CHAPTER 1III

DIAGRAMMATIC INTERPRETATION OF MONOMER SERIES

3.1 Monomer Series Expansion.

: 1 o
From equation (T.28), Hong and Kopelman( 8) and Chatuporn(lg)
2
and Tang( 0) pull out the series of graphs which have one vertex. These

~.series of graphs are labeled jas the monomer series and which produced

, then
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Denoting zmoncnner by Ly, we find that the analytical form'is
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Hong and Kepelman used the approximation Pn(C) = g,wh}ch

s
>+
R

is valid for ligh#ly doped crystals to get

[

(k) = (A/N)Nc[l + AG(E) +AdGi(E) + III.3

The.}‘esnlttng se:‘l.'ies is in the form 1+x'+x2 Foeevrne

which is jost the geometric power series expansion of {0 - 1!)’"1 .
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Thus equation (III.3) can be rewritten as

ch

Zl(K) = WTA ITI.‘D
The Dyson"s equation
<G (K)> = B (k) + G LAK) < G(K) > .. IILS
can be rewritten as
) 7/ .
<G(k)>"= [Go (K): = Z(K)] . III.6
1-1
or as <G(K)> = [E - £(K) - Z(K)] III.7

where I(K) is given by eguation (III.3)

By taking the imaginary part of equation (III.7) we get ;

ImI(K)
[E - e(K) = Re):(ic)]2 + [mam]2

Im <G{K)>" = I11.8

Assumdng that I (k)is small-(valid for very low_concentratioms of

impurities), we find that |
Im Z(K)

‘ (B -re)
In other words, the singularities in the imaginary part of the con-

Im K.G(K) > = III.g

figuration average Green's function for the mixed crystal qntside the
band are the same as the singularities of the imaginary part of the
self energy and the residue of these two functions at their commom

poles are related by equation (III.9)
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The optical spectrum can be obtained by the two relationships

(these being the Krammer Kronig relationships)

(1/m)Im < G(K'= 0) > I11.10

—
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(1/x)Im </G' (K = 0) > II1.11
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wvhere b and ac refer to the branches of the spectrums. The pole or

singularity of equation (I¥T.4) is given by

(o} ap'

j»o (E") II1.12

p?
GO(E(l)) g

E(I)-E'

For convenience, Hong and Kopelman work with the total intensity attri-

butable to the monomer impurity defined as

E(1)+e 5 :
L (E(l)) = ‘( £ (E)-dE ;11.13a
E(1)-c
E(1)+e
(o]
Iac(E(l)) = u( Iac (E) dE III1.13b
E(1)-e

where E(1) 1s the monomer energy defined by equation (III.12)., Because

the Im <G(K)> {8 connected to Im I (K) by equation (III.1Q), we have

I (1) = Res HE=EQ)J I11,14a
(E(1) ~€y)
I (B(1)) = pes ZE=E(1) ) III.14b

2
(E(1) -eac)



38

Using equation (III.l4a) and (III.1l4.b) and a similar set of equations

for the dimer contribution which also requires that Pn(c) = ¢ for
a;l value of n_, Hong and Kopelman were then able to explain some of
the observed properties of mixed naphthalene crystal and to provide
some insights into the internal mechanism of resonance pairs.

(lg)and Tang(zo)extend the theory to crysta}s con-

Later Chatuporn
taining higher comcentyations of impurities. The modification consists
essent1§lly of'Feplacing‘the approxination Pn(c) = c by a form fer

Pn(c)’used by Leath and’Goodman(Zl) for treating lattice vibration
in disordered binary system. ,

Leath and Goodman(2l) pointed out that the function Pn(c) can be

written as

n
Pn(c) 4 T (-1)”"l (m-1) ! & IS(n,m) I11.15
m=1

_ where S(n,m) is the number of ways of partitioning a set of order n
into m non-empty subsets and which is called " the stirling numbers
of the second kind " , The stirling numbers of the second kind can be

defined in\ temms of,the binomial coefficient as

(m)
T She

[]]

’_l
mE
T
)

3

=
B
"

III.16
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Substitution of equation (III.16) into equation (III.15) gives

- !
(-1 B r11.17

o {m-k)!K!

m

[l =

n
- 1
P (c) = £ (-1)"% (m-1)1 ™ =
n - ml
m=_

th .
The coefficients of the Nth power of ¢ dnfthe n  function Pn(c) can be

obtained by relationship

3 .
Coefficient of ¢¥ in P (c) = 24 | NSNS (c) 11.18
n N 3e c

wvhere n > N,

1

Substituting equation (III.17) into eguation (IIX.18), we get coefficient of

N
¢ tn Pn(C)
n m
1 m-1 m! m=N 1 m=K m! Kn
= = L (-1) (me-1)t c ~— I (-1)
N! ~ (m=N) 1 |c=o mbedo (m=K)1K!
n=N
o m .
= L m-1 m! 1 m-K m!
o TGO oy L S A =
m=N K=o
1l N-1 1 N N-K N4
= m(-l) (R-1) N} T L.(=1) —
=0 (N-K)!K!
X .
1,19
= (F-1)1 £ (-1)K* N_Kl,m - .l

K=o

Again it shonld be emphazied that the n appearing in

equation (III.19) is the subscript of the P(c) function while N is the
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power of ¢ in Pn(c) '
We are now in a position of being able to sum the self-energy
arising from the monomer contribution. This monomer series is not

the total self energy since diagrams such as
’

x A

/ /

{ i and { ! \ are not
i !

included in the above serdes. These two terms are, of course, the
simplest diagrams whieh appear in the dimer contribution to the
self-energy. The summing of %n is accomplished by summing those con-
tribution from each diagram which proportional to c, then summing

those proportional to c3 and 'so forth, For example, the contribution

to cN is
N KL L=1 GL—l
(-1)1 8z (D —— 111,20
. (N-K)!K!

Equation (TII.20) is the product of eqn, (III,19) and the
Green's function’equivalent of L interactions connected to the
impurities with the propagator<G(E)>without the probability factor
Pn(b) present,

Putting everything together, we find that the self-energy

written to gll orders of c is

or I. = cA{(1+AG + A2G2 N vee) + L
(o] [e] [e]

5 (2) 111,21
monomer 1
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where

n.n-1 n-1

© ¥ K%aR1 ¢
2
2 4 N (N=1)1 & (-1)¥*% o
=2 n=N =0 (N-K) IK!
III.22
(2)

The first summation in X represents summation over all the
orders of ¢, the second summation represents the summing of all the
4
contributions which are proportional to cN , while the last summation

arises from the definitdion.of nth contribution. By rearranging the

terms in the last two/summations, we get

[ N @® N
- -1
s s fE o (K" a2 Gl
N=2 n=N. K=o

5(2)

LS

111,23

N
where (K) is binomial coefficient, If we now adopt a convention that

(g) =0 for x » n, the summation over K can be extended to infinity.

this allow us to interchange the two summation over n and K,
The summation over n can now be carried out .as folldws
g KPPl Rt - A‘lG;l Lo KATGD

n=N ° n=N

a7t g KAV G s kBTGP
e} (e} n=0

KNAN--l Gﬁ—l

1KAG II1.24
o
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vhere K A Go < 1

Thus the second part of the self-energy become

N, N-1 N-1
(2) > g% k+1 N, B8 G
z = A I ¥ uF (=1) (K)-—-———-——— ee. II1,25a
N=2 K=o l—KAGo
N NN
1 = & K#1 Ny _K' I11.25b
°© _n=o K=o o
P 2 2 2
= Zi L zé Y+ zé N Zﬁ A II1.26
vwhere
(2) R P N
Zl = Go z 5 (l) v I1I.27a
N=2 (o]
N
£, I 3o SaZ 1-206_ III.27b
N
(2) -1 2 1 (N) (3CAGO)
z = G z =
3 P =3, 5.3 =340, III.27¢
and where the general expression is
oy
N
R TR ZC N (LedG) I1I1.27d
°©  y-L F'L 1-LAG

By writting out the binomial coefficient, equation (III.27a) to

(I11.27d) become
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(2) CEAZG
z = o 1
R 1~ G 1-cAG I11.28a
o o
Z = 1246 £ n(2ea)” > I11,28b
2 ° n=o0 °
'3 - 1-38G> nko - A3c4C ) 111.28c
. n(n-1)(n-2)...(n-L+2)(Leac )"
ana ‘2 2 (-1)*3 ca \ o
L LAs) | (T-1)1

II11,28d

The summation over n im eguation (III.28b) to équation (I1I.28d) can be

carried out by noting that(zz)

. KXK -—-x-_ 111.29
K:o : (l'x)e .

Dividing both sides of equation (III.29) by X, we get

. .
-1 1 :
IR S > I11.30
K=o (1-X)

By differentiatipg equation (III.30), we get

I !((1(-1.)1{‘K = _2_x33 I11.31
K=o (1-X)

Cos qs . 2
Dividing equation (III.31) by X~ and differentiating with respect

to X again gives
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© 3
‘ !
p k-1 -2 = I11.32
K=o (1-X)
Repeating this process N times, we get
- yix? I11.33
£ K(K-1)K-B)ius(K-Ne)x e B2 :
K=0 ‘(l—X)N+1

Using the general result; equation (III.33), in equation (IIX.28d), we

find that

2cAG
(2) J_F 73 =<4 "o I11.34a
£ 1~2AG 2
o (1-2cAGO)
: 2
AG
AL SR L cb (3205, II1.34b
L 1-34G, . 3 .
(1=3cAG )
[
and in general, , we find
L-1
(Leag ) I111.35

(2) I+l ol
L o> (=1)
L 1-LAG (l-LAGo)L

Summing over all values of the variable L of equation (III.36) and
replacing 1 + AGO + A?Gi + ..by its sum, we find that the self

self-energy due to the monomer contribution is
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AG
5 - c N ch ¢ o .
monomer 1-4G (1-AGO) (l-cacol
N-1
> §+1 0 ea | [ Wlietg )
L (-1) 1-NAG NS
N=2 o) (l—NcAGO)
or I - ch - o
1 1-467 (l-cAGO)
. N-1
> N+ el (NedG, )
(=1} F
Neo ToNAG .
- {1-NechG )
O
N-1
® {(NeaG )
+ .36
= cd I (3 o . III.3
N=1 (l—NAGO)(l-NcAGO)

It should be noted that as ¢ —>0, equation (III.36)

reduces to the self-energy, eguation (III.4), derived by Hong and

Kopelman on the basis of" the substitution Pn(c) =/ ¢ for all values

of n,

3.2 Modified Monomer Series of Self Energy.

- (20)

Tang pull out a series of graphs to give a "modified monomer”

series as in the figure (3.1)
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Fig. 3.1 Modified monomer series

' . (23)
in place of monomer series obtained by Hong and Robinson. The

additional diagram, which are shown in equation (III.l), are incorporated
into the series by xeplacing the internal bare propagators by the dressed

or true propagatorsas

When the monomer self energy series being replaced by the true
propagators<G(E)> = (_GO-JCE) 2L )-1 where 7 is the monomer
self energy series shown in figure 3.1, the partial series shown in

figure 3.1 can be summed to-be the continued fraction

G ' cy

- - - -«

111,37

where V is the perturbhation €0 -~ €g ; ¢ is the concentration of the
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¢

impurities and GO(E) is the bare propagator of t?isfystem.

As was pointed out by Hong and Kopelman, the singularities
lying outside the density of state band of the bare propagators are
the zeros of the denominator of the self energy expression. By
terminating the continued fraction at the first appearance of ¢ in
the denominator , at the second appearance, at the third and so on,
we find that the singularities are the zeros of the following sequence

of polynomials (which.are the denominators of the first convergent,

the second etc ).

P.(E) = & - VG, (E)
1 o
P(E) = (1 & NG (8) 1B (8) - evG (E)
2 fe) 1 o}
P(E) = (1 - (L+c)ve (8)) P.(E) - cvoG (E)P, (E)
3 | o 2 o) 1
§
()
I 1
|
P(E) = (1 - (1L+c)VG ()P _(E) - cv°G (E)P_ _ (E)
n , © n-1 o n-2
ITI. 38

. The' above sequencerof polynomialspis tknowngsas a Sturm
sequence, Based on some theorems concerning the zeros of a Sturm
sequence of polynomials, we fiqd that the singularities of the
propagators will lie on the real axis and will therefore be physically
meaningful. The continued fraction can be terminated by writing the

self energy as
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z = cv

ITI.39
1 - \
¢l -1
o
The solution of ‘equation (III.39) /is
2
! BG V(c - 1), + l] =11 - 4G ¢V 1/
I =to o
2
2G (G V-(c =-1) + 1)
o o
I11.40

The negative sign i1s taken in order to insure the proper behavior

as E goes to infinity. As we see, | the analytic expression for the

' 1/2
self energy has a cut as a result of 1 - 4GocV /2.

(G V(c - 1) +1)2
(e}

This cut will manifest itself as an impurity side band of width
dependent on ¢ in the dilute mixed molecular crystal.

From equation (III.40); the square root in the ‘complex plane has
a cut running from +1 to -1 . Which meané that when the square root

is zero, we have

4G _cV = 1 III.41
Q

(6 V(en~1)"+ ) )2
°

Inverting equation (III.41); we get two expressions for Go

Go = (c+1l) + 2 JC: 111.42

vV (¢ - l)2
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CONCENTRATION C

Fig. 3.2 Energy Bandwidths of Isotopic Mixed Molecular

Crystals in very low concentration
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N

Each expression for Go yields a value for E. We can see
clearly that for every value of c we get two expressions of Go

and two values of E.

i from Suporn(24), we find
I1T1.41). The difference

F oo

purity side band. Curve I

Using values of Go o

the values of GO which sa
in the E values is sho

Figure 3.2

corresponds to this res N rve 1 orresponds to Hoshen and

Ny
25)

Jortner( who obtaing l~ﬁcg the equation

I1IT1.43

Numerical datas es will be in the

chapter 4.
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