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APPENDIX A
BUFFERS AND REAGENT

1. Lysis Buffer I

Sucrose 109.54 g

1.0 M Tris — HCI (pH 7.
1.0 M MgCl,
Triton X =100 (
Distilled water to
Sterilize the soluti i i ) te a refrigerator (at 4°C).
2. Lysis Buffer I
5.0 M NaCl
0.5 M EDTA fi =

Distilled water .'

o83 A SWHAF oo
Wﬁﬁ*‘%ﬂimumwmaﬂ

S dium dodecyl sulfate
Distilled water to 100 ml
Mix the solution and store at room temperature.

4. 20 mg/ml Proteinase K

Proteinase K 2 mg
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Distilled water to 17 ml

Mix the solution and store in a refrigerator (at -20°C).

1.0 M Tris — HCI
Tris base 12.11 g
Dissolve in distilled watgrand adjusté 7.5 with HCI

Distilled water to

Sterilize the solutiopf i . atr om temperature.

0.5 M EDTA (p

1.0 M MgCl, solutlgn

o UELINENTUINN
TRAANTA NN AN

Dlspense the solution into aliquots and sterilize by autoclaving.

5 M NacCl solution
Sodium chloride 29.25 g
Distilled water to 100 ml

Dispense the solution into aliquot and sterilize by autoclaving.



10.

11

10X Tris borate buffer (10X TBE buffer)

Tris — base 100 g
Boric acid 55 g
0.5 M EDTA (pH 8.0) . 40 ml

6X loading dye

Bromphenol blue

Xylene cyanol

Glycerol

1M Tris (pH 8.0)

RN YA

{HTESh sl anTIngnay

Distilled water 80

Adjust volume to 100 ml with distilled water and sterilize by autoclaving.

12. 25:24:1 (v/v) Phenol-chloroform-isoamyl alcohol

Phenol 25 volume

Chloroform 24 volume

FA4



13.

14.

78

Isoamyl alcohol 1 volume

Mix the reagent and store in a sterile bottle kept in a refrigerator.

2% Agarose gel (w/v)

Agarose 1.6 o]

1XTBE mi

Dissolve by heati ' : | OVeR seasional mix until no granules

Ethidium bromide
Ethidium bromi

Distilled water

ﬂ‘lJEl’JVIEWI‘B'WEI"Iﬂ'ﬁ

ammmmum'mmaﬂ



79

APPENDIX B
Estimating Haplotype (EH)
File in this Window package.
1.EH.PAS : Source code of EH program.

2.EH.EXE : Executable code of EH program, which is compiled with a maximum of 30

genotypes at each locus).

EH.DAT, EH.OUT Sa

alleles at the first locus, n / < ' and so on. Assuming you

have 2 loci, each locus has

M
u
second locus

, |
T o T YT PV & PP e o
as a .dat file. ql

E-\EH statist =]]
: ) R4 B4
e e e tdmelb T beda
0 1 4
s 7 0
3 o0 o
-;|i : | 2]
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2.Running the EH program

-Running EH progrém showed the window as below.

Do you wish to use jF

-Type your data filena

Developed under
Program 1

Do you wish to use the case-contrpl ¢

Enter name of data file
case.dat

you entered: case.dat
Enter name of output file.
case.oly .

-The output file presented the haplotype frequencies in two kind. “Independent”
these are obtained from the allele frequencies at the individual loci. That is, these
haplotype frequencies are not estimated but calculated from allele frequencies under the
assumption of no association. “w/Association” these are estimated from the data,

allowing for association (linkage disequilibrium), assuming Hardy Weinberg equilibrium.



i |
locus \ allele 1 2

1 | 0.5500 0.4500
0.6000 0.4000

f| % of Typed Individuals: 20

{There are 4 Possible Haplotypes
‘They are Listed Below, witl

I Allele
1

Allele

# of Iterations

HO: No Associati
Hl: Allelic Associati

Case-control data.

If you want to -,__;

‘Estimates of Gene Frequencies (Assuming Independence)

case and controls, you rt

Iu
and controls combined. Fagls given data set (case.dat, cont of dat, provided), results are

shown below.

L
Ol

__;—_»~_y' different in

Caseu comm.ﬂ?uﬂ’;l‘l’lﬂ‘ﬂﬁw 8113
el AINIURIINYNAL..

HO: No Assoc1at10n 2 -40.58 0.00

Hl: Allelic Associations illowed 3 -31.41 18.35
I df Ln (L) Chi-square

HO: No Association 2 -208.32 0.00

Hl: Allelic Associations Allowed 3 -207.69 1.26
df Ln (L) Chi-square

HO: No Association 2 -544 .98 0.00

Hl: Allelic Associations Allowed 3 -523.19 43.57

81

trols, and 3) for cases
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The relevant test statistic is T = In(L,cases) + In(L,controls) — In(L,cases +

controls together). With a sufficient number of observation, when there is no difference

between case and control haplotype frequencies, twice this value has an approximate

chi-square distribution with a number of df equal to the number of haplotypes estimated.

For the above data, one obtains(-31.41)+(-207.69)-(-523.19) = 284.09 x2 = 2*284.09 =

568.18 on 3 df is associationed with an

ignificance level of <0.005

.

Table: Chi-Square iti —

The areas given across th S critical value. To look up

an area on the left, subtra T ! d'*_‘» 05 on the left is 0.95 on

the right) | ’__.
df | 0.995 | 0.99 | 0.975 .9 9&:, 0.025 | 0.01 0.005
1l — — |o00017]0 - 1| 5024 | 6635 | 7.879
2 | 0.010 | 0.020 | 0.051 | 0.1 = 991 | 7.378 | 9.210 | 10.597
3 | 0.072 | 0.115 | 0.216 0.352 | : : 7.815 | 9.348 | 11.345 | 12.838
4 | 0207 | 0297 | 0.4 5 8#1\11.143 | 13.277 | 14.860
5 | 0412 15.086 | 16.750
6 | 0.676 16.812 | 18.548
7 | 0.989 18.475 | 20.278
8 | 1.344 20.090 | 21.955
9| 1735 2|1 .666 | 23.589
10 | 2.156 209 | 25.188
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APPENDIX C

HARDY-WEINBERG EQUILIBRIUM
The Hardy-Weinberg model, named after the two scientists that derived it

in the early part of this century, describes and predicts genotype and allele frequencies

in a non-evolving population. The model h .

ie basic assumptions: 1) the population is
large (i.e., there is no genetic drift flow between populations, from

migration or transfer of gamete = yible; 4) individuals are mating

randomly; and 5) natural AC ’ population. Given these
assumptions, a populatiopg®ge \‘\\‘\ \ will remain unchanged
over successive generati 5 A i be in Hardy-Weinberg

equilibrium. The Hardy-Wei : an-aleo e > ) the genotype frequency
of a single gene. |
Importance:

The Hardy-Weinberg mo ABEs s die a population's actual genetic
structure over time with the genetic- St re-weWould expect if the population were in

Hardy-Weinberg equilibriwm (i eglrencies differ from those
W )

we would expect under,&@ J.‘:"J more of the model's

. . . II
assumptions are being violated, and 2 nt to d ine w f, one(s).

Question: d

o o0 @13 8 AT I B R Sorosoe anc s

frequencies? What &es the model tell us‘about the ge&e.tic structure of@population?
e PIANNTANAIN A E

p |frequéncy of one of two
alleles

q |frequency of the other
of two alleles

Methods:

The Hardy-Weinberg model consists of two equations: one that calculates allele
frequencies and one that calculates genotype frequencies. Because we are dealing with

frequencies, both equations must add up to 1.
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The equation
p+tq=1
describes allele frequencies for a gene with two alleles. (This is the simplest case, but
the equation can also be modified and used in cases with three or more alleles.) If we
know the frequency of one allele (p) we can easily calculate the frequency of the other

allele (@) by 1 6 p=q.

In a diploid organism with ; e t a given locus, there are three
possible genotypes: AA, Aa, 2 A as _ &nt the frequency of A and g to
represent the frequency( ite the-geno u equencies as (p)(p) or p for

AA, (9)(q) or q2 for aa, . The\ao or genotype frequencies is

One app k & tig ¢ is to look at allele and

| es that show different rates of
movement in gel electrophogésigidue ; -', S different alleles at a single
locus; they are often denoted : _‘ i ad Sislow-moving) alleles. Allozyme
variation is an indicator of geﬁeti v . an be studied to quantify genetic
variation among populatio — y i

Lidicker and 'k"_ ) ki ion in two populations of
i
in the eastern Pas . Sea ottefgiwere distributed throughout

sea otters (Enhydra lut

this region before fur hu‘ti nea;%J led tdktheir local extinction. Along the central

carons confbbt sl bod ) bidod i oot e

survived; this populatlon was protectéd in 1911 amg has grown tékits current size of
approxual wq@tﬂsﬂimﬂwm’lg mLEI f] a)%glilatlon size (a
bottleneck’, the population may have lost considerable genetic variation. A population
from Alaska also experienced a bottleneck around that time but it was not as severe.

The table below (data irom Lidicker & McCollum 1997) contains counts of the

number of individuals with a given genotype for six variable (polymorphic) two-allele loci.



85

U ; o
LR RENT:
We can hese*d - ic fréq i cus, such as the

EST locus in the California population (n = 64). Each individual with the genotype SS has
two copies of the S allele; therefore the 37 individuals with this genotype have a count of
74 S alleles. Heterozygote individuals (SF) have one of each allele, so there are 20 S
alleles and 20 F alleles among them. Like the SS homozygotes, individuals with the FF
genotype have two copies of the F allele, so these seven individuals contribute 14 F
alleles to our count. In other words, among the 64 individuals in this sample there are 94

S alleles and 34 F alleles. To calculate the allelic frequencies we simply divide the
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number of S or F alleles by the total number of alleles: 94/128 = 0.734 = p = frequency
of the S allele, and 34/128 = 0.266 = q = frequency of the F allele.
If this population were in Hardy-Weinberg equilibrium, we would expect the genotype

frequencies for SS, SF, and FF to be pz. 2pq, and qz:

p’ = (0.734)° = 0.539

(20 *n=0.390 * 64°= 3\the SFgenotype, and 5 individuals (g° * n =
do these expected values

compare to the ob pers, 0 : 2. frequencies at the EST locus?

i |
Generally we would usela s c ourﬁpected and observed counts.

In this case we can see ihgt.the numbers a&e’fairly similar, and in fact the authors have

used a Chi'SQﬁﬂﬂsﬁé}%%maﬁhﬂbﬁ'&%ﬂ(ﬁxpected counts are not

significently difféent from one anothsr.r a W
AN IANNIUNNTINEN R &

e can check our math to ensure that we have calculated the correct genotype
frequencies: ,o2 + 2pq + q2 should equal 1, and (0.734)2 + 2(0.734)(0.266) + (0.266)2
does indeed equal 1. Similarly, p + g must equal 1 and 0.734 + 0.266 = 1. Our results
suggest that for the California sea otter population, the allele and genotype frequencies
at the EST locus are in Hardy-Weinberg equilibrium. In other words, we can expect these
allele frequencies to remain constant over time (barring any specific evolutionary forces
acting upon this locus), thus ensuring genetic variation in the population at the EST

locus. This equilibrium in the genetic structure of the population at the EST locus does

-
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not necessarily imply, however, that the population is not evolving; it merely indicates
that this particular locus is not changing. Even if the frequency of alleles at just a single

locus is changing over the generations, the population is evolving.

Conclusions:
Natural populations with whole genotypes in Hardy-Weinberg equilibrium are

rarely found; one or more of the assumptiens are violated in most situations. If nothing
else, most populations are under th 3 f natural selection. Certainly no
population can be infinite but-ma Y B pu%' (5 not even large enough to be

functionally infinite. Ofte petuylations '~ : tely isolated from one another,

and migration of indi \.. ation can change its genetic

makeup. Mutations ceé SN dlte : ne gene poobsighificantly, although the majority
are thought to have li inally, individuals often mate

shew assortative mating by height

(tall people tend to marry neoplé'and sf 0Pl d to marry short people).
Additional Questions: P rT o
1) For which loci are the genotypés aot in Hardy-Weinberg equilibrium (note

that n is different for @gck S investigater true fg f hoth populations?
2) What might affecti3& validity of you : 4’ Alaska population?

u'-'
Extra credit: Confirm sorfiesar all of your cofiglusions for #1 by performing a chi-square

test. The null ﬂusﬂyﬁj ﬂtﬂm iw\ﬂ;]rﬂjjd expected values are

not 3|gn|f|cantly different from ong another Ec:ause your expected values are
calculadwq aéaﬁ %adouam %@ me&]nr}a B is the same as
saying t at the population is in H-W equilibrium for the genotype being tested). The
critical value for the chi-square in this case is 3.841; if your calculated value of the chi-
square is equal to or greater than that, the probability of the null hypothesis being
correct (i.e., the probability of the population being in H-W equilibrium at that genotype)
is 0.05, and the null hypothesis is rejected.
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APPENDIX D

Other works

During | study in Master degree, in addition to my thesis, | have a chance to do

the following researches.

1. Molecular analysis of a Thai female ultiple endocrine neoplasia type 2A that
was published in J Med AssagThal 2005: /, #BL2); S472-5476.

The patient was fo --""-‘M hetefozygoussit 900T->C (C634R) in RET proto-
oncogene. The newly availablgssdEa€iic tasis fc -,""!35\ ith MEN 2A in Thailand makes

development of the dis€asegdvhic jas i ant there IC impacts for them.

possible accurate DNA-haged / 0! nsk family members before

.
2. Molecular analysis of#@ Thi atie se. (manuscript in preparation)

In an affected patight Cane ve identified two novel mutations in

the ASPA gene by direct sedUefging.anz he PCR products. It revealed that the

———

patient was heterozygous for f;ﬁj"‘;‘.é hymidine and cytosine at nucleotide

position 2-Bpdel59TG+#n‘exon 1 of ASP, ._:.;,:- > and-— o _‘, =T transition, resulting in a
e T ,
T1251 amino acid substify tsUpports that ASPA is the only
.! |}

gene, discovered to daté, responsible for Canavan disea

AULINENTNEINS
AIANTUNMINGAY
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