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CHAPTER 1 
 

INTRODUCTION 
 

1.1 PROBLEM IDENTIFICATION 
 

Artificial Neural Network (ANN) is said to be one of the machine learning 
techniques modeled from biological human brain network. The ANN comprises of 
two main network topologies, Feed Forward Neural Network (FNN) and Recurrent 
Neural Network (RNN). FNN is one-way flow started from input neurons through 
output units. In contrast, RNN is two-way flow from input to output and vice versa. 
The RNN is mostly theoretically used in forecasting the time series information. 
Incidentally, increase of interest in applying artificial neural networks to business 
application is evident in both the academic and trade literature. This popularity is 
driven by the ability of the ANN to accurately approximate unknown functions and 
their derivatives [1].  

 
Most applications of ANN use some variation of gradient technique called 

Backpropagation (BNN) for optimizing the networks. The past success of 
Backpropagation for optimizing neural networks is undeniable yet it has also been 
shown to be inconsistent in its application and unpredictable due to the local nature of 
its search. 

 
Since gradient techniques, such as Backpropagation, converge optima locally 

[2], they often become trapped at suboptimal solution depending upon the possibility 
of the initial random starting point. Since obtaining an optimal solution is the goal of 
ANN training, a global search technique seems more suitable for this difficulty 
nonlinear optimization problem. Even though there were many attempts to reach the 
global optima of Backpropagation, the problem still exists. 

 
Escaping local optima can be done by many techniques such as Genetic 

Algorithm (GA), Tabu Search (TS), Scatter Search (SS), and Simulated Annealing 
(SA). Many researchers successfully currently demonstrated how to train the regular 
information into FNN to meet the optimal solution by applying meta-heuristic, GA 
[3] [4] and TS [2], whereas training the information in RNN with meta-heuristic is 
still questionable. Hence, this research would like to fulfill this missing part.  
 

1.2 OBJECTIVE OF THE RESEARCH 
 

The objective of this research is to train the RNN and then compare the results 
of two techniques, Genetic Algorithm and Tabu Search. 
 



 

 

2
1.3 SCOPE OF THE RESEARCH 
 

1. This research is to apply GA and TS to train RNN to find the optimal solution, 
global optima. 

2. The RNN employs sigmoid function named logistic function as shown in 
Figure 1. 

3. The training is conducted by adjusting weight vector only, adjusting network 
topology is excluded. 

4. The training data set is generated by six given mathematic formulas. 
5. The training data set are both with and without noise. 
6. The results will be compared to each other and with the Back propagation 

technique. 
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Figure 1: Logistic Function 

 

1.4 DETAIL SCHEDULES 
 

The detail schedules of this research shown below: 
1. Search and study previous works in FNN and RNN. 
2. Search and study previous works in BNN, GA, and TS. 
3. Design the data structure of weights and parameters suitable with GA and 

TS. 
4. Generate training data sets. 
5. Implement the code of BNN, GA, and TS 
6. Repeat step 1 to 5 as required. 
7. Give the conclusion. 

 

1.5 EXPECTED OUTCOME 
 

The worth of this work is to study the methods of training GA and TS on RNN 
and to demonstrate how GA and TS can skip the local optima into global position.  

 



CHAPTER 2 
 

THEORIES AND RELATED RESEARCHS 
 

2.1 ARTIFICIAL NEURAL NETWORK 

2.1.1 Definition of Artificial Neural Network  
An Artificial Neural Network is a structure composed of a number of 

interconnected units (artificial neurons) [1]. Each unit has an input/output (I/O) 
characteristic and implements a local computation or function. The output of any unit 
is determined by its I/O characteristic, its interconnection to other units, and 
(possibly) external inputs. Although “hand crafting” of the network is possible, the 
network usually develops an overall functionality through one or more forms of 
training. 

2.1.2 Fundamental of Neural Network Concepts  
A neural network is a dynamic system; its state changes over time in response 

to external input or an output state [1]. As the definition, the overall computational 
model consists of a reconfigurable interconnection of simple elements. Figure 2 
depicts two small-scale sample networks, where units are denoted by circles and 
interconnections are shown as arcs. Figure 2 (a) depicts a nonrecurrent 
interconnection strategy, containing no closed interconnection paths. Note the 
depiction of units grouped in layers. By contrast, Figure 2 (b) illustrates a recurrent 
network interconnection strategy, where the arbitrary interconnection flexibility 
allows closed-loop (feedback) paths to exist. This allows the network to exhibit far 
more complex temporal dynamic compared with the strategy of Figure 2 (a). Also 
note that network topologies may be either static or dynamic. Finally, notice that 
some units in Figure 2 interface directly with the outside world, whereas others are 
hidden or internal. 

 
The network topology design is subjective. The Perceptron is a two-layer 

neural network, i.e. input layer and output layer, while Multilayer Perceptron is a 
three-or-more-layer neural network. The additional layer from simple Perceptron is 
hidden layer. Both Perceptron and the multilayer Perceptron are trained with error-
correction learning, which means that the desired response for the system must be 
known.  The traditional means to determine response, error, is Backpropagation. 
However, individual units implement a local function, and the overall network of 
interconnected units displays a corresponding functionality. Analysis of this 
functionality, except through training and test examples, is often difficult. Moreover, 
the application usually determines the required functionality; it is the role of the ANN 
designer to determine network parameters that satisfy these specifications.  

 
To be useful, neural networks must be capable of storing information, for 

example, they must be trainable. Neural systems are trained in the hope that they will 
subsequently display correct associative behavior when presented with new pattern to 
recognize or classify. That is, the objective in the training process is for the network 



 

 

4

to develop an internal structure enabling it to correctly identify new, similar patterns. 
Modifying patterns of inter-element connectivity as a function of training data is a key 
learning approach. In other words, the system knowledge, experience, or training is 
stored in the form of network interconnections. 

 

 
Figure 2: Basic Topologies for Neural Network  

2.1.3 Activation Functions 
 
The activation function is located in the neurons (circle units) and is 

responsible for combining inputs and forming outputs. Its input-output equation 
usually is 

 









+== ∑

=

D

i
ii bxwfnetfy

1
)(  

 
where D is the number of inputs, xi are the inputs to the neurons, wi are the weights, 
and b is a bias term. The activation function f is a threshold function. It has many 
forms, depending upon designer requirement, for instance, bipolar (Figure 3), logistic 
(Figure 4), and hyperbolic tangent, tanh (Figure 5). Logistic and hyperbolic tangent 
yield a sigmoid shape for the nonlinearity. 
 

 

 

Inputs 
Outputs 

(a) nonrecurrent ANNs 

Inputs 

Outputs 

(b) recurrent ANNs 



 

 

5

 

 
 

 

 
 

 

 
 







<−

≥=
01

01)(
netfor

netfornetf

 
)(1

1)( nete
netf α−+

=
 

)tanh()( netnetf α=  

Figure 3: Bipolar Activation 
Function 

Figure 4: Logistic Function Figure 5: Hyperbolic Tangent 
Function 

 
Bipolar is quite simple to use for classifying training data set into parts. If net 

is greater than or equal to zero, the function gives 1, else gives -1. However, bipolar 
function generates an unconnected line which led to be unable to find derivative 
function. Dislike Bipolar function, Logistic function has a continuous line. Logistic 
function will fire values between [0,1] while Hyperbolic Tangent function produces 
values between [-1,1]. 

2.1.4 Feed Forward Neural Network 
 
The Feed Forward Neural Network (FNN) is composed of a hierarchy of 

processing units, organized in a series of two or more mutually exclusive sets of 
neurons or layers [1]. The first, or input, layer serves as a holding site for the inputs 
applied to the network. The last, or output, layer is the point at which the overall 
mapping of the network input is available. Between these two layers lies zero or more 
layers of hidden units; it is in these internal layers that additional remapping or 
computing takes place. 

 
Links, or weights, connect each unit in one layer only to those in the next 

higher layer. There is an implied directionality in these connections, in that the output 
of a unit, scaled by the value of a connecting weight, is fed forward to provide a 
portion feedforward network. The network as shown consists of a layer of d input 
units (Li), a layer of c output units (Lo), and a variable number of internal or “hidden” 
layers (Lhi) of units. Observe the feedforward structure, where the inputs are directly 
connected only to units in Lo, and the outputs of layer Lk are connected only to units in 
layer Lk+1. 
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Figure 6: Layered feed forward network structure 

2.1.5 Recurrent Neural Network  
 
The FNN provided a trainable mapping from input to output. The mapping 

concept is modified somewhat for recurrent networks, since there is not necessarily a 
group of units that serve as inputs and outputs. Instead, the outputs of all units 
compose the network state.  A Recurrent Neural Network (RNN) still maps, but it 
maps states into states. The network input is the initial state, and the mapping is 
through one or more states to the network outputs. The RNN is widely used in 
training the time-series information such as to predict the position of vehicles for next 
ten minutes. Hence, the forecasting should be based on the current position, velocity, 
acceleration, and any other factors, if any. Figure 7 shows the simple Jordan Neural 
Network adding one more group called state units. The state unit is to capture the last 
step information from outputs to be the addition input flow for hidden layers [1]. 
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Figure 7: Example of recurrent Jordan net used for temporal sequence generation  

2.1.6 Backpropagation 
 
Definition of Backpropagation  

 
Error-Backpropagation is a technique used to train multilayer feed-forward 

neural networks. The additional layer is hidden, or internal, layer. The numbers of 
neurons in the input and output layers are dictated by the sizes of the inputs and 
outputs for the problem we are trying to learn. But we can create the hidden layer as 
much as we desire [5]. 
 
Fundamental of Backpropagation 

 
The values of neurons in the input layer are designated with the column vector 

I. The values of neurons in the hidden layer are designated with the column vector H. 
The values of neurons in the output layer are designated with the column vector O. 
The output values, we desire the output layer to produce and are trying to train it to 
produce, will be designated with the column vector C, stand for “correct”.  Because 
we have two layers of synapse, we now have two matrices which define their weights: 
W and V. The connection to an output neuron Oi from a hidden neuron Hj has a 
weight Wij. The connection to a hidden neuron Hj from an input neuron Ik has a 
weight Vjk [5]. 

 
This kind of neural network learns functions with any real value, not just 

Boolean type functions. This means that the neurons in the network can output any 
real number. To handle this, we need a new function describing the output value of a 
neuron. 
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As discussed, the lower case sigma is the sigmoid function named logistic 

function. This sigmoid function is an S-Curve, which is 0 as negative infinity. As we 
approach 0, it begins to rise to 0.5. Then it continues to rise until it reaches 1 at 
infinity as shown in Figure 4. We can think of this function as a kind of smoothed 
form of the step functions. Other functions can be used besides the sigmoid, but it is 
particularly popular because it has a first derivative which is very simple, so it makes 
the computation easy. 

 
The value of an input neuron is the input we have provided as before. The 

hidden neurons sum their weighted inputs from the input neurons and run it through 
the sigmoid function, and the result is their value. The output neurons then sum their 
weighted inputs from the hidden units, and run that through the sigmoid function, and 
the result is their value. 

 
Unlike  in the perceptron, the initial weights of a multilayer neural network 

start with small random values centered around 0 -- perhaps random values between -
.01 and .01, for example. This is because if the weights are all 0, the network cannot 
learn -- the weights must be non-zero to learn.  

 
To train the neural network, we present the inputs and determine the values of 

the hidden layer and of the output layer. We compare the results of the output layer to 
the correct results we are trying to train the network to produce. Then we modify the 
weights in W and V so that they are closer to producing that output. The rule we use 
for modifying the weights is known as the delta rule, because it changes each weight 
according to how much say it had in the final outcome (the delta, or partial derivative 
of the output with respect to the weight). Before we derive the delta rule for a two-
layer feed-forward neural network, here is the rule itself: 

 
jiiiiij HOOOCW )1()( −−=∆ α  

 
kj

i
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This rule is applied to all the weights at the same time. Use the old W weights 

in the V equation. The alpha value (α ) is the learning rate.  
 
The overall procedure for training a Back propagation neural network is 

similar to the perceptron procedure and works as follows. Given a set of input vectors 
and corresponding expected output vectors for a function,  
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1. Pick an input/expected output vector pair at random.  
2. Present the input vector pair to the input neurons.  
3. Let the values flow through the neurons up to the output neurons.  
4. Read the network's output vector.  
5. Using the delta learning rule, modify each weight according to the difference 

between output vector and the expected output vector.  
6. Go to #1.  

 
The procedure finishes when the network is reliably producing something very 

close to the expected output for every input we provide it. Remember, this network 
operates on continuous values, so we cannot nail the expected output exactly. What 
we shall aim for is that the network will converge to the correct output at the limit.  

 
Sometimes a Backpropagation network will converge for some inputs but fail 

to converge for others. This is because the network got caught in a suboptimum 
solution and cannot find its way out of it and on to the global optimum. 
Backpropagation has this property because it is a greedy algorithm, and so it is not 
guaranteed to work; we may have to run it many times to get all the inputs to 
converge.  

 
One way to help the neural network converge is to lower the learning rate; it 

will take longer to learn, but will have a better chance of finding the global optimum. 
Another way to help it is to increase the number of neurons in the hidden layer. 
However, this second approach has a downside: if we increase the neurons in the 
hidden layer by too much, then the network will learn exactly the inputs we provide it, 
but will not be able to come up with a general solution. Often we cannot provide all 
the inputs to a network because there are just too many. In this case, we want the 
network to learn the function from just a subset, and successfully generalize what it 
learned to all possible inputs as a whole. Large numbers of hidden layer neurons make 
this less likely to succeed.  
 

2.2 GENETIC ALGORITHM  
 

A genetic algorithm is a robust search and optimization algorithm developed 
by John Holland that is loosely based on population genetics [5]. Genetic algorithms 
mimic the evolutionary principles and chromosomal processing in natural genetics to 
seek solutions from a vast search space at reasonable computation costs. 

 
A genetic algorithm is an iterative procedure, and consists of a constant-size 

population of individuals. Each individual is represented by finite array of symbols, 
know as a chromosome. Each individual chromosome encodes a possible solution in 
the given problem space. Every chromosome is assigned a fitness value derived form 
a performance measure defined by the criteria to be optimized in the problem at hand. 
The algorithm starts out with an initial population of individuals that is generated at 
random. At each evolutionary step, known as a generation, the population of solutions 
is modified to a new population by applying three operators similar to natural genetic 
operators: reproduction, crossover, and mutation. 
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2.2.1 Reproduction 
 
Reproduction generates a mating pool by selecting good fitness chromosomes 

from the population. Although there are numerous reproduction operators reported in 
the literature, the essential idea in all of them is the same: chromosome with fitnesses 
above-average are picked from the current population and chromosomes with 
fitnesses below-average are removed from the population. This procedure may 
involve maintaining multiple copies of good chromosomes in order to keep the 
population size fixed. The reproduction operator acts as a filtering mechanism for the 
selection of good chromosomes in a population. 

2.2.2 Crossover 
 
After reproduction, the crossover operator is applied to chromosomes of the 

mating pool. Once again, there are a number of crossover operators, but almost all of 
them pick two chromosomes from the mating pool at random and then exchange some 
portion of the chromosomes. In a single-point crossover operation, a crossover site is 
chosen at random and all bits to the right of the crossover site are exchanged between 
the two chromosomes. 

 
It should be intuitively clear that from such an exchange operation, good sub-

chromosomes from either parent chromosome can be combined to form a better child 
chromosome provided the right crossover site is chosen. Since we do not know the 
best crossover site in advance, a random site is chosen. This is simple to implement, 
but random crossover sites can generate children chromosomes that have a poorer 
fitness than the parents themselves. This is, however, not a problem, since the GA will 
automatically eliminate such poor quality chromosomes during the next reproduction 
cycle. 

 
In a two-point crossover operator, two sites along the chromosome are chosen 

at random and the sub-chromosomes included between these sites are exchanged 
between the parents. This procedure is directly extendable to a multi-point crossover 
operator. The limiting case is called uniform crossover which exchanges every bit 
between parents with a certain probability. The crossover operator helps search the 
parameter space while preserving information from parents maximally, the latter 
being necessary since parent chromosomes are instances of good chromosomes 
selected using the reproduction operator. 

2.2.3 Mutation 
 
In addition to the crossover, a mutation operator is also used to enhance the 

search in a GA. The mutation operator flips a bit in a chromosome with a very small 
mutation probability. Mutation is necessary to maintain diversity in a population 
which would otherwise converge very quickly to very similar chromosomes. 

 
We can also apply a mutation operator in adding and deducting some value 

from the gene. This is for a mutation operator on a real-number type gene. 
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2.2.4 Algorithm 
 
Below is an algorithm for genetic algorithm in a general purpose. 

 
1. Set k = 0; form initial population, P(0) 
2. Evaluate P(k) 
3. If stopping criterion satisfied, then stop 
4. Select M(k) from P(k) 
5. Evolve M(k) to form P(k+1) 
6. Set k = k + 1, go to step 2 

 
During the execution of the Genetic Algorithm, we keep track of the best-so-

far chromosome; that is, the chromosome with the highest fitness of all chromosomes 
evaluated. After each iteration is completed, the best-so-far chromosome serves as the 
candidate for the solution to the original problem. Indeed, we may even copy the best-
so-far chromosome into each new population, a practice referred to as elitism. The 
elitist strategy may result in domination of the population be super chromosomes. 
However, practical experience suggests that elitism often improves the performance 
of the algorithm.  

 
The stopping criterion can be implemented in a number of ways. For example, 

a simple stopping criterion is to stop after a pre-specified number of iterations. 
Another possible criterion is to stop when the fitness for the best-so-far chromosome 
does not change significantly from iteration to iteration. 
 

2.3 TABU SEARCH 
 
Fred Glover initially introduced and later developed Tabu Search (TS) into a 

general framework [7]. Tabu Search can be thought of as an iterative descent method. 
An initial solution is probably randomly generated and a neighborhood around that 
solution is examined. If a new solution is found in the neighborhood that is preferred 
to the original, then the new solution replaces the old and the process repeats. If no 
new solution is found to improve the old function evaluation, then unlike a gradient 
descent procedure which would stop at that point, a local minimum, the TS algorithm 
may continue by accepting a new value that is worse than the old value. Therefore, a 
collection of solution in a given neighborhood is generated and the final solution 
would be based on the best solution found so far. To keep from cycling, an additional 
step is included that prohibits solution from recurring for user defined number of 
solutions, this tabu list is generated by adding the last solution to the beginning of the 
list and discarding the oldest solution from the list. During this procedure, the best 
solution found so far is retained. From the subset of acceptable neighborhoods the 
best solution is chosen. In a problem in which there is no known solution, a given 
value for the maximum number of iterations can be used to terminate the process. 
When this number of iterations has taken place with no new improvement over the 
best solution, the algorithm will terminate. 

 
More particularly, TS is based on the promise that problem solving, in order to 

qualify as intelligent, must incorporate adaptive memory and responsive exploration. 
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The adaptive memory feature of TS allows the implementation of procedures that are 
capable of searching the solution space economically and effectively. Since local 
choices are guided by information collected during the search, TS contrasts with 
memoryless designs that heavily rely on semi random process implementing a form of 
sampling.  

 
The emphasis on responsive exploration in TS, whether in a deterministic 

(complete) or probabilistic (partial) implementation, derives from the supposition that 
a bad strategic choice can yield more information than a good random choice. In a 
system that uses memory, a bad choice based on strategy can provide clues about how 
the strategy may profitably be changed. 

2.3.1 Use of Memory 
 
The memory structures in TS refer to four principal dimensions, Recency, 

Frequency, Quality, and Influence. Recency-based memory and Frequency-based 
memory complement each other, and have important characteristics we amplify in 
later sections. The quality dimension refers to the ability to differentiate the merit of 
solutions visited during the search. In this context, memory can be used to identify 
elements that are common to good solutions or to paths that lead to such solutions. 
Operationally, quality becomes a foundation for incentive-based learning, where 
inducements are provided to reinforce actions that lead to good solution and penalties 
are provided to discourage actions that lead to poor solution. The flexibility of these 
memory structures allow the search to be guided in a multi-objective environment, 
where the goodness of a particular search direction may be determined by more that 
one function. The tabu search concept of quality is broader than the one implicitly 
used by standard optimization methods. 

 
The fourth dimension, influence, considers the impact of the choices made 

during the search, not only on quality but also on structure. The influence of choices 
on particular solution elements incorporates an additional level of learning. 

 
The memory used in TS is both explicit and attributive.  Explicit memory 

records complete solution, typically consisting of elite solution visited during the 
search. An extension of this memory records highly attractive but unexplored 
neighbors of elite solutions. The memorized elite solution are used to expand the local 
search. 

 
Alternatively, TS uses attributive memory for guiding purposes. This type of 

memory records information about solution attributes that change in moving from one 
solution to another. For example, in a graph or network setting, attributes can consist 
of nodes or arcs that are added, dropped or repositioned by the moving mechanism. In 
production scheduling, the index of jobs may be used as attributes to inhibit or 
encourage the method to follow certain search directions. 

2.3.2 Intensification and Diversification 
 
Two highly important components of TS are intensification and diversification 

strategies. Intensification strategy is based on modifying choice rules to encourage 
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move combinations and solution features historically found good. They may also 
initiate a return to attractive regions to search them more thoroughly. Since the elite 
solution must be recorded in order to examine their immediate neighbourhoods, 
explicit memory is closely related to the implementation of intensification strategy. 

2.3.3 Aspiration Criteria 
 
Sometimes, the situation, consisting of tabu active in tabu list, reaches good 

solution. The aspiration criteria is to switch off the tabu active status on which the 
situation with tabu active is better than what we have seen. This rule, aspiration 
criteria, will override the tabu action in hope that the way we break the rule can reach 
the optima. 
 
 
 

 



CHAPTER 3 
 

RESEARCH MEDTHODOLOGY 
 

To reach what we expect from this research, we need to design the model to 
do the tests described in details below. 
 

1. Prepare datasets to be trained and to be tested. 
2. Design the network topology and data structure. 
3. Study the way to apply Genetic Algorithm and Tabu Search in Neural 

Networks. 
4. Do the experiment and give the result analysis. 

 

3.1 DATASET PREPARATION 
 
The dataset for training and testing is generated along with six experiment 

problems [12] [9] [2] [10]. The data will be used in every methodologies, GA, Tabu 
Search, and Back Propagation. The training set will be generated randomly once 
within the proper small range, e.g. [-100, 100]. The range may be various on each 
problem. Problems numbered one to four are taken from Schuster [10], while the fifth 
problem is the reputable Mackey-Glass chaos time series equation [9] [2] and the 
sixth problem has a big depth of local optima.  
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Since this research aimed to apply the models and techniques to the real world 
where the data are hardly clean enough, we added some noise into the data we trained 
to test the model approaching to the real situation. The noise we made is to adding 
some small figure, for example 0.001, to the data randomly. 

 
For the testing dataset, there are two means to test. First is in-training data, the 

dataset to be tested is the same set as trained. The second set to test the model is to use 
the data as interpolation data. It means the data to be tested will be in subset of 
training data. For example, we prepare 200 elements for each training dataset. After 
the training is completed, the testing dataset may be the first 150 records within the 
training dataset.  
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Since the training dataset can be prepared in two groups, data with noise and 
data without noise, and the testing data set will be two groups, in-training and 
interpolation, this means there are totally four combinations for every single problem 
to train and test the network. 

 
Besides, the training and testing datasets will be normalized in order to 

prepare the data to suit with the network. Normalization can be useful when using 
techniques that perform mathematical operations such as multiplication directly on the 
value, such as neural networks, and K-means clustering since the normalization does 
not change the order of the values. Data normalization, furthermore, will rescale the 
input and output data into zero to one by using the calculation below.  
 

)()(
)(
dataMindataMax

dataMinxxnormalized −
−

=  

 
For a number of data to be trained and tested, we use 300 data in training and 

200 data in testing. The testing data set is from a series of training data.  The result 
will show the error from both training and testing. 
 

3.2 NETWORK TOPOLOGY DESIGN 

This research employs Elman Recurrent Network as a model to test the 
algorithm which Jeff Elman invented in 1990 [3]. Elman network is a three-layer 
network, with the addition of a set of "context units" in the input layer. There are 
connections from the middle (hidden) layer to these context units fixed with a weight 
of one. The context units will memorize the previous outputs from a hidden layer. At 
each time step, the input is propagated in a standard feed-forward fashion, and then a 
learning rule, usually back-propagation, is applied. The fixed back connections result 
in the context units always maintaining a copy of the previous values of the hidden 
units (since they propagate over the connections before the learning rule is applied). 
Thus the network can maintain a sort of state, allowing it to perform such tasks as 
sequence-prediction that are beyond the power of a standard multi-layer perceptron. 
The Elman architecture in this research is shown in Figure 8. 
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Figure 8 : Elman Recurrent Neural Network 

Since the sixth function for generating the training and testing datasets 
employs three variables, x and y as independent variables, z as dependent variable, the 
network designed in this thesis will be two units in the input layer and one unit in the 
output layer. For the functions with one independent variable, like the function 
number one to five, we adapt the training data set by adding zero as an input for 
another variable.  

 
For the hidden layer, the number of hidden units to optimize the solution is 

still questionable and has much discussed nowadays. Ben Krose and Patrick van der 
Smagt talked about the number of hidden units in the network. The number of hidden 
units should be large enough to learn the pattern of training data. Yet if it is too large, 
the network may tend to learn the data instead of learning the pattern, and it will cause 
over fitting.  

 
The parameters set in the Elman network for this research are shown in the 

table below. 
 

Input  
units 

Context 
units 

Output 
unit 

Hidden 
units 
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Table 1 : Neural Network parameters employs in this research 

Parameter Setting 

Number of Input Nodes 2 

Number of Hidden Nodes 4 

Number of Output Nodes 1 

Number of Hidden Layer 1 

Transfer Function Sigmoid Function 

 

3.3 DATA STRUCTURE DESIGN 
 

Since this research will apply other learning techniques on the network, 
besides Back Propagation, we need to design the data structure align with the network 
topology for Genetic Algorithm and Tabu Search. This will help doing the operation 
in GA and TS easier. The sequence of array of network is shown below. 
 
 

Array Wi,h Wh,o Wob Whb Wc,h 
 Where  Wi,h  = Weight from input units to hidden units 
   Wh,o = Weight from hidden units to output units 
   Whb = Bias for hidden units 
   Whc = Bias for the output unit 

Wc,h = Weight from context units to hidden units 
 
 

3.4 APPLYING GENETIC ALGORITHM TO TRAINING THE 
NETWORK 
 

We employ Genetic Algorithm to Elman Network by creating a set of array of 
weights. Each gene represents weight in the network as well as the chromosome 
represents a set of weights, as shown in the previous section. 
 

Recall to the procedures of genetic algorithm. We apply genetic algorithm to 
the network in the following means. 
 

1. Initialize weights in the network and place every single weight into 
chromosome. 

2. Do the Mutation 
a. Random one chromosome going to be mutated. 
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b. Random gene position.  
c. Operate the random gene (b) with small change. The change may 

be plus or minus. 
d. Repeat 2.a to meet the mutation rate required. 

3. Do the Crossover 
a. Random two chromosomes going to be mated. 
b. Random gene position.  
c. Cross two chromosomes (a) with the random point (b) 
d. Repeat 2.a to meet the crossover rate required. 

4. Rank the chromosome by using Rank Method 
a. Calculate the error of the network corresponding to each choices of 

chromosome. 
b. Rank the chromosome by the error. 

5. Select the chromosomes to be survived in next generation. 
6. Repeat step 1 until the termination criteria is met. 

 
The parameter set for Genetic Algorithm used this research is shown in the 

table below. 
 

Table 2 : Genetic Algorithm parameters employed in this research 

Parameter Setting 

Number of Chromosome  
in each generation 50, 100 

Mutation Rate 20%, 40%, 60% 

Crossover Rate 20%, 40%, 60% 

Crossover Point Single Point 

 
When the procedure is finished, the minimum error and time spending are 

reported. 
 

3.5 APPLYING TABU SEARCH TO TRAINING THE NETWORK 
 

This research uses both Long Term and Short Term Memory strategies. The 
procedures of the implementation are as follows. 
 
3.5.1 Long Term Memory Strategy 
 

1. Initialize Long Term Memory. 
2. Initialize weights for the network to be different from the existing in Long 

Term Memory. 
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3. Search  the local neighbour for the optimum error with Short Term Memory 
Strategy. 

4. Place the solution found in the Long Term Memory. 
5. Repeat step 2 until the termination criteria is met. 

 
3.5.2 Short Term Memory Strategy 
 

1. Try to change every single element of the weight array by adding and 
deducting with the small value. 

2. Determine the error of all new networks from step 1 
3. Select the best network in step 2 only if the operation we selected is not in 

tabu list. However, the Tabu is acceptable if the best network found in step 2 
is the best so far since we start training. 

4. Add the operation what we have done in the Tabu List. 
5. Delete the expired list from the Tabu List. 
6. Repeat step 1 until the termination criteria is met. 

 
As Long Term Memory Strategy aims to find the global optima by jumping 

around the solution space, the initial weights for the next search should be as far as 
possible from the existing network weights. If there is no data in Long Term Memory, 
the initial weights will be generated by randoming a set of numbers. If there are 
network weights existed in the Long Term Memory, the new initial weights can be 
calculated by averaging the weights in the same position of all network and then 
multiplying by -1.  

 
Since the main property for Tabu Search is to prevent the operation to loop as 

a cycle. In this research, there are two kinds of Tabu. Add Tabu List is used when the 
operation is about deducting a weight with some little value. This list uses for 
preventing the weights that will not be added back within some next tenures. This 
tenure is called Add Tabu Tenure. On the other hand, Minus Tabu List is used when 
the operation is about to added. This will prevent the weight to get back to the same 
value by deducting in next loops. The tenure for this operation called Minus Tabu 
Tenure. 

 
The parameter set for Genetic Algorithm used this research is shown in the 

table below. 
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Table 3 : Tabu Search parameters employs in this research 

Parameter Setting 

Number of Loops in  
neighbour search (short term search) 300 

Number of Short Term Memory run 3 

Add Tabu Tenure 30, 60, 90, 120, 150 

Minus Tabu Tenure 30, 60, 90, 120, 150 

 
When the training is finished, the best network found so far will be reported. 

 

3.6 TERMINATION CRITERIA 
 

Normally, the termination criteria can be three different ways, the number of 
epochs or loops running, the number of time spending, and percent of error decreased 
from previous loop. The percent of error decreased from previous loop can apply well 
in Back Propagation since the error would tend to decrease in every step of training, 
but not for Genetic Algorithm and Tabu Search. 
 

In Genetic Algorithm and Tabu Search, the error may be not decreased for 
next ten loops or more as the algorithms are random based in selecting the mutation 
and crossover. The random process in the current loop for both Genetic Algorithm 
and Tabu Search will not guarantee that the new network is going to have less error 
than that of previous loop. Then we cannot employ this method to stop training in this 
research. 
 

3.7 ERROR MEASUREMENT 
 

When the network training is finished, the error is measured. The data for all 
training and testing then will be passed through the network and the error of 
comparing the target and the output will be accumulated. Sum Square Error is used as 
a tool to measure the error. 
 

3.8 SYSTEM ENVIRONMENT 
 

The experiment is conducted with a personal computer. The computer 
hardware and software tested in this paper are shown as follows. 
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Table 4 : System environment employed in the paper 

Environment Value 

Operation System Window  XP SP2 

Development Suit Microsoft Visual Basic 6 

Processor Pentium Centrino 1.3 GHz 

Memory 768 MB 

Hard Disk 60 GB 

 
 



 

CHAPTER 4 
 

RESULT ANALYSIS 
 
 

4.1 BEST RESULT 
 

There are three methodologies to train six datasets. Each dataset contains some 
parameters as described in chapter three. The best parameters to generate minimum 
average testing error for all three algorithms are shown below. 
 

Table 5 : Best result for training with Genetic Algorithm – data without noise 
Function Average 

Testing 
Error 

Average 
Training 

Error 

No of 
Chromosome 

Mutation 
Rate 

Cross 
Over 
Rate 

Generation Time 
(Sec) 

1 0.248 0.445 100 40% 60% 1000 810 
2 0.199 0.284 100 40% 60% 1000 776 
3 2.080 3.311 100 60% 20% 1000 361 
4 0.093 0.246 100 60% 60% 1000 905 
5 6.101 7.885 100 20% 20% 1000 293 
6 0.734 0.918 100 40% 20% 1000 404 

 
Table 6 : Best result for training with Tabu Search – data without noise 

Function Average 
Testing 

Error 

Average 
Training 

Error 

Add Tenure Minus Tenure Time (Sec) 

1 0.506 0.813 60 150 260 
2 0.558 0.929 90 150 257 
3 5.629 7.985 120 60 177 
4 0.355 0.618 90 150 258 
5 6.087 8.569 120 150 237 
6 0.328 0.525 60 150 259 

 
Table 7 : Best result for training with Back Propagation – data without noise 

Function Average  
Testing  

Error 

Average 
Training 

Error 

Epoch Learning Rate Time (Sec) 

1 0.395 0.632 300 0.75 11 
2 1.711 2.616 500 1.25 19 
3 25.877 37.205 300 0.75 13 
4 0.813 1.253 300 1.25 10 
5 8.618 13.536 500 1.25 19 
6 0.228 0.317 500 1.25 20 
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RNN trained with Backpropagation almost reaches the minimum SSE within a 
short period, less than 20 seconds. Functions number one, two, four, and six are easy 
trained by Backpropagation. Genetic Algorithm and Tabu Search take longer time to 
converge to the best performance. 
 

Functions number three and five show the local optima convergence in case of 
Backpropagation. When the training procedure is finished, the very high SSE remains. 
In contrast, RNN trained with Genetic Algorithm and Tabu Search can escape the 
local optima by using their properties. Genetic Algorithm employs crossover 
operation to jump out off local optima while Tabu Search uses both short term 
memory and long term memory strategies. These two algorithms give us a better 
performance but may take a very long time. 
 

4.2 EXPERIMENT RESULTS 
 

Refer to the tables shown in the appendices; they depict the experimental 
result for every combination. We can conclude from the experiments as follows. 
 
Genetic Algorithm 
 

For Genetic Algorithm, the increase of number of chromosomes, mutation 
rate, crossover rate, and number of generations, can reduce the SSE for both training 
and testing datasets, but the algorithm may take longer time to finish. Moreover, 
Genetic Algorithm can adjust the network weights to gain less error for the problem 
with local optima. The ability of skipping local optima is undeniable. 
 
Tabu Search 

 
For Tabu Search, the increase of Tabu Tenure cannot ensure that we will get a 

better solution, but increase of number of short term search running will. However, 
Tabu Search has a good chance to overwhelm a problem with local optima such as 
problems number three and five. This is because Tabu Search employs tabu list to 
prevent the cycling search and then the solution space may be explored wider enough 
to overcome the local optima. Moreover, Tabu Search applied in this thesis uses long 
term memory to initialize the network weight as far as previous ones. This strategy 
will let the search begins next round searching in different area and it may gain a 
better solution. However, it takes time to complete. 
 
Backpropagation 
 

The legacy optimization Backpropagation can reduce the error very fast since 
it is a mathematical based algorithm. The procedure to adjust the network weight can 
be easily calculated and applied to the network. This algorithm suits for the data with 
a small number of local optima. 
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For the network trained with data with noise, we can do the prediction as 

well. The error is quite similar with the network trained with data without noise. 
However, in the real world, after training is completed, just a few series will be 
predicted. Then it is not required to predict or forecast as many series of data as we 
did in the experiments.. 
 

Recalled to Genetic Algorithm and Tabu Search, one of their implementation 
steps is to adjust the network weights by adding or deducting the existing weights 
with a small number. We did the experiment by adding one variable to the learning 
process. This variable is to multiply the small number before changing the network 
weights. The result showed that the function can learning faster but cannot gain a 
better network and the error of the network is quite similar to the network with no 
multiplier variable. 
 

In conclusion, the problem with local optima, Genetic Algorithm and Tabu 
Search can reduce the network error but they may take a long time whilst 
Backpropagation will take a shorter time to proceed but may stop at local optima. 
 

Next is the sample of graph representation of function five. Figure 9 depicts 
the network error in the training process by using Backpropagation. This shows that 
this function converges to local optima. Figure 10 shows the target and the output 
from the network trained by Backpropagation.  
 

Figure 11 to Figure 14 show the training capability of Genetic Algorithm and 
Tabu Search for the function which has local optima. The error from these two 
methods decrease overtime. 
 

 
Figure 9 : Graphical representation of error in function 5 trained with Backpropagation 
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Figure 10 : Graphical representation of function 5 trained with Backpropagation 
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Figure 11 : Graphical representation of error in function 5 trained with Genetic Algorithm 

 
 
 

 
Figure 12 : Graphical representation of function 5 trained with Genetic Algorithm 
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Figure 13 : Graphical representation of error in function 5 trained with Tabu Search 

 
 
 

 
Figure 14 : Graphical representation of function 5 trained with Tabu Search 
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CHAPTER 5 

 
CONCLUSION & FURTHER  
RESEARCH DIRECTIONS 

 

5.1 CONCLUSION 
 
This research depicts the methodology of training Genetic Algorithm and Tabu 
Search on Recurrent Neural Network. The result reveals that Backpropagation can 
learn functions quickly yet it fall in local optima. On the other hand, we can train 
RNN by using Genetic Algorithm and Tabu Search to escape the local optima but 
they may take longer time. 
 

5.2 FURTHER RESEARCH DIRECTIONS 
 

1. The number of hidden units and network topology directly affect the learning 
performance. Other RNN architectures, for example Jordan network, Hopfield 
network, suit for different purposes. The result from different architecture 
yields different result. 

 
2. Backpropagation used in this paper is a simple version. Enhanced or extend 

Backpropagation, such as adding momentum, may yield a better result for 
function three. 

 
3. Hybrid learning between Backpropagation and other metaheuristic searches 

may yield a better performance. In the beginning of learning, Backpropagation 
may be used to fast learning. When it reaches local optima, we can apply 
metaheuristic algorithms, such as Genetic Algorithm, and Tabu Search, to skip 
the local optima. 
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Table 8 : Function 1 trained by RNN with Genetic Algorithm – data without noise 

Function No of 
Chromosome 

Mutation 
Rate 

Cross Over 
Rate 

Generation  Avg 
Training 

Error 

 Avg 
Testing 
Error 

Time 
(Sec) 

1 50 20% 20% 500 12.957 8.702 72 
1 50 20% 40% 500 1.988 1.156 115 
1 50 20% 60% 500 1.182 0.744 182 
1 50 40% 20% 500 2.040 1.225 97 
1 50 40% 40% 500 0.845 0.507 143 
1 50 40% 60% 500 1.473 0.891 187 
1 50 60% 20% 500 2.273 1.377 127 
1 50 60% 40% 500 1.198 0.694 166 
1 50 60% 60% 500 1.297 0.821 214 
1 100 20% 20% 500 6.345 4.192 147 
1 100 20% 40% 500 4.759 2.526 240 
1 100 20% 60% 500 3.997 2.507 341 
1 100 40% 20% 500 1.141 0.668 199 
1 100 40% 40% 500 3.313 1.948 299 
1 100 40% 60% 500 1.498 0.907 397 
1 100 60% 20% 500 2.020 1.277 261 
1 100 60% 40% 500 2.765 1.691 400 
1 100 60% 60% 500 2.006 1.051 460 
1 50 20% 20% 1000 1.579 0.980 144 
1 50 20% 40% 1000 1.150 0.696 230 
1 50 20% 60% 1000 0.818 0.476 337 
1 50 40% 20% 1000 0.799 0.487 190 
1 50 40% 40% 1000 0.695 0.424 311 
1 50 40% 60% 1000 0.757 0.469 376 
1 50 60% 20% 1000 1.242 0.769 264 
1 50 60% 40% 1000 0.838 0.502 333 
1 50 60% 60% 1000 1.552 0.962 461 
1 100 20% 20% 1000 2.419 1.516 291 
1 100 20% 40% 1000 1.892 1.001 484 
1 100 20% 60% 1000 0.675 0.402 672 
1 100 40% 20% 1000 1.580 0.899 397 
1 100 40% 40% 1000 1.432 0.910 593 
1 100 40% 60% 1000 0.445 0.248 810 
1 100 60% 20% 1000 0.540 0.310 507 
1 100 60% 40% 1000 0.652 0.397 863 
1 100 60% 60% 1000 0.682 0.425 900 

 

 
Table 9 : Function 2 trained by RNN with Genetic Algorithm – data without noise 

Function No of 
Chromosome 

Mutation 
Rate 

Cross 
Over 
Rate 

Generation  Avg 
Training 

Error 

 Avg 
Testing 
Error 

Time 
(Sec) 

2 50 20% 20% 500 1.782 1.143 83 
2 50 20% 40% 500 1.921 1.200 137 
2 50 20% 60% 500 1.366 0.862 172 
2 50 40% 20% 500 2.856 1.800 102 
2 50 40% 40% 500 1.075 0.725 144 
2 50 40% 60% 500 0.933 0.441 190 
2 50 60% 20% 500 1.303 0.737 122 
2 50 60% 40% 500 0.839 0.529 169 
2 50 60% 60% 500 1.171 0.730 217 
2 50 20% 20% 1000 1.026 0.696 170 
2 50 20% 40% 1000 2.368 1.460 277 
2 50 20% 60% 1000 1.818 1.053 336 
2 50 40% 20% 1000 0.421 0.284 205 
2 50 40% 40% 1000 0.622 0.425 283 
2 50 40% 60% 1000 0.570 0.362 376 



  

 

32
Function No of 

Chromosome 
Mutation 

Rate 
Cross 
Over 
Rate 

Generation  Avg 
Training 

Error 

 Avg 
Testing 
Error 

Time 
(Sec) 

2 50 60% 20% 1000 0.590 0.398 243 
2 50 60% 40% 1000 0.457 0.298 337 
2 50 60% 60% 1000 0.564 0.384 433 
2 100 20% 20% 500 2.576 1.621 152 
2 100 20% 40% 500 2.471 1.607 247 
2 100 20% 60% 500 0.765 0.433 540 
2 100 40% 20% 500 0.739 0.474 199 
2 100 40% 40% 500 1.410 0.839 298 
2 100 40% 60% 500 0.574 0.365 395 
2 100 60% 20% 500 1.175 0.680 253 
2 100 60% 40% 500 0.769 0.475 354 
2 100 60% 60% 500 1.187 0.734 454 
2 100 20% 20% 1000 1.220 0.798 298 
2 100 20% 40% 1000 0.796 0.520 484 
2 100 20% 60% 1000 1.036 0.582 783 
2 100 40% 20% 1000 0.901 0.565 400 
2 100 40% 40% 1000 0.772 0.415 586 
2 100 40% 60% 1000 0.284 0.199 776 
2 100 60% 20% 1000 0.619 0.357 500 
2 100 60% 40% 1000 0.496 0.217 740 
2 100 60% 60% 1000 0.398 0.244 895 

 

Table 10 : Function 3 trained by RNN with Genetic Algorithm – data without noise 
Function Chromosome Mutation 

Rate 
Cross 
Over 
Rate 

Generation Avg 
Training 

Error 

Avg 
Testing 
Error 

Time 
(Sec) 

3 50 20% 20% 500 36.386 28.210 48 
3 50 20% 40% 500 36.071 28.690 79 
3 50 20% 60% 500 34.068 26.460 110 
3 50 40% 20% 500 36.360 27.154 65 
3 50 40% 40% 500 34.348 27.947 97 
3 50 40% 60% 500 36.229 28.724 128 
3 50 60% 20% 500 36.164 28.255 82 
3 50 60% 40% 500 34.732 28.522 113 
3 50 60% 60% 500 35.804 28.249 146 
3 50 20% 20% 1000 37.070 29.731 96 
3 50 20% 40% 1000 11.097 12.308 157 
3 50 20% 60% 1000 32.990 24.763 236 
3 50 40% 20% 1000 34.689 28.301 130 
3 50 40% 40% 1000 34.333 27.908 192 
3 50 40% 60% 1000 34.904 28.378 254 
3 50 60% 20% 1000 36.378 28.421 163 
3 50 60% 40% 1000 35.217 28.113 226 
3 50 60% 60% 1000 36.791 28.904 291 
3 100 20% 20% 500 35.145 27.540 101 
3 100 20% 40% 500 24.339 18.854 169 
3 100 20% 60% 500 36.068 28.571 231 
3 100 40% 20% 500 30.607 24.894 140 
3 100 40% 40% 500 27.151 21.663 210 
3 100 40% 60% 500 36.947 27.910 270 
3 100 60% 20% 500 35.899 30.117 177 
3 100 60% 40% 500 35.089 27.595 244 
3 100 60% 60% 500 21.795 17.779 322 
3 100 20% 20% 1000 36.611 27.840 200 
3 100 20% 40% 1000 34.850 29.724 326 
3 100 20% 60% 1000 37.112 27.781 449 
3 100 40% 20% 1000 35.360 29.659 272 
3 100 40% 40% 1000 36.061 29.403 403 
3 100 40% 60% 1000 12.533 9.091 573 
3 100 60% 20% 1000 3.311 2.080 361 
3 100 60% 40% 1000 33.720 29.681 489 
3 100 60% 60% 1000 35.439 29.422 627 
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Table 11 : Function 4 trained by RNN with Genetic Algorithm – data without noise 

Function Chromosome Mutation 
Rate 

Cross 
Over 
Rate 

Generation Avg 
Training 

Error 

Avg 
Testing 
Error 

Time 
(Sec) 

4 50 20% 20% 500 1.967 1.317 78 
4 50 20% 40% 500 1.095 0.689 139 
4 50 20% 60% 500 0.817 0.529 331 
4 50 40% 20% 500 1.913 1.275 107 
4 50 40% 40% 500 1.411 0.875 154 
4 50 40% 60% 500 1.921 1.283 190 
4 50 60% 20% 500 0.968 0.612 124 
4 50 60% 40% 500 1.033 0.630 169 
4 50 60% 60% 500 0.410 0.268 215 
4 50 20% 20% 1000 1.075 0.690 187 
4 50 20% 40% 1000 0.943 0.612 255 
4 50 20% 60% 1000 0.380 0.178 736 
4 50 40% 20% 1000 1.681 1.107 219 
4 50 40% 40% 1000 1.071 0.675 287 
4 50 40% 60% 1000 0.648 0.405 375 
4 50 60% 20% 1000 1.038 0.712 240 
4 50 60% 40% 1000 0.655 0.417 337 
4 50 60% 60% 1000 0.672 0.419 428 
4 100 20% 20% 500 1.645 1.098 146 
4 100 20% 40% 500 1.746 1.158 242 
4 100 20% 60% 500 1.696 1.130 336 
4 100 40% 20% 500 1.258 0.811 201 
4 100 40% 40% 500 0.581 0.378 297 
4 100 40% 60% 500 1.463 0.950 398 
4 100 60% 20% 500 2.206 1.455 253 
4 100 60% 40% 500 0.532 0.377 357 
4 100 60% 60% 500 1.113 0.704 456 
4 100 20% 20% 1000 0.589 0.391 296 
4 100 20% 40% 1000 1.581 1.034 482 
4 100 20% 60% 1000 1.427 0.908 664 
4 100 40% 20% 1000 0.495 0.319 398 
4 100 40% 40% 1000 0.735 0.477 586 
4 100 40% 60% 1000 0.311 0.209 797 
4 100 60% 20% 1000 1.216 0.924 505 
4 100 60% 40% 1000 0.534 0.349 708 
4 100 60% 60% 1000 0.246 0.093 905 

 
Table 12 : Function 5 trained by RNN with Genetic Algorithm – data without noise 

Function Chromosome Mutation 
Rate 

Cross 
Over 
Rate 

Generation Avg 
Training 

Error 

Avg 
Testing 
Error 

Time 
(Sec) 

5 50 20% 20% 500 8.826 6.956 71 
5 50 20% 40% 500 9.787 7.230 116 
5 50 20% 60% 500 9.701 7.286 163 
5 50 40% 20% 500 8.466 6.488 95 
5 50 40% 40% 500 8.442 6.577 141 
5 50 40% 60% 500 9.085 6.611 188 
5 50 60% 20% 500 8.234 6.483 121 
5 50 60% 40% 500 7.807 6.117 168 
5 50 60% 60% 500 7.629 6.700 215 
5 50 20% 20% 1000 8.260 6.555 141 
5 50 20% 40% 1000 7.917 6.874 232 
5 50 20% 60% 1000 7.935 6.629 324 
5 50 40% 20% 1000 12.259 10.146 189 
5 50 40% 40% 1000 7.878 6.643 282 
5 50 40% 60% 1000 7.516 7.004 376 
5 50 60% 20% 1000 8.187 6.513 238 
5 50 60% 40% 1000 7.708 6.722 336 
5 50 60% 60% 1000 7.895 6.747 427 
5 100 20% 20% 500 8.522 6.580 148 
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Function Chromosome Mutation 

Rate 
Cross 
Over 
Rate 

Generation Avg 
Training 

Error 

Avg 
Testing 
Error 

Time 
(Sec) 

5 100 20% 40% 500 8.097 6.357 241 
5 100 20% 60% 500 7.522 6.135 336 
5 100 40% 20% 500 8.204 6.249 200 
5 100 40% 40% 500 8.294 6.505 299 
5 100 40% 60% 500 7.704 6.766 397 
5 100 60% 20% 500 7.405 6.933 255 
5 100 60% 40% 500 7.516 6.623 352 
5 100 60% 60% 500 8.245 6.410 454 
5 100 20% 20% 1000 7.885 6.101 293 
5 100 20% 40% 1000 8.118 6.276 479 
5 100 20% 60% 1000 7.338 6.853 666 
5 100 40% 20% 1000 7.715 6.767 398 
5 100 40% 40% 1000 7.160 6.221 593 
5 100 40% 60% 1000 6.818 6.561 786 
5 100 60% 20% 1000 7.441 6.405 499 
5 100 60% 40% 1000 7.094 6.929 706 
5 100 60% 60% 1000 6.467 6.381 906 

 
Table 13 : Function 6 trained by RNN with Genetic Algorithm – data without noise 

Function Chromosome Mutation 
Rate 

Cross 
Over 
Rate 

Generation Avg 
Training 

Error 

Avg 
Testing 
Error 

Time 
(Sec) 

6 50 20% 20% 500 2.096 1.256 73 
6 50 20% 40% 500 2.074 1.282 115 
6 50 20% 60% 500 1.945 1.220 162 
6 50 40% 20% 500 2.083 1.155 95 
6 50 40% 40% 500 1.974 1.197 140 
6 50 40% 60% 500 1.749 1.127 187 
6 50 60% 20% 500 1.342 1.016 119 
6 50 60% 40% 500 1.316 0.883 167 
6 50 60% 60% 500 2.087 1.355 215 
6 50 20% 20% 1000 2.163 1.227 140 
6 50 20% 40% 1000 1.487 0.972 230 
6 50 20% 60% 1000 1.668 1.164 324 
6 50 40% 20% 1000 1.969 1.153 188 
6 50 40% 40% 1000 1.709 1.129 280 
6 50 40% 60% 1000 1.529 1.127 373 
6 50 60% 20% 1000 1.748 1.145 237 
6 50 60% 40% 1000 1.463 0.905 332 
6 50 60% 60% 1000 1.569 1.021 424 
6 100 20% 20% 500 1.856 1.180 146 
6 100 20% 40% 500 1.826 1.131 237 
6 100 20% 60% 500 2.088 1.299 335 
6 100 40% 20% 500 1.374 0.981 201 
6 100 40% 40% 500 1.798 1.254 296 
6 100 40% 60% 500 2.212 1.348 390 
6 100 60% 20% 500 1.887 1.100 255 
6 100 60% 40% 500 2.030 1.120 354 
6 100 60% 60% 500 1.317 0.996 466 
6 100 20% 20% 1000 1.913 1.308 294 
6 100 20% 40% 1000 1.790 1.038 478 
6 100 20% 60% 1000 1.637 1.219 663 
6 100 40% 20% 1000 0.918 0.734 404 
6 100 40% 40% 1000 1.095 0.858 591 
6 100 40% 60% 1000 1.780 1.148 781 
6 100 60% 20% 1000 2.063 1.212 510 
6 100 60% 40% 1000 1.494 1.085 712 
6 100 60% 60% 1000 1.595 1.135 955 
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Table 14 : Function 1 trained by RNN with Tabu Search – data without noise 
Function Add Tenure Minus 

Tenure 
No Short  

Term 
Memory 

Avg Training 
Error 

Avg Testing 
Error 

Time (Sec) 

1 30 30 3 0.963 0.614 268 
1 30 60 3 1.069 0.695 263 
1 30 90 3 1.069 0.686 267 
1 30 120 3 0.954 0.611 260 
1 30 150 3 1.037 0.671 259 
1 60 30 3 0.918 0.568 263 
1 60 60 3 1.063 0.686 262 
1 60 90 3 1.710 1.078 264 
1 60 120 3 1.918 1.238 256 
1 60 150 3 0.813 0.506 260 
1 90 30 3 1.029 0.658 259 
1 90 60 3 1.001 0.647 259 
1 90 90 3 2.193 1.414 246 
1 90 120 3 2.634 1.704 262 
1 90 150 3 1.760 1.131 249 
1 120 30 3 1.056 0.677 253 
1 120 60 3 1.155 0.710 259 
1 120 90 3 2.011 1.295 249 
1 120 120 3 1.201 0.763 259 
1 120 150 3 1.010 0.639 259 
1 150 30 3 1.039 0.679 259 
1 150 60 3 1.060 0.686 259 
1 150 90 3 1.903 1.240 260 
1 150 120 3 0.936 0.603 249 
1 150 150 3 0.967 0.611 258 
6 150 90 3 0.974 0.627 259 
6 150 120 3 0.625 0.384 253 
6 150 150 3 1.756 1.155 259 
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Table 15 : Function 2 trained by RNN with Tabu Search – data without noise 
Function Add Tenure Minus 

Tenure 
No Short  

Term 
Memory 

Avg Training 
Error 

Avg Testing 
Error 

Time (Sec) 

2 30 30 3 1.202 0.653 257 
2 30 60 3 2.185 1.383 257 
2 30 90 3 2.122 1.375 257 
2 30 120 3 1.390 0.712 257 
2 30 150 3 1.415 0.702 257 
2 60 30 3 1.254 0.800 256 
2 60 60 3 1.892 1.222 257 
2 60 90 3 2.106 1.338 257 
2 60 120 3 1.465 0.731 257 
2 60 150 3 1.297 0.820 257 
2 90 30 3 1.897 1.240 257 
2 90 60 3 1.289 0.820 261 
2 90 90 3 0.995 0.638 258 
2 90 120 3 1.323 0.687 257 
2 90 150 3 0.929 0.558 257 
2 120 30 3 0.959 0.602 258 
2 120 60 3 1.369 0.881 257 
2 120 90 3 2.046 1.302 257 
2 120 120 3 0.989 0.646 257 
2 120 150 3 1.257 0.805 258 
2 150 30 3 1.308 0.820 487 
2 150 60 3 1.902 1.247 259 
2 150 90 3 2.018 1.390 265 
2 150 120 3 1.274 0.904 268 
2 150 150 3 1.370 0.690 267 
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Table 16 : Function 3 trained by RNN with Tabu Search – data without noise 

Function Add Tenure Minus 
Tenure 

No Short  
Term 

Memory 

Avg Training 
Error 

Avg Testing 
Error 

Time (Sec) 

3 30 30 3 12.769 9.602 173 
3 30 60 3 9.387 6.776 170 
3 30 90 3 11.839 8.403 173 
3 30 120 3 22.944 18.065 174 
3 30 150 3 12.374 9.478 177 
3 60 30 3 10.247 7.566 174 
3 60 60 3 17.559 12.705 173 
3 60 90 3 14.141 10.924 173 
3 60 120 3 17.145 12.541 174 
3 60 150 3 9.829 8.045 174 
3 90 30 3 9.502 6.830 174 
3 90 60 3 13.377 10.175 173 
3 90 90 3 9.802 7.593 173 
3 90 120 3 12.203 9.358 174 
3 90 150 3 13.224 10.013 174 
3 120 30 3 9.955 7.775 173 
3 120 60 3 7.985 5.629 177 
3 120 90 3 11.954 8.996 174 
3 120 120 3 13.663 9.938 173 
3 120 150 3 13.195 9.944 174 
3 150 30 3 9.393 6.841 173 
3 150 60 3 15.188 10.761 174 
3 150 90 3 22.942 18.147 174 
3 150 120 3 9.640 6.724 174 
3 150 150 3 13.156 10.584 174 

 

Table 17 : Function 4 trained by RNN with Tabu Search – data without noise 

Function Add Tenure Minus 
Tenure 

No Short  
Term 

Memory 

Avg Training 
Error 

Avg Testing 
Error 

Time (Sec) 

4 30 30 3 0.780 0.513 262 
4 30 60 3 1.013 0.669 258 
4 30 90 3 0.649 0.425 258 
4 30 120 3 0.620 0.405 258 
4 30 150 3 0.630 0.409 259 
4 60 30 3 0.926 0.603 258 
4 60 60 3 0.603 0.383 258 
4 60 90 3 0.601 0.355 259 
4 60 120 3 0.595 0.393 234 
4 60 150 3 0.610 0.359 259 
4 90 30 3 0.669 0.433 258 
4 90 60 3 0.675 0.450 259 
4 90 90 3 0.693 0.449 258 
4 90 120 3 0.656 0.428 258 
4 90 150 3 0.618 0.355 258 
4 120 30 3 0.644 0.436 258 
4 120 60 3 0.685 0.429 258 
4 120 90 3 0.956 0.625 259 
4 120 120 3 0.646 0.414 259 
4 120 150 3 0.919 0.606 259 
4 150 30 3 0.617 0.403 261 
4 150 60 3 0.627 0.400 259 
4 150 90 3 0.729 0.476 259 
4 150 120 3 0.622 0.360 249 
4 150 150 3 0.747 0.489 259 
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Table 18 : Function 5 trained by RNN with Tabu Search – data without noise 

Function Add Tenure Minus 
Tenure 

No Short  
Term 

Memory 

Avg Training 
Error 

Avg Testing 
Error 

Time (Sec) 

5 30 30 3 7.775 6.289 259 
5 30 60 3 7.650 6.154 267 
5 30 90 3 7.949 6.088 241 
5 30 120 3 8.924 7.158 204 
5 30 150 3 9.299 7.705 258 
5 60 30 3 8.478 6.358 258 
5 60 60 3 8.029 6.525 258 
5 60 90 3 9.045 6.920 258 
5 60 120 3 8.741 6.501 258 
5 60 150 3 9.159 7.368 258 
5 90 30 3 9.223 7.389 258 
5 90 60 3 8.447 6.457 258 
5 90 90 3 9.072 7.505 258 
5 90 120 3 8.469 6.464 258 
5 90 150 3 8.665 6.832 259 
5 120 30 3 9.150 7.142 258 
5 120 60 3 8.532 6.820 259 
5 120 90 3 9.100 7.591 258 
5 120 120 3 8.009 6.258 223 
5 120 150 3 8.569 6.087 237 
5 150 30 3 8.014 6.912 259 
5 150 60 3 9.114 7.650 258 
5 150 90 3 8.321 6.298 258 
5 150 120 3 7.903 6.249 233 
5 150 150 3 8.679 6.804 259 

 

Table 19 : Function 6 trained by RNN with Tabu Search – data without noise 
Function Add Tenure Minus 

Tenure 
No Short  

Term 
Memory 

Avg Training 
Error 

Avg Testing 
Error 

Time (Sec) 

6 30 30 3 1.722 1.198 201 
6 30 60 3 2.091 1.387 197 
6 30 90 3 0.768 0.476 258 
6 30 120 3 0.733 0.460 264 
6 30 150 3 2.335 1.329 225 
6 60 30 3 0.794 0.536 258 
6 60 60 3 0.623 0.357 258 
6 60 90 3 0.657 0.395 252 
6 60 120 3 1.829 1.236 199 
6 60 150 3 0.525 0.328 259 
6 90 30 3 0.648 0.412 259 
6 90 60 3 0.517 0.375 260 
6 90 90 3 0.950 0.686 234 
6 90 120 3 0.596 0.406 242 
6 90 150 3 1.907 1.138 202 
6 120 30 3 0.637 0.443 259 
6 120 60 3 1.927 1.094 194 
6 120 90 3 1.711 1.178 218 
6 120 120 3 1.945 1.090 209 
6 120 150 3 1.106 0.806 259 
6 150 30 3 1.921 1.086 200 
6 150 60 3 0.995 0.607 259 
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Table 20 : Function 1 to 6 trained by RNN with Back Propagation – data without noise 

Function Epoch Learning Rate   
Training  

Error 

  
Testing  
Error 

Time (Sec) 

1 300 0.75 0.632 0.395 11.1 
1 300 1.25 0.695 0.437 11 
1 500 0.75 0.646 0.407 19.9 
1 500 1.25 0.701 0.440 19.8 
2 300 0.75 3.345 2.083 11.3 
2 300 1.25 3.075 2.047 11.5 
2 500 0.75 2.825 1.913 19.9 
2 500 1.25 2.616 1.711 19.2 
3 300 0.75 37.205 25.877 13 
3 300 1.25 38.380 26.444 9 
3 500 0.75 37.195 25.876 23.1 
3 500 1.25 38.380 27.639 16 
4 300 0.75 1.355 0.882 10.4 
4 300 1.25 1.253 0.813 10.4 
4 500 0.75 1.292 0.853 18.3 
4 500 1.25 1.379 0.892 18.5 
5 300 0.75 14.205 9.482 11 
5 300 1.25 13.712 9.245 11.1 
5 500 0.75 13.981 9.073 19.1 
5 500 1.25 13.536 8.618 18.8 
6 300 0.75 0.565 0.434 13.9 
6 300 1.25 0.433 0.321 13.8 
6 500 0.75 0.425 0.314 20.4 
6 500 1.25 0.317 0.228 20.1 

 
Table 21 : Function 1 trained by RNN with Genetic Algorithm – data with noise 

Function Chromosome Mutation 
Rate 

Cross 
Over 
Rate 

Generation 
 

Avg 
Training 

Error 

Avg 
Testing 
Error 

Time 
(Sec) 

1 50 10 10 500 18.657 12.466 86 
1 50 10 10 1000 0.928 0.545 177 
1 50 10 20 500 25.241 17.295 177 
1 50 10 20 1000 1.376 0.806 280 
1 50 10 30 500 1.158 0.706 195 
1 50 10 30 1000 1.312 0.758 389 
1 50 20 10 500 6.648 4.245 116 
1 50 20 10 1000 1.006 0.593 231 
1 50 20 20 500 2.101 1.334 173 
1 50 20 20 1000 1.962 1.213 343 
1 50 20 30 500 2.015 1.292 227 
1 50 20 30 1000 1.198 0.731 455 
1 50 30 10 500 1.178 0.682 147 
1 50 30 10 1000 2.227 1.259 292 
1 50 30 20 500 3.316 1.979 204 
1 50 30 20 1000 0.767 0.460 407 
1 50 30 30 500 0.732 0.439 260 
1 50 30 30 1000 0.763 0.436 520 
1 100 20 20 500 7.029 4.573 184 
1 100 20 20 1000 1.241 0.754 359 
1 100 20 40 500 2.127 1.342 299 
1 100 20 40 1000 1.067 0.671 585 
1 100 20 60 500 1.902 1.241 411 
1 100 20 60 1000 1.545 0.887 811 
1 100 40 20 500 1.425 0.849 249 
1 100 40 20 1000 0.896 0.516 481 
1 100 40 40 500 3.389 2.131 370 
1 100 40 40 1000 2.384 1.044 723 
1 100 40 60 500 1.971 1.324 492 
1 100 40 60 1000 1.037 0.624 960 
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Function Chromosome Mutation 

Rate 
Cross 
Over 
Rate 

Generation 
 

Avg 
Training 

Error 

Avg 
Testing 
Error 

Time 
(Sec) 

1 100 60 20 500 1.052 0.581 321 
1 100 60 20 1000 0.967 0.598 626 
1 100 60 40 500 0.918 0.560 446 
1 100 60 40 1000 0.787 0.421 861 
1 100 60 60 500 0.754 0.455 565 
1 100 60 60 1000 0.687 0.414 1118 

 
Table 22 : Function 2 trained by RNN with Genetic Algorithm – data with noise 

Function Chromosome Mutation 
Rate 

Cross 
Over 
Rate 

Generation 
 

Avg 
Training 

Error 

Avg 
Testing 
Error 

Time 
(Sec) 

2 50 10 10 500 2.456 1.594 87 
2 50 10 10 1000 4.160 2.619 172 
2 50 10 20 500 1.546 0.960 142 
2 50 10 20 1000 0.582 0.392 282 
2 50 10 30 500 3.258 2.083 200 
2 50 10 30 1000 0.706 0.395 397 
2 50 20 10 500 2.079 1.247 118 
2 50 20 10 1000 0.916 0.579 236 
2 50 20 20 500 0.728 0.454 173 
2 50 20 20 1000 0.166 0.130 344 
2 50 20 30 500 1.049 0.707 230 
2 50 20 30 1000 0.622 0.403 455 
2 50 30 10 500 1.211 0.774 147 
2 50 30 10 1000 0.568 0.330 292 
2 50 30 20 500 0.951 0.644 204 
2 50 30 20 1000 0.435 0.284 404 
2 50 30 30 500 0.709 0.431 263 
2 50 30 30 1000 0.221 0.154 521 
2 100 20 20 500 2.376 1.521 184 
2 100 20 20 1000 0.773 0.469 362 
2 100 20 40 500 1.610 1.051 300 
2 100 20 40 1000 1.628 0.986 582 
2 100 20 60 500 1.323 0.814 417 
2 100 20 60 1000 0.581 0.363 820 
2 100 40 20 500 0.673 0.404 252 
2 100 40 20 1000 0.573 0.352 494 
2 100 40 40 500 0.980 0.469 439 
2 100 40 40 1000 0.310 0.222 772 
2 100 40 60 500 1.049 0.466 495 
2 100 40 60 1000 0.607 0.252 978 
2 100 60 20 500 1.083 0.521 323 
2 100 60 20 1000 0.404 0.270 630 
2 100 60 40 500 0.858 0.410 444 
2 100 60 40 1000 0.520 0.297 874 
2 100 60 60 500 0.810 0.316 572 
2 100 60 60 1000 0.697 0.380 1116 
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Table 23 : Function 3 trained by RNN with Genetic Algorithm – data with noise 

Function Chromosome Mutation 
Rate 

Cross 
Over 
Rate 

Generation 
 

Avg 
Training 

Error 

Avg 
Testing 
Error 

Time 
(Sec) 

3 50 10 10 500 32.284 24.808 87 
3 50 10 10 1000 30.772 25.008 172 
3 50 10 20 500 33.904 28.196 141 
3 50 10 20 1000 23.466 22.426 280 
3 50 10 30 500 31.337 24.251 199 
3 50 10 30 1000 30.710 22.928 393 
3 50 20 10 500 28.602 23.417 117 
3 50 20 10 1000 26.134 22.321 229 
3 50 20 20 500 17.175 14.665 173 
3 50 20 20 1000 16.685 17.356 341 
3 50 20 30 500 20.262 16.625 228 
3 50 20 30 1000 19.678 14.379 457 
3 50 30 10 500 30.180 25.153 147 
3 50 30 10 1000 19.166 15.243 291 
3 50 30 20 500 23.780 21.737 205 
3 50 30 20 1000 23.516 18.245 406 
3 50 30 30 500 21.173 23.364 261 
3 50 30 30 1000 15.570 15.533 519 
3 100 20 20 500 31.940 26.010 185 
3 100 20 20 1000 30.258 25.080 362 
3 100 20 40 500 27.526 23.148 296 
3 100 20 40 1000 20.281 16.460 587 
3 100 20 60 500 31.818 26.449 416 
3 100 20 60 1000 22.912 19.215 821 
3 100 40 20 500 30.153 23.285 251 
3 100 40 20 1000 24.676 20.782 491 
3 100 40 40 500 31.604 25.527 372 
3 100 40 40 1000 12.507 14.456 734 
3 100 40 60 500 17.883 15.414 490 
3 100 40 60 1000 14.598 11.151 964 
3 100 60 20 500 19.780 19.853 320 
3 100 60 20 1000 13.469 12.299 624 
3 100 60 40 500 18.835 18.682 444 
3 100 60 40 1000 12.844 11.155 870 
3 100 60 60 500 26.011 21.397 572 
3 100 60 60 1000 15.810 14.622 1138 

 
 

Table 24 : Function 4 trained by RNN with Genetic Algorithm – data with noise 

Function Chromosome Mutation 
Rate 

Cross 
Over 
Rate 

Generation 
 

Avg 
Training 

Error 

Avg 
Testing 
Error 

Time 
(Sec) 

4 50 10 10 500 1.973 1.307 86 
4 50 10 10 1000 1.725 1.118 169 
4 50 10 20 500 1.920 1.259 140 
4 50 10 20 1000 1.113 0.700 279 
4 50 10 30 500 1.981 1.337 195 
4 50 10 30 1000 0.912 0.551 390 
4 50 20 10 500 1.969 1.306 116 
4 50 20 10 1000 2.026 1.331 228 
4 50 20 20 500 1.172 0.772 172 
4 50 20 20 1000 0.222 0.145 343 
4 50 20 30 500 0.770 0.479 228 
4 50 20 30 1000 1.155 0.741 455 
4 50 30 10 500 0.788 0.426 147 
4 50 30 10 1000 0.836 0.534 290 
4 50 30 20 500 0.472 0.343 205 
4 50 30 20 1000 0.318 0.205 405 
4 50 30 30 500 1.662 1.102 262 
4 50 30 30 1000 1.918 1.281 518 
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Function Chromosome Mutation 

Rate 
Cross 
Over 
Rate 

Generation 
 

Avg 
Training 

Error 

Avg 
Testing 
Error 

Time 
(Sec) 

4 100 20 20 500 1.639 1.059 183 
4 100 20 20 1000 1.097 0.716 361 
4 100 20 40 500 0.731 0.448 298 
4 100 20 40 1000 0.402 0.211 592 
4 100 20 60 500 1.659 1.074 408 
4 100 20 60 1000 0.898 0.589 808 
4 100 40 20 500 0.514 0.337 249 
4 100 40 20 1000 0.776 0.516 495 
4 100 40 40 500 0.942 0.529 372 
4 100 40 40 1000 0.487 0.355 729 
4 100 40 60 500 1.125 0.736 481 
4 100 40 60 1000 0.438 0.272 962 
4 100 60 20 500 1.627 1.043 319 
4 100 60 20 1000 0.362 0.255 628 
4 100 60 40 500 0.754 0.428 444 
4 100 60 40 1000 0.545 0.374 870 
4 100 60 60 500 1.138 0.719 565 
4 100 60 60 1000 0.123 0.077 1133 

 
 

Table 25 : Function 5 trained by RNN with Genetic Algorithm – data with noise 

Function Chromosome Mutation 
Rate 

Cross 
Over 
Rate 

Generation 
 

Avg 
Training 

Error 

Avg 
Testing 
Error 

Time 
(Sec) 

5 50 10 10 500 9.426 6.491 86 
5 50 10 10 1000 8.035 6.722 86 
5 50 10 20 500 9.552 7.097 141 
5 50 10 20 1000 8.286 6.607 279 
5 50 10 30 500 8.522 6.609 195 
5 50 10 30 1000 12.052 10.532 389 
5 50 20 10 500 9.144 6.884 116 
5 50 20 10 1000 7.411 6.835 228 
5 50 20 20 500 7.975 6.383 171 
5 50 20 20 1000 7.599 6.561 343 
5 50 20 30 500 8.219 6.403 228 
5 50 20 30 1000 7.670 6.478 454 
5 50 30 10 500 8.680 6.304 146 
5 50 30 10 1000 8.244 6.174 287 
5 50 30 20 500 8.193 6.386 205 
5 50 30 20 1000 7.798 6.236 404 
5 50 30 30 500 7.895 6.770 260 
5 50 30 30 1000 11.005 9.311 522 
5 100 20 20 500 9.486 7.531 185 
5 100 20 20 1000 8.173 6.750 358 
5 100 20 40 500 8.565 6.506 296 
5 100 20 40 1000 7.815 6.812 584 
5 100 20 60 500 8.952 6.665 414 
5 100 20 60 1000 7.863 6.339 808 
5 100 40 20 500 8.338 6.676 246 
5 100 40 20 1000 7.702 6.355 485 
5 100 40 40 500 12.991 10.102 370 
5 100 40 40 1000 7.302 5.716 727 
5 100 40 60 500 8.877 7.037 483 
5 100 40 60 1000 7.575 6.214 963 
5 100 60 20 500 12.559 10.087 313 
5 100 60 20 1000 8.564 6.375 620 
5 100 60 40 500 7.727 7.393 436 
5 100 60 40 1000 8.197 6.453 862 
5 100 60 60 500 7.424 6.511 565 
5 100 60 60 1000 8.031 6.639 1100 

 



  

 

43
Table 26 : Function 6 trained by RNN with Genetic Algorithm – data with noise 

Function Chromosome Mutation 
Rate 

Cross 
Over 
Rate 

Generation 
 

Avg 
Training 

Error 

Avg 
Testing 
Error 

Time 
(Sec) 

6 50 10 10 500 2.034 1.157 88 
6 50 10 10 1000 1.608 1.175 174 
6 50 10 20 500 2.242 1.310 142 
6 50 10 20 1000 1.455 1.063 284 
6 50 10 30 500 2.266 1.173 197 
6 50 10 30 1000 2.053 1.183 395 
6 50 20 10 500 2.127 1.242 119 
6 50 20 10 1000 1.234 0.854 245 
6 50 20 20 500 2.441 1.461 180 
6 50 20 20 1000 1.432 1.080 345 
6 50 20 30 500 1.680 1.216 232 
6 50 20 30 1000 1.199 0.873 462 
6 50 30 10 500 1.787 1.118 149 
6 50 30 10 1000 1.462 1.200 296 
6 50 30 20 500 1.769 1.168 205 
6 50 30 20 1000 1.737 1.183 411 
6 50 30 30 500 1.387 1.053 265 
6 50 30 30 1000 1.068 0.854 527 
6 100 20 20 500 1.905 1.130 185 
6 100 20 20 1000 1.777 1.163 355 
6 100 20 40 500 1.557 1.093 302 
6 100 20 40 1000 1.434 1.059 604 
6 100 20 60 500 2.049 1.207 415 
6 100 20 60 1000 2.040 1.156 815 
6 100 40 20 500 1.979 1.126 251 
6 100 40 20 1000 1.268 0.936 493 
6 100 40 40 500 1.894 1.165 376 
6 100 40 40 1000 1.787 1.080 745 
6 100 40 60 500 1.590 1.183 502 
6 100 40 60 1000 1.397 0.885 992 
6 100 60 20 500 1.869 1.178 317 
6 100 60 20 1000 0.820 0.648 641 
6 100 60 40 500 1.406 0.940 446 
6 100 60 40 1000 1.411 1.086 887 
6 100 60 60 500 1.430 1.061 577 
6 100 60 60 1000 1.650 1.248 1142 

 
Table 27 : Function 1 trained by RNN with Tabu Search – data with noise 

Function Add Tenure Minus Tenure Avg Training Error Avg Testing Error Time (Sec) 
1 30 30 0.835 0.578 280 
1 30 60 1.209 0.733 278 
1 30 90 1.022 0.659 277 
1 30 120 0.989 0.630 280 
1 30 150 1.013 0.624 361 
1 60 30 0.978 0.644 282 
1 60 60 1.116 0.689 294 
1 60 90 1.217 0.777 292 
1 60 120 1.071 0.688 278 
1 60 150 1.181 0.760 279 
1 90 30 1.035 0.673 279 
1 90 60 1.008 0.637 278 
1 90 90 1.626 1.039 270 
1 90 120 1.141 0.734 278 
1 90 150 0.839 0.539 278 
1 120 30 0.876 0.554 274 
1 120 60 0.966 0.595 278 
1 120 90 1.949 1.252 279 
1 120 120 0.800 0.509 279 
1 120 150 0.930 0.606 278 
1 150 30 1.085 0.690 279 
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Function Add Tenure Minus Tenure Avg Training Error Avg Testing Error Time (Sec) 

1 150 60 1.201 0.774 279 
1 150 90 1.139 0.724 280 
1 150 120 1.062 0.675 279 
1 150 150 1.099 0.697 264 

 
Table 28 : Function 2 trained by RNN with Tabu Search – data with noise 

Function Add Tenure Minus Tenure Avg Training Error Avg Testing Error Time (Sec) 
2 30 30 0.971 0.557 280 
2 30 60 1.164 0.737 278 
2 30 90 0.936 0.591 279 
2 30 120 2.271 1.543 279 
2 30 150 1.175 0.702 286 
2 60 30 1.413 0.682 281 
2 60 60 1.360 0.689 282 
2 60 90 1.209 0.729 280 
2 60 120 1.005 0.637 279 
2 60 150 0.952 0.587 280 
2 90 30 0.948 0.555 272 
2 90 60 1.285 0.619 280 
2 90 90 1.315 0.658 280 
2 90 120 1.100 0.698 280 
2 90 150 1.359 0.712 280 
2 120 30 0.786 0.492 279 
2 120 60 1.467 0.749 279 
2 120 90 1.023 0.644 280 
2 120 120 2.041 1.407 280 
2 120 150 1.359 0.694 280 
2 150 30 1.278 0.846 278 
2 150 60 1.467 0.977 280 
2 150 90 1.429 0.692 280 
2 150 120 1.186 0.715 281 
2 150 150 1.258 0.796 280 
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Table 29 : Function 3 trained by RNN with Tabu Search – data with noise 

Function Add Tenure Minus Tenure Avg Training Error Avg Testing Error Time (Sec) 
3 30 30 17.288 13.619 279 
3 30 60 20.381 14.644 279 
3 30 90 22.081 17.891 278 
3 30 120 20.293 14.918 280 
3 30 150 18.100 12.871 279 
3 60 30 18.562 14.651 279 
3 60 60 15.143 11.981 280 
3 60 90 20.106 15.824 278 
3 60 120 22.122 18.060 279 
3 60 150 18.229 14.141 279 
3 90 30 19.799 16.234 279 
3 90 60 19.677 15.339 279 
3 90 90 24.893 18.745 279 
3 90 120 21.331 15.390 280 
3 90 150 19.727 15.015 281 
3 120 30 20.475 14.906 279 
3 120 60 20.170 14.606 279 
3 120 90 20.071 15.333 278 
3 120 120 23.645 18.351 279 
3 120 150 20.982 15.356 280 
3 150 30 18.179 14.073 280 
3 150 60 21.600 15.579 280 
3 150 90 18.415 13.259 280 
3 150 120 16.549 12.954 280 
3 150 150 20.101 15.839 281 

 
 
 

Table 30 : Function 4 trained by RNN with Tabu Search – data with noise 

Function Add Tenure Minus Tenure Avg Training Error Avg Testing Error Time (Sec) 
4 30 30 0.759 0.469 279 
4 30 60 0.577 0.378 279 
4 30 90 0.884 0.590 279 
4 30 120 0.674 0.443 280 
4 30 150 0.742 0.477 280 
4 60 30 0.698 0.445 279 
4 60 60 0.771 0.502 255 
4 60 90 0.588 0.384 279 
4 60 120 0.636 0.371 281 
4 60 150 0.635 0.421 280 
4 90 30 0.690 0.434 279 
4 90 60 0.713 0.425 280 
4 90 90 0.895 0.582 281 
4 90 120 0.586 0.360 259 
4 90 150 0.641 0.420 264 
4 120 30 0.995 0.664 287 
4 120 60 0.643 0.417 284 
4 120 90 0.738 0.488 280 
4 120 120 0.634 0.399 280 
4 120 150 0.901 0.577 279 
4 150 30 0.816 0.538 279 
4 150 60 0.664 0.428 280 
4 150 90 0.641 0.374 281 
4 150 120 0.790 0.513 281 
4 150 150 0.621 0.405 280 
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Table 31 : Function 5 trained by RNN with Tabu Search – data with noise 

Function Add Tenure Minus Tenure Avg Training Error Avg Testing Error Time (Sec) 
5 30 30 9.273 7.676 278 
5 30 60 9.208 7.587 278 
5 30 90 9.335 7.684 279 
5 30 120 9.152 7.328 279 
5 30 150 9.232 7.425 246 
5 60 30 9.326 7.644 279 
5 60 60 9.023 7.577 279 
5 60 90 9.061 7.491 280 
5 60 120 9.086 7.485 279 
5 60 150 8.172 6.367 279 
5 90 30 8.539 6.383 279 
5 90 60 8.050 6.994 280 
5 90 90 8.004 6.370 211 
5 90 120 8.510 6.559 280 
5 90 150 9.319 7.806 280 
5 120 30 9.131 7.224 278 
5 120 60 8.680 6.536 279 
5 120 90 9.044 7.614 280 
5 120 120 8.569 6.774 281 
5 120 150 8.039 6.209 215 
5 150 30 8.413 6.227 279 
5 150 60 8.575 6.434 280 
5 150 90 9.022 7.477 280 
5 150 120 8.440 6.427 209 
5 150 150 8.997 7.409 280 

 
 
 
 

Table 32 : Function 6 trained by RNN with Tabu Search – data with noise 

Function Add Tenure Minus Tenure Avg Training 
Error 

Avg Testing 
Error 

Time (Sec) 

6 30 30 0.724 0.420 280 
6 30 60 1.643 1.000 253 
6 30 90 0.590 0.370 280 
6 30 120 1.098 0.640 280 
6 30 150 1.976 1.140 218 
6 60 30 1.110 0.755 280 
6 60 60 0.900 0.675 280 
6 60 90 1.175 0.749 280 
6 60 120 0.778 0.485 280 
6 60 150 0.713 0.440 280 
6 90 30 2.102 1.173 209 
6 90 60 0.758 0.540 280 
6 90 90 0.639 0.416 280 
6 90 120 0.522 0.372 279 
6 90 150 1.130 0.695 281 
6 120 30 0.716 0.501 279 
6 120 60 1.974 1.145 237 
6 120 90 0.570 0.378 280 
6 120 120 0.536 0.336 280 
6 120 150 1.296 0.802 240 
6 150 30 1.121 0.653 280 
6 150 60 0.629 0.428 280 
6 150 90 0.543 0.377 275 
6 150 120 1.157 0.794 281 
6 150 150 0.708 0.555 281 
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Table 33 : Function 1-6 trained by RNN with Back Propagation – data with noise 

Function Epoch Learning Rate  Avg Training Error  Avg Testing Error Time 
(Sec) 

1 300 0.75 0.627 0.404 11 
1 300 1.25 0.700 0.442 11 
1 500 0.75 0.644 0.404 20 
1 500 1.25 0.709 0.432 20 
2 300 0.75 3.346 2.086 11 
2 300 1.25 3.081 2.037 11 
2 500 0.75 2.818 1.917 18 
2 500 1.25 2.612 1.715 19 
3 300 0.75 37.203 25.867 14 
3 300 1.25 38.381 26.435 9 
3 500 0.75 37.195 25.877 23 
3 500 1.25 38.382 27.632 16 
4 300 0.75 1.359 0.873 10.4 
4 300 1.25 1.258 0.821 10.4 
4 500 0.75 1.284 0.858 18.3 
4 500 1.25 1.386 0.893 18.5 
5 300 0.75 14.210 9.491 11 
5 300 1.25 13.709 9.249 11.1 
5 500 0.75 13.975 9.082 19 
5 500 1.25 13.533 8.608 19 
6 300 0.75 0.556 0.439 14 
6 300 1.25 0.433 0.324 15 
6 500 0.75 0.426 0.319 20.4 
6 500 1.25 0.319 0.237 20.1 

 
 
 

 
Figure 15 : Graphical representation of error in function 1 trained with Genetic Algorithm 
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Figure 16 : Graphical representation of error in function 2 trained with Genetic Algorithm 

 
 
 

 
Figure 17 : Graphical representation of error in function 3 trained with Genetic Algorithm 
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Figure 18 : Graphical representation of error in function 4 trained with Genetic Algorithm 

 
 

 
Figure 19 : Graphical representation of error in function 5 trained with Genetic Algorithm 
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Figure 20 : Graphical representation of error in function 6 trained with Genetic Algorithm 

 
 

 
Figure 21 : Graphical representation of function 1 trained with Genetic Algorithm 
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Figure 22 : Graphical representation of function 2 trained with Genetic Algorithm 

 
 

 
Figure 23 : Graphical representation of function 3 trained with Genetic Algorithm 
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Figure 24 : Graphical representation of function 4 trained with Genetic Algorithm 

 
 

 
Figure 25 : Graphical representation of function 5 trained with Genetic Algorithm 
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Figure 26 : Graphical representation of error in function 1 trained with Tabu Search 
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Figure 27 : Graphical representation of error in function 2 trained with Tabu Search 

 
 

 
Figure 28 : Graphical representation of error in function 3 trained with Tabu Search 
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Figure 29 : Graphical representation of error in function 4 trained with Tabu Search 

 
 

 
Figure 30 : Graphical representation of error in function 5 trained with Tabu Search 
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Figure 31 : Graphical representation of error in function 6 trained with Tabu Search 

 
 

 
Figure 32 : Graphical representation of function 1 trained with Tabu Search 
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Figure 33 : Graphical representation of function 2 trained with Tabu Search 

 
 
 

 
Figure 34 : Graphical representation of function 3 trained with Tabu Search 
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Figure 35 : Graphical representation of function 4 trained with Tabu Search 

 
 

 
Figure 36 : Graphical representation of function 5 trained with Tabu Search 
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Figure 37 : Graphical representation of error in function 1 trained with Backpropagation 

 
 
 

 
Figure 38 : Graphical representation of error in function 2 trained with Backpropagation 

 
 



  

 

60

 
Figure 39 : Graphical representation of error in function 3 trained with Backpropagation 

 
 
 

 
Figure 40 : Graphical representation of error in function 4 trained with Backpropagation 
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Figure 41 : Graphical representation of error in function 5 trained with Backpropagation 

 
 
 
 

 
Figure 42 : Graphical representation of error in function 6 trained with Backpropagation 

 



  

 

62
 

 
Figure 43 : Graphical representation of function 1 trained with Backpropagation 

 
 
 
 

 
Figure 44 : Graphical representation of function 2 trained with Backpropagation 
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Figure 45 : Graphical representation of function 3 trained with Backpropagation 

 
 
 

 
Figure 46 : Graphical representation of function 4 trained with Backpropagation 
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Figure 47 : Graphical representation of function 5 trained with Backpropagation 
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