
¡ÒÃ¤Çº¤ØÁ¾ÒÃÒÁÔàµÍÃìáºº»ÃÑºµÑÇã¹¢Ñ�¹µÍ¹ÇÔ¸ÕàªÔ§¾Ñ¹¸Ø¡ÃÃÁ

¹ÒÂ ªÔÉ³Ø ·Í§©ÔÁ

ÇÔ·ÂÒ¹Ô¾¹¸ì¹Õ�à»�¹ÊèÇ¹Ë¹Ö�§¢Í§¡ÒÃÈÖ¡ÉÒµÒÁËÅÑ¡ÊÙµÃ»ÃÔ­­ÒÇÔÈÇ¡ÃÃÁÈÒÊµÃ ǾÉ®ÕºÑ³±Ôµ

ÊÒ¢ÒÇÔªÒÇÔÈÇ¡ÃÃÁ¤ÍÁ¾ÔÇàµÍÃì ÀÒ¤ÇÔªÒÇÔÈÇ¡ÃÃÁ¤ÍÁ¾ÔÇàµÍÃì

¤³ÐÇÔÈÇ¡ÃÃÁÈÒÊµÃì Ø̈ÌÒÅ§¡Ã³ìÁËÒÇÔ·ÂÒÅÑÂ

»�¡ÒÃÈÖ¡ÉÒ 2547

ISBN 974-17-5899-5

ÅÔ¢ÊÔ·¸Ô�¢Í§ Ø̈ÌÒÅ§¡Ã³ìÁËÒÇÔ·ÂÒÅÑÂ

ADAPTIVE PARAMETER CONTROL IN GENETIC ALGORITHMS

Mr. Shisanu Tongchim

A Dissertation Submitted in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy in Computer Engineering

Department of Computer Engineering

Faculty of Engineering

Chulalongkorn University

Academic Year 2004

ISBN 974-17-5899-5

Thesis Title Adaptive Parameter Control in Genetic Algorithms

By Shisanu Tongchim

Field of Study Computer Engineering

Thesis Advisor Associate Professor Prabhas Chongstitvatana, Ph.D.

Accepted by the Faculty of Engineering, Chulalongkorn University in Partial

Fulfillment of the Requirements for the Doctor’s Degree

. Dean of the Faculty of Engineering

(Professor Direk Lavansiri, Ph.D.)

THESIS COMMITTEE

. Chairman

(Assistant Professor Boonserm Kijsirikul, D.Eng.)

. Thesis Advisor

(Associate Professor Prabhas Chongstitvatana, Ph.D.)

. Member

(Assistant Professor Krung Sinapiromsaran, Ph.D.)

. Member

(Veera Muangsin, Ph.D.)

. Member

(Assistant Professor Nachol Chaiyaratana, Ph.D.)

iv

ªÔÉ³Ø ·Í§©ÔÁ : ¡ÒÃ¤Çº¤ØÁ¾ÒÃÒÁÔàµÍÃìáºº»ÃÑºµÑÇã¹¢Ñ�¹µÍ¹ÇÔ¸ÕàªÔ§¾Ñ¹¸Ø¡ÃÃÁ. (Adaptive

Parameter Control in Genetic Algorithms) Í. ·Õ�»ÃÖ¡ÉÒ : ÃÈ.´Ã. »ÃÐÀÒÊ ¨§Ê¶ÔµÂì

ÇÑ²¹Ò, 107 Ë¹éÒ. ISBN 974-17-5899-5.

ÇÔ·ÂÒ¹Ô¾¹¸ì¹Õ�àÊ¹ÍÇÔ¸Õ¡ÒÃ·Õ�ªèÇÂá¡é»�­ËÒà¡Õ�ÂÇ¡Ñº¡ÒÃ»ÃÑº¾ÒÃÒÁÔàµÍÃì¢Í§¢Ñ�¹µÍ¹ÇÔ¸ÕàªÔ§¾Ñ¹¸Ø¡ÃÃÁ

ÇÔ¸Õ¹Õ�àÃÕÂ¡ÇèÒ ‘¢Ñ�¹µÍ¹ÇÔ¸Õ¡ÒÃ¤Çº¤ØÁ¾ÒÃÒÁÔàµÍÃìáºº»ÃÑºµÑÇ' ËÃ×Í ‘Adaptive Parameter Control

Algorithm' (APCA) ËÅÑ¡¡ÒÃ·Ó§Ò¹¢Í§ APCA ÍÂÙèº¹¾×�¹°Ò¹¢Í§¢Ñ�¹µÍ¹ÇÔ¸ÕàªÔ§¾Ñ¹¸Ø¡ÃÃÁÊÍ§

ªÑ�¹ â´Â¢Ñ�¹µÍ¹ÇÔ¸ÕàªÔ§¾Ñ¹¸Ø¡ÃÃÁªÑ�¹ÅèÒ§á¡é»�­ËÒ·Õ�¡ÓË¹´ãËé ÊèÇ¹¢Ñ�¹µÍ¹ÇÔ¸ÕàªÔ§¾Ñ¹¸Ø¡ÃÃÁªÑ�¹º¹¨Ð

»ÃÑº¾ÒÃÒÁÔàµÍÃì¢Í§ÃÐ Ñ́ºÅèÒ§ãËéàËÁÒÐ ·Ñ�§ÊÍ§ªÑ�¹¨Ð·Ó§Ò¹ä»¾ÃéÍÁæ ¡Ñ¹ ·Ñ�§¹Õ�ÊÁÒªÔ¡áµèÅÐµÑÇã¹

»ÃÐªÒ¡Ã¢Í§¢Ñ�¹µÍ¹ÇÔ¸ÕàªÔ§¾Ñ¹¸Ø¡ÃÃÁªÑ�¹º¹¤×ÍªØ´¾ÒÃÒÁÔàµÍÃì¢Í§¢Ñ�¹µÍ¹ÇÔ¸ÕàªÔ§¾Ñ¹¸Ø¡ÃÃÁªÑ�¹ÅèÒ§ ¡ÒÃ

»ÃÐàÁÔ¹¤Ø³ÀÒ¾¢Í§ÊÁÒªÔ¡áµèÅÐµÑÇã¹»ÃÐªÒ¡ÃªÑ�¹º¹·Óâ´Â¡ÒÃ¡ÓË¹´ãËéÊÁÒªÔ¡¹Ñ�¹à»�¹¾ÒÃÒÁÔàµÍÃì

¤Çº¤ØÁ¢Í§¢Ñ�¹µÍ¹ÇÔ¸ÕàªÔ§¾Ñ¹¸Ø¡ÃÃÁªÑ�¹ÅèÒ§ »ÃÐÊÔ·¸ÔÀÒ¾¢Í§¢Ñ�¹µÍ¹ÇÔ¸ÕàªÔ§¾Ñ¹¸Ø¡ÃÃÁªÑ�¹ÅèÒ§¨Ð¶Ù¡ãªé

à»�¹¤Ðá¹¹¤Ø³ÀÒ¾¢Í§ÊÁÒªÔ¡¹Ñ�¹æ ¢Ñ�¹µÍ¹ÇÔ¸ÕàªÔ§¾Ñ¹¸Ø¡ÃÃÁªÑ�¹ÅèÒ§áºº·Õ�ÁÕ»ÃÐªÒ¡ÃÂèÍÂËÅÒÂæ ¡ÅØèÁ

¶Ù¡ãªéà¾×�ÍãËé¡ÒÃ»ÃÐàÁÔ¹¤Ø³ÀÒ¾¢Í§»ÃÐªÒ¡Ã¾ÒÃÒÁÔàµÍÃìà»�¹ä»áºº¢¹Ò¹ «Ö�§ÇÔ¸Õ¡ÒÃ¹Õ� àËÁÒÐÊÁà»�¹

ÍÂèÒ§ Ṍ¡Ñº¡ÒÃ»ÃÐÁÇÅ¼Åáºº¢¹Ò¹¢Í§¢Ñ�¹µÍ¹ÇÔ¸ÕàªÔ§¾Ñ¹¸Ø¡ÃÃÁáººË¹èÇÂËÂÒº ¼Å¡ÒÃ·´ÅÍ§áÊ´§

ãËéàËç¹ÇèÒ APCA äÁèà¾ÕÂ§áµèËÒ¤ÓµÍºä é́àÃçÇ¡ÇèÒ¢Ñ�¹µÍ¹ÇÔ¸ÕáººÍ×�¹æ áµè APCA ÂÑ§ÊÒÁÒÃ¶ËÒ¼Åà©ÅÂ

ä é́á¹è¹Í¹¡ÇèÒ

ÀÒ¤ÇÔªÒ ÇÔÈÇ¡ÃÃÁ¤ÍÁ¾ÔÇàµÍÃì ÅÒÂÁ×Íª×�Í¹ÔÊÔµ .

ÊÒ¢ÒÇÔªÒ ÇÔÈÇ¡ÃÃÁ¤ÍÁ¾ÔÇàµÍÃì ÅÒÂÁ×Íª×�ÍÍÒ¨ÒÃÂì·Õ�»ÃÖ¡ÉÒ

»�¡ÒÃÈÖ¡ÉÒ 2547 ÅÒÂÁ×Íª×�ÍÍÒ¨ÒÃÂì·Õ�»ÃÖ¡ÉÒÃèÇÁ

v

##4371807221 : MAJOR COMPUTER ENGINEERING

KEY WORD: GENETIC ALGORITHMS/ADAPTIVE PARAMETER

CONTROL

SHISANU TONGCHIM : ADAPTIVE PARAMETER CONTROL IN GE-

NETIC ALGORITHMS. THESIS ADVISOR : ASSOC. PROF. PRABHAS

CHONGSTITVATANA, Ph.D., 107 pp. ISBN 974-17-5899-5.

This thesis proposes a method to overcome the parameter setting problem

of genetic algorithms. This method is denoted as ‘Adaptive Parameter Control

Algorithm’ (APCA). The concept of APCA is based on two levels of genetic

algorithms. The task level genetic algorithm (lower level genetic algorithm)

solves the original problem, while the meta-level genetic algorithm (upper level

genetic algorithm) optimizes the parameters of the task level. Both levels operate

concurrently. Each individual in the population of the meta-level genetic algorithm

is a parameter set for the task level genetic algorithm. The evaluation of each

individual in the meta-level population is carried out by assigning it as the

parameter set of the task level genetic algorithm, the performance of the task

level genetic algorithm is then used as the fitness. The task level genetic algorithm

with multiple subpopulations is used to parallelize the evaluation of the meta-level

population. This fits well with a coarse-grained model parallel genetic algorithm.

The empirical results indicate that APCA is not only faster than other algorithms,

but APCA also more reliably finds optimal solutions.

Department Computer Engineering Student’s signature .

Field of study Computer Engineering Advisor’s signature .

Academic year 2004 Co-advisor’s signature

vi

Acknowledgements

I would like to express my gratitude to my supervisor, Assoc. Prof. Prabhas

Chongstitvatana, for his instructive and invaluable advice. He always encourages

me to find my own way. Without his guidance, this research would not have been

possible. I would also like to thank Prof. Xin Yao for his help and support during

my visit in the University of Birmingham. I am very fortunate in having the

opportunity to work with him.

I would like to thank members of Intelligent System Laboratory who have

provided help and friendship during my Ph.D. study. I thank Chatchawit

Aporntewan for his useful LATEX style file that was used in preparing this thesis.

I thank Pariyarat Kiatchoosakul for her support, patience and encourage-

ment that helped me to keep going during the hardest time. Finally, I thank my

parents and my sister.

My research was supported by the Royal Golden Jubilee Ph.D. Program of

the Thailand Research Fund.

Shisanu Tongchim

May 18, 2004

Contents

Page

Abstract (Thai) . iv

Abstract (English) . v

Acknowledgements . vi

Contents . vii

List of Tables . ix

List of Figures . x

Chapter

1 Introduction . 1

1.1 Background . 1

1.2 Goal of This Research . 2

1.3 Organization . 3

2 Overview of Genetic Algorithms . 5

2.1 Introduction . 5

2.2 Genetic Algorithms . 6

2.3 Parallel Genetic Algorithms . 10

2.3.1 Master-slave Parallel GAs . 11

2.3.2 Coarse-grained Parallel GAs 12

2.3.3 Fine-grained Parallel GAs . 14

2.4 Summary . 15

3 Literature Review . 16

3.1 Introduction . 16

3.2 Classification Schemes . 17

3.3 Subpopulation-level Methods . 20

3.3.1 Using Rules/Algorithms for Adaptation 20

3.3.2 Using Static Parameters . 24

3.4 Meta-level Optimization . 26

3.5 Summary . 30

4 Adaptive Parameter Control Algorithm 32

viii

Contents (cont.)

Page

4.1 Parameters in Genetic Algorithms 32

4.2 Development of an Adaptive Parameter Control Algorithm (APCA) 37

4.3 Summary . 41

5 Experimental Results . 44

5.1 Performance on Test Problems . 44

5.1.1 Test Problems . 44

5.1.2 Algorithms and Performance Measurements 45

5.1.3 Experimental Design and Implementation 48

5.1.4 Results on Test Functions . 50

5.1.5 Compared with a Random Walk Algorithm 56

5.1.6 Parameters of the Meta-level GA 57

5.2 Generalization on a Test Problem Generator 60

5.3 An Observation of the Evolved Parameters 65

5.4 Summary . 67

6 A Case Study in Examination Timetabling 72

6.1 Problem Description . 72

6.1.1 An Example of Examination Timetabling 74

6.2 Genetic Algorithms for Examination Timetabling 75

6.2.1 Representation and Evaluation 75

6.2.2 Search Operators . 76

6.2.3 Applying APCA to Examination Timetabling 77

6.3 Experiments . 78

6.4 Summary . 80

7 Conclusions . 82

7.1 Summary . 82

7.2 Future Research . 84

References . 86

Biography . 96

List of Tables

Page

5.1 A two-bit subfunction . 45

5.2 Holland’s default settings . 46

5.3 Individuals and their fitness values . 63

5.4 Results of a static parameter set . 64

5.5 Results of APCA . 64

5.6 Results of AGA . 64

5.7 Results of the strategy adaptation algorithm 65

5.8 Critical values of TL in the Wilcoxon signed rank sum test, P (T ≤

TL) = 0.05 . 70

5.9 A comparison between the evolved parameters and the initial

parameters by using the Wilcoxon signed rank sum test (α = 0.05) . . 71

6.1 Timeslot allocation . 74

6.2 Student data . 74

6.3 A possible solution . 75

6.4 Instances of the examination timetabling problem 79

6.5 Experimental results for the examination timetabling problem 80

6.6 Algorithms with and without random mutation 81

List of Figures

Page

2.1 One-point crossover . 7

2.2 A schematic of GAs . 9

2.3 A framework of general generate-and-test search 10

2.4 A schematic of a master-slave parallel GA 12

2.5 A schematic of a coarse-grained parallel GA in a ring topology

(the black dots represent the subpopulations and the lines show the

communication links . 13

2.6 A schematic of a fine-grained parallel GA in a 2-D grid (the black dots

represent the subpopulations and the lines show the communication links 14

2.7 Two examples of the neighbor configuration in a fine-grained parallel GA 15

3.1 A schematic of gradual distributed real-code GAs 27

4.1 One-point crossover . 34

4.2 Two-point crossover . 35

4.3 Uniform crossover . 35

4.4 Inverting mutation . 36

4.5 Swap mutation . 37

4.6 Random mutation . 37

4.7 Pseudo-code of APCA in each node . 42

4.8 Pseudo-code of a conventional coarse-grained model in each node . . . 43

5.1 The one-way ring topology . 49

5.2 Performance for the onemax problem . 51

5.3 Unuse factor for the onemax problem . 51

5.4 Performance for the contiguous bits problem 52

5.5 Unuse factor for the contiguous problem 52

5.6 Performance for the minimal deceptive problem 53

5.7 Unuse factor for the minimal deceptive problem 54

5.8 Performance for the knapsack problem 54

xi

List of Figures (cont.)

Page

5.9 Unuse factor for the knapsack problem 55

5.10 Performance for the royal road problem 55

5.11 Unuse factor for the royal road problem 56

5.12 A comparison with the random walk algorithm on the onemax problem 58

5.13 A comparison with the random walk algorithm on the contiguous

bits problem . 58

5.14 A comparison with the random walk algorithm on the minimal

deceptive problem . 58

5.15 A comparison with the random walk algorithm on the knapsack problem 59

5.16 A comparison with the random walk algorithm on the royal road problem 59

5.17 Variants of the meta-level GA on the onemax problem 61

5.18 Variants of the meta-level GA on the contiguous bits problem 61

5.19 Variants of the meta-level GA on the minimal deceptive problem 61

5.20 Variants of the meta-level GA on the knapsack problem 62

5.21 Variants of the meta-level GA on the royal road problem 62

5.22 Convergence on the 1-peak problems . 66

5.23 Convergence on the 500-peak problems 66

5.24 Parameters at generations 0, 25 and 250 on the onemax problem 68

5.25 Parameters at generations 0, 25 and 250 on the contiguous bits problem 68

5.26 Parameters at generations 0, 25 and 250 on the minimal deceptive

problem . 69

5.27 Parameters at generations 0, 25 and 250 on the knapsack problem . . . 69

5.28 Parameters at generations 0, 25 and 250 on the royal road problem . . 70

6.1 An example of a meta-level individual . 78

CHAPTER I

Introduction

1.1 Background

Before using Genetic Algorithms (GAs) to solve given problems, the decision

on which is the best parameter set from various possible parameter combinations

has to be made. The control parameters largely determine the success and

efficiency of GAs in solving problems. Unfortunately, finding a good parameter

set is far from a trivial task since these parameters interact with each other in a

complicated way. Although practitioners, who are familiar with GAs, may have

conventional intuition and experience in the parameter setting, GAs may not

always work as expectation. A study by De Jong et al. [1] showed that even a

slightly change in one component can make empirical results differ from what we

expect.

Many practitioners find a promising parameter set for a specific problem

by trying various combinations of the control parameters. However, this method

obviously requires a lot of computation due to an explosion in the number of

trials required for testing all combinations of parameters. A prominent example

of exhaustively testing several combinations of parameters was shown in the study

done by Schaffer et al. [2]. That study carefully examined the performance of a

GA using various combinations of the control parameters. The experiments that

involved several test functions and parameter combinations took approximately

1.5 CPU years. Indeed, the results may not generalize beyond the test problems

used since the best parameter set for one GA or one problem may not be optimal

in many other situations.

Some researchers have investigated the theoretical studies of the control

parameters [3, 4, 5, 6, 7]. However, these studies have been made by using

simplified algorithms and problems. To date there are no rules to select parameters

2

that can generalize to all cases. Some researchers have investigated proper

parameter settings from the theoretical findings. For instance, Lobo [8] proposed

a parameter-less GA. The results of the theoretical studies were used to derive a

proper parameter set that would perform well in many circumstances. The author

claimed that the important parameters were already determined. However, this

framework was limited to the binary representation of solutions and the search

operator was restricted to crossover only.

Alternatively, some researchers have explored adaptive and non-adaptive

mechanisms to overcome the parameter selection problem in GAs. These

techniques controlled the parameter values during the evolutionary search. The

research in this area has been appeared almost continuously. Some techniques have

been accepted as standard practices in some branches of evolutionary computation

(e.g., setting mutation step sizes in evolution strategies (ESs)).

1.2 Goal of This Research

This thesis will develop an adaptive mechanism for controlling parameters

in GAs. This technique will have the following features:

• On-line mechanism: The proposed method adjusts parameters while the

search is ongoing. This method is distinct from some methods which perform

the parameter selection before solving a given problem and the obtained

parameter set is then used for solving that problem (e.g., [9]).

• Adaptive parameter control : The parameter adjustment relies on the

performance of the evolutionary search of GAs, as opposed to the use of

deterministic rules in some studies. Since this method uses only the observed

performance of GAs in order to adjust parameters, a priori knowledge

about the underlying implementation of GAs or the information of the given

problem is not necessary.

• Multiple parameters: Several parameters are involved in the parameter

selection process. Note that many proposed techniques only dealt with one

3

parameter (e.g., [10, 11]).

• Parallel implementation: Our proposed method can be viewed as an

extension to a conventional coarse-grained model for parallelization. Thus,

this method can obtain the advantages of this parallel model.

The general idea is to use a meta-level algorithm to optimize parameters

of GAs. We use a GA variant for meta-level optimization. A number of

parameter sets of the lower level GA, called the task level GA, are evaluated

and optimized by the meta-level GA. The use of the meta-level GA causes a

new problem associated with the computational cost of evaluating a number of

parameter sets. To overcome this problem, we adopt the concept of coarse-grained

parallelization. The population is divided into a few large subpopulations. These

subpopulations evolve independently and concurrently on different processors.

The parameter sets optimized by the meta-level GA are distributed among these

subpopulations. Each subpopulation is controlled by the received parameter sets.

The observed performance of subpopulations will be used to determine how to

optimize parameter sets by the meta-level GA.

1.3 Organization

The contents of the thesis are divided into seven chapters. Note that chapter

2 may be skipped if the reader is already familiar with GAs. The details of all

chapters are as follows:

• Chapter 1 provides a general introduction to the research. In the beginning,

the chapter points out to general practices for setting the parameters of

GAs. Then, the chapter presents the goal of this research, and outlines the

contents of the remaining chapters.

• Chapter 2 presents a brief introduction to GAs. The chapter also compares

GAs with other search algorithms. The second part of the chapter provides

a concept of parallel GAs, and the models of parallelization. It focuses on a

coarse-grained model since our study is based on this model.

4

• Chapter 3 reviews relevant and related literature associated with techniques

for controlling and setting the parameters of GAs. The chapter begins

with some classifications that have been proposed by several researchers.

Thereafter, the chapter concentrates on two selected areas: subpopulation-

level methods and meta-level optimization.

• Chapter 4 describes the concept of an adaptive parameter control algorithm

(APCA). The chapter starts by describing the details of the parameters that

are controlled by APCA. Then, the chapter explains the development of

APCA and its details.

• Chapter 5 provides the experimental results of APCA. The first part

compares APCA against five algorithms on five test problems. The second

part uses a multimodal problem generator to examine how well APCA

adapts itself to new problem instances. The last part considers the evolved

parameter settings from the meta-level algorithm.

• Chapter 6 applies APCA to an examination timetabling problem. The

results provide some insights about the application of APCA on a more

complicated and realistic problem.

• Chapter 7 gives conclusions and suggestions for further research.

CHAPTER II

Overview of Genetic Algorithms

2.1 Introduction

The advent of algorithms inspired by the natural evolution and adaptation

has brought a new research area called Evolutionary Computation (EC). The

history of EC can be traced back to some ground-breaking studies of the 1950s.

However, three primary algorithms, namely evolutionary programming, evolution

strategies and genetic algorithms, that have been used up until the present time

were established by the mid-1960s. At that time three evolutionary algorithms

were developed independently by three research groups.

Evolutionary programming (EP) was introduced by Fogel et al. [12, 13].

It was first used to evolve finite state machines. Evolution strategies (ESs) were

investigated by Rechenberg and Schwefel at the Technical University of Berlin. In

early developments, ESs were used to optimize the body shape which gave the

smallest drag [14]. A comprehensive introduction to ESs can be found from the

article by Beyer and Schwefel [15]. The third variant is genetic algorithms (GAs)

that were developed by Holland [16, 17]. GAs are also often attributed to the

book by Goldberg [18].

In the beginning, three main evolutionary algorithms were quite different.

As the development of evolutionary algorithms has advanced, however, the gap

between these algorithms seems to be narrowed. EP and ESs are nearly identical

when are used for numerical optimization [19]. In addition, some techniques have

been shared among evolutionary algorithms. For example, the concept of self-

adaptation has been used extensively in ESs and EP. It was later applied to GAs

by Bäck [11].

Evolutionary computation is an attractive field of study. In the past decade,

there are a growing number of successful applications of evolutionary algorithms.

6

They are sometimes better than existing techniques. One of the advantages is that

EAs are more robust to inaccurate, noisy data. EAs can even tackle a problem

where its objective function cannot be formulated mathematically.

In this study, we focus our attention on GAs. The next section presents a

framework of a conventional GA. Then, the final section presents the concept of

parallel GAs which is fundamental to the proposed method in the later chapter.

2.2 Genetic Algorithms

A GA starts with a set, or population, of candidate solutions to a problem.

The first task in applying a GA to a given problem is to determine the

representation of candidate solutions. The representation changes the given

problem from one space to another space. Basically, each solution is normally

encoded as a fixed-length array of values. A traditional GA uses binary

representation. That is, each potential solution is represented by a number of

binary bits. Each encoded solution is called a chromosome.

Typically, a population of solutions is randomly generated at the beginning.

Assume P(t) = (xt
1, ..., x

t
n) is a population of n individuals for iteration t. Then,

the process of a GA usually proceeds through the following steps:

1. Evaluation: Each member xt
i in the population P(t) is assigned the fitness

value according to how good this solution to the problem it is. A user-defined

fitness function is used in the quality assessment. A good fitness function

should be able to compare two potential solutions and determine the better

one.

2. Selection: Some individuals in the population P(t) are selected. The

probability that a member will be selected is proportional to its relative

fitness compared with the fitness of the other competing members in the

population.

Consider proportional selection which is a simple and well-known selection

7

method. Assume a fitness function f : x → ℜ+ assigns non-negative scores

to candidate solutions and the objective is to maximize the fitness values.

Then, the selection probability for individual xt
i is calculated as follows:

p =
f(xt

i)
∑n

j=1 f(xt
j)

(2.1)

3. Breeding : In this step, some modifications are applied to the selected

individuals from the previous step in order to create a new population

P(t + 1). The population for the next iteration is created by means of

genetic operators. There are two primary types of genetic operators.

• Crossover : A new individual is produced by recombining features of

two, or more individuals. A simple crossover operator is one-point

crossover. Given two selected individuals of length n, one crossover

point between 1 and n − 1 is selected uniformly. The values up to the

crossover point are copied to the alternate child, while the remaining

values are copied to the respective child. This operator will produce

two offspring while they are the complement of each other. Assume

two 10-bit parents and the crossover point is 3. The result of one-point

crossover is shown in Figure 2.1.

↓

parent1 : 0 0 0 0 0 0 0 0 0 0

parent2 : 1 1 1 1 1 1 1 1 1 1

↑

child1 : 0 0 0 1 1 1 1 1 1 1

child2 : 1 1 1 0 0 0 0 0 0 0

Figure 2.1: One-point crossover

• Mutation: A new individual is generated by slightly changing a selected

individual. Mutation can be implemented in several ways. We will

use simple bit-flip mutation for the illustration purpose. Assume the

mutation rate is pm. Normally, the mutation rate is a small value

8

(e.g. 0.01). Every bit has an equal probability to undergo mutation.

For each bit within a selected individual, generate a random number

between 0 and 1. If the number is less than pm, then mutate this bit

by changing from 0 to 1 or vice versa. Next, the same procedure is

repeated for the other bits.

4. Update: There are several strategies to update an existing population. The

newly generated individuals may replace some or all of the individuals in

the current generation. Another strategy attempts to replace the infeasible

solutions.

A traditional GA replaces a whole of a population with a new population.

This strategy is referred to as generational reproduction. If a few least fit

individuals are replaced in each iteration, this strategy is called steady state

reproduction [20].

After finishing the fourth step, the algorithm repeats all steps again until

some termination criteria are met, i.e., the number of generations reaches a certain

value, or until the fitness of the best solution is better than a specific value.

To make the framework of GAs clearer to see, a schematic of GAs is shown in

Figure 2.2.

The process of a GA has several parameters. The main parameters that are

typically found in most GAs are as follows:

• population size

• selection strategy

• update strategy

• rate for applying crossover

• crossover type

• rate for applying mutation

• mutation type

Some parameters are continuous values (e.g., crossover rate, mutation rate),

9

Are termination criteria met?

Initialization

Start

- Generate an initial population

- Evaluate the newly generated

population

Termination

Selection

Breeding

Best

solution

Selection

process

Crossover

Mutation

Evaluation

Evaluate

the new

population

Yes

No

Update

Replace the old

population with

the new one

Figure 2.2: A schematic of GAs

whereas some parameters are discrete values (e.g., crossover type, mutation type).

In this work, we focus on four main parameters: crossover rate, crossover type,

mutation rate and mutation type. Moreover, the concrete parameters (i.e.,

crossover rate, mutation rate) will be discretized.

Yao [19, 21] pointed out that EAs can be understood by using a framework of

generate-and-test search. The advantage of formulating EAs as a case of generate-

and-test search is that the relationships between EAs and other search algorithms,

such as hill-climbing algorithms, simulated annealing (SA), tabu search (TS), and

others, can be made clearer. A framework of general generate-and-test search is

illustrated in Figure 2.3.

Most EAs can be viewed as a population-based version of generate-and-test

search. For GAs, the search operators like crossover and mutation play a role in

10

1. Generate the initial solution at random and accept it as the current solution

2. Generate the next solution from the current one by perturbation

3. Test to see whether the generated solution is acceptable

3.1 Accept it as the current solution if yes

3.2 Keep the current solution otherwise

4. If the current solution is not satisfactory, goto step 2.

Figure 2.3: A framework of general generate-and-test search

perturbing the current solutions in order to generate the next solutions, whereas

the selection process determines whether or not the newly generated solutions

are acceptable. Many search algorithms can be analyzed by the same manner.

By using the same framework, we can easily compare GAs with other search

algorithms. For example, hill-climbing algorithms require the next solution to be

better than the current one. Conversely, GAs, variants of EAs and some search

algorithms, such as simulated annealing have probabilistic methods to test whether

the generated solutions are acceptable or not. It is not necessary that the new

solutions have to be better than the current ones. However, highly fit solutions

have better chance to be accepted.

2.3 Parallel Genetic Algorithms

Parallelization has been applied to many evolutionary algorithms. The

general concept is to divide the task of serial algorithms; then distribute on

different processors. The divide-and-conquer approach can be applied in numerous

ways and this leads to different models. Genetic algorithms are the most popular

search algorithms that have been used in the studies of parallel EAs. A review

of the studies devoted to parallel GAs can be found in the article by Cantú-Paz

[22], and Alba and Troya [23]. A recent article by Alba and Tomassini [24] also

presented a review of the studies in this area by using the term of parallel EAs.

Although the vast majority of studies in this area are based on GAs, several

11

techniques used in these studies are not limited to parallel GAs. Many researchers

also applied the same concept of parallelization to other classes of EAs, such

as genetic programming (GP) [25, 26, 27, 28], evolutionary programming (EP)

[29, 30]. This confirms a fundamental fact about EAs that they are naturally

capable of being parallelized.

Basically, parallel GAs can be divided into three classes: 1) master/slave

parallel GAs, 2) coarse-grained parallel GAs and 3) fine-grained parallel GAs.

2.3.1 Master-slave Parallel GAs

This model uses a single global population. In general, one processor

(master processor) maintains the population while the additional processors (slave

processors) perform the time-consuming operations and send the results back to

the master. There are two main operations that are usually done in parallel:

the fitness evaluation and the application of genetic operators. The master

processor sends a portion of population to each slave processor. Each slave

processor is responsible for evaluating the received individuals or applying the

genetic operators to these individuals. Then, the results from slave processors

are sent back to the master processor. The communication overhead occurs when

individuals are sent to slave processors and the results are returned to the master.

A schematic picture of a master-slave parallel GA is shown in Figure 2.4. From

the picture, the master assigns portions of the population to the slaves (or the

workers). After that, the workers send the fitness values of the received individuals

back to the master.

The selection and mating are still performed over the whole population by

the master processor. That is, any individual may mate and compete with any

other. Accordingly, this model does not change the nature of the algorithm. Apart

from the reduction of processing time, the results of the parallel algorithm are

nearly identical to those of the serial counterpart. This can be considered as

the advantage of this model since the behavior of the algorithm is not altered.

12

Individuals

Fitness

Fitness
Individuals

Individuals

Fitness

Master

Workers

Figure 2.4: A schematic of a master-slave parallel GA

Specifically, the theory and the experience for the serial GAs can apply to the

parallel version directly.

2.3.2 Coarse-grained Parallel GAs

The concept of a coarse-grained model is to divide a population into a few

large subpopulations which are maintained by different processors (see Figure 2.5).

At the beginning, all processors create their own random subpopulations. Then,

each processor maintains the evolution of its population independently. While the

evolution is ongoing, some selected individuals are periodically exchanged via a

migration operator. Generally speaking, each processor executes a serial GA with

the smaller population and some selected individuals occasionally migrate among

the processors. In general, the migration process is usually infrequent and only

few individuals are exchanged during each migration. Thus, the communication

overhead of this model is quite small.

Unlike the master-slave model, this model introduces a new algorithm since

the behavior of the parallel algorithm is different from that of its serial counterpart.

The behavior change is due to the spatial distribution of subpopulations that

limits the selection and mating on the level of subpopulations. Many studies have

reported that the use of multiple subpopulations and the restricted mating leads to

13

Figure 2.5: A schematic of a coarse-grained parallel GA in a ring topology (the

black dots represent the subpopulations and the lines show the communication

links

better numerical performance. That is, the parallel algorithm has better efficiency

in finding the optimal solution.

The reduction of processing time due to the distribution of the population

among processing nodes and the improvement of numerical performance sometimes

make the parallel algorithm achieve superlinear speedup. Superlinear speedup

means that the speedup factor is greater than the number of processing nodes.

Examples of such results can be found from [31, 32, 33, 34, 35]. However, the

claim of such superlinear speedup in parallel EAs is often controversial. In fact,

the comparison between the serial algorithm and its parallel counterpart seems to

be unfair since both algorithms perform different amounts of work.

The advantage of this model is that it requires relatively little effort to

convert a serial GA into a coarse-grained parallel GA. Apart from the migration

process, most of the program still remains the same. Another advantage is that

this model has quite small communication overhead. Only few individuals are

sent during the migration, not the entire population as done in the master-slave

model. The last advantage is that this model improves the numerical performance

of GAs. The parallel algorithm has better performance in finding the solution,

even the multiple subpopulations are simulated on a serial machine. From these

14

Figure 2.6: A schematic of a fine-grained parallel GA in a 2-D grid (the black dots

represent the subpopulations and the lines show the communication links

advantages, it is not surprise that this model is so popular. Our study in the later

chapters is also based on this model.

2.3.3 Fine-grained Parallel GAs

The population is separated into a large number of very small subpopula-

tions, which are maintained by different processors. The subpopulation may be

only one individual and the interaction between an individual to other individuals

is limited to its neighbors. In particular, any individual only competes and mates

with its neighbors.

This model is suitable for massively parallel architecture that consist of a

huge number of basic processors. These processors are connected with a specific

high speed topology. The widely used topology of the processor connection in

many massively parallel computers is a 2-Dimensional grid [22].

A schematic picture of a fine-grained parallel GA in a 2-Dimensional grid is

shown in Figure 2.6. The structure of neighbors can be configured in several ways.

Figure 2.7 shows two examples of the neighbor configuration.

15

I. 4 nearest neighbors II. 8 nearest neighbors

Figure 2.7: Two examples of the neighbor configuration in a fine-grained parallel

GA

2.4 Summary

This chapter presents a quick introduction to GAs. GAs can be viewed as

a population-based version of generate-and-test search. The search operators like

crossover and mutation perturb the current solutions in order to generate new

solutions. The selection process is responsible for testing the newly generated

solutions and considering whether to accept these solutions. In the second part of

this chapter, a classification of parallel GAs is presented. The concept of coarse-

grained parallel GAs is fundamental to the study in the later chapters.

CHAPTER III

Literature Review

3.1 Introduction

The studies of the effects of the control parameters have a long history. One

of the earliest studies was done by De Jong [36]. He examined several combinations

of parameters on five test functions which were later used as a standard test

suite by many researchers. The findings from his empirical study showed that

the following parameters yielded an optimal performance: population size 50–100,

one-point crossover probability of 0.6 and bit mutation probability of 0.001. These

parameter values have been widely used by many researchers. The study done by

De Jong was later extended by Schaffer et al. [2]. To date, many researchers are

still working on this area, both theoretical and empirical. The findings of these

kinds of studies can help in selecting the proper parameter sets.

As an alternative to study the effects of the control parameters, some

researchers have investigated some techniques for setting parameters. The research

in this area has been started almost from the beginning of the evolutionary

computation. One of the earliest experiments in adapting parameters was

conducted by Reed et al. [37]. The control parameters were encoded in the

individuals themselves. These parameters were optimized by the evolutionary

search along with the solutions to the problem. According to the classification

of Eiben et al. [38], this scheme is known as self-adaptive parameter control.

The ability to self-adapt the search is one of the advantages of evolutionary

computation [39].

Currently, there are several works devoted to study the techniques for setting

or controlling parameters. These studies are differentiated from each other in

their control mechanisms and level of adaptation. Some classifications have been

proposed in the literature. In the next section, these classifications will be reviewed

17

and discussed.

3.2 Classification Schemes

Many studies devoted to investigate the techniques for setting or controlling

parameters have been presented in recent years. Unfortunately, the terms used

in these studies are defined differently. Some researchers have been attempted

to revise the terminology, survey various techniques used in the literature and

provide some classifications of the whole research in this area. In this section,

we will discuss about these classifications. We then draw some conclusions about

these classifications.

To our knowledge, the earliest remarkable classification was proposed by

Angeline [40]. The division criterion is based on the type of update rules and levels

of adaptation. The update rules specify how the control parameters are changed

over time. In particular, there are two types of update rules: absolute update rules

and empirical update rules. Absolute update rules are predetermined. These rules

define how the change in parameters will be made. An example of absolute update

rules is the 1/5 success rule. This rule is used to control the mutation strength for

a (1+1)ES. Specifically, the mutation strength is increased after a certain number

of generations if the success probability of mutation is greater than 1/5, otherwise

the mutation strength is decreased.

Empirical update rules modify parameters by using the selection and

variation process of an evolutionary algorithm. For instance, the self-adaptation

method lets the adaptive parameters co-evolve with the potential solutions to

the given problem. The values of the adaptive parameters are encoded into

chromosomes. If the parameter values are appropriate to offspring development,

they tend to survive in the later generations. If the parameter values are infeasible,

the individuals with these parameter values will eventually be replaced by those

with more fit parameters.

18

For the division by the levels of adaptation, three levels are defined:

• Population-level : The global values of parameters are adjusted. The

modifications effect the entire population.

• Individual-level : The parameters of a particular individual within the

population are modified.

• Component-level : This level of adaptation dynamically changes how the

distinct subindividual structures of each individual will be manipulated

independently from each other.

Smith and Fogarty [41] provided the classification based on three division

principles:

• What is being adapted : By using this principle, the studies in this area can be

divided into two classes. The first class adapts the probability of application

of operators. The second class changes the action of the operators.

• The scope of the adaptation: The authors adopted the classification by

Angeline [40] to define three distinct levels of adaptation.

• The basis of change: The authors drawn a further distinction according to

these principles: 1) the algorithms or rules that execute the change, 2) self-

adaptation.

Eiben et al. [38] provided the most comprehensive review of the literature

in this area. This paper attempts to revise the terminology used in this area,

provide a classification and survey various proposed techniques. They classified the

parameter setting techniques into two categories: parameter tuning and parameter

control. Parameter tuning finds parameter values before running the algorithm.

The obtained parameter set is used as a static parameter set during the run of

the algorithm. In contrast to parameter tuning, parameter control dynamically

changes the parameter values while the algorithm is still running. Parameter

control is divided into the following three methods:

19

• Deterministic parameter control : The parameters are adapted by using some

heuristic rules. Feedback from the status of the algorithm is not used.

• Adaptive parameter control : Some feedback from the observed status of the

algorithm is used to decide the change in parameters.

• Self-adaptive parameter control : The control parameters are encoded into the

chromosome. Each parameter set is applied to each chromosome separately.

The idea of this method is that good parameter sets will produce good

offspring, which will have a better chance to survive and create a new

population.

Another classification was proposed by Harik and Lobo [42]. They divided

the research in this area into three classes: empirical studies, facetwise theoretical

studies and parameter adaptation. Empirical studies are conducted by doing

experiments with various combinations of parameters. Facetwise theoretical

studies use theoretical analysis to study the effect of parameters. Parameter

adaptation changes parameters during the run of the algorithm.

A general observation that is drawn from these classifications is that the

studies can be classified by using various division criteria, resulting in different

classification schemes. Each class of research can be further divided into several

classes. This reflects the diversity of research in this area. Due to a huge amount

of work, we will limit our literature review for some related areas. The proposed

work relates to two main areas:

1. Subpopulation-level Methods: We will provide a review of research works

that utilize subpopulation-level methods for setting parameters. Note that

some researchers (e.g., Smith and Fogarty [41]) classified these studies to

population-level methods. Most studies in this area applied a different

parameter set to each subpopulation. Some studies used meta-level

algorithms to adjust parameter sets according to the observed performance,

while some studies used simple rules to adjust parameter sets. Apart from

20

dynamically adjusting parameters, some studies reported the use of various

static parameter sets in multiple subpopulations.

2. Meta-level optimization: Some studies incorporated meta-level algorithms

to optimize parameters of underlying algorithms, but these studies were not

based on distributed subpopulations. We will also provide a discussion about

these studies.

3.3 Subpopulation-level Methods

3.3.1 Using Rules/Algorithms for Adaptation

This section considers several proposed techniques based on the level of

subpopulations. All techniques maintained several subpopulations, each with a

different parameter set. Some sorts of rules or algorithms were used to adjust

parameter sets, or promote promising parameter sets. These were done in several

ways. Some techniques promoted promising parameter sets by adapting the

subpopulation sizes. Specifically, subpopulations with promising parameter sets

increased their sizes, whereas ones with unsuccessful parameter sets reduced their

sizes. A technique that conformed to this concept was done by Schlierkamp-Voosen

and Mühlenbein [43]. Several subpopulations with different parameter sets were

maintained. The performance criteria based on the best fitness values was used

to modify the population sizes. The size of the best group was increased, while

all other groups were decreased. However, the total number of individuals from

all subpopulations was fixed. The test functions were composed of unimodal and

multimodal functions. A small number of subpopulations (four groups) were used

in the experiment. Only one parameter in various subpopulations was distinct

from each other. The findings showed that the proposed method focused its

attention on the proper parameter set according to the current state of evolution.

For example, the group with largest mutation steps dominated at the beginning

of the evolution. Then, the second largest mutation steps took over in the second

phase of the evolution. Finally, the smallest mutation steps were used to locate the

21

optimum with high precision. However, the presented method is a first step. Only

one parameter is varied over all subpopulations. Clearly, the introduction of other

adaptive parameters is limited by the number of subpopulations. That is, the

required number of subpopulations is proportional to the number of parameter

combinations. Moreover, the algorithm relies on the adaptation of population

sizes. Thus, it tends to face the uneven workload problem if it is implemented as a

parallel algorithm. The study was later extended by the article of the same authors

[44]. The total number of individuals from all subpopulations in the extended

model was not fixed, but adapted during the run. However, the extended model

was tested by using only two subpopulations. One subpopulation was devoted to

crossover, whereas another was based on mutation. Hence, the available parameter

combinations are still limited.

Another study based on the modification of subpopulation sizes was proposed

by Hinterding et al. [45]. They used three subpopulations with sizes of P1, P2

and P3 (initial values of 50, 100 and 200). Some heuristic rules were used to

adjust the proper sizes of subpopulations. These rules were designed to maximize

the performance of middle subpopulation (P2). In addition, they also used an

individual-level adaptive method to control mutation strength. This method

can be regarded as a self-adaptation method, which the randomly generated

values of mutation strength were embedded into chromosomes (one value per

each chromosome). This value controlled the standard deviation of the Gaussian

mutation in each chromosome independently. By using this method, mutation

strength were evolved along with chromosomes. The concept of the self-adaptation

method is not new. This technique has been accepted as a standard practice in

the field of EP and ESs. In this study, several types of numeric functions included

nonlinear, non-separable and scalable functions were used as test functions. The

experimental results showed the advantages of using two levels of adaptation. All

subpopulations were able to adapt their population sizes to smaller values on

continuous unimodal functions. Thus, the exploitation capabilities were increased

in such functions. For functions which needed more exploration, the algorithm was

22

able to adapt the population sizes to maximize both exploitation and exploration.

However, this technique seems not to be suitable for implementing as a parallel

algorithm. The population size adjustment easily leads to the uneven workload

among processing nodes, especially in a coarse-grained model. In addition, the

proposed method is limited to adapt only the mutation strength and the proper

population size.

The last example of using the adaptation of subpopulation sizes for choosing

promising parameters was presented by Eiben et al. [46]. The proposed technique

attempted to select the best crossover operator. Each subpopulation used a

different crossover operator. The sizes of successful subpopulations were increased,

whereas the sizes of inferior subpopulations were decreased. The modification of

population sizes was based on the migration operator. The proposed algorithm was

tested on artificial problems. Unfortunately, the experimental results showed that

the proposed adaptive method was not able to detect and reward better crossover

operators. Namely, the population sizes of better crossover operators did not have

a significant distinction from other crossover operators. However, a GA with the

adaptive method outperformed a standard GA using 1-point crossover and had

comparable performance to a GA with the non-adaptive method using the best

crossover. Like the studies [43, 45], the change of population sizes makes the

algorithm be impractical for a parallel implementation. Moreover, the algorithm

has only one adaptive parameter.

Some techniques did not change subpopulation sizes. The promising

parameter sets were promoted by obtaining additional processing time. An

example is the study by Pham [47]. Several subpopulations, each with a different

parameter set, were evolved on the same computer. Then, the performance of

each population was recorded. Two populations that conformed with the selection

criteria received additional processing time to evolve further. The first was the

population that had the fittest individual. The second was the population which

had the fastest improvement. On the whole, this method obviously requires several

23

subpopulations if there are several adaptive parameters in parameter selection.

Hence, the algorithm tends to waste the computational time until it can detect

the right parameter combinations.

Some studies directly adjusted parameter sets based on the performance of

subpopulations. The first example that controlled only the mutation rate was

proposed by Lis [10]. This method was based on a master/slave model. After

creating an initial population, the master processor sent portions of the population

to the slave processors. These subpopulations evolved separately on different slave

processors by using various mutation rates. After a predetermined interval, the

slave processors sent their best individuals to the master processor. The master

processor gathered these individuals and sent the best individuals back to the

slave processors. The mechanism of adaptation is that the mutation probabilities

of processors were shifted by one level if the best result was acquired from the

processor with the highest mutation rate. The mutation rates were also reduced

by one level if the best result was obtained from the processor with the lowest

mutation rate. Overall, the parameter adaptation in this study is limited to the

mutation rate only.

Another study that directly adapted parameter sets was done by Schnecke

and Vornberger [48]. They used some rules for adjusting the parameter sets based

on the rank of performance. The proposed method applied a different parameter

set to each subpopulation. After a specific interval, all parameter sets were ranked

based on the performance of subpopulations. Then, each parameter set was

adapted to the next better one. Moreover, if the progress on a subpopulation

got stuck, the parameter set of this subpopulation was reset. The experimental

results showed that the proposed method outperformed a parallel GA using one

fixed parameter set and a parallel GA using different parameter sets without

adaptation. However, some implementation details are omitted. For instance,

it is not clear how the algorithm adapts each parameter set to the values of the

next better one.

24

Wang et al. [49, 50] used another GA to directly adjust parameter sets. This

method was denoted as DAGA2. DAGA2 consisted of two levels of GAs. The

lower level GA contained multiple subpopulations of a traditional GA, in which

each individual represented a solution to a particular problem. The upper level GA

maintained the evolution of control parameters of the lower level GA. In particular,

the individuals in the upper level GA represented the control parameters of the

lower level GA. The DAGA2 system was based on a coarse-grained parallel GA.

The test problems were composed of several artificial problems. The performance

of the DAGA2 system was better than the non-adaptive algorithms from other

studies. Moreover, the robustness of the DAGA2 system was also investigated.

That is, the performance of the DAGA2 system did not heavily rely on the

parameters of the upper level (user-specified). However, the DAGA2 system was

not able to compete with other algorithms for easy problems since the startup

cost for adapting itself to given problems was relatively high on easy problems.

An investigation of the DAGA2 system on a real world problem — 2-dimensional

layout problem — was also presented in [51]. The concept of DAGA2 is, to

some degree, close to our proposed method. However, the framework of DAGA2

presented in the literature is quite abstract. Some details of the algorithm and

the experiments are omitted, i.e., the replacement of individuals in the meta-level

algorithm, the rate of parameter adaptation and migration. Moreover, the research

also focused on comparing with some static parameter settings rather than other

adaptive methods.

3.3.2 Using Static Parameters

As an alternative to the dynamic methods mentioned earlier, some re-

searchers proposed simpler methods. The studies in this section take the advantage

of multiple subpopulations to utilize several parameter sets simultaneously. These

parameter sets are defined at the beginning of the run and are used statically

through the whole process. All studies indicated that the techniques based on

this concept were more robust than the use of identical parameter sets on each

25

subpopulation.

An earlier work by Tanese [52] introduced the application of different

parameter sets for each subpopulation. Some or all subpopulations used different

mutation and crossover probabilities. The findings showed that the use of

different parameter settings was more robust than the use of identical parameter

settings. Adamidis and Petridis [53] also proposed a method that was close to

the idea by Tanese. By using the concept of a coarse-grained parallel GA, several

subpopulations with different parameter sets were evolved independently. The

proposed algorithm was tested on the problem of training a Recurrent Artificial

Neural Network (RANN). Eight subpopulations with different search operators

and their parameters were used in the experiment. The algorithm was compared

with a parallel GA using the same parameter set in all subpopulations. The

proposed algorithm outperformed the algorithm using the single parameter set in

all performance metrics. However, it is not clear how the authors select the type

of search operators on each subpopulation.

Miki et al. [54] proposed a similar concept for setting parameters of

subpopulations on a coarse-grained parallel GA. They noticed that the best

crossover rate should be well matched with the mutation rate, the population

size, the number of subpopulations, the problems to be solved. They also

noticed that the optimal crossover rate depended on the state of evolution. To

solve these problems, the authors proposed the use of a different parameter

set in each subpopulation, called distributed environment scheme. The method

controlled only the mutation rates and the crossover rates. The mutation rates

were discretized into 3 possible values. The crossover rates were discretized

into 3 possible values as well. Thus, there were total 9 combinations of

parameter setting. Each parameter combination was assigned to a different

subpopulation. The effectiveness of distributed environment scheme was compared

with a single population GA and a multiple population GA using various

parameter combinations. The experimental results showed that the proposed

26

method achieved the best performance compared with a single population GA

using the optimal parameter set, and the relatively high performance compared

with a multiple population GA using the optimal parameter set. Obviously, the

possible parameter combinations of this method are limited by the number of

subpopulations. If a new parameter is introduced to the algorithm, it is necessary

to increase the number of subpopulations as well.

Another study that used multiple subpopulations with different configura-

tions was presented in the study by Herrera and Lozano [55]. The distributed

subpopulations were differentiated from each other by using various crossover

operators with different degrees of exploration and exploitation. By using a

hypercubic topology (see Figure 3.1), the subpopulations of the front side (namely,

A1 A2 A3 A4) were devoted to exploration, while the subpopulations of the

rear side (namely, a1 a2 a3 a4) were devoted to exploitation. In each side,

the exploration or exploitation degrees were gradually changed. By using a

sophisticated migration operator, the authors claimed that the migration process

induced the refinement (e.g., from an exploratory subpopulation to an exploitative

one) or the expansion (e.g., from an exploitative subpopulation to an exploratory

one). From the experimental results, the proposed method delivered both

reliability and accuracy in solving the test problems. Since the prior knowledge

about the characteristic of search operators used in this article is readily available,

it is possible to design the algorithm to conform to this idea. In many problem

domains, however, such knowledge is not always known in advance.

3.4 Meta-level Optimization

The research in this category considers the problem of parameter setting as

an optimization problem. Some algorithms, including variants of evolutionary

algorithms, have been applied to the problem. This results in two levels of

optimization. The upper level or the meta-level algorithm optimizes the parameter

setting, while the lower level or the task level algorithm solves the given problem.

27

A4 A1

A3 A2

a4 a1

a3 a2

Exploitation Side

Exploration Side

Figure 3.1: A schematic of gradual distributed real-code GAs

Unlike the studies in section 3.3.1, it is not necessary that the optimization of

both levels occur concurrently. In addition, the algorithms in this section do not

rely on the use of multiple subpopulations.

The article by Freisleben [56] provided a formal description of meta-

evolutionary approaches. The term meta-evolutionary approach is used to denote

the use of an evolutionary algorithm to optimize the parameter setting of the task

level algorithm, which results in two levels of evolutionary algorithms. The article

also reviewed some studies in this area.

One of the early remarkable meta-evolutionary approaches was conducted

by Grefenstette [57]. This method optimized parameters of a GA by employing

an additional level GA. The higher level GA, or meta-level GA, optimized

the parameter values of the underlying GA for two different performance

measurements: on-line performance and off-line performance. The higher level

GA maintained a population of parameter sets. To evaluate the fitness of each

parameter set, the lower level GA using this parameter set was evaluated under

28

five test functions from the study by De Jong [36]. In particular, each lower level

GA was subjected to perform each test function for 5000 function evaluations.

One thousand lower level GAs were evaluated under the process of parameter

optimization. Therefore, the substantial processing time was required to evaluate

a population of the meta-level GA. The author also examined the generalization

of parameter sets obtained from the meta-level GA on an image registration task.

The results showed that the parameter set optimized for on-line performance

did slightly better than the optimal parameter set found by De Jong, while the

parameter set optimized for off-line performance achieved no significant different

from the setting of De Jong.

The concept by Grefenstette has been adopted and extended by several

researchers. Shahookar and Mazumder [58] used this concept to optimize a GA for

standard cell placement. The parameters optimized by a meta-level GA were the

rates for applying three search operators, namely, the crossover rate, the mutation

rate and the inversion rate. The types of search operators were not involved in

the meta-level optimization. The final results of the meta-level GA provided some

insights into the acceptable range of parameter values.

Another study by Mernik et al. [59] used a meta-level GA to determine the

best combination of crossover operators for a traveling salesman problem. Each

position of an individual in the meta-level population represented the type of

crossover operators used in one generation of the task level GA. Thus, the length

of an individual in the meta-level population was proportional to the number of

generations in the task level GA. The rates of applying search operators and other

parameters were fixed. The results showed that the best combination found by

the meta-level GA was better than that of the random search algorithm.

The method by Grefenstette [57] handled all parameters as discrete values.

However, it is possible to design a meta-level algorithm that can optimize both

continuous and discrete parameters. An example is the study by B̈ack [60]. B̈ack

29

optimized parameters of a GA by using using a hybrid of GAs and ESs as the

meta-level algorithm. By using this scheme, the meta-level algorithm was able

to optimize both continuous and discrete parameters simultaneously. Moreover,

B̈ack used a class of parallel GAs, called master/slave parallel GAs, for speeding

the evaluation of a population of the meta-level algorithm. In order to evaluate the

meta-level population, each individual was assigned to the task level GA, which

performed on one of the slave processors, and then delivered the final result to the

master processor. The problem used in the experiments was a simple optimization

problem, the sphere model. The results showed that the obtained parameters from

the meta-level optimization were significant better than that of a standard GA.

The meta-evolutionary approaches required several runs of the task level

algorithms in order to evaluate parameter sets in the meta-level population. The

number of runs depends on the size of the meta-level population and the number

of generations of the meta-level algorithm. Thus, these approaches are obviously

computational intensive. Some researchers proposed the use of estimation, instead

of evaluating several parameter sets in order to reduce the computational cost.

Cicirello and Smith [9] introduced the use of a neural network for estimating

the fitness values of parameter sets. This work also used two levels of GAs.

In the beginning, a neural network was trained to learn the relation between

the parameter sets and their fitness values. This neural network was later used

for predicting the fitness values of parameter sets in the process of parameter

optimization. The author used the largest common subgraph problem in the study.

The results showed that the performance of parameter sets from the meta-level

algorithm outperformed the hand-tuned parameter set.

The meta-level algorithms of the studies [57, 58, 59, 60] obviously requires

several runs of the task level algorithms since the evaluation of each individual

requires at least one run of the task level algorithm. Although a technique

for reducing the computational cost associated with the fitness evaluation was

proposed by Cicirello and Smith [9], this technique still requires a number of runs

30

of the task level algorithm. Clearly, these techniques are computational intensive.

They seem to be impractical to some applications. Indeed, it is not clear that

the best parameter setting found by the meta-level algorithms can be generalized

beyond the problems used in the evaluation of parameter sets.

Apart from using meta-level algorithms to adjust parameter values or

select operators, Teller [61] provided a framework of using meta-level GP to

automatically design genetic operators. In particular, the meta-level GP evolved

a population of crossover operators for the lower level GP. Both levels used a

graph-based GP. Unlike the studies mentioned before, a population of the meta-

level GP co-evolved with a population of the lower level GP. This is possible

since the quality assessment of each crossover operator is calculated from the

relative fitness of parent and children. Thus, it is not necessary to perform the

entire run of the task level algorithm in order to evaluate merits of each operator.

However, only some types of operators are possible to be evaluated in this way.

From the experimental results, the evolved crossover outperformed the random

one. Kantschik et al. [62, 63] extended this concept and performed expanded

experiments. Edmonds [64] also investigated a similar concept on a traditional

GP.

3.5 Summary

This chapter provided a survey of the important studies devoted to

investigate the methods for setting and controlling the parameters of GAs. The

review starts with the classifications presented in the literature. Among these

classifications, the terms were defined differently. We select two important research

areas that are fundamental to our research, and conduct a literature review.

The first area relates to the subpopulation-level methods. Most GAs in

this area make use of multiple subpopulations. That is, the main population is

divided into few large subpopulations. A different parameter setting or search

strategy is assigned to each subpopulation. Some techniques simply exploit the

31

use of multiple parameter settings on different subpopulations. Some techniques

employ more sophisticated algorithms or rules to adapt or modify these parameter

settings during the run. The decision to adapt the parameter settings is based on

the performance of subpopulations.

The second area is the meta-level optimization. The algorithms in this

category use some meta-level algorithms to optimize the parameters of the task

level algorithm. Many proposed techniques use some kinds of evolutionary

algorithms as meta-level algorithms. The evaluation of each individual in the

meta-level population is done by assigning this individual as the parameters of

the task level algorithm, and the performance of the task level algorithm is then

used as the fitness of this individual.

CHAPTER IV

Adaptive Parameter Control Algorithm

Finding a feasible parameter set of a GA for a given task is a time-consuming

job. Many users rely on trying a number of parameter combinations in several

experiments. One parameter combination requires at least one run of a GA in

order to determine its efficiency. In fact, it had better use several runs to evaluate

a parameter setting. The feedback is then used to adjust the parameters. In a large

parameter space, users sometimes spend a lot of time in tuning the GA parameters

rather than solving a problem. If the time is concerned, searching through various

parameter combinations during the run of a GA is more promising. A number

of parameter sets are evaluated, and adjusted in the same run. This requires

a special algorithm, or some heuristic rules in order to adjust the parameters

effectively. This chapter investigates an algorithm that conforms to this idea. The

algorithm adjusts the GA parameters while the search is ongoing. This algorithm

is denoted as ‘an Adaptive Parameter Control Algorithm’ (APCA). The concept

of APCA is largely based on our articles [65, 66].

This chapter starts by describing the parameters that are found in most

GAs. Then, we will discuss about the parameters that are used in the parameter

adaptation. Thereafter, the concept of the algorithm is presented.

4.1 Parameters in Genetic Algorithms

There are some decisions that have to be made before applying a GA to a

particular problem. The following decisions are found in most GAs.

1. Choose the encoding : The encoding defines how to represent a solution

to the problem by using a structure containing decision variables. A

particular solution can be represented by an assignment of values to the

decision variables. Traditionally, solutions are represented by binary strings.

However, there is continuous development of the encoding schemes. Several

33

applications of GAs have used other representations, e.g. graphs, real-valued

vectors, integer permutation. The choice of representation should match

with the nature of the problem. Moreover, any possible solutions can be

represented by the encoding.

2. Design the fitness function: The fitness function assigns a score to any

possible solution. Given two individuals, the fitness function should be able

to distinguish the better one from another.

3. Choose the operators: There are two main types of operators. The first

is the selection method. There are several proposed selection mechanisms.

The general concept is to replicate the highly fit individuals, and remove

the infeasible individuals. The second is the genetic operators. The genetic

operators are used to generate new offspring from the selected individuals.

There are two major operators in GAs : crossover and mutation.

4. Choose the parameters: After selecting the operators, the operator proba-

bilities have to be determined by users. The rate at which the operator is

applied is controlled by the operator probability. Another parameter is the

population size.

The parameters that are controlled and adjusted by the proposed algorithm

are referred to as ‘adaptive parameters’. In addition, a set of adaptive parameters

is called an ‘adaptive set ’. From the list of decisions mentioned before, the first and

the second decisions are largely based on the nature of the problem. Therefore,

both decisions are not included in the adaptive set. Most of this research will be

based on the binary string representation. However, the concept can be applied

to other representations which will be illustrated in an examination timetabling

problem (Chapter 6).

Four parameters are included in the adaptive set. These parameters have

been well recognized that their settings play an important role in determining the

success and efficiency of GAs. The detail of these adaptive parameters and their

options are as follows:

34

0. subroutine onepoint(A,B)

1. sample µ ∈ U(1, l − 1)

2. for i = 1 to l do

3. if i > µ

4. a′i = bi

5. b′i = ai

6. else

7. a′i = ai

8. b′i = bi

9. end

10. end

11. return(A′,B′)

Figure 4.1: One-point crossover

1. Crossover operator : There are five crossover operators used in this study.

(a) One-point crossover : This is the simplest one. A single crossover point

is randomly selected. The bits up to the crossover point are copied to

the alternate child, while the remaining bits are copied to the respective

child. Let A and B are l-bit binary strings.

A = (a1, ..., al) ∈ I = {0, 1}l, B = (b1, ..., bl) ∈ I = {0, 1}l

Pseudo-code of the one-point crossover is shown in Figure 4.1.

(b) Two-point crossover : Two crossover points are randomly selected.

Pseudo-code of the two-point crossover is presented in Figure 4.2.

(c) Uniform crossover with a probability of 0.5 : This operator is

introduced by Ackley [67]. However, it is often attributed to Syswerda

[68]. Pseudo-code of the uniform crossover is shown in Figure 4.3. The

value Px is set to 0.5. This has been accepted as the standard setting

for the uniform crossover.

(d) Uniform crossover with a probability of 0.1 : The value Px = 0.1 is

used.

(e) Uniform crossover with a probability of 0.2 : The value Px = 0.2 is used.

The uniform crossover with probabilities other than 0.5 is inspired by

the studies [69, 70].

2. Crossover rate (Pc): Normally, this value is a continuous variable ranging

35

0. subroutine twopoint(A,B)

1. sample µ1, µ2 ∈ U(1, l − 1), µ1 < µ2

2. for i = 1 to l do

3. if i > µ1 and i ≤ µ2

4. a′i = bi

5. b′i = ai

6. else

7. a′i = ai

8. b′i = bi

9. end

10. end

11. return(A′,B′)

Figure 4.2: Two-point crossover

0. subroutine uniform(A,B)

1. for i = 1 to l do

2. sample µ ∈ U(0, 1)

3. if µ ≤ Px

4. a′i = bi

5. b′i = ai

6. else

7. a′i = ai

8. b′i = bi

9. end

10. end

11. return(A′,B′)

Figure 4.3: Uniform crossover

from 0 to 1. In order to reduce the search space of parameter combinations,

this value is discretized. Five possible values for the crossover rate are used

ranging from 0.2 to 1 in increments of 0.2. The zero rate is omitted in order

to guarantee that at least one search operator is working (if the mutation is

disabled).

3. Mutation operator : Each bit has a chance to be modified with the probability

controlled by the mutation rate. Thus, mutation may occur several times on

one individual. There are five mutation operators used in the experiments.

(a) Invert a bit : The bit at the mutation point is flipped to the opposite

value. Pseudo-code is shown in Figure 4.4.

36

0. subroutine invert(A)

1. for i = 1 to l do

2. sample µ ∈ U(0, 1)

3. if µ < mutation rate

4. ai = ¬ai

5. end

6. end

7. return(A)

Figure 4.4: Inverting mutation

(b) Swap two values : Another point is randomly selected. Then, the

positions of two bits are swapped. Pseudo-code is presented in

Figure 4.5.

(c) Random bit value : The bit at the mutation point is set to the new

value. Pseudo-code is shown in Figure 4.6. The value Px is set to 0.5.

Therefore, the probabilities of being ‘0’ or ‘1’ are equal.

(d) Random bit value with a bias toward ‘0’ : The new value at the random

mutation position is biased toward zero. The probability of being zero

is 0.9. In pseudo-code (see Figure 4.6), the Px is set to 0.9.

(e) Random bit value with a bias toward ‘1’ : The new value at the random

mutation position is biased toward one. The probability of being one

is 0.9. In pseudo-code (see Figure 4.6), the Px is set to 0.1.

4. Mutation rate (Pm): Like the crossover rate, this value is also discretized.

Six mutation rates are allowed varying from 0 to 0.1 in increments of

0.02. It is interesting to note that the crossover rate and the mutation

rate are discretized in order to simplify the application of search operators

in the meta-level algorithm. It is unnecessary to have two separate sets

of search operators in order to handle the concrete parameters and the

discrete parameters. An example of the work that requires two sets of search

operators is shown in the study by B̈ack [60].

37

0. subroutine swap(A)

1. for i = 1 to l do

2. sample µ ∈ U(0, 1)

3. if µ < mutation rate

4. sample j ∈ U(1, l), j 6= i

5. temp = ai

6. ai = aj

7. aj = temp

8. end

9. end

10. return(A)

Figure 4.5: Swap mutation

0. subroutine random(A)

1. for i = 1 to l do

2. sample µ ∈ U(0, 1)

3. if µ < mutation rate

4. sample ǫ ∈ U(0, 1)

5. if ǫ ≤ Px

6. ai = 0

7. else

8. ai = 1

9. end

10. end

11. end

12. return(A)

Figure 4.6: Random mutation

4.2 Development of an Adaptive Parameter Control Algo-

rithm (APCA)

The proposed algorithm is called as ‘an Adaptive Parameter Control

Algorithm’ (APCA). The idea is to consider the problem of parameter adjustment

as an optimization problem. A GA is used to solve this problem. Thus, there are

two levels of GAs. The meta-level GA adjusts the parameters, while the base-

level GA (task level GA) solves the given problem. The meta-level GA operates

on a population of parameter settings of the base-level GA. Each individual in

the population represents one configuration of the base-level GA. At the bottom

38

level, the base-level GA operates on a population of individuals which represent

possible solutions to the problem. The parameter settings of this level GA are

adopted from the population of the meta-level GA. Then, the performance is used

as the fitness values for the meta-level algorithm.

The parameter adjustment by the meta-level GA is done in a single run of

the base-level GA. That is, a population of the meta-level GA co-evolves with

a main population of the base-level GA. Inevitably, a number of individuals in

a population of the meta-level GA have to be evaluated in just one run of the

base-level GA. This is impractical for a single population GA. In order to realize

this, a coarse-grained model of parallelization is used to evaluate a population

of parameter settings simultaneously. By using a coarse-grained model, several

subpopulations evolve simultaneously on different processors. Each processing

node can be assigned with a different parameter setting. Accordingly, the

evaluation of parameter sets can be parallelized.

The proposed method differs from some studies [57, 60, 9, 59, 58] which try

to find an optimal or near optimal parameter set for a particular problem. Those

studies are relied on a substantial number of GA trials in order to evaluate a

population of meta-level algorithms. Obviously, the time used to find an optimal

or near optimal parameter set is much larger than the time used for solving a given

problem by a GA itself. Moreover, it is in doubt whether the obtained parameter

sets can be generalized beyond the problem instances used in the evaluation of

parameter sets. To precisely evaluate each parameter set, the assessment needs

an adequately number of runs on the representative problem instances. In many

situations, choosing an adequately number of runs and the problem instances

is not trivial. Moreover, using too much in either value will result in a waste

of computation resources. This issue was also discussed in [71]. In contrast to

those methods, our method tries to find some feasible parameter sets between the

problem solving is ongoing. Although the evolved parameter sets from the meta-

level GA may not be optimal, these parameter sets are expected to work well. The

39

advantage is that small computational cost is added to a conventional GA.

The meta-level GA starts with candidate parameter sets. The chromosome

representation of each parameter set is a vector of integer numbers. Let us assume

that S = (s1, . . . , sl) (si ∈ [ai, bi] ⊂ I+, i = 1, . . . , l) is an integer chromosome.

The value of a particular gene (si) denotes the value of the ith parameter. A

population of parameter sets at time t is P t = {St
1,S

t
2, . . . ,S

t
n}.

Like a traditional GA, the meta-level GA iterates through the following steps:

1. Evaluation: The evaluation of each parameter set is based on the execution

of the task level GA. Since several parameter sets must be evaluated

simultaneously in each generation, the population of the task level GA is

divided into multiple subpopulations. Then, evaluate parameter sets on

these subpopulations.

We adopt a coarse-grained parallel GA for improving the evaluation of

parameter sets. In a coarse-grained parallel GA, the subpopulations are

spatially distributed among the processing nodes. These subpopulations

evolve independently and concurrently. The evaluation of parameter sets

is realized by assigning these subpopulations with different parameter sets.

In the beginning, the number of parameter sets is equal to the number of

subpopulations. Let f(St
j) be the fitness of the parameter set St

j measured

on the subpopulation j. In this research, the fitness f(St
j) is the average

fitness value of the task level GA of the subpopulation j.

2. Selection and Breeding : Since there is no a global processor to handle

the selection and produce new parameter sets, we use some local selection

rules for selecting some parameter sets for breeding. The basic idea is to

eliminate the inferior parameter sets and try to create better parameter sets.

Each subpopulation compares its best parameter set with the neighboring

subpopulations. The subpopulations with inferior parameter sets attempt

to produce new parameter sets by using genetic operators.

40

Specifically, each subpopulation sends a pair of a parameter set and its

fitness value to other subpopulations for comparison. In this study, all

subpopulations are connected by using the one-way ring topology. Let p(j)

be the adjacent subpopulation of the subpopulation j. The subpopulation

j will receive a pair of parameter set and fitness value, < St
p(j), f(St

p(j)) >,

from the subpopulation p(j).

In the case of maximizing the fitness function, two new parameter sets are

produced as follows:

{St+1
j1 ,St+1

j2 } =

{

M(C(St
j ,S

t
p(j))), if f(St

p(j)) > f(St
j);

{St
j ,S

t
j}, otherwise.

The operator M is mutation, while the operator C is crossover. From the

rule, if the received parameter set is better than the local parameter set,

two distinct parameter sets are produced. This raises a new question of

how to select the best parameter set from both parameter sets. We have

found empirically that the strategy of evaluating both parameter sets and

selecting the best one is better than randomly choosing one parameter set.

Namely, each parameter set is evaluated on each half of the subpopulation.

When the time for parameter exchange is reached, a comparison between

two parameter sets is made; then the best parameter set is selected.

St+1
j =

{

St+1
j1 , if f(St+1

j1) > f(St+1
j2);

St+1
j2 , otherwise

Pseudo-code of APCA for each node is shown in Figure 4.7. In order to

make a comparison, pseudo-code of a conventional coarse-grained model is shown

in Figure 4.8. In the beginning of APCA, each node creates one parameter set

as a member of the population of the meta-level GA. Therefore, the number of

individuals in the meta-level GA is equal to the number of nodes.

After the selection and breeding process of the meta-level GA, two new

offspring are produced. In order to evaluate both offspring, each offspring is

applied to each half of the population. The average fitness values of both halves

41

are compared. Then, the best parameter is selected.

4.3 Summary

This chapter introduces the concept of an adaptive parameter control

algorithm. The idea is to consider the parameter adjustment as an optimization

problem, and use another GA to solve it. Four parameters are controlled by the

proposed algorithm, namely crossover operator, mutation operator, crossover rate

and mutation rate. The progress of the meta-level GA occurs in parallel with

the base-level GA. The optimization by the meta-level algorithm is done in a

single GA trial. Indeed, APCA is much different from other proposed meta-level

optimization techniques that rely on several GA trials.

42

0. initialize the population, θ /* population of the task level GA */

1. initialize the parameter set, S

2. while generation < max generation

3. evaluate θ

4. if one parameter set exists

5. apply genetic operators determined by S

to create the new population, θ́

6. else /* two parameter sets */

7. apply genetic operators determined by S1

to create the fist half of the new population, θ́1

8. apply genetic operators determined by S2

to create the second half of the new population, θ́2

9. merge θ́1 and θ́2 to θ́

10. end

11. replace θ with θ́

12. if an interval of K generations is reached

13. Migration

14. Parameter adaptation

15. end

16. generation = generation + 1

17. end

18.

19. subroutine Migration

20. send and receive migrants

21. add migrants to θ

22. end

23.

24. subroutine Parameter adaptation

25. if two parameter sets exist

26. select S from S1 and S2

27. end

27. send < S, f(S) > to the adjacent node

28. receive < Ś, f(Ś) >

29. if Ś is better

30. {S1,S2} = M(C(S, Ś))

31. end

32. end

Figure 4.7: Pseudo-code of APCA in each node

43

0. initialize the population, θ

1. while generation < max generation

2. evaluate θ

3. apply genetic operators to create the new population, θ́

4. replace θ with θ́

5. if an interval of K generations is reached

6. Migration

7. end

8. generation = generation + 1

9. end

10.

11. subroutine Migration

12. send and receive migrants

13. add migrants to θ

14. end

Figure 4.8: Pseudo-code of a conventional coarse-grained model in each node

CHAPTER V

Experimental Results

In the previous chapter, the concept of APCA is presented. The algorithm is

designed to help GA practitioners from the problem of parameter setting. In this

chapter, the framework of APCA is seen in action. Like many empirical studies,

this chapter starts by defining the test suite used in our experiments. We also

clarify the performance measurements along with other algorithms that are used

to make a comparison. We then present the results on test functions.

Following that, some additional experiments are carried out to gain some

insights into the proposed algorithm. We examine the sensitivity of the parameters

in the meta-level GA. The intention is to investigate how the change of meta-level

parameters affects the performance of the algorithm. We also use a problem

generator to test the algorithm. The problem generator is capable of producing

a number of problem instances with different characteristics. The results would

suggest whether the algorithm can adapt itself to different problem instances.

Finally, some results are presented to validate a hypothesis about the evolution of

parameters. An experiment is designed to show that the evolutionary process of

the meta-level algorithm is capable of improving the initial parameter sets to the

better ones.

5.1 Performance on Test Problems

5.1.1 Test Problems

The first part of this chapter provides some experimental results on test

problems. There are five test problems used in this study.

1. Onemax problem: The fitness function simply returns the number of ‘1’ bits

in an individual. The objective is to maximize the fitness function. Thus,

the optimal solution is an individual with all ‘1’ bits. The individual length

45

Table 5.1: A two-bit subfunction

Binary Code Function Value

00 2

01 1

10 0

11 3

is 300 bits.

2. Contiguous bits problem: This problem was used by Syswerda [68]. The

fitness function returns the number of ‘1’ bits that at least one adjacent bit

is ‘1’. Like the onemax problem, the optimal solution is an individual with

all ‘1’ bits. The individual length is also 300 bits.

3. Minimal deceptive problem: The function is the concatenation of 50 copies

of a two-bit subfunction (see Table 5.1). The detail can be found from [18].

4. Zero/one multiple knapsack problem: We use the ‘sento1-60’ problem which

was introduced in the article by Senyu and Toyoda [72]. The number of

knapsacks is 30, while the number of objects is 60. The known optimal

solution is 7772. The problem instance is available from OR-Library [73].

The fitness function proposed in [74] is used.

5. Royal road problem: This problem was introduced by Holland [75]. It was

designed as a function that would be simple for a GA, but difficult for a

hillclimber. A description of the problem was presented in the article by

Jones [76]. By using Holland’s default settings (see Table 5.2), the optimal

solution is 12.8. The individual length is 240 bits.

5.1.2 Algorithms and Performance Measurements

APCA is compared against five algorithms. These algorithms are based on a

coarse-grained model for parallelization. The difference between these algorithms

is how to determine or adjust the four adaptive parameters (see the previous

chapter for their details). The other parameters (e.g. migration rate, topology)

46

Table 5.2: Holland’s default settings

Variable Value

b 8

g 7

k 4

m∗ 4

u 0.3

u∗ 1.0

v 0.02

are identical.

The details of these algorithms are as follows:

1. Uniform random algorithm: A single parameter set is randomly generated

at the beginning of the algorithm. All subpopulations use this parameter

set.

2. Diverse random algorithm: At the beginning, each subpopulation randomly

creates its own parameter set. These initial parameter sets are used

throughout the run without any modifications. This algorithm is comparable

to APCA without the parameter adaptation. The similar techniques of

using different static parameter sets on the multiple subpopulations were

also presented in some studies [53, 55]. However, their parameters in each

subpopulation were intuitively selected rather than randomly set.

3. Static algorithm: This algorithm uses a static parameter set from the

systematic study by De Jong [36]. This parameter setting is sometime

accepted as a standard parameter setting. It has been adopted by many

researchers (e.g. [77, 78, 79, 80, 81]).

4. Strategy adaptation: The algorithm is adopted from the study by Schnecke

and Vornberger [48]. The parameter adaptation is done on the subpopulation

level. Each subpopulation employs a different parameter set. After a fixed

interval, theses parameter sets are ranked. Each parameter set is then

47

adapted to the values of the next best strategy. Unfortunately, the article by

Schnecke and Vornberger [48] did not exactly report how to adjust the values

of a parameter set to the next best one. We will assume that the parameter

sets are randomly generated at the beginning, like APCA. After ranking

these parameter sets, each parameter set inherits one randomly selected value

from the next best parameter set. The frequency of parameter adaptation

is set to the same as APCA.

5. Adaptive genetic algorithm (AGA): This algorithm was proposed by Srinivas

and Patnaik [82]. The proposed algorithm controlled only the crossover rate

(Pc) and the mutation rate (Pm). Some derived heuristic rules were used to

adapt the operator rates.

Pc = k1(fmax − f ′)/(fmax − f), f ′ ≥ f (5.1)

Pc = k3, f
′ < f (5.2)

Pm = k2(fmax − f)/(fmax − f), f ≥ f (5.3)

Pm = k4, f < f (5.4)

where k1, k2, k3, k4 ≤ 1.0, fmax and f are the maximum fitness value and

the average fitness value of the population respectively, f ′ is the average

fitness value of parents and f is the fitness value of an offspring needed to

be mutated.

The operator rates are determined separately for each individual. The

crossover operator is the one-point crossover, while the mutation operator is

the inverting mutation. The default constants recommended in the article are

as follows: k1 = 1.0, k2 = 0.5, k3 = 1.0 and k4 = 0.5. However, the use of the

recommend values cannot solve the test problems. We found empirically that

the following values worked better (k1 = 0.6, k2 = 0.05, k3 = 0.6, k4 = 0.05).

Nevertheless, the use of new values can solve only one from five test problems.

Thus, we will show the results of AGA in the problem that can be solved.

We adopt two measurements from the study by Deb and Agrawal [83]:

48

Performance and Unuse Factor. The performance is the ratio of the number

of runs yielding the optimal solution to the total number of runs, except that the

number of runs reaching 1% from the optimal is used in the knapsack problem.

The unuse factor (U) is calculated as follows:

U = 1 −
g

gmax

(5.5)

where g is the number of generations required to solve the problem, gmax

is the maximum number of generations. The larger the unuse factor, the faster

the algorithm is. Note that the unuse factor is originally calculated by using the

number of function evaluations. Nevertheless, we use the number of generations

instead since it is easier to compute in the parallel environment.

5.1.3 Experimental Design and Implementation

All algorithms mentioned in the previous section are implemented using the

same model for parallelization. A coarse-grained model is applied to all algorithms.

We implement the parallel algorithms on a cluster of PC workstations with 1GHz

Pentium III processors, each with 256 MB of RAM, and running Linux as an

operating system. All are linked by a fast ethernet switch (100 Mbps). The

number of processing nodes used in the experiments is 8. The program is based

on a modified version of LibGA software package [84]. MPICH, a message passing

interface standard, is used for providing basic communication functions. This

library also provides the mechanism for starting and controlling several processes

on multiple processing nodes.

The migration topology is a one-way ring topology (see Figure 5.1). All

algorithms use the same parallel parameters. The details about these parallel

parameters are as follows:

1. Migration interval : The migration interval defines the interval between two

49

Figure 5.1: The one-way ring topology

migrations in terms of the number of generations. This parameter is set to

5 generations.

2. Selection policy : The selection policy specifies how to select individuals for

each migration. The migrants may be selected from the best individuals

in a subpopulation, or randomly chosen from all available individuals. In

the experiments, the selection policy that we used lies between these two

extreme cases. The migrants are selected by using the selection function

that normally used in the process of GA.

3. Replacement policy : The received migrants may replace the worst individuals

in the receiving subpopulation, or they may randomly replace any indi-

viduals. In the experiments, the migrants are appended to the receiving

subpopulation. The rest is then generated by the genetic operators.

4. Migration rate: This parameter determines the number of migrants in each

migration. The parameter is set to 6 individuals.

5. Synchronization: We use the synchronous migration in our experiments.

Specifically, every processor will wait until all processors are ready for the

migration.

The population size plays an important role in determining the success and

the computational cost in finding a solution to a particular problem. Thus, all

50

experiments are conducted over a range of population sizes in order to reduce bias

associated with the setting of population size. All reported results are averaged

over 20 runs with different random seeds. The maximum number of generations

for all experiments is 500. The selection operator is the roulette-wheel selection.

Migrants are also selected by this operator.

5.1.4 Results on Test Functions

Figures 5.2 and 5.4 show the performance on the onemax problem and

the contiguous bits problem respectively. As mentioned earlier, the results

are averaged from 20 runs. Each algorithm is tested on 12 population sizes.

Accordingly, the result of each algorithm on a particular problem is based on 240

trials. The results on the onemax problem and the contiguous bits problem are

nearly identical. APCA can find the optimal solution in all runs over the range

of population sizes. The performance of the diverse random algorithm nearly

resembles the performance of the strategy adaptation algorithm. The uniform

random algorithm achieves the moderate performance. The static algorithm

attains the lowest performance.

Figures 5.3 and 5.5 illustrate the unuse factor on the onemax problem and the

contiguous bits problem respectively. The unuse factor graphs indicate that the

proposed method has the highest remaining generation number. This means that

the proposed method uses the shortest period in finding the optimal solution. The

static algorithm has the lowest convergence rate. When increasing the population

size, the unuse factor reduces to zero. This means that the static algorithm is

unable to find the optimal solution in the given time. Overall, the unuse factor

slightly drops as the population size increases.

The performance on the minimal deceptive problem is depicted in Figure 5.6.

APCA finds the optimal solution in all runs when the population size increases to

40. The diverse random algorithm requires the population size at least 220 to find

the optimal solution in all runs. This algorithm performs slightly better than the

51

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250
Pool size (per processor)

APCA
Uniform random algorithm
Diverse random algorithm

Static algorithm
Strategy Adaptation

P
er

fo
rm

an
ce

Figure 5.2: Performance for the onemax problem

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 50 100 150 200 250
Pool size (per processor)

APCA
Uniform random algorithm
Diverse random algorithm

Static algorithm
Strategy adaptation

U
nu

se
 fa

ct
or

Figure 5.3: Unuse factor for the onemax problem

52

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250
Pool size (per processor)

APCA
Uniform random algorithm
Diverse random algorithm

Static algorithm
Strategy Adaptation

P
er

fo
rm

an
ce

Figure 5.4: Performance for the contiguous bits problem

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 50 100 150 200 250
Pool size (per processor)

APCA
Uniform random algorithm
Diverse random algorithm

Static algorithm
Strategy adaptation

U
nu

se
 fa

ct
or

Figure 5.5: Unuse factor for the contiguous problem

53

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250
Pool size (per processor)

APCA
Uniform random algorithm
Diverse random algorithm

Static algorithm
Strategy adaptation

P
er

fo
rm

an
ce

Figure 5.6: Performance for the minimal deceptive problem

strategy adaptation algorithm. For the static algorithm, the performance improves

considerably as the population size increases. Moreover, the static algorithm finds

the optimal solution in all runs by using the population size at least 160. The

uniform random algorithm achieves its best at about 0.65. Again, the unuse

factor (See Figure 5.7) indicates that APCA has the highest remaining generation

number. Regarding the population size, the proposed method uses the shortest

duration in finding the optimal solution.

Figure 5.8 shows the performance on the knapsack problem. APCA achieves

significant better performance in finding the optimal solution than the other

competing methods. Apart from the results in previous problems, the strategy

adaptation algorithm outperforms the diverse random algorithm. Figure 5.9

presents the unuse factor on the knapsack problem. Obviously, the proposed

algorithm has the highest remaining generation number.

The performance on the royal road problem is shown in Figure 5.10.

The ratios of runs reaching the optimal solution of APCA and the diverse

random algorithm are nearly equivalent. From the unuse factor in Figure 5.11,

the remaining generation numbers of both algorithms are also approximately

54

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 50 100 150 200 250
Pool size (per processor)

APCA
Uniform random algorithm
Diverse random algorithm

Static algorithm
Strategy adaptation

U
nu

se
 fa

ct
or

Figure 5.7: Unuse factor for the minimal deceptive problem

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250
Pool size (per processor)

APCA
Uniform random algorithm
Diverse random algorithm

Static algorithm
Strategy adaptation

P
er

fo
rm

an
ce

Figure 5.8: Performance for the knapsack problem

55

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 50 100 150 200 250
Pool size (per processor)

APCA
Uniform random algorithm
Diverse random algorithm

Static algorithm
Strategy adaptation

U
nu

se
 fa

ct
or

Figure 5.9: Unuse factor for the knapsack problem

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250
Pool size (per processor)

APCA
Uniform random algorithm
Diverse random algorithm

Static algorithm
Strategy adaptation

AGA

P
er

fo
rm

an
ce

Figure 5.10: Performance for the royal road problem

56

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 50 100 150 200 250
Pool size (per processor)

APCA
Uniform random algorithm
Diverse random algorithm

Static algorithm
Strategy adaptation

AGA

U
nu

se
 fa

ct
or

Figure 5.11: Unuse factor for the royal road problem

equivalent. The strategy adaptation is also comparable to both algorithms when

the population sizes are small. However, the performance seems not to increase

as much as both algorithms when the population sizes increase. Note that the

uniform random algorithm cannot find the optimal solution in the given period.

The static algorithm is able to find the optimal solution in some runs when the

population size is sufficient. AGA can find the optimal solution on this problem,

though the result of this algorithm is quite poor. However, this does not mean that

AGA cannot solve these test problems. In fact, AGA is designed for multimodal

problems. It may converge too slow and cannot find the optimal solutions in the

given period.

5.1.5 Compared with a Random Walk Algorithm

APCA starts with a group of randomly generated parameter sets. Then,

the process of parameter adaptation is applied to these parameter sets every

5 generations. If the parameter adaptation is disabled, APCA and the diverse

random algorithm are exactly the same. In fact, the results from APCA obviously

differ from those of the diverse random algorithm. The dynamically change of

parameter sets plays an important role in the success of APCA.

57

In this section, we argue that the change of parameter sets in a systematic

way is an important key to the success of APCA. In order to verify this, we compare

APCA with a random walk algorithm. The random walk algorithm changes the

parameter sets every 5 generations as is done in APCA. However, the change is not

directed by any rules, just completely random. If the random walk algorithm has

comparable efficiency to that of APCA, the meta-level GA is obviously useless.

The results on five test problems are shown in Figures 5.12, 5.13, 5.14, 5.15

and 5.16. Overall, APCA outperforms the random walk algorithm, except the

last problem that both algorithms have comparable efficiency. The results of the

random walk algorithm are close to those of the diverse random algorithm rather

than APCA.

In fact, the random walk algorithm explores the parameter space more

thoroughly than the diverse random algorithm. Approximately 800 modifications

of parameters are done by the random walk algorithm in a single run, while the

diverse random algorithm utilizes 8 different parameter sets in each run. When

comparing with the number of possible parameter combinations (i.e., 750), in some

sense, the random walk algorithm would be able to find some feasible parameter

sets. However, the improvement of the random walk algorithm from the diverse

random algorithm is marginal. We argue that the reason is the lack of a control

algorithm in the random walk algorithm. Thus, the modifications of parameters

cannot keep feasible solutions. Unlike APCA that also modifies parameters

with the same frequency, it has a mechanism for controlling the modifications

of parameters. This helps APCA to perform more reliably.

5.1.6 Parameters of the Meta-level GA

This section considers the sensitivity of the parameters of the meta-level

GA. Initially, APCA uses both the crossover operator and the mutation operator

as its search operators. In this section, three variants of the meta-level GA are

examined: one using only crossover (APCA-c), one using only mutation (APCA-

58

P
er

fo
rm

an
ce

Pool size (per processor)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

APCA
Random walk

Diverse random algorithm

U
nu

se
 fa

ct
or

Pool size (per processor)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 50 100 150 200 250

Random walk
Diverse random algorithm

APCA

Figure 5.12: A comparison with the random walk algorithm on the onemax

problem

P
er

fo
rm

an
ce

Pool size (per processor)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

APCA
Random walk

Random diverse algorithm

U
nu

se
 fa

ct
or

Pool size (per processor)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 50 100 150 200 250

APCA
Random walk

Diverse random algorithm

Figure 5.13: A comparison with the random walk algorithm on the contiguous

bits problem

P
er

fo
rm

an
ce

Pool size (per processor)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

APCA
Random walk

Diverse random algorithm

U
nu

se
 fa

ct
or

Pool size (per processor)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 50 100 150 200 250

APCA
Random walk

Diverse random algorithm

Figure 5.14: A comparison with the random walk algorithm on the minimal

deceptive problem

59

P
er

fo
rm

an
ce

Pool size (per processor)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

APCA
Random walk

Diverse random algorithm

U
nu

se
 fa

ct
or

Pool size (per processor)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 50 100 150 200 250

APCA
Random walk

Diverse random algorithm

Figure 5.15: A comparison with the random walk algorithm on the knapsack

problem

P
er

fo
rm

an
ce

Pool size (per processor)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

Random walk
Diverse random algorithm

APCA

U
nu

se
 fa

ct
or

Pool size (per processor)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 50 100 150 200 250

APCA
Random walk

Diverse random algorithm

Figure 5.16: A comparison with the random walk algorithm on the royal road

problem

m), and the normal setting using both operators (APCA). The experiments in this

section intend to investigate how the change of the meta-level parameters affects

the overall performance.

The results of three variants of the meta-level GA are presented in

Figures 5.17, 5.18, 5.19, 5.20 and 5.21. The results suggest that mutation seems

to be more important than crossover. The disabling of crossover in APCA-m

does not make any significant difference. Conversely, the disabling of mutation

in APCA-c has a detrimental effect on performance. In general, the use of both

operators is quite safe. Thus, the normal setting seems to be a promising choice

whether crossover is necessary or not.

60

There is one possible reason why the use of crossover alone obtains

unsatisfactory performance. When the meta-level population is converged to

a particular parameter setting, it is unable to evolve further. Specifically, the

application of crossover between two identical individuals still results in the

same. If the population is stuck in the local optima, the use of crossover alone

cannot escape from the local optima. In contrast, the use of mutation allows the

population to evolve further. Accordingly, mutation may help to avoid premature

convergence and escape from the local optima. In addition, crossover alone tends

to lack adaptability. The task level GA may require a different parameter setting

for each stage of evolution. Crossover alone may not adequately response to

the stage of evolution. Conversely, the use of mutation enables the meta-level

population to evolve further and response to the performance and stage of the

task level GA.

The reason mentioned earlier can also explain why APCA performs better

than the strategy adaptation algorithm. The strategy adaptation algorithm is, to

some degree, close to APCA-c. Each parameter set is adapted to the values of the

next best strategy. This can be viewed as each parameter set performs a form of

crossover with the next best strategy. No form of mutation is used in the strategy

adaptation algorithm. Thus, the algorithm may face with the same problem that

happens to APCA-c.

5.2 Generalization on a Test Problem Generator

This section studies the behavior of algorithms when the nature of a problem

is changed. The experiments demonstrate how the adaptive algorithms perform

when the characteristic of a problem varies. We also consider the results of a static

parameter set.

The experiments are realized by using a problem generator. We use the

multimodal generator [1, 4, 85] in our experiments. The problem generator

is capable of producing a number of random test problems that vary the

61

Pool size (per processor)

P
er

fo
rm

an
ce

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

APCA
APCA−m
APCA−c

Pool size (per processor)

U
nu

se
 fa

ct
or

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 50 100 150 200 250

APCA
APCA−m
APCA−c

Figure 5.17: Variants of the meta-level GA on the onemax problem

Pool size (per processor)

P
er

fo
rm

an
ce

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

APCA
APCA−m
APCA−c

U
nu

se
 fa

ct
or

Pool size (per processor)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 50 100 150 200 250

APCA
APCA−m
APCA−c

Figure 5.18: Variants of the meta-level GA on the contiguous bits problem

P
er

fo
rm

an
ce

Pool size (per processor)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

APCA
APCA−m
APCA−c

U
nu

se
 fa

ct
or

Pool size (per processor)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 50 100 150 200 250

APCA
APCA−m
APCA−c

Figure 5.19: Variants of the meta-level GA on the minimal deceptive problem

62

Pool size (per processor)

P
er

fo
rm

an
ce

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

APCA
APCA−m
APCA−c

U
nu

se
 fa

ct
or

Pool size (per processor)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 50 100 150 200 250

APCA
APCA−m
APCA−c

Figure 5.20: Variants of the meta-level GA on the knapsack problem

P
er

fo
rm

an
ce

Pool size (per processor)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

APCA
APCA−m
APCA−c

U
nu

se
 fa

ct
or

Pool size (per processor)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 50 100 150 200 250

APCA
APCA−m
APCA−c

Figure 5.21: Variants of the meta-level GA on the royal road problem

multimodality — the number of peaks. One of the interesting features of this

problem generator is that the change of the generator characteristic does not

affect the difficulty of the generated instances.

The problem generator creates a set of P random N -bit strings. These

random strings represent the location of the P peaks (the degree of multimodality)

in the search space. The fitness is the number of bits an individual has in common

with the nearest peak, divided by N .

f(A) =
1

N

P
max
i=1

{N − Hamming(A, P eaki)} (5.6)

Consider a simple 10-bit problem, with two optimal peaks at ‘00. . . 00’ and

‘11. . . 11’. An example of individuals and their fitness values is shown in Table 5.3.

63

Table 5.3: Individuals and their fitness values

Individual Fitness Value

0 111 111 111 0.9

1 000 000 000 0.9

0 000 000 111 0.7

1 111 111 000 0.7

1 111 100 000 0.5

0 000 011 111 0.5

The individuals with 50% 1’s and 0’s have the lowest fitness, while individuals with

mostly 1’s or mostly 0’s have high fitness. When applying mutation to a highly

fit individual located on any peak, the offspring tends to move up or down the

peak to a small degree. However, crossover has a different effect. If both highly

fit individuals are from different peaks, the offspring are likely to be in the low

fitness region.

Spears [4] pointed out that crossover may introduce a detrimental effect on

performance on high multimodality problems, while mutation seems to be more

promising on such problems. Conversely, crossover helps in improving the GA

performance when the multimodality is low (e.g. 1-peak problems). The results

that confirm this hypothesis are shown in the studies [1, 4].

The experiments are conducted on two different problem sets. The first set is

low multimodality problems (or, to be precise, 1-peak problems). The second set

is high multimodality problems (or, to be precise, 500-peak problems). Each set

contains 20 randomly generated instances. The problem length is 200 bits. The

first experiment investigates the generalization of a static parameter. We start

by searching for a promising parameter for the 1-peak problems. Then, we will

test this parameter set on the 500-peak problems. The selection of a promising

parameter set is carried out by testing 40 randomly generated parameter sets. The

performance of each parameter set is averaged on 20 trials, each on one random

problem instance. Thus, the total number of runs required for finding a promising

64

Table 5.4: Results of a static parameter set

Problem Performance Unuse factor

1-peak problems 1.0 0.65

500-peak problems 0.0 0.0

Table 5.5: Results of APCA

Problem Performance Unuse factor

1-peak problems 1.0 0.44

500-peak problems 0.8 0.12

parameter set is 800. Due to this large number of runs, the population size in the

experiments is limited to 100.

From the results, only 4 parameter sets from 40 random parameter sets can

reach the optimal solutions. Indeed, only one parameter set can find all optimal

solutions. We then test this parameter set on the 500-peak problems. Like the 1-

peak problems, there are 20 instances. The results are presented in Table 5.4. It is

clear that the use of a static parameter set cannot reach any optimal solutions on

the 500-peak problems. The results indicate that the selected parameter cannot

generalize to other instances.

We also investigate how well the adaptive algorithms perform on two different

sets of problems. By running these algorithms on the 1-peak problems and the 500-

peak problems, the results of APCA, AGA and the strategy adaptation algorithm

are presented in Tables 5.5, 5.6 and 5.7 respectively.

Table 5.6: Results of AGA

Problem Performance Unuse factor

1-peak problems 0.8 0.08

500-peak problems 0.8 0.08

65

Table 5.7: Results of the strategy adaptation algorithm

Problem Performance Unuse factor

1-peak problems 0.2 0.10

500-peak problems 0.0 0.0

For the 1-peak problems, APCA has the highest performance. The algorithm

can find all optimal solutions, like the use of a static parameter set. AGA performs

quite well although it cannot obtain all optimal solutions. The strategy adaptation

algorithm has the lowest performance. For the 500-peak problems, APCA and

AGA have equal performance, while APCA has slightly higher unuse factor. The

strategy adaptation algorithm cannot find any optimal solutions in these instances.

The convergence curves between APCA and the use of a static parameter

are shown in Figures 5.22 and 5.23. It is clear that the use of a static parameter

converges faster on the 1-peak problems. However, both algorithms can find

all optimal solutions. For the 500-peak problems, the use of a static parameter

converges faster in the beginning. After that, the convergence rate of the static

algorithm reduces substantially, while APCA has a nearly constant convergence

rate. Finally, APCA overtakes the static algorithm.

Although APCA is a bit slower than the use of a highly fit parameter set, its

generalization is better. The results also confirm a common intuition about the

use of a static parameter set. The parameter set that performs well on particular

instances may not generalize to other instances.

5.3 An Observation of the Evolved Parameters

This section proposes a framework for analyzing the internal mechanism of

APCA. The objective is to verify whether the evolved parameter sets during the

run are better than the initial parameter sets. To achieve this, the framework

is divided into two stages. In the first stage, the parameter sets in all nodes

66

Generations

F
itn

es
s

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 50 100 150 200 250 300 350 400 450 500

Static parameter
APCA

Figure 5.22: Convergence on the 1-peak problems

Generations

F
itn

es
s

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 50 100 150 200 250 300 350 400 450 500

Static parameter
APCA

Figure 5.23: Convergence on the 500-peak problems

67

are recorded while APCA is running. If the parameter sets at generation i are

considered, one parameter set (S) is randomly selected from all parameter sets in

each trial. We run APCA 20 times. Thus, there are 20 parameter sets, {Sn, n =

1, . . . , 20}.

In the second stage, each parameter set (Sn) is evaluated by assigning Sn

to a coarse-grained parallel GA. The configuration of the parallel GA is identical

to that is used earlier. All processors use the same parameter set, Sn. This

is repeated for every (Sn). By using the same performance measurement, the

performance factor is calculated.

We apply this method to the parameter sets at generations 0, 25 and 250.

The parameters found in generation 0 represent the initial parameters from the

meta-level GA in APCA, while the parameters at generations 25 and 250 represent

the evolved parameters at 5% and 50% of a run respectively. Figures 5.24, 5.25,

5.26, 5.27, and 5.28 show the results on five test problems. To make the results

clearer to see, the performance of the evolved parameters are compared to that

of the initial parameters by using the Wilcoxon signed rank sum test for paired

difference at significance α = 0.05. Table 5.8 shows the critical values, where n

is the number of unequal samples. The results are shown in Table 5.9. The ‘>’

symbol denotes the evolved parameters at that generation are better than the

initial parameters, while the ‘=’ symbol means there is no significant difference.

Apart from the results on the knapsack problem at generation 250, all evolved

parameters are better than the initial parameters. The results confirm that the

meta-level algorithm is capable of transforming the initial parameters to the better

ones.

5.4 Summary

This chapter presents the experimental results of APCA. The algorithm is

compared against five algorithms on five test problems. The experiments are

68

Pool size (per processor)

P
er

fo
rm

an
ce

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

Initial parameters
Parameters at generation 25

Parameters at generation 250

Figure 5.24: Parameters at generations 0, 25 and 250 on the onemax problem

P
er

fo
rm

an
ce

Pool size (per processor)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

Initial parameters
Parameters at generation 25

Parameters at generation 250

Figure 5.25: Parameters at generations 0, 25 and 250 on the contiguous bits

problem

69

P
er

fo
rm

an
ce

Pool size (per processor)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

Initial parameters
Parameters at generation 25

Parameters at generation 250

Figure 5.26: Parameters at generations 0, 25 and 250 on the minimal deceptive

problem

P
er

fo
rm

an
ce

Pool size (per processor)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

Initial parameters
Parameters at generation 25

Parameters at generation 250

Figure 5.27: Parameters at generations 0, 25 and 250 on the knapsack problem

70

Table 5.8: Critical values of TL in the Wilcoxon signed rank sum test, P (T ≤

TL) = 0.05

n TL

5 1

6 2

7 4

8 6

9 8

10 11

11 14

12 17

P
er

fo
rm

an
ce

Pool size (per processor)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

Initial parameters
Parameters at generation 25

Parameters at generation 250

Figure 5.28: Parameters at generations 0, 25 and 250 on the royal road problem

conducted on a wide range of population sizes in order to reduce bias associated

with the setting of population size. Regarding the population sizes, the results

show that the proposed method offers two advantages over the other competing

methods on the test problems: the reliability in finding the optimal solution and

the time required for finding the optimal solution.

We also use a multimodal problem generator to examine how well APCA

adapts itself to new problem instances. The algorithm is a bit slower than the

71

Table 5.9: A comparison between the evolved parameters and the initial

parameters by using the Wilcoxon signed rank sum test (α = 0.05)

Problem Parameters Parameters

at generation 25 at generation 250

Onemax > >

Contiguous bits > >

MDP > >

Royal road > >

Knapsack > =

use of a highly fit parameter set in some cases, but the algorithm is more general

to different problem instances. We also test other adaptive algorithms with this

problem generator. The results suggest that APCA performs better than the

others for this problem.

The results show that the performance of APCA is less sensitive to the

availability of the crossover operator in the meta-level GA. The disable of crossover

does not introduce any reduction of the performance of APCA. Conversely, the

performance is drastically reduced when the mutation operator is disabled. In

case of no prior knowledge, it is safe to use both operators.

We argue that the evolution of parameters in the meta-level GA is not

random. We compare APCA with the random walk algorithm that randomly

changes the parameters with the same frequency of APCA. The results of APCA

are different from those of the random walk algorithm. The finding is later

confirmed by the analysis of the evolved parameters in the last section.

CHAPTER VI

A Case Study in Examination Timetabling

The previous chapter presents the results of APCA on some artificially

constructed problems. This is a usual practice since many researchers have also

tested their algorithms with this kind of problems. However, it is questionable

whether the results on such problems are really justified. This is due to a gap

between laboratory problems and real-world problems. The goal of this chapter

is to apply APCA to a more complicated and realistic problem. The findings will

provide some insights about the usefulness of APCA on a real-world problem.

The problem used in this chapter is an examination timetabling problem.

This problem arises in many universities and colleges. Solving this problem is not

trivial since the problem has a large search space and is highly constrained. Fang

[86] pointed out that a problem with 44 examinations and 28 timeslots (4 per day

over 7 days) had 2844, or c. 5 × 1063 possible solutions. This was the complete

space of possibilities. If the number of impossible and infeasible cases was omitted

from the count, there were still 44!/(7! × 7!2 × 6!5) or c. 1.486 × 1026 candidate

solutions, which was still a very large search space.

This chapter starts by describing an examination timetabling problem.

Then, it presents how to apply a GA for this problem. This section also describes

how to apply APCA to the problem. Thereafter, we present some experimental

results and discussion. Finally, some concluding remarks are presented.

6.1 Problem Description

A simple timetabling problem can be regarded as a problem of assigning v

events to s timeslots. The events may be examinations, lectures, meetings, or

seminars, depending on the type of problems. Many timetabling problems also

involve the assignment of resources (e.g., rooms, items of equipment) to each

event. In addition, the problems also incorporate of many constraints that should

73

be satisfied. Typical timetabling problems have long been acknowledged to belong

to the class of problems called NP-complete [87]. Several approaches have been

proposed to tackle timetabling problems, for instance, genetic algorithms, memetic

algorithms, simulated annealing, tabu search, constraint logic programming.

A comparison of the performance of different algorithms on timetabling was

presented in [88]. Some researchers also proposed hybrid algorithms incorporating

several search algorithms into unified frameworks (e.g. [89]).

A particular instance of timetabling problems used in this chapter is

examination timetabling. For examination timetabling problems, the events are

examinations. Let E be the set of v examinations {e1, e2, ..., ev} and let T be the

set of s timeslots {t1, t2, ..., ts}. An assignment (a, b), such that a ∈ E and b ∈ T ,

can be interpreted as ‘event a occurs during period b’. Solving this problem can

be regarded as finding v assignments (each for one event) that can satisfy all

constraints.

The set of constraints can be divided into two groups: hard constraints

and soft constraints. The difference between both types is that hard constraints

must not be violated, while soft constraints may be violated if necessary. The

hard constraints of typical examination timetabling problems are that no student

must take more than one examination at a time. These constraints are normally

found in most examination timetabling. Soft constraints always vary between

problems. An example of soft constraints is to let examinations spread out across

the timetable in the way that reduces the pressure of most students.

The constraints used in this study are as follows:

• Hard constraints

– Clash: No student may have two examinations in the same period.

• Soft constraints

– Near-clash: If examinations for one student are too close and are on

the same day, it is supposed to violate one of the near-clash constraints.

74

Two examinations have to be separated with one whole timeslot, unless

it is considered to violate one of the constraints.

– Exclusion: Some examinations should not be scheduled on specified

timeslots.

– Order : Some examinations should precede some specific examinations.

6.1.1 An Example of Examination Timetabling

This section provides an example of a simple examination timetabling

problem and a solution to this problem. Assume there are 8 timeslots (t1, t2, ..., t8)

allocated on two days (See Table 6.1), 12 examinations (e1, e2, ..., e12) and 8

students. Table 6.2 shows the list of examinations taken by each student. For

example, the first student takes four examinations (namely, 1, 6, 11 and 12), while

the second student takes three examinations (namely, 8, 9 and 10).

Table 6.1: Timeslot allocation

Day Period

9:00-10:00 10:30-11:30 13:00-14:00 14:30-15:30

Monday t1 t2 t3 t4
Tuesday t5 t6 t7 t8

Table 6.2: Student data

Student Examination

s1 e1 e6 e11 e12

s2 e8 e9 e10

s3 e2 e3 e5 e7

s4 e7 e9

s5 e10 e11

s6 e5 e9 e10

s7 e2 e3 e7

s8 e5 e6

Assume that only clash constraints and near-clash constraints are considered.

A solution to this problem consists of 12 assignments. One of the solutions is as

follows:

75

{(e1, t7)(e2, t6)(e3, t4)(e4, t3)(e5, t8)(e6, t1)(e7, t1)(e8, t5)(e9, t4)(e10, t2)(e11, t5)(e12, t4)}

This solution means that the examination e1 is scheduled to the slot t7, the

examination e2 is scheduled to the slot t6 , and so on. The solution is illustrated

in Table 6.3.

Table 6.3: A possible solution

Day Period

9:00-10:00 10:30-11:30 13:00-14:00 14:30-15:30

Monday e6, e7 e10 e4 e3, e9, e12

Tuesday e8, e11 e2 e1 e5

6.2 Genetic Algorithms for Examination Timetabling

6.2.1 Representation and Evaluation

The representation of a chromosome is a list of numbers. The length of a

chromosome is equal to the number of examinations (v). The ith element of a

chromosome represents the timeslot for the examination i. Thus, the solution in

the previous section can be represented as follows:

{7, 6, 4, 3, 8, 1, 1, 5, 4, 2, 5, 4}

The fitness function is adopted from the study by Fang [86]. The fitness

evaluation is based on the number and types of constraints violated. Let ci(a)

be the number of violated constraints of type i in the individual a and let wi be

the weight associated with the violations of constraints of type i. The weight for

important constraints will be high, whereas constraints that are less important

will have low weight. The fitness calculation for the individual a is as follows:

f(a) = 1/(1 +
n

∑

i=1

wici(a)) (6.1)

where n is the number of constraint-types.

76

6.2.2 Search Operators

There are three steps of applying search operators. The first two steps are

identical to that used in the previous chapter. The first step is the application of

crossover operators. Then, the second step applies random mutation. Finally, the

third step is the application of local search operators, called smart mutation.

1. Crossover : The application of these operators is controlled by the crossover

rate (Pc). There are five choices of crossover, namely, (1) one-point crossover,

(2) two-point crossover, (3) uniform crossover, (4) uniform crossover with a

probability of 0.1 and (5) uniform crossover with a probability of 0.2. All

choices are identical to that used in the previous chapter. It is interesting to

note that all crossover operators do not cause any problem with the integer

representation used in the problem. Offspring produced by the crossover

operators are still valid. The research by Abramson and Abela [90] used

a different representation. Each position represented a timeslot, and a set

of events occurring in the timeslot were grouped into this position. This

representation was close to a real timetable. However, it suffered from

a problem called the label replacement problem. That is, the produced

offspring from the crossover operators may be invalid. Hence, it is necessary

to have an operator to repair invalid offspring.

2. Random Mutation: The application of these operators is controlled by

the mutation rate (Pm). Specifically, each position in an individual has a

probability (Pm) to be mutated. There are two choices of mutation that are

suitable for the representation used here.

• Swap mutation: Another point is randomly selected. Then, the values

of two positions are swapped.

• Change mutation: The value at the mutation point is set to a new

value.

3. Smart Mutation: When solving complex problems, it is quite common to use

some heuristic operators to improve the quality of solutions. These operators

77

incorporate some problem-specific knowledge. For instance, three operators

based on the 2-opt technique were proposed for improving the solutions of the

three-matching problem [91]. These operators perform local improvement in

a small portion of an individual, without reference to the global picture.

For examination timetabling problems, some heuristic operators have been

proposed to improve the solutions produced by genetic operators. Four

heuristic operators used in this chapter are adopted from the study by Fang

[86]. These operators are called the smart mutation.

• Violation-directed Mutation (VDM): One event with a maximal viola-

tion score is chosen. Then, a new random timeslot is assigned to this

event.

• Event-freeing Mutation (EFM): One event with a maximal violation

score is chosen. Then, a new timeslot that will maximally reduce the

violation score is assigned to this event.

• Stochastic Violation-directed Mutation (SVDM): One event is stochas-

tically selected with bias toward events with higher violation scores.

Then, a new random timeslot is assigned to this event.

• Stochastic Event-freeing Mutation (SEFM): One event is stochastically

selected with bias toward events with higher violation scores. Then,

a new timeslot with bias toward timeslots that will maximally reduce

the violation score is stochastically selected for this event.

6.2.3 Applying APCA to Examination Timetabling

APCA is used for controlling five parameters, namely, crossover operators,

crossover rates, random mutation operators, random mutation rates and smart

mutation operators. The representation of the population of the meta-level GA

is slightly modified from that used in the previous chapter. An example of an

individual in the population of the meta-level GA is illustrated in Figure 6.1.

This individual means the application of uniform crossover with a probability of

0.6, swap mutation with a probability of 0.2, SEFM as a smart mutation operator.

78

3 1 0 41

Crossover

0: simple

1: uniform

2: two-point

3: 0.1uniform

4: 0.2 uniform

Crossover Rate

1: 0.2

2: 0.4

3: 0.6

4: 0.8

5: 1.0

Mutation Rate

0: 0.00

1: 0.02

2: 0.04

3: 0.06

4: 0.08

5: 0.10

Mutation

0: Swap

1: Change

Smart Mutation

0: Disable

1: VDM

2: EFM

3: SVDM

4: SEFM

Figure 6.1: An example of a meta-level individual

The search operators for the meta-level algorithm are close to those used in the

previous chapter, except that the mutation rate is simply set to the inverse of an

individual length (i.e., 1/5 or 0.2).

6.3 Experiments

The program used in the experiments is modified from PGA written by

Ross [92]. Three problem instances are used in the experiments (Table 6.4). The

first instance (EDAI 92/93) is the timetabling data from Department of Artificial

Intelligence, The University of Edinburgh in 1992/1993. However, this instance is

quite small. Thus, we use a problem generator written by Ross to generate two

additional problem instances. This problem generator creates a solution first, by

assigning all examinations to slots at random. Then, a number of constraints are

produced. Hence, it can guarantee that some optimal solutions exist. In the first

instance, the penalties for each constraint are set according to the default setting

of PGA [92]. This setting is also applied to the second and the third instances.

79

Table 6.4: Instances of the examination timetabling problem

Instance Problem information

EDAI 92/93 Number of examinations 44

Number of timeslots 36

Number of days 9

Number of clash constraints 414

Number of exclusion constraints 302

Weight for clash constraints 100

Weight for exclusion constraints 100

Weight for near-clash constraints 10

GEN1 Number of examinations 200

Number of timeslots 36

Number of days 9

Number of clash constraints 3766

Weight for clash constraints 100

Weight for near-clash constraints 10

GEN2 Number of examinations 200

Number of timeslots 36

Number of days 9

Number of clash constraints 4672

Weight for clash constraints 100

Weight for near-clash constraints 10

Eight processing nodes are used in the experiments. Due to the limitation

of computational power, a fixed population size is used rather than a range of

population sizes. The population size in each node for the first problem instance

is 20, while the population size in each node for the second and third problem

instance is 40. The parameters that are not mentioned here are identical to those

used in the previous chapter. From the number of examinations and constraints,

the first instance seems to be the easiest instance, while the third instance seems

to be the hardest one.

Table 6.5 shows the results on three instances. Note that we compare

only the competitive algorithms from the results in the previous chapter. For

a small problem instance, all algorithms are nearly identical. The performance of

APCA slightly reduces when the complexity of the problem instances increases.

80

Table 6.5: Experimental results for the examination timetabling problem

Instance Algorithm Performance Unuse factor

EDAI 92/93 APCA 1.0 0.954

Diverse random algorithm 1.0 0.953

Strategy adaptation 1.0 0.943

GEN1 APCA 1.0 0.744

Diverse random algorithm 0.65 0.307

Strategy adaptation 0.25 0.140

GEN2 APCA 1.0 0.623

Diverse random algorithm 0.2 0.112

Strategy adaptation 0.1 0.063

In contrast, the performance of other two algorithms dramatically reduces when

the problem instances become harder.

An observation is made from the evolved parameters from the meta-level

algorithm of APCA. It is observed that the value of the random mutation rate is

uniform across all runs. APCA always assigns zero to this parameter. This means

that APCA normally disables the use of random mutation. One possible inter-

pretation is that random mutation operators deteriorate performance, and then

they are disabled by APCA. In order to verify that random mutation operators

really deteriorate performance, some additional experiments are conducted. All

algorithms use the uniform crossover with a probability 0.8. Two smart operators

(SVDM, SEFM) are tested. For the random mutation, the change mutation is

used with probabilities 0.0, 0.04 and 0.1. Table 6.6 shows the experimental results

on all instances. It is clear that the use of a random mutation operator reduces

the performance. In addition, SEFM is obviously better than SVDM, especially

on the complex instances.

6.4 Summary

This chapter shows how to apply APCA to some instances of the examination

timetabling problem. The characteristics of the problem are quite different from

81

Table 6.6: Algorithms with and without random mutation

Instance Algorithm Performance Unuse factor

EDAI 92/93 no random mutation, SVDM 1.0 0.924

Change mutation (0.04), SVDM 1.0 0.856

Change mutation (0.1), SVDM 1.0 0.555

no random mutation, SEFM 1.0 0.965

Change mutation (0.04), SEFM 1.0 0.956

Change mutation (0.1), SEFM 1.0 0.901

GEN1 no random mutation, SVDM 1.0 0.272

Change mutation (0.04), SVDM 0.0 0.0

Change mutation (0.1), SVDM 0.0 0.0

no random mutation, SEFM 1.0 0.758

Change mutation (0.04), SEFM 0.0 0.0

Change mutation (0.1), SEFM 0.0 0.0

GEN2 no random mutation, SVDM 0.0 0.0

Change mutation (0.04), SVDM 0.0 0.0

Change mutation (0.1), SVDM 0.0 0.0

no random mutation, SEFM 1.0 0.639

Change mutation (0.04), SEFM 0.0 0.0

Change mutation (0.1), SEFM 0.0 0.0

the test problems in the previous chapter. The representation is based on lists

of integer values rather than simple binary strings. In addition, some problem-

specific operators are essential for this problem. The results in this chapter would

suggest how APCA performs on a complex and highly constrained problem. In the

examination timetabling problem, the application of search operators is divided

into three stages: (1) crossover operators, (2) random mutation operators and

(3) smart mutation operators. APCA is used for deciding and selecting the

choices of search operators in these stages. Three instances of the examination

timetabling problem are used in the experiments. APCA performs quite well,

even the complexity of the problem instances increases. Interestingly, the results

also suggest that APCA can detect the ineffectiveness of the random mutation

operators.

CHAPTER VII

Conclusions

7.1 Summary

A general practice for setting the parameters of GAs relies on trial and error

experiments. That is, users use their intuition in selecting a proper parameter

set, and try it with their problems. If the results are unsatisfactory, then users

attempt to adjust the parameter set and try it again. This method is obviously a

time-consuming operation.

This thesis proposes a method to overcome this problem. The parameter

setting is controlled by an additional GA. This algorithm is denoted as ‘an

Adaptive Parameter Control Algorithm’ (APCA). The characteristics of APCA

can be summarized as follows:

• Meta-level optimization

APCA employs two levels of optimization. The task level algorithm (lower

level algorithm) solves the given problem, while the meta-level algorithm

(upper level algorithm) optimizes the parameters of the task level. The

optimization of the meta-level algorithm performs concurrently with that

of the task level algorithm. This feature of concurrent optimization makes

the proposed algorithm differ from many existing meta-level optimization

approaches.

• Multiple parameters

Several parameters are controlled by the proposed method. APCA is used to

control four parameters for the artificial problems, while five parameters are

controlled for the timetabling problem. Note that many existing methods

can handle only one parameter at a time.

• Coarse-grained model of parallelization

The proposed method can be regarded as an extension to a conventional

83

coarse-grained model for parallelization. This model of parallelization has

been acknowledged for its advantages. Thus, we would expect that the

proposed method can inherit the advantages of a coarse-grained model.

Five test problems are used to conduct a comparison between APCA and

other five algorithms. The experiments are carried out on a range of population

sizes in order to prevent bias associated with the setting of population size.

Regarding the population size used, the results show that APCA is not only faster

than other algorithms, but APCA also more reliably finds optimal solutions.

In order to test whether the change of a problem can affect the algorithm,

the study then conducts an experiment by using a multimodal problem generator.

The problem generator can create a number of problems with controllable

characteristics. The results indicate that APCA can adapt to the change of this

problem. Moreover, the use of a highly fit parameter set (if it is available) is slightly

faster than APCA. However, it has a limit generalization. This can be interpreted

that APCA is promising when prior knowledge about a feasible parameter set is

not known.

The study also examines the evolution of the task level parameters during

the run. Apart from directly comparing the evolved parameters to the initial

parameters, the study compares their effectiveness in order to verify that the

meta-level algorithm can improve the task level parameters. By assigning the

parameters to a coarse-grained parallel GA, the effectiveness of the parameters is

taken from the final result of the run. The results show that the evolved parameters

are better than the initial ones. This indicates that the meta-level algorithm can

improve the task level parameters.

Another set of experiments is to test the sensitivity of the meta-level

parameters. The results indicate that the performance of APCA is less sensitive

to the availability of the crossover operator in the meta-level GA. However, it is

still safe to use both crossover and mutation in the meta-level GA.

84

Finally, the proposed algorithm is examined on a more complex and realistic

problem. Three instances of the examination timetabling problem are used to

test the algorithms. The results not only suggest the advantage of APCA, but

also show that APCA can detect the inferior performance caused by the random

mutation operators.

7.2 Future Research

There are several possible extensions to the study in this thesis. Some of

them are outlined next.

• Introduction of new adaptive parameters

This study focuses on the choices of search operators and their rates. Thus,

one of the obvious extensions is to introduce other adaptive parameters to the

algorithm. The introduction of new adaptive parameters obviously increases

the size of the search space. This may require additional subpopulations in

order to effectively optimize the parameters.

• Optimize the parameters of other evolutionary algorithms

The task level algorithm in this study is a GA. However, it is possible to apply

this technique to other evolutionary algorithms. Indeed, most evolutionary

algorithms also have several control parameters.

• Evolve search strategies rather than parameters

The parameter optimization is the first step. It is not limited to optimize

only the parameters of the task level algorithm. The idea is to use the meta-

level algorithm to construct more complex search strategies rather than only

the parameters. Some researchers have used meta-level algorithms to evolve

genetic operators [61, 64]. Thus, we may use a meta-level algorithm to evolve

other components of an algorithm, e.g., selection operator, replacement

policy, migration scheme.

• Apply to real-world applications

After evaluating the algorithm on test problems, the next step would be the

85

application of the algorithm to real-world problems. Although APCA has

been applied to the examination timetabling problem, it would be better to

find more real-world applications in order to make a judgment about the

usefulness of the algorithm in real situations.

References

[1] De Jong, K. A., Potter, M. A., and Spears, W. M. Using problem generators

to explore the effects of epistasis. In Bäck, Thomas, ed., Proceedings of

the Seventh International Conference on Genetic Algorithms, pp. 338–

345, San Francisco, July 19–23 1997. Morgan Kaufmann.

[2] Schaffer, J. D., Caruana, R. A., Eshelman, L. J., and Das, R. A study

of control parameters affecting online performance of genetic algorithms

for function optimization. In Proceedings of the Third International

Conference on Genetic Algorithms, pp. 51–60, 1989.

[3] Spears, W. M. and De Jong, K. A. Dining with GAs: Operator lunch

theorems. In Banzhaf, W. and Reeves, C. R., eds., Proceedings of the

Fifth Workshop on Foundations of Genetic Algorithms, pp. 85–101.

Morgan Kaufmann, 1998.

[4] Spears, W. M. The Role of Mutation and Recombination in Evolutionary

Algorithms. Doctoral dissertation, George Mason University, Fairfax,

Virginia, 1998.

[5] Goldberg, D. E., Deb, K., and Clark, J. H. 1992. Genetic algorithms, noise,

and the sizing of populations. Complex Systems 6:333–362.

[6] Goldberg, D. E., Deb, K., and Thierens, D. 1993. Toward a better

understanding of mixing in genetic algorithms. Journal of the Society

of Instrument and Control Engineers 32(1):10–16.

[7] Thierens, D. and Goldberg, D. E. Mixing in genetic algorithms. In

Proceedings of the Fifth International Conference on Genetic Algorithms,

pp. 38–45, 1993.

[8] Lobo, F. G. The parameter-less genetic algorithm: Rational and automated

parameter selection for simplified genetic algorithm operation. Doctoral

dissertation, Universidad Nova de Lisboa, Lisboa, Portugal, 2000.

[9] Cicirello, V. A. and Smith, S. F. Modeling GA performance for control

parameter optimization. In Proceedings of the Genetic and Evolutionary

Computation Conference, pp. 235–242, 2000.

87

[10] Lis, J. Parallel genetic algorithm with the dynamic control parameter. In

Proceedings of IEEE International Conference on Evolutionary Computation,

pp. 324–329, 1996.

[11] Bäck, T. Self-adaptation in genetic algorithms. In Proceedings of the First

European Conference on Artificial Life, pp. 263–271, 1992.

[12] Fogel, L. J., Owens, A. J., and Walsh, M. J. Artificial intelligence through

a simulation of evolution. In Maxfield, M., Callahan, A., and Fogel,

L. J., eds., Biophysics and Cybernetic Systems: Proceedings of the 2nd

Cybernetic Sciences Symposium, pp. 131 – 155, Washington DC, 1965.

Spartan Books.

[13] Fogel, L. J., Owens, A. J., and Walsh, M. J. Artificial Intelligence through

Simulated Evolution. New York:John Wiley & Sons, 1966.

[14] Rechenberg, I. Cybernetic solution path of an experimental problem. Library

translation 1122, Royal Aircraft Establishment, Farnborough, UK, 1965.

[15] Beyer, H.-G. and Schwefel, H.-P. 2002. Evolution strategies — A compre-

hensive introduction. Natural Computing 1(1):3 – 52.

[16] Holland, J. H. 1973. Genetic algorithms and the optimal allocation of trials.

SIAM Journal on Computing 2(2):88–105.

[17] Holland, J. H. Adaptation in Natural and Artificial Systems. The University

of Michigan Press, Ann Arbor, Michigan, 1975.

[18] Goldberg, D. E. Genetic Algorithm in search, optimization and machine

learning. Addison-Wesley, 1989.

[19] Yao, X. 2002. Evolutionary computation. Evolutionary Optimization, pp.

27–53.

[20] Whitley, D. The GENITOR algorithm and selection pressure. In Schaffer,

J. D., ed., Proceedings of the Third International Conference on Genetic

Algorithms, pp. 116–121. Morgan Kaufmann, 1989.

[21] Yao, X. 1996. An overview of evolutionary computation. Chinese Journal of

Advanced Software Research 3(1):12–29.

[22] Cantú-Paz, E. 1998. A survey of parallel genetic algorithms. Calculateurs

88

Parallèles, Reseaux et Systems Repartis 10(2):141–171.

[23] Alba, E. and Troya, J. M. 1999. A survey of parallel distributed genetic

algorithms. Complexity 4(4):31–52.

[24] Alba, E. and Tomassini, M. 2002. Parallelism and evolutionary algorithms.

IEEE Transactions on Evolutionary Computation 6(5):443–462.

[25] Koza, J. R. and Andre, D. Parallel genetic programming on a network of

transputers. Technical Report CS-TR-95-1542, Department of Computer

Science, Stanford University, January 1995.

[26] Dracopoulos, D. C. and Kent, S. Speeding up genetic programming: A

parallel BSP implementation. In Koza, J. R., Goldberg, D. E., Fogel,

D. B., and Riolo, R. L., eds., Proceedings of the First Annual Conference

on Genetic Programming, p. 421. MIT Press, 1996.

[27] Punch, B. How effective are multiple populations in genetic programming.

In Proceedings of the Third Annual Conference on Genetic Programming,

pp. 308–313, 1998.

[28] Tongchim, S. and Chongstitvatana, P. 2001. Parallel genetic programming:

synchronous and asynchronous migration. Journal of Artificial Life and

Robotics 5(4):189–194.

[29] Riessen, G. A., Williams, G. J., and Yao, X. PEPNet: parallel evolutionary

programming for constructing artificial neural networks. In Proceedings

of the Sixth Annual Conference on Evolutionary Programming (EP97),

pp. 35–45, 1997.

[30] Tongchim, S. and Yao, X. Parallel evolutionary programming. In Proceedings

of the 2004 Congress on Evolutionary Computation, pp. 1362–1367. IEEE

Press, 2004.

[31] Belding, T. C. The distributed genetic algorithm revisited. In Eshelman,

L. J., ed., Proceedings of the Sixth International Conference on Genetic

Algorithms, pp. 114–121. Morgan Kaufmann, 1995.

[32] Alba, E. 2002. Parallel evolutionary algorithms can achieve super-linear

performance. Information Processing Letters 82(1):7–13.

89

[33] Lin, S.-C., Punch, W. F., and Goodman, E. D. Coarse-grain genetic

algorithms, categorization and new approaches. In Proceedings of the

Sixth IEEE Parallel and Distributed Processing, pp. 28–37, 1994.

[34] Andre, D. and Koza, J. R. 1998. A parallel implementation of genetic pro-

gramming that achieves super-linear performance. Information Sciences

106(3–4):201–218.

[35] Alba, E. and Troya, J. M. 2001. Analyzing synchronous and asynchronous

parallel distributed genetic algorithms. Future Generation Computer

Systems 17(4):451–465.

[36] De Jong, K. A. An analysis of the behavior of a class of genetic adaptive

systems. Doctoral dissertation, University of Michigan, Ann Arbor, 1975.

[37] Reed, J., Toombs, R., and Barricelli, N. A. 1967. Simulation of biological

evolution and machine learning. Journal of Theoretical Biology 17:319–

342.

[38] Eiben, Á. E., Hinterding, R., and Michalewicz, Z. 1999. Parameter

control in evolutionary algorithms. IEEE Transactions on Evolutionary

Computation 3(2):124–141.

[39] Fogel, D. B. The advantages of evolutionary computation. In Proceedings

of the Bio-computing and Emergent Computation conference, pp. 1–11,

1997.

[40] Angeline, P. J. 1995. Adaptive and self-adaptive evolutionary computations.

Computational Intelligence: A Dynamic Systems Perspective, pp. 152–

163.

[41] Smith, J. E. and Fogarty, T. C. 1997. Operator and parameter adaptation

in genetic algorithms. Soft Computing 1(2):81–87.

[42] Harik, G. R. and Lobo, F. G. A parameter-less genetic algorithm. In

Proceedings of the Genetic and Evolutionary Computation Conference,

pp. 258–265, 1999.

[43] Schlierkamp-Voosen, D. and Mühlenbein, H. Strategy adaptation by com-

peting subpopulations. In Parallel Problem Solving from Nature (Lecture

90

Notes in Computer Science volume 886), pp. 199–208, 1994.

[44] Schlierkamp-Voosen, D. and Mühlenbein, H. Adaptation of population sizes

by competing subpopulations. In Proceedings of International Conference

on Evolutionary Computation, pp. 330–335, 1996.

[45] Hinterding, R., Michalewicz, Z., and Peachey, T. C. Self-adaptive genetic

algorithm for numeric functions. In Parallel Problem Solving from Nature

(Lecture Notes in Computer Science volume 1141), pp. 420–429, 1996.

[46] Eiben, Á. E., Sprinkhuizen-Kuyper, I. G., and Thijssen, B. A. Competing

crossovers in an adaptive GA framework. In Proceedings of 1998 IEEE

International Conference on Evolutionary Computation, pp. 787 –792,

1998.

[47] Pham, Q. T. Competitive evolution: A natural approach to operator

selection. In Yao, X., ed., Progress in Evolutionary Computation, Lecture

Notes in Artificial Intelligence, volume 956, pp. 49–60. Springer-Verlag,

Heidelberg, 1995.

[48] Schnecke, V. and Vornberger, O. An adaptive parallel genetic algorithm for

VLSI-layout optimization. In Parallel Problem Solving from Nature, pp.

859–868, 1996.

[49] Wang, G., Goodman, E. D., and Punch, W. F. Simultaneous multi-level

evolution. Technical Report 96-03-01, Genetic Algorithms Research and

Applications Group, Michigan State University, 1996.

[50] Wang, G., Goodman, E. D., and Punch, W. F. Toward the optimization of

a class of black box optimization algorithms. In Proceedings of the Ninth

IEEE International Conference on Tools with Artificial Intelligence, pp.

348–356, November 3–8 1997.

[51] Wang, G., Dexter, T. W., Punch, W. F., and Goodman, E. D. Optimiza-

tion of a GA and within a GA for a 2-dimensional layout problem.

In Proceedings of the First International Conference on Evolutionary

Computation and its Applications, Presidium, Russian Academy of

Sciences, pp. 18–29, 1996.

91

[52] Tanese, R. Parallel genetic algorithm for a hypercube. In Grefenstette,

J. J., ed., Proceedings of the Second International Conference on Genetic

Algorithms and their Application, pp. 177–183. Lawrence Erlbaum

Associates, 1987.

[53] Adamidis, P. and Petridis, V. Co-operating populations with different

evolution behavior. In Proceedings of the 1996 IEEE International

Conference on Evolutionary Computation, pp. 188–191, 1996.

[54] Miki, M., Hiroyasu, T., Kaneko, M., and Hatanaka, K. A parallel genetic

algorithm with distributed environment scheme. In Proceedings of the

1999 IEEE International Conference on Systems, Man, and Cybernetics,

volume 1, pp. 695–700, 1999.

[55] Herrera, F. and Lozano, M. 2000. Gradual distributed real-coded genetic

algorithms. IEEE Transactions on Evolutionary Computation 4(1):43–

63.

[56] Freisleben, B. 1997. Metaevolutionary approaches. Handbook of Evolutionary

Computation, pp. C7.2:1–8.

[57] Grefenstette, J. J. 1986. Optimization of control parameters for genetic

algorithms. IEEE Transactions on Systems, Man, and Cybernetics

16(1):122–128.

[58] Shahookar, K. and Mazumder, P. 1990. A genetic approach to stan-

dard cell placement using meta-genetic parameter optimization. IEEE

Transactions on Computer-Aided Design 9(5):500–511.

[59] Mernik, M., Črepinšek, M., and Žumer, V. A metaevolutionary approach in

searching of the best combination of crossover operators for the TSP. In

Hamza, M.H., ed., Proceedings of the IASTED international conference

on Neural networks, pp. 32–36, Pittsburgh, Pennsylvania, May 15–17

2000. IASTED/ACTA Press.

[60] B̈ack, T. Parallel optimization of evolutionary algorithms. In Parallel

Problem Solving from Nature, pp. 418–427, 1994.

[61] Teller, A. 1996. Evolving programmers: The co-evolution of intelligent

92

recombination operators. Advances in Genetic Programming II, pp. 45–

68.

[62] Kantschik, W., Dittrich, P., Brameier, M., and Banzhaf, W. Meta-evolution

in graph GP. In Proceedings of the Second European Workshop on

Genetic Programming, pp. 15–28, 1999.

[63] Kantschik, W., Dittrich, P., Brameier, M., and Banzhaf, W. Empirical

analysis of different levels of meta-evolution. In Proceedings of Congress

on Evolutionary Computation, volume 3, pp. 2086–2093, 1999.

[64] Edmonds, B. 2001. Meta-genetic programming: Co-evolving the operators

of variation. Electrik 9:13–29.

[65] Tongchim, S. and Chongstitvatana, P. 2002. Parallel genetic algorithm with

parameter adaptation. Information Processing Letters 82(1):47–54.

[66] Tongchim, S. and Chongstitvatana, P. Adaptive parameter control in

parallel genetic algorithm. In Proceedings of International Conference

on Intelligent Technologies, pp. 100–109, 2000.

[67] Ackley, D. H. A Connectionist Machine for Genetic Hillclimbing. Kluwer

Academic Publishers, Boston, MA, 1987.

[68] Syswerda, G. Uniform crossover in genetic algorithms. In Proceedings

of the Third International Conference Genetic Algorithms and Their

Applications, pp. 2–8, 1989.

[69] Spears, W. M. and De Jong, K. A. On the virtues of parameterized uniform

crossover. In Proceedings of the Fourth International Conference on

Genetic Algorithms, pp. 230–236, 1991.

[70] Huang, W.-C., Kao, C.-Y., and Horng, J.-T. A genetic algorithm approach

for set covering problems. In Proceedings of the First IEEE Conference

on Evolutionary Computation, pp. 569–574, 1994.

[71] Birattari, M., Stützle, T., Paquete, L., and Varrentrapp, K. A racing

algorithm for configuring metaheuristics. In Proceedings of the Genetic

and Evolutionary Computation Conference, pp. 11–18, 2002.

[72] Senyu, S. and Toyoda, Y. 1967. An approach to linear programming with

93

0-1 variables. Management Science 15:B196–B207.

[73] Beasley, J. E. 1990. OR-library: distributing test problems by electronic

mail. Journal of the Operational Research Society 41(11):1069–1072.

[74] Khuri, S., Bäck, T., and Heitkötter, J. The zero/one multiple knapsack

problem and genetic algorithms. In Proceedings of the 1994 ACM

Symposium on Applied Computing, pp. 188–193, 1994.

[75] Holland, J. H. Royal road functions. Internet Genetic Algorithms Digest,

vol. 7, issue 22, 12 August 1993.

[76] Jones, T. 1994. A description of Holland’s royal road function. Evolutionary

Computation 2(4):409–415.

[77] Vafaie, H. and De Jong, K. Robust feature selection algorithms. In

Proceedings of the 1993 IEEE International Conference on Tools with

Artificial Intelligence, pp. 356 – 363. IEEE Press, November 8–11 1993.

[78] Fang, H., Liang, S., and Kuusk, A. 2003. Retrieving leaf area index using a

genetic algorithm with a canopy radiative transfer model. Remote Sensing

of Environment 85(3):257–270.

[79] Chen, S.-H., Chen, C.-F., and Tan, C.-W. Toward an effective implemen-

tation of genetic algorithms in financial data mining: Retraining plus

validating. In Proceedings of the 1998 International Symposium on

Intelligent Data Engineering and Learning, pp. 99–105. Springer-Verlag,

October 14–16 1998.

[80] Bonissone, P. P., Khedkar, P. S., and Chen, Y. Genetic algorithms for

automated tuning of fuzzy controllers: A transportation application.

In Proceedings of the Fifth IEEE International Conference on Fuzzy

Systems, pp. 674–680. IEEE Press, September 8–11 1996.

[81] Campoy, A. Mart́ı, Ivars, A. Perles, and Mataix, J. V. Busquets. Dynamic

use of locking caches in multitask, preemptive real-time systems. In

Proceedings of the 15th World Congress of the International Federation

of Automatic Control. Elsevier Science, 2002.

[82] Srinivas, M. and Patnaik, L. M. 1994. Adaptive probabilities of crossover

94

and mutation in genetic algorithms. IEEE Transactions on System, Man

and Cybernatics 24(2):656–667.

[83] Deb, K. and Agrawal, S. Understanding interactions among genetic algo-

rithm parameters. In Banzhaf, W. and Reeves, C. R., eds., Proceedings

of the Fifth Workshop on Foundations of Genetic Algorithms, pp. 265–

286. Morgan Kaufmann, 1998.

[84] Corcoran, A. L. and Wainwright, R. L. 1995. Using LibGA to develop genetic

algorithms for solving combinatorial optimization problems. Practical

Handbook of Genetic Algorithms, Applications, 1:143–172.

[85] Kennedy, J. and Spears, W. M. Matching algorithms to problems: An

experimental test of the particle swarm and some genetic algorithms

on the multimodal problem generator. In Proceedings of the IEEE

International Conference on Evolutionary Computation, pp. 78–83. IEEE

Press, May 4–9 1998.

[86] Fang, H.-L. Genetic Algorithms in Timetabling and Scheduling. Doctoral

dissertation, University of Edinburgh, UK, 1994.

[87] Burke, E. K., Jackson, K. S., Kingston, J. H., and Weare, R. F. 1997.

Automated timetabling: The state of the art. The Computer Journal

40(9):565–571.

[88] Rossi-Doria, O., Sampels, M., Birattari, M., Chiarandini, M., Dorigo, M.,

Gambardella, L. M., Knowles, J., Manfrin, M., Mastrolilli, M., Paechter,

B., Paquete, L., and Stützle, T. A comparison of the performance

of different metaheuristics on the timetabling problem. In Burke, E.

and De Causmaecker, P., eds., Proceedings of the fourth International

Conference on Practice and Theory of Automated Timetabling, pp. 329–

351. Springer, 2002.

[89] Merlot, L. T.G., Boland, N., Hughes, B. D., and Stuckey, P. J. A hybrid

algorithm for the examination timetabling problem. In Burke, E. and De

Causmaecker, P., eds., Proceedings of the fourth International Conference

on Practice and Theory of Automated Timetabling, pp. 207–231.

95

Springer, 2002.

[90] Abramson, D. and Abela, J. A parallel genetic algorithm for solving the

school timetabling problem. Technical report, Division of Information

Technology, C.S.I.R.O., April 1991.

[91] Magyar, G., Johnsson, M., and Nevalainen, O. July 2000. An adap-

tive hybrid genetic algorithm for the three-matching problem. IEEE

Transactions on Evolutionary Computation 4(2):135–146.

[92] Ross, P. The PGA v4.0 manual. September 2001.

96

Biography

Shisanu Tongchim was born in Khon Kaen, Thailand on December 2, 1977.

He received the B.Eng. degree from Chulalongkorn University in 1998, the M.Eng.

degree from Chulalongkorn University in 2000. Then, he continued his study in

the Ph.D. program at the department of computer engineering, Chulalongkorn

University. His research was supported by the Royal Golden Jubilee Ph.D.

Program of the Thailand Research Fund.

In 2003, he was a visiting scholar in the School of Computer Science,

University of Birmingham, U.K. He has published a number of papers in

international journals and conferences in the fields of evolutionary computation.

His research interests include evolutionary algorithms and parallel computing.

	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	Chapter I Introduction
	Chapter II Overview of Genetic Algorithms
	Chapter III Literatrure Review
	Chapter IV Adaptive Parameter Control Algorithm
	Chapter V Experimental Results
	Chapter VI A Case Study in Examination Timetabling
	Chapter VII Conclusions
	References
	Vita

