CHAPTER I

INTRODUCT ION

1.1 Approximation Methods.

In developing theories for the eleectronic properties of
binary mixed crystals several important char?cteristic of these kind
of objects have to he taken /into consideratién. Among them is a loss
of lattice periodicity or the lack of crystal symmetry, For computing
electronic properfies such as the density of states which are asso-
ciated with the entire System we can not use the standard statistical
methods which are based on the translational symmetry of the crystal,
To treat the disorder, varions appoximation methods have heen used,

These techniques are based on how we treat ﬁotential of\electrons in
mixed crystals, These methods have been developed for over fifty years,.
Tt should be remembered that each method has its own limitations.
Nordheiél%ntroducea the method called virtual ,crystal approxi-
mation in 1931, This method assumes that the electrons in a binary
systems behave identically, as far as macroscopic properties are
concerned, to the electrons in a hypothetical ordered material in
which the crystalline potential is the average of the potentials of
the pure materials, This approximation represents tﬂe lowest order

term in a perturbation expansion of the coherent potential W and is

fairly successful in the case of the rigid band limit where the



perturbed wave functions are quite extended in space so that each

electron sees nearly the average perturbation.

In 1958, Korringa(z) suggested the average T-matrix approxi-
mation, based on the assumption that the electrons in mixed crystals
behave as if they were moving in a particular ordered system of
localized potentials, the scattering matrix of which is the average
of the scattering matrices of the locailized potential corresponding
to each constituent, This approximation was considered by Soven, who
found that it was not a 'reasonable one for the case where the localized’
potentials have a strength approaching that found in transition metals.

In 1966, Yonezawa and Matsubara,(3) using what they called
a ' cumulant expansion/' , gave a formal perturbation theory analysis
leading to a systematic expansion of the coherent‘perturbationl

The method called the coherent potential approximation (CPA)
was proposed by Soven(4) in 1967. The essential physical idea of this
approach is to describe the system by an appropriate effective
Hamiltonian. This Hamiltonian is defined by the condition that if it
1s employed, there is no further scattering from the indiyiduals sites
on the average.'lf| incorporates a potential sunch that with its use,

a wave will propagate coherently through the material, To determine

the coherent potential‘in the original and simplest form of this

approximation, one requires that a single scatterer imbeded in this

effective medium should produce no fg;ther scattering on the average,
o

The attractive feature of the CPA is that only directly measurahle

physical quantities are required as input data when calculating the



v

excited electronic state of the mixed crystals. The pertinent parameters
are the experimental density of states of the pure crystal and the
difference of the single molecule excitation energies. The major
shorteoming of the CPA involves an inadequate description of localized

states.

‘

1.2 Methods for Approximating Green's-function <G>,

The various metHodé for calculating <G> differ in the ways

that the configuration average is inserted into the calculation. We

begin by defining <G> as
X

<G> b -——l-——- I.1
God - W
when G0 = bare propagator of the system
and W = correction due to the perturbation

caused by thesdisordering and which
also incorporates the configuration

averaging

1.2,1 Virwual Crystal Approximation (VCA)-

As was pointed out in Virtual Crystal Approximation, it is
assumed |that ‘the ‘eléctrons <in| 4 binary) mixed) ¢rystals behave identi-
cally, ‘as far as macroscopic properties are concerned, to the
electrons in a hypothetical ordered material in which the crystalline
potential is the average of the potentials of the pure materials.

'

Therefore the correction W is



W = ¢ Vi 1.2
where vV, = c V,A + C V,B 1.3
i Al B i
when ViA =  potential for particle A at site i
B . . ; .
Vi = potential for particle B at site i
c, = concentration of particle A
cg = concentration of particle B

Substituting this equation(Z.1l), we get

This approximation represents the lowest order term in
a perturbation represents the lowest order term in a perturbation

series of W,

1.2.2 Average t-Matrix Approximation (ATA).

We defined -a single-site t-matrix to be

T = v, + V.G ¢, 1.5
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Then the mean resolvent is

<G> = G +} G <t,> L G <t.Gt.>
' (o] i o 1 Go * i 5%+ o 1 oi Go +
£ I G<t,6t.,Gt >C + ...
1371 k#3 o 1 o0 jok o

The restriétion on the summation for the successive
scatterings is because t contains all the scattering from a single
site and further scattering must therefore be from another site.

By éalculating the ti-matrices t? and t? for scattering
off the potential V? and V? respectively, then asso;iating with
each lattice site of the crystal the average t-matrix
A B

<t':> = c tl +
1 AL thi

When on using the replacement of the average of products of
t-matrices by the products of thelaverage t-matrix, we get the

approximation for <G> as

-

£ ;
<G> = G+ LG <t G+ G <t,> G <t >
e 10 ¥ "o E ;;i o~ i o ti Go
+Z I I G <t >G <t,>C <t >
I 571 kg5 Co Ti S0 ti7G G, t ... 1.9

This approximation is a single—site approximation and not

reasonable for the case where!the localized.potentials have a -

strength approaching that found in transition metals.

L o
1.2.3 The Coherent Potential *Approximation (CPA).

(6) (4)

This method developed by Taylor and Soven in 1967,

o .
introduce the concept of an coherent potential. Th& essential physi-

cal idea of this approach is to describe the system by an appropriate

.



effective Hamiltonian., This Hamiltonian is defined by the conditiomn
that if it is employed, there is no further scattering from the
individual sites on the average. If incorporates a potential such
that with its use, a wave will propagate coherently through the
material, This method is equivalent to viewing the actual scattering
potential as an impurity imbeded in an effective medium, whose
propagator has a self-energv adjusted so/ that the t-matrix for
scattering by a single site impuricv in this medium is zero on the
average.
‘
In this approximation, we assume that there is an effective

. o \ \
medium characterized by'a résvlyvent G wnich is related to a coherent

potential W through the/Dvson equation

o F JFc gl X 1.10
O Q

In the ordinary, ©or single-site CPA, the coherent potential

is assumed to be site-diagonal, but in general there will be off-

diagonal elements. Now we write eguation (I.10) for G in terms of

c° elimimating Go via‘equation (I.10) with the result

G = ¢ + ¢%(v -wWe I.u
By iterating and.averaging eghation (T<11) |, (werget
@G & Py s s

cC<w ~.w) .2 v-wW) > G°. + 1.12

THere is an extra degree of freedom in that the coherent
potential is arbitrary. Therefore, for the best improvement of the conver-
gence of equation (I.12), we choose W to be the exact self-energy of
<G> in equation (I.lO),then we would have <G> = Go and the
scattering terms in equation (I.12) must cancel, that is the

,/ cre
average T-matrix for the system must be zero. Thé CPA method is



to calculate <T> in some approximation and set this to zero
as a determining equation for W.
In the single-site CPA, one decouples <T> into products

of single-site t-matrices which are set to zero on average,

<t> = <(V, - W(l -G (v, - W))_l>
i i

1

Il

= 0
This equation is then solved simultaneously with equation (I.10)

. o ) A
to find G as the approximation for <G>

1.2.4 Cumulant E¥pansion Method.

From eq.(I.1}

<G> =

when we replace W by potential V. and expand in series we get

<G> = Ggp +Go<V> Gg + Go<VG V>

Vi¥ GotV GUliGV> Gy +

By using the formulas of products of cumulant average such as

<A> = <A>c.
<ABS o = <A>C<Bx + <AB>C
or <AB>C = <AB> - <A>C<B>c
c
ZABCS = SV ASCLENE €85 G <aB> xS
+ <a<B>°e>C 4
c c c
<A> <BC> + <ABC>
c c c
or <ABC>c = <ABC> - <A> <B> <C> -

c C
<AB>c<c>C - <A<B>CC>c - <A> <BC>

1.14



and so forth. The suffix c indicates the 'cumulant average'. By use

of this kind of average one gets
c (o4
<G> = Go * G‘,><V>CGo + G<V> T GoV> Gy *
[0} C C
VGV>C G+ GoVP Go<V>T Go<V>T G+
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Gp <VG gV Go¥2eCy + cvess  I1.15

This approximation includes all the effects of electron
scattering caused by a single impurity, but does not take account
of effects such that an electron scattered by am impurity is appre-
ciably influenced by other impurities before the first scattering is

completed.

1,2,5 Connection between Perturbation Expansion and Diagram

Approach.
A .
For any system, we can define an operator Go(E) = 1

E-H
o

vhere Ho is the~time independent) Hamiltonian|operator, The expecta~-

('8)
tion value Go(E) which is called Green's function is calculated
as follows.
o 1
) = . >
<v; | 6, )|y ¥y | 45 1.16
E —Ho

As wi are the eigenstates of Ho, and from equation(I.16)

le> = “<, 2 (=),

1

4 lEw
) o
l—'E—"
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Since (Ho) ,wi>_

equation (I.16} becomes

- ) : .
<"’i|EH—°J¢i> 1 R L
# /v 3t—5u,>

N

/ 1
] wi'E—-EiNf

Yoy,
o E-E,
PITI
= EE,
= G (E) I.18

Rl RS S R o Y .-

Let us now.consider a system with perturbation and which is..

5

described by the Hamiltonian 'H = Ho + AV, where ) is a real

parameter to be 'set equal to one at a later time, V is a time inde-
pendent ‘perturbation operator. The eigenvectors .of Hb +. V are no

longer ¢i> and the eigen energies are no longer Ei but Ei'.

. E£ = E, + all perturbative corrections to the energy,,

-

= Ei + I, where § is the self energy correction,

Of interest to us now are the two expectation values

1. The expansion <i[§£§li> in terms of perturbation V, and
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1

3 Hli) in terms of the self energy I ,

2. The expansion <i]

(Note that in both expansion, |i> are the eigenvectors of H) The

expansion <il_l__li> in terms of perturbation V is obtained as follows :

E -H
1. _ ! )
<l‘E—H S <llE-:O-AV{ e
1 .
= <1[ = )| i 1,19
E-.ho AV
1—.—-_——-
E-H .
¥/o ,
Since I |j >< jl = ; equation (I.19) becomes,
3 g 1
<i| 1 |#5E <t 1< 0 1 i>
' - v
E-H J E-H 1 A
N E-H
(o]
T B X 14 9 I 1 i>
3 B~ B J T - W
E-H
(o]
= SN— 1 | 1>
E - Ei 1 - AV
E.- H
©
=G (B <1 1 i>
1l - AV
E,--H
0 n
= G (&) [<ffty + L= e 22 Sy ) 120
E-H,) (E-H )2 (e-g )"
o o
The second term in I.20. is A <i|__v__| i> which can be
. E - H
rewritten as follows. o

A<i] v is= ar<ifviie<j|_1 | i»

J -
E Ho E Ho

- A<i|vli>G°(E)
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The third term in equation (I.20) is AT < i‘ v i >.

Expanding as before, we have

2 5 = B r Vet vy e e 13 bt e 10
' (e-8_)? 313" 5 =5,
2 . 1 1
= A5 T < Vi<tV o= 8, ,n T,
JJ'J" E_EJ" J J 'E-Ei J 1
et <ilvli><givli> © 1
E~-E, E-E,
4 i i
; A
4 3 l:&%%l&:f G (B)
E,
J i
= A2<i|Vli>2G§(E)
The fourth term in equation (T,20) is A3<1{ -——léi__ |i> .
(B8 )3
Again expanding as before; we have
3 V3 . 3 ' 1
A li- = 2 <A |Vl3,2<d, I5g 13o7<d,1 V18,
3 1 “1'E-E 'vY2. Yo 3
1l X 1 .
<J3|§:§;i3u><dbIVIJ5><35I §:§ZI1>
= W : <llv'31’E:E” Jpdp 2 1V1 85,3
1

<Jh|VIJ5> BT,

3. <V o<agIviag><a5lvle>

(E-E, J(E-E, )
Jpds I

]
™

GO(E), JI#J3#i
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5 <HVII o< 1V, 7<a, |V 1
4 TE-E )TE-E3 y 2 Co(E)s Jp#dq7d
J1J3 ‘)l 33

<A |V|d,><d, |V]i>
3 1”1
= A <ilv|i>GO(E)2 T~

Jp 31

G _(E), §,#1, 3571

<i|V]3g><g; V]i>

3
= A 3
<ilvlz>G°(E) § 5F, G_(E)
3 3
. 2
_ 3 <i{Vii>{"<i{vii>
= A ;‘. E-EJ G {E)

y = a3 <i|vli>3ci(E)
The other terms in equation (I.20) can be expanded in a similar

manner. We add these terms together and now set A equal to one.

Thus equation (I.20) becomes

<1[.E__:.L.§.] 1> = G B [1 + <iiV|i>G°(E)

<afvly <jlviy G, (E)

+ I
3 BED |
<i|Vv]3,><d; [V1I5><d5|V]1> ]
+* 5 *—(E.-E )(E—EJ ) —— GO(.E) + oooJ
15 Jy 3



= GO(E)[ {1 + <ijvh>

+ r «<ilv] 3> < 3] v {a>
j E-Ej

po<af v el vl vl

+ .

)

(E~E. ) (E-E,
J J

Now consider the the e i — in terms of the

self energy

Sinece <i { 3= A vhere E] = E;+ I

RULINEN TNENT
PRIANIUNAINYINY -

Equation (1,23) is called Dyson's equation(g ). Multiply

from the right by<G(E)>and from the left by GO(E), ve get

13
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I
<G(E}»>~ GO(E)z <G(E) >

¢ (E)
<6(8)> = ¢ (E)+ G (E)L <G(E)>
= G (E) + Go(E)ZG (E) + G _(E)26_(E)I <G(E)>
= G (B) + 6 (E)iG (E) + G _(E)ic (E)c_(E)
+ GO(E)XGO(E)ZGO(E)):GQ(E) + ceeeee
= 6, (E) [1 + 26 (E) + ¥G(E)ic_(E)

¢ G @i, () s o]
= Go(?) [1 +{T 4 ZGO(E)Z +£G°(E)ZG°(E)E

¢ i (0, @03 + ) o (8] 120

Comparing equation (I.21) and eguation (1.24), we find the self-energy to be

r = v e g <ilvlye <lvige
J E-E,
. z <ilVIal><allvu§><a;lVIi>
dqd3 (E-Ejl)(E-E33)

+ ‘texms caming from the higher ordexr pexturbative
correction 1,25

He ghall wov lock ‘at the graphic interpretation of the
;
E -E
3

by a horizontal line. Each vertex is associated with a polyncmial

perturbative series. We can represent the free pxopagator

Pn(,c) where n equals the nzmber of interaction lines (represented
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by a dash line) connecting the impurity (represented by a cross)

and the exciton propagator line. Each interaction line is associated
with a momentum transfer p, Of course the net momentum transfer to

a single impurity must be zero, An example of graphical representation

of few terms in the expansion arxe

>F
|
! -
|
| for <i|V|,j>
i
i 3
N
V4 \ it
/ \ o .
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’ \ J J
{
{ i
i j i
PR S
VRN J . .
N BN i Vlgg><dy V]a><a, V>
A for I %] J(E-E, )
l l \ dydo d; 2

11 2 2 etc

Let ns ng@ look at the graphs which represent each order
correction in pertmrbattve series,

A ‘graph which represents the first ‘order correction

1 ,
G (B) <i}jv ( )]i> i
° E-Iio X

|
|
|

I

)

———
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Graphs which represent the second order correction

G, (E) <1|V ( l )2|1> are
X X X
b " VRN
- W
! | h, \
SR N B
Graphs which represe G, E)<1]V3 ) [1>
T T T //;\\\ ’/):(\\\
oy ! oy U
T L [ i
Graphs which reprE?i
are GO(E)<i|Vh -I@—) ‘1>
ﬂUEJ’J'VlEW]'ﬁWEnﬂ'ﬁ
TAAK Héﬂ X,
| N
m;mmmmwww IV
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11/ ] ¥LJL i | ! ; ALY L/ — ! 1 \
J I P
| | (.
l ! | ]
sk e sk sk
The generalization to nth order correction which has 'n'
>
interaction V ( i ) 1lines and n + 1 propagatiors of the type 1
]

E-E,
]
(————) lines is as follows,
. . R th
The total number of terms @arising in the n~ oxder perturba-
tive series is the total number of distinct pictures having 'n'
, th
interaction lines and the correspondencesnis one-to-one, The n oxderxr
correction is obtained when we write down the analytic expressions for

a1l the distinct graphs we can draw with the n interaction lines,

1 1
E-H E-E

If we now repregsent <i| li> by ——— and <i|==oi>

by =—=3 , the perturbative series becomes graphically
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1.26

higher order terms.

+
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These graphs can be -divided into two groups.
1, Reducible graphs

2. Irreducible graphs

Reducible graphs are the graph which can be separated into two parts
by cutting one propagation line (horizontal line).

Irreducible graphs are the graph which.cannot be cut into two parts
by cutting propagation line. )

The self-energy L are the summation of all irreducible

graphs in -equation(T.426)

Thus g = Y, X ' > ;T\
i
! / / \
[+/ \\+/ \+/;
|

4\ /X'\/ /\ /x\
A / /N / \
+ /I/ \\ \ — { \\ + \ =+ l/ \\J
Ll 1\ L1 ) 1 \4 ' ‘ :
) . v
| / \ /
] \ v/ \ /
* X A
A /N R /X\
/N s VARERN /N
+/7 N+ SN
[ ! , RN I W A N W
‘--1—~r‘J T 7 \ T ‘\ ,
b | 1 /
| Ny ‘S \
| \|/ ' AW
x* )k X X

_F. etc | 1.27
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The self-energy = = one vertex series + two vertex series +
three vertex series + ..........
where the one vertex series are 3, , the two vertex series are %2.

Thus

one vertex

i

/>€<\ /,?ﬂ\\
l \ //I AN
| \ +'-/ ,I’ VN
L1\ L1 1
I.28

AULINENINEINS
AR TN TN



	CHAPTER I INTRODUCTION
	1.1 Approximation Methods
	1.2 Methods for Approximating Green's function <G>




