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1 .H'L"
s ’,‘,

-

-

dweller.

EV i \
3 i .
multjzfaceted p sion \-. hiéh creative and technical

Interior desigh is 4

solutions are applied witRieaes ﬁ bt leve & built interior environment.

Interior design involves 4] gj: O %’?’ o decoration,etc.

The la@ @hitectuml design.
An architett 38 o s} spaces and other
physical ob je@within 0 e will fo% on the size of rooms,
and the dlstance‘mong rooms according t en relationship. He/she normally

AULINANT ineng

effects of layouts, the researchers ‘ust cope with thsaoblems as a combln

RIANNS NWYJVIH']&EI

A number of representations have been proposed for the interior achitectural

design which are often grouped as the direct representation, the slicing structure,

and non-slicing structure (Berntsson and Tang,2004). In 1986, Wong and Liu [1]



presented an algorithm based on the slicing structure of an architecture layout. A
slicing structure divides the floorplan by recursively cutting rectangles into finer

\‘ f?o tal lines and then fit blocks into each

rectangular objects usmg vertic

segment (see figure 1.1.1

L-r 1gur i f"
ié

A slicing floo#f an ghn be e ] ,# -}L ted by an t""\-.- rooted binary tree, call

slicing tree. Each ent j r" :’}ﬂﬁ’?‘ pond§ to a vertical and horizontal

cut. Each leaf node repre Lf‘ _,WTE::,V' | The system then computes the

correspon@ egment dimentions a; (ﬁ;ijates.

- s
dure starts‘w r“cjtion iteratively by

The proce-

ot

performing a ma uence e resu ing floorplan design is

acceptable, then e de81gn process is termmated This techmque helps reducing

“FMEI’J NENINGINT ..

sent atlon cannot handle non- shc‘g floorplan. In re nt years, many rese IS

q ﬁﬂgﬁﬂ;ﬂ? ﬁm INEA?

Sequence [4], and Corner Block List (CBL)[5

For a non-slicing floorplan, researchers have proposed several representations.



In 1991, Onodera et al.[7] classify a topological relationship between two blocks

into four classes and use the branch and bound method to solve it. The algorithm

runtime is O(2"("2)) Wthh |
time. _ v /
In 1995, sequen entatlon 2@8ed! by Murata et al.[8]. They

sible to handle a large problem at that

use two sets of p

following year, 19

. —tre nsists of
gno sfa l an edge

denms the horlzontal or Vertlca elated posmons between blocks and the per—

q mam$ ﬂm WIANYINY

through other blocks. See the example of horizontal O-tree in figure 1.1.3



il qua u,\ ative analyses are needed to

be treated. Some # aht tive Tfieasures nois@ and vibration disturbances

must be handled approp; f; wl - » ative measures such as the cost

of transp({' g @mmu‘cing between
: e 7

rooms or t& dhandled mathmat-

- o
ically. The Iaﬁﬁjt design qualite}ﬂe and quantitative is

generally dlfHCUIVO formulate using a mathe atlcal programming model.

AULIN umwmn =

algomthm and simulation appro@ using a compu rogram to determl
ANTUUNIINLIAL
a bloc lagrammatic layout of facility area, where area does not need to be equa
Another technique that was proposed in layout planning is a use of linear

graphs for representing a floor plan [13]. Researchers have used several approaches



to deal with this problem.

Drew J. van Camp, Michael W. Carter and Anthoni Vannelli [14] proposed

programming solveg to approximate a

layout problemg®ere -e b d. several test problems

were presented. E

innigle.  solve th \ et 18 acceptable for real-world
problems comparing 03 ‘J.f..-,:_
Wy 3 F

Since a layout# rq' b1 is ,'_' nMand Gonzalez, 1976) and

\
X

cannot be solved exh&ustivgliitdrreason: d lay®ut problems, many heuristic

approaches have been prg o the design space exhaustively.

DOSE! et

David @T . E. S ) 1@)’0 search method-
i B~
ology calle& ; oyt and showed how

optimal solutlﬁ are a. mitte' department shapes, as

specified by a ma?mum allowable aspect ratlo for each department

Al mzrmmj 01 br
3 mm T INng N

straints. Optimum solution for facility layout problem (FLP) has been reported

with a minimum of eight departments.



I- Cheng Yeh (2005) presented a new framework for a facility layout problem,

named annealed neural network which arises from a combination of the Hopfield

neural network and the si [18]. The first is a representation

model of a layout prob earch algorithm for finding the
optimum or near OPEIIUL network exhibits the rapid
convergence of t solution quality afforded
by simulated annegle

Exact algorithps vifigl this 1 problen s the branch and bound
algorithm fa sv wit Jp “ : ‘ B Chis, the use of the ge-
netic algoriths o -~ 3 casitle WO ] ol in a computational
optimization piro r. " ' 'th large-size instances.

This is because GA ff 3 m ral at ' n GA'is easy to understand

and can be applief fq' any ty ‘445.':5;1- il 1 tiom) "\\ o ams with little or no mod-
ification, while othep APP '_t{g-ﬁﬁ&_ substantial modification for using

in building apphcatlons SUCCES; e to solve complex problems that

can not b@ ptimizati | @ be implemented.

Other met‘ov 'eJdentiﬁed and con-

figured propelﬂﬁ The

always process Sl le solution, GA mamtams a populatlon of potential solutions.

ﬂfm #ANENS NN Z;ifi

algorl m for solving a problem 1s‘0t very effective fﬂ)me realistic proble

IRININ NN N

ist F while other methods

improvement of their new algorithm.

In this thesis, we use the representation similar to the work from Bloch et.



al.[20] using a coordinated system. According to a nature of an architectural

problem, there are several aspects to consider. Thus, this problem is not ap-

propriated to be formulate jective function. In this thesis, the

multi-objective fuction meet several objective require-

ments. Our mathe ' ased on the work of Kamol

thought is erf€oura bforvation, I il M, pBIh is Common for a symetri-
cal room. Besj n s i | TCORC t88len the reference point
at the center of tiff rog sithe, N cllal el J22) .

‘p\‘. [Model has grown exponen-

Because a ‘comp, at_‘,"l ) ”
tially large, Kam® : a' b lid .'*\-,.. ty to reduce their com-
putational time andi ter experiments, the computational

time and the number of; erat duced leading to solve the larger

problem s@ Ea0 : s J‘Ejroblem grows, the

capabilityt R CJ

Lk
e

In this theﬁi‘ we o a Mix' d{Integer Programming

model (Grorge, 1 88 Linderoth et al., 1999 Russell et al 1999) to determine

“ﬁmﬂ InanInegng

prob ems with more than seveu‘ooms exceeds se ﬂhours which is fa M

AIRINIRIUNTINGIAY

to find the order of branching variables in the branch and bound algorithm which

is the process of solving MIP. By knowing a sequence of branching variables it



helps reduce a search space by identifying the better path in the search tree.

process of a layout design

The rest @ is tilfesighs jorga

(} e hackgrenndskised esis including linear
; ’
]

programming, intgfer (J)’ Al “;&mf
:
v

P f Y LN
Chapter TTF pres s - ove _,H_*"' he proposed, model based on the MIP

T F LA N

In chapter LI wehtr

'

methodology. Wese f) plai .‘.ifé-‘r' ply -.I'il  ‘ prithm to our problem in
this chapter. ;",::i‘.‘.fw
Finally, the results of ew ,,,‘,}f"‘@:i gapresented in chapter IV. We also

discuss Wl@o

st chapter.

ﬂummmwmnﬁ
mmmmummmaﬂ



This chapt 1 £ Amportant “hdekgro: wledges that are used

First, we 1 v ; : lenat TR O oround which is used
to model a layoud it P 611 j N Rand bound algorithm is

P,

Secondly, v _ 16 i ‘I. ich 1S§@pplied to the variable

2.1.1 @
Alayo&

—
and size of c@miponents.

regtangular umtﬁr ecific archltectural tion, such as living space, storage

ﬂ%wwiwmm

ponents are grouped into several categories based on their functions, which

are room boundariﬁj hallway an access way[24]. Q)om is refered to a%

closes other components 1n81de. A hallway is a space that functions as a connector

ity ‘Jg the best location

L
Tl
Each component is usually r@}ed as an orthogonal

between components. Access way is a small area that connects two components

together, usually one is a hallway and another is a room. Figure 2.1.1 shows an



10

example of a simple layout whose composes of a bedroom, a bathroom, a living

W

room, a kitchen and a hall. The letter “a”represents access-ways between two

components. « Al 1’

;o FERR W
AL \ Y

simple layout

From ﬁgﬁ E g dozuot overlap internal
componen% ALl b Sl LS U e e Soml Lol o p o ents excluding

i 4N
access ways. s g : 1nﬂmathematical model.
1 11
A popular tee | ique for an optimization problems is to u! linear programming

which. is descrlbeg ifl=he next section.

Llﬂ’)?/l&l?ﬁﬂtl'lﬂ‘i

Linear Programmlng

q Wﬁﬁiﬂﬁﬂﬁﬁﬂiﬂﬂ 184
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e Definition

Linear programming model is a

wthematical programming model widely used

ects of business including produc-

tion and management g ‘ %he objective function subject

to certain constrmme@tical-MI the objective function

and constraint mne

To model usia# i1 omt 5 1 0 ' ) isfisfy.

1. Proportion - : :- i altie’ cAch term in the linear pro-

gramming pro e h&vallle of the variable in the
f 1 \

of ob Ia“ tiveland constraints function

term. We ¢a@ ?l )

1s constant.

2. Additivity - 1t 3hip among decision variables.

must be additive.

Swhich means they can

3. Dwzsabﬁ - em
Tl
take on ctlonal values and therefore they are contfhuous. However, frac-
ies,

iopal v itable tQ represt®t so 1anti ch gs the num-
u i thisfc eﬁ a r(ﬁg in gﬁ/arlable

4. Certamty Parameters in ‘Ye model are req to be known befor they

ﬂmmnmnmmmaﬂ

Next we give the general mathematical programming formula of the linear

programiming problem.



e Standard form

A standard form of a linear programming problem is to find a vector (x1, 2,
4
which minimizes the lineaﬁ\\ﬂg’ ﬂy

—— )

rf-"',p’

\:;LE;'.

+ aooliolEn

E—
-
= L

AT
P R R h o

P

(ZHTIN T

12

(IL1)

(IL.2)

; andtj &&given constants. Welhdll always assume that the equation

AUBINENINEINT

W
i
Th are several notations in common use.

ARIRNS

1
subject to Zaijxj = 0; 1= ]_, 2, .,

j=1
and xj >0 J=1,2,...

NAMINEAY
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2. Minimize cT

subject to

and
ct where ¢ = (cl

vector, A = mn vector, and 0 is a n-

N’///gﬂc (71,29, ..., z,)7 is a column

dimensiona.

where P; foi) =1, J " \ig=the/ T I' matrix A and Py = b

e Solving*li Dgramm sithe the Simplex method

Simplex method ! 8 1 y solvilie linear programming prob-
lems, published by Georg antzig ‘ e Simplex method guarantees to
find the optimal solutie =y -A fimite o s. [t starts at the basic feasible
solution ax .0‘" by step from the
corner poirtt (] }; 2 re larger(for maxi-
mization) or Iller (for minimization) value of objectiv@nction is obtained at
each step. This 1‘) re is summarized a

ﬂﬂﬂ%%ﬂ‘ﬂﬁ%ﬂﬂﬂ‘i

Check the optimality of the current basic feasible solution. If none of

it, aﬁacen’c basic feasible SO]Hthg have better ObJGQE‘ values, the currenusd
q WHANA NI T

Step 3 : Move from the current basic feasible solution to a better adjacent

basic feasible solution. Repeat this step until the stopping conditions are met.
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2.1.3 Integer Programming (IP)

In many practical problems, onl integer values of decision variables are needed.

ﬁs simply the linear program-
ming model with one.adc » . res"’ctio@mmt be integral. If only

el is referred to Mized

Integer Progran D) Fild \b iof the MIP is.

subject to

and

lem is modeled as the MIP.

£ p -
There are several different_a r;":‘“"::‘ e it. Popular methods are based on

solving the-luP re g amz':ng directly is more

difficult thinGeohunglnear-programming=—i-branch-and=RoT) | algrirthm is one
ol a3

fjs ele esl ibe in more details in
] i
the following* tlon ;

ﬂ UHANBNTNEIRT

ranch and bound algorltw is a widely use approach for Solvm

9 Wl A IAAMIANTAY

Branch and bound algorithm uses the divide and conquer method with the best

of the algoit

first search strategy. The basic concept is to divide a large problem into smaller
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ones. The dividing or branch part is a process that partitions the entire set of

feasible solutions into smaller subsets. The conquering part is done by estimating

r problem. We may have to divide the

problem further, until % igh. The feasible region of the a
subproblem is a su i ) - hes@Ficinal problem.
—

ud bound algorithm con-

This proces artiti 1sible al Ohscveral smaller subproblems.
The partitioning, ' dre A -‘-,"." abproblem until a subprob-

lem is fatho be eScriD8d in the next section.

L=
e ¥

Branching is geng Ef g of a tree SRucture.

Let S be the feasiBle ¢ egion-and th 1tions.
i P et &

S+ A subset of S whee

The branc@ ' (

The partitio&holves choosing varidgid to create new subproblems. The

AUBINENINEANT

Vi
Mlmroblem are restricted to be integer. Therefore, only the restricted variables
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Figure 2.1.2 1 st_f o8 -oucept neh s foRthe case where there are
only four supbproblf S, represent hoforigin Al ¥easible solution set while
s divided from the original

51,55, 54 represet bprob "';,I

one. i i 'O -are: varia have a non-integer value. The
variables used in the bran€¢hin cess d branching variables.
e Bounding df

Lk
-

pTon, we n@ to find bounds from

-
In order t(] |‘ etermine

solving relaxatlow to develop bounds for a solution. To maximize the problem,

Wﬂﬂ‘? NENINEINT

" is the best upper boung"

Jen t!e bound of taemnu;e max1mlzgn pro!lem 1S q ﬂ ﬂ

VA
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Note that a subproblem that has the optimal solution worse than Z, can be

fathomed, and dismissed from a further consideration. The fathoming rule will

2.2 Introductlon .u-ﬁ.” etic
220,

This sag] ******************************** gengtid algorithm.
A gene& :

~alg0 Pt Hispired by Darwin’s
" |
11
theory about mlution. 1 I ‘

ﬂﬁ”&i INHUNTNYINT

enetlc algorithm (GA) Was invented and developed by John Holland and

RIRININY ANy Tay

world. The algorithm is used as an optimization method that has been applied to
many areas. Although the range of problems that a genetic algorithm has been

applied is quite broad, this algorithm is often viewed as a function optimizer.
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Genetic algorithm is usually applied to optimization problems that are difficult

to solve by a mathematical formulation. It is also used to resolved NP-hard and

NP-complete such as traveli Jprgblem (TSP), scheduling and design

problems. It performs solutlon space to find the near
optimal solution.

An implementati L0l ietic 3 i a set of solutions called
population. Thes solltign® s ‘ ‘, C ‘ ted . acter strings which are
referred to chromgg®ineg 4 : _ '",I i  '. s fgom discrete units called
genes. The structure of GA is

lustrated as f@ow,

BEGIN GA

Creat an iy the fitness of each

chromosé®

éChoose at random a palr of parents for mating.

AU JANINITWNYINT

4.Process each fsprlng by the m tlon operator.

MaNTBANTINE4E

6.Evaluate the fitness of each chromosome in the new population

END
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END GA

The above algorithm refers to the evaluation, crossover operator to exchange

random perturbations in the search

I /ﬁm the next section.

bit string and mutation oper

process. These concept

The encoding s g .' the Blving a problem using

F . ] n
genetic algorith Mepends N ’é‘ ten hard to find an ap-
i ey
| f " ' - = \ A .
propriate representaifon §ooifig ”f. jult hdkcroskover process. The popular

~ W '
. / ¥ ! . .
L stringdh ;.z‘ 3 ones, aﬁ leMbinary string representa-

N
..
representation 1s #Sing

tion which is not restficte ’ to :" Bhe "‘;‘F‘ > several ways to represent it such

as permutation encodln 57l alug encodin acoding and matrix encoding etc.

u..}bv
For this t}L 11
B f)
, ions in the set of

For 1ns@
{0,...,5}. T-F\binar are 110fand 011 respectively.

The example of c omosomes with binary representatlon is shown as follow.

ﬂummmmmnﬁ
q m@gﬁﬁ AR YiENaY

correction must be made after crossover and/or mutation.
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e Evaluation

We use the evalution functio t

ecide how good a chromosome is, which

plays important role in g optimization problems, it usually
is an objective functid : function is calculated for an
individual of pop fit il valuewsdehisefifiiess may use to decide the

Crossover'1s a gfftai ] W iproceure ; 8, two chromosomes are re-
new generation. Not
every chromosom 1 36 \Crossovers yLhe mes are chosen randomly
based on a ﬁtneés : each-chror . 0iVEl bythe evaluation function.
Chromosomes with the h1 55 more likely to be chosen. After the
crossover is performe ossover_called offspring are

moved intLt_ e new generation. Forthis reason;the next-g tion are expected

to be bettel

e b chromosomes from
1 ‘ i |
. Fl .
gion were used to create the new generatiQt Crossover continues

previous gen

until the new ge‘rﬂq is full.

AUBIN HRINEANT -~

romosomes to be parents for crossover. A random position between 1 and

RIRIATE [udneaay

example using our parent chromosomes in figure 2.2.2.
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Parent A : 001 001 101 100 010
Parent B : 100 010 000

QW >

osscwr p  at position three. Then,

We randomly cl®esesth

switch all genew

POk 1t10

Some new ge ad sine might’ ot sakis e representation criteria.

To change the genergied offiSprime i al répPiesentation we need a repair
" .

algorithm. Moreover, it is_DOk ECted chromosomes are copied to the

new popu]ai)n di '“ ikhis wil ensure that good

chromosoniegban-be-preserved-from-one-generation-tobheatxt. We can also have

il

01 % 100 010
ﬂﬂﬂﬁﬁﬂ%iﬂﬂﬂi
qmmm IR Ml REE

To get two offspring, swich the genes between the two points.

There are various derivation of the crossover routines. Other generalizations,

like the M-point crossover and the uniform crossover (Syswerda,1989) may be
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Offspring A : 001 | 110 100| 100 010

Offspring B : 001| 001 101] 010 000

Figure 2. %
found in hterature§

e Mutati

mutation is used tQ n‘s e gey T8 i -.‘ Lint0 the search space. It

. Jy -f"* { % ! . . .

is created to avol a al o i H&‘ P [t is '.!\ se1flal to introduce diversity
[ | ' l- - o \

in homogeneous popMlatig opsS, - H--Efrff. b valles that cannot be recovered

via crossover. Therefogf,z ﬁ;—-" ) .":'/ jv- ly random way for obtaining to

possible 5(1130 -

The bit | operator are then

1S ap ed to each bit with a

processed by The m

probability equal to the mutation rate, Wthh is close to zero. A chromosome is

ﬁuﬂ ANBNINYINT

Wlth e random mutation pomt‘t third pOSlthH

QW']MFHW&I%WWH']&EI

We have,

Offspring A*: 001 001 010 010 000
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2.2.3 Characteristics of the genetic search

The search performed Genetic algorithm can be characterized in the following

manner (Goldberg 1989): \‘ / /

1. Genetic algo late b1t mosomes encoding useful

1nf0rmat10n abo ‘ = but @ulaw the information

about fitngk

3. The scarghis rah iulf] lel‘fror a1 om0 Pepulation.

4. The transit#n fr LhrotrosoRulkio anotlier M the search space is done

stochastically.

In this section, y Brithm that solves a combinato-

rial problewi. JFor more details about a genetic aleorithm theaddder is suggested to

- 2 1.', and Machine Learn-
I | [

ing (Goldbergy 98 9). The next section we will explain hotgda genetic algorithm is

read the sta f d

applied to our pl‘

ﬂﬂﬂ’mﬂﬂ‘iwmﬂﬁ
qmmnmummmaﬂ



ill be described in two
ate the mathematical
model base on multi-
walgorithm as a machine

F i [, .III i | \ 1 h b : \ g
legh n g8 §pec »’P lepgset’ )
f - 3 - 3 %

Ty
J dhdias

'y
% ti-objective func-

3.1 Mathem
s /

tion P rvc
P I e o L=

= '_f’ ‘ Y
3.1.1 Problem_d f":u ) ;1:_.:-4-“
In this thetismue-delie-artoolasarotbalgilartoombastton the coordinated
-l , i .| b
system. The Zﬁu . FEs tﬁ:ooms cannot occupy
T 0
the same spaeed Every room must be inside the main but I g boundary. We use

a poiat at the ceﬁeﬁthe room as the refe%e oint and a point at the top left

UEINERINETINT

co
Desm variables are defined as follow.

QRIAININUINTINGIAY

E; = The distance between the center and east wall of the room 1.

N; = The distance between the center and north wall of the room i.
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Additionally, width and height of the boundary area are represented by parameters

W and H, respectively. In addition, we use Wy, Wmasz;, Which are the minimal

r to control the width of the room 1.

and maximal width of the g
Similarly, we use A, \ :

t of the room i. Thus we have,

(IT1.1)

(I11.2)

Moreover, ¢ and room j, see fig-

Tz'j_iS'

ure 3.1.1

g |
=

ﬂﬂﬂ?ﬂ&lﬂﬁﬂtﬂﬂﬁ

mmmmummmaﬂ
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(0.0)

hand j

3.1.2 M

In the real y#rld l o]ra N, it ik | ‘ f'-.ul“s. pncern for only a single
objective. Multi-olgfec / i H"‘-- 8 gwn ast riteria or multi-attribute
optimization is the of simultan oDt T in two or more conflicting
objectives subject tocerta1 traints: Pandard technique for multi-objective

problem is ﬁmin' ize & positively we sum of the objectives, that

3

schoosm L‘eﬂerent weights wu;, for e different objectives, the preference

UEANENTNRNAT -~

eral f different magnitudes, the might have to be normalized first. Although

RAAIA SaiunAnYaay

his/her a specific purpose procedure.
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e The layout design multi-objective functions formulation.

In this thesis, we concentrate o

thrge objective functions, which are maximiz-
| n

rooms and the adding objective

~Ji %s To cope with these multi-
bine tf’ee oﬁom into a summation of

objective preferengeimiescon
cording to architect’s

ing room area, minimizingst!

function which aim t®

—
weighted com '

favor. In ou SWke performance of our

model.
> (IIL.3)
Where x;,vy; 4 1=1,2,,n,
d;, d; €8ordinate of room ¢ and J
Vi < g,

o,

P e ’ .
2 is a value thit-lesssthan-w i, 1=1,2,,n,
T
U, U, U3 ALLll weighit val

Objective ¥l

' g)ptimization where

the u, is the » oht ] oef” top left corner, us

Tl
is the weight @ffthe total absolute distance and w3 is th ight of the maximiz-

ing approx1mate‘ area. If an archit@@gbrefers larger room area then the

AULINHNG INBING

1stance between rooms then us is set to be greater than us. Hence, archi-

QaNn Tl INeAd

sents the maximized value between w; and h; that we can use to approximate the

maximized area. Next, we describe each objective in detail.
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e Placing a room position near the origin

Nevertheless, there always exist alter

ative solutions with the same objective value

due to the layout rotatiogsa ' ich could affect the total solution

! }S, we fix the room which is

the nearest origin of the

time. In order to e
selected randoml
boundary area; an be stated as follow.

Choose 17

(I11.4)
where z;
Yi
The idea of this ‘ o) : | e the \'1 ‘. mation of x; and y;. Being
that (z;,y;) is the referen T—'?‘-:'q’—--j - BECT of the room and it identifies the
location of the roo ;:: -W [ e reference point is nearest

to the origil,bhe-se : 7 and , sallcs .

1) i
° Minimﬂng o ak . ﬂ
,‘ v‘ 1
An interesting c‘ of an architect’s prfighence is a short distances between

AUHITRH W ‘M =Rk

dlst e function is preferred over the Euclidean distance function due to two

QRIIATUINAINYIAL

Euclidean distance. The second reason is that the walking distance from room
to rooin can not join diagonally across the room to reach a target room. We

could only walk along the boundary of any obstacle room. Manhattan Distance
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between two points in an Euclidean space is defined as the sum of the (absolute)

differences of their coordinates.

For example, the Manhattan disfh the point of P, with the coordinates
of (z1,y1) and the poin j‘
éxl _Q2| + |

Then, the dlstance b

\

Wiand Pj at (z;,y;) is

where n is the nuf pbi ] Istrgsthe difference between

R D

Ty r
HBYRE
4 A s

™y

ﬁ
_:’a
(%% % §
L]

SR

I

3

S

Ay gﬁm [N 9

QW'] mnmwmwmﬂﬂ

Subject to: x; —x; < dj; di; > 0,

T
i XTq — <d

Zj’

yi—yi <di, yi—y; <dj, d; >0

2]7
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e Maximizing area of rooms

Since the formulae of the areapfga gectangular room is nonlinear, we have to
|
L i@l linear formulae. Our objective is

find the area in another \ ’
to maximize the roo we 1S ﬂf maximizing each side of the

room. So as the Mght i‘rease&;-ﬁm area we obtain.

(I11.6)

as a \, kar function. Then we apply

rmula
ol ol

J‘t_..!'

the absolute distance funefzon-ealied .‘~' distance to maintain the linear

In this thesis, we fi

function, instead of using Jlidean distance.

Locati@;

ship betw

¢ _ﬁlains the relation-

d to be connected

=~ '
together. WeMe binary var 0 represe@rhe four directions of

north, south, eas‘a west direction corre mg to the following constraints.
yJ+N <wyi— Ni+ Hx*( pr %ij) =0, =1

ﬂ']

y Qiy =

Q‘mﬁijﬂ

From the location constraint, we use decision variables p;; and ¢;; to force the

17

pz] -

room ¢ to be placed next to the north, south, east or west of the room j. Since
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the decision variables p;; and ¢;; are binary variables, four cases of (p;;, ¢;;) occur,

which are (0, 0), (0, 1), (1, 0) and (1, 1).

lution must satisty x; + E; < z;, — E;

%nust be placed at the east of

For the first case, (p;j, ¢ij i
for the constraint III.?

the room 7, as in t

i

Figure 3.1.4: L

il
|

[afcase (pij, ¢i;) = (0,0)

Simultaneously, coyf ; \ L+ H . In view of the large

value of H, the rig ----;-- the' int \ jomes a large positive value.
Hence, any smaller pOSlt ey ,;::-'.'a-f sty the constraint II1.8. Similarly,

y- A -1 w P
constraint I11.9 becoms fu i ’Iﬂ E hat any positive value T, +Ej

will be lesL_

this case.

lways satisfied for

—N;+2H. In view

i e )

C
@s than y; — N; +2H,

which guarantee‘ his constraint is alwgygghatisfied for the case of p;; and g;;.

AUBINENINEING

It implies that the room j must be forced to place at the

ot
i |
of the large Vﬂ of H, every smaller value y; + N; will b

th of the room 7, shown in th!ﬁ

QW’]MﬂiﬁMilW]'JVI?J']ﬂEJ
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of W, any smally £ Avalls e, : an ©; — E; + W, which
means consts# ‘_ 4 AYvS g 15C. b the same time, the
constraint III.8‘~ dfs | * [ VR \ ‘ Y f the same reason with
constraint 1I1.7, \ ' onstraint I11.10 becomes
vi+ N; <y; — N; + ‘ il ‘ b .‘1\- b of the large value of H.
The third case is simil# ‘:?f he other Sthe value of (p;;, ;) = (0, 1) makes

the constraint II1.9 bege "4” ﬂ'-,f .,»- [ b leads the room j to be placed
on the lef 4

AUL TRERTAYINS

ure 3.1.6: Location constr int representatlon for case (pij, gij) = (1, 0

rRIaN ﬂe%ﬁ%l%%ﬂ NHUIRY

value of W on the right-hand side becomes a large positive value. For any smaller
positive x; + E; satisfies the constraint II1.7 . While constraint II1.8 and III.10

becomes z; + E; < x; — E; +W and y; + N; <y; — N; + H. The positive values of
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x; + F; and y; + N; are smaller than x; — E; + W and y; — N; + H which satisfy

the constraint II1.8 and II1.10 respectively.

Figure 3.147: Lo tialt ¢ 3t ¢ replesciitation for case (p;;. ;) = (1,1)

Similarly, conétr ‘ ‘ I11. & 38 ;=4 ‘. < ﬁvj—Ej+W and z;+F; <
— E; + W respectively 1% | '8 becomes yi+N; <yi— N;+H.
The large value of 1 ¢ Bubccome a large positive value.
Hence, o- five valiie @ rwill-satisty-constraint-HE+ ant/'TI1.9, respectively.

C O, wast

Also, any po

$

L
Al
Connecti constraint explains and identifies the l@tion of the rooms of

each pair of roo‘s t have to be conne@ligll together. We use the same two

AUBTNENTH BN

arg nt as the Location constramt four cases of ( p”, ¢ij) occur.

RIBINIHNINNG

xj—l—Ejin—Ei—W*(l—pij-l—qij), pijzl,qij: HI 13

Yi+ Ny > y; — Nj — H * (2 = pij — ;) pi; =1,q5 =1 (IT1.14)
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The first case, (pij,¢;;) is set to be (0, 0) which leads constraint II1.11 to be
x; + B > x; — E;. It implies that the room j must be forced to be placed on the

right of the room i, shown in.th Ilb 1 3Y1.3.

Figure 3.1 88Congeltiflyfdhstrains sepresoitsa Wn, folehse (p;;, g:;) = (0,0)

Constraint TH*2 h o . Si" v- ez % 8w of the large value
of H, the right-}l#nd d Of thegoust bt ot S | y small negative value.
Hence, any positi yﬂ _ ‘- i o, g ".1%' l"w y; — N; — H. Similarly,
constraint II1.13 be ‘ ‘ ‘ o\- : at any positive value x; + E;
will be greater than x; — A= b ! onstraint IT1.13 is always satisfied
for this case. Moregyes ﬂlk 8., + N; > y; — N; —2H. In
view of thg " 3 Yt ;.,_)l be greater than

tisfied for the case

For second CB}‘ q” is set to be (0 onstraint I11.12 becomes y;+N; >
ﬂ’ u ﬂcﬂewﬂ %5 Qrﬂ ilmllar to
the QVIOUS constraint, other constralnts will be satls ed uncondltlonally due to
e large value of H see
q W'T'Iem AUURAINEIGY
— E;, which forces room j to be placed on the left of the room ¢. Similar to the
previous constraints, other constraints will be satisfied unconditionally due to the

large value of H and W, see figure 3.1.10.
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Figure 3.1.9: Conng; Co )T pLORE ! or case (pij,q;;) = (0,1)

Figure 3.1.10: Coy e?_' ity. constfa ‘ or case (pj,qi;) = (0,1)

The last case for/ghecti i Gl which becomes (1,1). Con-
straint I11.14 becomes y; e ic! forces the room 7 to be placed at

the south of the rogQuagi aint, other constraints will

be satisficddnéonditiona a1 see figure 3.1.11.

ﬂ,u Ei"‘j NYRINYINS *

Access-way constraint : If two rooms touch with each other, then the junction

between two rooms must be wide enough to accommodate the accessway. We
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defined the minimal contact length of value T;;.

Yi + Nz < Yj Qij = 0 (11116)

T + By S Lt — B - gij =1 (I11.18)

0. If gi; equals to 0,
then constraint J § heed ) : | ;+T;; and y;+N; <

— N; + T;j, resplcti : Wle Ot LR i \ S : atisfied unconditionally
due to the 1 alffc f [ n “ Bloins that the room j

is adjacent to t On i s Tppe ¢ HOL i, which has vertical

=

ﬂ @

\

L] |

Figure 3.1.12 ccess—way constraint representation for adjacent area of the

“ﬁﬁmnunmmmm

room ¢ for constraint I11.16, Whlcmlas the vertical ¢ gmbact, shown as ﬁgure

ﬂW']Mﬂ‘iMﬂJW]'J‘VIﬂ’mEJ
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Figure 3.1.13:

lower corner of

Next, ¢;; is * o ipt MIJL7 ang : 7 L < v — B + 15

unconditionally dt ogfhe (r'e valueloj A AN WConstraint 111.17 explains

that the room#*i GE e 16 t : . comner of the room i, see

2

Slmutaneously, the room j is adj‘ent to the room igpthe left corner of thefigh

q W}ﬂ*ﬂ AIUURIINEIG Y
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Figure 3.1.15: Aceggs® WStratng repro he adjacent area of the

From thé previus. e el ] 3 | IP to fit to the layout
design proble ; he'« ; At 1pl altime of the MIP model
demonstrates th ‘ Y| ‘ | ‘ized o - . For a larger sized prob-
lem, the computatiog il t'l‘ isestill far ytisflBtory. In order to accelerate

the computational speed, aehians been adopted. In this thesis, we

0%
use the genetic alg »bu S OIEK to utilized an idea

of the Speti £
/N

ranch and bound

-
ot

I}

I
11
L]
Our purpo for using a genetic algorithm is to guide thL sequence of branching

mﬁ TR (i £ o o O

solu . The good path will cor ispond to the order of branching variables. We

WIANTTIU NAANYINY

learning process, the stronger gene from GA represents the appropriated SOS with

algorithm.

a good path in the search tree. For this reason, the appropriated SOS helps to
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prune the search tree that leads the algorithm to reach the optimal solution faster.

Next, we will describe our GA principles in detail.

Ll ’ ._,.!
3.2.1 Chromoso%\\"/ /y
A chromosom‘@ed b‘a st@a sequence of branching

variables. EacW taing a rag

the #hst Frdfr
4 i "' r

Suppose F, is div': ed

r r 1% -
‘ gbpreblem, P, and P, using binary

variable p; ;. P

A

variable g;,;, and” P ighlividg P; usiflg bihary variable (iyjs and so

on until P,.

AL ANNSHYINS

RIINYIAY

Figure 3.2.1: Representation of order of branching variables in tree structure
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In the figure 3.2.1, we have a path from the top node(Problem P,) to the

bottom node (Problem P,) pass through subproblems Py, Ps, FPs,..., P,. A

<y Dinjn - Next, we will record

. order of branching variable that
] i ‘third order and later order

———

sequence of branching variab,
this sequence into a chr

is p;i,j, at the first

Figure 3.2.2: A chy#h o to a sequence of branch-

L

ing variables M treef

In this thesfS, wolliseff two Astring to store information

e ek
WOs ELIYLENT:
o A £
I 4

of a sequence bin# y, flriableg B l4 4 hecals® oM@ dimention binary string

K~ \

can’t be fit with entig€ i f 2Dfbinary string is m x n,where

the m presents the numlge ﬂ,;- arial Milae . represents the sequential order

ofvariablec:sa ; e :

e Enc
A chromosome 1 1s a chain formed by any Characters In genetlcs the whole infor-

mzjﬁ NUNITNYINS

we e ode the branching Varlable?mto a chromosome usmg 2D binary string. We

AWIRNILIN UMANHNY

However, a four bits string can represent 16 different patterns which are larger

than the number of the variables p;; and ¢;;. The remaining patterns will not be
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ignored during the GA run. Thus, for example, we can represent variable p;; and

gi; for four rooms as follow.

Suppose wgflave #he rooms in a chromo-

y

some as the follo ‘ng.“'r' Ak 1.

i

12(12

Therefore we hav€ the f D binary str kenttg the sequence of branching

variables of the above :_,'r;_,/ G123
T ol

- .,-*

100011

0100 fof

gutiangninens...

ing variable. Nevertheless, if th@urrent pattern isﬂc represented by anﬁ)s

RIRINTNUINIANEINY

index of this variable is not stored nto a cand . This method ensures

that only feasible SOS is created and will be used in the chromosome.
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3.2.2 Operators

e Selection

ample roulet celg¥tl ot oAy B 611¢ 51 10U goutmament selection, rank

selection, stead#statgfSelgttibny and-s DINE
¥ b W
] Ll

In this thesiggfve uge pfogbrtioha ? IC Aoulette wheel selection.

- ! o o I'- I".. h . o
Parents are selectedfaccdrdir heis g8s VA lTehrefosomes in the population

i ‘d- — x ‘|| " )
are placed in tW€ roulettefwheel™ i-"‘; g, 1tk we' P chromosomes in the
i [ . § 1 i

population, we willhavgy. nents.onthe (@ whekl. The size of its segment

depends on the fitnes  particilar ¢

1. Sum up the ﬁtness, alu ﬁs-; | Gl B0 s in the population.

ﬁ,/

2. Gen -:_r»; ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, , ess values.
J

e sum of the fitness

-
-

ol
3. Select thajc tom
lli - I
values ofethe prev1ous is greater than or equal to thefrandom number.

£ LN EIW‘T‘!?I b M 14 Ir N

next generatlon

‘QW’]@@*&ﬂiﬂJ UN1AINBIAY

The order crossover using two parents and two crossover sites are selected
randomly and the elements between the two selecting points in one of the parent

are directly inherited by the offspring.
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e Mutation

Mutation is the process applied to each offspring individually after the crossover.

i in i f by a small change in a single in-
dividual Chromosome o - > 7 0 ﬁ)}leSIS the enCOded SOS uSng

t string. It sweeps down

-+
=
@
DO
-,
=N
=
Q
~
<
wm
+

the bits and re Y. ] ; ility of the test passes.

e The optl

CPLEX is an optlmlza on-softwar Ckage. It is named for the simplex

y ﬂ” 4 .-:r
method andthe Cgg it e veloped by Robert
E. Bixby .- sttibutedia-CPL] X LRHEX can solve MIP

ol I
problem and &ry damodeling layer and is

i ol
| i |
Hl 'th several modeling systems like AIM AMPL, GAMS IDE

also availabl

and giPL Devel rﬁ Studio. In this thy we develop a modeling language

12 an%m PR

° Fltness evaluation

qrIa NINRIANYIAY

more opportunities to be chosen in breeding new chromosomes. In this thesis, the
CPLEX solver has been used to solve the MIP using the SOS variables from GA

which determines the largest score from the number of iterations.
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At each transition, the value of computational iterations from GALMIP ( fitness_score)

is subtracted from a standard fitness score (standard-fitness_score) which is ob-

tained from the computatio ofy the MIP. The fitness_score higher

than the standard_fit er candidate of SOS (a strong
gene) which will b ness is measured from the
subtraction of the.c A | itefptions.Of MlRg@amdsthe current computational

iteration of GA ”\\ dribelthe it hes with an equation as follow.

Evaluate Eifficsgf— 8 dhlnd=fatn s sbgres ss_score (II1.19)

ﬂUEJ’JVlEWIﬁWEI']ﬂi
RIINTU UM INYIAY



1. linear configurn
2. rail configuration AE

3. connget

See the ﬁguref 1.1 for the graphical repies?ntatlon of these four distinct pat-

AULANANINGING...

between 5 and 10 meters. The b‘mdary area is selged 100 x 100 square ngetgr

AIRINTUURIINA Y



ﬂﬂﬂ? YyNENT
qmmnmum'mmaﬂ
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4.2 Parameters and design setting for a genetic algotithm

This section will covers the segtipgs of parameters which are used in genetic

W E
operator in order to achieye allafs ion and performance, it consists of
parameters of popula’ C1OSSOVer ﬁ and mutation probability.

irabl’fesu -

In order to a ance, appropriated GA

— -
parameters ha e s S€yeral frese

trying to understand

the complex ind PR i0me A i ; e GAY rying to design them

to fit into any d pfobluds f In d the GA parameters

that have been agbpted w ‘ oy " relit s Ki1C bandard” settings with a

population si % of 5 Q wo ;" Sr probe il YA 'f % and'mutation probability
v ¥ , ;'- I "R

e ghtand :_/ 36 gs \I\a‘% nQtksuM@ble for all problems. It
y \ ll'n_b ‘

m“\ atedhand the way of encoding

Y

of 0.001. Howe

b
a4 ,
depends on the nagifire @ : o Yovs

variables being used | oldbhetg He d Below 1991; Deb, 1999). Later in
J "i- e /
2000, Lobo suggested usillg-au=appropl @G A parameter that determines by

parameters trial and<es

Next, w& - 11
;
4.2.1 Po&\}llation s1ze -l'

e opula,ti@ﬁ Qparameter, is a ma'Mctor in determining the quality of
the Hilfure of the problem needed; not too big and not too small. If the population
| e o . QJ
| S , b t1Gme - _ 1)1 e
l‘ Wnsilea fﬂ n mﬁ%ﬂﬁﬂﬂmn[ia tﬂ
q large, the algorithm will waste unnecessary computational resources.

According to De Jong (1975), the appropriated size of population is usually in

the range of 50 to 100. The layout design is experimented using the population
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size of 100.
4.2.2 Crossover and ‘ ( robability

Crossover operatQri Tl ; res good mixing of candidate
solutions. The hightrtheseoss @ promising solutions are

mixed. A crosso j @ indig Tovbutl ossover process happen
with all selecte 901 . holle idwiocated that the better

results are achie ) gt achifh ¢ __ Moability in the range [0.8,1]

We use thePc W . S5 of 0.9 P01 suggested by De
jong(1975) and : ' 4..!' he I'1 Nghthat the high levels of

mutation are the m “" it and also achieve est levels of construction.

y $ " L \
The chance that & newlitandidateeency ad ded I‘\ Bses. The performance of GA
Y ifce o
is not so influenced P y th&se'operators t population sizes and generations.

ZTRIINTH
4.2.3 length of string

Before Eréati
B
eM

In order to detelﬁ he maximum lengt the chromosome, we need to find

AUBINBRINEINT

y pi; and g;;. For example of 4 rooms we have 6 possible connectivities

a ‘ to be ordered and

|
given an index!JThe string will then be filled in by the @ex of those variables.

between each room. Therefore e have 6 variabl eﬁp and 6 Varlablesu [

QWAANA3 M WARIINYNN

{q12, @13, Q13, Q14, @23, G24, 34} The total results of a SOS variable consists of the

combination of both variables p;; and g;;. Therefore, we can determine an SOS

variable length in a candidate SOS using the equation,
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(IV.1)

where n is the num : v / umber of SOS variables used in
the problem. Sinc 3 hit: - used in each problem, the

In this section, thg umlbr of iterations between MIP
and GALMIP of 4-7 room 1)

=

ct patterns of A, B, C and D are

table.4

shown in t

Moreoverstheexperiment-ias becnpertformed - witirpop mlation size of 10, gen-

41 ﬂ. ation probability of
ﬂummmwmm
QW'] AINTNURIINYIAY

eration itera

0.001. see ta
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Table 4.1: Iteration comparision between MIP and GALMIP

Room no. Pattern Objective value MIP GALMIP

1116
1471
1600

1076

19548
11119
17013

17684

975767
73817
01105 192828

215698

413618

[F‘ 03307 2014997
m 1

6314838 3318656

Qs

_ #a APy M
AL INENINYINS
RIAINTUURIINYIAY




Table 4.2: ITteration comparision of AL-MIP, MIP, AL-MIP+GA and GALMIP

Room no. patterns AL-MIP MIP AL-MIP+GA GALMIP
4 A 21 453 %102 1.12 x 103
/ 455 x 10> 1.47 x 10°

D! 3@ x 10>  1.60 x 103

| : 10: 102 1.08 x 10°

5 1.95 x 10*
1.11 x 10*

1.70 x 10*

1.80 x 10*

6 f | I;:;g f;l, | 2.76 x 10°
4.38 %L.,.;/' L0g < <10 ‘_! % < 10  7.38 x 10

O .40 x 10'  1.93 x 10°

2.39 x 10*  2.16 x 10°

7 @ 1.00 x 10°
[ 491 x 10*

= 2.01 x 10°

D 1.11 x 106 631><1o6 1.04 x 10°  4.32 x 10°

AUEINENneng
AT NSt



02

Table 4.1 shows the objective value and number of iterations of each configu-

ration between MIP and GALMIP. The four distinct configurations illustrate the

to the table 4.1, the results demon-

tivity. For 4 rooms, all config-
umber of iterations start

fzom 5, 6 and 7 rooms,we

various computational iterati
strate that they depen

urations have simi

to be different w
can see that the cogaptati j o S coitfigiration (Pattern B) and the
connected wheel co i by . mber of iterations while
a linear con ﬁrat' 1 (pAtLETI A ) and : | onfiguration (pattern D)
have quite far i " “ ; - T VERY | b ionificantly, the linear
configuration hasgfig r putafionalliterat o e nested wheel configu-

%

ration for 7 rooms. Besidlsiyt Lo Tneéan Coni ofi Atlon s more iterations than the
y §Fm BN A B

e

. N "!:I : \\.'
rail conﬁguratlo abo 10 ting 051 orestlgn 3 ti %\.‘ forithe connected wheel con-

i .' I8 ""ﬂdﬁf‘; el c@nfiguration. This illustrates

e

figuration and almo

that the structural conneg gver, the number of iterations of

the rail co{ﬁu — : A -)
Table 47 {08 }L-MIP, MIP, AL-

MIP+GA an | AL erati' ns, where AL-MIP and

MIP are mathem?mal models, AL- MIP+GA and GALMIP are models using the

ETMEI '"ATIIEI NINYINT

thls esis.

AR NININTINEINY

to the traditional MIP. For pattern A, the reduction is around 7-11 percentage.

For pattern B, the reduction is around 3-30 percentage . For pattern C, the
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reduction is around 7-11 percentage. For pattern D, the reduction is around

14-48 percentage. For pattern B and D, the reduction percentage increases as

the number of rooms increa; g different for patterns A and B, the

reductions of A and B lem size grows. Therefore, we

can conclude that of i erat on structural connectivity.

Since the depth £ ' N -‘ es ofpagtern. has the least depth, the

e The resu

i

ofp

This part ilug#fateg t .i-_ e aln & our experiments which
. { 4 ol i o 1 1
f L il =

vary from 4-7 oo ; or Atter sl B), .:" ed by table 4.3 to 4.6.
. i 3 71 J— I' h'. L
Moreover, wes# p’l enteg ..v;f Hﬁ* ¥Beliilelilatelifito different sizes of rooms, we
discovered that it cd =_.'.‘:':" ’Eﬁf’ th# area sizes of 6 x 12,7 x 14

and 10 x 15 square metepSWiich are sl able 4.7, 4.8 and 4.9 .

ﬂﬂﬂ’mﬂﬂ‘iwmﬂﬁ
mmmmummmaﬂ
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\\\W//

IStLaLCS. rooms cand 'T"“?J. 10 arlable pi; and g;;

Table 4.3

—————

Branchin Ordgs™ Patie R Rattern C Pattern D

q13

P23

P13

P14

q14

q13

P13

Li &

q24
23
424

P24

ﬂuﬂqmawswunni
QRIANTANINENE
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d14
12
424
D12
P14
434
413
P45
P45
d14
P34
434

q32 - (15 | 435

1 o

ﬂﬂﬁl’mﬂﬂﬁwmﬂ‘i

qi5 A v u
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Table 4.5: Illustrates 6 rooms candidate SOS variable p;; and g;;

q23

q14

q13

P35

q12

Pa6

q36

q13

qi13

q15

q36

d35

q25

P13

P25

P15

ﬂﬂﬂ’mp&lﬂﬁwmfﬁ

q14 ‘ 425

W’]ﬂﬁﬂﬁmﬂﬂﬂﬂﬂﬂﬂﬂ

D56 14 24 P46

23 q16 q16 q15 Q14
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Table 4.6: Illustrates 7 rooms candidate SOS variable p;; and g;;

58

ﬂUfJ’JVLFJVIﬁWFJ']fﬁ
R mmm UPIINE

23

q14 .p

Pse

q16

13

q16

q14

427

qd15

q25

q17

di6

P34

q23

Par

q36

q12

qi7

24

426

qs7

q25

Pe7

Pa6

Pae

Pae

426

Y
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Table 4.7:

The res@

00

ﬁ)e with the area room size of

GALMIP

6x12 sqm

1120
1510
1523

1093

24321
9719

20311

135642

42
124 202209

195677

ﬂﬂﬂ?ﬂﬁlﬂﬁ‘ﬁﬁ’mﬁ

213 1@839 758441 Q/
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Table 4.8: The res@ ﬁ)e with the area room size of
Tx14 sq "“‘3

m

bJ ctlv valy

; GALMIP
jf‘a;;=-

1090
1450
1430

1027

15296
9750
12505

17408

92594

45§Eb
144 24757

201746

ﬂﬂﬂ?ﬂﬁlﬂﬁﬂiﬂﬂi

248 1%101 1021142 u
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Table 4.9: The res@ ﬁ)e with the area room size of

10 x 15 sqm

GALMIP

1100
1493
1480

1229

20215
9966
19457

17185

105919

06@'
204 27772

218869

ﬂUEJ’JVIEWﬁW‘EI’mﬁ

353 1@83 994356 Q/




We use the Kamol and Krung in

2005 [21] in umber of iterations.

In [21], sed it At op e tACOknothof Phelioom to represent the
reference point gom is more common for
architects to#flesig cfor@change the reference

point to the cegfer p { g to the of Whichieglck in [22]. The model
using the referengg oj’ , we propose the model
called GALMIP in org®r to ¥ atio .I\"i iterations that are produced

From our Wer' ed Aﬂollows.

1. The MIP rfd is easy to formulate the ayout design problem.

ﬂuoﬂw UNINHIANT - -

arch space and therefore the number of computational iterations are re-

awmmmmmﬁwm

3. The reduction of iterations depends on the structural connectivity.
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5.2 Application of the candidate SOS

Since the size of each room can be yaried in real situation of layout designing

for building, we attempt te SOS to other room sizes. We
have found that the ¢ j }JA can be applied with some
patterns, meanin@mber‘ iterﬁean be reduced by using
the same candi > : .‘ _ ida ot be applied to every
ples p;; and ¢;; might
not be suitablegd#® be ' by GAS _"-h : \ » N d other relations that

is suitable for GAd

i

fvf' 4,,*,
'y

1/ R ’in;

J /Y WA %
al}'5 e furt ;:?‘ oped, as . pos B¢ perspective direction to

5.3 Sugger ofd

Our approachy

improve an architectifral JayC as e following suggests.

.=

1. We can add new gbjeciaves.or e model to improve optimiza-

‘g;‘a

2. Since thesgha Ciadd generalize them more
I | \ Hll
| r Ll
by usingWfiore complex shapes that are non- rectanﬂ

Al utngnineny

de51gn for the real archltec‘

QW’]MﬂiﬁMNW]'JmJ'mEJ
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Appendix

GAMS IDE model for MIP

‘// model for MIP methodology.

.E—aﬁi

This appendlx sectl

$ontext

GAMS IDE mo e/écle

$Offtext

set ROO ‘
ALrAs'( ot
ALTA# f}, 1
ALIAS? ,k;

set LINK (i) r—
‘ i ,fﬂ ;.7

CONNECT(i,j)

PARAMET&%S

b o ) f &5

- il- "
PanélyVids
s‘

!

Panslk

eight

mmﬁwaw%%swnﬁ
Wmmmum'mmaﬂ

PARAMETERS WeightMinDistance

Wmin

WeightMaxArea;
VARIABLE z;
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POSITIVE VARIABLES

- Wy
POSITIVE VAE:'/%"HE“_ . %

i

N.up(i ilmax i)/2;

AULINYNINGINT

qméﬁhmummmaﬂ

abs_plus x(i)
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abs_minus x(i,j)

abs_plus_y(i,j)

ﬂk\\\\\iy//,/

heightsiz
&

forceW |

force_ij

aaaaaa
Pl

\
obj_-Mi il e = sum(i, WeightLeftCorner(7) *

WelghtMlnDlstanusum LINK(i, 7), zx(i, ]E + zy(i

ﬂUH?Wﬂ%iW& i
qm@manwum'mmaﬂ

za_height(i) =1=2xN
position x(i) x(i) — E(i) = g = 0;

position_y(i)..  y(i) — N(i) = g = 0;
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abs_plus x(LINK(i,j)).. (i) — z(y) =1 = zz(1,5);
abs_minus_x(LINK(i,j)) =1=zx(i,7);
abs_plus_y(LINK(i,j)) 1/ l=zy(i,j);
abs_minus_y( LINK1 \\ / 2y(i,7);
widthsize(i gel\i\hdth

81" (14-p(i, ) —q(i, §);
R ()

\ A PR Width* (1—p(i, j)+q(i, §));

: \ " B0

:j,—f,— PanelHeight™(2—p(i, j)—q(i,7));

) — N(i) + DELTA - y(j) — N(j)

Overlap_Up(CONNE f.-

A

PRDELTA - y(i) — N (i)
anclHeight*(¢(i, /));

Overlap_ Left@ONNECT i,j)).. 0=9g= 3: ) + DELTA - z(y

ﬂuﬂaﬂ&mﬁﬂ“ﬂ‘m’i

- Pa lHelght* 1—q(i,7))

ﬂW']Mﬂ‘iMﬂJW]'J‘VIﬂ’mEJ
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