1 and i = 1.

Case 1. k=2. Since Ay +1=14+1=2 Ay =1and r = 1. For t = 2 we have

2 4 (AQMI + > A;) for'all 1€ N(t—2) and AT+ > A = dody +1
orgi-1 0<rt—2

=1-1+41=2. By Theorem 3.13(ii), the trajectory (ag, as, as,...) is cyclic.

Case 2. k# 2. Thenk >3 and k—1 € N. Since \ +1 =1+1=2 Ay =2

and 7 = 0. Fort = k — 1 we have A\ + Z N = )\2)\’{?—2 + Z AV

0Ly <t—2 0<r<k—3

— 2 (1)t Y 1Y —24k-2=kandkt (AQAH 3 A;) for all
0<r<k—3 o0rgi-1

[ € N(t — 2). By Theorem 3.13(ii) the trajectory (ag,aq, as,. . .) is cyclic. O

Proposition 4.2.5. Let A= [ i~" ] and § = kd[}] for somen € {1,2,...,k—1}
and d € N with k t d; andlet ag-€ Z* — (kZ)? be such that o, = a[}] for some
a,m € Z,, where kta, a #d and a+d = a-k* for some s € N. Then A satisfies
the hypotheses.in Theorem 3.10(v.1).. Let A\, A1, Ao, i and r be.as in Theorem

3.14. Then X =k, \y =1 and i =1, and the trajectory {ap, aq, aa, .. .) is cyclic.

Proof. It is easy to check that A satisfies the hypotheses in Theorem 3.10(v.1).
Let € = [{]. Since A€ = ké, A\ = k, so \y = 1 and i« = 1. Since a)\ + d
=a+d=a-k° g =aand r=s. For t =2 we have

(AQM Y )

orgi-1
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for all [ € N(t — 2) and
AN 4 ( 3 A;)d:A2A1+d:a+d:a-kS.
0<rt—2

By Theorem 3.14(ii), the trajectory (ag, a1, as, . ..) is cyclic. O

4.3 Conclusion

Theorem 3.10 gives some information on the situations in which the pair (A, [3)
satisfies the condition (k). In the situations described in parts (iii) and (v.1)
of this theorem, we proviode some explicit examples in which the trajectory
(a, T(a), T?*(),...) is eyclic. The situations described in parts (ii),(iv) and (v.3)
are more complicated, and await further analysis. Deeper insight may be needed

to construct some clearer conditions ensuring that the trajectory will be cyclic.
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