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The research reported in this thesis concerns determining whether or not the 

trajectory ),...(T),(T, ααα 2  is cyclic. For some forms of the matrix A  it is  

proved that the trajectory cannot be cyclic for any choice of 2Z∗∈β . In some other 
cases values of β  are given which ensure a cyclic trajectory. 
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CHAPTER I

INTRODUCTION

The 3x + 1 problem concerns the behavior of the iterates of the function which

takes odd integers x to (3x + 1)/2 and even integers x to x/2 :

T (x) =





(3x + 1)/2 if x ≡ 1 (mod 2),

x/2 if x ≡ 0 (mod 2).

The 3x+1 Conjecture asserts that, starting from any positive integer α, repeated

iteration of this function eventually produces the value 1. We call the sequence

of iterates 〈α, T (α), T 2(α), . . .〉 the trajectory of α. There are three possible

behaviors for such trajectories when α > 0.

(i) Convergent trajectory. The iterate T n(α) = 1 for some natural number n.

(ii) Non-trivial cyclic trajectory. The sequence
(
T n(α)

)
eventually becomes

periodic and T n(α) 6= 1 for any n ≥ 1.

(iii) Divergent trajectory. lim
n→∞

T n(α) = ∞.

The 3x + 1 Conjecture asserts that all trajectories of positive α are convergent.

Note that in both cases (i) and (ii) the trajectory of α is cyclic . The difference is

that in case (i) the trajectory of α contains the special value 1. ([1], Lagarias, J. C.)

At present, no one has been able to prove the 3x + 1 Conjecture or find a

counterexample. In order to gain new insights into this problem and make it

more tractable as well, we will extend our study as follows, and consider all cyclic

trajectories, instead of just convergent ones.
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Let Z∗ denote the set of all nonnegative integers. Let k be any fixed prime

number and D =
[

k 0
0 k

]
. Let A be any 2 × 2 matrix of positive integers. For a

fixed β ∈ Z2
∗, let T : Z2

∗ −→ Z2
∗ be defined by,

for each α ∈ Z2
∗,

T (α) =





D−1α if D−1α ∈ Z2
∗,

Aα + β otherwise.

The objective of this thesis is to find some sufficient conditions on A and/or

α which ensure that for an appropriate β the trajectory 〈α, T (α), T 2(α), . . .〉 is

cyclic.

The remainder of this thesis is organized as follows. In Chapter 2 we summarize

some essential facts and give some notations which will be used in the succeeding

chapters.

In Chapter 3 some conditions on A,α and β are investigated. In particular, a

few theorems concerning situations guaranteeing that the trajectory is cyclic are

proved in this chapter.

Finally, in Chapter 4 we give examples and conclude our work. The first and

the second sections of the chapter provide some concrete examples, while the third

one summarizes our results and discusses topics for further research.



CHAPTER II

BACKGROUND AND NOTATIONS

Notation. For any set X, let X2 denote the set of all column vectors [ x1
x2 ] where

x1, x2 ∈ X and let M2(X) denote the set of all 2 × 2 matrices whose entries are

elements in X.

Definition 2.1. Let X be a nonempty set, and let (xn) be a sequence in X. The

sequence (xn) is said to be cyclic if there exist m, l ∈ N such that xm = xm+nl

for all n ∈ N.

Definition 2.2. Let X be a nonempty set and f : X −→ X. For each α0 ∈ X,

the sequence
〈
α0, f(α0), f

2(α0), . . .
〉

is called a trajectory (of α0).

For any n ∈ N, we denote the value fn(α0) by αn. In particular, the trajectory

〈
α0, f(α0), f

2(α0), . . .
〉

will usually be written as 〈α0, α1, α2, . . .〉.

Proposition 2.3. Let X be a nonempty set, f : X −→ X and 〈α0, α1, α2, . . .〉 a

trajectory of α0. Then the following are equivalent:

(i) 〈α0, α1, α2, . . .〉 is cyclic,

(ii) there exist i, j ∈ N such that i < j and αi = αj.

Proof. (i)⇒(ii) Assume that the trajectory 〈α0, α1, α2, . . .〉 is cyclic. Then there

exist m, l ∈ N such that αm = αm+nl for all n ∈ N. Since l ∈ N, m < m+ l. Hence

there exist i = m, j = m + l ∈ N such that i < j and αi = αj.

(i)⇐(ii) Assume that there exist i, j ∈ N such that i < j and αi = αj. We

will show that there exist m, l ∈ N such that αm = αm+nl for all n ∈ N. Since
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i < j, j − i ∈ N. We will prove by mathematical induction that αi = αi+n(j−i) for

all n ∈ N. Since αi = αj, αi = αi+(j−i). Let k ∈ N. Assume that αi = αi+k(j−i).

We will show that αi = αi+(k+1)(j−i). Since αj = αi+(j−i) = f j−i(αi) = f j−i(αi+k(j−i))

= αi+k(j−i)+(j−i) = αi+(k+1)(j−i), αi = αj = αi+(k+1)(j−i). By mathematical induction,

αi = αi+n(j−i) for all n ∈ N. Hence there exist m = i, l = j − i ∈ N such that

αm = αm+nl for all n ∈ N.

Notation. Let k be a prime number, x ∈ Z∗, α = [ e1
e2 ] ∈ Z2

∗, and A = [aij] ∈ M2(N).

We define the following notations:

x̄ is the equivalent class of x in Zk,

ᾱ = [ ē1
ē2

] in Z2
k,

Ā = [āij] in M2(Zk).

Notation. Let R be a ring. For any A ∈ M2(R), let Im(A) = {Ax | x ∈ R2}.

Theorem 2.4 (Cayley-Hamilton Theorem [2], page 194 ). If A is a square

matrix over a commutative ring with identity and χ(x) is its characteristic polynomial,

then χ(A) = 0.

Definition 2.5. ( [3], page 198 ) A Fermat number is an integer of the form

Fn = 22n
+ 1, where n ≥ 0. If Fn is prime, Fn is called a Fermat prime.

Theorem 2.6 (Fermat,s Theorem [3], page 74 ). Let p be any prime number,

and a be an integer such that p - a. Then ap−1 ≡ 1 (mod p). Equivalently, if a is

any integer such that p - a, then ap ≡ a (mod p).

Theorem 2.7. ( [2], page 79 ) Let V and W be vector spaces over field F and

let T : V −→ W be a linear transformation from V into W .

T is 1− 1 if and only if for any v ∈ V, if T (v) = 0, then v = 0.

Lemma 2.8. Let σ be an element of the symmetric group Sn and b ∈ {1, 2, . . . , n}.
Then

{
σl(b) | l ∈ N}

=
{
σ−l(b) | l ∈ N}

.
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Proof. We will prove this by considering cases based on |Sn|.
Case 1. |Sn| = 1. Then Sn = {e} and σl = e = σ−l for all l ∈ N where e is the

identity map.

Case 2. |Sn| > 1.

(⊆) Let x ∈ {
σl(b) | l ∈ N}

. Then x = σt(b) for some t ∈ N. Since σ|Sn| = e,

it follows that σ−1 = σ|Sn|−1, and thus

x = σt(b)

= (σ−1)−t(b)

=
(
σ|Sn|−1

)−t
(b)

= σ−t(|Sn|−1)(b).

Because t(|Sn| − 1) ∈ N, this shows x ∈ {
σ−l(b) | l ∈ N}

.

(⊇) Let x ∈ {
σ−l(b) | l ∈ N}

. Then x = σ−t(b) for some t ∈ N. As above,

x = σ−t(b)

= (σ−1)t(b)

=
(
σ|Sn|−1

)t
(b)

= σt(|Sn|−1)(b).

Hence x ∈ {
σl(b) | l ∈ N}

.

Definition 2.9. Let σ be an element of Sn. We say that σ can be represented

by a single cycle if σ can be represented by a cycle (i1 i2 · · · in), where

i1, i2, . . . , in are distinct elements of {1, 2, . . . , n}.

Proposition 2.10. Let σ ∈ Sn. If σ cannot be represented by a single cycle, then

for any a ∈ {1, 2, . . . , n}, there exists b ∈ {1, 2, . . . , n} such that σl(b) 6= a for all

l ∈ N.
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Proof. Assume that σ cannot be represented by a single cycle. Let a ∈ {1, 2, . . . , n}.
Then

{
σl(a) | l ∈ N}

$ {1, 2, . . . , n}. Thus there exists b ∈ {1, 2, . . . , n} such

that σl(a) 6= b for all l ∈ N. Therefore for all l ∈ N, a 6= (σl)−1(b) since (σl)−1 is

injective. Since
{
σl(b) | l ∈ N}

=
{
σ−l(b) | l ∈ N}

, it follows that a 6= σl(b) for

all l ∈ N.



CHAPTER III

SUFFICIENT CONDITIONS FOR CYCLIC

TRAJECTORIES

Let Z∗ denote the set of all nonnegative integers. Let k be any fixed prime number

and D =
[

k 0
0 k

]
. Let A be any 2 × 2 matrix of positive integers , i.e., A = [ a b

c d ],

where a, b, c, d ∈ N. For a fixed β ∈ Z2
∗, let T : Z2

∗ −→ Z2
∗ be defined by, for each

α ∈ Z2
∗,

T (α) =





D−1α if D−1α ∈ Z2
∗,

Aα + β otherwise.

As stated above the objective of this thesis is to find some sufficient conditions

on A and/or α which ensure that for an appropriate β the trajectory

〈α, T (α), T 2(α), . . .〉 is cyclic. In this chapter we will derive some general conditions

of this type, then investigate a few more specific situations.

It is obvious that if α = [ 0
0 ] = ~0, then the trajectory is certainly cyclic , so we

confine our investigation to the case α 6= ~0.

We first note a necessary condition for the trajectory 〈α0, α1, α2, . . .〉 to be

cyclic as follows:

Proposition 3.1. If T n(α0) 6= D−1αn−1 for all n ∈ N, then the trajectory

〈α0, α1, α2, . . .〉 is not cyclic. Hence the trajectory 〈α0, α1, α2, . . .〉 can be cyclic

only if T n(α0) = D−1αn−1 for some n ∈ N.

Proof. Assume that T n(α0) 6= D−1αn−1 for all n ∈ N, but the trajectory 〈α0, α1, α2, . . .〉
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is cyclic. Then α0 6= ~0 since otherwise T n(α0) = D−1α0 for all n ∈ N, and

T n(α0) = Anα0 + An−1β + · · · + β for all n ∈ N. Since 〈α0, α1, α2, . . .〉 is cyclic,

there exist l,m ∈ N such that l < m and αl = αm, so

Alα0 + Al−1β + · · ·+ β = αl = αm = Amαo + Am−1β + · · ·+ β,

and hence

~0 = Amαo + Am−1β + · · ·+ Al+1β + Alβ − Alα0

= Al(Am−l − I2)α0 + Am−1β + · · ·+ Al+1β + Alβ. (3.1)

Because A ∈ M2(N), Ai ∈ M2(N) for all i ∈ N, so Am−l − I2 ∈ M2(N) or

Am−l− I2 = [ 0 b
c 0 ] for some b, c ∈ N. In either case equation (3.1) can be true only

when α0 = ~0 and β = ~0. Hence we have a contradiction.

We now consider the situation when T n(α0) = D−1αn−1 for some n ∈ N. By

simple verification we have the following assertions.

(a) The following are equivalent for any n ∈ N:

(i) T n(α0) = D−1αn−1,

(ii) D−1αn−1 ∈ Z2
∗,

(iii) αn−1 ∈ (kZ)2,

(iv) ᾱn−1 = ~0 in Z2
k.

(b) If α0 ∈ (kZ)2, then there exists an l ∈ N such that αl = T l(α0) /∈ (kZ)2,

and 〈α0, α1, α2, . . .〉 is cyclic if and only if 〈αl, αl+1, αl+2, . . .〉 is cyclic.

According to the assertion (b), from now on we may assume that α0 /∈ (kZ)2.
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Definition 3.2. For each A ∈ M2(N) and for each β ∈ Z2
∗, define ϕ : Z2

k −→ Z2
k

by ϕ(v) = Āv + β̄ for all v ∈ Z2
k.

We say that the ordered pair (A, β) satisfies the condition (∗) if for any

v ∈ Z2
k, there exists an l ∈ N such that ϕl(v) = ~0.

Proposition 3.3. If (A, β) satisfies the condition (∗), then

(i) for any α0 ∈ Z2 − (kZ)2, there exists an n ∈ N such that T n(α0) = D−1αn−1,

and

(ii) β̄ ∈ Im(Ā).

Proof. (i) Assume that (A, β) satisfies the condition (∗), i.e., for any v ∈ Z2
k,

there exists an l ∈ N such that ϕl(v) = ~0. Let α0 ∈ Z2 − (kZ)2. If there exists

an m ∈ N such that m ≤ l and Tm(α0) = D−1αm−1, then the proof is done.

Suppose that Tm(α0) 6= D−1αm−1 for all m ≤ l. So αm = Tm(α0) = Aαm−1 + β

for 1 ≤ m ≤ l, hence ᾱl = ϕl(ᾱ0) = ~0. Since ᾱl = ~0 if and only if αl ∈ (kZ)2, it

follows that αl+1 = T l+1(α0) = D−1αl. Hence there exists an n = l + 1 ∈ N such

that T n(α0) = D−1αn−1.

(ii) Note that for any v ∈ Z2
k and any l ∈ N,

~0 = ϕl(v) = ϕ
(
ϕl−1(v)

)
= Āϕl−1(v) + β̄.

This implies that β̄ ∈ Im(Ā), so (A, β) satisfies the condition (∗) implies β̄ ∈ Im(Ā).

The following results show the important role that det(Ā) plays in determining

whether the ordered pair (A, β) satisfies the condition (∗).

Lemma 3.4. If det(Ā) 6= 0̄ and ϕ is the identity map, then T n(α0) 6= D−1αn−1

for all n ∈ N, and hence the trajectory 〈α0, α1, α2, . . .〉 is not cyclic.
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Proof. Assume that det(Ā) 6= 0̄ and ϕ is the identity map. Then for any v ∈ Z2
k

and l ∈ N, ϕl(v) = v, and ϕl(v) = ~0 if and only if v = ~0 and β̄ = ~0. Hence (A, β)

does not satisfy the condition (∗). Next we will prove by using mathematical

induction that when β̄ = ~0, for any α0 ∈ Z2 − (kZ)2, T n(α0) 6= D−1αn−1 for all

n ∈ N, and hence by Proposition 3.1, the trajectory 〈α0, α1, α2, . . .〉 is not cyclic.

Let β̄ = ~0 and α0 ∈ Z2 − (kZ)2. Then T (α0) 6= D−1α0 since ᾱ0 6= ~0. Let k ∈ N.

Assume that T k(α0) 6= D−1αk−1. This means that ᾱk−1 6= ~0. We will show that

T k+1(α0) 6= D−1αk. By induction hypothesis we have, αk = T k(α0) = Aαk−1 + β,

so ᾱk = Āᾱk−1 + β̄ = ϕ(ᾱk−1) = ᾱk−1. Thus ᾱk 6= ~0, and hence αk+1 6= D−1αk.

By mathematical induction, T n(α0) 6= D−1αn−1 for all n ∈ N.

Lemma 3.5. If ϕ is a bijection that is not the identity map, then ϕ can be

represented by a single cycle if and only if (A, β) satisfies the condition (∗).

Proof. Assume that ϕ is a bijection that is not the identity map. We will prove

that ϕ can be represented by a single cycle if and only if (A, β) satisfies the

condition (∗).
(⇒) Suppose ϕ can be represented by a single cycle. Then for any v ∈ Z2

k,

{
ϕl(v)| l ∈ N}

= Z2
k and since ~0 ∈ Z2

k, there exists an l ∈ N such that ϕl(v) = ~0.

Hence (A, β) satisfies the condition (∗).
(⇐) Suppose ϕ cannot be represented by a single cycle. By Proposition 2.10,

there exists an element u ∈ Z2
k such that ϕl(u) 6= ~0 for all l ∈ N. Hence (A, β)

does not satisfy the condition (∗).

Lemma 3.6. If det(Ā) = 0̄, then (Ā)2 = (ā + d̄)Ā, where Ā =
[

ā b̄
c̄ d̄

]
, with

ā, b̄, c̄, d̄ ∈ Zk.

Proof. Assume that det(Ā) = 0̄. By definition, the characteristic polynomial of
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Ā is χĀ(x) = det(xI2 − Ā), where x is an indeterminate. Then

χĀ(x) = det(xI2 − Ā)

= det
([

x−ā −b̄
−c̄ x−d̄

])

= (x− ā)(x− d̄)− b̄c̄

= x2 − (ā + d̄)x + (ād̄− b̄c̄)

= x2 − (ā + d̄)x since ād̄− b̄c̄ = det(Ā) = 0̄.

By the Cayley-Hamilton Theorem, χĀ(Ā) = 0̄, which implies (Ā)2−(ā+ d̄)Ā = 0̄,

so (Ā)2 = (ā + d̄)Ā.

Lemma 3.7. If det(Ā) = 0̄ and (Ā)2 6= 0̄, then Ā|Im(Ā) and ϕ|Im(Ā) are bijective.

If in addition β̄ ∈ Im(Ā), then ϕ|Im(Ā) ∈ Sym
(
Im(Ā)

)
.

Proof. Assume that det(Ā) = 0̄ and (Ā)2 6= 0̄. We will show that Ā|Im(Ā) is

bijective. To simplify the notation we will write f for Ā|Im(Ā). Since Im(Ā) is

finite, it suffices to show that f is injective. Since f is linear, it is enough to show

that for any w ∈ Im(Ā), f(w) = ~0 implies w = ~0. Let w ∈ Im(Ā) be such that

f(w) = ~0. Since w ∈ Im(Ā), w = Āv for some v ∈ Z2
k, so

~0 = f(w) = Āw = (Ā)2v = (ā + d̄)Āv = (ā + d̄)w.

Because (Ā)2 6= 0̄ and (Ā)2 = (ā + d̄)Ā, (ā + d̄) 6= 0̄, so we can conclude that w

must be ~0. Hence f is bijective.

Next, we will show that ϕ|Im(Ā) is bijective. Since Im(Ā) is finite, again it

suffices to show that ϕ|Im(Ā) is injective. Let w1, w2 ∈ Im(Ā) be such that

ϕ|Im(Ā)(w1) = ϕ|Im(Ā)(w2). Then Āw1 + β̄ = Āw2 + β̄, so Āw1 = Āw2. Since

Ā|Im(Ā) is injective, w1 = w2. This implies that ϕ|Im(Ā) is injective. Hence ϕ|Im(Ā)

is bijective. If in addition β̄ ∈ Im(Ā), then ϕ|Im(Ā) : Im(Ā) → Im(Ā), and thus

ϕ|Im(Ā) ∈ Sym
(
Im(Ā)

)
.
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Lemma 3.8. If det(Ā) = 0̄, (Ā)2 6= 0̄, (Ā)2 6= Ā and β̄ ∈ Im(Ā), then (A, β)

does not satisfy the condition (∗).

Proof. Assume that det(Ā) = 0̄, (Ā)2 6= 0̄, (Ā)2 6= Ā and β̄ ∈ Im(Ā). By

Lemma 3.6, ā + d̄ 6= 1̄ and ā + d̄ 6= 0̄. Since k is prime and (ā + d̄) ∈ Zk − {0̄},
k - (a + d), hence by Fermat’s Theorem,

(a + d)k ≡ (a + d) ( mod k),

therefore

(a + d)k − 1 ≡
(
(a + d)− 1

)
( mod k).

Since (a + d)k − 1 =
(
(a + d)− 1

)(
(a + d)k−1 + (a + d)k−2 + · · ·+ 1

)
and

(
k, (a + d)− 1

)
= 1,

(a + d)k−1 + (a + d)k−2 + · · ·+ 1 ≡ 1 ( mod k),

so (a + d)k−1 + (a + d)k−2 + · · ·+ 1 = 1̄ in Zk, and hence

(
(ā + d̄)k−1 + (ā + d̄)k−2 + · · ·+ 1̄

)
β̄ = β̄. (3.2)

It is easy to check that (ϕ|Im(Ā))
l(~0) =

(
(ā + d̄)l−1 + (ā + d̄)l−2 + · · ·+ 1̄

)
β̄ for all

l ∈ N, and thus equation (3.2) implies that
∣∣{(ϕ|Im(Ā))

l(~0)
∣∣ l ∈ N}∣∣ ≤ k − 1 < k,

so ϕ|Im(Ā) cannot be represented by a single cycle.

We will show that (A, β) does not satisfy the condition (∗), i.e., there exists

v ∈ Z2
k such that ϕl(v) 6= ~0 for all l ∈ N. Since ϕ|Im(Ā) cannot be represented by a

single cycle, by Proposition 2.10 there exists w ∈ Im(Ā) such that (ϕ|Im(Ā))
l(w) 6= ~0

for all l ∈ N. By Lemma 3.7 ϕ|Im(Ā) ∈ Sym
(
Im(Ā)

)
, so there exists u ∈ Im(Ā)

such that ϕ|Im(Ā)(u) = w. If w = ~0, then (ϕ|Im(Ā))
|Im(Ā)|!(w) = e(w) = w = ~0

where e ∈ Sym
(
Im(Ā)

)
is the identity, a contradiction. Therefore w 6= ~0. We will

show that ϕl(u) 6= ~0 for all l ∈ N. Let l ∈ N. If l = 1, then ϕl(u) = ϕ(u) = w 6= ~0.
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Now we assume l > 1. We have ϕl(u)= (ϕ|Im(Ā))
l−1(ϕ(u))= (ϕ|Im(Ā))

l−1(w) 6= ~0.

Hence (A, β) does not satisfy the condition (∗) in this case.

Lemma 3.9. If det(Ā) = 0̄, then we have the following.

(i) If dim
(
Im(Ā)

)
= 0, then (A, β) satisfies the condition (∗) if and only if

β̄ = ~0.

(ii) If β̄ ∈ Im(Ā) and (Ā)2 = 0̄, then (A, β) satisfies the condition (∗) if and

only if β̄ = ~0.

(iii) If dim
(
Im(Ā)

)
= 1, β̄ ∈ Im(Ā) and (Ā)2 = Ā, then (A, β) satisfies the

condition (∗) if and only if β̄ 6= ~0.

Proof. Assume that det(Ā) = 0̄.

(i) Suppose dim(Im(Ā)) = 0. Then Ā = 0̄, so ϕ(v) = β̄ for all v ∈ Z2
k, and hence

(A, β) satisfies the condition (∗) if and only if β̄ = ~0.

(ii) Suppose β̄ ∈ Im(Ā) and (Ā)2 = 0̄ and observe that for any v ∈ Z2
k we have

ϕ(v) = Āv + β̄ ∈ Im(Ā). Furthermore, for any w ∈ Im(Ā) we can write w as Āv

for some v ∈ Z2
k, so ϕ(w) = Āw + β̄ = (Ā)2v + β̄ = β̄. In particular, ϕl(v) = β̄

for all v ∈ Z2
k and all l ∈ N with l ≥ 2. Hence (A, β) satisfies the condition (∗) if

and only if β̄ = ~0.

(iii) Suppose dim
(
Im(Ā)

)
= 1, β̄ ∈ Im(Ā) and (Ā)2 = Ā.

(⇒) Suppose β̄ = ~0. Then ϕ|Im(Ā) is the identity map, since for any w ∈ Im(Ā)

we have w = Āv for some v ∈ Z2
k, so ϕ|Im(Ā)(w) = Āw + β̄ = (Ā)2v = Āv = w.

Hence for any w ∈ Im(Ā) and any l ∈ N, (ϕ|Im(Ā))
l(w) = w. Since dim

(
Im(Ā)

)
= 1,

there exists an element w ∈ Im(Ā) such that w 6= ~0, and hence (ϕ|Im(Ā))
l(w) 6= ~0

for all l ∈ N. Since w ∈ Im(Ā), w = Āv = ϕ(v) for some v ∈ Z2
k. We have

ϕl(v) = (ϕ|Im(Ā))
l−1 (ϕ(v)) = (ϕ|Im(Ā))

l−1(w) 6= ~0 for all l ∈ N. Hence (A, β) does

not satisfy the condition (∗).
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(⇐) Suppose β̄ 6= ~0. Since dim
(
Im(Ā)

)
= 1 and β̄ ∈ Im(Ā), Im(Ā) =

{
lβ̄ | l ∈ Zk

}
.

An argument similar to the one used for the direction (⇒) shows that ϕ(w) = w+β̄

for all w ∈ Im(Ā). In particular, ϕ(lβ̄) = lβ̄+ β̄ = (l+1)β̄ for all l ∈ Z∗. It follows

that ϕ|Im(Ā) = (β̄ 2β̄ · · · kβ̄) as an element of Sym
(
Im(Ā)

)
. Since β̄, 2β̄, . . . , kβ̄

are k distinct elements in Im(Ā) and |Im(Ā)| = k, ϕ|Im(Ā) can be represented by a

single cycle. Thus for any w ∈ Im(Ā),
{
(ϕ|Im(Ā))

l(w)| l ∈ N}
= Im(Ā), and hence

there exists an l ∈ N such that (ϕ|Im(Ā))
l(w) = ~0. We can now show that (A, β)

satisfies the condition (∗) as follows: Let v ∈ Z2
k. Since ϕ(v) = Āv + β̄ ∈ Im(Ā),

there exists an l ∈ N such that (ϕ|Im(Ā))
l (ϕ(v)) = ~0. But ϕl+1(v) = (ϕ|Im(Ā))

l (ϕ(v)),

so we are done.

Now we summarize all of the above lemmas as follows:

Theorem 3.10. Let k be a given prime number, A ∈ M2(N) be arbitrary and

β be any element in Z∗2. Then for ϕ defined as in Definition 3.2, we have the

following.

(i) If det(Ā) 6= 0̄ and ϕ is the identity map, then 〈α0, α1, α2, . . .〉 is not cyclic.

(ii) If ϕ is a bijection that is not the identity map, then ϕ can be represented

by a single cycle if and only if (A, β) satisfies the condition (∗).

(iii) If det(Ā) = 0̄ and dim
(
Im(Ā)

)
= 0, then (A, β) satisfies the condition (∗)

if and only if β̄ = ~0.

(iv) If det(Ā) = 0̄ and dim
(
Im(Ā)

)
= 1, then (A, β) satisfies the condition (∗)

only if β̄ ∈ Im(Ā).

(v) If det(Ā) = 0̄, dim
(
Im(Ā)

)
= 1 and β̄ ∈ Im(Ā), then

(v.1) (Ā)2 = 0̄, implies (A, β) satisfies the condition (∗) if and only if β̄ = ~0,
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(v.2) (Ā)2 6= 0̄ and (Ā)2 6= Ā, implies (A, β) does not satisfies the condition(∗),
(v.3) (Ā)2 6= 0̄ and (Ā)2 = Ā, implies (A, β) satisfies the condition (∗) if

and only if β̄ 6= ~0.

According to the results in Propositions 3.1 and 3.3(i) we will consider only

the cases where (A, β) satisfies the condition (∗) because these are the cases most

likely to yield success. By investigating those cases, we have found that if A

has a positive integer eigenvalue λ, and β and αm are positive multiples of the

corresponding eigenvector ~e for some m ∈ Z∗, then it has a greater chance that

(A, β) might satisfy the condition (∗). Precisely, we will consider the following

conditions on A, λ,~e, β and αm :

A~e = λ~e, β = kjd~e and αm = a~e for some a, d, j ∈ Z∗, k - a, k - d

where in addition we write λ as kiλ1with i ∈ Z∗ and k - λ1.

(3.3)

We will proceed to investigate all possibilities for i, j, a and d.

Notation. For any r ∈ X ⊆ Z∗, we denote
{
n ∈ X

∣∣ n ≤ r
}

by X(r). In

particular, N(r) =
{
n ∈ N

∣∣ n ≤ r
}

and Z∗(r) =
{
n ∈ Z∗

∣∣ n ≤ r
}
.

Theorem 3.11. Let A, λ,~e, β and αm be as in (3.3) and j < i. Then for all

t ∈ Z∗ and l ∈ Z∗(j) we have

αm+tj+(t+1)+l = kj−l

(
a(λ1k

i−j)t+1 +
(λ1k

i−j)t+1 − 1

λ1ki−j − 1
d

)
~e. (3.4)

In particular, when a = d we have

αm+tj+(t+1)+l = kj−la

(
(λ1k

i−j)t+2 − 1

λ1ki−j − 1

)
~e.

Therefore the trajectory 〈α0, α1, α2, . . .〉 is not cyclic.
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Proof. We first note that for each s ∈ N, for any n ∈ N,

k -
(
a(λ1k

s)n +
(λ1k

s)n − 1

λ1ks − 1
d
)
, (3.5)

since k -
((λ1k

s)n − 1

λ1ks − 1
d
)
. To prove equation (3.4) we will use induction on t as

follows: For any t ∈ Z∗, let p(t) be the sentence: for all l ∈ Z∗(j),

αm+tj+(t+1)+l = kj−l

(
a(λ1k

i−j)t+1 +
(λ1k

i−j)t+1 − 1

λ1ki−j − 1
d

)
~e.

Basis step: We will show that p(0) is true, i.e., for all l ∈ Z∗(j),

αm+1+l = kj−l
(
a(λ1k

i−j) + d
)
~e (3.6)

We will prove that equation (3.6) is true by induction on l. For l = 0: Since

αm+1+l = αm+1 and D−1αm /∈ Z2, we have

αm+1 = Aαm + β

= aA~e + kjd~e

= aλ~e + kjd~e

= akiλ1~e + kjd~e

= kj
(
a(λ1k

i−j) + d
)
~e.

Thus equation (3.6) is true when l = 0. Assume that equation (3.6) is true for

l ∈ Z∗(j − 1). We will show that equation (3.6) is true for l + 1, i.e.,

αm+1+(l+1) = kj−(l+1)
(
a(λ1k

i−j) + d
)
~e.

By the induction hypothesis for l,

αm+1+l = kj−l
(
a(λ1k

i−j) + d
)
~e.

Since l ∈ Z∗(j − 1), j − l ∈ N, so D−1αm+1+l ∈ Z2, and hence

αm+1+(l+1) = D−1αm+1+l = kj−(l+1)
(
a(λ1k

i−j) + d
)
~e.
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Thus equation (3.6) is true for l + 1. By induction on l, equation (3.6) is true for

all l ∈ Z∗(j). Thus p(0) is true.

Induction step: To simplify the notation, for any t ∈ Z∗ let

C(t) = a(λ1k
i−j)t+1 +

(λ1k
i−j)t+1 − 1

λ1ki−j − 1
d.

Assume that p(t) is true. We will show that p(t + 1) is true, i.e., for all l ∈ Z∗(j),

αm+(t+1)j+(t+2)+l = kj−l

(
a(λ1k

i−j)t+2 +
(λ1k

i−j)t+2 − 1

λ1ki−j − 1
d

)
~e

= kj−lC(t + 1)~e.

(3.7)

We will show that equation (3.7) is true by induction on l.

Basis step for l: l = 0. Since p(t) is true, we have αm+tj+(t+1)+n = kj−nC(t)~e for

all n ∈ Z∗(j). In particular, when n = j

αm+tj+(t+1)+n = αm+(t+1)j+(t+1)

= kj−jC(t)~e

= C(t)~e.

From (3.5), k - C(t), so D−1αm+(t+1)j+(t+1) /∈ Z2, and hence

αm+(t+1)j+(t+2) = Aαm+(t+1)j+(t+1) + β

= AC(t)~e + β

= C(t)A~e + kjd~e

= C(t)λ~e + kjd~e

= C(t)kiλ1~e + kjd~e

= kj
(
λ1k

i−jC(t) + d
)
~e.

But

λ1k
i−jC(t) + d = a(λ1k

i−j)t+2 + λ1k
i−j (λ1k

i−j)t+1 − 1)

λ1ki−j − 1
d + d
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= a(λ1k
i−j)t+2 +

(
(λ1k

i−j)t+2 − λ1k
i−j

λ1ki−j − 1
+ 1

)
d

= a(λ1k
i−j)t+2 +

(λ1k
i−j)t+2 − 1

λ1ki−j − 1
d

= C(t + 1),

so

αm+(t+1)j+(t+2) = kjC(t + 1)~e.

Thus equation (3.7) is true when l = 0.

Induction step for l: Assume that equation (3.7) is true for l ∈ Z∗(j − 1). We

will show that equation (3.7) is true for l + 1, i.e.,

αm+(t+1)j+(t+2)+(l+1) = kj−(l+1)C(t + 1)~e.

By the induction hypothesis for l,

αm+(t+1)j+(t+2)+l = kj−lC(t + 1)~e.

Since l ∈ Z∗(j − 1), j − l ∈ N, so D−1αm+(t+1)i+(t+2)+l ∈ Z2, and hence

αm+(t+1)j+(t+2)+(l+1) = kj−(l+1)C(t + 1)~e.

Thus equation (3.7) is true for l + 1. By induction on l, equation (3.7) is true for

all l ∈ Z∗(j). Hence p(t + 1) is true. By induction on t, p(t) is true for all t ∈ Z∗,
i.e., for all t ∈ Z∗ and all l ∈ Z∗(j),

αm+tj+(t+1)+l = kj−l

(
a(λ1k

i−j)t+1 +
(λ1k

i−j)t+1 − 1

λ1ki−j − 1
d

)
~e.

In particular, when a = d we have

αm+tj+(t+1)+l = kj−la

(
(λ1k

i−j)t+2 − 1

λ1ki−j − 1

)
~e.

Next we will show that the αm+n are distinct for all n ∈ Z∗. It suffices to show

that
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(I) for each t ∈ Z∗, the αm+tj+(t+1)+l are distinct for all l ∈ Z∗(j) and

(II) for any t1, t2 ∈ Z∗, with t1 6= t2,

{
αm+t1j+(t1+1)+l

∣∣ l ∈ Z∗(j)
} ∩ {

αm+t2j+(t2+1)+l

∣∣ l ∈ Z∗(j)
}

= ∅.

We will prove (I) as follows: Let t ∈ Z∗. Suppose that αm+tj+(t+1)+l1

= αm+tj+(t+1)+l2 for some l1, l2 ∈ Z∗(j). Then kj−l1C(t)~e = kj−l2C(t)~e. This

implies that kj−l1 = kj−l2 , and hence l1 = l2. Therefore (I) is true.

Next we will prove (II) as follows: Suppose that αm+t1j+(t1+1)+l1 = αm+t2j+(t2+1)+l2

for some l1, l2 ∈ Z∗(j) and t1, t2 ∈ Z∗ with t1 6= t2. Then kj−l1C(t1)~e = kj−l2C(t2)~e.

This implies that kl2C(t1) = kl1C(t2). Suppose that l1 6= l2. Without loss of

generality, we may assume l1 < l2, so that kl2−l1C(t1) = C(t2). Thus k | C(t2),

which contradicts (3.5). Hence l1 = l2. Therefore C(t1) = C(t2), i.e.,

aµt1+1 +
µt1+1 − 1

µ− 1
d = aµt2+1 +

µt2+1 − 1

µ− 1
d,

where µ = λ1k
i−j, so

a(µt1+1 − µt2+1) =
µt2+1 − 1− µt1+1 + 1

µ− 1
d =

µt2+1 − µt1+1

µ− 1
d.

This implies that a(µ− 1) = −d, a contradiction since a(µ− 1) > 0 but −d < 0.

Hence (II) is true.

Therefore the trajectory 〈αm, αm+1, αm+2, . . .〉 is not cyclic, and hence the

trajectory 〈α0, α1, α2, . . .〉 is not cyclic.

Theorem 3.12. Let A, λ,~e, β and αm be as in (3.3) and i < j. Then for all

t ∈ Z∗ and l ∈ Z∗(i),

αm+ti+(t+1)+l =





ki−l

(
aλt+1

1 +
(λt+1

1 − 1)

λ1 − 1
dkj−i

)
~e if λ1 6= 1,

ki−l
(
a + (t + 1)dkj−i

)
~e otherwise.

(3.8)
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In particular, when a = d we have

αm+ti+(t+1)+l =





ki−la

(
λt+1

1 +
(λt+1

1 − 1)

λ1 − 1
kj−i

)
~e if λ1 6= 1,

ki−la
(
1 + (t + 1)kj−i

)
~e otherwise.

Therefore the trajectory 〈α0, α1, α2, . . .〉 is not cyclic.

Proof. We first note that for each s, n ∈ N,

k -
(
aλn

1 +
( ∑
06ν6n−1

λν
1

)
dks

)
, (3.9)

since k - aλn
1 and k |

( ∑
06ν6n−1

λν
1

)
dks. To prove equation (3.8) we will use

induction on t as follows: For any t ∈ Z∗, let p(t) be the sentence: for all l ∈ Z∗(i),

αm+ti+(t+1)+l = ki−l
(
aλt+1

1 +
( ∑
06ν6t

λν
1

)
dkj−i

)
~e.

To simplify the notation, for any t ∈ Z∗, let C(t) = aλt+1
1 +

( ∑
06ν6t

λν
1

)
dkj−i.

Basis step: We will show that p(0) is true, i.e., for all l ∈ Z∗(i),

αm+1+l = ki−lC(0)~e (3.10)

We will show that equation (3.10) is true by induction on l. For l = 0: Since

αm+1+0 = αm+1 and D−1αm /∈ Z2, we have

αm+1 = Aαm + β

= aA~e + kjd~e

= aλ~e + kjd~e

= akiλ1~e + kjd~e

= ki(aλ1 + dkj−i)~e

= kiC(0)~e.
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Thus equation (3.10) is true when l = 0. Assume that equation (3.10) is true for

l ∈ Z∗(i− 1). We will show that equation (3.10) is true for l + 1, i.e.,

αm+1+(l+1) = ki−(l+1)C(0)~e.

By induction hypothesis for l,

αm+1+l = ki−lC(0)~e.

Since l ∈ Z∗(i− 1), i− l ∈ N, so D−1αm+1+l ∈ Z2, and hence

αm+1+(l+1) = D−1αm+1+l = ki−(l+1)C(0)~e.

Thus equation (3.10) is true for l + 1. By induction on l, equation (3.10) is true

for all l ∈ Z∗(i). Thus p(0) is true.

Induction step: Assume that p(t) is true. We will show that p(t + 1) is true, i.e.,

for all l ∈ Z∗(i),
αm+(t+1)i+(t+2)+l = ki−lC(t + 1)~e. (3.11)

We will show that equation (3.11) is true by induction on l.

Basis step for l : l = 0. Since p(t) is true, we have

αm+ti+(t+1)+n = ki−nC(t)~e

for all n ∈ Z∗(i). In particular, when n = i

αm+ti+(t+1)+n = αm+(t+1)i+(t+1)

= ki−iC(t)~e

= C(t)~e.

From (3.9), k - C(t), so D−1αm+(t+1)i+(t+1) /∈ Z2, and hence

αm+(t+1)i+(t+2) = Aαm+(t+1)i+(t+1) + β
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= AC(t)~e + kjd~e

= C(t)λ~e + kjd~e

= C(t)λkiλ1~e + kjd~e

= ki
(
aλt+1

1 +
( ∑
06ν6t

λν
1

)
dkj−i

)
λ1~e + kjd~e

= ki
[(

aλt+1
1 +

( ∑
06ν6t

λν
1

)
dkj−i

)
λ1 + dkj−i

]
~e

= ki
(
aλt+2

1 +
( ∑
06ν6t+1

λν
1

)
dkj−i

)
~e

= kiC(t + 1)~e.

Then equation (3.11) is true when l = 0.

Induction step for l: Assume that equation (3.11) is true for l ∈ Z∗(i− 1). We

will show that equation (3.11) is true for l + 1, i.e.,

αm+(t+1)i+(t+2)+(l+1) = ki−(l+1)C(t + 1)~e.

By induction hypothesis for l,

αm+(t+1)i+(t+2)+l = ki−lC(t + 1)~e.

Since l ∈ Z∗(i− 1), i− l ∈ N, so D−1αm+(t+1)i+(t+2)+l ∈ Z2, and hence

αm+(t+1)i+(t+2)+(l+1) = D−1αm+(t+1)i+(t+2)+l

= ki−(l+1)C(t + 1)~e.

Thus equation (3.11) is true for l + 1. By induction on l, equation (3.11) is true

for all l ∈ Z∗(i). Hence p(t + 1) is true. By induction on t, p(t) is true for all

t ∈ Z∗. For any t ∈ Z∗,

∑
06ν6t

λν
1 =





λt+1
1 − 1

λ1 − 1
if λ1 6= 1,

t + 1 if λ1 = 1.
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Hence for any t ∈ Z∗ and all l ∈ Z∗(i),

αm+ti+(t+1)+l =





ki−l

(
aλt+1

1 +
λt+1

1 − 1

λ2 − 1
dkj−i

)
~e if λ1 6= 1,

ki−l
(
a + (t + 1)dkj−i

)
~e otherwise.

In particular, when a = d we have

αm+ti+(t+1)+l =





ki−la

(
λt+1

1 +
λt+1

1 − 1

λ1 − 1
kj−i

)
~e if λ1 6= 1,

ki−la
(
1 + (t + 1)kj−i

)
~e otherwise.

Next we will show that the αm+n are distinct for all n ∈ Z∗. It suffices to show

that

(I) for each t ∈ Z∗, the αm+ti+(t+1)+l are distinct for all l ∈ Z∗(i) and

(II) for any t1, t2 ∈ Z∗ with t1 6= t2,

{αm+t1i+(t1+1)+l | l ∈ Z∗(i)} ∩ {αm+t2i+(t2+1)+l | l ∈ Z∗(i)} = ∅.

We will prove (I) as follows: Let t ∈ Z∗. Suppose that αm+ti+(t+1)+l1

= αm+ti+(t+1)+l2 for some l1, l2 ∈ Z∗(i). Then ki−l1C(t)~e = ki−l2C(t)~e. So

ki−l1 = ki−l2 , and hence l1 = l2. Therefore (I) is true.

Next we will prove (II) as follows: Suppose that αm+t1i+(t1+1)+l1 = αm+t2i+(t2+1)+l2

for some l1, l2 ∈ Z∗(i) and t1, t2 ∈ Z∗ with t1 6= t2. Without loss of generality we

may assume t1 < t2. Then ki−l1C(t1)~e = ki−l2C(t2)~e, so kl2C(t1) = kl1C(t2).

Suppose that l1 6= l2. Without loss of generality, we may assume l1 < l2, so that

kl2−l1C(t1) = C(t2). Thus k | C(t2), which contradicts (3.9). Hence l1 = l2.

Therefore C(t1) = C(t2), i.e.,

aλt1+1
1 +

( ∑
06ν6t1

λν
1

)
dkj−i = aλt2+1

1 +
( ∑

06ν6t2

λν
1

)
dkj−i,
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so

aλt+1
1

(
1− λ1

t2−t1
)

= λt1+1
1

( ∑
06ν6t2−t1−1

λν
1

)
dkj−i.

Thus

a
(
1− λ1

t2−t1
)

=
( ∑

06ν6t2−t1−1

λν
1

)
dkj−i.

Since λ1
t2−t1 ≥ 1, a

(
1− λ1

t2−t1
) ≤ 0 but

( ∑
06ν6t2−t1−1

λν
1

)
dkj−i ≥ 1, so we have a

contradiction. Hence (II) is true.

Therefore the trajectory 〈αm, αm+1, αm+2, . . .〉 is not cyclic, and hence the

trajectory 〈α0, α1, α2, . . .〉 is not cyclic.

Theorem 3.13. Let A, λ,~e, β and αm be as in (3.3). Assume that a = d and

i = j. Then αm+1 = kia(λ1 + 1)~e. Write λ1 + 1 as krλ2 where k - λ2 and r ∈ Z∗.

(i) For each t ∈ N, if k -
(
λ2λ

l
1 +

∑

0≤ν≤l−1

λν
1

)
for all l ∈ N(t− 2), then

αm+ti+(r+t) =





a

(
λ2λ

t−1
1 +

λt−1
1 − 1

λ1 − 1

)
~e if λ1 6= 1,

a(λ2 + t− 1)~e otherwise.

(ii) If there exists t ∈ N with the property that k -
(
λ2λ

l
1 +

∑

0≤ν≤l−1

λν
1

)
for all

l ∈ N(t−2) and λ2λ
t−1
1 +

∑
0≤ν≤t−2

λν
1 = ks for some s ∈ N, then the trajectory

〈α0, α1, α2, . . .〉 is cyclic.

Proof. (i) For each t ∈ N, let p(t) be the sentence: if k -
(
λ2λ

l
1 +

∑

0≤ν≤l−1

λν
1

)
for

all l ∈ N(t− 2), then

αm+ti+(r+t) = a
(
λ2λ

t−1
1 +

∑
0≤ν≤t−2

λν
1

)
~e.

Basis step: We will show that p(1) is true. It suffices to show that αm+i+(r+1) = aλ2~e.

Since

αm+1 = kia(λ1 + 1)~e = ki+raλ2~e,
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D−1αm+1+n ∈ Z2 for all n ∈ Z∗(i + r − 1), so

αm+1+(n+1) = D−1αm+1+n = k(i+r)−(n+1)aλ2~e

for all n ∈ Z∗(i + r − 1). In particular, when n = i + r − 1

αm+i+(r+1) = αm+1+(n+1) = k(i+r)−(i+r)aλ2~e = aλ2~e.

Induction step: Assume that p(t) is true. We will show that p(t + 1) is true, i.e.,

if

k -
(
λ2λ

l
1 +

∑

0≤ν≤l−1

λν
1

)
for all l ∈ N(t− 1),

then

αm+(t+1)i+(r+t+1) = a
(
λ2λ

t
1 +

∑
0≤ν≤t−1

λν
1

)
~e.

Suppose that

k -
(
λ2λ

l
1 +

∑

0≤ν≤l−1

λν
1

)
for all l ∈ N(t− 1).

Then

k -
(
λ2λ

l
1 +

∑

0≤ν≤l−1

λν
1

)
for all l ∈ N(t− 2),

and since p(t) is true we have

αm+ti+(r+t) = a
(
λ2λ

t−1
1 +

∑
0≤ν≤t−2

λν
1

)
~e.

By assumption, k -
(
λ2λ

t−1
1 +

∑
0≤ν≤t−2

λν
1

)
, and since k - a we have

k - a
(
λ2λ

t−1
1 +

∑
0≤ν≤t−2

λν
1

)
,

so D−1αm+ti+(r+t) /∈ Z2, and hence

αm+ti+(r+t+1) = Aαm+ti+(r+t) + β

= Aa
(
λ2λ

t−1
1 +

∑
0≤ν≤t−2

λν
1

)
~e + kia~e
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= a
(
λ2λ

t−1
1 +

∑
0≤ν≤t−2

λν
1

)
λ~e + kia~e

= a
(
λ2λ

t−1
1 +

∑
0≤ν≤t−2

λν
1

)
kiλ1~e + kia~e

= kia
((

λ2λ
t−1
1 +

∑
0≤ν≤t−2

λν
1

)
λ1 + 1

)
~e

= kia
(
λ2λ

t
1 +

∑
0≤ν≤t−1

λν
1

)
~e.

Since D−1αm+ti+(r+t+1)+n ∈ Z2 for all n ∈ Z∗(i− 1),

αm+ti+(r+t+1)+(n+1) = D−1αm+ti+(r+t+1)+n

= ki−(n+1)a
(
λ2λ

t
1 +

∑
0≤ν≤t−1

λν
1

)
~e

for all n ∈ Z∗(i− 1). In particular, when n = i− 1 we have

αm+(t+1)i+(r+t+1) = D−1αm+(t+1)i+(r+t)

= ki−ia
(
λ2λ

t
1 +

∑
0≤ν≤t−1

λν
1

)
~e

= a
(
λ2λ

t
1 +

∑
0≤ν≤t−1

λν
1

)
~e.

Thus p(t + 1) is true. By mathematical induction, p(t) is true for all t ∈ N. For

any n ∈ N, we have

∑
0≤ν≤n

λν
1 =





λn+1
1 − 1

λ1 − 1
if λ1 6= 1,

n + 1 if λ1 = 1.

Hence for each t ∈ N, if k -
(
λ2λ

l
1 +

∑

0≤ν≤l−1

λν
1

)
for all l ∈ N(t− 2), then

αm+ti+(r+t) =





a

(
λ2λ

t−1
1 +

λt−1
1 − 1

λ1 − 1

)
~e if λ1 6= 1,

a(λ2 + t− 1)~e otherwise.

(ii) Assume that there exists t ∈ N with the property that

k -
(
λ2λ

l
1 +

∑

0≤ν≤l−1

λν
1

)
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for all l ∈ N(t − 2) and λ2λ
t−1
1 +

∑
0≤ν≤t−2

λν
1 = ks for some s ∈ N. From (i) we

have

αm+ti+(r+t) = a
(
λ2λ

t−1
1 +

∑
0≤ν≤t−2

λν
1

)
~e = aks~e.

Since D−1αm+ti+(r+t)+n ∈ Z2 for all n ∈ Z∗(s− 1),

αm+ti+(r+t)+(n+1) = D−1αm+ti+(r+t)+n

= ks−(n+1)a~e

for all n ∈ Z∗(s− 1). In particular, when n = s− 1

αm+ti+(r+t)+(n+1) = αm+ti+(r+t)+s

= aks−s~e

= a~e

= αm,

and hence the trajectory 〈α0, α1, α2, . . .〉 is cyclic.

Theorem 3.14. Let A, λ,~e, β and αm be as in (3.3). Assume that a 6= d and

i = j. Then αm+1 = ki(aλ1 +d)~e. Write aλ1 +d as krλ2, where k - λ2 and r ∈ Z∗.

(i) For each t ∈ N, if k -
(
λ2λ

l
1 +

( ∑

0≤ν≤l−1

λν
1

)
d
)

for all l ∈ N(t− 2), then

αm+ti+(r+t) =





(
λ2λ

t−1
1 +

λt−1
1 − 1

λ1 − 1
d

)
~e if λ1 6= 1,

(
λ2 + (t− 1)d

)
~e otherwise.

(ii) If there exists t ∈ N with the property that k -
(
λ2λ

l
1 +

( ∑

0≤ν≤l−1

λν
1

)
d
)

for all

l ∈ N(t − 2) and λ2λ
t−1
1 +

( ∑
0≤ν≤t−2

λν
1

)
d = aks for some s ∈ Z∗, then the

trajectory 〈α0, α1, α2, . . .〉 is cyclic.
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Proof. (i) For each t ∈ N, let p(t) be the sentence: if k -
(
λ2λ

l
1 +

( ∑

0≤ν≤l−1

λν
1

)
d
)

for all l ∈ N(t− 2), then

αm+ti+(r+t) =
(
λ2λ

t−1
1 +

( ∑
0≤ν≤t−2

λν
1

)
d
)
~e.

Basis step: We will show that p(1) is true. It suffices to show that αm+i+(r+1) = λ2~e.

Since

αm+1 = ki(aλ1 + d)~e = ki+rλ2~e,

D−1αm+1+n ∈ Z2 for all n ∈ Z∗(i + r − 1), so

αm+1+(n+1) = D−1αm+1+n = k(i+r)−(n+1)λ2~e

for all n ∈ Z∗(i + r − 1). In particular, when n = i + r − 1

αm+1+(n+1) = αm+i+(r+1) = k(i+r)−(i+r)λ2~e = λ2~e.

Induction step: Assume that p(t) is true. We will show that p(t + 1) is true, i.e.,

if

k -
(
λ2λ

l
1 +

( ∑

0≤ν≤l−1

λν
1

)
d
)

for all l ∈ N(t− 1),

then

αm+(t+1)i+(r+t+1) =
(
λ2λ

t
1 +

( ∑
0≤ν≤t−1

λν
1

)
d
)
~e.

Suppose that

k -
(
λ2λ

l
1 +

( ∑

0≤ν≤l−1

λν
1

)
d
)

for all l ∈ N(t− 1).

Then

k -
(
λ2λ

l
1 +

( ∑

0≤ν≤l−1

λν
1

)
d
)

for all l ∈ N(t− 2),

and since p(t) is true we have

αm+ti+(r+t) =
(
λ2λ

t−1
1 +

( ∑
0≤ν≤t−2

λν
1

)
d
)
~e.
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By assumption, k -
(
λ2λ

t−1
1 +

( ∑
0≤ν≤t−2

λν
1

)
d
)
, so D−1αm+ti+(r+t) /∈ Z2, and hence

αm+ti+(r+t+1) = Aαm+ti+(r+t) + β

=
(
λ2λ

t−1
1 +

( ∑
0≤ν≤t−2

λν
1

)
d
)
λ~e + kid~e

= ki
(
λ2λ

t−1
1 +

( ∑
0≤ν≤t−2

λν
1

)
d
)
λ1~e + ki~e

= ki
(
λ2λ

t
1 +

( ∑
0≤ν≤t−1

λν
1

)
d
)
~e.

Since D−1αm+ti+(r+t+1)+n ∈ Z2 for all n ∈ Z∗(i− 1),

αm+ti+(r+t+1)+(n+1) = D−1αm+ti+(r+t+1)+n

= ki−(n+1)
(
λ2λ

t
1 +

( ∑
0≤ν≤t−1

λν
1

)
d
)
~e

for all n ∈ Z∗(i− 1). In particular, when n = i− 1 we have

αm+(t+1)i+(r+t+1) = ki−i
(
λ2λ

t
1 +

( ∑
0≤ν≤t−1

λν
1

)
d
)
~e

=
(
λ2λ

t
1 +

( ∑
0≤ν≤t−1

λν
1

)
d
)
~e.

Thus p(t + 1) is true. By mathematical induction, p(t) is true for all t ∈ N. For

any n ∈ N, we have

∑
0≤ν≤n

λν
1 =





λn+1
1 − 1

λ1 − 1
if λ1 6= 1,

n + 1 if λ1 = 1.

Hence for each t ∈ N, if k -
(
λ2λ

l
1 +

( ∑

0≤ν≤l−1

λν
1

)
d
)

for all l ∈ N(t− 2), then

αm+ti+(r+t) =





(
λ2λ

t−1
1 +

λt−1
1 − 1

λ1 − 1
d

)
~e if λ1 6= 1,

(
λ2 + (t− 1)d

)
~e otherwise.

(ii) Assume that there exists t ∈ N with the property that

k -
(
λ2λ

l
1 +

( ∑

0≤ν≤l−1

λν
1

)
d
)
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for all l ∈ N(t − 2) and λ2λ
t−1
1 +

( ∑
0≤ν≤t−2

λν
1

)
d = aks for some s ∈ N. By (i) we

have

αm+ti+(r+t) =
(
λ2λ

t−1
1 +

( ∑
0≤ν≤t−2

λν
1

)
d
)
~e = aks~e.

Since D−1αm+ti+(r+t)+n ∈ Z2 for all n ∈ Z∗(s− 1),

αm+ti+(r+t)+(n+1) = D−1αm+ti+(r+t)+n

= ks−(n+1)a~e

for all n ∈ Z∗(s− 1). In particular, when n = s− 1

αm+ti+(r+t)+(n+1) = αm+ti+(r+t)+s

= ks−sa~e

= a~e

= αm,

and hence the trajectory 〈α0, α1, α2, . . .〉 is cyclic.



CHAPTER IV

EXAMPLES AND CONCLUSION

In this chapter we will provide a few concrete examples of matrices A and vectors

α0 and β that satisfy the conditions in each of the Theorems 3.13 and 3.14 and

the hypotheses in Theorem 3.10.

4.1 Existence of Matrices as in Theorems 3.13–3.14 and

3.10(iii)

We will provide concrete examples of matrices A and vectors α0 and β that satisfy

the conditions in Theorem 3.13 and satisfy the hypotheses in Theorem 3.10(iii).

Proposition 4.1.1. Let A = kj
[

b c
u b+c−u

]
and β = kja [ 1

1 ] for some a, b, c, u, j ∈ N,

where k - abc, u < b + c, k - (b + c) and k - (b + c + 1); and let α0 ∈ Z2 − (kZ)2

be such that αm = a [ 1
1 ] for some m ∈ Z∗. Then A satisfies the hypotheses in

Theorem 3.10(iii). Note that k 6= 2. If there exists t ∈ N such that

k = (b + c + 1)(b + c)t−1 +
(b + c)t−1 − 1

b + c− 1
,

then the trajectory 〈α0, α1, α2, . . .〉 is cyclic. In particular, if k is the Fermat

prime k = 22n
+ 1 for some n ∈ Z∗ and a = b = c = 22n−1, we have that the

trajectory 〈α0, α1, α2, . . .〉 is cyclic.

Proof. Clearly, Ā = 0̄, so A trivially satisfies the hypotheses in Theorem 3.10(iii).

Furthermore, since b + c and b + c + 1 are consecutive integers, one of them must

be even, and thus the assumptions k - (b + c) and k - (b + c + 1) implies k 6= 2.
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Assume that there exists t ∈ N such that k = (b+c+1)(b+c)t−1 +
(b + c)t−1 − 1

b + c− 1
.

We will show that

k -
(

(b + c + 1)(b + c)l +
(b + c)l − 1

b + c− 1

)

for all l ∈ N(t− 2). Since

k = (b + c + 1)(b + c)t−1 +
(b + c)t−1 − 1

b + c− 1
> (b + c + 1)(b + c)l +

(b + c)l − 1

b + c− 1

and

(b + c + 1)(b + c)l +
(b + c)l − 1

b + c− 1
∈ N

for all l ∈ N(t− 2),

(b + c + 1)(b + c)l +
(b + c)l − 1

b + c− 1
∈ {1, 2, . . . , k − 1}

for all l ∈ N(t− 2), so

k -
(

(b + c + 1)(b + c)l +
(b + c)l − 1

b + c− 1

)

for all l ∈ N(t− 2). Given α0 ∈ Z2− (kZ)2 such that αm = a [ 1
1 ] for some m ∈ Z∗,

it is straightforward to check that ~e = [ 1
1 ], λ = kj(b + c), i = j, λ1 = b + c and

λ2 = b + c + 1, so by Theorem 3.13(ii) we have that the trajectory 〈α0, α1, α2, . . .〉
is cyclic.

In particular, if k is the Fermat prime k = 22n
+ 1 for some n ∈ Z∗ and

a = b = c = 22n−1, we have

k = 22n

+ 1 = 2 · 22n−1 + 1 = 2a + 1 = (b + c + 1)(b + c)1−1 +

(
(b + c)1−1 − 1

)

b + c− 1
,

and hence by the above result the trajectory 〈α0, α1, α2, . . .〉 is cyclic.
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Lemma 4.1.2. Let k = 2, let λ1, λ2 ∈ N be such that k - λ1 and k - λ2 and let

t ∈ N.

(i) If k -
(
λ2λ

l
1 +

∑

06ν6l−1

λν
1

)
for all l ∈ N(t− 2), then t = 1 or t = 2.

(ii) If k -
(
λ2λ

l
1 +

∑

06ν6l−1

λν
1

)
for all l ∈ N(t− 2) and λ2λ

t−1
1 +

∑
06ν6t−2

λν
1 = ks

for some s ∈ N, then t = 2.

Proof. (i) Assume that k -
(
λ2λ

l
1 +

∑

06ν6l−1

λν
1

)
for all l ∈ N(t − 2). Suppose

t ≥ 3. Then t − 2 ≥ 1. By assumption, k - (λ2λ1 + 1). Since k = 2, k - λ1 and

k - λ2, the product λ2λ1 is odd, so λ2λ1 + 1 is even, and hence k | (λ2λ1 + 1), a

contradiction. Therefore t = 1 or 2.

(ii) Assume that k -
(
λ2λ

l
1+

∑

06ν6l−1

λν
1

)
for all l ∈ N(t−2) and λ2λ

t−1
1 +

∑
06ν6t−2

λν
1 = ks

for some s ∈ N. By part (i), t must be 1 or 2. If t = 1, then λ2λ
t−1
1 +

∑
06ν6t−2

λν
1 = λ2,

so λ2 = ks, contrary to k - λ2. Hence t = 2.

Proposition 4.1.3. Let k = 2, A = kj−1
[

2n+1 2n+1
u 2(2n+1)−u

]
and β = kja [ 1

1 ] for

some a, j, n, u ∈ N, where j > 1, k - a and u < 2(2n + 1); and let α0∈ Z2 − (kZ)2

be such that αm = a [ 1
1 ] for some m ∈ Z∗. Let λ, λ1, λ2, i and r be as in Theorem

3.13. Then λ = 2j(2n +1), λ1 = 2n +1 and i = j, and furthermore λ, λ1, λ2, i and

r satisfy the hypotheses in Theorem 3.13(ii) precisely when n ∈ {1, 2}.

Proof. Let ~e = [ 1
1 ]. Since A~e = 2j(2n + 1)~e, λ = 2j(2n + 1). Since 2 - (2n + 1),

λ1 = 2n + 1 and i = j.

We will prove that λ, λ1, λ2, i and r satisfy the hypotheses in Theorem 3.13(ii)

precisely when n ∈ {1, 2}.
Assume that λ, λ1, λ2, i and r satisfy the hypotheses in Theorem 3.13(ii), i.e.,

there exists t ∈ N with the property that 2 -
(
λ2λ

l
1+

∑

06ν6l−1

λν
1

)
for all l ∈ N(t−2)

and λ2λ
t−1
1 +

∑
06ν6t−2

λν
1 = 2s for some s ∈ N. By Lemma 4.1.2(ii), t = 2. Thus
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2s = λ2λ1 + 1. Suppose n ≥ 3. Then λ1 + 1 = 2n + 2 = 2(2n−1 + 1). Since

2 - (2n−1 + 1), λ2 = 2n−1 + 1 and r = 1. Thus

λ2λ1 + 1 = (2n−1 + 1)(2n + 1) + 1

= 22n−1 + 2n−1 + 2n + 2

= 2(22n−2 + 2n−2 + 2n−1 + 1).

Since 2n− 2, n− 2, n− 1 ∈ N,

2 - (22n−2 + 2n−2 + 2n−1 + 1) and 22n−2 + 2n−2 + 2n−1 + 1 > 1,

contrary to λ2λ1 + 1 = 2s. Hence the only possibilities for n are 1 and 2.

Next we will show that the hypotheses in Theorem 3.13(ii) are satisfied in both

cases.

Case 1. n = 1. Then λ = 2j · 3, so λ1 = 3. Since λ1 + 1 = 4 = 22, λ2 = 1 and

r = 2. We choose t = 2. Clearly, 2 -
(
λ2λ

l
1 +

∑

06ν6l−1

λν
1

)
for all l ∈ N(t − 2),

and since λ2λ1 + 1 = 1 · 3 + 1 = 4 = 22, the hypotheses in Theorem 3.13(ii) are

satisfied.

Case 2. n = 2. Then λ = 2j · 5, so λ1 = 5. Since λ1 + 1 = 6 = 2 · 3, λ2 = 3 and

r = 1. Again we choose t = 2. Clearly, 2 -
(
λ2λ

l
1 +

∑

06ν6l−1

λν
1

)
for all l ∈ N(t− 2),

and since λ2λ1 + 1 = 3 · 5 + 1 = 16 = 24, the hypotheses in Theorem 3.13(ii) are

satisfied.

Proposition 4.1.4. Let k = 2, A = kj1
[

2n1+1 2n2+1
u 2n1+2n2+2−u

]
and β = kja [ 1

1 ]

for some a, j1, j, n1, n2, u ∈ N, where k - a and u < 2n1 + 2n2 + 2; and let

α0 ∈ Z2 − (kZ)2 be such that αm = a [ 1
1 ] for some m ∈ Z∗. Let λ, λ1, λ2, i and

r be as in Theorem 3.13. Suppose n1 6= n2. Then λ = 2j1+1(2n1−1 + 2n2−1 + 1),

and furthermore λ, λ1, λ2, i and r satisfy the hypotheses in Theorem 3.13(ii) for

appropriate values of j1 precisely when n1, n2 satisfy 3 ≤ n1 + n2 ≤ 5.
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Proof. Suppose n1 < n2. Let ~e = [ 1
1 ]. Since A~e = 2j1+1(2n1−1 + 2n2−1 + 1)~e, we

have λ = 2j1+1(2n1−1 + 2n2−1 + 1).

We will prove that λ, λ1, λ2, i and r satisfy the hypotheses in Theorem 3.13(ii)

precisely when n1, n2 satisfy 3 ≤ n1 + n2 ≤ 5, i.e., when

(n1, n2) ∈
{
(1, 2), (1, 3), (1, 4), (2, 3), (3, 2), (4, 1), (3, 1), (2, 1)

}
.

Assume that λ, λ1, λ2, i and r satisfy the hypotheses in Theorem 3.13(ii). As

can be seen from the proof of Proposition 4.1.3, the only possible choice for t

is 2, and thus it suffices to show that λ2λ1 + 1 is a power of 2 precisely when

3 ≤ n1 + n2 ≤ 5.

Case 1. n1 = 1. Then n2 ≥ 2 and λ = 2j1+1(1 + 2n2−2 + 1) = 2j1+2(2n2−1 + 1).

Case 1.1. n2 = 2. Then λ = 2j1+2(1 + 1) = 2j1+3, so λ1 = 1 and i = j1 + 3.

Since λ1 + 1 = 1 + 1 = 2, λ2 = 1 and r = 1. Thus λ2λ1 + 1 = 1 · 1 + 1 = 2.

Case 1.2. n2 = 3. Then λ = 2j1+2(2+1) = 2j1+2 · 3, so λ1 = 3 and i = j1 +2.

Since λ1+1 = 3+1 = 4 = 22, λ2 = 1 and r = 2. Thus λ2λ1+1 = 1·3+1 = 4 = 22.

Case 1.3. n2 = 4. Then λ = 2j1+2(4+1) = 2j1+2 · 5, so λ1 = 5 and i = j1 +2.

Since λ1 + 1 = 6 = 2 · 3, λ2 = 3 and r = 1. Thus λ2λ1 + 1 = 3 · 5 + 1 = 16 = 24.

Case 1.4. n2 ≥ 5. Then λ = 2j1+2(2n2−2 + 1) and since 2 - (2n2−2 + 1),

λ1 = 2n2−2 + 1 and i = j1 + 2. Since λ1 + 1 = 2n2−2 + 2 = 2(2n2−3 + 1) and

2 - (2n2−3 + 1), λ2 = 2n2−3 + 1 and r = 1. Thus

λ2λ1 + 1 = (2n2−3 + 1)(2n2−2 + 1) + 1

= 22n2−5 + 2n2−3 + 2n2−2 + 2

= 2(22n2−6 + 2n2−4 + 2n2−3 + 1).

Since 2n2 − 6, n2 − 4, n2 − 3 ∈ N,

2 - (22n2−6 + 2n2−4 + 2n2−3 + 1) and 22n2−6 + 2n2−4 + 2n2−3 + 1 > 1,
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and hence λ2λ1 + 1 is not a power of 2.

Case 2. n1 = 2. Then n2 ≥ 3 and λ = 2j1+1(2 + 2n2−1 + 1) = 2j1+1(2n2−1 + 3).

Case 2.1. n2 = 3. Then λ = 2j1+1(22+3) = 2j1+1 ·7, so λ1 = 7 and i = j1 + 1.

Since λ1+1 = 7+1 = 8 = 23, λ2 = 1 and r = 3. Thus λ2λ1+1 = 1·7+1 = 8 = 23.

Case 2.2. n2 ≥ 4. Then λ1 = 2n2−1+3 and i = j1 + 1 since λ = 2j1+1(2n2−1 + 3)

and 2 - (2n2−1 + 3). Since λ1 + 1 = 2n2−1 + 4 = 22(2n2−3 + 1), λ2 = 2n2−3 + 1 and

r = 2. Thus

λ2λ1 + 1 = (2n2−3 + 1)(2n2−1 + 3) + 1

= 22n2−4 + 3 · 2n2−3 + 2n2−1 + 3 + 1

= 2(22n2−5 + 3 · 2n2−4 + 2n2−2 + 2).

If n2 = 4, then λ2λ1 + 1 = 34 = 2 · 17 which is not a power of 2. If n2 = 5,

then λ2λ1 + 1 = 96 = 25 · 3 which is not a power of 2. If n2 ≥ 6, then λ2λ1 + 1

= 22(22n2−6 + 3 · 2n2−5 + 2n2−3 + 1) and since 2n2 − 6, n2 − 5, n2 − 3 ∈ N,

2 - (22n2−6 + 3 · 2n2−5 + 2n2−3 + 1) and (22n2−6 + 3 · 2n2−5 + 2n2−3 + 1) > 1,

λ2λ1 + 1 is not a power of 2.

Case 3. n1 ≥ 3. Then n2 ≥ 4. Since λ = 2j1+1(2n1−1 + 2n2−1 + 1) and

2 - (2n1−1 + 2n2−1 + 1), λ1 = 2n1−1 + 2n2−1 + 1 and i = j1 + 1. Then

λ1 + 1 = 2n1−1 + 2n2−1 + 2 = 2(2n1−2 + 2n2−2 + 1)

and

2 - (2n1−2 + 2n2−2 + 1),

so λ2 = 2n1−2 + 2n2−2 + 1 and r = 1. Thus

λ2λ1 + 1 = (2n1−2 + 2n2−2 + 1)(2n1−1 + 2n2−1 + 1) + 1
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= 22n1−3 + 2n1+n2−3 + 2n1−2 + 2n1+n2−3 + 22n2−3 + 2n2−2

+ 2n1−1 + 2n2−1 + 2

= 22n1−3 + 2n1+n2−2 + 2n1−2 + 22n2−3 + 2n2−2 + 2n1−1 + 2n2−1 + 2

= 2(22n1−4 + 2n1+n2−3 + 2n1−3 + 22n2−4 + 2n2−3 + 2n1−2 + 2n2−2 + 1).

Case 3.1. n1 = 3. Then

λ2λ1 + 1 = 2(22 + 2n2 + 1 + 22n2−4 + 2n2−3 + 2 + 2n2−2 + 1)

= 2(2n2 + 22n2−4 + 2n2−3 + 2n2−2 + 8)

= 22(2n2−1 + 22n2−5 + 2n2−4 + 2n2−3 + 4).

Since n2 − 1, 2n2 − 5, n2 − 3 ∈ N, 2n2−1 + 22n2−5 + 2n2−4 + 2n2−3 + 4 is even

only if n2 − 4 ∈ N, and thus λ2λ1 + 1 can be a power of 2 only if n2 > 4. If

n2 = 5, then λ2λ1 + 1 = 232 = 23 · 29 which is not a power of 2. If n2 = 6, then

λ2λ1 + 1 = 704 = 26 · 11 which is not a power of 2. If n2 ≥ 7, then λ2λ1 + 1

= 24(2n2−3 + 22n2−7 + 2n2−6 + 2n2−5 + 1) and since n2 − 3, 2n2 − 7, n2 − 6, n2 − 5 ∈ N,

2 - (2n2−3 +22n2−7 +2n2−6 +2n2−5 +1) and 2n2−3 +22n2−7 +2n2−6 +2n2−5 +1 > 1,

λ2λ1 + 1 is not a power of 2.

Case 3.2. n1 ≥ 4. Then n2 ≥ 5. Since

λ2λ1 + 1 = 2(22n1−4 + 2n1+n2−3 + 2n1−3 + 22n2−4 + 2n2−3 + 2n1−2 + 2n2−2 + 1)

and

2n2 − 4, n1 + n2 − 3, n1 − 3, 2n2 − 4, n2 − 3, n1 − 2, n2 − 2 ∈ N,

2 - (22n1−4 + 2n1+n2−3 + 2n1−3 + 22n2−4 + 2n2−3 + 2n1−2 + 2n2−2 + 1)

and

22n1−4 + 2n1+n2−3 + 2n1−3 + 22n2−4 + 2n2−3 + 2n1−2 + 2n2−2 + 1 > 1,



38

λ2λ1 + 1 is not a power of 2.

By cases 1–3, we have (n1, n2) ∈
{
(1, 2), (1, 3), (1, 4), (2, 3)

}
. As can be seen from

above, interchanging the roles of n1 and n2 does not affect the proof. Therefore if

n2 < n1, then λ, λ1, λ2, i and r satisfy the hypotheses in Theorem 3.13(ii) precisely

when (n1, n2) ∈
{
(2, 1), (3, 1), (4, 1), (3, 2)

}
.

Now we summarize Propositions 4.1.3 and 4.1.4 as follows:

Corollary 4.1.5. Let k = 2, A = kj1
[

2n1+1 2n2+1
u 2n1+2n2+2−u

]
and β = kja [ 1

1 ] for

some a, j1, j, n1, n2, u ∈ N, where k - a and u < 2n1+2n2+2; and let α0 ∈ Z2−(kZ)2

be such that αm = a [ 1
1 ] for some m ∈ Z∗. Then A satisfies the hypotheses in

Theorem 3.10(iii). Let λ, λ1, λ2, i and r be as in Theorem 3.13. Then λ, λ1,

λ2, i and r satisfy the hypotheses in Theorem 3.13(ii) for appropriate values of

j1 (j1 = j − 1 when n1 = n2) precisely when n1, n2 satisfy 2 ≤ n1 + n2 ≤ 5. In

particular, for appropriate values of j1 (j1 = j − 1 when n1 = n2) the trajectory

〈α0, α1, α2, . . .〉 is cyclic for all pairs (n1, n2) ∈ N × N such that n1, n2 satisfy

2 ≤ n1 + n2 ≤ 5.

Proof. This follows directly from Propositions 4.1.3 and 4.1.4 and Theorem

3.13(ii), since n1 + n2 = 2 implies n1 = n2 = 1 and n1 = n2 together with

n1 + n2 ≤ 5 implies n1 = 1 or n1 = 2.

Next we will provide concrete examples for the existence of matrices A and

vectors α0 and β that satisfy the conditions in Theorem 3.14 and satisfy the

hypotheses in Theorem 3.10(iii).

Proposition 4.1.6. Let A = kj
[

b c
u b+c−u

]
and β = kjd [ 1

1 ] for some b, c, d, u, j ∈ N,

where k - bc, u < b+c, k - (b+c), d 6= 1 and k - (b+c+d); and let α0 ∈ Z2−(kZ)2 be
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such that αm = [ 1
1 ] for some m ∈ Z∗. Then A satisfies the hypotheses in Theorem

3.10(iii). Note that k 6= 2. If there exists t ∈ N such that

k = (b + c + d)(b + c)t−1 +

(
(b + c)t−1 − 1

)

b + c− 1
,

then the trajectory 〈α0, α1, α2, . . .〉 is cyclic. In particular, if k is the Fermat

prime k = 22n
+ 1 for some n ∈ N, b = 1 and c = d = 22n−1, we have that the

trajectory 〈α0, α1, α2, . . .〉 is cyclic.

Proof. As in Proposition 4.1.1, it easy to check that A satisfies the hypotheses

in Theorem 3.10(iii) and k cannot equal 2. Assume that there exists t ∈ N such

that

k = (b + c + d)(b + c)t−1 +

(
(b + c)t−1 − 1

)

b + c− 1
.

We will show that k -
(

(b + c + d)(b + c)l +
(b + c)l − 1

b + c− 1

)
for all l ∈ N(t − 2).

Since

k = (b + c + d)(b + c)t−1 +
(b + c)t−1 − 1

b + c− 1
> (b + c + d)(b + c)l +

(b + c)l − 1

b + c− 1

and

(b + c + d)(b + c)l +
(b + c)l − 1

b + c− 1
∈ N

for all l ∈ N(t − 2), (b + c + d)(b + c)l +
(b + c)l − 1

b + c− 1
∈ {1, 2, . . . , k − 1} for all

l ∈ N(t− 2), so

k -
(

(b + c + d)(b + c)l +
(b + c)l − 1

b + c− 1

)

for all l ∈ N(t − 2). By Theorem 3.14(ii), since ~e = [ 1
1 ], λ = kj(b + c), i = j,

λ1 = b + c and λ2 = b+c+d, we have that the trajectory 〈α0, α1, α2, . . .〉 is cyclic.

In particular, if k is the Fermat prime k = 22n
+ 1 for some n ∈ N, b = 1, and

c = d = 22n−1, we have

k = 22n

+ 1 = 1 + 2 · 22n−1 = 1 + 2c = (b + c + d)(b + c)1−1 +

(
(b + c)1−1 − 1

)

b + c− 1
,
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and hence by the above result the trajectory 〈α0, α1, α2, . . .〉 is cyclic.

Proposition 4.1.7. Let k = 2, A = kj−1
[

2n+1 2n+1
u 2(2n+1)−u

]
and β = kjd [ 1

1 ] for

some d, j, n, u ∈ N, where j > 1, k - d and u < 2(2n + 1); and let α0 ∈ Z2− (kZ)2

be such that αm = a [ 1
1 ] for some a,m ∈ Z∗, where a 6= d, k - a and a(2n + 1) + d

= a · 2s for some s ∈ N. Then A satisfies the hypotheses in Theorem 3.10(iii).

Let λ, λ1, λ2, i and r be as in Theorem 3.14. Then λ = 2j(2n + 1), λ1 = 2n + 1

and i = j, and furthermore the trajectory 〈α0, α1, α2, . . .〉 is cyclic.

Proof. It is easy to check that A satisfies the hypotheses in Theorem3.10(iii).

Let ~e = [ 1
1 ]. Since A~e = 2j(2n +1)~e, λ = 2j(2n +1). Since 2 - (2n +1), λ1 = 2n +1

and i = j. Since aλ1 + d = a(2n + 1) + d = a · 2s, λ2 = a and r = s. For t = 2, we

have

2 -
(
λ2λ1

l +
( ∑

06ν6l−1

λν
1

)
d
)

for all l ∈ N(t− 2) and

λ2λ1
t−1 +

( ∑
06ν6t−2

λν
1

)
d = λ2λ1 + d = a · (2n + 1) + d = a · 2s.

Thus by Theorem 3.14(ii) the trajectory 〈α0, α1, α2, . . .〉 is cyclic.

4.2 Existence of Matrices as in Theorems 3.13–3.14 and

3.10(v)

Before we provide concrete examples for the existence of matrices A and vectors

α0 and β that satisfy the conditions in Theorems 3.13 and 3.14 and satisfy the

hypotheses in Theorem 3.10(v), we will prove the following lemma.

Lemma 4.2.1. Let A ∈ M2(N) be such that det(Ā) = 0̄, dim(Im(Ā)) = 1 and

(Ā)2 = 0̄.
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(i) Im(Ā) = span
[

1̄
0̄

]
if and only if Ā =

[
0̄ n̄
0̄ 0̄

]
for some n ∈ N with k - n. In

this case we have A =
[

ki1m1 m2

ki2m3 ki3m4

]
, where i1, i2, i3,m1,m2,m3,m4 ∈ N and

k - m1 ·m2 ·m3 ·m4.

(ii) Im(Ā) = span
[

0̄
1̄

]
if and only if Ā =

[
0̄ 0̄
n̄ 0̄

]
for some n ∈ N with k - n. In

this case we have A =
[

ki1m1 ki2m2

m3 ki3m4

]
, where i1, i2, i3,m1,m2,m3,m4 ∈ N and

k - m1 ·m2 ·m3 ·m4.

(iii) Im(Ā) = span
[

1̄
1̄

]
if and only if Ā =

[
n̄ k−n
n̄ k−n

]
for some n ∈ N with k - n. In

this case we have A = [ m1 m2
m3 m4 ], where m1,m2,m3,m4 ∈ N, k - m1·m2·m3·m4,

n̄ = m̄1 = m̄3 and k − n = m̄2 = m̄4.

Proof. (i) We will show that Im(Ā) = span
[

1̄
0̄

]
if and only if Ā =

[
0̄ n̄
0̄ 0̄

]
for some

n ∈ N with k - n. The form of A follows easily from this result.

(⇒) Assume that Im(Ā) = span
[

1̄
0̄

]
. Write A as [ n1 n2

n3 n4 ], where n1, n2, n3, n4 ∈ N.

Since
[

1̄
0̄

] ∈ Zk
2,

[ n̄1
n̄3

] = [ n̄1 n̄2
n̄3 n̄4

]
[

1̄
0̄

] ∈ Im(Ā) = span
[

1̄
0̄

]
.

This implies that n̄3 = 0̄. Similarly, since
[

0̄
1̄

] ∈ (Zk)
2, n̄4 = 0̄. From (Ā)2 = 0̄,

by Lemma 3.6 we have n̄1 + n̄4 = 0̄, and hence n̄1 = 0̄. Thus Ā =
[

0̄ n̄2

0̄ 0̄

]
. Since

dim(Im(Ā)) = 1, Ā 6= 0̄, so n̄2 6= 0̄. Hence Ā =
[

0̄ n̄2

0̄ 0̄

]
, where n2 ∈ N and k - n2.

(⇐) Assume that Ā =
[

0̄ n̄
0̄ 0̄

]
, where n ∈ N and k - n. For any p̄, q̄ ∈ Zk,

[
0̄ n̄
0̄ 0̄

] [
p̄
q̄

]
=

[
n̄q̄
0̄

]
= n̄q̄

[
1̄
0̄

] ∈ span
[

1̄
0̄

]
.

Thus Im(Ā) ⊆ span
[

1̄
0̄

]
. To prove that Im(Ā) = span

[
1̄
0̄

]
, it suffices to show that

Im(Ā) 6=
{
~0
}

, because span
[

1̄
0̄

]
is one-dimensional vector space and Im(Ā) is a

subspace. Since A
[

0̄
1̄

]
= [ n̄

0̄ ] 6= ~0, Im(Ā) 6=
{
~0
}

. Thus Im(Ā) = span
[

1̄
0̄

]
.

(ii) This is similar to the proof of (i).
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(iii) We will show that Im(Ā) = span
[

1̄
1̄

]
if and only if Ā =

[
n̄ k−n
n̄ k−n

]
for some

n ∈ N with k - n. Again, the form of A follows easily from this result.

(⇒) Assume that Im(Ā) = span
[

1̄
1̄

]
. Write A as [ n1 n2

n3 n4 ], where n1, n2, n3, n4 ∈ N.

Since
[

1̄
0̄

] ∈ Zk
2,

[ n̄1
n̄3

] = [ n̄1 n̄2
n̄3 n̄4

]
[

1̄
0̄

] ∈ Im(Ā) = span
[

1̄
1̄

]
.

This implies n̄1 = n̄3. Similarly, since
[

0̄
1̄

] ∈ (Zk)
2, n̄2 = n̄4. Thus Ā = [ n̄1 n̄2

n̄1 n̄2
].

Suppose n̄1 = 0̄. If n̄2 = 0̄, then Ā = 0̄, so dim(Im(Ā)) = 0, a contradiction. Thus

n̄2 6= 0̄ which implies n̄2
2 6= 0̄. Hence

(Ā)2 =
[

0̄ n̄2

0̄ n̄2

] [
0̄ n̄2

0̄ n̄2

]
=

[
0̄ n̄2

2

0̄ n̄2
2

]
6= 0̄,

a contradiction. Therefore n̄1 6= 0̄. Similarly, we can show that n̄2 6= 0̄. Thus

Ā = [ n̄1 n̄2
n̄1 n̄2

], where k - n1, k - n2. To find the relationship between n̄1 and n̄2,

observe that

0̄ = (Ā)2 = [ n̄1 n̄2
n̄1 n̄2

] [ n̄1 n̄2
n̄1 n̄2

] =
[

(n̄1)2+n̄1n̄2 n̄1n̄2+(n̄2)2

(n̄1)2+n̄1n̄2 n̄1n̄2+(n̄2)2

]
.

Thus 0̄ = (n̄1)
2 + n̄1n̄2 = n̄1(n̄1 + n̄2). Since n̄1 6= 0̄, 0̄ = n̄1 + n̄2, which implies

n̄2 = −n̄1 = k − n1. Hence Ā =
[

n̄1 k−n1

n̄1 k−n1

]
, where k - n1.

(⇐) Assume that Ā =
[

n̄ k−n
n̄ k−n

]
for some n ∈ N with k - n. For any p̄, q̄ ∈ Zk,

[
n̄ k−n
n̄ k−n

] [
p̄
q̄

]
=

[
n̄p̄+ k−nq̄

n̄p̄+ k−nq̄

]
= (n̄p̄ + k − nq̄)

[
1̄
1̄

] ∈ span
[

1̄
1̄

]
.

Thus Im(Ā) ⊆ span
[

1̄
1̄

]
. As above, to prove equality it suffices to show that

Im(Ā) 6=
{
~0
}

. Since A
[

1̄
0̄

]
= [ n̄

n̄ ] 6= ~0, we have that Im(Ā) = span
[

1̄
1̄

]
.

Proposition 4.2.2. Let A =
[

k 1
k2 k

]
and β = ka [ 1

k ] for some a ∈ N with k - a;

and let α0 ∈ Z2 − (kZ)2 be such that αm = a [ 1
k ] for some m ∈ Z∗. Then A

satisfies the hypotheses in Theorem 3.10(v.1). Let λ, λ1, λ2, i and r be as in

Theorem 3.13. Then λ = 2k, and the trajectory 〈α0, α1, α2, . . .〉 is cyclic if k = 2

or k = 3.
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Proof. It is easy to check that A satisfies the hypotheses in Theorem 3.10(v.1).

Let ~e = [ 1
k ]. Since A~e = 2k [ 1

k ], λ = 2k.

Case 1. k = 2. Then λ = 4 = 22, so λ1 = 1 and i = 2. Since λ1 + 1 = 1 + 1 = 2,

λ2 = 1 and r = 1. For t = 2, we have 2 -
(
λ2λ

l
1 +

∑

06ν6l−1

λν
1

)
for all l ∈ N(t− 2)

and λ2λ
t−1
1 +

∑
06ν6t−2

λν
1 = λ2λ1 + 1 = 1 · 1 + 1 = 2. By Theorem 3.13(ii), the

trajectory 〈α0, α1, α2, . . .〉 is cyclic.

Case 2. k = 3. Then λ = 3 · 2, so λ1 = 2 and i = 1. Since λ1 + 1 = 2 + 1 = 3,

λ2 = 1 and r = 1. For t = 2, we have 3 -
(
λ2λ

l
1 +

∑

06ν6l−1

λν
1

)
for all l ∈ N(t− 2)

and λ2λ
t−1
1 +

∑
06ν6t−2

λν
1 = λ2λ1 + 1 = 1 · 2 + 1 = 3. By Theorem 3.13(ii), the

trajectory 〈α0, α1, α2, . . .〉 is cyclic.

Proposition 4.2.3. Let A =
[

k 1
k2n k

]
and β = kd [ 1

kn ] for some n, d ∈ N with

k - d and n ≥ 2; and let α0 ∈ Z2 − (kZ)2 be such that αm = a [ 1
kn ] for some

a,m ∈ Z∗, where k - a, a 6= d and a(1 + kn−1) + d = a · ks for some s ∈ N. Then

A satisfies the hypotheses in Theorem 3.10(v.1). Let λ, λ1, λ2, i and r be as in

Theorem 3.14. Then λ = k(1+ kn−1), λ1 = 1+ kn−1 and i = 1, and the trajectory

〈α0, α1, α2, . . .〉 is cyclic.

Proof. As usual, it is easy to check that A satisfies the hypotheses in Theorem

3.10(v.1). Let ~e = [ 1
kn ]. Since A~e = k(1 + kn−1) [ 1

kn ], λ = k(1 + kn−1), and since

n ≥ 2, k - (1 + kn−1), so λ1 = 1 + kn−1 and i = 1. Since aλ1 + d = a(1 + kn−1) + d

= a · ks, λ2 = a and r = s. For t = 2, we have

k -
(
λ2λ

l
1 +

( ∑

06ν6l−1

λν
1

)
d
)

for all l ∈ N(t− 2) and

λ2λ
t−1
1 +

( ∑
06ν6t−2

λν
1

)
d = λ2λ1 + d = aλ1 + d = a · ks.

By Theorem 3.14(ii) the trajectory 〈α0, α1, α2, . . .〉 is cyclic.
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Proposition 4.2.4. Let A =
[

n k−n
n k−n

]
and β = ka [ 1

1 ] for some n ∈ {1, 2, . . . , k − 1}
and a ∈ N with k - a; and let α0 ∈ Z2 − (kZ)2 be such that αm = a [ 1

1 ] for some

m ∈ Z∗. Then A satisfies the hypotheses in Theorem 3.10(v.1). Let λ, λ1, λ2,

i and r be as in Theorem 3.13. Then λ = k, λ1 = 1, i = 1, and the trajectory

〈α0, α1, α2, . . .〉 is cyclic.

Proof. Again, it is easy to check that A satisfies the hypotheses in Theorem

3.10(v.1). Let ~e = [ 1
1 ]. Since A~e = k~e, λ = k, so λ1 = 1 and i = 1.

Case 1. k = 2. Since λ1 + 1 = 1 + 1 = 2, λ2 = 1 and r = 1. For t = 2 we have

2 -
(
λ2λ

l
1 +

∑

06ν6l−1

λν
1

)
for all l ∈ N(t − 2) and λ2λ

t−1
1 +

∑
06ν6t−2

λν
1 = λ2λ1 + 1

= 1 · 1 + 1 = 2. By Theorem 3.13(ii), the trajectory 〈α0, α1, α2, . . .〉 is cyclic.

Case 2. k 6= 2. Then k ≥ 3 and k − 1 ∈ N. Since λ1 + 1 = 1 + 1 = 2, λ2 = 2

and r = 0. For t = k − 1 we have λ2λ
t−1
1 +

∑
06ν6t−2

λν
1 = λ2λ

k−2
1 +

∑

06ν6k−3

λν
1

= 2 · (1)k−1 +
∑

06ν6k−3

1ν = 2 + k − 2 = k and k -
(
λ2λ

l
1 +

∑

06ν6l−1

λν
1

)
for all

l ∈ N(t− 2). By Theorem 3.13(ii) the trajectory 〈α0, α1, α2, . . .〉 is cyclic.

Proposition 4.2.5. Let A =
[

n k−n
n k−n

]
and β = kd [ 1

1 ] for some n ∈ {1, 2, . . . , k−1}
and d ∈ N with k - d; and let α0 ∈ Z2 − (kZ)2 be such that αm = a [ 1

1 ] for some

a,m ∈ Z∗, where k - a, a 6= d and a + d = a · ks for some s ∈ N. Then A satisfies

the hypotheses in Theorem 3.10(v.1). Let λ, λ1, λ2, i and r be as in Theorem

3.14. Then λ = k, λ1 = 1 and i = 1, and the trajectory 〈α0, α1, α2, . . .〉 is cyclic.

Proof. It is easy to check that A satisfies the hypotheses in Theorem 3.10(v.1).

Let ~e = [ 1
1 ]. Since A~e = k~e, λ = k, so λ1 = 1 and i = 1. Since aλ1 + d

= a + d = a · ks, λ2 = a and r = s. For t = 2 we have

k -
(
λ2λ

l
1 +

( ∑

06ν6l−1

λν
1

)
d
)
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for all l ∈ N(t− 2) and

λ2λ
t−1
1 +

( ∑
06ν6t−2

λν
1

)
d = λ2λ1 + d = a + d = a · ks.

By Theorem 3.14(ii), the trajectory 〈α0, α1, α2, . . .〉 is cyclic.

4.3 Conclusion

Theorem 3.10 gives some information on the situations in which the pair (A, β)

satisfies the condition (∗). In the situations described in parts (iii) and (v.1)

of this theorem, we proviode some explicit examples in which the trajectory

〈α, T (α), T 2(α), . . .〉 is cyclic. The situations described in parts (ii),(iv) and (v.3)

are more complicated, and await further analysis. Deeper insight may be needed

to construct some clearer conditions ensuring that the trajectory will be cyclic.
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