

อัลกอริทึมเลขคณิตพื้นฐานเชื่อมตรงสําหรบัระบบเวกเตอรสามมิติ

นายสราวุฒ รังสรรควิจิตร

วิทยานิพนธนี้เปนสวนหนึง่ของการศึกษาตามหลกัสูตรปริญญาวิทยาศาสตรมหาบัณฑิต
สาขาวิชาวทิยาศาสตรคอมพิวเตอร ภาควิชาวิศวกรรมคอมพิวเตอร

คณะวิศวกรรมศาสตร จุฬาลงกรณมหาวทิยาลยั
ปการศึกษา 2547

ISBN 974-17-5806-5
ลิขสิทธิ์ของจฬุาลงกรณมหาวทิยาลยั

ON-LINE FUNDAMENTAL ARITHMETIC ALGORITHMS FOR

THREE-DIMENSIONAL VECTOR SYSTEM

Mr. Saravut Rangsunvigit

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science in Computer Science

Department of Computer Engineering
Faculty of Engineering

Chulalongkorn University
Academic Year 2004
ISBN 974-17-5806-5

Thesis Title ON-LINE FUNDAMENTAL ARITHMETIC ALGORITHMS FOR
THREE-DIMENSIONAL VECTOR SYSTEM.

By SARAVUT RANGSUNVIGIT
Field of study COMPUTER SCIENCE
Thesis Advisor ATHASIT SURARERKS, Ph.D.

Accepted by the Faculty of Engineering, Chulalongkorn University in Partial
Fulfillment of the Requirements for the Master ’s Degree

…………………………………………. Dean of Faculty of Engineering
(Professor Direk Lavansiri, Ph.D.)

THESIS COMMITTEE

 ……………………………………………. Chairman

(Associate Professor Prabhas Chongstitvatana, Ph.D.)

……………………………………………. Thesis Advisor
(Athasit Surarerks, Ph.D.)

…………………………………………….. Member
(Arthit Thongtak, Ph.D.)

……………………………………………… Member
(Assistant Professor Arnon Rungsawang, Ph.D.)

iv

นายสราวุฒ รังสรรควิจิตร : อัลกอริทมึเลขคณิตพื้นฐานเชื่อมตรงสําหรับระบบเวกเตอรสามมติิ.
((ON-LINE FUNDAMENTAL ARITHMETIC ALGORITHMS FOR THREE-

DIMENSIONAL VECTOR SYSTEM) อ. ที่ปรึกษา : อาจารย ดร. อรรถสิทธิ ์ สุรฤกษ
49 หนา. ISBN 974-17-5806-5

 งานวิจยันี้เปนการเสนอระบบแทนเวกเตอรสามมิติแบบใหม ระบบที่เสนอนี้ประกอบดวย เลขฐาน
ที่เปนจํานวนเต็ม และ เซตจํากัดของดิจิตที่เปนเวกเตอรที่มีเครื่องหมาย งานวิจัยนี้ยังไดเนนไปที่การ
คํานวณเชื่อมตรงผสานเขากับแนวคิดของการทํางานทอตรง คุณสมบัติที่สําคญัสําหรับระบบการทาํงาน
เชื่อมตรงไดถูกศึกษาในงานนี้เชนเดียวกัน นัน่คือความหนวงเชื่อมตรง ซึง่เปนจํานวนของดิจิตทีน่อยที่สุด
ของตัวถูกดําเนินการที่ตองใชในการผลิตดจิิตแรกของผลลัพธ เพื่อใหการทํางานเชื่อมตรงทําได ระบบแทน
เวกเตอรจะตองมีคุณสมบัตซิ้ําซอน หมายความวา เวกเตอรใดๆ สามารถหารูปแบบแทนไดมากกวาหนึ่ง
รูปแบบ แนวคิดของระบบจํานวนมีเครื่องหมายจงึถกูนํามาประยกุตใชในงานนี้ดวย ในระบบแทนเวกเตอร
แบบใหมนี ้การคํานวณพื้นฐานที่ใชสําหรับเวกเตอรสามมิติ อันไดแก การบวก การลบ และการคูณ (ครอส
โปรดัก) ไดถูกแสดงใหเหน็วาสามารถทาํงานไดดวยการทํางานที่คลายกับระบบจาํนวนตัวเลขแบบคลาส
สิค.

ภาควิชา วิศวกรรมคอมพิวเตอร ลายมือช่ือนิสิต...
สาขาวิชา วิทยาศาสตรคอมพิวเตอร ลายมือช่ืออาจารยที่ปรึกษา..
ปการศึกษา 2547

v

#4671438621 : MAJOR COMPUTER SCIENCE
KEY WORD: THREE DIMENSIONAL VECTOR SYSTEM/ REDUNDANT NUMBER SYSTEM/ ON-LINE
ARITHMETIC

SARAVUT RANGSUNVIGIT: ON-LINE FUNDAMENTAL ARITHMETIC ALGORITHMS
FOR THREE-DIMENSIONAL VECTOR SYSTEM. THESIS ADVISOR: ATHASIT
SURARERKS, Ph.D., 49p. ISBN 974-17-5806-5

This research is to introduce a novel three-dimensional vector representation

system. The proposed system composes of an integer base and a finite set of signed-
vector-digit. The research is also focused on an on-line computation mode combining with
a pipelining concept. An important characteristic for an on-line system is also studied, that
is the on-line delay, the smallest integer which is the number of digits of the inputs used for
producing the first digit of the output. In order to do this, the vector representation system
should be a redundant system which means any vector can have more than one finite
representation. The concept of signed digit number system is applied to this work. Using
the new representation, some fundamental arithmetic operations for three-dimensional
vector such as addition, subtraction, and multiplication (cross product) are shown to be
realized, similar to the classical number system.

Department Computer Engineering Student’s signature....................................
Field of study Computer Science Advisor’s signature....................................
Academic year 2004

 vi

ACKNOWLEDGEMENTS

 This thesis cannot be completely finished without the great help from my
thesis advisor, Dr. Athasit Surarerks who has chosen me to be one of his students in
ELITE group. I would like to take this special opportunity to send my respect and
thank you for the great support, suggestion, and guidance to him. He has always given
advice and spent time with me days and nights since I have started my research
through the completion. Even though I had not been around in Thailand during my
thesis composing, because of the magnificent help and support from him, I can finish
the thesis on time. I am very thankful to have him as my thesis advisor.

 I also would like to thank you all of my thesis committees, Associate Professor
Dr. Prabhas Chongsatitvatana , Dr. Arthit Thongtak, and Assistant Professor Dr.
Arnon Rungsawang who have taken precious time to give useful comments,
suggestions and guidances in order to get this thesis to be more completed.

 Finally, I would like to thank you my parents, brothers, and sister who have
given a support and encouragement to me for taking this master degree program in
Chulalongkorn University until I could finish.

CONTENTS
 page

ABSTRACT (THAI) ……..………………………………………………………. iv

ABSTRACT (ENGLISH) ………………………………………………………… v

ACKNOWLEDGEMENTS………………………………………………………… vi

CONTENTS ……………………………………………………………………… vii

LIST OF TABLES ………..……………………………………………………… viii

LIST OF FIGURES …….………………………………………………………… ix

CHAPTER

I INTRODUCTION ….………………………………………………………… 1

II PRELIMINARIES ….………………………………………………………… 7

 2.1 Number Systems ….……………………………………………………… 7

 2.1.1 Signed digit number system ………………………………………… 8

 2.1.2 Negative integer base number system ……………………………… 10

 2.1.3 Complex number …………………..……………………………… 10

 2.1.4 Three-dimensional vector system ………………………..………… 12

 2.2 On-line Arithmetic ….…………………………………………………… 15

 2.2.1 On-line addition …………..………………………………………… 16

 2.2.2 On-line subtraction …………..……………………………………… 18

 2.2.3 On-line multiplication …….………………………………………… 19

III THREE-DIMENSIONAL VECTOR REPRESENTATION ………………… 21

 3.1 Introduction ……….……………………………………………………… 21

 3.2 The representation…….…………………………………………………… 22

 3.3 Completeness …….…………………………………………………… 23

 3.4 Redundancy …..…….…………………………………………………… 25

IV ON-LINE ADDITION/SUBTRACTION FOR THREE-DIMENSIONAL

 VECTOR REPRESENTATION ………………………………………………. 27

 4.1 On-line addition…….……………………………………………………… 27

 4.2 On-line subtraction….……………………………………………………… 34

 4.3 On-line multiplication .…..…………………………………………………36

V CONCLUSION…..….…………………………………………………………. 49

REFERENCES ………..….………………………………………………………… 50

BIOGRAPHY……..….……………………………..……………………………… 51

viii

LIST OF TABLES

Table page

1.1 Binary number system table (n = 0-10) ……..………………………………. 2

2.1 On-line multiplication of A and B where A = B = (.0011011111)2 .…………. 20

4.1 On-line addition of 60i + 23j + 32k and 48i + 36j + 19k …………………. 33

4.2 On-line subtraction of 50i + 13j + 22k and 38i + 26j + 9k …………………. 36

4.3 On-line multiplication of 84i+27j+13k and 37i + 93j + 82k following the

algorithm Mv ……………………………………………..…………………. 46

ix

LIST OF FIGURES

Figure page

2.1 The representation of 14 in the number system (2, {-1, 0, 1}) ………………. 10

2.2 Complex number representation on two-dimensional plane .…………..…….10

2.3 The representation of three-dimensional vector system .………………..……. 13

2.4 Cross product calculation of three-dimensional vector system based on

 righthand finger Concept …………………………………...………….……. 14

2.5 The addition of 708 and 766 in the system (5, {-3, -2, -1, 0, 1, 2, 3 })………. 17

2.6 The subtraction of 766 from 708 in the system (5, {-3, -2, -1, 0, 1, 2, 3 }) …. 18

4.1 The relation of the inputs, rj,t-δ , sj,t-δ, and the output (zj,t)………………….…. 30

4.2 The process of an on-line multiplication algorithm Mv……………………………............ 43

4.3 On-line multiplication of 84i+27j+13k and 37i+93j+82k ……………………. 45

CHAPTER I

INTRODUCTION

The number has a long history for human being. It has been discovered for a

long period of time. Number representation can be composed by either finite or

infinite set of strings normally represented by alphabets or digits. In arithmetic

computation, each representation can be used to do any source of computation by

particular algorithms. Any real or complex number can be represented by a set of

strings which are alphabets or digits as described earlier.

(X a X a-1 X a-2 X a-3 X a-4 ….) n = Xa na + Xa-1 na-1 + Xa-2 na-2 + Xa-3 na-3 +…,

where a is positional number of each digit and n is a base number which can be both a

real and complex number. This kind of representation is called ß-repesentation.

The binary number system where its base number is 2 is widely used in the

computer arithematic world. It generally contains a sequence of 0s and 1s.

bn bn-1… b2b1b0 represents the number

bn2n bn-12n-1 +… +b222 b121 b020

Basically, any base ten number can be represented as a summation of power of two as

shown in Table 1.1

In term of binary computation, the addition of any two binary number system

can be done following the least significant digit first (LSDF) mode which is the

computation to flow from right to left as it normally does in the decimal base number

system. The concept of propagation (carry over) is applied in order to make sure that

each output result is still having the valid format of binary number system in which

only 0 and 1 are allowed.

The multiplcation of any binary number system has the same calculation steps

as the decimal number system. The concept of addition of binary number system is

also applied for multiplication operation as well.

In addition to a positive base number system that is often used, a negative

integer base number can be used to represent a number system without a sign as well.

2

Table 1.1 : Binary number system table (n = 0-10)

N 2n

0 1

1 2

2 4

3 8

4 16

5 32

6 64

7 128

8 256

9 512

10 1024

Example 1.1 Find the addition of 81 and 25 in base number –2 with the digit set as

{0,1},

Solution

81 = (1010001) –2

25 = (1101001) –2

The addition of 81 and 25 in the base –2 number system can be done as follows:

81 = 1 0 1 0 0 0 1

 +

 25 = 1 1 0 1 0 0 1

 2 1 1 1 0 0 2

Number 2 can be represented as 110 in the base –2 number system, the above

example answer could be further calculated as below:

 (110111110) –2 = –2 + 4 –8 – 32 – 128 + 256 = 106

3

A complex number contains both real and imaginary part. It was firstly known

in 1st century AD by Greek mathematician, Heron of Alexandria. Until during the mid

of 19th century, Willian Rowan Hamiltion discovered the representation of a complex

number as a+bi on the xy plane where both a and b are a real number. Some complex

number representation have beed examined in [1,2].

Such a fascinated number can also be pointed in a two-dimensional plane with

taking ‘a’ value on the x-axis and ‘b’ value of the y-axis. The complex number

development is still going along in the 20th century. It has also been adapted to be

used in a modern world such as in both electrical and mechanidal engineering field.

Two-dimensional vector can also be reprsented using a complex number, one

dimension corresponds to a real part and the other dimension corresponds to an

imaginary part. Fundamental arithmetic operations, such as addition, subtraction, dot

product and cross product, can also be performed in the complex number system.

This concept of vector representation using complex number system is

extented to a multi-dimensional vector system. A vector is usually described by a

summation of products. A unit vector for each dimension is proposed. Any n-

dimensional vector X = (x1, x2, x3, …, xn) can be expressed by

x1 × u1 + x2 × u2 + x3 × u3 + … + xn × un,

where ui is a unit vector for the ith
 dimension. The value of the expression is normally

called a vector value of the representation. By the same way as two-dimensional

vector system, fundamental arithmetic operations for vector system can also be

performed in the multi-dimensional complex number system.

 One problem can be considered. For example, the vector cross product of two

vectors, A = a1i + a2j + a3k and B = b1i + b2j + b3k, is defined as

A × B = (a2b3 – a3b2) i – (a2b3 – a3b2) j + (a1b2 – a2 b1) k

where i, j, and k are three unit vector for each dimension respectively. The calculation

gets complicated and takes much more time especially in the cross product calculation

for two three-dimensional vectors.

In terms of time complexity, the time complexity of any scalar number system

is less than that of multi-dimensional number system. In order to improve the time

complexity for arithmetic operations, there are two possible solutions for solving such

a problem as follows:

4

1. find the new operation system used with multi-dimensional number system

in stead of using the scalar number system one, and

2. convert the multi-dimensional number system into a scalar number system

form, perform the calculation, and then convert the result into the multi-

dimensional number system format.

This thesis focuses on the latter one using the classical computation concept and

three-dimensional vectors represented as ai + bj + ck where a, b, and c are real

numbers.

 The three-dimensional vector has been arised in a number of disciplines in

science field including the following domains [3]:

1. Mechanism: Gravatational fields: At each point, the vector gives the

direction and magnitude of the force on a particle.

2. Electricity and Magnetism: Electric and magnetic fields, At each point, the

vector gives the direction and magnitude of the force on a particle.

3. Fluid Mechanics: Velocity fields: At each point, the vector gives the velocity

of a fluid.

In 1977, Ercegovac and Trivedi in [4] had first proposed an important result

called on-line computation theorem. In fact, in an on-line arithmetic, operands and

results flow through arithmetic units in a digit serial manner which is in a most

significant digit first mode (MSDF). Since all operations are performed in the same

direction, the pipeline concept in which several tasks could be done simultaneously

can be applied.

The aim of this thesis is to propose a representation for three-dimensional vector

system and also to introduce its on-line fundamental arithmetic operations which are

addition, subtraction, and multiplication (cross product). The technique of dimension

reduction in order to reduce the calculation effort is also applied. On-line computation

is also studied in this work, then a redundant system is combined into the system. The

organization of the thesis will be divided into each chapter as follows:

Chapter 2: This chapter introduces the fundamental definitions such as ‘number

system’ including both signed and unsigned digit number representation systems,

‘three- dimensional vector system’, and ‘on-line arithmetic’ including the basic

algorithms and examples of online addition, subtraction, and multiplication.

5

Chapter 3: This chapter introduces the new representation of any three-

dimensional vector. This new representation will be used for further calculation on

on-line arithmetic operations mentioned in Chapter 2 which are addition, subtraction,

and multiplication.

Chapter 4: This chapter describes how both on-line addition and subtraction for

any three-dimensional vector system can be done. The newly created algorithm will

also be introduced. The algorithm proof as well as an example are also stated in this

chapter. The multiplication operation on on-line mode will be introduced in this

chapter with the newly created algorithm. Same as the on-line addition and

subtraction, the proof of the on-line multiplication and example will also be described

at the end of this chapter.

Chapter 5: The thesis conclusion will be placed in the last chapter. The

reference section will come afterwards.

Objectives

1. To deeply understand the concepts of an on-line arithmetic.

2. To develop a representation for three dimensional vectors and to develop their

on-line fundamental arithmetic algorithms, i.e., addition, subtraction and

multiplication.

Scope of works

1. To develop a representation for three-dimensional vectors.

2. To develop on-line fundamental arithmetic algorithms, i.e., addition,

subtraction, and multiplication (cross product).

Research procedures

1. Study the Knuth complex number system.

2. Study three-dimensional vector system.

3. Study on-line arithmetic algorithms.

6

4. Develop a new representation for three-dimensional vectors and their on-line

fundamental arithmetic algorithms, i.e., addition, subtraction, and

multiplication (cross product).

5. Check for newly created algorithms correctness.

6. Make a research conclusion.

7. Complete the research.

Expected results

Three-dimensional vectors in i, j, and k format can be represented by a new

representation and can be computable by using their on-line fundamental arithmetic

algorithms, i.e., addition, subtraction, and multiplication (cross product).

CHAPTER II

PRELIMINARIES

In this chapter, we recall some definitions and notations that we used in this

work. It is started by the representation of number systems. Signed digit number

systems of Avizienis are focused our works. Complex number system and three-

dimensional vector representation are also recalled. The concept of an on-line

computation is also described. Finally, some on-line arithmetic operations are

recalled.

2.1 Number Systems

A number system can be represented as (β, D) where β is a base and D is a finite digit

set of real or complex numbers. The base β can also be either real or complex number.

In the classical number system, a canonical digit set, {0, 1, 2, 3, …, β-1}, is used for

the base β. Below displays a β-representation of X with β as its base,

X = (X a X a-1 X a-2 X a-3 X a-4 … X 0 .X -1 X -2 X -3…) β,

where X i is an element in D for an integer i ≤ a. Normally, the set of β-representations

on D is denoted by P[β, D]. The sets of both finite and infinite β-representations are

displayed as follows:

• [β,D] denotes the set of all finite β-representations described by b
aP

{ (X a X a-1 … X b+1 X b)β | X i ∈ D, b ≤ i ≤ a },

• [β,D] denotes the set of all β-representations described by aP

{ (X a X a-1 …)β | X i ∈ D, i ≤ a },

where a and b are the maximum and the minimum degrees respectively.

The numerical value of the representation X = (X a X a-1 X a-2 …X b)β with base

β, denoted by || X ||, can be computed as the following equation:

8

.|||| ∑
=

=
b

ai

i
iXX β

An important characteristic for a number representation system is to preserve a

lexigographic ordering property. The definitions of the lexicographic order on β-

representations with real numbers of all digits are given as the following definitions.

Definition 2.1

Two β-representations in Pa [β,D] which are X = (X a X a-1 …)β and Y = (Ya Ya-1 …)β

are said to be comparable. The representation X is smaller than Y (X < Y) in terms

of lexicographic ordering if there exists an integer k ≤ a such that

X a = Ya, X a-1 = Ya-1, … , X k+1 = Yk+1, and X k < Yk.

Definition 2.2

The number system (β,D) has the lexicographic order property if for any two

representations X and Y,

X < Y if and only if || X || < || Y ||.

Note that, for any two different β-representations X and Y on D, such a system

is called to be redundant if || X || = || Y ||.

2.1.1 Signed digit number system

Redundancy is used extensively for speeding up arithmetic operations. Remarkable

examples are signed-digit number systems introduced by Avizienis in 1961, see detail

in [5]. These systems are proposed to use some positive and negative integers as

digits. This can limit the carry propagation in atithmetic operations. Signed digit

number system composed of a finite set of digits and a base. Avizienis proposed to

use a digit set D = {-1, 0, 1} when the base β is 2. For any integer base β ≥ 3, the set

D is represented by a set of the form { e ∈ Ζ | -d ≤ e ≤ d } where β/2 < d ≤ β-1. The

generalization of signed digit number systems, given by Parhami in 1990 [6], or see

detail in [7], can be defined by the following definition.

9

Definition 2.3

The signed digit number system (β,D) is composed of a base β where β is a positive

integer ≥ 2 and a digit set D,

D = { e ∈ Ζ | a ≤ e ≤ b },

where a and b are integers such that a ≤ 0 ≤ b.

Remark 2.1

1. Negative numbers cannot be represented in this system if a = 0.

2. Positive numbers cannot be represented in this system if b = 0.

 The number of digits in a digit set D is equal to | D | = b – a + 1. This number

can describe the redundancy property of the number representation system. The

system is said to be a redundancy system if there is at least one number can have

more than one representation.

Remark 2.2

1. If | D | < β, some reals cannot be represented in the system.

2. If | D | = β, every integer has a finite representation, and every real number

can be represented.

3. If | D | > β, this system is redundant.

Definition 2.4

1. The digit set D is a minimally redundant digit set if | D | = β + 1.

2. The digit set D is a maximally redundant digit set if | D | = 2β - 1.

3. The digit set D sysmetric if b = | a |.

 For instance, in the base β = 2 with a digit set D = { -1, 0, 1 }, number 14 can

have more than one representation as illustrated by Fig.2.1. That is 14 can be written

as (001110)2 or (0100-10)2.

10

β 5 β 4 β 3 β 2 β 1 β 0

32 16 8 4 2 1

0 0 1 1 1 0

0 1 0 0 -1 0

Figure. 2.1 The representation of 14 in the number system (2, {-1, 0, 1})

2.1.2 Negative integer base number system

Signed digit number system can be extented using a negative integer as a base. Let β

be the base with β < -1. A real number is represented in any negative base β

containing digits in D = { e ∈ Ζ | 0 ≤ e ≤ | β | - 1 }. Remark 2.2 is also applied with

this number system.

2.1.3 Complex number

A complex number sometimes can be treated as a two-dimensional vector system

where the number of the real number part can be matched to the first dimension part

whereas the number of the imaginary part can also be matched to the second

dimension part on the Cartesian coordinate system.

Figure 2.2 Complex number representation on two-dimensional plane

11

Definition 2.5

The complex number system can be defined as ordered pairs of real numbers (a, b).

Addition: (a , b) + (c , d) = (a + c, b + d)

Multiplication: (a , b) + (c , d) = (ac – bd, bc + ad)

Definition 2.6

Given a complex number A = (a, b), the size (or length) of A, denoted by || A ||, is

defined as

22|||| baA += .

In fact, a vector was firstly discovered in the first two decades of 19th century

with the geometric representations of complex numbers. Caspar Wessel (1745-1818),

Jean Robert Argand (1768-1822), and Carl Friedrich Gauss (1777-1855) conceived

that complex number can be as points in the two-dimesional plane, eg. two-

dimensional vectors [8].

A vector is basically a specific mathematical structure. It has numerous

physical and geometric applications, which result mainly from its ability to represent

magnitude and direction simultaneously. The location of points on a cartesian

coordinate plane is usually expressed as an ordered pair (x, y), which is a specific

example of vector. A vector (x, y) has a certain distance and angle relatively from the

origin (0,0). In general, vector can be described as a multi-dimensional representation.

For these reasons, fundamental arithmetic operations for two-dimensional

vectors can be performed in the complex number system.

Example 2.1

Find the addition of two two-dimensional vectors 3i + 4j and 4i + 9j

Solution

This can be solved by adding two complex numbers, (3, 4) and (4, 9). Therefore, the

result will come up with (3+4) i + (4+9) j = 7i + 13j.

Engineering computation in vectors often uses both dot product and cross

product. The dot product gives the vector amount that one vector contributes along the

12

same line to another vector. The cross product, however, is partly the result of

multiplying different components of two vectors to get a product vector that is lying

perpendicularly to both of the original vectors.

Definition 2.7

Given two two-dimensional vectors, A = (a, b) and B = (c, d), a dot product of A and

B, denoted by A⋅B, can be computed as

A⋅B = || A || × || B || × cos θ

 where θ is an angle between vector A and B.

Definition 2.8

Given two two-dimensional vectors, A = (a, b) and B = (c, d), a cross product of A

and B, denoted by A×B, can be computed as

A×B = (ac – bd, ad + bc).

2.1.4 Three-dimensional vector system

Unlike any two-dimensional vector system having an ordered pair (a, b), three-

dimensional vector is an ordered triplet (a, b, c) where a, b, and c are any reals. In

fact, points in a plane or in three-dimensional space can be considered as vectors. The

representation of vector (a, b, c) in a three-dimensional space is illustrated by Fig.2.3.

The higher dimensional vector is, the more useful the vector can be used. The

definition of three-dimensional vector can be described as follows:

Definition 2.9

Let a, b, and c be three reals. The vector representation of the three-dimensional

vector (a ,b, c) can be expressed as a summation of products of the unit vectors i, j,

and k with a, b, and c respectively. Then the representation of the vector V is written

as

V = ai + bj + ck.

Definition 2.10

13

Given a three-dimensional vector A = (a, b, c) where a, b, and c are reals. The

additive inverse of vector A, usually denoted by A-1, is a vector of the form (-a, -b, -c).

Figure 2.3 The representation of three-dimensional vector system

Supposingly, given two three-dimensional vectors which are V1 = ai + bj + ck

and V2 = di + ej + fk where a, b, c, d, e, and f are real numbers. Addition of vectors is

to construct a path of a sequence of all added vectors started from the origin (0, 0, 0).

Addition in this system are defined as addition for each dimension seperately. This

means that addition of the two vectors is a vector

V1 + V2 = (a + d) i + (b + e) j + (c + f) k.

 Subtraction can be considered as an addition of its additive inverse. For

instance, let V1 be expressed by 2i + 3j + 4k and let V2 be expressed by 4i + 3j + 5k.

Addition (subtraction) of the both vectors can be done as follows:

V1 + V2 = (2+4) i + (3+3) j + (4+5) k = 6i + 6j + 9k

V1 + V2 = (2-4) i + (3-3) j + (4-5) k = -2i – k

It is clear that it would take Θ(n) for both addition and subtraction where n is

the number of digits used to represent the two vectors (i.e., the number of

dimensions).

 For multiplication operation in this system, it is defined as a cross product

which applies the concept of right hand finger shown as Fig.2.4.

14

Definition 2.11

Given two three-dimensional vectors A = (a, b, c) and B = (d, e, f) where a, b, c, d, e,

and f are reals. A cross product of A and B is defined as

 A × B = (ai × di) + (ai × ej) + (ai × fk)

 + (bj × di) + (bj × ej) + (bj × fk)

 + (ck × di) + (ck × ej) + (ck × fk).

 k

 i j

Figure 2.4 Cross product calculation of three-dimensional vector system based on

righthand finger concept

The cross product of unit vectors can be described by the following definition.

Definition 2.12

Let i, j, and k be three unit vectors. The cross product of two unit vectors can be

described as

 i × i = 0, i × j = k, i × k = -j,

 j × i = -k, j × j = 0, j × k = i,

 k × i =j, k × j = -i, k × k = 0.

15

Then the cross product of any two vectors can be considered as nine

multiplication operations of two scalar numbers and another eight addition operations

of them. The complexity is obviously equal to O(n2).

Example

let V1 = 2i + 3j + k and let V2 = i + 2j + 2k. Find the cross product of V1 and V2.

Solution

The cross product of V1 and V2 can be computed as follows.

V1 × V2 = 2×1 [i × i] + 2×2 [i × j] + 2×2 [i × k] +

3×1 [j × i] + 3×2 [j × j] + 3×2 [j × k] +

1×1 [k × i] + 1×2 [k × j] + 1×2 [k × k].

According to the concept of right hand finger illustrated above, the solution of this

operation can be broken down as follows:

i j k COLUMN

V1 × V2 = (3×2 + (-1×2)) (-2×2) + (1×1) (2×2 + (-3×1))

 = 4i (-3j) 1k

 = 4i – 3j + k.

This takes a significance of time to solve the cross product between both three

dimensional vectors.

2.2 On-line Arithmetic

Most fundamental operations for any base number system, say, base 10 (decimal

number system) such as multiplication, addition, and subtraction are normally done

by using the least significant digit first (LSDF) mode which means the steps of

operations are computed from the rightmost digit, kept moving left until all done. But

division is performed in the most significant digit first (MSDF) mode. In order to

pipeline the operations (i.e., each operation can be started without waiting for the end

16

of the previous operation), every operation should be processed in the same direction.

For that purpose, on-line arithmetic was first introduced by Ercegovac and Trivedi

[11]. The operands and the results flow serially through arithmetic units, digit-by-

digit, starting from the most significant digit. On-line systems can also be

characterized by the on-line delay δ, the smallest integer which is the first n digits of

the result can be deduced from the first n + δ digits of the inputs. In order to do this,

the number representation system should be a redundant system. The signed digit

number system is selected in the on-line arithmetic computation system.

2.2.1 On-line addition

The following theoretical result shows that an on-line addtion can be perform with the

on-line delay δ using a redundant number system.

Theorem 2.1

Let β be an integer, β > 1 and let D be a finite set, D = { -b, -b-1, …, 0, 1, …, b }

where b is an integer such that β/2 ≤ b ≤ β – 1. On-line addition can be computable in

the system (β, D) with an on-line delay δ, where

otherwise

b

:

2:

1

2 β

δ
=

⎪
⎩

⎪
⎨

⎧
= .

The proof of the theorem is to proposed an on-line addition algorithm shown as

below, (the detail of the proof, the reader can see in [9].

Algorithm: OnlineAddition

 Input: X := (xm xm-1 …)β and Y = (ym ym-1 …)β where xi ,yi ∈ D

 Output: Z := (zm zm-1 …)β where zi ∈ D

 begin

 rm := ; ∑
+−=

−+−+
m

mi

mi
ii yx

1

1)(
δ

δβ

 j := m;

 while j ≤ m do

17

 sj := (xj + yj);

 rj-1 := (xj + yj) + rjβ – (βδ × ⎣ (xj + yj + rmβ) / βδ ⎦);

 zj := (xj + yj + rjβ - rj) / βδ;

 j := j – 1;

 enddo;

 end;

Example 2.1

In the system with base β = 5 with digits in D = {-3, -2, -1, 0, 1, 2, 3},on-line addition

of 708 and 766 with an on-line delay δ = 1 can be expressed as Fig. 2.5.

Solution

 β 5 β 4 β 3 β 2 β 1 β 0

708 = 1 1 -2 1 3
 +

766 = 1 1 1 -2 1

 2 2 -1 -1 4

Remainder 2 2 -1 -1 -1

Carry digit 0 0 0 0 1

 0 2 2 -1 0 -1

Figure. 2.5 The addition of 708 and 766 in the system (5, {-3, -2, -1, 0, 1, 2, 3 })

The solution is (0 2 2 -1 0 -1)5 = (2×54) + (2×53) + (-1×52) + (-1)

= 1250 + 250 – 25 -1 = 1474.

It is clear that the result can be produced digit-by-digit , starting from the most

significant digit, with the on-line delay 1. For instance, -1 at the position β 1 cannot be

18

outputed until the carry propagation of the column β 0 is known. In this system, the

effect of the carry propagation is limitted to only one digit on the left.

2.2.2 On-line subtraction

On-line subtraction would take a concept of what the on-line addition is. The on-line

addition algorithm is still used for achieving the subtraction task. For instance, an on-

line subtraction of B from A can be considered as an on-line addition of A and –B.

Example

In base β = 5 with digits in D = {-3, -2, -1, 0, 1, 2, 3}, subtraction 766 from 708 can

be computed as follows:

Solution

The same calculation procedures as the example above would apply for this

subtraction calculation as well. The only difference is that to convert number 766

which is the subtracter to be a negative value in stead of the positive one, as shown in

Fig. 2.6.

The solution is (0 0 -1 3 -2 2) 5 = (-1×53) + (3×52) + (-2×5) + (2)

= -125 + 75 – 10 + 2 = -58.

 β 5 β 4 β 3 β 2 β 1 β 0

708 = 1 1 -2 1 3

 +

-766 = -1 -1 -1 2 -1

 0 0 -3 3 2

Remainder 0 0 2 -2 2

Carry digit 0 0 -1 1 0

 0 0 -1 3 -2 2

Figure. 2.6 The subtraction of 766 from 708 in the system (5, {-3, -2, -1, 0, 1, 2, 3 })

19

2.2.3 On-line multiplication

On-line multiplication uses the combination of both incremental multiplication

technique and redundant number system. The on-line multiplication has a delay δ

depending on the range of the input. This delay can be ignored by adding δ zeroes at

the left part of each operand. Then each operand is less than 1/ β δ called the operand

bound. The generic on-line algorithms for real and complex representation are studied

in [10].

The classical on-line multiplication algorithm illustrated below needs to be

known for fundamental understading of the on-line multiplication concept. The on-

line multiplication can be described by the following theorem.

Theorem 2.2

Let β be an integer, β > 1 and let D be a finite set, D = { -b, -b-1, …, 0, 1, …, b }

where b is an integer such that β/2 ≤ b ≤ β – 1. On-line multiplication can be

computable in the system (β, D) with an on-line delay δ, where

3,2:

3:

2

1

=

>

⎪
⎩

⎪
⎨

⎧
=

β

β
δ .

The on-line multilication algorithm is as follows (the proof of the algorithm can be

found in [2]):

Algorithm: OnlineMultiplication

 Input: A = (.a -1a -2 …) β and B = (.b -1b -2 …) β

 Output: X = (.x -1x -2 …) β where || X || = = || A || × || B || ∑
∞

−= 1j

j
jx β

 begin

 x -1 := x -2 := … := x -δ := 0;

 W-δ := 0;

 j := -δ-1;

 while j ≤ -δ-1 do

20

 Wj := β (Wj+1 - xj+1) + Ajbj + Bj+1aj ;

 if |Wj| ≤ b then xj := Sign(Wj) ⎣|Wj| + 1/2 ⎦

 else xj := Sign(Wj) ⎣ |Wj| ⎦ endif;

 j := j-1;

 enddo;

end;

Example

Let A and B be two numbers in base 2 with digits in D = { -1, 0, 1 },

where A=B = (.0011011111)2

Solution

Table 2.1 displays the result of a multiplication of A and B.

Table 2.1 On-line multiplication of A and B where A = B = (.0011011111)2

j Ajbj + Bj+1aj Wj xj 2(Wj - xj)

-1 0.0 0.0 0 0.0

-2 0.0 0.0 0 0.0

-3 0.001 0.001 0 0.01

-4 0.0101 0.1001 1 -0.111

-5 0.0 -0.111 -1 0.01

-6 0.011001 0.101001 1 -0.10111

-7 0.0110101 -0.0100111 0 -0.100111

-8 0.01101101 -0.00101111 0 -0.0101111

-9 0.011011101 0.000100001 0 0.00100001

 The output after computation would be (.0001-11000….)2.

CHAPTER III

THREE-DIMENSIONAL VECTOR REPRESENTATION

This chapter introduces the newly created representation of any three-

dimensional vector system. This novel representation is proposed in order to simplify

the computation of three-dimensional vectors. Some fundamental vector operations

(i.e., addition, subtraction and cross product) are also introduced in this chapter.

3.1 Introduction

 Normally, any complex number system is used to express a two-dimensional

vector system. For instance, a two-dimensional vector (x, y) can be considered as the

pair of x and y which are popularly used to represent the real part of the number and

its imaginary part respectively. Using this concept, a two-dimensional vector (x, y) is

expressed by a complex number of the form x + yi.

Any vector can be described as a complex number system; therefore, the

concept of an above complex number system representation can be extended to

describe any three-dimensional number system as well.

It is not convenient to maintain a complex number using two dependent parts

(real and imaginary). One can be applied to combine the both parts together, that is to

use a complex base representation with some integer digit sets, for instance Knuth’s

complex number representation systems [11]. On the other hand, any complex

number can also be represented in the real base number system with a finite set of

complex digits. The later is focused in our work.

In order to perform the computation in an on-line mode, the concept of

redundant number system on which such a number can have more than one

representation is also applied. Especially, Avizienis’s signed digit number

representation [5] is interested in this research.

22

3.2 The representation

Classical representation of a three-dimensional vector (a, b, c) is written as

ai + bj + ck,

for any real numbers a, b, and c. the variables i, j, and k are represented unit vectors

of each dimension respectively. Now we will propose a novel three-dimensional

vector representation system. A vector is represented by a sequence of signed-vector-

digit. We also show that all three-dimensional vectors can have a representation in

this novel system.

Definition 3.1

Let β be a positive integer, β ≥ 2, and let D be a finite set of three-dimensional

vectors of the form

{(x, y, z) | -b ≤ x, y, z ≤ b}

where b is an integer such that β/2 ≤ b ≤ β-1. The signed-vector-digit

representation of a three-dimensional vector X is written as:

Xs Xs-1 Xs-2 … Xt

where Xi ∈ D for all i, t ≤ i ≤ s.

For instance, in base β = 2 with a digit set D = { (x, y, z) | -1 ≤ x, y, z ≤ 1 },

vector (12, -3, 5) can be represented in this system as

(1, 0, 0) (1, -1, 1) (0, 0, 0) (0, 1, 1).

The value of this representation can be computed as follows:

(1, 0, 0)2 3 + (1, -1, 1) 2 2 + (0, 0, 0) 2 1 + (0, 1, 1) 2 0 = (12, -3, 5).

Since the proposed system is redundant, vector (12, -3, 5) can also be represented

by the other sequence as

(1, 0, 0) (0, -1, 0) (-1, 1, 1) (0, 0, 1) (0, 1, -1).

Definition 3.2

Let β be a real number, β ≥ 2. Given a signed-vector-digit representation

X = Xs Xs-1 Xs-2 … Xt

23

 in the base β where Xi ∈ { (x, y, z) | -b ≤ x, y, z ≤ b }, β/2 ≤ b ≤ β – 1, for any

integer i, t ≤ i ≤ s. The complex value of X, denoted by || X || is

||X|| = Xsβ s + Xs-1β s-1 + Xs-2β s-2 + … + Xtβ t.

Let a three-dimensional vector X = Xs Xs-1 Xs-2 … Xt, and Xi = (xi1, xi2, xi3). That is

Xi = xi1i + xi2j + xi3k.

The complex number that is matched to X is

X = (xs1i + xs2j + xs3k)β s + (x(s-1)1i + x(s-1)2j + x(s-1)3k)β s-1

+ Xs-2β s-2 + … + Xtβ t

= i + j + k ∑
=

s

tu

u
u βx 1 ∑

=

s

tu

u
u βx 2 ∑

=

s

tu

u
u βx 3

Example 3.1

In the base n = 2, with a digit set D = {(x,y,z) | - 1 ≤ x, y, z ≤ 1 },given a signed-

vector-digit representation X = ((1, 0, 1) (1, 1, 0) (0, 1, 1)), find the complex value

of X.

Solution

 X = (1i + 0j + 1k)22 + (1i + 1j + 0k)21+ (0i + 1j + 1k)20

 = (4i + 4k) + (2i + 2j) + (j + k)

 = 6i + 3j + 5k.

3.3 Completeness

The proposed vector representation system uses a real number as the base and a

complex numbers as digits in the system. Now we will show that any three-

dimensional vector can have a representation in the proposed system. This is shown in

the following theorem.

Theorem 3.1

24

Given a three-dimensional vector V = (u, v, w) where u, v, and w are any real

numbers, the vector V can have a representation in the signed-vector-digit

representation system in base β with digits in D ={(x, y, z) | -b ≤ x, y, z ≤ b} where b

is an integer such that β/2 ≤ b ≤ β-1.

Proof:

It is clear that the three-dimensional vector V = (u, v, w) can be expressed by a

complex number of the form ui + vj + wk. Since u, v, and w are all real numbers, they

have a representation in base β with digits in E { e | -b ≤ e ≤ b }. Let

u = (utut-1ut-2… us)β where ∑
=

=
s

tj

j
juu β

v = (vtv t-1v t-2… vs)β where ∑
=

=
s

tj

j
jvv β

w = (wtw t-1w t-2… ws)β where ∑
=

=
s

tj

j
jww β

This is of course,

 V = ui + vj + wk

 = ∑ i + j + k
=

s

tj

j
ju β ∑

=

s

tj

j
jv β ∑

=

s

tj

j
jw β

 = (ut + vt + wt)β t + (ut-1 + vt-1 + wt-1)β t-1 + … + (us + vs + ws)β s

 = (ut, vt, wt) (ut-1, vt-1, wt-1) … (us, vs, ws) where ui, vi, and wi are in E.

The proof is completed.

Example 3.2

Given a vector V = 6i + 13j – 5k, find the signed-vector-digit representation of V in

base 2 with digits in D = { (x, y, z) | -1 ≤ x, y, z ≤ 1 }.

Solution

Since 6 = (110)2, 13 = (1101)2, and -5 = (-10-1)2, then the representation of V is

(0, 1, 0) (1, 1, -1) (1, 0, 0) (0, 1, -1).

25

3.4 Redundancy

Any three-dimensional vector system can have more than one signed-vector-digit

representation. Therefore, a three-dimensional vector system is redundant. This gives

the flexibility to have various signed-vector-digit representations to the system to any

particular three-dimensional vector.

Theorem 3.2

In the vector representation with base β and a digit set D ={(x, y, z) | -b ≤ x, y, z ≤ b}

where b is an integer such that β/2 ≤ b ≤ β-1, any three-dimensional vector can have

more than one finite representation.

Proof:

Let V be a three-dimensional vector, V = (u, v, w). Since the number representation

system in base β with digits in E = { e | -b ≤ e ≤ b } is a redundant number system, u,

v, and w must have more than one representation in (β, E). Then,

u = (utut-1ut-2… us)β where , ∑
=

=
s

tj

j
juu β

v = (vtv t-1v t-2… vs)β where ∑
=

=
s

tj

j
jvv β ,

w = (wtw t-1w t-2… ws)β where .∑
=

=
s

tj

j
jww β

It is also true that there exists other representations for u, v, and w, then

u = (dtdt-1dt-2… ds)β where , ∑
=

=
s

tj

j
jdd β

v = (gtg t-1g t-2… gs)β where ,∑
=

=
s

tj

j
jgg β

w = (hth t-1h t-2… hs)β where ∑
=

=
s

tj

j
jhh β .

This is of course,

 V = ui + vj + wk = di + gj + hk.

This can imply that V has more than one representation in base β with digits in D.

26

Example 3.3

In the base β = 2, with a digit set D = {(x, y, z) | - 1 ≤ x, y, z ≤ 1 }, the vector V1 =

4i + 3j + 5k can be represented as

V1 = ((1, 0, 1) (0, 1, 0) (0, 1, 1))2.

Find one different representation of V1.

Solution

This number system is also a redundant system meaning that there is more than one

representation for denoting this vector. As a result of that, V1 can also be written as

V1 = ((1, 1, 0) (-1, -1, 1) (0, 0, 1) (0, -1, -1))2.

Example 3.3

In the base number β = 3 with the digit set D = {(x, y, z) | - 2 ≤ x, y, z ≤ 2}, the vector

V2 = 9i + 8j + 12k can be represented as

V2 = ((1, 0, 1) (0, 2, 1) (0, 2, 0)) 3.

Find a different representation of V2.

Solution

With the redundant number system concept, one of other representations of V2 can

also be described as follows:

V2 = ((1, 1, 1)(-2, -2, -1) (0, 0, -2) (0, -1, 0)) 3

Then, the proposed vector representation system is completed and also has a

redundant property. The next chapter will show how to perform an on-line

computation in this system.

CHAPTER IV

ON-LINE ARITHMETIC OPERATIONS FOR

THREE-DIMENSIONAL VECTOR REPRESENTATION

This chapter will introduce the fundamental arithmetic operations which are

addition, subtraction, and multiplication for any two three-dimensional vectors in an

on-line mode with the signed-vector-digit representation. The newly created algorithm

and the proof for those arithmetic operations will be introduced. At the end of the

chapter, the examples of them will be shown.

The on-line arithmetic operations for three-dimentsional vector system brings

the concept of the on-line arithmetic operation to apply which is the most significant

digit first calculation mode. That means all operation would be done in the same

direction for the leftmost digit to the rightmost digit while the result for each

dimension would be produced along the way without waiting until the end of the

precedent operation.

4.1 On-line addition

The algorithm below illustrates the on-line addition algorithm for a signed-vector-

digit representation system. In order to avoid the overflow problem, let us assume that

the first signed-vector-digit of each operand is (0, 0, 0).

Theorem 4.1

Given two three-dimensional vectors V = (v0, v1, v2) and W = (w0, w1, w2) where v0,

v1, v2, w0, w1, and w2 are real numbers. Let the signed-vector-digit representation in

base β with digits in D of V and W be

V = ((v0,t, v1,t, v2,t)(v0, t -1, v1,t -1, v2,t -1)(v0,t -2, v1,t -2, v2,t -2)…(v0,s, v1,s, v2,s))β

and

W = ((w0,t, w1,t, w2,t)(w0,t -1, w1,t -1, w2,t -1)(w0,t -2, w1,t -2, w2,t -2)…(w0,s, w1,s, w2,s))β,

where D ={(x, y, z) | -b ≤ x, y, z ≤ b} and b is an integer such that β/2 ≤ b ≤ β-1. The

on-line addition of V and W, denoted by Z, can be performed with an on-line delay δ,

28

otherwise

b

:

2:

1

2 β

δ
=

⎪
⎩

⎪
⎨

⎧
= .

Proof

The proof of the theorem is given by introducing the following on-line addition

algorithm.

Algorithm: AV

Input:

 V=((v0,t,v1,t,v2,t)(v0,t-1,v1,t-1,v2,t-1)(v0,t-2,v1,t -2,v2,t-2)…(v0,s,v1,s,v2,s))β

W=((w0,t,w1,t,w2,t)(w0,t-1,w1,t-1,w2,t-1)(w0,t-2,w1,t-2,w2,t-2)…(w0,s,w1,s,w2,s))β

 Output:

 Z=((z0,t,z1,t,z2,t)(z0,t-1,z1,t-1,z2,t-1)(z0,t-2,z1,t -2,z2,t-2)…(z0,s,z1,s,z2,s))β

begin

p := t;

j := 0;

while j ≤ 2 do

rj,p-δ := ; ∑
+−

=

−+−+
1

1
,,)(

δ
δβ

t

tk

tk
kjkj wv

j := j + 1;

enddo

while p ≥ s + δ do

 j := 0;

 while j ≤ 2 do

 sj,p-δ := vj,p-δ + wj,p-δ ;

if -2b ≤ sj,p-δ < -b+1

 then cj,p-δ+1 := -1;

sj,p-δ := sj,p-δ + β ; endif

 if –b+1 ≤ sj,p-δ ≤ b-1

 then cj,p-δ+1 := 0; endif

 if b-1 < sj,p-δ ≤ 2b

29

 then cj,p-δ+1 := 1;

sj,p-δ := sj,p-δ - β ; endif

 zj,p := Integer((rj,p-δ + cj,p-δ) / β δ-1) ;

 rj,p-δ-1 := ((rj,p-δ - (zj,p × β δ-1)) × β) + sj,p-δ ;

 j := j + 1;

 enddo;

 p := p – 1;

enddo;

j := 0;

while j ≤ 2 do

 If δ = 2 then Rewrite rj,s+δ -1 := ; endif 2
2

1
1

−
−+

−
−+ + δ

δ
δ

δ ββ ss zz

 If δ = 1 then Rewrite rj,s+δ -1 := ; endif 1
1

−
−+

δ
δ βsz

j := j + 1;

enddo

 end;

Where a = Integer (b) means that a is the closest integer to b, for any real number b.

Proof of the algorithm:

In order to prove that the above algorithm is correct, we have to show that the

algorithm is valid and correct. Moreover, the complexity of the algorithm will be

shown as well.

Validation:

It is to show that the result of the addition operation of two three-dimensional vectors

is always in the digit set D as its operands (i.e., the answer is valid in the

representation).

 It is obvious that addition in each dimension can be computed separately.

Then the proof will be done for only one dimension called j. The problem can be

transformed into a problem for adding in base β with digits in E = { e | -b ≤ e ≤ b } of

Vj = (vj,t, vj,t-1, vj,t-2, vj,t-3, …, vj,s)β and

Wj = (wj,t, wj,t-1, wj,t-2, wj,t-3, …, wj,s)β.

30

The delay for this addition becomes an on-line delay in the signed-vector-digit

representation system.

From the algorithm, at the pth iteration,

 rj,p-δ denotes the remainder from the previous iteration,

 sj,p-δ denotes the interim sum at the current iteration,

 Input Vj vj,t … vj,t-δ+1 vj,t-δ …

 + + … + + …

 Input Wj wj,t … wj,t-δ+1 wj,t-δ …

 rj,t-δ sj,t-δ

 β δ-1 +

 sj,t-δ

 zj,t

 Output +

 rj,t-δ-1

Figure. 4.1 The relation of the inputs, rj,t-δ , sj,t-δ, and the output (zj,t)

cj,p-δ denotes the carry propagation at the current iteration.

The relation at the first iteration can be illustrated by Fig 4.1.

It is remarked that for the first iteration, the remainder rj,p-δ is computed from

the δ first digits of the input operands.

 The rest is to show that all zj,p, for all s ≤ p ≤ t, is an element in E. The proof is

separated into three cases,

Case 1: p = t (the first iteration)

 From the definition of rj,p-δ, vj,t =0 and wj,t = 0, it is obtained that

 | rj,p-δ | ≤ 2b ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−−

1
11

β
β δ

. (4.1)

 Since zj,p := Integer((rj,p-δ + cj,p-δ) / β δ-1) and (4.1), then

31

 | zj,p | ≤ Integer(1

1

1
1

12

−

−

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

δ

δ

β
β

βb
). (4.2)

 From the definition, β/2 ≤ b ≤ β -1, then

1

2
−β
b ≤ 2, and (4.3)

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−− 1
1

21
1 ββ δ

b > 0. (4.4)

 From (4.2), (4.3) and (4.4), we can conclude that

 | zj,p | < 2.

Case 2: s+δ-1 < p < t

 From the algorithm, zj,p := Integer((rj,p-δ + cj,p-δ) / β δ-1), then

 rj,p-δ - (zj,p × β δ-1) ≤ ⎥
⎦

⎥
⎢
⎣

⎢ −

2

1δβ . (4.5)

 From rj,p-δ-1 := ((rj,p-δ - (zj,p × β δ-1)) × β) + sj,p-δ , and (4.5), we conclude that

 | rj,p-δ | ≤ ⎥
⎦

⎥
⎢
⎣

⎢ −

2

1δβ × 1−+ bβ . (4.6)

 The proof is separated into two cases,

 Case 2.1: δ = 1

 From (4.6) and , it is obtained that | rj,p-δ | ≤ b – 1. It is thus

 | zj,p | < b - 1.

 Case 2.2: δ = 2

 In this case, it is b =
2
β . From (4,6), then | rj,p-δ | ≤ b × 1−+ bβ . That is

| zj,p | ≤ Integer(⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+
ββ
1bb) = b.

Case 3: p = s+δ-1

 Since | rj,p-δ | ≤ ⎥
⎦

⎥
⎢
⎣

⎢ −

2

1δβ × 1−+ bβ .

 Case 3.1: δ = 1

It is obtained that | rj,p-δ | ≤ b – 1, then the Rewrite statement is valid.

32

 Case 3.2: δ = 2

 It is obtained that | rj,p-δ | ≤ b × 1−+ bβ , then the Rewrite statement is

also valid.

Correctness:

It is to show that the algorithm gives the correct answer. The expected result should

be equal to , for all j = 0, 1, and 2. Consider ∑
=

+
s

tk

k
kjkj wv β)(,,

 = ∑ + ∑
=

+
s

tk

k
kjkj wv β)(,,

+−

=

+
1

,,)(
δ

β
t

tk

k
kjkj wv ∑

−=

+
s

tk

k
kjkj wv

δ

β)(,,

 = + 1
1

1
,,)(+−

+−

=

−+− ×⎟
⎠

⎞
⎜
⎝

⎛
+∑ δ

δ
δ ββ t

t

tk

tk
kjkj wv ∑

−=

+
s

tk

k
kjkj wv

δ

β)(,,

 = + ∑ 1
,

+−
− × δ
δ β t

tjr
−=

+
s

tk

k
kjkj wv

δ

β)(,,

 = + ∑ 1
,

+−
− × δ
δ β t

tjr
−=

s

tk

k
kjs

δ

β)(,

 = + ∑ 1
,

+−
− × δ
δ β t

tjr
−=

+
s

tk

k
kjkj sc

δ

ββ)(,,

 = + + 1
,

+−
− × δ
δ β t

tjr δ
δδ ββ −
−− + t

tjtj sc)(,, ∑
−−=

+
s

tk

k
kjkj sc

1
,,)(

δ

ββ

 = + δ
δ

δ
δδ ββ −

−
+−

− ++ t
tj

t
tjtj scr ,

1
,,)(∑

−−=

+
s

tk

k
kjkj sc

1
,,)(

δ

ββ

Since =δδ tjtj cr ,, +− β
β δ

δ
δ −

−−
− −+ tj

tjtj

s
rz ,

1,
1

, , then

 =∑
=

+
s

tk

k
kjkj wv β)(,,

δ
δ

δδ
δ

δ ββ
β

β −
−

+−−
−−

− +−+ t
tj

ttj
tjtj s

s
rz ,

1,
1,

1
,)(

 + ∑
−−=

+
s

tk

k
kjkj sc

1
,,)(

δ

ββ

 = + . 1
1,,

+−
−−+ δ

δ ββ t
tj

t
tj rz ∑

−−=

+
s

tk

k
kjkj sc

1
,,)(

δ

ββ

Then we will obtain that

33

 =∑ + r∑
=

+
s

tk

k
kjkj wv β)(,,

+

=

δ

β
s

tk

k
kjz , j,s+δ -1.

 In the case that δ = 1, rj,s+δ -1 is rewritten into and in the case where

δ = 2, r

1
1

−
−+

δ
δ βsz

j,s+δ -1 is rewritten into
2

2
1

1
−

−+
−

−+ + δ
δ

δ
δ ββ ss zz . In the both cases, it is obtained

that the result is . The proof is completed. ∑
=

s

tk

k
kjz β,

Complexity:

For the addition operation algorithm, the complexity on which we’re interested in

such as time and space can be described as follows:

1. Time

- It takes Θ(n) to do the addition while n is the number of digits.

2. Space

 - The space required for addition operation is Θ(β) while β is a base

number.

Example 4.1

For base 5, the digit set is {-3, -2, -1, 0, 1, 2, 3} to do addition calculation between

60i + 23j + 32k and 48i + 36j + 19k.

Solution

Table 4.1 shows an on-line addition using the algorithm above.

Table 4.1 On-line addition of 60i + 23j + 32k and 48i + 36j + 19k

 i j k i j k i j k i j k

61i + 23j + 32k 0 0 0 2 1 1 2 0 1 1 -2 2

48i + 36j + 19k 0 0 0 2 1 1 -1 2 -1 3 1 -1 +

 0 0 0 4 2 2 1 2 0 4 -1 1

Remainder -1 2 2 1 2 0 -1 -1 1

Carry digit 1 0 0 0 0 0 1 0 0

 1 0 0 -1 2 2 2 2 0 -1 -1 1

34

The result is Z =((1, 0, 0)(-1, 2, 2)(2, 2, 0)(-1, -1, 1))5

i-column = (1, -1, 2, -1) = 109

j-column = (0, 2, 2, -1) = 59

k-column = (0, 2, 0, 1) = 51

The result is then 109i + 59j + 51k.

4.2 On-line subtraction

For on-line subtraction algorithm of three-dimensional vector system, the on-line

addition algorithm is used to calculate by attaching the negative sign to the second

operand.

35

Theorem 4.2

Given two three-dimensional vectors V = (v0, v1, v2) and W = (w0, w1, w2) where v0,

v1, v2, w0, w1, and w2 are real numbers. Let the signed-vector-digit representation in

base β with digits in D of V and W be

V = ((v0,t, v1,t, v2,t)(v0, t -1, v1,t -1, v2,t -1)(v0,t -2, v1,t -2, v2,t -2)…(v0,s, v1,s, v2,s))β

and

W = ((w0,t, w1,t, w2,t)(w0,t -1, w1,t -1, w2,t -1)(w0,t -2, w1,t -2, w2,t -2)…(w0,s, w1,s, w2,s))β,

where D ={(x, y, z) | -b ≤ x, y, z ≤ b} and b is an integer such that β/2 ≤ b ≤ β-1. The

on-line subtraction of W from V can be performed by an on-line addition of V and -W

with an on-line delay δ,

otherwise

b

:

2:

1

2 β

δ
=

⎪
⎩

⎪
⎨

⎧
= .

Proof

The proof is obvious by applying Theorem 4.1.

Example 4.2

For base 5, the digit set is {-3, -2, -1, 0, 1, 2, 3} to do subtraction calculation between

50i + 13j + 22k and 38i + 26j + 9k.

Solution

Table 4.2 shows the computation corresponding to the on-line addition algrithm. The

result from the algorithm is Z =((0, 0, 0)(1, -1, 0)(-1, 2, 3)(2, 2, -1))5

i-column = (0, 1, -1, 2) = 22

j-column = (0, -1, 2, 2) = -13

k-column = (0, 0, 3, -1) = 14

The result is 22i -13j + 14k.

36

Table 4.2 On-line subtraction of 50i + 13j + 22k and 38i + 26j + 9k

 i j K i j k i j k i j k

60i + 13j + 22k 0 0 0 2 0 1 2 2 -1 0 3 2

-(38i + 26j + 8k) 0 0 0 -2 -1 0 2 0 -2 2 -1 2 +

 0 0 0 0 -1 1 4 2 -3 2 2 4

Remainder 0 -1 1 -1 2 2 2 2 -1

Carry digit 0 0 0 1 0 -1 0 0 1

 0 0 0 1 -1 0 -1 2 3 2 2 -1

4.3 On-line multiplication

The algorithm below illustrates the on-line multiplication algorithm for three-

dimensional vector system.

Theorem 4.3

Given two three-dimensional vectors V = (v0, v1, v2) and W = (w0, w1, w2) where v0,

v1, v2, w0, w1, and w2 are real numbers. Let the signed-vector-digit representation in

base β with digits in D of V and W be

V = ((v0,t, v1,t, v2,t)(v0, t -1, v1,t -1, v2,t -1)(v0,t -2, v1,t -2, v2,t -2)…(v0,s, v1,s, v2,s))β

and

W = ((w0,t, w1,t, w2,t)(w0,t -1, w1,t -1, w2,t -1)(w0,t -2, w1,t -2, w2,t -2)…(w0,s, w1,s, w2,s))β,

where D ={(x, y, z) | -b ≤ x, y, z ≤ b} and b is an integer such that β/2 ≤ b ≤ β-1. The

on-line multiplication of V and W, denoted by Z, can be performed with an on-line

delay δ where

2

3:

3

2

=

≥

⎪
⎩

⎪
⎨

⎧
=

β

β
δ .

37

Proof

The proof of the theorem is given by introducing an algorithm for on-line

multiplication in base β with an on-line delay δ. To simplify the proof, let us assume

that t = –1. A on-line delay δ can be replaced by introducing the input operand bound

(i.e., each input operand must be less than or equal to δβ
1 or the first δ digits must be

all zero.)

Algorithm: MV

Input:

 V=((v0,t,v1,t,v2,t)(v0,t-1,v1,t-1,v2,t-1)(v0,t-2,v1,t -2,v2,t-2)…(v0,s,v1,s,v2,s))β

W=((w0,t,w1,t,w2,t)(w0,t-1,w1,t-1,w2,t-1)(w0,t-2,w1,t-2,w2,t-2)…(w0,s,w1,s,w2,s))β

 Output:

 Z=((z0,t+δ -1,z1, t+ δ -1,z2, t+ δ -1)(z0, t+ δ -2,z1, t+ δ -2,z2, t+ δ -2) …(z0,2s,z1,2s,z2,2s))β

begin

Initialization process

j := 0;

p := -1;

 qj := 0;

 rj := 0;

Uj := 0;

Iteration process

while p ≥ s do

 j := 0;

 while j ≤ 2 do

 qj := qj + (vj,p × β p) ;

 new_rj := rj + (wj,p × β p);

j := j + 1;

 enddo

 j := 0;

 while j ≤ 2 do

38

 m := (j + 1) mod 3;

 n := (j + 2) mod 3;

 Uj := Uj + (qm × wn,p) – (qn × wm,p)

+ (rm × vn,p) – (rn × vm,p) ;

j := j + 1;

 enddo

 j := 0;

 while j ≤ 2 do

 zj,p := Integer(Uj) ;

 Uj := (Uj – (zj,p)) ×β ;

 rj := new_rj ;

j := j + 1;

 enddo

 p := p – 1;

enddo

 Termination process

 j := 0;

while j ≤ 2 do

 Rewrite Uj := ; ∑
−=

−
s

sk

sk
kz

2

1

β

j := j + 1;

enddo

end

Proof of the algorithm

In order to prove that the above algorithm is correct, we will show that the algorithm

is valid and correct. Moreover, the complexity of the algorithm will be shown as well.

Validation

It is to show that the result of the multiplication operation of 2 three-dimensional

vectors is always in the digit set D as its operands.

39

By the same way as the proof of an on-line addition algorithm, we have to

prove that for any signed-vector-digit (z1,k, z2,k, z3,k), all digits z1,k, z2,k, z3,k are elements

in the digit set E = { e | -b ≤ e ≤ b }.

First of all, Algorithm MV can be separated into three steps as follows:

1. Initialization: compute the first partial product from all δ – 1 first

digits of the inputs.

2. Iteration: for each input digit,

a. compute an additional partial product from each operand,

b. modify the partial product by two additional partial

products,

c. produce the output digit.

3. Termination: produce the output digits from the rest partial

product.

From Algorithm MV, Fig.4.2 shows the concept of an on-line multiplication

algorithm. To simplify the proof, let us assume that t = -1.

Initialization process

From the algorithm,

(q0, q1, q2) denotes an input operand V in process,

(r0, r1, r2) denotes an input operand W in process,

(U0, U1, U2) denotes the partial product.

Iteration process

For each input digit, (v0,p, v1,p, v2,p) and (w0,p, w1,p, w2,p), the additional partial product

is composed of two parts, as follows:

 ((q0, q1, q2) + (v0,p, v1,p, v2,p) × β p) × (w0,p, w1,p, w2,p) (4.10)

and

 (r0, r1, r2) × (v0,p, v1,p, v2,p). (4.11)

Note that it is considered only a current input digit of V but not the one of W.

Using the right-hand finger concept, (4.10) can be expressed for each j = 0, 1, and 2,

as

40

 (qm × wn,p) – (qn,p × wm,p),

with m = (j + 1) mod 3 and n = (j + 2) mod 3, where

 qj = qj + (vj,p × β p) (4.12)

From the algorithm and (4.12), it is

 δβ
1

≤jq . (4.13)

With the same reason, (4.11) can be expressed for each j = 0, 1, and 2 by

 (rm × vn,p) – (rn × vm,p),

with m = (j + 1) mod 3 and n = (j + 2) mod 3, where

 rj = rj + (wj,p × β p). (4.14)

From the algorithm and (4.14), it is

 δβ
1

≤jr . (4.15)

Since zj,p := Integer(Uj), and zj,p must be in E, then

2
1

+≤ bU j . (4.16)

The current partial product is then,

 Uj = Uj + (qm × wn,p) – (qn × wm,p)

 + (rm × vn,p) – (rn,p × vm,p). (4.17)

From Uj := (Uj – (zj,p)) ×β, (4.9), (4.13), (4.15), (4.16), and (4.17), the following

condition should be satisfied,

2
14

2
1

+<+⎟
⎠
⎞

⎜
⎝
⎛ × bb

δβ
β . (4.18)

In the case that β = 2, that is b = 1, then the minimum δ is 3. In the case where β ≥ 3,

the minimum δ is 2.

Termination process

Since
2
1

+≤ bU j and Uj := (Uj – (zj,p)) ×β, this can include that
2
1

≤jU . It is clear

that Uj can be rewritten by where z∑
−=

12

1

s

sk

k
kz β k are digits in the set E.

Correctness

41

The product of two three-dimensional vectors, V and W, can be computed as follows;

 V × W =∑
=

×
s

tk

k
kkk wwwV β),,(,2,1,0

 =∑ ∑
= =

⎟
⎠

⎞
⎜
⎝

⎛
×

s

tk

k
s

td

d
kkkddd wwwvvv ββ),,(),,(,2,1,0.2,1,0

 = twwwvvv 2
1,21,11,01.21,11,0),,(),,(β×× −−−−−−

 + ∑ ∑ ∑
−= −= = ⎟

⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛
×

s

tu

u

tk

k
u

td

d
kkkddd wwwvvv

1
,2,1,0.2,1,0),,(),,(

δ

ββ

 + ∑ ∑ ∑
−=

−

−= =
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛
×

s

tu

u

td

d
u

tk

k
dddkkk vvvwww

δ δ

ββ
1

.2,1,0,2,1,0),,(),,(

where Uj = . twwwvvv 2
1,21,11,01.21,11,0),,(),,(β×× −−−−−−

From the algorithm, zj,p = Integer(Uj) and Uj = (Uj – (zj,p)) ×β , then

the old
β

j
jj

U
zU += −1, ,or

 V × W =
β

j
j

U
z +−1,

 + ∑ ∑ ∑
−= −= = ⎟

⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛
×

s

tu

u

tk

k
u

td

d
kkkddd wwwvvv

1
,2,1,0.2,1,0),,(),,(

δ

ββ

 + . ∑ ∑ ∑
−=

−

−= =
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛
×

s

tu

u

td

d
u

tk

k
dddkkk vvvwww

δ δ

ββ
1

.2,1,0,2,1,0),,(),,(

For each iteration, one output is produced. This also shows that the degree of the next

output is decreased by one (i.e.,
β

jU
).

Since the value of Uj is bound, an algorithm runs until the last digit of each input

operand is accumurated. The last Uj is rewritten into , then ∑
−=

−
s

sk

sk
kz

2

1
β the result of the

algorithm is as follows:

 V × W = ∑
−=

+
s

k
s
jk

k

U
z

1 β
β = +∑

−=

s

k

k
kz

1

β s

s

sk

sk
kz

β

β∑
−=

−
2

1 = . ∑
−=

s

k

k
kz

2

1

β

42

The proof is then completed.

Complexity:

For the multiplication operation algorithm, the complexity on which we’re interested

in such as time and space can be described as follows:

1. Time

- It takes O(n2) to do the multiplication while n is the number of digits.

2. Space

 - The space required for multiplication operation is O(n) while n is a base

number.

 input x x x … x … x x x

x x x

input x x x … x … x x x

x x x ×

X x x … x … x x x x x x

x X x … x … x x x x x x

x x X … x … x x x x x x

x x x … x … x x x

x x x

x x x … x … x x x

x x x

x x x … x … x x x

x x x
 x x x … x … x x X x x x

 x x x … x … X x x x x x

 x x x … x … x x x x x x

 x x x … x … x x x x x x

 x x x … x … x x x x x x

 x x x … x … x x x x x x

 x x x … x x x Output … x x x x x x x x x

The additional partial product
in each iteration.

The partial product

Figure. 4.2 The process of an on-line multiplication algorithm MV

44

Example 4.3

For base 3, the digit set is {-2,-1, 0, 2, 1} to do multiplication calculation between V

and W while V=84i + 27j +13k and W=37i +93j + 82k.

Solution

The representation of V and W are as follows:

V = ((1, 0, 0) (0, 1, 0) (0, 0, 1) (1, 0, 1) (0, 0, 1))3

W = ((0, 1, 1) (1, 0, 0) (1, 1, 0) (0, 1, 0) (1, 0, 1))3

Since an on-line delay is 2, the operand bound is 23
1

Let V ’ = V × β-7 .

The representation of V ’ = (.(1, 0, 0) (0, 1, 0) (0, 0, 1) (1, 0, 1) (0, 0, 1))3

Let W ’ = W × β-7 .

The representation of W ’ = (.(0, 1, 1) (1, 0, 0) (1, 1, 0) (0, 1, 0) (1, 0, 1))3

Fig 4.3 shows the process of the classical multiplication which gives the result at the

end as follows:

i-column = 1-1-1-2-1-2-10 = 1005

j-column = -100012201 = -6407

k-column = 1001001000 = 6813

That gives the result to be 1005i - 6407j + 6813k

Table 4.3 shows the process of the multiplication algorithm (Mv).

i j k i j k i j k i j k i j k i j k i j k
0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 1 0 0 1
0 0 0 0 0 0 0 1 1 1 0 0 1 1 0 0 1 0 1 0 1 X
0 0 0 0 0 0 -1 0 0 0 1 0 0 0 0 -1 0 0 0 0 0

 0
 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 1 0 0 1 0 0 1
 0
 0 0 0 0 0 0 1 0 0 0 0 0 0 0 -1 1 0 -1 0 0 -1
 0
 0
 0 0 0 0 0 0 1 0 0 0 0 0 0 0 -1 1 0 -1 0 0 -1
 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 1 0 0 1 0 0 1
 0
 0
 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 1 0 0 1 0 0 1
 0 0 0 0 0 0 -1 0 0 0 1 0 0 0 0 -1 0 0 0 0 0
 0 0 0 0 0 0 1 0 0 0 0 0 0 0 -1 1 0 -1 0 0 -1
 0
 0
 0
 0
 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 1 0 0 -1 1 0 -1 0 1 -2 0 2 -1 1 2 -2 0 0 -1 0 1 0 0
i k j i k j i k j i k j i k j i k j I k j i k j i k j i k j i k j i k j i k j i k

Figure 4.3 On-line multiplication of 84i + 27j + 13k and 37i + 93j + 82k

Following the algorithm Mv,
Table 4.3 On-line multiplication of 84i + 27j + 13k and 37i + 93j + 82k following the algorithm Mv

Step V W Q r U z New U

1 (0,0,0) (0,0,0) 0 0 0 (0,0,0) 0

2 (0,0,0) (0,0,0) 0 0 0 (0,0,0) 0

3 (1,0,0) (0,1,1)
27
1 i

27
1 j+

27
1

k
27

1− j+
27
1 k

(0,0,0)
9
1− j+

9
1 k

4 (0,1,0) (1,0,0)
27
1 i+

81
1 j

81
1 i+

27
1 j+

27
1 k

27
1 i+

9
1− j+

81
8 k

(0,0,0)
9
1 i+

3
1− j+

27
8 k

5 (0,0,1) (1,1,0)
27
1 i+

81
1 j+

243
1 k

243
4

i+
243
10 j+

27
1

k
243
17

i+
243

77− j+
81
26

k
(0,0,0)

81
17

i+
81
77− j+

27
26

k

6 (1,0,1) (0,1,0)
729
28 i+

81
1 j+

729
4

k
243
4

i+
729
31

j+
27
1

k
729
119

i+
243
236−

j+
729
760

k
(0,-1,1)

243
119

i+
81
7 j+

243
31

k

7 (0,0,1) (1,0,1)
729
28 i+

81
1 j+

2187
13

k
2187
37

i+
729
31 j+

2187
82

k
729
335 i+

2187
154

j+
243
28

k
(0,0,0)

243
335

i+
729
154 j+

81
28 k

47

Step V W Q r U Z U

243
335

i+
729
154 j+

81
28 k

(1,0,0)
81
92 i+

243
154 j+

27
28 k

9
81
92 i+

243
154 j+

27
28 k

(1,1,1)
27
11 i+

81
89− j+

9
1 k

10
27
11 i+

81
89− j+

9
1 k

(0,-1,0)
9
11 i+

27
8− j+

3
1 k

11
9
11 i+

27
8− j+

3
1 k

(1,0,0)
3
2 i+

9
8− j+1k

12
3
2 i+

9
8− j+1k

(1,-1,1)
1i+

3
1 j

13
1i+

3
1 j

(-1,0,0) j

14 j (0,1,0) 0

48

The result from the algorithm is Z’ = (.(0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,-1,1)
(0,0,0) (1,0,0) (1,1,1) (0,-1,0) (1,0,0) (1,-1,1) (-1,0,0) (0,1,0))

i-column = .000000011011-10 × 314 = 11011-10 = 1005

j-column = .00000-1001-10-101 × 314 = -1001-10-101 = -6407

k-column = .00000100100100 × 314 = 100100100 = 6813

Therefore, the result is 1005i -6407j + 6813k

CHAPTER V

CONCLUSION

In serial computation, fundamental arithmetic calculations such as addition,

subtraction and multiplication are usually processed in LSDF (least significant digit

first) mode meaning that the calculation is taken place from the rightmost to the

leftmost digit while the division operation is performed in the MSDF (most significant

digit first) calculation mode. The pipeline concept has been brought up to apply for the

further idea on how the output for each digit can be produced while the calculation of

the rest digit can continue. In fact, the output can be produced without waiting the

whole calculation to be done.

Three dimensional vector systems have been applied to current technology such

as fluid mechanic, mechanical engineering, electrical engineering, etc. Therefore, the

time complexity for doing any calculation is very crucial.

In this work, the signed-vector-digit representation is proposed in order to

represent three-dimensional vectors. Three numbers from all dimensions of three-

dimensional vectors are combined. Therefore, they will not be separately maintained

anymore. With the normal means of cross product calculation, that would take nine

times of multiplication and another eight times of addition in order to achieve one cross

product of two three-dimensional vectors. With the signed-vector-digit representation,

for doing the cross product of any two vectors, it takes only one real number slightly

modified classical multiplication as illustrated by Figure 4.2.

The advantage of using the on-line arithmetic concept is to get the output for

each digit produced without waiting for the whole calculation to be completed. With the

newly introduced signed-vector-digit representation and on-line fundamental arithmetic

algorithms for three-dimensional vector system which are addition, subtraction, and

multiplication (cross product), the classical computation can be applied as a result of

that, the complexity of the computation for signed-vector-digit would be less compared

to the three-dimensional vector format.

REFERENCES

[1] W. Penney. A binary system for complex numbers. JACM 12 (1965):

247-248.
[2] T. Safer. Polygonal radix representations of complex numbers. Theoretical

Computer Science 210 (1999): 159-171.
[3] J. Stewart. Calculus (Early Trancendentals). 3rd Ed. CA: Brooks/Cole, Pacific

Grove, 1995.
[4] K.S. Trivedi and M.D. Ercegovac. On-line algorithms for division and

multiplication. IEEE Transactions on Computers 26 (1977):
681-687.

[5] A. Avizienis. Signed-digit number representations for fast parallel
 arithmetic. IRE Transactions on Electronic Computers 10 (1961):

389-400.
[6] B. Parhami. Generalized Signed-Digit Number Systems: A Unifying
 Framework for Redundant Number Representations. IEEE Transactions
 on Computers 39 (1990): 89-98.
[7] B. Parhami. Computer Arithmetic: Algorithms and Hardware Designs. London:
 Oxford University Press, 2000.
[8] J. W. Joiner. A History of Vector Analysis (doctoral dissertation at George
 Peabody College for Teachers), 1971.
[9] A. Surarerks, Digit Set Conversion by On-Line Finite Automata. Bullentin of
 the Belgian Mathematical Society 8 (2001): 337-258.
[10] Ch. Frougny and A. Surarerks. On-line multiplication in real and Complex

 base. Proceedings of the 16th IEEE Symposium on Computer Arithmetic
(2003): 212-219.

[11] D. E. Knuth. An Imaginary Number System. Communications of the ACM
 (1960): 245-247.

51

BIOGRAPHY

Name Saravut Rangsunvigit

Gender Male

Date of Birth December 9,1975

Marital Status Single

Education History

1999-2002 B.Sc in Computer Science, University of Manitoba (Manitoba,
 Canada)

1993-1997 B.Eng in Civil Engineering, Kasetsart University

Employment History

October 2002-Present Reuters Software(THAILAND) Ltd.
April 2002-September 2002 Canada Safeway Co.,Ltd.
September 2001-January 2002 Qunara Co.,Ltd (A Division of Mantioba
 Telecom Services)
January 2001-May 2001 Manitoba Education and Training

	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	Chapter I Introduction
	Chapter II Preliminaries
	Chapter III Three-dimension vector representation
	Chapter IV On-line arithmetic operations for three-dimensional vector representation
	Chapter V Conclusion
	References
	Vita

