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This research presents the implementation of a model predictive control (MPC) 

strategy to control a trickle bed reactor (TBR) in which catalytic hydrogenations of pyrolysis 

gasoline take place. As the success of MPC applications relies on the availability of models of 

the system to be controlled, dynamic distributed process models consisting of kinetic 

expressions for the gasoline hydrogenation, and mass and energy balances for the reactor have 

been developed. An optimization problem is formulated to determine the kinetic parameters 

minimizing an error between model prediction and plant data. The process models developed 

are used in the formulation of the MPC controller for controlling the temperature of the 

trickle bed reactor. The performance of the MPC scheme is demonstrated in cases of set point 

tracking and disturbance rejection. The simulation results have shown that the MPC provides 

a better control performance compared with a conventional PID controller. 

In addition to applying the MPC technique to the trickle bed reactor, this 

research investigates the performance of the MPC in controlling batch and continuous 

chemical reactors. In the case of the batch reactor, the MPC is applied to improve an 

operation by on-line modifying an optimal temperature set point profile. In the case of the 

continuous reactor, the MPC is utilized to control a product concentration. Simulation results 

have demonstrated that the MPC control strategy is applicable to control as well as improve 

the efficiency of both reactors with great success.   
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Chapter 1

Introduction

It is well known that many chemical processes, for example, chemical reactors, dis-

tillation columns and bioprocesses exhibit inherently complex and nonlinear dynamic

behavior. The presence of complexity and nonlinearity in such processes posts a chal-

lenging control problem that is difficult to handle with linear control techniques; linear

controllers usually perform poorly when applied to highly nonlinear systems.

Due to the limitation of linear controllers to achieve satisfactory control perfor-

mance, many nonlinear control algorithms have been devised and studied over the

past years. An excellent review on advanced control strategies based on a nonlinear

representation of the process is provided by Bequette (1991). Among of them, a model

predictive control (MPC), also refer to as receding horizon control or moving horizon

control, has emerged as a powerful practical control technique. MPC is known as an

optimal control based method for computing control inputs minimizing an objective

function. It has been broadly adopted in a wide variety of control applications (Qin

and Badgwell, 1997). A key feature contributing to the success of MPC is its ability

to deal with multivariable systems naturally since explicit pairing of input and output

variables is not required. Moreover, various process constraints can be incorporated

directly into the associated open loop optimal control problem (Henson, 1998). A

comprehensive review of MPC is provided by several authors (Meadows and Rawlings

(1997); Morari and Lee (1999); Rawlings, J. B. (2000); Mayne et al. (2000)).

1.1 Model Predictive Control

Model predictive control (MPC) refers to a class of control algorithms that compute

a sequence of manipulated variables in order to optimize the future behavior of a
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plant. The name MPC originates from the idea of employing an explicit model of the

plant to be controlled to predict the future output behavior. The prediction is used

to determine optimal control moves that will bring the plant to a desired condition.

The current control action is obtained by solving an on-line finite horizon open loop

optimal control problem, using the current state of the plant as the initial state. The

optimizaton problem is solved subject to constraints imposed by the model equations

as well as input and output constraints, and yields an optimal control sequence. How-

ever, only the first control in this sequence is applied to the plant. Once some feedback

information is available, the optimization is then repeated for the next sampling time

interval. Figure 1.1 illustrates the basic idea of MPC.

Since MPC is formulated as solving an optimization problem, the desired control

performance can be designed by choosing appropriate specific forms of an objective

function. However, the common used objective function is an integral square error

between the prediction of controlled variables and their desired references.

In the MPC algorithm, both linear and nonlinear dynamic models of the plant

can be used. These models may be based on either a fundamental model which is

derived from basic conservation laws or a empirical model which is developed from the

relation of input and output plant data. In the early version of MPC applications,

step or impluse response models are always employed. This is due to the ease of un-

derstanding provided by these model forms. Nevertheless, the possibility of improved

control performance motivates the use of nonliner models in the MPC algorithm.

Plant

Output

Measurement

Input
Reference

output
MPC

 Objective function
 system models
 constraints

Figure 1.1: Structure of model predictive control strategy
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1.2 Trickle Bed Reactor

Multiphase reactors involving gas, liquid, and solid are often encountered in chemical

process industries. The most common use of the multiphase reactors is in hydropro-

cessing such as hydrogenation and hydrodesulfurization processes. In general, the type

of gas-liquid-solid reactors used in industries can be mainly divided into two categories:

one where the solids are fixed and the others where the solids are in a suspended state

(Shah, 1979).

Trickle bed reactor, one of the widely used three-phase reactors, is a fixed bed

of catalyst particle through which gas and liquid are allowed to flow. Although three

ways of the reactor operation i.e. cocurrent downflow of both gas and liquid, cocurrent

upflow of both gas and liquid, and countercurrent flow of gas and liquid, are possible,

typically the gas and liquid flow cocurrently downward through the reactor as illus-

trated in Figure 1.2. A comparison among various modes in operating the trickle bed

reactor including their advantages and disadvantages is discussed in Ramachandran

and Chaudhari (1983).

Many applications of trickle bed reactors can be found primarily both in petroleum

industry for hydrocraking, hydrodesulfurization and hydrodenitrogenation, and in

petrochemical industry for hydrogenation and oxidation (Gianetto and Specchia, 1992).

1.3 Motivation

As seen from the literature, a large number of MPC applications focus on the processes

that their dynamic behaviors can be described by relatively simple models usually

consisting of ordinary differential and/or algebraic equations. The implementation of

nonlinear MPC in more complex systems like a distributed parameter system which

is naturally modeled by a system of nonlinear partial differential equations (PDEs)

has been rarely appeared. It is accepted that controlling a PDE system provides

a challenging task. This is attributable to inherent difficulties involved with high

nonlinearity as well as the presence of spatial variations. Such difficulties stir the need

for an effective control algorithm of the PDEs system.
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Liquid

Liquid

Gas

Gas

Catalyst

Figure 1.2: Schematic diagram of a trickle bed reactor
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The work presented in this dissertation is focused on the implementation of a

model predictive control (MPC) algorithm to control a distributed parameter system.

A trickle bed reactor where hydrogenation of raw gasoline takes place is chosen to

represent such a system. Since the success of MPC is largely depend on the availability

of models of the process to be controlled, this research concentrates on the development

of a mathematical model for describing the dynamics of the trickle bed reactor. The

developed model, based on industrial plant data, is then used to design the MPC.

Since other chemical reactors like batch and continuous reactors have been widely

used in chemical processes, this research studies the performance of MPC in the control

of such reactors as well. For a batch reactor, the MPC is proposed in order to improve

the batch reactor operation while for a continuous reactor, the MPC is utilized to

control a product concentration.

1.4 Dissertation Overview

This dissertation is organized as follows. Chapter 2 reviews the literature for work

related to model predictive control (MPC) strategy, control of distributed parameter

systems, and modeling of trickle bed reactors.

Chapter 3 discusses the basic formulation of MPC problem. Since MPC determines

a sequence of control input at each sampling time by solving an open loop optimal

control problem, the numerical solution methods of such a problem are provided in

this chapter. Two direct optimization strategies: sequential and simultaneous model

solution and optimization are described.

Chapter 4 begins with an introduction to the catalytic hydrogenation of pyrol-

ysis gasoline and the process description of the first stage hydrogenation studied in

this work. The mathematical model of trickle bed reactor (TBR) derived from mass

and energy balances is developed. An optimization problem is presented in order to

estimate kinetic parameters based on industrial plant data.

Chapter 5 provides some applications of MPC to batch and continuous reactors as

illustrative case studies. In the batch reactor, we demonstrate the implementation of
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MPC as a high level controller to determine on-line optimal temperature profile, which

is sent to a local controller as a set point, for operating the batch reactor. For the

continuous reactor, the use of MPC to control a product concentration in the reactor

is discussed. The study of dual mode MPC, an extended version of MPC, on the

continuous reactor is given as well.

Chapter 6 describes the implementation of MPC to control a trickle bed reactor.

The reactor model developed in Chapter 4 is used here to design the MPC controller.

To evaluate the performance of the MPC, results are compared with a traditional PID

controller. Simulation studies of the MPC and PID controllers are demonstrated and

discussed.

Chapter 7 gives a conclusion of this dissertation.



Chapter 2

Literature Reviews

2.1 Model Predictive Control

Model predictive control (MPC), also known as moving horizon control or receding

horizon control, refers to a class of control strategies in which control inputs are com-

puted, based on an optimization criteria that is formulated over a prediction horizon,

using an explicit model to predict the effect of future inputs on system states or out-

puts. MPC incorporates feedback by dynamically updating the optimization problem

to include the effects of process measurements.

MPC approach has found to be successful in industrial applications as given in

the review by Richalet (1993). This is due to the outstanding characteristics of the

MPC for coping with i) inherent nonlinear processes, ii) multivariable systems, and

iii) constraints on processes. A more complete overview on industrial MPC techniques

with details and comparisons can be seen in Qin and Badgwell (1997), where more

than 2200 applications in a wide range from chemical to aerospace industries are also

summarized.

In general, model predictive control can be divided into two classes: linear model

predictive control and nonlinear model predictive control. Linear MPC refers to a

family of MPC schemes in which linear models are used to predict the system dynamics

even though the dynamics of the system is nonlinear, while nonlinear MPC refers to

the general cases in which the dynamic system models, performance objective, and

constraints may be in nonlinear function of state, input and output variables.

Two well-known linear MPC algorithms are dynamic matrix control (DMC) and

model algorithmic control (MAC) (Garcia et al., 1989). In principle, both control
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techniques use linear models of the system to predict the system response resulting

from the calculated profile of manipulated variables. However, the linear models used

in DMC is obtained from step response test whereas that used in MAC is obtained from

impulse response test. These control strategies have been widely used with success in

industrial applications due to the ease in developing linear process models.

However, it has been known that most chemical engineering processes exhibit highly

nonlinear dynamic. In addition, higher product quality specifications and increasing

productivity demands, tighter environmental regulations and demanding economical

consideration in the process industry require systems to be increasingly complex and to

be operated closer to the boundary of the admissible operating region and occasionally

in a wide range of operation. In such cases, linear models are not adequate to describe

the process dynamics and therefore, nonlinear models need to be used (Chen and

Allgower, 1998c).

Even though, a construction of nonlinear process models is sometimes very difficult

and time-consuming task, they can be used to describe the system in a wide range of

operating condition. Moreover, due to advanced numerical techniques for optimization

and powerful computer, it is possible to solve the nonlinear programming problem

resulting from the formulation of nonlinear MPC.

2.1.1 Basic Principle of Nonlinear MPC

In general, a nonlinear model predictive control (MPC) problem is formulated as

solving on-line a finite horizon open loop optimal control problem at each sampling

time (∆t) subject to nonlinear system models and constraints on state and control

variables.

Figure 2.1 shows the basic principle of model predictive control. Based on available

measurement at time t and a model of the system to be controlled, the MPC controller

predicts the future dynamic behavior of the system over a prediction horizon (Tp) and

determines a set of future control input minimizing a predetermined objective function

(performance index). It has been known that if there were no disturbance and no

plant-model mismatch, and if the optimization problem could be solved for infinite
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Set point

t t+Tc t+Tp

prediction horizon

at time t

control horizon

at time t

FuturePast

Predicted state x

open loop input u
state trajactory

Implemented input u

Figure 2.1: Basic concept of model predictive control

horizons, one could apply the sequence of the control input profile calculated at time t

to the system. However, in the presence of unknown disturbance and/or plant-model

mismatch, the dynamic system behavior is different from the predicted behavior. To

make use some feedback information e.g. measurement and estimation, only the initial

value of the control profile computed is applied to the system and then, after obtaining

new information at the next sampling time, the optimization procedure is repeated

to find a new control input with the control and prediction horizons shifting ahead

one sampling time step. This results in a feedback control law; closed loop inputs are

computed by solving on-line the optimization problem at each sampling time based

on new feedback information from the system.

It is noted that as the MPC determines the manipulated variables by solving the

optimization problem, it can naturally take into account constraints on state and con-

trol variables in the MPC formulation. This makes the MPC controller very attractive

for real industrial application.
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2.1.2 Stability Issue of Nonlinear MPC

To implement model predictive control, one important aspect needed to be addressed is

a closed loop stability property. The minimum requirement of a model-based feedback

controller is that it provides a stable closed-loop system if a perfect model of the

system is available. This is known as a nominal closed-loop stability (Henson, 1998).

As mentioned above, the open loop optimal control that has to be solved on-line

is often formulated in a finite horizon and the control input is usually parameterized

finitely, in order to allow a numerical solution of the nonlinear open loop optimal

control problem. From a computational point of view, to implement MPC strategy,

the shorter finite horizon requires less computation in solving the on-line optimization

problem. However, it has been found that if a finite prediction horizon is used, the

actual closed loop input and state trajectories quite differ form the predicted open

loop trajectories, especially when a short horizon is chosen. In addition, the closed

loop stability is not guaranteed for a generic finite horizon cost function (Bitmead et

al., 1990).

An intuitive way to achieve guaranteed stability is to use an infinite time horizon in

the MPC formulation (Tp →∞). This results in an infinite dimensional optimization

problem. For linear cases, the closed loop stability can be proved by Rawlings and

Muske (1993) and Scokaert and Rawlings (1996). They introduced an terminal penalty

term, which is equal to the infinite horizon cost, to transform the infinite horizon

optimization problem into an finite optimization problem. The prediction is exactly

considered over an infinite horizon but the control input is considered over a finite

horizon. For nonlinear systems, solving such an optimization problem is very difficult

and may be impossible.

To avoid such difficulties, many researchers have approached to the stability prop-

erties of the model predictive control using a finite horizon instead of an infinite hori-

zon. Most of these methods modify the MPC formulation such that stability of the

closed loop can be guaranteed independently of the plant and performance specifica-

tions. This is usually achieved by adding suitable equality or inequality constraints

and suitable additional penalty term to the objective function.
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The simplest and straightforward way to ensure the stability of the closed loop

system is to include a terminal equality constraint:

x(t + Tp) = 0 (2.1)

into the MPC formulation. That is, with this additional requirement, the controlled

system is forced to move from any initial condition to a desired condition at the

terminal time. Chen and Shaw (1982), Keerthi and Gilbert (1988), and Mayne and

Michalska (1990) showed for discrete and continuous systems that the MPC with

terminal equality constraint guarantees closed loop stability. However, one obstacle

of this approach is that the terminal zero constraint may cause an infinite number of

iterations in the exact solution of constrained optimal control problem. Furthermore,

it can lead to an infeasible solution problem in case where a short prediction horizon

is used (Chen and Allgower, 1998c). Motivated by this, Michalska and Mayne (1993)

proposed a relaxed terminal inequality constraint in the MPC formulation, as shown

in the form below (Equation (2.2)), such that the states are on the boundary of a

terminal region at the end of the prediction horizon. The terminal region is a region

of attraction for the nonlinear system controlled by a local linear state feedback law.

This brings to the so-called dual mode nonlinear MPC scheme.

x(t + Tp) ∈ E (2.2)

where E is some region in a neighborhood of a desired operating condition. The use

of terminal region constraint would give the dual mode nonliner MPC computational

advantage.

Another way to achieve closed loop stability of MPC is given by Chen and Allgower

(1998b). This method is known as a quasi-infinite horizon MPC in which a terminal

region constraint and a terminal penalty term are included in the control formulation.

The terminal penalty term is determined off-line such that the objective function

with the terminal penalty term gives an upper approximation of the infinite horizon

objective function.
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2.1.3 Robustness of Nonlinear MPC

Another important issue to be considered in implementing MPC is its robustness

to model uncertainties. The basic MPC algorithm described earlier requires that

the system to be controlled and the model used for prediction and optimization are

identical; that is, there are no plant/model mismatches or no unmeasured disturbances.

Nevertheless, this requirement is quite impractical in reality. Hence, the development

of MPC framework to address robustness issue is also significant.

In principle, there are two approaches to consider the robustness of MPC. First, one

analyses the robustness property of MPC designed for a nominal model without taking

the uncertainty into account. Secondly, one examines the MPC algorithm constructed

by directly taking into account the uncertainty. Even though the analysis of robustness

property in MPC is still a subject of researches, there are few preliminary results

available in the literature. For example, Genceli and Nikolaou (1993) gave sufficient

conditions for robust closed loop stability and investigated the robustness performance

of MPC with hard input and soft output constraints. They derived a robustness test

in terms of simple inequalities to be satisfied. Primbs and Nevistic (1998) provided an

off-line robustness analyst test of constrained finite receding horizon control which is

required the solution of a set of linear matrix inequlities.

Further discussion on the robustness of model predictive control can be seen in

Zheng and Morari (1993), Nicolao, Magni and Scattolini (1996), and Mayne et al.

(2000).

2.1.4 Application of Nonlinear MPC

Nonlinear model predictive control has been applied to a wide variety of process sys-

tems. For instance, Chen and Allgower (1998a) applied a quasi-infinite horizon non-

linear MPC strategy to control a realistic continuous stirred tank reactor (CSTR)

with cooling jacket for the production of cyclopentenol from cyclopentadiene. They

compared the performance of the proposed nonlinear MPC with that of other MPC

schemes. It was found that the developed quasi-infinite horizon MPC requires less
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on-line computation than other nonlinear MPC techniques.

Norquay et al. (1999) used a nonlinear Wiener MPC to control overhead com-

position of a C2 splitter. Simulation studies, using the Wiener model for the plant

representation, have shown the Wiener MPC based scheme to be successful in rejecting

major disturbances and comparisons with linear IMC and IMC using a logarithmic

transformation on the output showed the Wiener based version to be superior, as

expected for a nonlinear process.

Ju et al. (2000) proposed a nonlinear MPC to control a fabric filtration process.

The control algorithm formulated in a multiple-objective optimization framework takes

an economic factor into consideration. The global optimization technique is used to

compute a manipulated input profile. Simulation results showed that the proposed

MPC is especially suitable to the filtration process where the set point change and

process disturbance occur frequently.

Seki et al. (2002) formulated the nonlinear MPC based on a successively linearized

nonlinear model and applied it to an industrial polypropylene semi batch reactor

process as well as to a high density polyethylene (HDPE) continuous stirred tank

reactor process. For the semi batch reactor, the nonlinear MPC successfully prevented

thermal runaway of the reactor temperature control. For the continuous reactor, the

nonlinear MPC improved the closed loop performance during the grade changeover

operation, compared with the conventional linear MPC.

Another application of nonlinear MPC is presented by Ahn et al. (1999). The con-

trol algorithm combined with an extended Kalman filter was implemented experimen-

tally to control the conversion and the weight-average molecular weight of a polymer

product in a continuous methyl methacrylate (MMA) polymerization reactor using

jacket inlet temperature and feed flow rate as manipulated variables. The experiment

results indicated that the nonlinear MPC performs better than the linear MPC or the

PID controller in the sense of better regulation and less oscillation.

Table 2.1 lists a summary of some applications of nonlinear MPC in the literature.

It contains the processes considered and the type of model used in controller design.

Further nonliner MPC applications in industries are provided by Qin and Badgwell
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Table 2.1: Applications of nonlinear MPC

Reference Process Model used

Afonso et al. (1996) Continuous reactor ODEs

Ali and Elnashaie (1997) Fluid catalytic cracking ODEs

Ahn et al. (1999) Polymerization reactor ODEs

Chen and Allgower (1998a) Continuous reactor ODEs

Eaton and Rawlings (1990) Batch chemical reactor ODEs

Batch crystallizer PDEs

Ju et al. (2000) Filtration process ODEs

Maner et al. (1996) Polymerization reactor Volterra

Meadows and Rawlings (1997) Fluidized bed reactor ODEs

Norquay et al. (1999) Splitter Wiener

Patwardhan et al. (1992) Packed distillation column PDEs

Fixed bed reactor PDEs

Qin et al. (1997) Wastewater treatment reactor ODEs

Seki et al. (2002) Semi-batch reactor ODEs

Continuous reactor ODEs

Sistu and Bequette (1991) Continuous reactor ODEs

Zhan and Ishida (1997) Continuous reactor Neural network

(2000). As seen in Table 2.1, the majority of application studies is restricted to the

systems that their dynamics are described by ordinary differential equations (ODEs).

The implementation of nonlinear MPC in more complex systems like a distributed

parameter system of which the model form is partial differential equations is rare.

Only few works (i.e. Patwardhan et al. (1992) and Eaton and Rawlings (1990)) have

been reported. Therefore, control studies on this type of systems, which is difficult

and challenging, are still the subject of interest.
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2.2 Control of Distributed Parameter System

Many chemical processes such as a fixed-bed reactor and a tubular reactor are char-

acterized by a nonlinear distributed parameter system in which state variables e.g.

concentration and temperature depend on spatial position as well as time. As a conse-

quence, these processes are generally modeled by a set of partial differential equations

(PDEs). The controller design for such a PDE system may be considerably compli-

cated due to several characteristics (Hua and Jutan, 2000): i) high nonlinearity, ii)

the presence of spatial variations, iii) the stiff character of the system models resulting

from different time scales of the internal physical and chemical processes and iv) lim-

ited on-line measurement information. These difficulties motivate the need for effective

control algorithms of the PDEs system. Traditionally, the approaches to control the

PDEs system is mainly based on various lumping techniques. It can be classified into

two different methodologies: early lumping and late lumping of system models (Ray,

1981).

2.2.1 Early Lumping Approach

The early lumping method is a straightforward approach and widely used in chemical

engineering. The idea behind the approach is that a distributed parameter system is

first converted into an approximate model (lumping), with the use of discretization

techniques, usually consisting of a set of ordinary differential equations (ODEs). Then,

traditional control algorithms based on the resulting approximate model (ODEs) of

the system are applied directly to design a control system. The lumping techniques are

often realized by numerical techniques such as finite differences, orthogonal collocation

or finite elements.

The early lumping approach can be regarded as a classical PDE control approach,

as similar as an approximate and then design method for the PDE system. The

advantage of this method is attributable to the fact that it can gain benefit of using

well-developed and advanced control methodologies designed for a finite dimensional

ODEs system. Thus, the method possibly conforms to the practical implementation
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(Wu and Liou, 2001). However, one limitation of this approach is that it is difficult

to know the connection between the original distributed parameter model and its

approximate discretized version, so that the dynamic properties of both models may

be difficult to carry out the evaluation of the designed control strategies in correct and

rigorous way (Dochain et al., 1997).

Based on the early lumping technique, several control approaches for nonlinear

partial differential equation systems have been proposed. Patwardha et al. (1992)

developed a nonlinear model predictive control strategy for controlling two distributed

parameter systems: a packed distillation column and a fixed-bed catalytic reactor.

An orthogonal collocation on finite elements was the method of choice to be used

to discretize a spatial term of the PDE models. To improve the robustness of the

model predictive control scheme, the feedback mechanism was incorporated into the

controller.

Hanczyc and Palazoglu (1995) studied the extension of a sliding mode control

scheme to regulate nonlinear distributed parameter chemical processes. The charac-

teristic method was used to transform the PDE systems into a finite set of ODE models

and then the sliding mode control was applied to the finite dimensional ODE models.

Research by Christofieds (2001) addressed the use of a combination of Galerkin’s

method with a procedure for the construction of approximate ODE systems. These

ODE systems were then applied to synthesis of output feedback controllers for non-

isothermal tubular reactors that guarantee stability and enforce the output of the

closed loop system to follow a desired response.

Boskovic and Krstic (2002) applied a globally stabilizing boundary feedback control

to a nonlinear PDE model of a chemical tubular reactor. The control objective was

to stabilize an unstable steady state using the boundary control of temperature and

concentration on the inlet side of the reactor. To achieve that, the original PDE model

was discretized using a finite difference method giving a system of nonlinear ODEs.

Then, a backstepping method was used to design the reactor controller.

Hua and Jutan (2000) presented a nonlinear inferential cascade control strategy

for a fixed-bed reactor with highly exothermic reaction. The cascade control structure
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was developed by lumping a PDE system and partitioning it into subsystems. Then,

the direct synthesis approach for nonlinear control systems was used to design the

controllers in each subsystem separately.

2.2.2 Late Lumping Approach

In contrast to the early lumping technique, an alternative late lumping approach first

applies a distributed parameter control theory to full PDE models for designing a

control system. After the controller design has been completed, the resulting control

equations are then solved by lumping approximate techniques.

This approach has the advantage of designing a control algorithm which can remain

closer to the original control problem. In another word, the PDE systems directly

account for their distributed nature in the synthesis of the control algorithm. However,

this approach requires a greater knowledge of the distributed system control theory

Various approaches have been considered to directly use PDE models in controller

designs. Examples include the control algorithm proposed by Dochain et al. (1997)

for controlling a fixed-bed reactor which is based on nonlinear distributed parameter

models of the reactor. The control algorithm extends the application of adaptive

linearizing control schemes to control the substrate concentration at the reactor output

in the anaerobic digestion wastewater treatment process.

Another approach to design a control strategy using directly a PDE model was

investigated by Renou et al. (2001). The proposed strategy composed of two control

loops: the inner loop and the outer loop. The former contains an adaptive controller

designed by considering the Lyapunov theory. The latter combines feedforward and

feedback control. The performance of the controller was illustrated for the concen-

tration control of a bleaching reactor. Simulation results showed that the designed

controller based on the late lumping approach give good control performances in case

of set point tracking and disturbance rejection.

Christofides and Daoutidis (1996) applied an extension of the geometric control

method to hyperbolic PDE systems which quasi-linear hyperbolic PDE systems can
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Table 2.2: Control studies of distributed parameter systems

Reference Process Lumping Control technique

Armaou and Christofides (2002) Tubular reactor Early Optimal control

Asteasuain et al. (2001) Polymerization reactor Early Optimal control

Boskovic and Krstic (2002) Tubular reactor Early Globally stabilization

Christofides (2001) Tubular reactor Early Feedback control

Christofides and Daoutidis (1996) Tubular reactor Late Geometric control

Christofides and Daoutidis (1998) Fixed bed reactor Late Lyapunov method

Dochain et al. (1997) Bioreactor Late Adaptive control

Hanczyc and Palazoglu (1995) Heat exchanger Early Sliding mode control

Hua and Jutan (2000) Fixed bed reactor Early Nonlinear cascade control

Lee et al. (1999) Activated sludge process Early Generic model control

Renou et al. (2001) Tubular reactor Late Adaptive control

Wu and Lion (2001) Tubular reactor Late Feedback linearization

be input and output linearized and distributed in space. The concept of characteristic

index was introduced and used for the synthesis of distributed state feedback laws that

guarantee output tracking in the closed loop system.

Wu and Liou (2001) addressed the output regulation problem for a nonisothermal

plug flow reactor (PFR) system. The input/output linearization technique was em-

ployed to synthesis the distributed nonlinear controller. It have been shown that the

control methodology can prevent the appearance of the undesired state distribution

(e.g. hot spot) inside the reactor.

Table 2.2 shows a summary of control algorithms which have been studied and

applied to distributed parameter systems.

2.3 Trickle Bed Reactor

A trickle bed reactor (TBR) is one of several types of multiphase reactors which have

been widely used in industrial chemical processes for many years. Many applications

of trickle bed reactors can be found primarily in petroleum industry for hydrocrak-
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ing, hydrodesulfurization, and hydrodenitrogenation. In addition, trickle bed reactors

are also employed in the petrochemical industry, involving mainly hydrogenation and

oxidation of hydrocarbon compounds (Gianetto and Specchia, 1992).

In a trickle bed reactor, the liquid phase flows down over a fixed bed of catalyst

in the form of a thin liquid film while the continuous gas phase flows through the

catalyst bed either cocurrently or countercurrently. However, in most common mode

of operation in industrial practice, gas and liquid phases flow cocurrently downward

because of the absence of flooding and its relatively lower pressure drop, compared with

other modes of operation (i.e. cocurrent upflow or countercurrent flow) (Satterfield,

1975). The commercial trickle bed reactors are operated under plug flow conditions.

The catalysts are effectively wetted. These result in high conversion to be achieved in

the reactor. In addition, the low pressure drop allows for a uniform partial pressure

of gaseous reactants (i.e. hydrogen in hydroprocessing) in the reactor. This would

be important for ensuring hydrogen-rich condition at catalyst surface along the entire

length of the reactor (Shah, 1979).

Because of the important of trickle bed reactors to the petroleum, petrochemical,

chemical and other industries, numerous review papers have appeared in the liter-

ature, emphasizing on the development of various empirical correlations to describe

hydrodynamics and transport phenomena within the reactor. Among of these are

contributions by Satterfield (1975), Hofman (1977), Herskowitz and Smith (1983), Ng

and Chu (1987), Zhukova (1990), Gianetto and Specchia (1992), and Dudukovi et al.

(1999).

2.3.1 Modeling of TBR

Since the two flowing phases in a trickle bed reactor make the reactor behavior complex,

involving mass and heat transfer processes between gas and liquid and between liquid

and catalyst particle, a large number of researches have been done to obtain a model

for describing its behavior.

In general, the mathematical models of the reactor with fixed bed catalyst can be

classified into two groups: a pseudo-homogeneous and heterogeneous model, depending
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on whether or not heat and mass transfer between the phases is considered. In the

pseudo-homogeneous model, the difference of state variables i.e. concentration and

temperature, between the phases are neglected whereas in the heterogeneous model,

such a difference is significant and cannot be neglected; mass and heat balances are

written for each of the phases. However, most of the trickle bed reactor models reported

in the literature have been developed based on the heterogeneous models since they

usually give results with good accuracy.

Many researchers have attempted to develop rigorous models for explaining the

behavior of the trickle bed reactor and computation techniques for solving the resulting

model equations.

Warna and Salmi (1996) developed dynamic models based on the three-film theory

for describing trickle bed reactors operating under non-isothermal conditions. Reactor

simulation was illustrated with a case study: the hydrogenation of toluene. The gas

and liquid phases are assumed to be plug flow conditions. The model equations for

the gas, liquid and catalyst phases consisted of a set of partial differential equations

(PDEs) and ordinary differential equations (ODEs). The solution of these equations

was obtained by the method of lines technique using finite difference approximation to

discretize the spatial derivative terms. The approximate ordinary differential equations

(ODEs) obtianed were solved by using the backward difference method.

Korsten and Hoffmann (1996) provided the model of a trickle bed reactor, operated

under isothermal condition, for hydrotreating reactions. It included correlation for

determining mass transfer coefficients, gas solubilities and the properties of oils and

gases under process conditions. The mass balances for reactor models is based on the

two-film theory (gas-liquid and liquid-solid interfaces). The models was tested with

data from pilot plant where the hydrodesulfurization of gas oil occur. The simulation

showed a good agreement with experiment results carried out in a wide range of

temperature and pressure.

Hanika and Lange (1996) proposed a new idea for approximation of an adiabatic

trickle bed reactor behavior by employing a cascade of connected continuous stirred

tank reactors with the same volume (tank-in-series models) to describe the dynamics
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of the reactor. A set of ordinary differential equations was numerical solved using

the Runge-Kutta method. The modeling results were compared to the experimental

data obtained from a laboratory-scale reactor where cyclohexene hydrogenation on

palladium catalyst is used as a case study.

Devetta et al. (1997) simulated a high pressure trickle bed reactor using a pseudo

homogeneous two dimensional model. The model equations consisted of partial differ-

ential equations which were solved by an orthogonal collocation method. The reaction

studied was the hydrogenation of organic substrates, using supercritical CO2 as a sol-

vent to increase the solubility of hydrogen in the liquid reactants. It was found that

modeling results agreed with the experimental data obtained in a pilot plant unit.

Recently, a trickle bed reactor model that takes into account the contributions

of partial wetting and stagnant liquid hold-up effects in addition to external and in-

traparticle mass transfer resistances for a complex reaction scheme was proposed by

Chaudhari et al. (2002). Performance of the reactor was studied experimentally and

theoretically for an exothermic multistep hydrogenation of 1,5,9-cyclododecatriene. A

comparison of the model prediction with experimental data showed excellent agree-

ment.



Chapter 3

Computational Method of Model

Predictive Control

As mentioned in Chapter 2, model predictive control refers to a class of control al-

gorithms in which current manipulated variables are obtained by solving on-line an

open loop optimal control problem using the current state of a system. The optimiza-

tion gives a sequence of optimal control input; however, only the the first control is

implemented to the system.

This chapter examines the direct optimization approach, which is the method used

in this thesis, to the solution of the open loop optimal control problem. First, the basic

formulation of MPC problem which comprises of an objective function, system con-

straints, and state and control constraints is introduced. Then, two general strategies

within the framework of the direct method: sequential and simulataneous approach,

are explained, The advantages and limitations of both strategies are also discussed.

3.1 Formulation of Model Predictive Control Prob-

lem

In this research, we consider the formulation of model predictive control (MPC) prob-

lem in continuous time fashion. Mathematically, this problem can be stated as: find

the control u(t) minimizing the objective function:

J =
∫ t+TP

t
F (x(t), u(t); p) dt (3.1)

subject to process models:

ẋ(t) = f (x(t), u(t); p) (3.2)
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x(t0) = x(0) (3.3)

where x is a vector of state variables, ẋ denotes the derivative of x with respect to

time (t), u is a vector of control variables, f represents a vector of process model

functions that is continuously differentiable, p is model parameters, TP is a prediction

time horizon and J defines a desired objective function.

Equations (3.1) to (3.3) provide a basic formulation in the MPC that the control

input is determined to minimize the objective function (performance index) subject

to process model constraints. However, for some situations, other constraints can be

involved in this problem. These include:

Control constraints:

uL ≤ u(t) ≤ uU (3.4)

State constraints (path constraints):

gL ≤ g(x(t), u(t), t) ≤ gU (3.5)

Terminal constraints (end-point constraints):

hL ≤ h(x(Tp), u(Tp), Tp) ≤ hU (3.6)

where uU and uL are an upper and lower bound on control variables, gU and gL are an

upper and lower bound on state constraints, hU and hL are an upper and lower bound

on terminal state constraints, respectively.

Control constraints generally appear in the MPC problem because, in real applica-

tion, an ability to manipulate the control variables is always limited. Path constraints

are included in the MPC formulation if some of state variables cannot exceed a given

limit during the course of process operation. In addition, in some circumstances where

the states are necessary to be satisfied in a specific range at the final time, there also

arise the terminal constraints of the form as in Equation 3.6 in the MPC problem.

It is evident from the above formulation that the MPC requires the on-line solution

of a optimal control problem at each sampling time to determine the manipulated

inputs. This problem type involves an optimization of the dynamic systems subject

to process constraints concerning state and control variables.
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There are several different computational techniques available for giving the solu-

tion of such a problem. One approach is based on a classical variation method in which

the optimal control is obtained indirectly through the solution of necessary conditions

for optimality (Ray, 1981). However, it has been found that such conditions result

to a two-point boundary value problem which is difficult to solve. Another class of

solution, known as a dynamic programming approach, applies the principle of optimal-

ity to develop Hamilton-Jacobi-Bellman partial differential equations, leading to the

solution of optimal control problem. The limitation of this approach concerns large

computational burden especially in high dimensional systems. The further detail of

these solution methods is given in Appendix A.

During the last two decades, the method that uses discretization technique has

been received much attention and considered as an efficient technique. The concept of

this approach is to transform the original optimal control problem to a finite dimension

optimization problem, typically a nonlinear programming problem (NLP). Then, the

optimal control solution is given by applying a standard NLP solver to solve the

optimization problem directly. For this reason, this approach is known as a direct

method. The transformation of the problem can be made by using discretization

techniques either on only control variables (partial discretization) or on both state and

control variables (complete discretization). Based on this consideration, the approach

can be classified into two categories: sequential and simultaneous strategy.

3.2 Sequential Strategy

In the sequential strategy, a control (manipulated) variable profile is discretized over

a time interval. The discretized control profile can be represented as a piecewise

constant, a piecewise linear, or a piecewise polynomial function. The parameters

in such functions and the length of time subinterval become decision variables in

optimization problem. This strategy is referred to a control vector parameterization

(CVP).

The basic concept of the sequential approach consists of a two-step procedure; the
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Figure 3.1: The sequential solution approach

first one deals with an integration of process models and the second one involves a

solution of optimization problem, as illustrated in Figure 3.1. These procedures are

proceed sequentially; that is, given the initial conditions for state variables (dependence

variables) and the initial guess for a set of control parameters (decision variables), the

process dynamic models are solved (an initial value problem, IVP) to determine the

trajectory of state variables at each iteration of optimization. This provides informa-

tion of the objective function and constraints to the nonlinear programming solver

(NLP). Then, the optimization is performed in order to choose the new set of optimal

control parameters. This process is repeated until the optimum is satisfied within a

specified accuracy. Since in every iteration of the optimization algorithm the process

models are satisfied, the sequential strategy is commonly known as a feasible path

approach.

Since most NLP algorithms require the gradient of both the objective function and

constraints with respect to the control parameters, this information can be calculated

by several methods, e.g. i) numerical differentiation through finite differences involving

repeated call to the routine that solves the dynamic models with different step size, ii)
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direct solution of sensitivity equation which can be derived from the process equations,

and iii) integration of the adjoint equations which are determined from the variation

approach. However, the gradient information obtained by the finite difference method

is not recommended. This is because the integration error during repeated calling

can be occurred and may affect to the accuracy of the gradient information obtained.

The accurate value has an important to the efficiency of the NLP solver. Macauley

and Macgregor (1992) stated that the number of iterations required in the sequential

approach to obtain the optimal control solution could be substantial reduced if the

accurate value of the gradient information is provided. A comparison on these different

methods to evaluate the gradient within the sequential framework has been studied

by many researchers. For instance, Fikar et al. (1998) applied the CVP method with

different gradient calculations: finite difference and adjoint approach, to determine

optimal control policy for a binary distillation. They found that the CVP method

was able to solve such a control problem; however, the adjoint-based approach showed

superiority over the finite difference-based one.

It should be noted that some methods used in NLP algorithms are not necessary

to need the evaluation of gradient; however, they commonly require many function

evaluations and this may result in excessively large computation time. Thus, the use

of gradient to determine a search direction gives an advantage to increasingly improve

the rate of convergence in optimization algorithms.

One advantage in the sequential approach is that only the parameters used to

discretize the control profile are considered as the decision variables. The optimization

formulated by this approach is a small scale NLP that makes it attractive to apply for

solving the optimal control problem with large systems which are modeled by a large

number of differential equations. In addition, this approach can take advantages of

the available IVP solvers.

However, the limitation of the sequential method is a difficulty to handle a con-

straint on state variables (path constraints). This is because the state variables are not

directly included in NLP. To handle state constraints within the sequential approach,

several methods have been proposed and developed.
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The first approach used to address the inequality path constraints relies on defin-

ing a function that measures the violation of the constraints. The use of constraint

violation appears in the following different ways. Firstly, it is used as a penalty term

over the entire time horizon in the objective function; however, this approach may

cause the numerical difficulties since the value of weighting factor on the penalty term

is necessary to be high to ensure that the constraints are satisfy. Secondly, the vio-

lation function is defined over the entire time domain as end-point constraints which

are forced to be zero at the final time. Since the gradient of the end-point constraints

are zero at the optimum, this may decrease a convergence rate when the solution is

approaching. Thirdly, the violation term is enforced through interior point constraints

to be zero instead of forcing them at the final time as in the previous method. The

interior points are the result of the application of the discretization of these constraints

at a finite number of points. The main disadvantage of this method is that a large

number of interior points are needed if the path constraints are not to be violated

during the optimal trajectory. That results in a large scale optimization problem.

Another approach to cope with the inequality path constraints is to transform them

into equality constraints by using a slack variable. The drawback of this approach

is that it can generate high-index problems which need a special index reduction

technique. Furthermore, all inequality constraints require additional computational

effort, even though they are never active during the solution trajectory.

3.2.1 Optimization Formulation of the Sequential Approach

To pose the dynamic optimization problem as a nonlinear programming problem with

the sequential approach (CVP), the control u(t) is approximated by a finite dimen-

sional representation. The time interval [t0, tf ] is divided into a finite number of

subintervals (P ). In each subinterval, the control u(t) is represented by a set of basis

functions involving a finite number of parameters (zj)

u(t) = φj(t, zj) t ∈ [(tj−1, tj), j = 1, 2, . . . , J ] (3.7)

where tJ = tf . The control profile is defined by the parameters zj and switching times

tj. However, the piecewise constant control policy (zero order polynomial function) is
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assumed and used because the form of the solution is ideally suited for implementation

on a digital computer. Thus the set of decision variables for the nonlinear program

can be written as

y = {z1, z2, . . . , zJ , t1, t2, . . . , tJ} (3.8)

Computational procedure of the sequential approach is presented in Figure 3.1.

With the initial guess of the decision variables (y), the integrator is used for solv-

ing the process models providing the value of the objective function and constraints.

Once gradient information is given, the NLP solver determines a new set of control

parameters and sends it back to the model solver. This procedure is repeated until

the optimal value is found satisfying the specified accuracy.

3.3 Simultaneous Strategy

In contrast to the sequential approach, the simultaneous strategy solves the process

dynamic models and the optimization problem at the same time. This avoids solving

the model equations at each iteration in the optimization algorithm as in the sequential

approach.

With this approach, the dynamic process model constraints in the optimal control

problem are transformed to a set of algebraic equations which is treated as equality

constraints in NLP problem. As a result, the optimal control problem is reduced to a

constrained nonlinear optimization problem. To solve this problem, optimization al-

gorithms based on a sequential quadratic programming (SQP) technique (also known

as successive or iterative quadratic programming) are widely used in this approach.

In the SQP, at each iteration of optimization, a quadratic program (QP) is formed by

using a local quadratic approximation to the objective function and a linear approxi-

mation to the nonlinear constraints. The resulting QP problem is solved to determine

a search direction and with this search direction, the next step length of the decision

variables is specified. The SQP is known as an infeasible path optimization algorithm

since it does not require that nonlinear constraints are satisfied until the optimal con-

trol is found; that is, only a linearized set of nonlinear equality constraints is solved



29

and as the SQP converges to the optimum, the solution of the linearized set converges

to the solution of the nonlinear equality constraints.

To apply the simultaneous strategy, both state and control variable profile are

discritized by approximating functions and treated as decision variables in the op-

timization problem. Since the process models are embedded in the optimization as

equality constraints, a discretization technique used to approximate differential equa-

tions obtained from process models to a set of algebraic equations should be chosen

properly to compromise between the accuracy of the approximation and the size of

the optimization problem.

Although finite difference techniques through the Euler formulation can be used

for this purpose, it needs a small step size to give a satisfactory solution that results in

a large scale optimization problem with many variables. To avoid such a problem, the

state variables are approximated by polynomial functions using a weighted residual

method e.g. Galerkin’s method and collocation method. However, the collocation

method is used by a number of researchers because it does not require the evaluation

of integral terms of the control variables (Tsang et al., 1975). The use of polynomial

approximation to the state solution in the collocation method can be defined over

either the entire time horizon (Global collocation method) (Tsang et al., 1975; Biegler,

1984) or parts of each subinterval that provides an approximation over the whole time

domain (Cuthrell and Biegler, 1987; Renfro et al. 1987). The latter is referred to the

collocation method on finite elements.

The control variables can be discretized and represented either by polynomial con-

tinuous function or by piecewise control policy as in the sequential approach if the

collocation method on finite elements is used to approximate the state profile. It

should be noted that the function used to discretize state and control variables is not

necessary to be the same function (Eaton and Rawlings, 1990)

The main advantage of the simultaneous approach is a capability in handing con-

straints on state variables. This is because these constraints can be dealt with by

including them directly in the optimization problem as additional constraints. How-

ever, due to the discretization on both state and control variables, this leads the
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simultaneous approach to a large scale optimization problem consisting of a large set

of algebraic constraints and decision variables

3.3.1 Optimization Formulation of the Simultaneous Approach

In the simultaneous method, a continuous time optimal control problem is transformed

into a finite dimensional nonlinear programming problem by approximating state and

control profiles. An orthogonal collocation method on finite elements is applied to

discretize the state profile since it allows accurate representation of the state profile

without using high order polynomial and is able to solve a wide range of problems

(e.g. stiff and boundary value problems) as pointed out by Renfro et al. (1987).

In order to apply the orthogonal collocation method on finite elements, the pre-

diction time horizon (Tp) is divided into NE elements that each finite element equals

to one sampling time as can be seen in Figure 3.2. Within each element, we apply a

Lagrange polynomial to convert differential model equations into algebraic equations.

The approximate relation of differential variables can be defined by linear summa-

tion of state values at each collocation point as shown by the following equation (for

element k): (
dx

dt

)
t=ti

=
1

hk

ncol∑
j=1

Aijx(tj) (3.9)

where x(tj) represents a value of state variable x at discreted point tj, which is chosen

as the roots of an orthogonal polynomial, hk is the length of element k, A is the

weighting matrix for first derivative term and ncol is a number of collocation points

in each element.

Additionally, the control profile is represented by piecewise constant function; the

value of control u is assumed to be constant in each element as shown below (Equa-

tion (3.10)). The reason of using this representative form of the control variables

contributes to its appropriateness for computer control implementation. Figure 3.2

illustrates the discretization of control input as well as state profile with 2 internal

collocation points for each element.

u(t) = {u1, u2, u3, . . . , uNE} (3.10)
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Figure 3.2: The simultaneous solution approach

To pose the optimal control problem in a standard form of constrained optimization

problem, the integral term in the objective function (Equation (3.1)) is needed to be

further modified. Here, Radau quadrature formulation is chosen to approximate this

integral term (Villadsen and Michelsen, 1978). As a result, the NLP problem can be

stated as:

min
{x, u}

J =
NE∑
i=1

ncol∑
j=1

wjFij(x, u, p) (3.11)

subject to (for kth element: k = 1, , NE)

discreted process models:

1

hk

ncol∑
j=1

Aijx(tj) = f (x(ti), uk, p) 1 ≤ i ≤ ncol (3.12)

algebraic equations:

g(xi, ui, p) = 0 1 ≤ i ≤ ncol (3.13)

state and control constraints:

xL ≤ xi ≤ xU (3.14)

uL ≤ ui ≤ uU (3.15)
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continuity equations:

x(t1) at kth element = x(tncol) at (k− 1)th element (3.16)

where wj is Radau quadrature weights. It should be mentioned that an alternative

approach to convert the integral term in the objective function into a standard form can

be done by defining a new additional state variable representing the integral function

(see e.g. Renfro et al., 1987 for detail). However, this way should be avoided in the

simultaneous optimization strategy because it will increase a number of unnecessary

state variables in the optimization problem.



Chapter 4

Modeling of Trickle Bed Reactor for

Selective Hydrogenation of Pyrolysis

Gasoline∗

Developing a mathematical model for describing chemical systems has been the main

focus of research for many years because it can be employed as a useful tool to study,

design and improve the systems. In addition, the model can be used in the formulation

of advanced model-based control techniques.

This chapter presents the development of dynamic distributed models for a trickle

bed reactor, one of most commonly used reactors in industrial processes. The reactor

model is demonstrated by the catalytic hydrogenation of pyrolysis gasoline produced

from an olefin plant. The formulation of an optimization problem is given to estimate

kinetic parameters. Finally, the prediction of the state variables obtained from the

reactor model is validated with actual plant data. It should be noted here that the

models developed in this chapter will be used in the formulation of a model predictive

control strategy to regulate the reactor.

4.1 Catalytic Hydrogenation of Pyrolysis Gasoline

A catalytic hydrogenation is an important industrial process which is involved many

petroleum fractions in refining and petrochemical industries. The purpose of this

process is to stabilize unsaturated and reactive hydrocarbons i.e. diolefins in order to

∗Portions of this chapter were appeared in Arpornwichanop et al. (2002a) and Kittisupakorn and

Arpornwichanop (1999).
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avoid the formation of undesired products during downstream processing. In addition,

the hydrogenation process can be used to remove sulfur content in petroleum products.

Pyrolysis gasoline is one of the products produced by a steam cracking process in

an olefin production plant. Typical pyrolysis gasoline has a boiling range of 40-120 oC

and usually contains C5-C9 hydrocarbons (Cheng et al., 1986). Due to high content of

olefins and aromatics, the pyrolysis gasoline is suitable either as high-octane blending

components for motor gasoline fuel or as high-aromatic feedstock for an aromatic

extraction. However, the raw gasoline cut from steam cracking is unstable because of

the presence of a large amount of unsaturated hydrocarbons, known as gum-forming

compounds, such as diolefins and styrenes.

To prevent gum formation during downstream processing or storage, the pyrolysis

gasoline is stabilized by a selective hydrogenation process. The advantage of this

process is that it can efficiently remove most of unstable compounds and convert them

to desired olefins and aromatics, thus increasing overall yield (Derrien et al., 1974).

The hydrogenation processing of pyrolysis gasoline can be classified into two groups

depending on type of the desired final products. That is, if the purpose is in order to

obtain a gasoline fuel blendstock, only the first stage hydrogenation where the selective

hydrogenations of diolefins and alkenylaromatics occur without saturating other unsat-

urated hydrocarbon i.e. olefins and aromatics, is used. If the process is aimed to obtain

a product for further aromatics extraction, the second stage hydrogenation (total hy-

drogenation) where the further hydrogenations of olefins and hydrodesulphurization

occur without aromatics hydrogenation, is followed by the first stage hydrogenation

(Derrien,1986). Figure 4.1 shows the simplified flow diagram of gasoline hydrogenation

process.

In this work, we concentrate on the first stage hydrogenation process; the main unit

of this process is a gasoline hydrogenation reactor. Owing to that the hydrogenation

reaction is an exothermic, two schemes for operating the reactor are possible: isother-

mal and adiabatic reactor. The former consists of multi-tubular reactors externally

cooled by a cooling fluid. However, the cost of investment is high and it is impracti-

cal to make in situ regeneration. The latter is operated in adiabatic condition. The



35

Hydrogen

Feed

Heater

First stage reactor Second stage reactor

Stabilizer

Pyrolysis gasoline

Fuel gasFuel gas

Hydrogen

First stage reactor

Hydrogenated gasoline

Residue

Fuel gas

Fuel gas

(B)

(A)

Fuel gas

Feed

Figure 4.1: Simplified flow diagram of the pyrolysis gasoline hydrogenation. (a) First

stage hydrogenation (b) Second stage hydrogenation
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increment of temperature resulting from heat of reactions is avoided either by quench

injection or by feed dilution.

In general, hydrogenation of pyrolysis gasoline is conducted in liquid phase in the

presence of Ni or Pd supported catalyst. These catalysts are appropriate for the

operation at low temperature and high pressure in order to maintain the hydrocarbon

stream in liquid phase. The liquid phase operation is beneficial to reduce pressure drop

through the catalyst bed and also to wash high molecular weight species i.e. polymer,

which otherwise deposit on the surface of catalyst and then accelerate the loss of its

activity.

4.2 Process Description of the First Stage Hydro-

genation

Figure 4.2 illustrates the simplified schematic diagram of the first stage hydrogenation

studied in this research. First, raw pyrolysis gasoline (C5+) from ethylene plant

is combined with makeup and recycle hydrogen, and diluent (hydrogenated gasoline

product). After heating against the reactor effluent, the mixed stream of gasoline

(raw gasoline, hydrogen and diluent) is delivered to the first stage reactor in which

hydrogenations of diolefins and alkenylaromatics occur in liquid phase. The inlet

temperature varies between 60 and 120 oC and the reactor is approximately operated

at pressure of 30 atm.

Since hydrogenations are exothermic causing an temperature increase in the reac-

tor, some of hydrogenated gasoline (quench stream) is added directly to the reactor

between the two catalyst beds in order to maintain the reactor temperature at an

operable level. The reactor effluent is passed to a heat exchanger to heat up the

gasoline feed and then is flashed in a hot separator. The vapor from the separator

is sent to further process in order to make recycle hydrogen while the bottom liquid

hydrogenated gasoline is passed through the second stage reactor. However, a portion

of the hydrogenated gasoline is recycled to the first stage reactor, which is used as

diluent and quench stream.
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Figure 4.2: Schematic representative of the first stage hydrogenation studied in this

work
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Table 4.1: The configuration of the trickle bed reactor and properties of catalyst

particles in this study

Reactor

height of the top catalyst bed 7.9 m

height of the bottom catalyst bed 15.75 m

diameter 1.8 m

Catalyst particles

shape sphere

diameter 3 mm

void fraction 0.4

volume of the top bed 20 m3

volume of the bottom bed 40 m3

As mentioned earlier, the typical pyrolysis gasoline is a complex mixture of di-

olefins, alkenylaromatics, olefins, aromatics, paraffins and naphthenes, mostly within

C5 and C9. It has been known that stabilization of the pyrolysis gasoline involves the

elimination of unstable compounds i.e. diolefins and alkenylaromatics. Nevertheless,

other unsaturated hydrocarbons i.e. olefins may also be hydrogenated. It is noted

that chemical reactions within the reactor primarily involve the consecutive hydro-

genations of diolefins to olefins and then to paraffins within the same carbon number

group. Figure 4.3 represents the main reactions in the gasoline hydrogenation reactor.

The objective of this research is to develop dynamic models for the first stage

hydrogenation reactor in which hydrogen and raw pyrolysis gasoline cocurrently flow

through a fixed bed of catalyst. This type of reactor is known as a trickle bed reactor

(TBR). The reactor has a diameter of 1.8 m and contains approximately 60 m3 of

Ni/Al2O3 catalyst which is divided into two beds. Table 4.1 shows the configuration

of the reactor as well as the properties of catalyst particles studied in this work.
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1. Hydrogenation of diolefins

    e.g. CH2=CH-CH=CH-CH3 +    H2     CH3-CH=CH-CH2-CH3
     (1,3 Pentadiene)                                                     (2 Pentene)

2. Hydrogenation of cyclodiolefins

    e.g.
               +    H2

    (Cyclohexadiene)                                                 (Cyclohexene)

3. Hydrogenation of alkenylaromatics

    e.g.

+     H2

           (Styrene)                                                       (Ethylbenzene)

4. Hydrogenation of olefins

    e.g.    CH2=CH-CH2-CH2-CH3   +    H2                       CH3-CH2-CH2-CH2-CH3
                        (1 Pentene)                                                         (n Pentene)

+     H2

       (Cyclopentene)                                                  (Cyclopentane)

5. Olefins isomerization

    e.g.      CH2=CH-CH2-CH2-CH3     CH3-CH=CH-CH2-CH3
(1 Pentene)                (2 Pentene)

CH     CH3

CH3

C=CH2

CH3

Figure 4.3: Main reactions in the first stage hydrogenation reactor
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4.3 Mathematical Model of Trickle Bed Reactor

To develop a dynamic model of a trickle bed reactor for the hydrogenation of pyrolysis

gasoline, the following assumptions have been made:

1. The reactor operates at transient condition under adiabatic and isobaric condi-

tion.

2. The gas and liquid phase are supposed to be in a plug flow condition.

3. Axial dispersion in both gas and liquid phases is negligible.

4. The gas-liquid mass transfer resistance is considered whereas mass transfer re-

sistance at the liquid-solid interface and the resistance to pore diffusion can be

ignored. They are assumed to be included in the effective kinetic expressions.

5. The catalyst particles are assumed to be completely wetted with the liquid.

6. All the reactions are assumed to take place in the liquid phase.

7. The vaporization of hydrocarbons is negligible.

8. The interphase and intraparticle heat transfer limitation are assumed to be neg-

ligible. The heat generated from the reactions is assumed to be carried away by

the flowing liquid.

9. Physical properties of reacting components and the heat of reactions are con-

stant.

Furthermore, due to that a large number of reactions and components take part in

the reactor system, the model will be complex. To reduce the complexity of the reactor

model, all hydrocarbon components in the system are refined into three hydrocarbon

classes (Somer et al. (1976); Cheng et al. (1986)). Each class represents a single

compound. The classification of hydrocarbons from C4 to C9 of pyrolysis gasoline in

each pseudocomponent is shown in Table 4.2 which comprises of diolefins, olefins and



41

Table 4.2: Lumped hydrocarbon components in the study

Carbon number Diolefins Olefins Parafins Aromatics

C4 Butadiene Butene Butane

C5 Cyclopentadiene Cyclopentent Cyclopentane

Isoprene Methylbutene Isopentane

Pentadiene Pentene Pentane

C6 C6-diolefins C6-olefins C6-parafins Benzene

C7 C7-diolefins C7-olefins C7-parafins Toluene

C8 C8-olefins C8-parafins Styrene

Ethylbenzene

paraffins. The following kinetic model scheme has been considered to represent the

hydrogenation in the present study:

Diolefins
k1−→ Olefins

k2−→ Paraffins

The concentration dependence of each pseudocomponent on the rate expression

is based on that proposed in the literature for selective hydrogenation of pyrolysis

gasoline. It was observed that the hydrogenation showed irreversible reaction and first

order with respect to hydrogen and unsaturated reactant concentration. In addition,

from experimental results, it appeared that the disappearance of olefins is influenced

from a number of diolefins in the reaction system; hydrogenation of olefins occurs

after the diolefins are completely hydrogenated. This indicates that the diolefins are

strongly absorbed on the catalyst surface. Hence, the rate of olefins hydrogenation

contains the adsorption term of diolefins (Somer et al., 1976; Bressa et al., 2003).

Based on the available information, the rate expressions as given below are utilized.

r1 = k1CdiCH2 (4.1)

r2 =
k2ColeCH2

1 + kadCdi

(4.2)

where r1 and r2 are hydrogenation rate of diolefins and olefins, respectively. k1 and

k2 are specific reaction rate constant. kad is adsorption constant. The temperature

dependency of these kinetic parameters is described by the Arrhenius correlation.
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Figure 4.4: Development of mathematical models for a trickel bed reactor

4.3.1 Reactor Models

Let us consider a trickle bed reactor of length L and cross sectional area A, which gas

and liquid cocurrently down flow through pack bed catalyst as shown in Figure 4.4.

Performing a mole and energy balance for component i around an increment ∆z leads

to the following equations:

Mole balances

Gas phase

H2:

A∆zεg
dCH2,g

dt
= ugA

(
CH2,g|z=l − CH2,g|z=l+∆z

)
− A∆zKl,H2ai (CH2,g − CH2,l) (4.3)

Liquid phase

H2:

A∆zεl
dCH2,l

dt
= ulA

(
CH2,l|z=l − CH2,l|z=l+∆z

)
+ A∆zKl,H2ai (CH2,g − CH2,l)

−A∆z(1− ε)(r1 + r2) (4.4)
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HC: diolefins, olefins, parafins

A∆zεl
dCHC,l

dt
= ulA

(
CHC,l|z=l − CHC,l|z=l+∆z

)
− A∆z(1− ε)(RHC) (4.5)

where RHC is net reaction rate for each hydrocarbon component.

Dividing both side of Equations (4.3) to (4.5) by A∆z and taking limits as ∆z =

0, we have

Gas phase

H2:
dCH2,g

dt
= −ug

εg

dCH2,g

dz
− Kl,H2ai

εg

(CH2,g − CH2,l) (4.6)

Liquid phase

H2:

dCH2,l

dt
= −ul

εl

dCH2,l

dz
+

Kl,H2ai

εl

(CH2,g − CH2,l)−
(1− ε)

εl

(r1 + r2) (4.7)

HC: diolefins, olefins, parafins

dCHC,l

dt
= −ul

εl

dCHC,l

dz
− (1− ε)

εl

(RHC) (4.8)

The correlations used for evaluation of hydrodynamics and mass transfer param-

eters for the trickle bed reactor are taken from the literature. The liquid hold up in

the catalyst bed is calculated by the following correlation (Tarhan, 1983):

εl = 9.9

(
Gldp

µl

) 1
3
(

d3
pgρ2

l

µ2
l

)− 1
3

(4.9)

The overall external mass transfer resistance between gas and liquid phases can be

written as:
1

Klai

=
1

Hkgai

+
1

klai

(4.10)

For slightly solution gases, such as hydrogen, the value of Henrry’s constant (H)

exceeds unity and gas mass transfer resistance can be negligible (Zhukova et al., 1990).

Therefore, the total mass transfer can approximately equal to liquid phase mass trans-

fer coefficient as:
1

Klai

=
1

klai

(4.11)
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The liquid phase mass transfer coefficient (klai) for H2 is calculated using the

correlation reported by Korsten and Hoffmann (1996).

kl,H2ai

Dl,H2

= 0.4

(
Gl

µl

)7 (
µl

ρlDl,H2

) 1
2

(4.12)

Energy balance

(εgρgCp,g + εlρlCp,l)A∆z
dT

dt
= (ugACp,gρg + ulACp,lρl)

(
T |z=l − T |z=l+∆z

)
−(∆H)A∆z(1− ε)(r1 + r2) (4.13)

Dividing both side of Equation (4.13) by A∆z and taking limits as ∆z = 0, we

obtain
dT

dt
=
−(ugCp,gρg + ulCp,lρl)

dT
dz
− (∆H)(1− ε)(r1 + r2)

(εgρgCp,g + εlρlCp,l)
(4.14)

where ∆H is the heat of hydrogenation which is approximated to 30 kcal/mole for

each double bond reaction (Hanika, 1977).

4.3.2 Quench Section

Within the trickle bed reactor studied here, a pack bed catalyst is divided into two

beds between which a quench stream is added directly. Thus, the fluid from the top

catalyst bed and the quench stream are mixed and then enter the second bed. Here,

the space between successive beds is treated as the quench section which is assumed

to be a perfectly stirred tank as demonstrated in Figure 4.5. It is also assumed that

the mixing process reaches steady state instantaneously. Therefore, the steady state

model of the stirred tank is employed to compute initial inlet conditions of reactant

concentrations and temperature for the bottom catalyst bed, as given:

(Qf + Qq)C
B2
H2,l = QfC

F
H2,l + QqC

Q
H2,l (4.15)

(Qf + Qq)C
B2
di,l = QfC

F
di,l + QqC

Q
di,l (4.16)

(Qf + Qq)C
B2
ole,l = QfC

F
ole,l + QqC

Q
ole,l (4.17)
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Top bed catalyst
(B1)

Bottom bed catalyst
(B2)

Quench feed

Qf

Qq

Figure 4.5: The model of quench section

(Qf + Qq)C
B2
para,l = QfC

F
para,l + QqC

Q
para,l (4.18)

TB2 =
ugAρgCp,gT

F + ρlCp(QfT
F + QqT

Q)

(ugAρgCp,g + (Qf + Qq)ρlCp,l)
(4.19)

4.4 Numerical Solution

The dynamic models of the trickle bed reactor developed in the earlier section result to

a set of partial differential equations (PDEs) describing the mass and energy balances.

In this work, the partial differential equations are solved numerically using a method

of lines technique; the spatial derivative terms in Equations (4.6) to (4.8) and (4.14)

are discretized by an orthogonal collocation method on finite elements. The following

equation is used to approximate the spatial derivative terms.

dxi

dz
=

1

hk

NP∑
j=1

Aijx
j (4.20)

where xi represents a vector of state variables at position i in each element, hk is a

length of element k, NP is a number of collocation points in each element (k), and A

is the weighting matrix for the first derivative term. Detail regarding the orthogonal

collocation method is given in Appendix B.
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Here, each packed bed of catalyst in the reactor is divided into 10 elements with

an equal space and 2 internal collocation points are used for each finite element.

Collocation points and weighting coefficients are determined using the algorithms of

Villadsen and Michelsen (1978). On each element, applying Equation (4.20) in the

dynamic reactor models (Equations (4.6) to (4.8) and (4.14)) leads to:

dCi
H2,g

dt
= −ug

εg

 1

hk

NP∑
j

AijC
j
H2,g

− kl,H2al

εg

(
Ci

H2,g − Ci
H2,l

)
(4.21)

dCi
H2,l

dt
= −ul

εl

 1

hk

NP∑
j

AijC
j
H2,l

+
kl,H2ai

εl

(
Ci

H2,g − Ci
H2,l

)

−(1− ε)

εl

(ri
1 + ri

2) (4.22)

dCi
HC,l

dt
= −ul

εl

 1

hk

NP∑
j

AijC
j
HC,l

− (1− ε)

εl

(Ri
HC) (4.23)

dT i

dt
=

−(ugCp,gρg + ulCp,lρl)

(
1
hk

NP∑
j

AijT
j

)
− (∆H)(1− ε)(ri

1 + ri
2)

(εgρgCp,g + εlρlCp,l)
(4.24)

where HC stands for diolefins, olefins and paraffins.

An approximation of the spatial derivative terms make the partial differential equa-

tions reduce to a system of differential and/or algebraic equations (DAEs). In this

work, the DAEs are solved by means of the backward difference method using the

well-known differential equation solver, DASSL (Petzold, 1982).

4.5 Kinetic Parameter Estimation

Before performing the solution of the models developed in the previous section, specific

reaction rate constants (k1, k2) and adsorption coefficient (kad) in the rate expression,

Equations (4.1) and (4.2), for hydrogenation of diolefins and olefins have to be de-

termined. These variables are dependent on temperature according to the Arrhenius

relation as follows:

k1 = k0,1 exp
(−Ea1

RT

)
(4.25)

k2 = k0,2 exp
(−Ea2

RT

)
(4.26)
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kad = k0,ad exp
(−Eaad

RT

)
(4.27)

where k0 is the apparent pre-exponential factor and Ea is the apparent activity energy.

Therefore, the unknown kinetic parameters consist of k0,1, k0,2, k0,ad, Ea1, Ea2 and

Eaad. All of these parameters will be estimated based on plant data. In this work,

the industrial plant data in the gasoline hydrogenation unit (GHU) of the Thai Olefin

Company’s plant located at Map Ta Phut industrial estate, Rayong is collected for

gasoline hydrogenation reactor.

Under normal operation, the reactor is usually operated within a narrow region in

which the reactor operating condition is smooth and has a little change with time, so

the data observed is assumed to be at a quasi-steady state condition.

4.5.1 Formulation of the Parameter Estimation Problem

The following optimization problem is solved to find the kinetic parameters which

minimize the sum of residual squares between the prediction taken from the models

and the plant data of the temperature profile in the reactor and the concentration of

hydrocarbon components at the outlet of the reactor.

The objective function to be optimized is as follows:

min
k0,1, k0,2, k0,3

Ea1, Ea2, Eaad

J =
N∑

i=1

(T actual
i − Tmodel

i )2 +
k∑

j=1

(Cactual
j,out − Cmodel

j )2 (4.28)

subject to the steady state reactor models:

ug
dCH2,g

dz
= −kl,H2al (CH2,g − CH2,l) (4.29)

ul
dCH2,l

dz
= kl,H2ai (CH2,g − CH2,l)− (1− ε)(r1 + r2) (4.30)

ul
dCdi,l

dz
= −(1− ε)(r1) (4.31)

ul
dCole,l

dz
= −(1− ε)(−r1 + r2) (4.32)

ul
dCpara,l

dz
= (1− ε)(r2) (4.33)

dT

dz
=

−(∆H)(1− ε)(r1 + r2)

(ugCp,gρg + ulCp,lρl)
(4.34)
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Table 4.3: Estimated kinetic parameters

Reaction rate constant and adsorption constant

k1 k2 kad

k0 7345 7839 2.057

Ea 22500 35370 14907

r1 = k0,1 exp
(−Ea1

RT

)
Cdi,lCH2,l (4.35)

r2 =
k0,2 exp

(
−Ea2

RT

)
Cole,lCH2,l

1 + k0,ad exp
(
−Eaad

RT

)
Cdi,l

(4.36)

where i denotes the location of temperature measurement within the reactor and j

denotes the hydrocarbon components: diolefins, olefins and paraffins, respectively.

The simultaneous approach as described in Chapter 3 is employed to solve such

the optimization problem. With such an approach, the SNOPT software (Gill et al.,

1998) is utilized for solving the resulting nonlinear programming problem. It applies

a sparse SQP technique, using limited memory quasi-Newton approximations to the

Hessian of the Lagrangian. The estimated kinetic parameters in the model equations

were computed and given in Table 4.3.

4.6 Modeling Results

The reactor models incorporated kinetic models with the estimated rate parameters

obtained from the previous section have been evaluated against the plant data. Two

different plant data sources are investigated. First, the concentration of each reactant

taken from plant design data is compared with that predicted from the reactor models.

Based on the lumped chemical components: diolefins, olefins and paraffins, a compar-

ison of the observed and calculated value is shown in Table 4.4. The result indicated

that the models give a good prediction in the concentration of the major components.

Next, the model results are validated with the plant production data. The calcu-

lated outlet temperature from top and bottom catalyst beds and the concentration
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Table 4.4: Comparison of calculated concentration of diolefins, olefins and paraffins

at the outlet of the reactor with plant design data

Components Plant Calculated

Diolefins (kmol/m3) 0.00 0.028

Olefins (kmol/m3) 2.20 2.18

Paraffins (kmol/m3) 3.13 3.43

Table 4.5: Comparison of the reactor temperature and diolefins concentration pre-

dicted from the models with plant production data

Outlet T from top bed (oC) Outlet T from bottom bed (oC) Diolefins (kmol/m3)
Case studies

Plant Calculated Plant Calculated Plant Calculated

1 174.97 173.11 189.91 182.07 Nil 0.0027

2 184.99 181.66 193.09 194.49 Nil 0.0029

3 181.61 180.18 186.98 191.26 Nil 0.0027

4 175.04 176.78 191.07 195.68 Nil 0.0034

5 179.86 183.86 192.10 201.75 Nil 0.0028
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of diolefins at the reactor outlet for five case studies are presented in Table 4.5. It

is shown that the prediction of outlet temperature from the top and bottom catalyst

bed agree with the plant data. Furthermore, the diolefins concentration at the exit

of the reactor calculated from the reactor models matches very well with the plant

values. Since the available plant data do not provide information on the concentration

of other hydrocarbon components such as olefins and paraffins, a comparison in these

components is not given.

Figure 4.6 shows the concentration profiles along the reactor at steady state con-

dition based on information from the case study 1. This case study is served as a base

case for simulation study. It can be seen from Figure 4.6 that the hydrogenation of

diolefins results in an increase in the olefins concentration. However, the concentration

of olefins in the bottom catalyst bed trends to decrease slowly due to the disappear-

ance of the diolefins in the reactor. There is an insignificant increase in paraffins

concentration in both top and bottom catalyst beds.

The steady state temperature profile for the same case study is illustrated in Figure

4.7. It can be seen that the temperature predicted by the models agrees quite well

with that obtained from the plant data. The reaction heat from hydrogenation causes

an increase in the temperature along the length of reactor. However, after adding

some quench feed at the quench section, the temperature drops at the entrance of the

bottom catalyst bed. It is also observed that the temperature increase in the top bed

of catalyst is steeper than that in the bottom bed. This is explained by the decrease

of the concentration of diolefins within the reactor.

Figures 4.8 to 4.11 show typical dynamic responses of the concentration of diolefins

olefins and paraffins and the reactor temperature, respectively, for the case study 1.

In these figures, the process models are simulated for a reactor start-up.

4.7 Conclusions

In this chapter, a dynamic model for an industrial adiabatic trickle bed reactor in

which catalytic hydrogenations of a pyrolysis gasoline from an olefin production plant
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occur, has been developed. To reduce the complexity of the model, all hydrocarbon

components in the system were lumped into three pseudocomponents: diolefins, olefins

and paraffins. The dynamic model results to a system of partial differential equations

which was solved numerically by the method of lines. The orthogonal collocation

method was used to discretize the spatial derivative terms.

Kinetic parameters were determined based on industrial plant data using optimiza-

tion technique. The reactor model with the estimated kinetic parameters was validated

with plant data. It is observed that although the model contained some simplifying

assumptions, it has found to be in good agreement with plant data; the model gave a

good prediction of temperature and lumped components in the reactor. This showed

that the model adequately approximates the real system and can be used to formulate

a model-based control technique to control the reactor.
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Figure 4.6: Steady state concentration profiles for the case study 1.
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Figure 4.8: Diolefins concentration profile for the case study 1.
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Figure 4.9: Olefins concentration profile for the case study 1.
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Figure 4.10: Paraffins concentration profile for the case study 1.
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Figure 4.11: Temperature profile for the case study 1.



Chapter 5

Application of Model Predictive Control

to Batch and Continuous Reactor: A Case

Study∗

Prior to implementing a model predictive control (MPC) strategy to control a trickle

bed reactor in which the dynamic behavior is described by partial differential equa-

tions, it is interesting to examine the proformance of MPC to control less complicated

processes which their response is described by ordinary differential equations.

This chapter presents the implementation of the MPC to reactor systems. Control

studies on two types of chemical reactor: batch reactor and continuous stirred tank

reactor (CSTR), are investigated. For the batch reactor, the MPC problem is formu-

lated to on-line modify an optimal temperature set point profile. Once the optimal

temperature profile is updated, a local controller i.e. a generic model control (GMC)

controller, is applied to drive the reactor temperature to follow the desired profile. For

the CSTR, the MPC controller is applied to control a product concentration in the

reactor. In addtion, we also address the application of a dual mode model predictive

control, an extended version of the MPC. This control strategy integrates the MPC

with a local linear control algorithm.

∗Portions of this chapter were appeared in Arpornwichanop et al. (2002b) and Arpornwichanop

and Kittisupakorn (2002).
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5.1 Batch Reactor

5.1.1 Introduction

In many chemical industries, there is an increasing trend to place a consideration on

the production of high value products (e.g. polymers, pharmaceuticals, and specialty

chemicals) in batch processes. As an important main unit in such processes, a batch

reactor is generally involved in manufacturing of these products. The use of batch

reactors offers many advantages. Firstly, a batch reactor is quite flexible, it can adapt

to small volume production of various products, which are greatly submitted to the

rapid changes in market conditions and the advent of new technology. Secondly, the

batch reactor provides the natural way to scale-up processes from laboratory experi-

ments where a synthesis of complex chemicals is studied, to industrial manufacturing.

Finally, it is especially suitable to carry out reactions where materials involved are

dangerous and difficult to handle (Rotstein and Lewin, 1992).

Since batch reactors are used to produce a wide variety of expensive products, it

is known that this process is very complicated and involves complex chemical reaction

mechanisms, and may include side reactions that produce undesired products. As

a result, there is a great deal of interest to enhance batch operation to achieve high

quality and purity products while minimizing the conversion of undesired by-products.

Recently, the use of process optimization in the control of batch reactors has been

received much attention in the literature. This provides a useful tool for operating

batch reactors efficiently and optimally. For this purpose, it is desirable to optimize

the process conditions during the reactor operation in order to meet desired products

and safety specification whereas a control system is an essential part to ensure that the

desired operating conditions can be maintained as close as possible during the course

of batch run.

However, achieving such a proposed method for an optimal operation of batch re-

actors is quite difficult, and still provides challenging and interesting problems. This

is mainly due to the inherent complexity of batch reactors which can be character-

ized by i) highly nonlinear behavior resulting from the dependence of reaction rates



57

on concentration and temperature, ii) time-varying system; the process variables (e.g.

concentration, temperature) and parameters change with time, iii) no steady state

operating condition; batch reactors are unstable under open loop condition so that

control failure can make the reactor runaway, iv) imperfect model; complex kinetic

reactions occurred within batch reactors are rarely well understood that leads to an

inaccuracy in developing the system model, and v) lack of measurement information;

the product qualities or key properties to be controlled (e.g. molecular weight) cannot

be measured until the end of batch run or even if they can be measured (e.g. concen-

tration), there is a significant time delay. Only a few of physical quantities such as

temperature and pressure are available for direct on-line measurement. That makes

direct control of product properties difficult (Bonvin, 1998). Although, in recent years

there has been significant advance in developing new sensors for measuring these prod-

uct properties, they have rarely been used in industrial processes due to high operating

cost and expensive investment on the measuring devices. Thus, the usual practice is

to control other variables that can be measured rapidly in order to obtain desired

product properties instead.

In general, optimal batch reactor operation can be carried out by two-step ap-

proach; firstly, determining an optimal set point profile of key operating process vari-

ables such as temperature (Aziz and Mujtaba, 2002) and secondly, tracking the desired

profile by a control system (Aziz et al., 2000). The optimal profile can usually be de-

termined off-line by solving an optimal control problem. This problem is formulated

based on fundamental models of the system and is often referred to a dynamic opti-

mization problem. This is because it involves an optimization of a dynamic system.

However, as mentioned above, because of the complexity of chemical reaction schemes,

modeling error is always present and in addition, process disturbance can occur during

the process operation. Due to the existence of this error and disturbance, the final

product may significantly differ from the desired value, even though the pre-specified

optimal profile is tracked perfectly (Loeblein, et al., 1997). To realize this fact, it is nec-

essary to recalculate the optimal profile as an on-line optimization strategy whenever

new feedback information is available. This strategy could compensate the modeling

error leading to process operation improvement.
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In order to perform the on-line optimization strategy, the knowledge of current

state variables and/or parameters in process models is required. Due to the fact that

some of these variables cannot be known exactly or sometimes can be measured with

time delay, it is essential to include an on-line estimator to estimate these process

variables using available process measurements as well. The sequence of an estimation

and optimization procedure is known as an estimation-optimization task (Ruppen et

al., 1998). Among several estimation techniques, an extended Kalman filter (EKF)

has become increasingly popular because it is relatively easy to implement. It has

been found that the EKF can be applied to a number of chemical process applications

with great success. Once the estimate of unknown process variables is determined and

then the models are updated, the optimization is performed on-line to generate a new

optimal input profile. With the modified optimal profile, a designed controller is used

to control the system to follow this profile until the new one is available.

Apart from specifying the optimal set point profile, a control system used to track

such a profile is another important issue to be considered. This is because the deviation

from the desired profile may cause an off-spec product. However, since it is well known

that the control of batch reactors is difficult due to the inherently nonlinear behavior,

the use of a linear control technique may give a poor performance. For this reason,

many advanced control techniques have been developed and applied to the control of

batch reactors. These include, for example, nonlinear feedforward-feedback control

(Kravaris et al., 1989), generic model control (Cott and Macchietto, 1989), adaptive

control (Rotstein and Lewin, 1992), globally linearizing control (Liu and Macchietto,

1995), dynamic matrix control (Yuce et al., 1999), linear model predictive control

(Arpornwichanop et al., 2002), or inverse model control (Aziz et al., 2001). A review

on the progress in control methodologies that have been applied to batch reactors as

well as their importance and performance is given by Berber (1996). Among these

advanced control methods, a generic model control (GMC) technique is one of the

most studied control algorithm. This is because nonlinear process models can be

interpreted straightforwardly in the GMC control algorithm so that they do not need

to be linearized. Furthermore, its implementation is relatively easy when compared

to other model-based control methods; consequently, the application of this control
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technique appears in many chemical processes.

In this study, we develop an approach based on the idea of model predictive control

(MPC), an on-line dynamic optimization strategy, to modify optimal temperature set

point profile for improving batch operation performance. To demonstrate the effec-

tiveness of the developed approach, the batch reactor studied by Cott and Machietto

(1989), where two parallel exothermic reactions occur, is chosen here as a simulation

case study. For solving the on-line optimization problem, it needs the knowledge of

the current states of the system. Although most physical quantities (e.g. temper-

ature, flowrate) can be measured frequently and available for on-line measurement,

some other properties (e.g. concentration) are measured infrequently with time de-

lay. To overcome this difficulty, the extended Kalman filter (EKF) is incorporated

into the proposed strategy in order to estimate the concentrations from their delayed

measurements.

The optimal control problem is solved by the sequential solution and optimization

method, as described in Chapter 3, via the PREOP package (Morison, 1984). The

successive reduced quadratic programming algorithm (Chen, 1988) is used to solve the

resulting nonlinear program. Detailed discussion on the sequential solution algorithm

can be further seen in Morison (1984).

Once the optimal temperature profile is modified, a controller based on generic

model control algorithm (GMC) is applied to control the batch reactor temperature

following the desired profile. In the GMC formulation, the EKF is also used to estimate

the heat released from reactions. It is noted that the proposed strategy would be one of

several strategies studied to promote the applicability of on-line dynamic optimization

with set point tracking for improving of a batch reactor.

5.1.2 Dynamic Models of Batch Reactor

A reactor system considered by Cott and Macchietto (1989) which consists of a batch

reactor and jacket cooling system is chosen here as a case study. The typical diagram

of this system is shown in Figure 5.1. It is assumed that two parallel highly exothermic
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Figure 5.1: Batch reactor system

reactions occur in the reactor:

A + B
k1−→ C

A + C
k2−→ D

where A and B are raw material, C and D are the desirable product and undesirable

by-product, respectively. The rate constants k1 and k2 are temperature dependence

according to the Arrhenius relation.

The batch reactor is modeled by the following equations:

Material balances in the reactor:

dMA

dt
= −k1MAMB − k2MAMC (5.1)

dMB

dt
= −k1MAMB (5.2)

dMC

dt
= +k1MAMB − k2MAMC (5.3)

dMD

dt
= +k2MAMC (5.4)

Energy balances around the reactor:

dTr

dt
=

Qr + Qj

MrCpr

(5.5)

dTj

dt
=

FjρjCpj(T
sp
j − Tj)−Qj

VjρjCpj

(5.6)
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with k1 = exp
(
k1

1 −
k2
1

Tr+273.15

)
k2 = exp

(
k1

2 −
k2
2

Tr+273.15

)
W = MWAMA + MWBMB + MWCMC + MWDMD

Mr = MA + MB + MC + MD

Cpr = (CpAMA + CpBMB + CpCMC + CpDMD)/Mr

Qr = −∆H1(k1MAMB)−∆H2(k2MAMC)

Qj = UA(Tj − Tr)

A = 2W/ρr

where Mi is the amount of mole of component i, Tr is the reactor temperature, Tj

is the jacket temperature, and T sp
j is a set point value of the jacket temperature

control system. The meaning of other variables and parameters are explained in the

nomenclature.

The dynamic behavior of the reactor can be simulated by solving Equations (5.1) to

(5.6). The differential-algebraic solver DASSL (Petzold, 1982) is used here to give the

solution of these equations. The initial conditions for MA, MB, MC , MD are 12, 12, 0,

and 0 kmol, respectively. The initial values of both reactor and jacket temperature are

set at 20 oC. The batch operation time (tf ) is 200 minutes. Other process parameter

values used in the reactor models are listed in Table 5.1.

In this work, it is assumed that the temperature is measured frequently without

delay. The sampling time of 0.2 min is used for temperature measurement. It is

also assumed that the concentration (amount of mole) of reactants in the reactor is

measured infrequently and has a sampling time and measurement delay of 10 min.

5.1.3 MPC as On-line Dynamic Optimization Strategy

The aim of a dynamic optimization is to determine a control profile minimizing (or

maximizing) a given objective function subject to process constraints. With the op-

timal control policy, the controlled system is driven from an initial state to a final

desired state in an optimal way. However, as mentioned earlier that in the presence of

modeling error, the pre-specified control profile may lose its optimal character (Bonvin,



62

Table 5.1: Process parameter values

MWA = 30 [kg/kmol] CpA = 75.31 [kJ/(kmol. oC)]

MWB = 100 [kg/kmol] CpB = 167.36 [kJ/(kmol. oC)]

MWC = 130 [kg/kmol] CpC = 217.57 [kJ/(kmol. oC)]

MWD = 160 [kg/kmol] CpD = 334.73 [kJ/(kmol. oC)]

k1
1 = 0.9057 ∆H1 = -41840 [kJ/kmol]

k2
1 = 10000 ∆H2 = -25105 [kJ/kmol]

k1
2 = 38.9057 ρ = 1000 [kg/m3]

k2
2 = 17000 ρj = 1000 [kg/m3]

r = 0.5 [m] Cpj = 1.8828 [kJ/(kg.oC)]

Fj = 0.348 [m3/min] Vj = 0.6912 [m3]

U = 40.842 [kJ/(min. m2. oC)]

1998). For this reason, an on-line optimization strategy through a model predictive

control (MPC) scheme is employed in this work to compensate such an error. The

basic concept is to compute the optimal control profile based on current feedback in-

formation. However, only the initial value of the optimal trajectory is sent to the

system as a set point for a local controller. After new information of states is available

from either measurement or estimation, the optimization is repeated again to generate

updated optimal set point profile at the next time interval.

The method proposed for improving the batch operation can be divided into two

phases: on-line modification of the temperature trajectory and on-line tracking of

the desired temperature trajectory. The first phase involves determining an optimal

temperature set point profile by solving the on-line dynamic optimization strategy

based on the delayed measurement of the amount of mole of reactants (MA, MB, MC ,

and MD) in the reactor. The other phase involves designing a nonlinear controller for

tracking of the optimal reactor temperature.
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Problem Formulation

Two major optimization problems related to batch operation: maximization of prod-

uct concentration and minimization of batch operation time are studied to determine

an optimal temperature profile, which highly influences the rate of reactions. The

obtained optimal temperature profile has to satisfy the specified objective function

and other desired process constraints. Such optimization problems can be described

as follows.

Maximum Product Concentration Problem (P1)

In this type of the problem, the objective is to compute the optimal temperature

policy maximizing the amount of a desired product concentration for a given fixed

batch time subject to bounds on the reactor temperature. The problem can be written

mathematically as:

max
T (t)

J = X(tf )

subject to:

ẋ = f (x(t), T, p, t)

x(t0) = x(0)

TL ≤ T ≤ TU

tf = t∗f

where X is the amount of the desired product at a given final batch time , x is state

variables, ẋ is the derivative of x with respect to time (t), T is the reactor temperature,

p is process parameters, tf is the fixed batch time, and TL and TU are lower and upper

bounds of the reactor temperature.

Minimum Batch Time Problem (P2)

The purpose of this optimization problem is to determine the optimal temperature

profiles to achieve the desired final product concentration in minimum batch time, thus
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the performance index is the final time whereas the desired product concentration is

defined as a terminal constraint. The formulation of the minimum batch time problem

can be shown as:

min
T (t)

J = tf

subject to:

ẋ = f (x(t), T, p, t)

x(t0) = x(0)

TL ≤ T ≤ TU

X(tf ) = X∗

where X∗ is the desired product concentration at the end of batch run and tf is final

batch time.

5.1.4 State and Parameter Estimation

The implementation of the on-line optimization strategy requires the knowledge of

current states and/or parameters in nonlinear process models in order to modify a new

optimal profile defined as the set point for a controller. However, it is known that in

many processes, some measurements i.e. concentration are available at low sampling

rate with significant time delay. To overcome this difficulty, state and parameter

estimation is incorporated into the proposed on-line optimization algorithm.

In this study, an extended Kalman filter (EKF) is used to reconstruct the cur-

rent state variables from their delayed state measurements. The detail of the EKF

algorithm can be found in Appendix C.

Application to the Batch Reactor

Since the concentration of reactants (MA, MB, MC and MD) in the batch reactor

is assumed to be measurable with a delay of one sampling time; that is, at time k,

only information at time k − 1 is available. Thus, the EKF is applied to estimate the



65

value of reactant concentration at current time k from their delayed measurements at

sampling time k − 1. However, since it is expected to exhibit uncertainty in reaction

rate constants (i.e. k1
2 and k2

2) in real plant, the EKF is also used to estimate these

uncertain parameters. The following equations, therefore, are appended for parameter

estimation.

dk1
2

dt
= 0 (5.7)

dk2
2

dt
= 0 (5.8)

Equations (5.1) to (5.4) and (5.7) to (5.8) correspond to Equation (C.1) in the EKF

algorithm. Based on the estimate of the current information, the dynamic optimization

problem is resolved to generate a new optimal temperature trajectory.

5.1.5 Generic Model Control (GMC)

The success of the proposed strategy for an on-line modification of the reactor temper-

ature set point profile is associated with designing a controller to control the reactor

temperature to track the desired temperature trajectory. It is accepted that the use

of linear control techniques in highly nonlinear chemical processes e.g. batch chemical

reactors is quite limited to their performances and may give a poor control response.

Therefore, in this work a nonlinear control technique based on a generic model control

(GMC) is utilized. This control methodology has been received much interest during

the last decade and a number of applications of GMC to the control of batch processes

have been reported in the literature (e.g. Cott and Machietto, 1989; Kershenbaum and

Kittisupakorn, 1994; Shen et al., 1999; Aziz et al, 2000, etc.). However, most of these

works focus on using the GMC to track the pre-determined optimal profile (off-line

calculation) of a reactor temperature. No effort has been made to apply the GMC to

implement an on-line optimal set point profile. Therefore, in this work, the perfor-

mance of the GMC controller with the optimal temperature set point determined by

on-line optimization strategy is evaluated and compared to that of the GMC controller

with pre-determined set point.
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Control Algorithm

Let us consider a process based on the following model equations:

dx

dt
= f(x, p, t) + g(x, t)u (5.9)

y = h(x) (5.10)

where x is a vector of state variables, y is a vector of output variables, u is a vector

of input variables, p is a vector of process parameters, and f , g, and h are generally

nonlinear functions.

The general form of the GMC algorithm can be written as

dy

dt
= K1 (ysp − y) + K2

tf∫
0

(ysp − y) dt (5.11)

The GMC control response can be designed via the tuning parameters K1 and K2

based on the tuning curve given by Lee and Sullivan (1988). The use of Equation (5.11)

forces y toward its set point, ysp, with zero offset. If Equation (5.10) is differentiated,

and the Equation (5.11) is substituted into Equation (5.9), the GMC control law is

u =

[
K1 (ysp − y) + K2

∫
(ysp − y) dt− dh

dx
f (x, d, t)

]
(

dh
dx

g(x, t)
) (5.12)

Application of GMC Controller to the Batch Reactor

To implement the GMC, an energy balance around the reactor is required; it gives the

relation between the reactor temperature (controlled variable) and the jacket temper-

ature (manipulated variable). Based on an assumption that the amount of the heat

accumulated in the wall of the reactor is negligible compared to the heat transferred

in the reactor, the energy balance equation becomes

dTr

dt
=

Qr + UrAr(Tj − Tr)

WrCpr

(5.13)

where Ur is the heat transfer coefficient, Ar is the heat transfer area, Wr is the mass

of the reactor contents, Cpr is the mass heat capacity of the reactor content, and Qr

is the heat released by the reactions.
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Rearranging the Equation (5.13) as in the form of GMC algorithm, the following

functions f , g, and h can be defined

f(x, p, t) =
Qr − UrArTr

WrCpr

(5.14)

g(x, t) =
UrAr

WrCpr

(5.15)

h(x) = Tr (5.16)

Replacing the above equations in Equation (5.12), we have

Tj = Tr +
WrCpr

UrAr

K1(T
sp
r − Tr) + K2

t∫
0

(T sp
r − Tr)dt

− Qr

UrAr

(5.17)

The discrete form of Equation (5.17) for on-line implementation at kth time interval

is given as

Tj(k) = Tr(k)+
WrCpr

UrAr

(
K1(T

sp
r − Tr(k)) + K2

k∑
0

(T sp
r − Tr(k))∆t

)
− Qr(k)

UrAr

(5.18)

where ∆t is the sampling time.

However Equation (5.18) gives the actual jacket temperature [Tj(k)] required at

the next sampling time to control the reactor temperature [Tr(k)] at the desired tra-

jectory [T sp
r ]. In usual practice, the reactor temperature control is cascaded with the

jacket temperature control (heating and cooling system); the output of the reactor

temperature controller (master loop) is the set point value of the jacket temperature

controller (slave loop), as demonstrated in Figure 5.2. Additionally, the model of a

heat exchanger system for heating and cooling is not included in Equation 5.13. If

Tj(k) is applied directly as the set point for the jacket temperature control system

without considering its dynamic, the resulting control response would be sluggish. To

accommodate such an effect, it is reasonable to assume that the dynamic of the jacket

control system can be approximated by a first order model with time constant (τj)

(Liptak, 1986). Consequently, the T sp
j (k) can be computed by:

T sp
j (k) = Tj(k − 1) + τj

(
Tj(k)− Tj(k − 1)

∆t

)
(5.19)

With this jacket temperature set point, the jacket temperature controller (setting

as a PI controller) through a heat exchanger system opens or closes control valve
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Figure 5.2: The proposed control strategy for on-line update and control of reactor

temperature profile

reflecting to the flowrate of heating and cooling fluid. However in reality the ability

of the heat exchanger in adjusting the jacket temperature is always limited, thus, in

this work the jacket temperature is bounded between 0 oC and 120 oC. The tuning

parameters of the GMC controller are given in Table 5.2.

Table 5.2: Parameters in GMC algorithm

Wr = 1560 [kmol] τj = 2 [min]

Cpr = 1.8828 [kJ/(kmol. oC)] K1 = 2.4

Ur = 40.842 [kJ/(min. m2. oC)] K2 = 10−4

Ar = 6.42 [m2]

As can be seen from Equation (5.18), the knowledge of heat released [Qr(k)], which

cannot be measured, is needed in the GMC algorithm. Here, the EKF technique cou-

pled with the simplified reactor model, given by Kittisupakorn (1995), is also applied

here to estimate the heat released [Qr(k)]. The reason of using the simplified models,

not the exact model of the plant, is because if the exact model were used, too many

uncertain/unknown parameters as well as too many unmeasurable states would be in-
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volved. That may lead to poor performance of the EKF. Hence, the simplified model

with less uncertain/unknown parameters and unmeasurable states as shown below is

used instead.

dTr

dt
=

Qr + UrAr(Tj − Tr)

WrCpr

(5.20)

dTj

dt
=

FjρjCpj(T
sp
j − Tj)− UrAr(Tj − Tr)

VjρjCpj

(5.21)

dN

dt
= −bNTr (5.22)

dQr

dt
= N

dTr

dt
+ Tr

dN

dt
(5.23)

db

dt
= 0 (5.24)

where N = −bMr(∆H), b is a pseudo reaction rate constrant, Mr is the total reactant

concentration, and ∆H is heat of reaction. It should be noted that the variable N

representing two unknown parameters Mr and ∆H can be estimated instead of these

parameters so that the number of state equations for estimation decrease and an error

of estimation corresponding to the uncertainty of each parameters can be reduced.

Equations (5.20) to (5.24) correspond to Equation (C.1) in the EKF algorithm.

Once the reactor and jacket temperature measurement are available, the EKF with

the simplified model estimates the heat released from reactions [Qr(k)]. Table 5.3

summarizes the initial conditions and tuning parameters of the EKF used in this

simulation work.

5.1.6 Simulation Results

Maximum Conversion Problem (P1)

All simulation results given here are based on the optimization problem P1, in which

the objective is to find the optimal reactor temperature profile, such that the amount

of mole of the product C is maximized in a fixed batch time with respect to a constraint

on the temperature.

In this case study, the specified final batch time (tf ) of 200 min is used and the

reactor temperature is bounded according to 20 ≤ T (oC) ≤ 120.
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Table 5.3: Parameters and initial conditions in EKF

For the estimation of Mi, k1
2 and k2

2

MA(0) = 12 [kmol] P = diag[100 10 100 100 100 105]

MB(0) = 12 [kmol] Q = diag[100 1 100 1 500 5× 108]

MC(0) = 0 [kmol] R = diag[10 10 10 10]

MD(0) = 0 [kmol]

k1
2 = 38.9057

k2
2 = 17000

For the estimation of Qr

Tr(0) = 20 [oC] P = diag[1 1 100 20 10]

Tj(0) = 20 [oC] Q = diag[10 10 2000 100 100]

N(0) = 1.8462 R = diag[10 10]

Qr(0) = 0

b(0) = 1.8386× 10−6

Temperature Set Point Profile Determined Off-line with Perfect Tracking

The first set of simulation studies has investigated the case where the theoretical op-

timal temperature profile is determined by off-line computation and perfect tracking

of such a profile is assumed. This results in the maximum product (maximum con-

version) that can be achieved at the end of batch run and is served as a reference to

be compared with results obtained from the proposed strategy. The optimal control

problems are solved using time interval with equal length varied from one to 40 inter-

vals to discretize the profile. The switching time is fixed and the length of each interval

is specified by dividing the fixed batch time (tf ) with a number of time intervals (P ).

Therefore, the problem is to find only optimal temperature value in each subinterval.

Simulation results with different time interval (P ) are reported in Table 5.4. Opti-

mal reactor temperature policy for each case is shown in Figure 5.3. As seen in Table

5.4, when one time interval (P = 1) is used, the product C obtained at the final time

(tf = 200 min) is 7.0171 kmol and the optimal temperature (isothermal operation) set

point is 88.01 oC whereas using P = 20, the product C achieved is 7.0379 and computa-
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Figure 5.3: Optimal temperature profile: 1 interval (1), 5 intervals (2), 10 intervals

(3), 20 intervaLs (4), 40 interval (5)

tional time is approximately 2.80 sec. It was found from these results that the amount

of the desired product C increases as a number of time intervals increases. This can

be explained that as the number of intervals enlarges, the approximate optimal profile

with piecewise constant policy is closed to the actual optimal profile.

Temperature Set Point Profile Determined On-line with GMC Controller

Next, the proposed strategy using an on-line dynamic optimization to update opti-

mal temperature set point profile is implemented. Rather than assuming the reactor

temperature trajectory can be tracked perfectly as in the previous studies, the GMC

controller is applied here to drive the system to follow the desired trajectory. Regarding

to the time elapsed in the determination of the optimal control problem, with P = 20,

the temperature set point profile is updated every 10 min. By this is meant that, to

apply this strategy on-line, the computational time for the updated temperature set

point profile must be less than 10 minutes. It was found that the computational time
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based on Pentium III/850 mHz is approximately 3 sec. As a result, this strategy is

applicable for on-line implementation. Regarding to the GMC control performance, it

was found that the GMC controller can drive the system from the current set point

to a new one within 10 min. Therefore, the GMC controller can be used for tracking

the profile obtained from the strategy.

Results in term of the amount of the desired product C from on-line optimization

strategy are compared with those from off-line strategy. Simulation results have been

evaluated under nominal condition with perfect model that all parameters are specified

correctly, and plant/model mismatch condition by changing parameters in the plant

model i.e. pre-exponential rate constant (k0) decreased by 50% and activity energy

(Ea) increased by 20% from their nominal values, as shown in Table 5.5.

In the nominal case, the product obtained from the off-line strategy (C = 6.9459) is

close to that obtained by the on-line strategy (C = 6.9585). Figures 5.4 and 5.5 show

the response of the GMC controller to track the reactor temperature trajectory that

is pre-specified by off-line calculation, and the comparison of the actual and estimated

heat released by reactions, respectively. It can be seen that the EKF provides excellent

estimation of the heat released and with this heat released, the GMC controller can

give reasonably good temperature control. Similarly, in the case that the optimal

temperature is modified via the on-line optimization strategy based on the current

information of Mi, k1
2, and k2

2 obtained from delayed measurements of Mi, the GMC

controller is able to track the reactor temperature (Figure 5.6). The performance of

the EKF to predict the amount of MA, MB, MC , and MD at current time from their

measurements with time delay 10 min is illustrated in Figure 5.7. Also, the EKF gives

good estimation of k1
2 and k2

2 as shown in Figure 5.8. It is interesting to note that

since the initial reactor temperature starts at 20 oC, to start up the reactor, the GMC

controller heats the reactor temperature from this condition to the desired set point

value as quickly as possible. As a result, the reactor temperature deviates from its

set point at the beginning of batch time causing that the product C obtained from

both on-line and off-line strategy with the GMC controller is slightly lower than that

obtained for the case of P = 20 (C = 7.0379), as shown in Table 5.4.

For the mismatch in k1
2, the value of the desired product C = 7.8839 can be achieved
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Table 5.4: Summary of the results: off-line optimization and perfect tracking cases

Time interval Product C(kmol) By-product D (kmol) CPU time (s)

1 7.0171 1.3464 0.1591

5 7.0281 1.3605 1.2600

10 7.0339 1.3594 1.9778

20 7.0379 1.3585 2.8066

40 7.0402 1.3579 5.0519

Table 5.5: Comparison of the results obtained from off-line and on-line optimization

strategy with GMC controller (Problem P1)

Product C (kmol)
Case studies

Off-line On-line

1. Nominal case

(a) all parameters specified correctly 6.9459 6.9585

2. Plant/model mismatch case

(a) −50% k0 of Reaction 2 in plant model (k1
2 = 38.2125) 7.6673 7.8839

(b) +20% Ea of Reaction 2 in plant model (k2
2 = 20400) 8.5660 10.2024

(c) −50% k0 and +20% Ea of Reaction 2 in plant model 8.5658 10.2029

Note that: k0 = exp(k1
2) and Ea = k2

2(R) where k0 is pre-exponential rate constant, Ea is

activity energy and R is ideal gas constant.
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at the end of batch time for the on-line strategy which is higher than that obtained

from the off-line strategy where the mismatch is not noticed (C = 7.6673). Similar

results can be observed under the case of plant model mismatch in k2
2 as shown in Table

5.5. These results indicate clearly that the performance of batch reactor operation is

improved via the proposed strategy. Due to similarity in their control responses, only

the result for change in k1
2 is shown in Figure 5.9.

Finally, with a change in both k1
2 (−50% k0) and k2

2 (+20% Ea) in the plant model,

the result using the on-line optimization strategy shows that the GMC controller is

able to accommodate this change very well as can be seen in Figure 5.10. Figure

5.11 presents the performance of the EKF for estimation of k1
2 and k2

2. Since the EKF

estimates these parameters closed to the true values, the mismatch is eliminated. That

leads to high product C obtained at the final batch time (C = 10.2029) compared to

the value of C = 8.5958 obtained from the off-line strategy

Minimum Time Problem (P2)

The results presented here correspond to the case where the objective is to minimize

the batch time of operation subject to a terminal constraint on the desired amount of

mole of product C (MC(tf ) = 6.00 kmol). The reactor temperature constraint is the

same as in problem P1.

Several simulations have been carried out under process parameter uncertainties

i.e. in pre-exponential rate constant (k0) and activity energy (Ea). In all case studies

we considered 10 time intervals that the reactor temperature and switching time are

optimized while minimizing the final batch operation time. Results, reported in the

value of minimum batch time to obtain the desired product C and the amount of the

desired product C at the end of batch operation, from the on-line dynamic optimization

strategy are compared with those from the off-line strategy.

With an 20% increase of parameter k1
2 in the plant model, it can be seen from Table

5.6 that the final batch time needed to achieve the desired product C from the pro-

posed on-line modification of temperature set point profile (tf = 49.6 min) is shorter

compared to the result with the off-line strategy (tf = 65.0 min). This is because the
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Table 5.6: Comparison of the results obtained from off-line and on-line optimization

strategy with GMC controller (Problem P2)

Final time (min)/Product C (kmol)
Case studies

Off-line On-line

(1) −50% k0 of Reaction 2 in plant model (k1
2 = 38.2125) 65.0/6.0070 49.6/6.0052

(2) +20% Ea of Reaction 2 in plant model (k2
2 = 20400) 56.2/6.0027 42.6/6.0114

(3) −50% k0 and +20% Ea of Reaction 2 in plant model 56.5/6.0021 42.3/6.0129

EKF can acknowledge this parameter uncertainty, so that the temperature set point

profile is updated corresponding to the modified parameter value closed to the actual

value. Figure 5.12 shows the control response of the GMC controller to deliver the

reactor temperature form initial condition to the desired temperature set point deter-

mined off-line for this mismatch. For the on-line temperature set point modification,

as expected, the GMC controller can also control the reactor corresponding to the set

point changes as can be seen in Figure 5.13

The results for other case studies are summarized in Table 5.6. The important

aspect obtained from these results is that in all cases, the minimum batch time to

obtain the desired product concentration in the on-line set point modification strategy

decreases. This points out the effectiveness of the proposed method to improve the

operation of batch reactor.

5.1.7 Conclusions

In this study, the method using an on-line dynamic optimization and control strategy

to enhance batch reactor operation has been proposed. The on-line dynamic optimiza-

tion through the idea of MPC scheme was performed, based on the updated current

information of states of the reactor which are estimated from the delayed measure-

ment of an amount of reactants using an extended Kalman filter (EKF) technique, at

specified time interval to provide a new updated optimal reactor temperature set point

profile. Two types of optimization formulation related to batch operation (maximum
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concentration and minimum time problem) were considered in the proposed on-line

set point modification strategy. The reactor temperature set point obtained was im-

plemented using a generic model control (GMC). The EKF was also incorporated into

the GMC algorithm in order to estimate the heat released by reactions using direct

measurements of the reactor and jacket temperature. A batch reactor with highly

exothermic reactions was used as a simulation case study to demonstrate the effec-

tiveness of the proposed approach. Simulation studies have been carried out in both

nominal case and plant/model mismatch case and the results showed that the perfor-

mance of the batch reactor in terms of the amount of a desired product and of batch

operation time can be improved significantly by the proposed strategy. In addition,

they also clearly indicate the capability of the GMC controller to control the reactor

temperature along the specified trajectory and that of the EKF to estimate the states

and parameters of the system.
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5.2 Continuous Stirred Tank Reactor (CSTR)

5.2.1 Introduction

The control of chemical reactors such as a continuous stirred tank reactor (CSTR)

has received major attention over the past decades. Inherently nonlinear and complex

dynamic behavior i.e. strong parametric sensitivity and multiple steady state behav-

ior posts some of the most challenging control problems that are difficult to handle

with linear controllers. However, most chemical reactors have been traditionally con-

trolled using linear control techniques. This mainly contributes to their simplicity, well

establishment of linear control theory, and successful applications in real industries.

Since it is known that linear controllers usually provide satisfactory control perfor-

mance especially when a process is operated in the vicinity of a nominal operating

condition, a number of nonlinear process control methodologies has emerged for non-

linear processes with wide range of operation (Bequette, 1991). This characteristics is

prevalently found in many process control problems, for examples, controlling systems

during startup and shutdown, and tackling set point changed due to different product

specification.

Model predictive control (MPC), one of advanced feedback control techniques, is

widely recognized as an efficient control strategy to deal with many challenging non-

linear control problems. It has been increasing adopted in industries. Many successful

applications as well as an overview of commercial MPC algorithms are reported by

Qin and Badgwell (1997). The key advantage of MPC over other control methods is

that various process constraints concerning state and manipulated variables can be

explicitly handled in the formulation of a MPC problem. Furthermore, MPC is also

well suited for control of multivariable processes in an optimal way.

However, there are some important issues that need to be taken into account in

the practical implementation of MPC. The first one lies on the fact that the MPC

requires an availability of the process model to be used in its algorithm and also the

knowledge of all system states to incorporate feedback. However, in most industrial

processes, it is accepted that the perfect model is rarely available; a modeling error
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is unavoidable, and the state variables are not all measurable. Thus, the use of MPC

should account for these requirements. Apart from that, stability is an important

issue to be considered since the closed loop stability property of the system under

MPC is desirable (Mayne et al., 2000). It is to be noted that most control techniques

used in process industries do not meet this demand (Henson, 1998). Additionally, the

computational method of an optimization problem in the MPC formulation is another

difficult problem. An efficient and reliable optimization technique is needed so that

the computational time is sufficient small for on-line implementation. All of these

concerns will be addressed through this simulation study.

The objective of this study is aimed to investigate the performance of a nonlin-

ear MPC and a hybrid control strategy using a nonlinear MPC and a linear control

methodology through a dual mode control approach. Using the dual mode approach

takes an advantage of combining an advanced nonlinear control design and a linear

control technique in that the linear controller with simple control algorithm and less

computation demand is applied within the area around a desired condition which

satisfies its design specification while, outside this area, the nonlinear MPC with guar-

anteed stability is applied instead. In the nonlinear MPC algorithm, a simultaneous

model solution and optimization technique is used for solving an on-line optimization

problem at each time interval to determine manipulated variables.

To demonstrate the implementation of both nonlinear MPC and dual mode non-

linear MPC, we consider the control of a continuous stirred tank reactor (CSTR) with

a single irreversible, exothermic reaction. Although there exists many research studies

on the control of a CSTR, most of the previous works mainly attempt to control a

reactor temperature. The direct control of concentration in a CSTR is sometimes nec-

essary in order to satisfy different product specification, environmental requirement,

safety consideration, etc., so that we focus our attention to the control of product

concentration. Nevertheless, major difficulties associated with such a control problem

are that the measurement of concentration is often not available for the control point

of view and a process model used always presents the uncertainty of model param-

eters e.g. in kinetic parameters. To overcome these obstacles, an on-line extended

Kalman filter (EKF) is coupled with the nonlinear MPC to estimate the unmeasured
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concentration and to compensate a model mismatch due to the uncertainty in process

parameters.

5.2.2 Dual Mode Nonlinear MPC Approach

The basic concept of the dual mode nonlinear MPC algorithm can be divided into

two modes of operation as illustrated in Figure 5.14. That is, in the first mode,

the nonlinear MPC with a terminal inequality constraint, is applied whenever the

state x(t) lies outside the terminal space E, while a local controller in the second

mode is employed inside the terminal region to bring the state to a desired set point.

The main benefit of the dual mode MPC is that, under nominal operating condition

where the state are usually located within the pre-determined area (around a desired

set point), any reliable linear control techniques, which can stabilize the system and

require less computational effort, is utilized to achieve satisfactory control performance.

This is because, in this region, the nonlinear dynamic behavior of the systems can be

sufficiently described by linear relation. However, for the case where the system is

driven far away from the desired condition, the MPC with guaranteed stability over a

wide range of operation is activated to steer the states of the system back to the region

E. In other words, an advanced control algorithm is integrated with a conventional

linear control technique in an efficient dual mode scheme. Due to such advantage, the

dual mode MPC is an attractive control methodology for process control applications.

Local Linear Control Technique

In the present study, two types of well developed linear control methodologies: state

feedback linearizing control (SFC) and conventional proportional-integral-derivative

technique (PID) are studied via the dual mode control framework. In general, the

SFC has often been used in the dual mode control approach (Michalska and Mayne,

1993; Allgower adn Ogunnaike, 1997) since it can asymptotically stabilize a closed loop

system within the small region E. However, the SFC controller still requires a reliable

process model used in the control algorithm. Alternatively, the PID controller, which

has long history in control engineering and is widely used for many real applications,
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Figure 5.14: The concept of dual mode NMPC technique

is considered in the dual mode control approach. The advantage of the PID controller

over the SFC controller is that the knowledge of process models is not necessary in the

PID control law. This alternative approach has not been previously addressed in the

literature. Furthermore, it has been accepted that the PID controller can effectively

control processes near or within nominal operating regimes in which control parameters

are tuned.

Dual Mode Nonlinear MPC Algorithm with EKF

In this section, we present the extension of dual mode nonlinear MPC concept to

include an extended Kalman filter (EKF) in its control algorithm. Since the dual

mode nonlinear MPC incorporates a feedback mechanism to update current states

for computing a future prediction of system behavior in the control algorithm, the

acquirement of current process information is an essential part in the nonlinear MPC

algorithm as well.

Generally, the knowledge of the system states is often obtained through on-line

measurements; however, in practice only some of states can be directly measured. In

such a case, a state estimation can be employed to obtain the value of unmeasured

state variables from available output measurements. Various methods of state esti-

mation for linear and nonlinear systems exist in process control area, for example,
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Kalman filter, Luenberger observer and Moving horizon estimator. A review of these

estimation techniques and their applications can be seen in Soroush (1998) and Muske

and Edgar (1997). However, the EKF, which is an optimal recursive estimation tech-

nique, is applied here due to the main contributions in that the EKF requires only

a current measurement and allows to use prior knowledge of a system for estimation

with unsophisticated algorithm. As a consequence, the EKF is appropriate for on-line

implementation. The detail of the EKF is given in Appendix C.

With an inclusion of the EKF, the capability of the dual mode nonlinear MPC to

handle systems in which some state variables are not measurable, can be enhanced.

Besides, in some situations where process parameters are not known exactly, we can

apply the EKF to estimate these uncertain parameters, thus increasing the robustness

of the dual mode MPC as well.

The proposed dual mode nonlinear MPC integrating with the EKF algorithm can

be described as follows:

Step 0 Specify a terminal region (E) around a desired operating condition.

Step 1 Measure outputs and estimate unmeasured states/uncertainty process param-

eters using the EKF.

Step 2 Examine the value of the state variable to be controlled i.e. if the state lies

inside the region E, a linear controller is activated. Otherwise, a nonlinear MPC

controller is implemented.

Step 3 Apply the first element of calculated control input to the system.

Step 4 Repeat from step 1 for the next sampling time interval.

5.2.3 CSTR Case Study

In this work, we consider a continuous stirred tank reactor in which a first order, ir-

reversible exothermic reaction (A → B) is carried out, as an illustrative case study.

The reactor model studied by Limqueco and Kantor (1990) has been modified here to

include the dynamic of product concentration (B). Under the following assumptions;
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Table 5.7: The definition of dimensionless variables and parameters

x1 = CA

Cf
v = γq

Tf0
(Tf − Tf0) γ = E

RTf0

x2 = CB

Cf
τ = Q0

V
t φ = V

Q0
k0e

−γ

x3 =
T−Tf0

Tf0
γ β =

−∆HCf

ρCpTf0
γ q = Q

Q0

u = γδ
Tf0

(Tc − Tf0) δ UrAr

ρCpQ0

the reactor is perfectly mixed and no heat loss occurs; all model parameters and phys-

ical properties are constant at nominal operation, the material and energy balances of

the CSTR can be written as:

dCA

dt
= −k0CA exp

(
− E

RT

)
+

F

V
(CAf − CA) (5.25)

dCB

dt
= k0CA exp

(
− E

RT

)
− F

V
CB (5.26)

dT

dt
= −∆H

ρCp

k0CA exp
(
− E

RT

)
+

F

V
(Tf − T ) +

UA

ρCpV
(Tc − T ) (5.27)

where CA and CB are the concentration of component A and B, T is reactor temper-

ature, Tf and Tc are feed temperature and coolant temperature, respectively.

With the dimensionless parameters and variables as defined in Table 5.7, the re-

duced dimensionless models are given by:

dx1

dτ
= −φx1 exp

(
x3

1 + x3/γ

)
+ q(1− x1) (5.28)

dx2

dτ
= φx1 exp

(
x3

1 + x3/γ

)
+ qx2 (5.29)

dx3

dτ
= βφx1 exp

(
x3

1 + x3/γ

)
− (q + δ)x3 + u + v (5.30)

where x1 is the dimensionless concentration of component A (reactant), x2 is the di-

mensionless concentration of component B (product), x3 is the dimensionless reactor

temperature, u and v represent the dimensionless cooling temperature and the di-

mensionless feed temperature, respectively. The meanings of the other variables and

parameters are given in the nomenclature.

The values of process parameters and initial conditions chosen in this case study

are shown in Table 5.8. We assume that the initial feed temperature (Tf ) and the
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nominal feed temperature (Tf0) are equal at 300 K. For these process parameters

and conditions, the dynamic behavior of the CSTR system exhibits multiple steady

state conditions as shown in Figure 5.15 where the intersections between the total

rate of heat generated and that of heat removed are the steady states. According to

Figure 5.15, the system has three (two stable and one unstable) steady states and

the operating condition in Table 5.8 corresponds to the higher stable steady state.

It should be noted that, without any control, when there is a small disturbance, for

example, an decrease in feed temperature of 5 K from its nominal temperature of 300

K, the system will move to a new steady state as can be clearly seen from Fig. 5.15.

Table 5.8: Process parameters and initial conditions

β = 8 x1(0) = 1

δ = 0.3 x2(0) = 0

γ = 20 x3(0) = 2

φ = 0.072 u = 0

q = 1 v = 0

5.2.4 Control Implementation

This section demonstrates the application of the EKF-based dual mode nonlinear MPC

algorithm proposed to a CSTR system for the control of product concentration. To in-

vestigate the benefit of this control strategy, we also compare the control performance

of the developed control strategy with other different predictive control schemes as

explained in Table 5.9. The controller I and II based on the EKF-based dual mode

control approach consist of nonlinear MPC (NMPC) technique in conjunction with

SFC and PID method, respectively, whereas the controller III and IV are original

NMPC approach, which includes zero terminal constraint to guarantee stability, with

and without the EKF, respectively. To control the dimensionless of the product con-

centration (x2), the jacket cooling temperature (u) is used as a control manipulated

input and is assumed to be directly manipulated without delay. The input u is bounded

between 0 and 2. The frequency of updated control action and estimation is chosen
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Figure 5.15: Steady state operating condition with change in feed temperature

to be equivalent to the measurement sampling time (∆τ = 0.2).

The formulation of the MPC can be described as follows:

min
u(τ)

∫ τ+Tp

τ
(xsp

2 − x2(τ))2 dτ (5.31)

subject to:

process model equations:

Equations (5.28) to (5.30) (5.32)

control and state constraints:

0 ≤ u(τ) ≤ 2 (5.33)

0 ≤ x3(τ) ≤ 6.7 (5.34)

and the terminal (region) state constraint:

|xsp
2 − x2(Tp)| ≤ 0.115 for the controller I and II (5.35)

xsp
2 − x2(Tp) = 0 for the controller III and IV (5.36)
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Table 5.9: Different predictive control strategies

Controller Control strategy Stability constraints in NMPC Estimator

Type I Dual mode approach Terminal region (E) EKF

(NMPC with SFC)

Type II Dual mode approach Terminal region (E) EKF

(NMPC with PID)

Type III NMPC Zero terminal EKF

Type IV NMPC Zero terminal not included

where the prediction horizon (Tp) equals to 10. Equation (5.34) represents path con-

straint on reactor temperature which is equivalent to the maximum allowable tem-

perature of 400 K. The region state stability constraint is defined in Equation (5.35)

corresponding to approximately 10% deviation around its desired set point value while

the terminal zero constraint is given in Equation (5.36). Note that to keep the con-

centration at the desired set point, the reactor temperature sometimes needs to be

raised. However, it is essential to keep the reactor temperature within a certain limit

to avoid a runaway reaction. The resulting optimal control problem is solved using

the simultaneous strategy as described earlier.

As a local controller in the dual mode control scheme, both SFC controller through

a linear quadratic control approach and PID controller in velocity form are investi-

gated. The idea of the SFC is to compute the control u(t) as shown in the following

equation, at each sampling time based on linearized nonlinear process models around

the current state condition.

u(τ) = −K(τ)x(τ) (5.37)

where the feedback controller gain K(τ) = −R−1BT P (τ) and P (τ) is determined by

solving the following Riccati equation:

−P (τ)A(τ)− A(τ)T P (τ)−Q + P (τ)B(τ)R−1B(τ)T P (τ) = 0 (5.38)

where A and B are the Jacobi-linearized system matrix corresponding to process mod-

els (Equations (5.28) to (5.30)), Q and R are SFC tuning parameter matrix. Table
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Table 5.10: The value of tuning parameters for SFC and PID

The SFC controller

Q = diag[1 1 5] R = 0.05

The PID controller

Kc = 13 τi = 1.2 τd = 0.5

5.10 shows the tuning parameter value of the SFC and PID controller. These tuning

parameters are adjusted to make the control action less drastic.

In all case studies, only the measurement of the dimensionless reactor temperature

(x3) is assumed to be available. Accordingly, the EKF is utilized to on-line estimate

the dimensionless concentration (x1 and x2) using the measurement of x3. That makes

the dual mode NMPC possible to control the unmeasured concentration. However, this

assumption is omitted when the controller IV is applied; for this case the value of all

dimensionless states (x1, x2 and x3) can be acknowledged.

Simulation results are evaluated in case of disturbance rejection studies under nom-

inal condition where all process parameters in the controller model are specified cor-

rectly and under model mismatch condition due to uncertainties in kinetic parameter

(φ) and heat transfer coefficient (δ). Since these parametric uncertainties can affect

the control performance, the EKF is also employed to estimate φ and δ. To do this,

the Equations (5.39) and (5.40), as shown below, are augmented to the CSTR mod-

els (Equations (5.28) to (5.30)) and utilized in the EKF algorithm. The parameter

value is, therefore, estimated along with state variables. The use of parameters as

additional system states is found to be a suitable approach (Semino et al., 1996). The

EKF parameters: P , Q and R are tuned to reflect the accuracy of estimation of the

unmeasured concentration as well as of the uncertain parameters (φ and δ). The values

of these tuning parameters are given in Table 5.11.

dφ

dτ
= 0 (5.39)

dδ

dτ
= 0 (5.40)
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5.2.5 Simulation Results and Discussions

In principle one would like to control the CSTR system at a desired steady state (set

point). However, once disturbances e.g. a step change in feed temperature, come

into the system, this can cause the system to move from the desired steady state to

a new (undesired) steady state point. The control objective of our simulation work

is to apply the EKF-based dual mode NMPC techniques to control the dimensionless

of the product concentration at its nominal steady state (xsp
2 = 0.7646). We assume

that the CSTR system is initially controlled at its nominal steady state value until

a feed temperature disturbance (v) consisting of a decrease in the feed temperature

from 300 K to 295 K is introduced to the system at t = 20 and is kept throughout

the simulation. At this point, the controller is still set at its initial value until at t

= 40 the controller is then activated. During this open loop period the dimensionless

product concentration decreased to a new steady state value (x2 = 0.0862) as shown

in Figure 5.16. It can also be seen from Figure 5.16 that the CSTR shows highly

nonlinear dynamic behavior.

First, simulation studies are performed on the nominal case in which all model

parameters are known exactly. For the controller I and II, since the feed temperature

disturbance causes the dimensionless concentration (x2) to be outside the area E, the

NMPC controller is first activated to drive the state x2 to the operating region E and

then switches to the local controller (SFC or PID) in order to control the system to the

desired set point. Figure 5.17 shows a control response of the controller I and II. It can

be seen that both the controller I and II can bring the product concentration (x2) back

Table 5.11: Initial state estimates and tuning parameters in EKF

x1(0) = 1.0 P = diag[2 1.5 1.5 0.5 0.5]

x2(0) = 0 Q = diag[9 4 4 0.01 0.5]

x3(0) = 2.0 R = diag[10]

φ(0) = 0.072

δ(0) = 0.3
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Figure 5.16: Open loop response with feed temperature disturbance

to the desired set point with slightly overshoot in response, even though the controller

II gives longer setting time (high IAE, see Table 5.12). It should be mentioned that

the better control performance of the controller II could be achieved by adjusting the

PID tuning parameters. Similar results can be observed for the controller III and IV;

the performance of the controller III is closely equivalent to that of the controller IV

as shown in Figure 5.18 and further seen in Table 5.12.

Next, the control performances are investigated with respect to a model mismatch

due to parametric uncertainties, i.e. changes in φ and δ, in the controller model.

As known that, in real practice, a perfect model is hardly to obtain, the control

performance should be tested for robustness under the presence of these uncertainties.

Figures 5.19 and 5.20 show the result for the model mismatch in φ (25% decrease).

It is found that the controller I, II and III are able to control the concentration of B

nearly to its desired set point with small overshoot; although, the control response of

the controller II takes long settling time. This is because the ability of the EKF to

estimate the states and process parameter values accurately as can be seen from Figure

5.21. Therefore, such a model mismatch is reduced. On the other hand, the controller
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IV cannot manage this mismatch; however, it still provides a reasonably good control

response with small offset and more oscillations in the control action compared to the

controller I, II and III. This result implies that the controller IV can regulate the

system within a limit range of a model mismatch. An offset of the controlled system

caused by model mismatch is often noticeable; nevertheless, using the EKF can reduce

this influence.

In case of a 25% decrease in δ, again the controller I is capable to deal with

this mismatch and give a better control response while the controller II and III give

a similar control response but with small offset and some oscillation as illustrated in

Figures 5.22 and 5.23. The control performance of the controller I is found to be better

than other controllers as compared in Table 5.12. In comparison to the controller I,

II and III, the controller IV cannot accommodate this mismatch at all resulting to

the state x2 far away from the desired set point. It is shown that the controller IV is

strongly sensitive to the mismatch in δ.

Finally, simulations are carried out under parametric uncertainties in φ decreased

by 25% and δ decreased by 25%. As can be seen from Figure 5.24, the results using the

controller I and II show that they can drive the state x2 to the desired set point and

then keep it at set point; although, there is some oscillation in the controller II. The

control response of the controller III and IV shows a similar trend (Figure 5.25). Both

the controllers give a good control performance with small offset but the controller IV

produces more oscillate in control action. Figure 5.26 shows the estimation of the state

x2 and parameters φ and δ; it is found that the EKF provides a good estimation of

the state x2 and can estimates these parameters closed to the actual values.

Table 5.12 summaries the results for all case studies in term of the IAE value and

the CPU time. It can be noticed from these results that the use of the EKF can

improve the performance of the model predictive controller when the models of the

system to be controlled is exposed to model mismatch under parametric uncertainty as

compared the results of the controller IV to the controller I, II and III. In other words,

the robustness of the MPC controller coupled with the EKF is enhanced. Another

important point to be emphasized is that by comparing the dual mode NMPC (the

controller I and II) and the original NMPC (the controller III and IV), it indicates
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Table 5.12: Summary of control performance (IAE) and elapsed CPU time for dif-

ferent control strategies

IAE/CPU time (s)
Case studies

Controller I Controller II Controller III Controller IV

(1) Nominal case 1.2356/49.43 1.3299/48.39 1.2359/106.33 1.2358/100.35

(2) φ +25% 1.2366/66.24 1.3360/62.61 1.2481/120.45 5.1083/80.74

(3) φ -25% 1.2348/57.78 1.3267/54.21 1.2373/108.42 1.5238/149.01

(4) δ +25% 1.2372/56.25 1.4401/55.25 1.3374/115.84 1.2935/124.74

(5) δ -25% 1.2321/40.15 1.3365/39.33 1.3435/103.75 3.4463/65.86

(6) φ and δ +25% 1.2372/59.81 1.4451/56.02 1.3419/123.42 1.6882/102.38

(7) φ and δ -25% 1.2330/44.49 1.3363/41.52 1.3725/87.99 1.4784/139.34

the effect on using a terminal region constraint instead of a final zero constraint in the

NMPC formulation; the dual mode NMPC requires less computational time than the

original NMPC. This can be explained that, within the pre-specified area around the

desired set point, the linear control method is utilized and needs little computational

effort compared to the NMPC.

5.2.6 Conclusions

In this study, a dual mode control design framework integrating an advanced nonlin-

ear control methodology, i.e. a nonlinear MPC controller, with a conventional linear

control technique, i.e. a SFC and PID controller, has been proposed and applied to

control a product concentration in a CSTR. An EKF was incorporated into the control

algorithm to estimate a concentration and process parameters exposed to model un-

certainty. To control the concentration, a reactor temperature is considered as a path

constraint in the formulation of MPC problem to ensure that it does not exceed an

allowable limit during the course of operation. An open loop optimal control arising

from the MPC problem was solved at every sampling time using an efficient simulta-

neous optimization approach. The performance of the dual mode MPC was compared

with an original MPC scheme with/without the EKF. Simulation results have shown
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the capability of the proposed control strategies to maintain the product concentration

at its desired set point. Stability and robustness of the dual mode MPC controller can

be achieved for both the nominal case and the presence of parametric uncertainty. The

results also indicated that the PID controller implemented in the dual mode MPC is a

reliable and powerful control strategy; the SFC controller can be replaced by the PID

controller in order to steer a state to a desired set point. In addition, it can be seen

that the EKF performs excellent estimation of the concentration as well as model pa-

rameters; combining the EKF with the controller can compensate the effect of model

mismatch. In comparison to the original MPC, the dual mode MPC strategy needs

less on-line computational time; this clearly indicates the feasibility in employing this

controller for real application.



97

40 41 42 43 44 45 46 47 48 49 50
0

0.5

1

1.5

2

X
2

40 41 42 43 44 45 46 47 48 49 50
0

0.5

1

1.5

2

u

τ

Figure 5.17: Control response for nominal case: controller I (solid) and II (dash)
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Figure 5.18: Control response for nominal case: controller III (solid) and IV (dash)
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Figure 5.19: Control response for uncertainty in φ (25% decrease): controller I (solid)

and II (dash)
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(solid) and estimate (�)
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Figure 5.22: Control response for uncertainty in δ (25% decrease): controller I (solid)

and II (dash)
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Figure 5.23: Control response for uncertainty in δ (25% decrease): controller III

(solid) and IV (dash)
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Figure 5.25: Control response for uncertainty in φ and δ (25% decrease): controller

III (solid) and IV (dash)
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Chapter 6

Model Predictive Control of a Trickle Bed

Reactor∗

This chapter describes the implementation of a model predictive control (MPC) tech-

nique to a trickle bed reactor. The dynamic reactor models developed in Chapter 4

is used here to represent the reactor system and to design the MPC controller. Sim-

ulation studies are carried out to investigate the performance of the MPC strategy to

control the temperature at outlet of a top catalyst bed within the trickle bed reac-

tor. The performance of the MPC controller is evaluated with set point tracking and

disturbance rejection cases under nominal and model mismatch conditions.

6.1 Description of Trickle Bed Reactor

The trickle bed reactor (TBR) in which hydrogenations of pyrolysis gasoline occur, as

described in Chapter 4, is utilized for the control study of a model predictive control

(MPC) scheme. The schematic diagram of the TBR system is illustrated in Figure

6.1.

The following reactions are assumed to take place within the trickle bed reactor:

Diolefins + H2
r1−→ Olefins + H2

r1−→ Paraffins

The process models derived from mass and energy balances can be written as (see

Chapter 4 for details):

dCH2,g

dt
= −ug

εg

dCH2,g

dz
− kl,H2ai

εg

(CH2,g − CH2,l) (6.1)

∗Portions of this chapter were appeared in Arpornwichanop and Kittisupakorn (2003).
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Figure 6.1: Schematic diagram of trickle bed reactor

dCH2,l

dt
= −ul

εl

dCH2,l

dz
+

kl,H2ai

εl

(CH2,g − CH2,l)−
(1− ε)

εl

(r1 + r2) (6.2)

dCdi,l

dt
= −ul

εl

dCdi,l

dz
− (1− ε)

εl

(r1) (6.3)

dCole,l

dt
= −ul

εl

dCole,l

dz
− (1− ε)

εl

(−r1 + r2) (6.4)

dCpara,l

dt
= −ul

εl

dCpara,l

dz
+

(1− ε)

εl

(r2) (6.5)

dT

dt
=

−(ugCp,gρg + ulCp,lρl)
dT
dz
− (∆H)(1− ε)(r1 + r2)

(εgρgCp,g + εlρlCp,l)
(6.6)

r1 = k0,1 exp
(−Ea1

RT

)
CDCH2 (6.7)

r2 =
k0,2 exp

(
−Ea2

RT

)
COCH2

1 + k0,ad exp
(
−Eaad

RT

)
CD

(6.8)

At quench section:

(Qf + Qq)C
B2
H2,l = QfC

F
H2,l + QqC

Q
H2,l (6.9)

(Qf + Qq)C
B2
di,l = QfC

F
di,l + QqC

Q
di,l (6.10)

(Qf + Qq)C
B2
ole,l = QfC

F
ole,l + QqC

Q
ole,l (6.11)

(Qf + Qq)C
B2
para,l = QfC

F
para,l + QqC

Q
para,l (6.12)
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TB2 =
ugAρgCp,gT

F + ρlCp(QfT
F + QqT

Q)

(ugAρgCp,g + (Qf + Qq)ρlCp,l)
(6.13)

In this work, the control of the reactor temperature at outlet from the top cat-

alyst bed is chosen as a case study. The temperature rise across the catalyst bed,

which is caused by heat released from hydrogenation reactions, is one of the important

operating variables that are necessary to monitor for smooth process operation and

meeting product specification. To ensure the complete elimination of unstable com-

pounds in pyrolysis gasoline, high reactor temperature is preferred. However, it should

not be too high because higher temperature favors the production of polymers that

are deposited on the catalyst particles resulting to catalyst deactivation. Furthermore,

higher temperature reduces the flow of liquid through the catalyst bed, thus decreasing

the washing effect.

In industrial practice, the inlet temperature of the reactor is used to maintain the

temperature rise across the catalyst bed at a suitable condition. Therefore, the MPC

is implemented to determine the inlet temperature (Tin: a manipulated variable) for

controlling the temperature at the outlet of the top catalyst bed.

6.2 Formulation of Model Predictive Control

The formulation of the MPC controller based on solving an on-line optimal control

problem is described as follows.

The optimal control problem can be given by an objective function (performance

index):

min
Tin(t)

t0+TP∫
t0

(T sp(zB1)− T (zB1, t))
2 dt (6.14)

subject to the process models:

Equations (6.1)− (6.13) (6.15)

bound on a manipulated variable:

343 ≤ Tin ≤ 403 (6.16)
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and an end point constraint:

T (zB1, TP ) = T sp(zB1) (6.17)

where T sp(zB1) is the set point value of the reactor temperature at outlet of the top

catalyst bed.

It is noted that Equation (6.17) is included in the MPC formulation to ensure the

stability of the system; the optimal controls have to force the states of the system to

a desired set point at the terminal time (t0 +TP ). In this work, the prediction horizon

(TP ) is set to be 1 hr which is large enough to guarantee that T (zB1, TP ) → T sp(zB1).

The frequency of updated control action is chosen to be 0.1 hr. Therefore, the number

of future controls in the MPC problem is equal to 10.

The structure of the MPC employed in this study is shown in Figure 6.2. It is

assumed that all state variables of the system are measured. It can be seen that

feedback information consists of i) a measurement of both the reactant concentrations

(C) and the reactor temperature (T ), and ii) an error signal (e) of the controlled

variable (T at the outlet of the top catalyst bed) which is the difference observed

between the measured value and the predicted value from the model. This error signal

will go to zero if there are no unmeasured process disturbances to the system and the

system model accurately represents the real plant. Otherwise, there is a disturbance

feedback signal to the MPC controller.

In this work, the effect of modeling error is treated as an additive step disturbance

in the output and is determined at the kth sampling time as shown in Equation (6.18).

The disturbance term (dk) is added to the output prediction over the entire prediction

horizon (TP ) in the MPC objective function (Equation (6.14)).

dk = T (zB1, k)measured − T (zB1, k)predicted (6.18)

After updating the feedback information from the system, the MPC computes a

sequence of control inputs, Tin, by solving the optimal control problem (Equations

(6.14) to (6.17)). However, only the initial value of this control profile is applied to

the system and this procedure is repeated for the next sampling time.
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Figure 6.2: Structure of model predictive control

To find the solution of the optimal control of processes described by a system of

partial differential equations (PDEs), we utilize the orthogonal collocation method on

finite elements to discretize the spatial derivative term. This converts the PDEs into an

ordinary differential equations. Then, the sequential solution approach by the PREOP

package (Morrison, 1984) is used to solve the discretized optimal control problem.

6.3 Model Predictive Control Algorithm

The algorithm of the MPC controller can be summarized as follows

Step 1 Specify the future desired output (objective function) and initial states of the

system.

Step 2 Calculate a sequence of future controls minimizing the objective function over

a finite prediction horizon.

Step 3 Implement the initial value of the controls.

Step 4 Measure outputs and go back to Step 2 in order to calculate a new control

sequence for the next sampling time based on new feedback information.
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6.4 Simulation Results and Discussions

This section demonstrates the implementation of the MPC to control the reactor

temperature at the outlet of top catalyst bed within the trickle bed reactor by adjusting

the inlet feed temperature (a manipulated variable). The performance of the MPC

controller is compared with that of a PID control algorithm in velocity form (Seborg

et al., 1989). The trial and error procedure (Seborg et al., 1989) is utilized to obtain

the PID tuning parameters (Kc = 0.3, τi = 1, and τd = 0.001).

The control performance of both controllers is evaluated in set point tracking and

disturbance rejection cases under nominal condition in which all model parameters are

specified correctly. The set point change and disturbance are introduced to the system

at time, t = 10 min in all cases. Since the MPC controller is based on the model of the

system to be controlled, we investigate its robustness property under model mismatch

conditions i.e. changes in k0,1 and ∆H.

In the simulation studies, we assumed that the trickle bed reactor is started at

a steady state condition. The values of nominal process parameters and initial inlet

stream conditions are given in Table 6.1.

The first set of simulations illustrates the nominal case; all process parameters of

the reactor models used in the MPC algorithm are known exactly. In case of set point

tracking of the top catalyst bed outlet temperature from its nominal value (449.6 K)

to 455 K, it can be seen from Figure 6.3 that the MPC controller can control the

temperature at the desired set point with small overshoot. On the other hand, the

PID controller shows more overshoot and some oscillation in the response as can be

seen in Figure 6.4. Similar results can be observed for the case where the temperature

set point is decreased to 445 K. The MPC controller still gives a good control response

as shown in Figure 6.5. It is able to drive the temperature to its desired set point

smoothly with fast setting time while the PID shows slower and oscillated response

(Figure 6.6).

The MPC and PID controllers are then tested in cases of the disturbance rejection

that consists of 20% change in feed flow rate of pyrolysis gasoline from its nominal
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Table 6.1: Process parameters and initial conditions

Pressure P = 29.73 atm

Diffusivity Dl,H2 = 10−5 cm2/s

Heat of reaction ∆H = -30 kcal/mol

Hydrogen gas feed

Flow rate Q = 8350 kg/hr

Temperature T = 391.63 K

Concentration

Hydrogen CH2 = 0.926 kmol/hr

Pyrolysis gasoline feed

Flow rate Q = 68.69 m3/hr

Temperature T = 391.63 K

Density ρ = 820 kg/m3

Concentration

Diolefins Cdi = 1.48 kmol/hr

Olefins Cole = 1.23 kmol/hr

Paraffins Cpara = 2.97 kmol/hr

Quench

Flow rate Q = 15.43 m3/hr

Temperature T = 309.67 K

Concentration

Olefins Cole = 2.20 kmol/hr

Paraffins Cpara = 3.11 kmol/hr

Hydrogen CH2 = 0.25 kmol/hr
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Table 6.2: Comparison of the MPC and PID control performance in the nominal case

IAE
Case studies

MPC PID

Set point tracking

(1) change T sp to 455 2.4511 9.3862

(2) change T sp to 445 1.9982 8.4008

Disturbance rejection

(3) 20% increase in feed flow rate 1.2849 4.5246

(4) 20% decrease in feed flow rate 1.9172 1.9430

Note that: IAE =
∫
|T sp − T (t)| dt

value.

With a 20% increase in the flow rate of gasoline feed, the result shows that the

MPC controller (Figure 6.7) is able to elimate this disturbance and give faster control

response, compared with the PID controller (Figure 6.8).

For the case of a 20% decrease in the feed rate, it can be seen that both controllers

provide a good control performance as illustrated in Figures 6.9 and 6.10 and can also

seen from the IAE value in Table 6.2. However, some oscillation can be observed in

the PID control response.

Table 6.2 summarizes the control results of the MPC and PID controller in term

of the IAE value for all simulation studies in the nominal condition. They clearly

indicate that the control performance of the MPC controller is better than that of the

PID controller in all case studies.

Next, The robustness property of the MPC controller has been examined with

respect to uncertainties in model parameters employed in the MPC algorithm.

Figures 6.11 and 6.12 show the results of a mismatch in heat of reaction, ∆H (20%

decrease), in case of set point tracking of the reactor temperature (approximately

±5 K from its nominal set point). The MPC controller is able to drive the reactor

temperature to a new desired set point; although, some error are observed in the first

sampling time interval. This is because the MPC controller computes the control
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Table 6.3: The MPC performance under model mismatch conditions

IAE
Case studies

20% decrease in ∆H 20% decrease in k0,1

Set point tracking

(1) change T sp to 455 14.0797 9.8088

(2) change T sp to 445 10.2721 10.6590

Disturbance rejection

(3) 20% increase in feed flow rate 9.3185 9.6889

(4) 20% decrease in feed flow rate 9.6515 9.0933

input based on the model with the incorrect parameter value. However, the effect of

modeling error is compensated through feedback information at the next sampling time

and therefore, the MPC controller can bring the reactor temperature to the desired

value.

Similarly, in case of disturbance rejection with the same model mismatch (20%

decrease in ∆H), the MPC controller still provides resonably good control response;

it can bring the system back to its original set point value as seen in Figures 6.13 and

6.14. This shows the ability of the MPC controller to reject the disturbance in the

presence of the model mismatch.

With a 20% decrease in the reaction rate constant, k0,1, Figures 6.15 and 6.16

illustrate the capability of the MPC controller to control the system at the desired

temperature set point value; although, there are some error in the first sampling time

due to the model mismatch. With the proposed strategy, the modeling error is reduced

after the MPC receives new feedback information from the system.

For disturbance rejection case with the change in the feed flow rate under model

mismatch in k0,1 (20% decrease), it can be seen from Figures 6.17 and 6.18 that the

MPC controller can control the reactor temperature at its set point and then maintain

it at the set point throughout an entire simulation. Table 6.3 provides the control

performance of the MPC controller in term of the IAE value for all case studies under

model mismatch conditions.
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6.5 Conclusions

This chapter has investigated the performance of a MPC strategy to control the tem-

perature of a trickle bed reactor where hydrogenations of pyrolysis gasoline take place.

The reactor models developed in Chapter 4 was utilized to the formulation of the

MPC problem. The results showed that in the nominal condition where all model

parameters are specified correctly, the MPC controller can provide satisfactory control

response and control the reactor temperature at the desired set point value in both set

point tracking and disturbance rejection cases. The control performance of the MPC

controller is better than that of a PID controller in all cases. In the presence of model

mismatch, the MPC controller still provides reliable control performance and is robust

with respect to errors in model parameters.
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Figure 6.3: Control response of the MPC controller for set point tracking (T sp = 455

K)
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Figure 6.4: Control response of the PID controller for set point tracking (T sp = 455

K)
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Figure 6.5: Control response of the MPC controller for set point tracking (T sp = 445

K)
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Figure 6.6: Control response of the PID controller for set point tracking (T sp = 445

K)



114

0 10 20 30 40 50 60 70 80 90 100
440

445

450

455

T
 (

K
)

 Outlet T of the top catalyst bed

0 10 20 30 40 50 60 70 80 90 100
391.6

391.8

392

392.2

392.4

392.6

392.8

393
 Inlet T of the reactor

T
 (

K
)

t (min)

Figure 6.7: Control response of the MPC controller for disturbance rejection with

20% increase in feed flow rate
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Figure 6.8: Control response of the PID controller for disturbance rejection with 20%

increase in feed flow rate
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Figure 6.9: Control response of the MPC controller for disturbance rejection with

20% decrease in feed flow rate
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Figure 6.10: Control response of the PID controller for disturbance rejection with

20% decrease in feed flow rate
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Figure 6.11: Control response of the MPC controller for set point tracking (T sp =

455 K) with a mismatch in ∆H (20 % decrease)
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Figure 6.12: Control response of the MPC controller for set point tracking (T sp =

445 K) with a mismatch in ∆H (20 % decrease)
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Figure 6.13: Control response of the MPC controller for disturbance rejection (20 %

increase in feed rate) with a mismatch in ∆H (20 % decrease)
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Figure 6.14: Control response of the MPC controller for disturbance rejection (20 %

decrease in feed rate) with a mismatch in ∆H (20 % decrease)
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Figure 6.15: Control response of the MPC controller for set point tracking (T sp =

455 K) with a mismatch in k0,1 (20 % decrease)
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Figure 6.16: Control response of the MPC controller for set point tracking (T sp =

445 K) with a mismatch in k0,1 (20 % decrease)
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Figure 6.17: Control response of the MPC controller for disturbance rejection (20 %

increase in feed rate) with a mismatch in k0,1 (20 % decrease)
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Figure 6.18: Control response of the MPC controller for disturbance rejection (20 %

decrease in feed rate) with a mismatch in k0,1 (20 % decrease)



Chapter 7

Conclusions

The objective of this research is to develop and implement an advanced control scheme

for the control of a trickle bed reactor which is typically characterized by high nonlin-

earity and spatial variation, and naturally modeled by a system of nonlinear partial

differential equations (PDEs). Controlling such a system is known to be difficult and

provides a challenging problem. This motivates the need of an efficient control algo-

rithm.

The work presented in this thesis studies on a model predictive control (MPC)

to control the trickle bed reactor where hydrogenation of pyrolysis gasoline, a by-

product from an olefin plant, is chosen as an illustrative case study. Since the MPC

controller uses a model of the process to be controlled in its algorithm to determine

manipulated variables, the modeling of the process is of importance. Therefore, a

mathematical model of the trickle bed reactor is developed. The model is identified

with data obtained from a real industrial plant. This model representation is then

used to design the MPC strategy.

In addition to applying the MPC method to the trickle bed reactor, the implemen-

tation of MPC to other reactor systems: a batch and a continuous chemical reactor,

is investigated.

The main issues studied in this research are summarized below.

7.1 Trickle Bed Reactor Modeling

A dynamic model for an industrial adiabatic trickle bed reactor in which catalytic

hydrogenation of a pyrolysis gasoline from an olefin production plant occurs, has been
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developed in this work. To reduce the complexity of the multi-component system, the

model developed assumes that all hydrocarbon components in the system are lumped

into three pseudocomponents: diolefins, olefins and paraffins. The dynamic model

results in a system of partial differential equations which is solved numerically by the

method of lines. The orthogonal collocation method is used to discretize the spatial

derivative term.

An optimization problem was formulated to find kinetic parameters based on the

industrial plant data. The reactor model with the estimated kinetic parameters was

validated with plant data. It was observed that although the model contained some

simplifying assumptions, it was found to be in good agreement with plant data; the

model gave a good prediction of temperature and lumped components in the reactor.

This showed that the model can reliably represent the real system and can be used to

formulate a model-based control technique to control the reactor.

7.2 MPC for Chemical Reactors

7.2.1 Batch Reactor

Since batch reactors are generally applied to produce a wide variety of specialty prod-

ucts, there is a great deal of interest to enhance batch operation to achieve high quality

and purity product while minimizing the conversion of undesired by-product. The use

of process optimization in the control of batch reactors presents a useful tool for oper-

ating batch reactors efficiently and optimally. In this research, an approach based on

the idea of MPC, an on-line dynamic optimization strategy, was employed to modify

optimal temperature set point profile for batch reactors.

Two different optimization problems concerning batch operation: maximization of

product concentration and minimization of batch time, were considered. An extended

Kalman filter (EKF) was incorporated into the proposed approach in order to up-

date current states from their delayed measurements and to estimate unmeasurable

state variables. A nonlinear model-based controller: a generic model control algorithm

(GMC) was applied to drive the temperature of the batch reactor following the desired
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profile. A batch reactor with complex exothermic reaction scheme was used to demon-

strate the effectiveness of the proposed approach. The simulation results indicated

that with the proposed strategy, large improvement in batch reactor performance, in

term of the amount of a desired product and batch operation time, could be achieved

compared to the method that optimal temperature set point is pre-determined.

7.2.2 Continuous Reactor

This research addresses the implementation of a MPC and a dual mode MPC strat-

egy integrating the MPC with a local linear control method to control the product

concentration in a continuous stirred tank reactor (CSTR), where a single exothermic

reaction is carried out.

For safe reactor operation, a reactor temperature path constraint was also consid-

ered in the MPC formulation. Two well developed linear controllers: state feedback

linearizing control (SFC) and proportional-integral-derivative control (PID) techniques

were studied within the dual mode control framework. An extended Kalman filter

(EKF) was also incorporated into the dual mode MPC to on-line estimate the un-

measured concentration of substances in the CSTR as well as uncertain key model

parameters using an available temperature measurement. It has been found via sim-

ulation studies that the proposed dual mode MPC, using either the SFC or PID

controller, connected with the EKF provides satisfactory control performance for set

point tracking problem. The robustness of the controller in the presence of parametric

uncertainties is also enhanced by the inclusion of EKF. Moreover, the on-line compu-

tational time required by the dual mode MPC is substantially decreased compared to

that of an original MPC.

7.2.3 Trickle Bed Reactor

The performance of a MPC strategy for the control of a trickle bed reactor has been

investigated. The reactor models developed has been employed in the MPC algorithm

and also utilized to represent the real plant for control studies. In this work, the MPC
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controller was applied to regulate the temperature at the outlet of top catalyst bed

in the trickle bed reactor. Simulation studies were performed in set point tracking

as well as disturbance rejection cases under the nominal condition in which all model

parameters are specified correctly.

The results have demonstrated that the MPC controller is able to stabilize the

reactor. It can control the reactor temperature at its desired set point in both set point

tracking and disturbance rejection cases, and provide a better control performance

when compared with a PID controller.

The robustness property of the MPC controller has also been examined with respect

to model mismatchs i.e. changes in heat of reaction and reaction rate constant. It has

been shown that the MPC controller can successfully control the reactor temperature

at the desired set point for both set point tracking and disturbance rejection studies

in the presence of model mismatch.
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Appendix A

Open-Loop Optimal Control: Basic

Solutions

An optimal control can be defined as a class of modern control technique that de-

termines a set of control variable profiles (optimal control policy) for systems, such

that a given performance criteria is optimized. This appendix gives a brief overview

in a basic solution of the optimal control problem. Two basic solution methods: the

calculus of variation and dynamic programming approach, are introduced.

Let us consider the optimal control problem in which the initial time and initial

state variables are given; the final time is fixed; the states at the final time is free.

This problem can be stated mathematically as: find the control u(t) minimizing the

objective function:

min
u(t)

J =

tf∫
t

F (x, u, t)dt (A.1)

subject to dynamic process models:

ẋ = f(x, u, t) (A.2)

x(t0) = x0 (A.3)

t ∈ [t0, tf ] (A.4)

A.1 Variation Approach

The first approach to a solution of the optimal control is described here. The variation

approach is known as an indirect method because it focuses on obtaining the solution of

necessary conditions, which lead to a two-point boundary value problem, for optimality
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rather than solving the optimization directly. These conditions can be developed for

the optimal control problem through the use of the classic calculus of variation.

A.1.1 Necessary Conditions for Optimality

Since the basic concept of the variation approach is based on the solution of the

optimality necessary conditions that determine the optimal control, u(t), we first need

to develop these conditions.

To solve the optimal control problem (Equations (A.1) to (A.4)), a lagrange mul-

tiplier is defined and used to augment the dynamic model constraint (Equation (A.2))

to the objective. Thus, the augmented objective performance is:

JA =

tf∫
t0

[
F (x, u, t) + λT (t) (f(x, u, t)− ẋ)

]
dt (A.5)

where λ(t) is the lagrange multiplier which is a function of time. This variable is also

known as an adjoint or costate variable.

At this stage, the original control problem consisting of the performance index

(Equation (A.1)) and process model constraint (Equation (A.2)) has been converged

to the problem without constraint (Equation (A.5)); however, the solution of the

augmented objective still has the same as in the original problem.

For convenience, the Hamiltonian is defined as:

H(ẋ, x, u, λ, t) = F (x, u, t) + λT (t) [f(, x, u, t)− ẋ] (A.6)

Deriving the necessary conditions, the first variation of the objective function is

essential to be defined. To compute the first variation, we first consider the increment

of the function by introducing the variation, δẋ, δx, δu, δλ, and δtf into the objective:

JA =

tf∫
t0

H(ẋ, x, u, λ, t)dt (A.7)

Therefore, the increment of the function is:

∆J =

tf∫
t0

H(x + δẋ, x + δx, u + δu, λ + δλ, t)dt−
tf∫

t0

H(ẋ, x, u, λ, t)dt (A.8)
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Expanding the increment in a Taylor series about H(ẋ, x, u, λ), the first variation,

which is the linear part of the increment in δẋ, δx, δu, δλ, and δtf becomes

δJA =

tf∫
t0

(
∂H

∂x
− d

dt

∂H

∂ẋ

)T

δxdt +

(
∂H

∂ẋ
(tf )

)T

δx(tf )−
(

∂H

∂ẋ
(t0)

)T

δx(t0)

+

tf∫
t0

(
∂H

∂λ

)T

δλdt +

tf∫
t0

(
∂H

∂u

)T

δudt (A.9)

The fundamental theorem of the calculus of variations states that the first-order

necessary conditions for an optimum u of the function JA can be found by setting the

variation of JA equal to zero. Therefore, from Equation (A.9), we have:

0 =

tf∫
t0

[
∂H

∂x
− d

dt

(
∂H

∂ẋ

)]
δxdt +

(
∂H

∂ẋ
(tf )

)
δx(tf )−

(
∂H

∂ẋ
(t0)

)
δx(t0)

+

tf∫
t0

(
∂H

∂λ

)
δλdt +

tf∫
t0

(
∂H

∂u

)
δudt (A.10)

Equation (A.10) is satisfied if the following equations are hold.

∂H

∂x
− d

dt

(
∂H

∂ẋ

)
= 0 (A.11)

∂H

∂λ
= 0 (A.12)(

∂H

∂ẋ
(tf )

)
δx(tf )−

(
∂H

∂ẋ
(t0)

)
δx(t0) = 0 (A.13)

∂H

∂u
= 0 (A.14)

The above equations are the necessary conditions to determine the optimal control

u that minimizes the performance index (Equation (A.1)) subject to system mod-

els (Equation (A.2)). The condition of Equation (A.11) is known as Euler-lagrange

equation whereas Equation (A.13) is often called the transversality boundary condition

which vary with the specification of x(t) at the initial and final time conditions.

The necessary conditions, Equations (A.11) to (A.14), can be simplified by substi-

tuting the Hamiltonian function as follows:

λ̇ = −∂F

∂x
− λT ∂f

∂x
(A.15)

ẋ = f(x, u, t) (A.16)
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x(t0) = x0 (A.17)

λ(tf ) = 0 (A.18)

∂F

∂u
+ λT ∂f

∂u
= 0 (A.19)

It is noted that the necessary conditions for optimality developed here are for the

specific case of the optimal control problem in which the objective function is given in

the form of Equation (A.1) and the process model equations are represented by a set of

ordinary differential equations. Moreover, we assume that the control (manipulated)

variables are unconstraint.

It can be seen that the necessary conditions (Equations (A.15) to (A.19)) are ex-

pressed in a two-point boundary value problem (TPBVP); that is, the state equations

are given at the initial conditions whereas the costate equations are specified at the

final conditions. As a result, the solution of the optimal control problem is determined

by solving the TPBVP instead. This type of problem can be solved with different

numerical strategies e.g. control vector iteration (CVI), single/multi shooting, and in-

variant embedding method. Most of these methods are generally based on an iterative

method that uses an initial guess to find a solution and then updates the initial guess

for the next iteration to make the solution satisfy the desired criteria.

A.1.2 Control Vector Iteration (CVI) Method

The control vector iteration (CVI) is one of several methods that have been proposed

to solve numerically the optimal control problem through the solution of the optimality

necessary conditions. This method requires an iterative integration of the state and

costate differential equations. The computational procedure is based on adjusting the

estimate of a control function in order to improve the value of the objective function.

One advantage of this method is that since the state equations are solved exactly at

each step, each iteration produces a feasible solution (Ray, 1981).

A general algorithm of the control vector iteration method can be summarized as

follows:

Step 0 Guess the control profile, u(t).
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Step 1 Integrate the state equation (Equation (A.16)) forward in time with the initial

conditions to produce the value of state, x(t), and the performance index, Ji.

Step 2 Integrate the costate equation (Equation (A.15)) backward in time with the

final boundary conditions using the state value from step 1.

Step 3 Update the control u(t) by

ui+1 = ui + δu

Step 4 Check the termination criteria as shown below. If it is satisfied, the compu-

tation is stopped. Otherwise, return Step 1.

|Ji+1 − Ji| < e where e is a small positive number.

There are several algorithms that have been used for updating the control u (δu)

with this approach. The basic algorithm is known as the steepest descent method.

In this method, the gradient of the control u with respect to the objective (Equation

(A.14)) is used to find the direction (gi) for the new control profile while the step length

(αi) can be either kept constant for every iteration or varied form one iteration to the

next one. The main disadvantage of this method is that the convergence is quite slow as

the minimization is approached. To improve the convergence property, the conjugated

gradient method have been developed and chosen as a search direction (Edgar and

Himmelblau, 1989). It combines the gradient information from the previous step with

that from the current step to obtain a new search direction for the next step.

However, although the convergence property to the solution is improved, the ap-

plication of the control vector iteration still has an additional difficulty which arises

from the requirement of the backward integration of the costate equations, which can

be inefficient and unstable.

A.1.3 Single/Multiple Shooting Method

Another method to deal with the solution of the TPBVP derived from the necessary

conditions for optimality is the single shooting method. This approach can be divided
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into two steps. The first one is to substitute the control u, which may be assumed

to be solved explicitly from Equation (A.19), into the costate and state equations

(Equations (A.15) and (A.16)). Note that obtaining the explicit solution of u is found

in limited simple cases (Ray, 1981).

The next step is to assume the missing initial condition value of the costate equa-

tions [λ(t0)] and then integrate the Equations (A.15) and (A.16) in the same direction

by differential equation solvers. Consequently, the difficulty from the backward inte-

gration is avoided. An updated iteration, e.g. by Newtons method, is applied to adjust

the guessed initial value so that the final conditions are equal to the given value. From

a procedure in updating the boundary conditions, this method is sometimes referred to

the boundary-condition iteration method. However, the main limitation of this method

is due to a difficulty in choosing reasonable initial guess of the missing conditions and

a small region of convergence.

Similarly, the multiple shooting method follows the same idea as the single shooting

method, but the integration horizon is divided into small subintervals. In another

word, the problem is transformed into a multipoint boundary value problem for both

state and costate variables. Therefore, the missing initial conditions are guessed at

each subinterval. Newtons type method is also used to updated the new guesses

based on the deviation between the guessed and the obtained value at each point. The

subintervals in the multiple shooting method cause less nonlinearity and less sensitivity

to the guessed values than in the single shooting method.

A.1.4 Invariant Embedding Method

An alternative technique that assumes the structure of the control solution using the

Riccati transformation is termed as the invariant embedding method. This special

technique is often used in a classical optimal control problem: Linear quadratic regu-

lator (LQR) problem which involve determining the optimal control for a linear system

with a quadratic performance function. Solution result from this class of the problem

leads to the optimal state feedback control law (Ramirez, 1994).
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A.2 Dynamic Programming (DP) Approach

The second class of the optimal control solution, referred as dynamic programming,

is presented in this section. This approach is based on the optimality principle which

characterizes global optimality in a local sense, using the concept of an optimal value

function. This indicates the difference of this approach from the variation approach

that views the optimality by utilizing an optimal control trajectory concept.

The optimality principle proposed by Bellman states that if u∗(t) is optimal over

the interval [t, tf ], starting at states x(t), then u∗(t) is necessarily optimal over the

subinterval [t + ∆t, tf ] for any ∆t such that 0 < ∆t ≤ tf − t. The basic assumption

under the optimality principle is that the system states x(t) at time t are resulted from

the effect of all inputs u(t) prior to time t. This allows for a local characterization of

optimality in the formal statement of the optimality principle (Nevistic, 1997).

By using the principle of optimality in the dynamic programming approach, it can

derive the Hamilton-Jacobi-Bellman equation which determines the solution of the

optimal control problem.

A.2.1 Hamilton-Jacobi-Bellman Equation

Let us now consider the problem determining the optimal control, u(t), that minimizes

the objective function of the form:

min
u(t)

J = ϕ(x(tf ), tf ) +

tf∫
t0

F (x, u, t)dt (A.20)

subject to a process model:

ẋ = f(x, u, t) x0 = x(t0) (A.21)

The solution of the optimal control problem by dynamic programming approach

based on the optimality principle is given as follows. The optimality principle can

be used to derive the Hamilton-Jacobi-Bellman equation (HJB) which leads to the

solution of the optimal control problem. To develop the HJB equation, the value



144

function, also called as Bellman’s function, is first defined as:

V (x, t) = min J
u(t)

(A.22)

Using the additive properties of integrals and the optimality principle gives:

V (x, t) = min
u[t,t+∆t]

 t+∆t∫
t

F (x, u, t)dt + V (x(t + ∆t), t + ∆t)

 (A.23)

It can be seen from Equation (A.23) that by using the optimality principle, the

problem of determining an optimal control over the interval [t, tf ] has been reduced to

finding the optimal control over the interval [t, t + ∆t].

From Equation (A.23), approximating the integral term by F (x, u, t)∆t and ap-

plying the Taylor series expansion of V [x(t + ∆t), t + ∆t] give:

−∂V

∂t
= min

u(t)

{
F (x(t), u(t), t) +

(
∂V

∂x

)
f(x(t), u(t), t)

}
(A.24)

with the boundary condition: V (x, tf ) = ϕ(x). Equation (A.24) is known as the

Hamilton-Jacobi-Bellman equation (HJB) which must hold at the optimum. Nevistic

(1997) presented two steps for solving this HJB partial differential equation. First,

the minimization problem in Equation (A.24) is performed, leading to a control law:

u∗ = φ

(
∂V

∂x
, x, t

)
(A.25)

Then, substituting u∗ into Equation (A.24) gives:

−∂V

∂t
= F (x, φ, t) +

(
∂V

∂x

)
f(x, φ, t) (A.26)

The solution of this nonlinear partial differential equation gives a value of V (x, t)

as the function of x and t. So we can produce the control law u∗ by computing the

gradient of V (x, t) and replacing it in Equation (A.25).

As shown above, the optimal control solution through the dynamic programming

approach is obtained by the solution of the HJB equation expressed by partial differen-

tial equations (PDEs). It is well known that to solve such PDEs is a very difficult task

especially when the system dimension is high; the computational load increases rapidly
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with the number of state variables. The solution of the HJB equation is possible only

for a simple control problem e.g. the linear quadratic regulator problem (LQR) in

which the process is represented by a linear model system and the performance index

is in a quadratic form.

However, in the last decade, a reliable numerical method, an iterative dynamic

programming, has been proposed as another choice to solve the optimal control prob-

lem. This method applies the optimality principle to approximate the solution of the

original control problem with a finite dimension optimization instead of obtaining the

optimal control solution by solving the HJB equation as in the dynamic programming

approach.

A.2.2 Iterative Dynamic Programming (IDP)

Another class of the method that has been developed to solve the optimal control

problem is known as an iterative dynamic programming (IDP). The basic concept of

the IDP method introduced by Luus (1990) is still based on the optimality principle.

In the iterative dynamic programming, it is assumed that the given final time (tf )

is divided into P subintervals with equal length. In each subinterval, the control vari-

ables can be generally represented either as a piecewise constant or a piecewise linear

function. Applying the principle of optimality as stated earlier, the last subinterval

is optimized first. After the optimal control is determined, the preceding interval is

optimized based on the control obtaining from the last stage. This process is repeated

in a backward direction until t = 0. As described, this technique concentrates on

obtaining the optimal control ui for each subinterval starting from the last one instead

of finding the optimal control for all stages simultaneously.

The simplified algorithm of the iterative dynamic programming with the piecewise

constant control is concluded as:

Step 1 Divide the time interval [0, tf ] into P time stages with equal length L.

Step 2 Choose the number of allowable values R for control variables.
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Step 3 Choose the initial value for each ui, the initial region size ri, the contraction

factor γ, and the number of iterations to be used.

Step 4 Integrate the system from t = 0 to t = tf to generate the state profile using

the initial trajectory as specified in Step 3 and store the value of the states at

the beginning of each time stage.

Step 5 Starting from the stage P , integrate the system for t = tf −L to t = tf using

the initial state value at the stage P − 1 from Step 4 with each of the allowable

value for the control. Choose the control uP − 1 that gives the minimum value

of the objective and store this value.

Step 6 Step back to the stage P −1, corresponding to t = tf −2L. For each allowable

value of uP − 2, integrate the system by using the initial value of the state at

P−2 obtaining from Step 4. Continue integration until t = tf . During t = tf−L

to t = tf use the control value uP −1 from Step 5. Choose the uP −2 minimizing

the performance index.

Step 7 Continue the procedure until the stage 1, corresponding to the initial time

t = 0

Step 8 Reduce the region for the allowable control, rk+1 = γrk, where k is an intera-

tion index. Use the optimal control policy from step 7 as the initial values for u

at each stage.

Step 9 Increase the iteration index and go to Step 5. Continue the procedure for a

specified number of iterations and examine the result.

Based on this basic algorithm, the iterative dynamic programming can be applied

to solve a broad class of control problems. The IDP is an attractive alternative and

well suited because of its simplicity and high reliability of obtaining the optimal control

solution. However, this algorithm cannot directly cope with the effect of constraints

on state variables. To include them in the IDP, a penalty function approach, one of

effective ways, is used to penalize the constraint violation on the objective function;

however, it may result in poor convergence property and lead to unsatisfactory solution
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especially when a penalty term and a weighting factor are chosen inappropriately. The

penalty term can be represented in several forms e.g. quadratic functions, absolution

values and others. Nevertheless, it has been seen that the choice of this penalty

function for optimal control problems in which state constraints are included has not

been addressed (Dadebo and Mcauley, 1995).

The convergence property of the IDP is another important issue which should

have to be considered. Since the lack of the sensitivity of objective function with

respect to control variables may cause difficulties to find the optimal control solution.

Luus (1996), therefore, studied the IDP convergence property by considering on high

dimensional systems. In addition, they also investigated an effect of the parameters

such as a number of allowable control value (R) and the contraction region (γ) to

the optimal solution, in the IDP algorithm. The simulation results showed that the

convergence of the IDP is found to be systematic. They also stressed on the importance

of such parameters in the IDP to improve the computational time. Further works

investigating on the convergence property of IDP for other systems can be found in

e.g. Bojkov and Luus (1994) and Fikar et al. (1998).



Appendix B

Orthogonal Collocation Method

The orthogonal collocation method is one of several methods of weighted residuals

which are used to obtain the solution of differential equations. The basic idea of the

method of weighted residuals is to approximate the exact solution of differential equa-

tions over a domain by a trial function that is chosen to satisfy boundary conditions,

with unknown coefficients that are chosen to give the best solution:

y(x) = ϕ0(x) +
N∑

i=0

ciϕi(x) (B.1)

The trial function, Equation (B.1), is substituted into the original differential equa-

tions and the result is a residual (R). If the trial function were exact, then the weighted

residuals are minimized over the domain of the independent variable (x). In particular,

the integral of the weighted residuals would be zero.∫
wjR dx = 0 (B.2)

The weighting factors (wi) can be chosen in many ways i.e. the subdomain method,

the least squares method, the Galerkin method, the collocation method, and the

method of moment (Villadsen and Michelsen, 1978). Among the various methods,

the collocation method has been proven to be effective in the solution of complex and

nonlinear problems (Carey and Filayson, 1975)

For the collocation method, the weighting factors are chosen to be the Dirac delta

function

wj =

 1

0

for x = xj

for x 6= xj

or wj = δ(x− xj) (B.3)

Therefore, ∫
wjR dx = R|xj

= 0 (B.4)
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This method forces the residual to be zero at N specified collocation points (xj).

As N increases, the residual becomes zero at more points.

B.1 The Method of Orthogonal Collocation

As mentioned above, in the collocation method, it is necessary to evaluate the residual

at the collocation points. If such collocation points are chosen as roots of an orthogonal

polynomial, this is known as the method of orthogonal collocation.

The basic property of the orthogonal polynomial is

1∫
0

w(x)Pn(x)Pm(x)dx = 0 n = 0, 1, 2, . . . m− 1 (B.5)

where Pm(x) is a polynomial function degree m of x. If the property in Equation (B.5)

is satisfied, the polynomial Pm(x) is orthogonal over the spatial domain [0, 1].

In this work, the lagrange polynomial (li(x)) is chosen as the trial polynomial

function since the solution can be derived in terms of its value at the collocation

points, instead of in terms of the coefficients in the trial functions. Thus, the value of

y at any desired point x can be computed from:

y(x) =
N+2∑
i=1

li(x)y(xi) (B.6)

li(x) =
pN+2(x)

(x− xi)p
(1)
N+2(xi)

(B.7)

pN+2 = (x− x1)(x− x2) . . . (x− xN+2) (B.8)

where pN+2 is Legendre polynomial of order N + 2 satisfying the orthogonality rela-

tionship. The first and second derivatives of the trial function y at each collocation

point are calculated from: (
dy

dx

)
x=xj

=
N+2∑
i=1

l
(1)
i (xj)yi (B.9)

(
d2y

dx2

)
x=xj

=
N+2∑
i=1

l
(2)
i (xj)yi (B.10)

where N is the order of polynomial. All the coefficients l
(1)
i (xj) and l

(2)
i (xj), i =

1, 2, . . . , N + 2 and j = 1, 2, . . . , N + 2 are calculated from p
(1)
N+2(xj), p

(2)
N+2(xj), and
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Table B.1: Roots and the first and second derivative matrix for Legendre polynomials

N = 1 N = 2

xj 0.5000 0.2113

0.7887

A


−3 4 −1

−1 0 1

1 −4 3




−7 8.196 −2.196 1

−2.732 1.732 1.732 −0.7321

0.732 −1.732 −1.732 2.732

−1 2.196 −8.196 7



B


4 −8 4

4 −8 4

4 −8 4




24 −37.18 25.18 −12

16.39 −24 12 −4.392

−4.392 12 −24 16.39

−12 25.18 −37.18 24



p
(3)
N+2(xj), j = 1, 2, . . . , N +2. The derivation of these polynomials and their properties

are discussed fully in Villadsen and Michaelsen (1978).

Equations (B.9) and (B.10) can be shown in simple expressions as follows:(
dy

dx

)
x=xj

=
N+2∑
i=1

Ajiyi (B.11)

(
d2y

dx2

)
x=xj

=
N+2∑
i=1

Bjiyi (B.12)

where Aji = l
(1)
i (xj) and Bji = l

(2)
i (xj). Table B.1 shows the value of roots and of

the first and second derivative matrix using Legendre polynomial. These values are

calculated from the algorithm provided by Villadsen and Michaelsen (1978).

It should be noted that a system of partial differential equations (PDEs) can be

reduced to a system of ordinary differential equations by applying Equations (B.11)

and (B.12) to approximate the spatial derivative terms of the PDEs. The resulting

differential equations can be solved using standard integration solvers. This approach

is often known as the method of lines.
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B.2 Orthogonal Collocation on Finite Elements

As known that in the orthogonal collocation procedure, a series of polynomials, each

of which is defined over the entire range 0 ≤ x ≤ 1, is used as a trial function.

Nevertheless, complications with this global procedure arise in the presence of steep

gradients or sharply changes in the solution profile. In such situations, it may be

advantageous to use the method of orthogonal collocation that is defined over only

part of the region and piece together adjacent functions to provide an approximation

over the whole domain. Using such a procedure, smaller regions can be used near the

location of the steep gradient and the approximation of the solution is improved. This

leads to the method of orthogonal collocation on finite elements

In the orthogonal collocation on finite elements, the domain is divided into sub-

domains (finite elements) as shown in Figure B.1. Within each element, we apply

orthogonal collocation using Lagrange polynomials and then the residual is evaluated

at each collocation point.

For the kth element, the approximation of the first and second derivative terms at

collocation point i is defined by:

dyi

dx
=

1

hk

NCOL+2∑
j=1

Aijy
j (B.13)

d2yi

dx2
=

1

h2
k

NCOL+2∑
j=1

Bijy
j (B.14)
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i =

hk

Boundary
condition

Boundary
condition

kth element

i =

(a)

(b)

1 st Element NE st  Element

i = (NCOL+1) *NE+11 2 3 4 5 6 7

1 2 3 4

Figure B.1: Orthogonal collocation points on finite elements with NE elements and 2

internal collocation points (NCOL) (a) Global numbering system (b) Local numbering

system



Appendix C

Extended Kalman Filter

The implementation of a model predictive control technique requires the knowledge of

current states and/or parameters in order to compute the solution of an on-line open

loop optimal control problem. However, it is known that in many processes, only some

of states can be directly measured. To overcome this difficulty, state and parameter

estimation is employed and incorporated into the model predictive control algorithm.

C.1 The EKF Algorithm

The extended Kalman filter (EKF) is a recursive procedure for computing an optimal

estimate, minimizing the mean square error of the deviation between the actual and

estimated states of system. It computes a state estimate with two step approach.

Firstly, using a Taylor’s series expansion of the dynamic and measurement nonlinear-

ities, the nonlinear functions are linearized so that the nonlinear estimation problem

is reduced to a linear one. Secondly, using a known solution to this linear estimation

problem, the states are estimated (Kittisupakorn, 1995). The basic algorithm of the

EKF can be summarized as follows:

For nonlinear systems, the process model can be described by differential equations:

ẋ = F (x(t), u(t), t) + ζ(t) (C.1)

y = G(x(t)) + η(t) (C.2)

where F is a vector of system function, G is a vector of measurement function, ζ is

a non-zero mean Gaussian process noise with the covariance Q, and η is a non-zero

mean Gaussian measurement noise with the covariance R.
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The equations for the EKF are given by a set of correction and prediction equations

as shown in below:

Correction phase: Correct the prior estimates of state at k − 1 and update the

weighting matrix

Kk−1 = Pk−1/k−2C
T [CPk−1/k−2C

T + R]−1 (C.3)

x̂k−1/k−1 = x̂k−1/k−2 + Kk−1[yk−1 − Cx̂k−1/k−2] (C.4)

P̂k−1/k−1 = [I −Kk−1C]P̂k−1/k−2[I −Kk−1C]T + Kk−1RKT
k−1 (C.5)

Prediction phase: Integrate the nonlinear state and covariance equations from time

k − 1 to k in order to acquire the estimate x̂k/k−1 and P̂k/k−1

˙̂x = F (x, u) (C.6)

˙̂
P = Ak−1P̂ + P̂AT

k−1 + Q (C.7)

where x̂k/k−1 denotes the estimate of state x at t = k from information at t = k − 1,

K is Kalman gain matrix, P is covariance matrix of the estimated error, and A and

C are the Jacobian matrix of the function F and G with respect to the state vector,

respectively.

Figure C.1 shows the flow diagram of the EKF algorithm in continuous/discrete

form.
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Prediction Phase
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Figure C.1: Flow diagram of an extended Kalman filter
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