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CHAPTER I 

 
INTRODUCTION 

 
The number has a long history for human being. It has been discovered for a 

long period of time. Number representation can be composed by either finite or 

infinite set of strings normally represented by alphabets or digits. In arithmetic 

computation, each representation can be used to do any source of computation by 

particular algorithms. Any real or complex number can be represented by a set of 

strings which are alphabets or digits as described earlier. 

 

( X a X a-1 X a-2 X a-3 X a-4 …. ) n  = Xa na  + Xa-1 na-1 + Xa-2 na-2 + Xa-3 na-3 +…, 

 

where a is positional number of each digit and n is a base number which can be both a 

real and complex number. This kind of representation is called ß-repesentation. 

The binary number system where its base number is 2 is widely used in the 

computer arithematic world. It generally contains a sequence of 0s and 1s.  

bn bn-1… b2b1b0 represents the number 

bn2n bn-12n-1 +… +b222 b121 b020 

Basically, any base ten number can be represented as a summation of power of two as 

shown in Table 1.1 

In term of binary computation, the addition of any two binary number system 

can be done following the least significant digit first (LSDF) mode which is the 

computation to flow from right to left as it normally does in the decimal base number 

system. The concept of propagation (carry over) is applied in order to make sure that 

each output result is still having the valid format of binary number system in which 

only 0 and 1 are allowed. 

The multiplcation of any binary number system has the same calculation steps 

as the decimal number system. The concept of addition of binary number system is 

also applied for multiplication operation as well. 

In addition to a positive base number system that is often used, a negative 

integer base number can be used to represent a number system without a sign as well.  
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Table 1.1 : Binary number system table ( n = 0-10) 

 

N 2n

0 1 

1 2 

2 4 

3 8 

4 16 

5 32 

6 64 

7 128 

8 256 

9 512 

10 1024 

 

Example 1.1 Find the addition of 81 and 25 in base number –2 with the digit set as 

{0,1}, 

Solution 

81 = (1010001) –2

25 = (1101001) –2 

The addition of 81 and 25 in the base –2 number system can be done as follows: 

81   =   1   0   1   0   0   0   1 

                                                     + 

              25   =   1   1   0   1   0   0   1

                 2   1   1   1   0   0   2 

 

Number 2 can be represented as 110 in the base –2 number system, the above 

example answer could be further calculated as below: 

 

                     (110111110) –2  =  –2 + 4 –8 – 32 – 128 + 256  =  106 
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A complex number contains both real and imaginary part. It was firstly known 

in 1st century AD by Greek mathematician, Heron of Alexandria. Until during the mid 

of 19th century, Willian Rowan Hamiltion discovered the representation of a complex 

number as a+bi on the xy plane where both a and b are a real number. Some complex 

number representation have beed examined in [1,2]. 

Such a fascinated number can also be pointed in a two-dimensional plane with 

taking ‘a’ value on the x-axis and ‘b’ value of the y-axis. The complex number 

development is still going along in the 20th century. It has also been adapted to be 

used in a modern world such as in both electrical and mechanidal engineering field.  

Two-dimensional vector can also be reprsented using a complex number, one 

dimension corresponds to a real part and the other dimension corresponds to an 

imaginary part. Fundamental arithmetic operations, such as addition, subtraction, dot 

product and cross product, can also be performed in the complex number system. 

This concept of vector representation using complex number system is 

extented to a multi-dimensional vector system. A vector is usually described by a 

summation of products. A unit vector for each dimension is proposed. Any n-

dimensional vector  X = (x1, x2, x3, …, xn) can be expressed by 

x1 × u1 + x2 × u2 + x3 × u3 + … + xn × un, 

where ui is a unit vector for the ith
 dimension. The value of the expression is normally 

called a vector value of the representation. By the same way as two-dimensional 

vector system, fundamental arithmetic operations for vector system can also be 

performed in the multi-dimensional complex number system. 

 One problem can be considered. For example, the vector cross product of two 

vectors, A  = a1i + a2j + a3k and B = b1i + b2j + b3k, is defined as 

A × B =  ( a2b3 – a3b2 ) i – ( a2b3 – a3b2 ) j + ( a1b2 – a2 b1 ) k 

where i, j, and k are three unit vector for each dimension respectively. The calculation 

gets complicated and takes much more time especially in the cross product calculation 

for two three-dimensional vectors. 

In terms of time complexity, the time complexity of any scalar number system 

is less than that of multi-dimensional number system. In order to improve the time 

complexity for arithmetic operations, there are two possible solutions for solving such 

a problem as follows: 
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1. find the new operation system used with multi-dimensional number system 

in stead of using the scalar number system one, and 

2. convert the multi-dimensional number system into a scalar number system 

form, perform the calculation, and then convert the result into the multi-

dimensional number system format. 

This thesis focuses on the latter one using the classical computation concept and 

three-dimensional vectors represented as ai + bj + ck where a, b, and c are real 

numbers.  

 The three-dimensional vector has been arised in a number of disciplines in 

science field including the following domains [3]: 

1. Mechanism: Gravatational fields: At each point, the vector gives the 

direction and magnitude of the force on a particle. 

2. Electricity and Magnetism: Electric and magnetic fields, At each point, the 

vector gives the direction and magnitude of the force on a particle. 

3. Fluid Mechanics: Velocity fields: At each point, the vector gives the velocity 

of a fluid. 

In 1977, Ercegovac and Trivedi in [4] had first proposed an important result 

called on-line computation theorem. In fact, in an on-line arithmetic, operands and 

results flow through arithmetic units in a digit serial manner which is in a most 

significant digit first mode (MSDF). Since all operations are performed in the same 

direction, the pipeline concept in which several tasks could be done simultaneously 

can be applied. 

The aim of this thesis is to propose a representation for three-dimensional vector 

system and also to introduce its on-line fundamental arithmetic operations which are 

addition, subtraction, and multiplication (cross product). The technique of dimension 

reduction in order to reduce the calculation effort is also applied. On-line computation 

is also studied in this work, then a redundant system is combined into the system. The 

organization of the thesis will be divided into each chapter as follows: 

Chapter 2: This chapter introduces the fundamental definitions such as ‘number 

system’ including both signed and unsigned digit number representation systems, 

‘three- dimensional vector system’, and ‘on-line arithmetic’ including the basic 

algorithms and examples of online addition, subtraction, and multiplication. 
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Chapter 3: This chapter introduces the new representation of any three-

dimensional vector. This new representation will be used for further calculation on 

on-line arithmetic operations mentioned in Chapter 2 which are addition, subtraction, 

and multiplication. 

Chapter 4: This chapter describes how both on-line addition and subtraction for 

any three-dimensional vector system can be done. The newly created algorithm will 

also be introduced. The algorithm proof as well as an example are also stated in this 

chapter. The multiplication operation on on-line mode will be introduced in this 

chapter with the newly created algorithm. Same as the on-line addition and 

subtraction, the proof  of the on-line multiplication and example will also be described 

at the end of this chapter. 

Chapter 5: The thesis conclusion will be placed in the last chapter. The 

reference section will come afterwards. 

 

Objectives 

1. To deeply understand the concepts of an on-line arithmetic. 

2. To develop a representation for three dimensional vectors and to develop their 

on-line fundamental arithmetic algorithms, i.e., addition, subtraction and 

multiplication. 

 

Scope of works 

1. To develop a representation for three-dimensional vectors. 

2. To develop on-line fundamental arithmetic algorithms, i.e., addition, 

subtraction, and multiplication (cross product). 

 

Research procedures 

1. Study the Knuth complex number system. 

2. Study three-dimensional vector system. 

3. Study on-line arithmetic algorithms. 
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4. Develop a new representation for three-dimensional vectors and their on-line 

fundamental arithmetic algorithms, i.e., addition, subtraction, and 

multiplication (cross product). 

5. Check for newly created algorithms correctness. 

6. Make a research conclusion. 

7. Complete the research. 

 

Expected results 

Three-dimensional vectors in i, j, and k format can be represented by a new 

representation and can be computable by using their on-line fundamental arithmetic 

algorithms, i.e., addition, subtraction, and multiplication (cross product). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
CHAPTER II 

 
PRELIMINARIES 

 
In this chapter, we recall some definitions and notations that we used in this 

work. It is started by the representation of number systems. Signed digit number 

systems of Avizienis are focused our works. Complex number system  and three-

dimensional vector representation are also recalled. The concept of an on-line 

computation is also described. Finally, some on-line arithmetic operations are 

recalled. 

 

2.1 Number Systems 

 

A number system can be represented as (β, D) where β is a base and D is a finite digit 

set of real or complex numbers. The base β can also be either real or complex number. 

In the classical number system, a canonical digit set, {0, 1, 2, 3, …, β-1}, is used for 

the base β. Below displays a β-representation of X with β as its base, 

 

X = ( X a X a-1 X a-2 X a-3 X a-4 … X 0 .X -1 X -2 X -3… ) β, 

 

where X i is an element in D for an integer i ≤ a. Normally, the set of β-representations 

on D is denoted by P[β, D]. The sets of both finite and infinite β-representations are 

displayed as follows: 

 

• [β,D] denotes the set of all finite β-representations described by b
aP

{ ( X a X a-1 … X b+1 X b )β | X i ∈  D, b ≤ i ≤ a }, 

• [β,D] denotes the set of all β-representations described by aP

{ ( X a X a-1 …)β | X i ∈  D, i ≤ a }, 

where a and b are the maximum and the minimum degrees respectively. 

The numerical value of the representation X = ( X a X a-1 X a-2 …X b)β with base 

β, denoted by || X ||, can be computed as the following equation: 
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.|||| ∑
=

=
b

ai

i
iXX β  

 

An important characteristic for a number representation system is to preserve a 

lexigographic ordering property. The definitions of the lexicographic order on β-

representations with real numbers of all digits are given as the following definitions. 

 

Definition 2.1 

Two β-representations in Pa [β,D] which are X = ( X a X a-1 …)β and Y  = ( Ya Ya-1 …)β  

are said to be comparable. The representation  X is smaller than Y ( X < Y ) in terms 

of lexicographic ordering if there exists an integer k ≤ a such that 

X a = Ya, X a-1 = Ya-1, … , X k+1 = Yk+1, and X k < Yk. 

 

Definition 2.2 

The number system (β,D) has the lexicographic order property if for any two 

representations X and Y, 

X < Y   if and only if  || X || < || Y ||. 

 

Note that, for any two different β-representations X and Y on D, such a system 

is called to be redundant if || X || = || Y ||. 

 

2.1.1 Signed digit number system 

Redundancy is used extensively for speeding up arithmetic operations. Remarkable 

examples are signed-digit number systems introduced by Avizienis in 1961, see detail 

in [5]. These systems are proposed to use some positive and negative integers as 

digits. This can limit the carry propagation in atithmetic operations. Signed digit 

number system composed of a finite set of digits and a base. Avizienis proposed to 

use a digit set D = {-1, 0, 1} when the base β is 2. For any integer base β ≥ 3, the set 

D is represented by a set of the form { e ∈ Ζ | -d ≤ e ≤ d } where β/2 < d ≤ β-1. The 

generalization of signed digit number systems, given by Parhami in 1990 [6], or see 

detail in [7], can be defined by the following definition. 
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Definition 2.3 

The signed digit number system (β,D) is composed of a base β where β is a positive 

integer ≥ 2 and a digit set D, 

D = { e ∈ Ζ | a ≤ e ≤ b }, 

where a and b are integers such that a ≤ 0 ≤ b. 

 

Remark 2.1 

1. Negative numbers cannot be represented in this system if a = 0. 

2. Positive numbers cannot be represented in this system if b = 0. 

 

 The number of digits in a digit set D is equal to | D | = b – a + 1. This number 

can describe the redundancy property of the number representation system. The 

system is said to be a redundancy system if there is at least one number can have 

more than one representation. 

 

Remark 2.2 

1. If | D | < β, some reals cannot be represented in the system. 

2. If | D | = β, every integer has a finite representation, and every real number 

can be represented. 

3. If | D | > β, this system is redundant. 

 

Definition 2.4 

1. The digit set D is a minimally redundant digit set if | D | = β + 1. 

2. The digit set D is a maximally redundant digit set if | D | = 2β - 1. 

3. The digit set D sysmetric if b = | a |. 

 

 For instance, in the base β = 2 with a digit set D = { -1, 0, 1 }, number 14 can 

have more than one representation as illustrated by Fig.2.1. That is 14 can be written 

as (001110)2 or (0100-10)2.  
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β 5 β 4 β 3 β 2 β 1 β 0

32 16 8 4 2 1 
      

0 0 1 1 1 0 
      

0 1 0 0 -1 0 

 

Figure. 2.1 The representation of 14 in the number system (2, {-1, 0, 1}) 

 

2.1.2 Negative integer base number system 

Signed digit number system can be extented using a negative integer as a base. Let β 

be the base with β < -1. A real number is represented in any negative base β 

containing digits in D = { e ∈ Ζ | 0 ≤ e ≤ | β | - 1 }. Remark 2.2 is also applied with 

this number system. 

 

2.1.3 Complex number 

A complex number sometimes can be treated as a two-dimensional vector system 

where the number of the real number part can be matched to the first dimension part 

whereas the number of the imaginary part can also be matched to the second 

dimension part on the Cartesian coordinate system. 

 

 
 

Figure 2.2 Complex number representation on two-dimensional plane 
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Definition 2.5 

The complex number system can be defined as ordered pairs of real numbers (a, b). 

Addition: (a , b) + (c , d) =  ( a + c, b + d ) 

Multiplication: (a , b) + (c , d) = (ac – bd, bc + ad ) 

 

Definition 2.6 

Given a complex number A = (a, b), the size (or length) of A, denoted by || A ||, is 

defined as 

22|||| baA += . 

 

In fact, a vector was firstly discovered in the first two decades of 19th century 

with the geometric representations of complex numbers. Caspar Wessel (1745-1818), 

Jean Robert Argand (1768-1822), and Carl Friedrich Gauss (1777-1855) conceived 

that complex number can be as points in the two-dimesional plane, eg. two-

dimensional vectors [8]. 

A vector is basically a specific mathematical structure. It has numerous 

physical and geometric applications, which result mainly from its ability to represent 

magnitude and direction simultaneously. The location of points on a cartesian 

coordinate plane is usually expressed as an ordered pair (x, y), which is a specific 

example of vector. A vector (x, y) has a certain distance and angle relatively from the 

origin (0,0). In general, vector can be described as a multi-dimensional representation. 

For these reasons, fundamental arithmetic operations for two-dimensional 

vectors can be performed in the complex number system.  

 

Example 2.1 

Find the addition of two two-dimensional vectors 3i + 4j and 4i + 9j 

Solution 

This can be solved by adding two complex numbers, (3, 4) and (4, 9). Therefore, the 

result will come up with (3+4) i + (4+9) j = 7i + 13j. 

Engineering computation in vectors often uses both dot product and cross 

product. The dot product gives the vector amount that one vector contributes along the 

 



 
12 

 
same line to another vector. The cross product, however, is partly the result of 

multiplying different components of two vectors to get a product vector that is lying 

perpendicularly to both of the original vectors. 

 

Definition 2.7 

Given two two-dimensional vectors, A = (a, b) and B = (c, d), a dot product of A and 

B, denoted by A⋅B, can be computed as 

A⋅B  = || A || × || B || × cos θ 

 where θ is an angle between vector A and  B. 

 

Definition 2.8 

Given two two-dimensional vectors, A = (a, b) and B = (c, d), a cross product of A 

and B, denoted by A×B, can be computed as 

A×B  = (ac – bd, ad + bc). 

 

2.1.4 Three-dimensional vector system 

Unlike any two-dimensional vector system having an ordered pair (a, b), three-

dimensional vector is an ordered triplet (a, b, c) where a, b, and c are any reals. In 

fact, points in a plane or in three-dimensional space can be considered as vectors. The 

representation of vector (a, b, c) in a three-dimensional space is illustrated by Fig.2.3. 

The higher dimensional vector is, the more useful the vector can be used. The 

definition of three-dimensional vector can be described as follows: 

 

Definition 2.9 

Let a, b, and c be three reals. The vector representation of the three-dimensional 

vector (a ,b, c) can be expressed as a summation of products of the unit vectors i, j, 

and k with a, b, and c respectively. Then the representation of the vector V is written 

as 

V = ai + bj + ck. 

 

Definition 2.10 
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Given a three-dimensional vector A = (a, b, c) where a, b, and c are reals.  The 

additive inverse of vector A, usually denoted by A-1, is a vector of the form (-a, -b, -c). 

 
Figure 2.3 The representation of three-dimensional vector system 

 

Supposingly, given two three-dimensional vectors which are V1 =  ai + bj + ck 

and V2 =  di + ej + fk where a, b, c, d, e, and f are real numbers. Addition of vectors is 

to construct a path of a sequence of all added vectors started from the origin (0, 0, 0). 

Addition in this system are defined as addition for each dimension seperately. This 

means that addition of the two vectors is a vector 

V1 + V2 = (a + d) i + (b + e) j + (c + f) k. 

 Subtraction can be considered as an addition of its additive inverse. For 

instance, let V1 be expressed by 2i + 3j + 4k and let V2 be expressed by 4i + 3j + 5k. 

Addition (subtraction) of the both vectors can be done as follows: 

V1 + V2  = (2+4) i + (3+3) j + (4+5) k = 6i + 6j + 9k 

V1 + V2  = (2-4) i + (3-3) j + (4-5) k = -2i – k 

It is clear that it would take Θ(n) for both addition and subtraction where n is 

the number of digits used to represent the two vectors (i.e., the number of 

dimensions).  

 For multiplication operation in this system, it is defined as a cross product 

which applies the concept of right hand finger shown as Fig.2.4. 
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Definition 2.11 

Given two three-dimensional vectors A = (a, b, c) and B = (d, e, f) where a, b, c, d, e, 

and f are reals. A cross product of A and B is defined as 

 A × B  = (ai × di) + (ai × ej) + (ai × fk) 

  + (bj × di) + (bj × ej) + (bj × fk) 

  + (ck × di) + (ck × ej) + (ck × fk). 

 

          k  

 

 
     i                   j 

Figure 2.4 Cross product calculation of three-dimensional vector system based on 

righthand finger concept 

The cross product of unit vectors can be described by the following definition. 

 

Definition 2.12 

Let i, j, and k be three unit vectors. The cross product of two unit vectors can be 

described as 

 i × i = 0, i × j = k, i × k = -j, 

 j × i = -k, j × j = 0, j × k = i, 

 k × i =j, k × j = -i, k × k = 0. 

 

 



 
15 

 
Then the cross product of any two vectors can be considered as nine 

multiplication operations of two scalar numbers and another eight addition operations 

of them. The complexity is obviously equal to O(n2). 

 

 

 

Example 

let V1 = 2i + 3j + k and let V2 = i + 2j + 2k. Find the cross product of V1 and V2. 

Solution 

The cross product of V1 and V2 can be computed as follows. 

V1 × V2   = 2×1 [ i × i ] + 2×2 [ i × j ] + 2×2 [ i × k ] +  

3×1 [ j × i ] + 3×2 [ j × j ] + 3×2 [ j × k ] +  

1×1 [ k × i ] + 1×2 [ k × j ] + 1×2 [ k × k ]. 

According to the concept of right hand finger illustrated above, the solution of this 

operation can be broken down as follows: 

 
i j k        COLUMN      

V1 × V2 = ( 3×2 + (-1×2)) (-2×2) + (1×1) (2×2 + (-3×1)) 

 = 4i  (-3j ) 1k 

 = 4i – 3j + k. 

This takes a significance of time to solve the cross product between both three 

dimensional vectors. 

 

2.2   On-line Arithmetic 

 

Most fundamental operations for any base number system, say, base 10 (decimal 

number system) such as multiplication, addition, and subtraction are normally done 

by using the least significant digit first (LSDF) mode which means the steps of 

operations are computed from the rightmost digit, kept moving left until all done. But 

division is performed in the most significant digit first (MSDF) mode. In order to 

pipeline  the operations (i.e., each operation can be started without waiting for the end 
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of the previous operation), every operation should be processed in the same direction. 

For that purpose, on-line arithmetic was first introduced by Ercegovac and Trivedi  

[11]. The operands and the results flow serially through arithmetic units, digit-by-

digit, starting from the most significant digit. On-line systems can also be 

characterized by the on-line delay δ, the smallest integer which is the first n digits of 

the result can be deduced from the first n + δ digits of the inputs. In order to do this, 

the number representation system should be a redundant system. The signed digit 

number system is selected in the on-line arithmetic computation system. 

 

2.2.1 On-line addition 

The following theoretical result shows that an on-line addtion can be perform with the 

on-line delay δ using a redundant number system. 

 

Theorem 2.1 

Let β be an integer, β > 1 and let D be a finite set, D = { -b, -b-1, …, 0, 1, …, b } 

where b is an integer such that β/2 ≤ b ≤ β – 1. On-line addition can be computable in 

the system (β, D) with an on-line delay δ, where 

otherwise

b

:

2:

1

2 β

δ
=

⎪
⎩

⎪
⎨

⎧
= . 

The proof of the theorem is to proposed an on-line addition algorithm shown as 

below, (the detail of the proof, the reader can see in [9]. 

 

Algorithm: OnlineAddition 

 Input:  X := (xm xm-1 … )β and Y = (ym ym-1 … )β where xi ,yi  ∈ D 

            Output: Z := (zm zm-1 … )β where zi  ∈ D 

 begin 

  rm := ; ∑
+−=

−+−+
m

mi

mi
ii yx

1

1)(
δ

δβ

  j := m; 

  while j ≤ m do 
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   sj  := ( xj + yj ); 

   rj-1  := ( xj + yj ) + rjβ  – ( βδ × ⎣ (xj + yj + rmβ) / βδ ⎦ ); 

   zj := ( xj + yj + rjβ - rj ) / βδ; 

   j := j – 1; 

  enddo; 

 end; 

 

Example 2.1 

In the system with base β = 5 with digits in D = {-3, -2, -1, 0, 1, 2, 3},on-line addition 

of 708 and 766 with an on-line delay δ = 1 can be expressed as Fig. 2.5. 

Solution 

 

 β 5 β 4 β 3 β 2 β 1 β 0  

        

708 = 1 1 -2 1 3  
       + 

766 = 1 1 1 -2 1  
        

  2 2 -1 -1 4  

        
        

Remainder  2 2 -1 -1 -1  

Carry digit 0 0 0 0 1   
        

 0 2 2 -1 0 -1  

 

Figure. 2.5 The addition of 708 and 766 in the system (5, {-3, -2, -1, 0, 1, 2, 3 }) 

 

The solution is ( 0  2  2  -1  0  -1 )5 = (2×54) + (2×53) + (-1×52) + (-1)  

=  1250 + 250 – 25 -1 =  1474. 

 

It is clear that the result can be produced digit-by-digit , starting from the most 

significant digit, with the on-line delay 1. For instance, -1 at the position β 1 cannot be 
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outputed until the carry propagation of the column β 0 is known. In this system, the 

effect of the carry propagation is limitted to only one digit on the left. 

 

2.2.2 On-line subtraction 

On-line subtraction would take a concept of what the on-line addition is.  The on-line 

addition algorithm is still used for achieving the subtraction task. For instance, an on-

line subtraction of B from A can be considered as an on-line addition of A and –B. 

 

Example 

In base β = 5 with digits in D = {-3, -2, -1, 0, 1, 2, 3}, subtraction 766 from 708 can 

be computed as follows:  

Solution 

The same calculation procedures as the example above would apply for this 

subtraction calculation as well. The only difference is that to convert number 766 

which is the subtracter to be a negative value in stead of the positive one, as shown in 

Fig. 2.6. 

The solution is ( 0  0  -1  3  -2  2 ) 5 = (-1×53) + (3×52) + (-2×5) + (2)  

=  -125 + 75 – 10 + 2 =  -58. 

 

 β 5 β 4 β 3 β 2 β 1 β 0  
        

708 = 1 1 -2 1 3  

       + 

-766 = -1 -1 -1 2 -1  
        

  0 0 -3 3 2  

        
        

Remainder  0 0 2 -2 2  

Carry digit 0 0 -1 1 0   

 0 0 -1 3 -2 2  

 

Figure. 2.6 The subtraction of 766 from 708 in the system (5, {-3, -2, -1, 0, 1, 2, 3 }) 
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2.2.3 On-line multiplication 

On-line multiplication uses the combination of both incremental multiplication 

technique and redundant number system. The on-line multiplication has a delay δ 

depending on the range of the input. This delay can be ignored by adding δ zeroes at 

the left part of each operand. Then each operand is less than 1/ β δ  called the operand 

bound. The generic on-line algorithms for real and complex representation are studied 

in [10]. 

 

The classical on-line multiplication algorithm illustrated below needs to be 

known for fundamental understading of the on-line multiplication concept. The on-

line multiplication can be described by the following theorem. 

 

Theorem 2.2 

Let β be an integer, β > 1 and let D be a finite set, D = { -b, -b-1, …, 0, 1, …, b } 

where b is an integer such that β/2 ≤ b ≤ β – 1. On-line multiplication can be 

computable in the system (β, D) with an on-line delay δ, where 

3,2:

3:

2

1

=

>

⎪
⎩

⎪
⎨

⎧
=

β

β
δ . 

The on-line multilication algorithm is as follows (the proof of the algorithm can be 

found in [2]): 

 

Algorithm: OnlineMultiplication 

 Input:  A = (.a -1a -2 … ) β  and B = (.b -1b -2 … ) β

            Output: X = (.x -1x -2 … ) β  where || X || = = || A || × || B || ∑
∞

−= 1j

j
jx β

 begin 

  x -1 := x -2 := … := x -δ := 0; 

  W-δ := 0; 

  j := -δ-1; 

  while j ≤ -δ-1 do 
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   Wj := β (Wj+1 - xj+1) + Ajbj + Bj+1aj ; 

   if |Wj| ≤ b  then xj := Sign(Wj) ⎣|Wj| + 1/2 ⎦ 

     else xj := Sign(Wj) ⎣ |Wj| ⎦ endif; 

    j := j-1; 

  enddo; 

end; 

 

Example 

Let A and B be two numbers in base 2 with digits in D = { -1, 0, 1 }, 

where A=B = (.0011011111)2  

Solution 

Table 2.1 displays the result of a multiplication of A and B. 

 

Table 2.1 On-line multiplication of A and B where A = B = (.0011011111)2

j Ajbj + Bj+1aj Wj xj 2(Wj - xj) 

-1 0.0 0.0 0 0.0 

-2 0.0 0.0 0 0.0 

-3 0.001 0.001 0 0.01 

-4 0.0101 0.1001 1 -0.111 

-5 0.0 -0.111 -1 0.01 

-6 0.011001 0.101001 1 -0.10111 

-7 0.0110101 -0.0100111 0 -0.100111 

-8 0.01101101 -0.00101111 0 -0.0101111 

-9 0.011011101 0.000100001 0 0.00100001 

 

  The output after computation would be    (.0001-11000….)2.

 



 
CHAPTER III 

 
THREE-DIMENSIONAL VECTOR REPRESENTATION 

 
This chapter introduces the newly created representation of any three-

dimensional vector system. This novel representation is proposed in order to simplify 

the computation of three-dimensional vectors. Some fundamental vector operations 

(i.e., addition, subtraction and cross product) are also introduced in this chapter.  

 

3.1 Introduction 

 Normally, any complex number system is used to express a two-dimensional 

vector system. For instance, a two-dimensional vector (x, y) can be considered as the 

pair of x and y which are popularly used to represent the real part of the number and 

its imaginary part respectively. Using this concept, a two-dimensional vector (x, y) is 

expressed by a complex number of the form x + yi. 

Any vector can be described as a complex number system; therefore, the 

concept of an above complex number system representation can be extended to 

describe any three-dimensional number system as well. 

It is not convenient to maintain a complex number using two dependent parts 

(real and imaginary). One can be applied to combine the both parts together, that is to 

use a complex base representation with some integer digit sets, for instance Knuth’s 

complex number representation systems [11]. On the other hand, any complex 

number can also be represented in the real base number system with a finite set of 

complex digits. The later is focused in our work. 

In order to perform the computation in an on-line mode, the concept of 

redundant number system on which such a number can have more than one 

representation is also applied. Especially, Avizienis’s signed digit number 

representation [5] is interested in this research. 
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3.2 The representation 

 

Classical representation of a three-dimensional vector (a, b, c) is written as 

ai + bj + ck, 

for any real numbers a, b, and c. the variables i, j, and k are represented unit vectors 

of each dimension respectively. Now we will propose a novel three-dimensional 

vector representation system. A vector is represented by a sequence of signed-vector- 

digit. We also show that all three-dimensional vectors can have a representation in 

this novel system. 

 

Definition 3.1  

Let β be a positive integer, β ≥ 2, and let D be a finite set of three-dimensional 

vectors of the form 

{(x, y, z) | -b ≤ x, y, z ≤ b} 

where b is an integer such that  β/2 ≤  b ≤ β-1. The signed-vector-digit 

representation of a three-dimensional vector X is written as: 

Xs Xs-1 Xs-2 … Xt

where Xi ∈ D for all i, t ≤ i ≤ s. 

 

For instance, in base β = 2 with a digit set D = { (x, y, z) | -1 ≤ x, y, z ≤ 1 }, 

vector (12, -3, 5) can be represented in this system as 

(1, 0, 0) (1, -1, 1) (0, 0, 0) (0, 1, 1). 

The value of this representation can be computed as follows: 

(1, 0, 0)2 3 + (1, -1, 1) 2 2 + (0, 0, 0) 2 1 + (0, 1, 1) 2 0 = (12, -3, 5). 

Since the proposed system is redundant, vector (12, -3, 5) can also be represented 

by the other sequence as 

(1, 0, 0) (0, -1, 0) (-1, 1, 1) (0, 0, 1) (0, 1, -1). 

 

Definition 3.2 

Let β be a real number, β ≥ 2. Given a signed-vector-digit representation 

X = Xs Xs-1 Xs-2 … Xt

 



 
23 

 
 in the base β where Xi ∈ { (x, y, z) | -b ≤ x, y, z ≤ b }, β/2 ≤  b ≤ β – 1,  for any 

integer i, t ≤ i ≤ s. The complex value of X, denoted by || X || is 

||X|| = Xsβ s + Xs-1β s-1 + Xs-2β s-2 + … + Xtβ t. 

 

Let a three-dimensional vector X = Xs Xs-1 Xs-2 … Xt, and Xi = (xi1, xi2, xi3). That is 

Xi = xi1i + xi2j + xi3k. 

The complex number that is matched to X is 

X  = (xs1i + xs2j + xs3k)β s + (x(s-1)1i + x(s-1)2j + x(s-1)3k)β s-1 

+ Xs-2β s-2 + … + Xtβ t

= i + j + k ∑
=

s

tu

u
u βx 1 ∑

=

s

tu

u
u βx 2 ∑

=

s

tu

u
u βx 3

 

Example 3.1 

In the base n = 2, with a digit set D = {(x,y,z) | - 1 ≤ x, y, z ≤ 1 },given a signed-

vector-digit representation X =  ((1, 0, 1) (1, 1, 0) (0, 1, 1)), find the complex value 

of X. 

Solution 

 X  = (1i + 0j + 1k)22 + (1i + 1j + 0k)21+ (0i + 1j + 1k)20 

  = (4i + 4k) + (2i + 2j) + (j + k) 

  = 6i + 3j + 5k. 

 

3.3 Completeness 

 

The proposed vector representation system uses a real number as the base and a 

complex numbers as digits in the system. Now we will show that any three-

dimensional vector can have a representation in the proposed system. This is shown in 

the following theorem. 

 
Theorem 3.1 
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Given a three-dimensional vector V = (u, v, w) where u, v, and w are any real 

numbers, the vector V can have a representation in the signed-vector-digit 

representation system in base β with digits in D ={(x, y, z) | -b ≤ x, y, z ≤ b} where b 

is an integer such that  β/2 ≤  b ≤ β-1. 

 

Proof: 

It is clear that the three-dimensional vector V = (u, v, w) can be expressed by a 

complex number of the form ui + vj + wk. Since u, v, and w are all real numbers, they 

have a representation in base β with digits in E { e | -b ≤ e ≤ b }. Let 

u = (utut-1ut-2… us)β where  ∑
=

=
s

tj

j
juu β

v = (vtv t-1v t-2… vs)β where ∑
=

=
s

tj

j
jvv β

w = (wtw t-1w t-2… ws)β where ∑
=

=
s

tj

j
jww β

This is of course,  

 V = ui + vj + wk 

  = ∑ i + j + k 
=

s

tj

j
ju β ∑

=

s

tj

j
jv β ∑

=

s

tj

j
jw β

  = (ut + vt + wt)β t + (ut-1 + vt-1 + wt-1)β t-1 + … + (us + vs + ws)β s  

  = (ut, vt, wt) (ut-1, vt-1, wt-1) … (us, vs, ws) where ui, vi, and wi are in E. 

The proof is completed. 

 

Example 3.2 

Given a vector V = 6i + 13j – 5k, find the signed-vector-digit representation of V in 

base 2 with digits in D = { (x, y, z) | -1 ≤ x, y, z ≤ 1 }. 

Solution 

Since 6 = (110)2, 13 = (1101)2, and -5 = (-10-1)2, then the representation of V is 

(0, 1, 0) (1, 1, -1) (1, 0, 0) (0, 1, -1). 
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3.4 Redundancy 

 

Any three-dimensional vector system can have more than one signed-vector-digit 

representation. Therefore, a three-dimensional vector system is redundant. This gives 

the flexibility to have various signed-vector-digit representations to the system to any 

particular three-dimensional vector.  

 
Theorem 3.2 

In the vector representation with base β and a digit set D ={(x, y, z) | -b ≤ x, y, z ≤ b} 

where b is an integer such that  β/2 ≤  b ≤ β-1, any three-dimensional vector can have 

more than one finite representation. 

 

Proof: 

Let V be a three-dimensional vector, V = (u, v, w). Since the number representation 

system in base β with digits in E = { e | -b ≤ e ≤ b } is a redundant number system, u, 

v, and w must have more than one representation in (β, E). Then, 

u = (utut-1ut-2… us)β where , ∑
=

=
s

tj

j
juu β

v = (vtv t-1v t-2… vs)β where ∑
=

=
s

tj

j
jvv β , 

w = (wtw t-1w t-2… ws)β where .∑
=

=
s

tj

j
jww β

It is also true that there exists other representations for u, v, and w, then 

u = (dtdt-1dt-2… ds)β where , ∑
=

=
s

tj

j
jdd β

v = (gtg t-1g t-2… gs)β where ,∑
=

=
s

tj

j
jgg β

w = (hth t-1h t-2… hs)β where ∑
=

=
s

tj

j
jhh β . 

This is of course,  

 V = ui + vj + wk = di + gj + hk. 

This can imply that V has more than one representation in base β with digits in D. 
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Example 3.3 

In the base β = 2, with a digit set D = {(x, y, z) | - 1 ≤ x, y, z ≤ 1 }, the vector V1 =  

4i + 3j + 5k can be represented as 

V1 = ((1, 0, 1) (0, 1, 0) (0, 1, 1))2. 

Find one different representation of V1. 

Solution 

This number system is also a redundant system meaning that there is more than one 

representation for denoting this vector. As a result of that, V1 can also be written as 

V1 = ((1, 1, 0) (-1, -1, 1) (0, 0, 1) (0, -1, -1))2. 

 

Example 3.3 

In the base number β = 3 with the digit set D = {(x, y, z) | - 2 ≤ x, y, z ≤ 2}, the vector 

V2 = 9i + 8j + 12k  can be represented as  

V2  = ((1, 0, 1) (0, 2, 1) (0, 2, 0)) 3. 

Find a different representation of V2. 

Solution 

With the redundant number system concept, one of other representations of V2 can 

also be described as follows: 

V2  = ((1, 1, 1 )(-2, -2, -1) (0, 0, -2) (0, -1, 0)) 3 

 

Then, the proposed vector representation system is completed and also has a 

redundant property. The next chapter will show how to perform an on-line 

computation in this system. 

 

 



 
CHAPTER IV 

 
ON-LINE ARITHMETIC OPERATIONS FOR 

THREE-DIMENSIONAL VECTOR REPRESENTATION 

 
This chapter will introduce the fundamental arithmetic operations which are 

addition, subtraction, and multiplication for any two three-dimensional vectors in an 

on-line mode with the signed-vector-digit representation. The newly created algorithm 

and the proof for those arithmetic operations will be introduced. At the end of the 

chapter, the examples of them will be shown. 

The on-line arithmetic operations for three-dimentsional vector system brings 

the concept of the on-line arithmetic operation to apply which is the most significant 

digit first calculation mode. That means all operation would be done in the same 

direction for the leftmost digit to the rightmost digit while the result for each 

dimension would be produced along the way without waiting until the end of the 

precedent operation. 

 

4.1 On-line addition 

 

The algorithm below illustrates the on-line addition algorithm for a signed-vector-

digit representation system. In order to avoid the overflow problem, let us assume that 

the first signed-vector-digit of each operand is (0, 0, 0). 

 

Theorem 4.1 

Given two three-dimensional vectors  V = (v0, v1, v2) and W = (w0, w1, w2) where v0, 

v1, v2, w0, w1, and w2 are real numbers. Let the signed-vector-digit representation in 

base β with digits in D of V and W be  

V = ((v0,t, v1,t, v2,t)(v0, t -1, v1,t -1, v2,t -1)(v0,t -2, v1,t -2, v2,t -2)…(v0,s, v1,s, v2,s))β 

and  

W = ((w0,t, w1,t, w2,t)(w0,t -1, w1,t -1, w2,t -1)(w0,t -2, w1,t -2, w2,t -2)…(w0,s, w1,s, w2,s))β, 

where D ={(x, y, z) | -b ≤ x, y, z ≤ b} and b is an integer such that  β/2 ≤  b ≤ β-1. The 

on-line addition of V and W, denoted by Z, can be performed with an on-line delay δ, 
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otherwise

b

:

2:

1

2 β

δ
=

⎪
⎩

⎪
⎨

⎧
= . 

 

Proof 

The proof of the theorem is given by introducing the following on-line addition 

algorithm. 

 

Algorithm: AV 

Input: 

  V=((v0,t,v1,t,v2,t)(v0,t-1,v1,t-1,v2,t-1)(v0,t-2,v1,t -2,v2,t-2)…(v0,s,v1,s,v2,s))β 

W=((w0,t,w1,t,w2,t)(w0,t-1,w1,t-1,w2,t-1)(w0,t-2,w1,t-2,w2,t-2)…(w0,s,w1,s,w2,s))β

            Output: 

  Z=((z0,t,z1,t,z2,t)(z0,t-1,z1,t-1,z2,t-1)(z0,t-2,z1,t -2,z2,t-2)…(z0,s,z1,s,z2,s))β 

begin 

p := t; 

j := 0; 

while j ≤ 2 do 

rj,p-δ := ; ∑
+−

=

−+−+
1

1
,, )(

δ
δβ

t

tk

tk
kjkj wv

j := j + 1; 

enddo 

while p ≥ s + δ do 

  j := 0; 

  while j ≤ 2 do 

    sj,p-δ := vj,p-δ + wj,p-δ ; 

if -2b ≤ sj,p-δ < -b+1 

        then cj,p-δ+1 := -1; 

sj,p-δ  := sj,p-δ  + β ; endif 

    if –b+1 ≤ sj,p-δ  ≤ b-1 

        then  cj,p-δ+1 := 0; endif 

    if b-1 < sj,p-δ  ≤ 2b 
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        then  cj,p-δ+1 := 1; 

sj,p-δ  := sj,p-δ  - β ; endif 

    zj,p := Integer( (rj,p-δ + cj,p-δ ) / β δ-1 ) ; 

    rj,p-δ-1 := ( ( rj,p-δ - ( zj,p × β δ-1 ) ) × β ) + sj,p-δ  ; 

    j := j + 1; 

   enddo; 

  p := p – 1; 

enddo; 

j := 0; 

while j ≤ 2 do 

  If δ = 2 then Rewrite rj,s+δ -1  := ; endif 2
2

1
1

−
−+

−
−+ + δ

δ
δ

δ ββ ss zz

  If δ = 1 then Rewrite rj,s+δ -1  := ; endif 1
1

−
−+

δ
δ βsz

j := j + 1; 

enddo 

 

 end; 

Where a = Integer (b) means that a is the closest integer to b, for any real number b. 

 

Proof of the algorithm: 

In order to prove that the above algorithm is correct, we have to show that the 

algorithm is valid and correct. Moreover, the complexity of the algorithm will be 

shown as well. 

Validation: 

It is to show that the result of the addition operation of two three-dimensional vectors 

is always in the digit set D as its operands (i.e., the answer is valid in the 

representation). 

 It is obvious that addition in each dimension can be computed separately. 

Then the proof will be done for only one dimension called j. The problem can be 

transformed into a problem for adding in base β with digits in E = { e | -b ≤ e ≤ b } of 

Vj = ( vj,t, vj,t-1, vj,t-2, vj,t-3, …, vj,s )β  and 

Wj = ( wj,t, wj,t-1, wj,t-2, wj,t-3, …, wj,s )β. 
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The delay for this addition becomes an on-line delay in the signed-vector-digit 

representation system. 

From the algorithm, at the pth iteration, 

 rj,p-δ denotes the remainder from the previous iteration, 

 sj,p-δ denotes the interim sum at the current iteration, 

  

 Input Vj vj,t … vj,t-δ+1 vj,t-δ …   

  + + … + + …   

 Input Wj wj,t … wj,t-δ+1 wj,t-δ …   

          

     rj,t-δ sj,t-δ    

          

    β δ-1 +     

      sj,t-δ    

   zj,t       

   Output   +    

          

      rj,t-δ-1    

Figure. 4.1 The relation of the inputs, rj,t-δ , sj,t-δ, and the output (zj,t ) 

 

cj,p-δ denotes the carry propagation at the current iteration. 

The relation at the first iteration can be illustrated by Fig 4.1. 

It is remarked that for the first iteration, the remainder rj,p-δ  is computed from 

the δ first digits of the input operands.  

 The rest is to show that all zj,p, for all s ≤ p ≤ t, is an element in E. The proof is 

separated into three cases, 

Case 1: p = t (the first iteration) 

 From the definition of rj,p-δ, vj,t =0 and wj,t = 0,  it is obtained that 

 | rj,p-δ | ≤ 2b ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−−

1
11

β
β δ

. (4.1) 

 Since zj,p := Integer( (rj,p-δ + cj,p-δ ) / β δ-1 )  and (4.1), then 
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 | zj,p | ≤ Integer( 1

1

1
1

12

−

−

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

δ

δ

β
β

βb
). (4.2) 

 From the definition, β/2 ≤  b ≤ β -1, then 

 
1

2
−β
b  ≤ 2, and (4.3) 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−− 1
1

21
1 ββ δ

b  > 0. (4.4) 

 From (4.2), (4.3) and (4.4), we can conclude that 

 | zj,p | < 2. 

Case 2: s+δ-1 < p < t 

 From the algorithm, zj,p := Integer( (rj,p-δ + cj,p-δ ) / β δ-1 ), then 

 rj,p-δ - ( zj,p × β δ-1 ) ≤ ⎥
⎦

⎥
⎢
⎣

⎢ −

2

1δβ . (4.5) 

 From rj,p-δ-1 := ( ( rj,p-δ - ( zj,p × β δ-1 ) ) × β ) + sj,p-δ , and (4.5), we conclude that 

 | rj,p-δ | ≤ ⎥
⎦

⎥
⎢
⎣

⎢ −

2

1δβ × 1−+ bβ . (4.6) 

 The proof is separated into two cases, 

 Case 2.1: δ = 1 

  From (4.6) and , it is obtained that | rj,p-δ | ≤ b – 1. It is thus 

 | zj,p | < b - 1. 

 Case 2.2: δ = 2 

  In this case, it is b =
2
β . From (4,6), then | rj,p-δ | ≤  b × 1−+ bβ . That is 

| zj,p | ≤ Integer( ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+
ββ
1bb ) = b. 

Case 3: p = s+δ-1 

 Since | rj,p-δ | ≤ ⎥
⎦

⎥
⎢
⎣

⎢ −

2

1δβ × 1−+ bβ . 

 Case 3.1: δ = 1 

It is obtained that | rj,p-δ | ≤ b – 1, then the Rewrite statement is valid. 
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 Case 3.2: δ = 2 

 It is obtained that | rj,p-δ | ≤  b × 1−+ bβ , then the Rewrite statement is 

also valid. 

 

Correctness: 

It is to show that the algorithm gives the correct answer. The expected result should 

be equal to , for all j = 0, 1, and 2.  Consider ∑
=

+
s

tk

k
kjkj wv β)( ,,

  = ∑ +  ∑
=

+
s

tk

k
kjkj wv β)( ,,

+−

=

+
1

,, )(
δ

β
t

tk

k
kjkj wv ∑

−=

+
s

tk

k
kjkj wv

δ

β)( ,,

  = +  1
1

1
,, )( +−

+−

=

−+− ×⎟
⎠

⎞
⎜
⎝

⎛
+∑ δ

δ
δ ββ t

t

tk

tk
kjkj wv ∑

−=

+
s

tk

k
kjkj wv

δ

β)( ,,

  = + ∑  1
,

+−
− × δ
δ β t

tjr
−=

+
s

tk

k
kjkj wv

δ

β)( ,,

  = + ∑  1
,

+−
− × δ
δ β t

tjr
−=

s

tk

k
kjs

δ

β)( ,

  = + ∑  1
,

+−
− × δ
δ β t

tjr
−=

+
s

tk

k
kjkj sc

δ

ββ )( ,,

  = + +  1
,

+−
− × δ
δ β t

tjr δ
δδ ββ −
−− + t

tjtj sc )( ,, ∑
−−=

+
s

tk

k
kjkj sc

1
,, )(

δ

ββ

  = +  δ
δ

δ
δδ ββ −

−
+−

− ++ t
tj

t
tjtj scr ,

1
,, )( ∑

−−=

+
s

tk

k
kjkj sc

1
,, )(

δ

ββ

Since =δδ tjtj cr ,, +− β
β δ

δ
δ −

−−
− −+ tj

tjtj

s
rz ,

1,
1

, , then 

  =∑
=

+
s

tk

k
kjkj wv β)( ,,

δ
δ

δδ
δ

δ ββ
β

β −
−

+−−
−−

− +−+ t
tj

ttj
tjtj s

s
rz ,

1,
1,

1
, )(  

  + ∑  
−−=

+
s

tk

k
kjkj sc

1
,, )(

δ

ββ

  = + . 1
1,,

+−
−−+ δ

δ ββ t
tj

t
tj rz ∑

−−=

+
s

tk

k
kjkj sc

1
,, )(

δ

ββ

Then we will obtain that  
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  =∑ + r∑
=

+
s

tk

k
kjkj wv β)( ,,

+

=

δ

β
s

tk

k
kjz , j,s+δ -1. 

 In the case that δ = 1, rj,s+δ -1 is rewritten into  and in the case where 

δ = 2, r

1
1

−
−+

δ
δ βsz

j,s+δ -1 is rewritten into 
2

2
1

1
−

−+
−

−+ + δ
δ

δ
δ ββ ss zz . In the both cases, it is obtained 

that the result is . The proof is completed. ∑
=

s

tk

k
kjz β,

Complexity: 

For the addition operation algorithm, the complexity on which we’re interested in 

such as time and space can be described as follows: 

1. Time 

-  It takes Θ(n) to do the addition while n is the number of digits. 

2. Space 

      -  The space required for addition operation is Θ(β) while β is a base 

number. 

Example 4.1 

For base 5,  the digit set is {-3, -2, -1, 0, 1, 2, 3} to do addition calculation between 

60i + 23j + 32k and 48i + 36j + 19k. 

Solution 

Table 4.1 shows an on-line addition using the algorithm above. 

Table 4.1 On-line addition of 60i + 23j + 32k and 48i + 36j + 19k 

 i j k i j k i j k i j k  
              

61i + 23j + 32k 0 0 0 2 1 1 2 0 1 1 -2 2  
              

48i + 36j + 19k 0 0 0 2 1 1 -1 2 -1 3 1 -1 + 
              

 0 0 0 4 2 2 1 2 0 4 -1 1  

              

Remainder    -1 2 2 1 2 0 -1 -1 1  

Carry digit 1 0 0 0 0 0 1 0 0     
              

 1 0 0 -1 2 2 2 2 0 -1 -1 1  
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The result is Z =((1, 0, 0)(-1, 2, 2)(2, 2, 0)(-1, -1, 1))5 

i-column = (1, -1, 2, -1) = 109 

j-column = (0, 2, 2, -1) = 59 

k-column = (0, 2, 0, 1) = 51 

The result is then 109i + 59j + 51k. 

 

4.2 On-line subtraction 

 

For on-line subtraction algorithm of three-dimensional vector system, the on-line 

addition algorithm is used to calculate by attaching the negative sign to the second 

operand. 
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Theorem 4.2 

Given two three-dimensional vectors  V = (v0, v1, v2) and W = (w0, w1, w2) where v0, 

v1, v2, w0, w1, and w2 are real numbers. Let the signed-vector-digit representation in 

base β with digits in D of V and W be  

V = ((v0,t, v1,t, v2,t)(v0, t -1, v1,t -1, v2,t -1)(v0,t -2, v1,t -2, v2,t -2)…(v0,s, v1,s, v2,s))β 

and  

W = ((w0,t, w1,t, w2,t)(w0,t -1, w1,t -1, w2,t -1)(w0,t -2, w1,t -2, w2,t -2)…(w0,s, w1,s, w2,s))β, 

where D ={(x, y, z) | -b ≤ x, y, z ≤ b} and b is an integer such that  β/2 ≤  b ≤ β-1. The 

on-line subtraction of W from V can be performed by an on-line addition of V and -W 

with an on-line delay δ, 

otherwise

b

:

2:

1

2 β

δ
=

⎪
⎩

⎪
⎨

⎧
= . 

Proof 

The proof is obvious by applying Theorem 4.1. 

 

Example 4.2 

For base 5,  the digit set is {-3, -2, -1, 0, 1, 2, 3} to do subtraction calculation between 

50i + 13j + 22k and 38i + 26j + 9k. 

Solution 

Table 4.2 shows the computation corresponding to the on-line addition algrithm. The 

result from the algorithm is Z =((0, 0, 0)(1, -1, 0)(-1, 2, 3)(2, 2, -1))5 

i-column = (0, 1, -1, 2) = 22 

j-column = (0, -1, 2, 2) = -13 

k-column = (0, 0, 3, -1) = 14 

The result is 22i -13j + 14k. 
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Table 4.2 On-line subtraction of 50i + 13j + 22k and 38i + 26j + 9k 

 i j K i j k i j k i j k  
              

60i + 13j + 22k 0 0 0 2 0 1 2 2 -1 0 3 2  
              

-(38i + 26j + 8k) 0 0 0 -2 -1 0 2 0 -2 2 -1 2 + 
              

 0 0 0 0 -1 1 4 2 -3 2 2 4  

              

Remainder    0 -1 1 -1 2 2 2 2 -1  

Carry digit 0 0 0 1 0 -1 0 0 1     
              

 0 0 0 1 -1 0 -1 2 3 2 2 -1  

 

4.3 On-line multiplication 

 

The algorithm below illustrates the on-line multiplication algorithm for three-

dimensional vector system. 

 

Theorem 4.3 

Given two three-dimensional vectors  V = (v0, v1, v2) and W = (w0, w1, w2) where v0, 

v1, v2, w0, w1, and w2 are real numbers. Let the signed-vector-digit representation in 

base β with digits in D of V and W be  

V = ((v0,t, v1,t, v2,t)(v0, t -1, v1,t -1, v2,t -1)(v0,t -2, v1,t -2, v2,t -2)…(v0,s, v1,s, v2,s))β 

and  

W = ((w0,t, w1,t, w2,t)(w0,t -1, w1,t -1, w2,t -1)(w0,t -2, w1,t -2, w2,t -2)…(w0,s, w1,s, w2,s))β, 

where D ={(x, y, z) | -b ≤ x, y, z ≤ b} and b is an integer such that  β/2 ≤  b ≤ β-1. The 

on-line multiplication of V and W, denoted by Z, can be performed with an on-line 

delay δ where 

2

3:

3

2

=

≥

⎪
⎩

⎪
⎨

⎧
=

β

β
δ . 
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Proof 

The proof of the theorem is given by introducing an algorithm for on-line 

multiplication in base β with an on-line delay δ. To simplify the proof, let us assume 

that t = –1. A on-line delay δ can be replaced by introducing the input operand bound 

(i.e., each input operand must be less than or equal to δβ
1  or the first δ digits must be 

all zero.) 

 

Algorithm: MV 

Input: 

  V=((v0,t,v1,t,v2,t)(v0,t-1,v1,t-1,v2,t-1)(v0,t-2,v1,t -2,v2,t-2)…(v0,s,v1,s,v2,s))β 

W=((w0,t,w1,t,w2,t)(w0,t-1,w1,t-1,w2,t-1)(w0,t-2,w1,t-2,w2,t-2)…(w0,s,w1,s,w2,s))β

            Output: 

  Z=((z0,t+δ -1,z1, t+ δ -1,z2, t+ δ -1)(z0, t+ δ -2,z1, t+ δ -2,z2, t+ δ -2) …(z0,2s,z1,2s,z2,2s))β 

begin 

Initialization process  

j := 0; 

p := -1; 

 qj := 0; 

 rj := 0; 

Uj := 0; 

Iteration process 

while p ≥ s do 

  j := 0; 

  while j ≤ 2 do 

   qj := qj + ( vj,p × β  p ) ; 

   new_rj := rj + ( wj,p × β p );

j := j + 1; 

   enddo 

  j := 0; 

  while j ≤ 2 do 
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   m := ( j + 1 ) mod 3; 

   n := ( j + 2 ) mod 3; 

   Uj := Uj  + ( qm ×  wn,p) – ( qn ×  wm,p) 

+ ( rm × vn,p) – ( rn ×  vm,p) ; 

j := j + 1; 

   enddo 

  j := 0; 

  while j ≤ 2 do 

    zj,p := Integer( Uj ) ; 

   Uj := ( Uj – ( zj,p )) ×β ; 

   rj := new_rj ;

j := j + 1; 

   enddo 

  p := p – 1; 

enddo 

  Termination process 

 j := 0; 

while j ≤ 2 do 

  Rewrite Uj  := ; ∑
−=

−
s

sk

sk
kz

2

1

β

j := j + 1; 

enddo 

end 

 

Proof of the algorithm 

In order to prove that the above algorithm is correct, we will show that the algorithm 

is valid and correct. Moreover, the complexity of the algorithm will be shown as well. 

 

Validation 

It is to show that the result of the multiplication operation of 2 three-dimensional 

vectors is always in the digit set D as its operands. 
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By the same way as the proof of an on-line addition algorithm, we have to 

prove that for any signed-vector-digit (z1,k, z2,k, z3,k), all digits z1,k, z2,k, z3,k are elements 

in the digit set E = { e | -b ≤ e ≤ b }. 

 

First of all, Algorithm MV can be separated into three steps as follows: 

1. Initialization: compute the first partial product from all δ – 1 first 

digits of the inputs. 

2. Iteration: for each input digit, 

a. compute an additional partial product from each operand, 

b. modify the partial product by two additional partial 

products, 

c. produce the output digit. 

3. Termination: produce the output digits from the rest partial 

product. 

From Algorithm MV, Fig.4.2 shows the concept of an on-line multiplication 

algorithm. To simplify the proof, let us assume that t = -1. 

 

Initialization process 

From the algorithm, 

(q0, q1, q2) denotes an input operand V in process, 

(r0, r1, r2) denotes an input operand W in process, 

(U0, U1, U2) denotes the partial product. 

 

Iteration process 

For each input digit, (v0,p, v1,p, v2,p) and (w0,p, w1,p, w2,p), the additional partial product 

is composed of two parts, as follows: 

 ((q0, q1, q2) + (v0,p, v1,p, v2,p) × β p  ) × (w0,p, w1,p, w2,p)  (4.10) 

and 

 (r0, r1, r2) × (v0,p, v1,p, v2,p).  (4.11) 

Note that it is considered only a current input digit of V but not the one of W. 

Using the right-hand finger concept, (4.10) can be expressed for each j = 0, 1, and 2, 

as 
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 ( qm ×  wn,p) – ( qn,p ×  wm,p),  

with m = ( j + 1 ) mod 3 and n = ( j + 2 ) mod 3, where 

 qj = qj  +  ( vj,p × β p ) (4.12) 

From the algorithm and (4.12), it is 

 δβ
1

≤jq . (4.13) 

With the same reason, (4.11) can be expressed for each j = 0, 1, and 2 by 

 ( rm × vn,p) – ( rn ×  vm,p),  

with m = ( j + 1 ) mod 3 and n = ( j + 2 ) mod 3, where 

 rj = rj + ( wj,p × β p ). (4.14) 

From the algorithm and (4.14), it is 

 δβ
1

≤jr . (4.15) 

Since zj,p := Integer( Uj ), and zj,p must be in E, then 

 
2
1

+≤ bU j . (4.16) 

The current partial product is then, 

 Uj = Uj + ( qm ×  wn,p) – ( qn ×  wm,p) 

  + ( rm × vn,p) – ( rn,p ×  vm,p). (4.17) 

From Uj := ( Uj – ( zj,p )) ×β, (4.9), (4.13), (4.15), (4.16), and (4.17), the following 

condition should be satisfied, 

 
2
14

2
1

+<+⎟
⎠
⎞

⎜
⎝
⎛ × bb

δβ
β . (4.18) 

In the case that β  = 2, that is b = 1, then the minimum δ is 3. In the case where β  ≥ 3, 

the minimum δ is 2. 

 

Termination process 

Since 
2
1

+≤ bU j  and Uj := ( Uj – ( zj,p )) ×β, this can include that 
2
1

≤jU . It is clear 

that Uj can be rewritten by  where z∑
−=

12

1

s

sk

k
kz β k are digits in the set E. 

Correctness 
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The product of two three-dimensional vectors, V and W, can be computed as follows; 

 V × W =∑  
=

×
s

tk

k
kkk wwwV β),,( ,2,1,0
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⎠
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⎜
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where  Uj = . twwwvvv 2
1,21,11,01.21,11,0 ),,(),,( β×× −−−−−−

From the algorithm, zj,p = Integer( Uj )  and Uj = ( Uj – ( zj,p )) ×β , then 

the old 
β

j
jj

U
zU += −1, ,or 

 V × W =
β

j
j

U
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For each iteration, one output is produced. This also shows that the degree of the next 

output is decreased by one (i.e., 
β

jU
). 

Since the value of Uj is bound, an algorithm runs until the last digit of each input 

operand is accumurated. The last Uj is rewritten into , then ∑
−=

−
s

sk

sk
kz

2

1
β the result of the 

algorithm is as follows: 

 V × W = ∑
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The proof is then completed. 

 
Complexity: 

For the multiplication operation algorithm, the complexity on which we’re interested 

in such as time and space can be described as follows: 

1. Time 

-  It takes O(n2) to do the multiplication while n is the number of digits. 

2. Space 

      -  The space required for multiplication operation is O(n) while n is a base 

number. 

 



                  input x x x … x … x x x       

                  

x x x

input x x x … x … x x x       
                              

                              

x x x ×

X x x … x … x x x x x x

                              

                              

           

x X x … x … x x x x x x

x x X … x … x x x x x x

x x x … x …  x x x          

          

x x x

x x x … x …  x x x           

         

x x x

x x x … x …  x x x            
           

x x x
    x x x … x … x x X             x x x

              x x x … x … X x x              x x x

          x x x … x … x x x               x x x

                              

         x x x … x … x x x   x x x            

   x      x x … x … x x x   x x x             

        x x x … x … x x x   x x x              
                              

    x x x … x x x                    Output … x x x x x x x x x

The additional partial product 
in each iteration. 

The partial product 

Figure. 4.2 The process of an on-line multiplication algorithm MV 
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Example 4.3 

For base 3,  the digit set is {-2,-1, 0, 2, 1} to do multiplication calculation between V 

and W while V=84i + 27j +13k and W=37i +93j + 82k. 

Solution 

The representation of V and W  are as follows: 

V = ((1, 0, 0) (0, 1, 0) (0, 0, 1) (1, 0, 1) (0, 0, 1))3 

W = ((0, 1, 1) (1, 0, 0) (1, 1, 0) (0, 1, 0) (1, 0, 1))3 

Since an on-line delay is 2, the operand bound is 23
1  

Let  V ’  =   V × β-7  . 

The representation of  V ’ = (.(1, 0, 0) (0, 1, 0) (0, 0, 1) (1, 0, 1) (0, 0, 1))3

Let  W ’  =   W × β-7  . 

The representation of  W ’ = (.(0, 1, 1) (1, 0, 0) (1, 1, 0) (0, 1, 0) (1, 0, 1))3 

Fig 4.3 shows the process of the classical multiplication which gives the result at the 

end as follows: 

i-column = 1-1-1-2-1-2-10 = 1005 

j-column = -100012201 = -6407 

k-column = 1001001000 = 6813 

That gives the result to be 1005i - 6407j + 6813k 

Table 4.3 shows the process of the multiplication algorithm (Mv). 

 



                                         
                                          
                                          
                                      

i j k i j k i j k i j k i j k i j k i j k  
0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 1 0 0 1
0 0 0 0 0 0 0 1 1 1 0 0 1 1 0 0 1 0 1 0 1 X
0 0 0 0 0 0 -1 0 0 0 1 0 0 0 0 -1 0 0 0 0 0  

                                           0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
                                        0 0 0 0 0 0 0 0 0 0 -1 0 0 0 1 0 0 1 0 0 1  
                                           0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
                                          0 0 0 0 0 0 1 0 0 0 0 0 0 0 -1 1 0 -1 0 0 -1
                                          0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   
                                           0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
                                          0 0 0 0 0 0 1 0 0 0 0 0 0 0 -1 1 0 -1 0 0 -1
                                         0 0 0 0 0 0 0 0 0 0 -1 0 0 0 1 0 0 1 0 0 1  
                                           0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
                                           0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
                                        0 0 0 0 0 0 0 0 0 0 -1 0 0 0 1 0 0 1 0 0 1   
                                        0 0 0 0 0 0 -1 0 0 0 1 0 0 0 0 -1 0 0 0 0 0 
                                       0 0 0 0 0 0 1 0 0 0 0 0 0 0 -1 1 0 -1 0 0 -1   
                                          0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
                                           0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
                                           0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
                                           0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
                                           0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0                                          0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0                     0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                          
0            0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 1 0 0 -1 1 0 -1 0 1 -2 0 2 -1 1 2 -2 0 0 -1 0 1 0 0  
i k j i k j i k j i k j i k j i k j I k j i k j i k j i k j i k j i k j i k j i k  

 

Figure 4.3 On-line multiplication of 84i + 27j + 13k and 37i + 93j + 82k 

 

 

 



Following the algorithm Mv, 
Table 4.3 On-line multiplication of 84i + 27j + 13k and 37i + 93j + 82k  following the algorithm Mv

Step V W Q r U z New U 

1        (0,0,0) (0,0,0) 0 0 0 (0,0,0) 0

2        (0,0,0) (0,0,0) 0 0 0 (0,0,0) 0

3   (1,0,0) (0,1,1)
27
1 i 

27
1 j+

27
1

k 
27

1− j+
27
1 k 

(0,0,0) 
9
1− j+

9
1 k 

4   (0,1,0) (1,0,0)
27
1 i+

81
1 j 

81
1 i+

27
1 j+

27
1 k 

27
1 i+

9
1− j+

81
8 k 

(0,0,0) 
9
1 i+

3
1− j+

27
8 k 

5   (0,0,1) (1,1,0)
27
1 i+

81
1 j+

243
1 k 

243
4

i+
243
10 j+

27
1

k 
243
17

i+
243

77− j+
81
26

k 
(0,0,0) 

81
17

i+
81
77− j+

27
26

k 

6   (1,0,1) (0,1,0)
729
28 i+

81
1 j+

729
4

k 
243
4

i+
729
31

j+
27
1

k 
729
119

i+
243
236−

j+
729
760

k 
(0,-1,1) 

243
119

i+
81
7 j+

243
31

k 

7   (0,0,1) (1,0,1)
729
28 i+

81
1 j+

2187
13

k 
2187
37

i+
729
31 j+

2187
82

k 
729
335 i+

2187
154

j+
243
28

k 
(0,0,0) 

243
335

i+
729
154 j+

81
28 k 
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Step V W Q r U Z U 

    
243
335

i+
729
154 j+

81
28 k 

(1,0,0) 
81
92 i+

243
154 j+

27
28 k 

9     
81
92 i+

243
154 j+

27
28 k 

(1,1,1) 
27
11 i+

81
89− j+

9
1 k 

10     
27
11 i+

81
89− j+

9
1 k 

(0,-1,0) 
9
11 i+

27
8− j+

3
1 k 

11     
9
11 i+

27
8− j+

3
1 k 

(1,0,0) 
3
2 i+

9
8− j+1k 

12     
3
2 i+

9
8− j+1k 

(1,-1,1) 
1i+

3
1 j 

13     
1i+

3
1 j 

(-1,0,0)  j

14        j (0,1,0) 0
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The result from the algorithm is Z’ = (.(0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,-1,1) 
(0,0,0) (1,0,0) (1,1,1) (0,-1,0) (1,0,0) (1,-1,1) (-1,0,0) (0,1,0)) 

 

i-column = .000000011011-10  × 314 = 11011-10 = 1005 

j-column = .00000-1001-10-101 × 314 = -1001-10-101 = -6407 

k-column = .00000100100100 × 314 = 100100100 = 6813 

Therefore, the result is 1005i -6407j + 6813k

 



 

CHAPTER V 

 
CONCLUSION 

 

In serial computation, fundamental arithmetic calculations such as addition, 

subtraction and multiplication are usually processed in LSDF (least significant digit 

first) mode meaning that the calculation is taken place from the rightmost to the 

leftmost digit while the division operation is performed in the MSDF (most significant 

digit first) calculation mode. The pipeline concept has been brought up to apply for the 

further idea on how the output for each digit can be produced while the calculation of 

the rest digit can continue. In fact, the output can be produced without waiting the 

whole calculation to be done.  

Three dimensional vector systems have been applied to current technology such 

as fluid mechanic, mechanical engineering, electrical engineering, etc. Therefore, the 

time complexity for doing any calculation is very crucial.  

In this work, the signed-vector-digit representation is proposed in order to 

represent three-dimensional vectors. Three numbers from all dimensions of three-

dimensional vectors are combined. Therefore, they will not be separately maintained 

anymore. With the normal means of cross product calculation, that would take nine 

times of multiplication and another eight times of addition in order to achieve one cross 

product of two three-dimensional vectors. With the signed-vector-digit representation, 

for doing the cross product of any two vectors, it takes only one real number slightly 

modified classical multiplication as illustrated by Figure 4.2. 

The advantage of using the on-line arithmetic concept is to get the output for 

each digit produced without waiting for the whole calculation to be completed. With the 

newly introduced signed-vector-digit representation and on-line fundamental arithmetic 

algorithms for three-dimensional vector system which are addition, subtraction, and 

multiplication (cross product), the classical computation can be applied as a result of 

that, the complexity of the computation for signed-vector-digit would be less compared 

to the three-dimensional vector format. 
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