CHAPTER IV

RESULTS

1. Study population

For the purposes of our analyses case and control were limited to Thais, to reduce the ethnic variation between groups. Of 108 case mothers, 68 were from Rachanukul hospital, and the other additional 40 cases from King Chulalongkorn Memorial Hospital. All children with Down syndrome were karyotypically confirmed to have trisomy 21. The 187 controls were pregnant women that recruited through the antenatal care clinic at King Chulalongkorn Memorial Hospital. All children of the control group were unfortunately followed up. One of them had Down syndrome so we moved her to the case group. After adjustment, we have 109 case mothers and 186 controls in this study. In addition, there were no significant diffetences between groups in term of mean age at conception as show in table 7

Table 7. Characteristic of responding age-maichedeonifolmothers andmothers of children with

2. Genotyping
1.1 MTHFR 677C->T

To determine the MTHFR 677C->T polymorphism, restriction enzyme analysis with Hinfl was performed and electrophoreses on 3% agarose gel (figure 2) The 198 bp fragment is obtained after PCR amplification. In case of homozygous 677CC, an undigested PCR product of 198 bp is the only fragment presented. Where as heterozygote 677 CT reveals the 198 and 176 bp fragment, due to 677 T allele created Hinf I restriction site. Thus, the homozygous variant which contains two allele of 677T, were totally cut and presented only the fragment of 176 bp .

Figure 2. RFLR patterns of MTHFR677G-ZT Lame 14 is AOO DPCDNAD narker Lanel 2 is 677TT genotype Lane 8 is heterozygous 67 teT genotype. Lane 4 and 5 are homozygous, wild type, 677CC genotype.

1.2 MTHFR 1298A->C

Genotyping of 1298A->C was performed in all specimens genotyped for 677C->T. To determine the MTHFR 1298A->C polymorphism, restriction enzyme analysis with Mbo II was performed and electrophoreses on 3% agarose gel (figure 3) The 241 bp fragment is obtained after PCR amplification. In case of homozygous 1298AA, were totally cut and presented only the fragment of 204 bp. Where as heterozygote 1298AC reveals the 241 and 204 bp fragment, due to 1298 A allele created Mbo II restriction site. Thus, the homozygous variant which contains two allele of 1298 CC , were uncut and presented only the fragment of 241 lop .

Figure 3. RFP paterns of MJHFR1298A-70. Lane 19 is 100 bp /DNA matker Lane 2 and 3 are homozygous, wild type, 1298AA genotype. Lane 4 is homozygous 1298CC genotype. Lane 5 is heterozygous 1298AC genotype.

1.3 MTRR 66A->G

Genotyping of 66A->G was performed in same specimens genotyped for 677C-> T. To determine the MTRR 66A->G polymorphism, restriction enzyme analysis with Nde । was performed and electrophoreses on 3% agarose gel (figure 4) The 325 bp fragment is obtained after PCR amplification. In case of homozygous 66AA, were totally cut and presented the fragment of 282 and 43 bp. Where as heterozygote 66AG reveals the 325,282 and 43 bp fragment, due to 66 A allele oreated Nde I restriction site. Thus, the homozygous variant which contains two allele of 66 GG , were uncut and presented the fragment of 325 bp .

Figure 4 RFLP patterns of MTRRA->G. Lane 1 is 100 bp DNA marker. Lane 2 and 5 are heterozygous 66AG genotype homozygous. Lane 3 is homozygous, wild type, 66AA genotype. Lane 4 is homozygous 66GG genotype.

1.4 MTR 2756A->G

Genotyping of 2756A->G was performed in same specimens genotyped for $677 \mathrm{C}->$ T. The 341 bp fragment is obtained after PCR amplification. The PCR fragment of 341 bp remained uncut in the presence of A allele, but was digested in to fragment 198 and 143 bp in the presence of the G allele, due to G allele created Hae III restriction site. Thus heterozygote 2756AG reveals three fragmenthe 341,198 and 143 bp fragment. To determine the MTR 2756A->G polymorphism, restriction enzyme analysis with Hae III was performed and electrophoreses on 3% agarose gel (figure 5)

Figure 5 RFLP patterns of MTRA->G . Lane 1 is 100 bpDNA marker. Lane 2 is homozygous

3. Allele frequency

Table 8 shows the distribution of the MTHFR, MTRR and MTR genotypes in the control population was found to be in Hardy-Weinberg equilibrium. There are no significant differences in mothers who having children with Down syndrome compared to age-matched control mothers.

Table 8. Allele frequency of polymorphisms from MFHFR, MTR and MTRR in mothers having children with Down syndrome and Age-matched contro/ mothers

MTHFR, Methylenetatrahydrofolate reductase; MTR, methionine synthase; MTRR, methionine synthase
reductase

$$
\begin{gathered}
\text { ศูนย์วิทยทรัพยากร } \\
\text { จุฬาลงกรณ์มหาวิทยาลัย }
\end{gathered}
$$

4. Association between MTHFR polymorphisms and Down syndrome

4.1 MTHFR 677C->T

Regarding the nucleotide 677 of the 186 controls responding for Thai population, the distribution of the CC, CT and TT genotypes were $73 \%(136 / 186)$, $25 \%(46 / 186)$ and $2 \%(4 / 186)$ respectively. The corresponding. frequencies among all of mother who having a child with Down synarome were found to be $77 \%(84 / 109)$, $20 \%(22 / 109)$ and $3 \%(3 / 109)$ respecitively

Odd Ratios (OR) calculation worg/performed to determine genotype associated risk of mother who having a child with Down syndrome (table 9)

Table 9. Frequency of MTHFR 677C-T polymorphisms in mothers having children with Down syndrome and Age-match control mothers

4.2 MTHFR 1298A->C

1298 of the 186 controls responding for Thai population, the distribution of the AA, AC and CC genotypes were 50\% (93/186), 43\% (80/186) and 7\% (13/186) respectively. The corresponding frequencies among all of mother who having a child with Down syndrome were found to be $49 \%(53 / 109), 43 \%(47 / 109)$ and $8 \%(9 / 109)$ respectively.

Odd Ratios (OR) calculation were performed to determine genotype associate risk of mother who having a child with Down syndrome (table 10)

Table 10. Frequency of MTHFR 1298 A->C polymorphisms in mothers having children with Down syndrome and Age-match control mothers

MTHFR	Case	Control	Odd ratio (95\%CI)
1298 Genotype	$n=109(\%)$	$n=186(\%)$	
AA	$53(50)$	$93(49)$	Ref.
AC	$47(43)$	$80(43)$	$1.00(0.61-1.67)$
CC	$9(7)$	$56(50)$	$13(8)$
AC+CC		$93(51)$	$1.20(0.45-3.13)$
Ref. = Reference category			$1.06(0.67-1.74)$

4.3 MTHFR 677C->T in combination with $1298 \mathrm{~A}->\mathrm{C}$ genotype and mother who having a child with Down syndrome

To investigate the joint effects of the two polymorphisms, analysis of the combined genotype distribution of the $677 \mathrm{C} \rightarrow \mathrm{T}$ and $1298 \mathrm{~A} \rightarrow \mathrm{C}$ polymorphism in 109 case mothers and 186 control mothers, were performed. The prevalence and calculated OR of the combined genotypes are shown in Tatble 11. In controls showed no individuals with 677TT genotype. Calculated ORs for ease mothers reveated no statistical significance in all genotypes.

When haplotype distributions were considered, EH program was used to estimate distributionsf haplotype frequencies. Fourpossible haplotypes were observed and suggested in Qable 12. Data did not show significant differences neither in haplotype distributions among aases, mothers and controls hor in the prevalehce of each haplotypes compared with controls.

The distributions of the haplotype combination were also observed (table 13). Except for the individuals with 677CT/1298AC genotype, individuals with an other genotypes can be easily identified as haplotype. By using haplotype frequencies (f) from EH program reported previously in table 12, we could estimate numbers of individuals with cis (C-AT-C) or trans (C-C/T-A) for the 677CT/1298AC genotype. The result showed that only probability of having cis haplotype were found in this study. Consequently, chi-
square test was performed to test for differences of distribution in each combined haplotype in case compared with control group. The results did not show significant differences among them.

Table 11. Frequency polymorphisms from MTHFR in mothers having children with Down syndrome and Age-matched control mothers

Table 12. Distribution of the haplotypes over the groups of case mothers and control.

C A, C C. T A , and T C implied 677C-1298A, 677C-1298C, 677T-1298A, and 677T-1298C haplotypes respectively. $n=$ estimated number of cases which were calculated based on probability of haplotype frequencies after EH calculation. $\mathrm{P}=\mathrm{P}$ value
$x^{2}=$ Pearson's chi-square if $\mathrm{n}>5$ or Yates' correction if $\mathrm{n}<5$ which were used to compared number of combined haplotypes in each groups with that in controls
5. Association between MTRR polymorphisms and Down syndrome MTRR 66A->G

As show in Table 14, The frequencies of the MTRR genotypes (AA, AG, GG) among Age-match control mothers were 49\%(92/186), 45\%(83/186) and 6\%(11/186) respectively. The corresponding frequencies among mothers having children with Down syndrome were $49 \%(53 / 109), 43 \%(47 / 109)$ and $8 \%(9 / 109)$ respectively.

Odd Ratios (OR) calculation were porformed to determine genotype associate risk of mother who having a child with Down syndrome.

Table 14. Frequency of MTRR 66 A \rightarrow © polymorphisms in mothers having children with Down syndrome and Age-match control mothers

For analysis of gene-gene interaction, the MTRR homozygous AA genotype and the heterozygous FAG gendypes were combined becausè neither genotype was associated with increased risk of neural tyabe defects ${ }^{37}$. For MTHFR, the heterozygous CT and homozygous it genotypes werêdmbined for the genegene interaction analysis, because both have been associated with an increased risk of neural tube defects. ${ }^{115}$
6. Association between MTHFR and MTRR polymorphisms and Down syndrome

Table 15. Interaction between MTHFR and MTRR in mothers having children with Down syndrome and Age-matched control mothers

		Case		Control		Odd ratio (95\%CI)
MTHFR	MTRR	$n=109(\%)$	$n=186(\%)$			
CC	AA+AG	$76(70)$	$127(68)$	Ref.		
CT +TT	AA+AG	$24(22)$	$48(26)$	$0.81(0.45-1.47)$		
CC	GG	$4(4)$	$8(5)$	$0.75(0.19-2.75)$		
CT+TT	GG	$5(4)$	$3(1)$	$2.93\left(0.6-15.83^{*}\right)$		

Ref. $=$ Reference category. ${ }^{*}$ Calculated by γ ates extract.

7. Association between MTR polymorphisms and Down syndrome

 MTR 2756 A->GRegarding the nucleotide 2756 of the 186 controls responding for Thai population, the frequencies of the MTRR genotypes AA, AG and GG among Age-match control mothers were $72 \%(133 / 186), 27 \%(51 / 186)$ and $1 \%(2 / 186)$ respectively. The corresponding frequencies among mothers having children with Down syndrome were $73 \%(80 / 109), 24 \%(26 / 109)$ and $3 \%(3 / 109)$ respectively. Odd Ratios (OR) calculation were performed to determine genotype associate risk of mother who having a child with
 Table 16. Freguency of MTR 2756 A-PGpoymdrohisms/in mothers having children with Down syndrome and Age-match control mothers

MTR	Case	Control	Odd ratio (95\%CI)
2756 Genotype	$\mathrm{n}=109(\%)$	$\mathrm{n}=186(\%)$	
AA	$80(73)$	$133(72)$	Ref.
AG	$26(24)$	$51(27)$	$0.83(0.46-1.48)$
GG	$3(3)$	$2(1)$	$2.60\left(0.35-22.64^{\star}\right)$
AG+GG	$29(27)$	$53(28)$	$0.91(0.53-1.60)$

MTR, methionine synthase. Ref. $=$ Reference category. ${ }^{*}$ Calculated by Yates' extract.
8. Association between MTHFR and MTR in mothers having children with Down syndrome and Age-matched control mothers

Table 17. Interaction between MTHFR and MTR in mothers having children with Down syndrome and Age-match control mothers

Ref. $=$ Reference category. ${ }^{*}$ Calculated byyates'extract. ${ }^{2}$
$\mathrm{NO}=$ not observed. $\mathrm{ND}=$ not determined.

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย
9. Association between MTRR and MTR in mothers having children with Down syndrome and Age-match control mothers

Table 18. Interaction between MTRR and MTR in mothers having children with Down syndrome and Age-match control mothers

Ref. $=$ Reference category. ${ }^{*}$ Calculated by Yaies' extract.
$\mathrm{NO}=$ not observed. $\mathrm{ND}=$ not determined.
10. Association between four polymorphisms of MTHFR, MTR and MTRR and Down syndrome

All the distripution of $M T H F R, M T R$ and MORR genotypes were in Hardy-Wienberg Q equilibrium in the groups. We compared the genotype frequencies of the
 mothers who having children with Down syndrome compared to age-matched control mothers.

Table 19. Interaction between MTHFR, MTRR and MTR genotype in mothers having children with Down syndrome and Age-match control mothers

MTHFR $677 \mathrm{C}->\mathrm{T}$	MTHFR 1298A->C	MTRR $66 A->G$	MTR $2756 A->G$	No. (\%) Of cases $(n=109)$	No. (\%) Of controls $(\mathrm{n}=186)$	Odds ratio	95\% CI	
CC	AA	AA	AA	16	16	Ref	Ref	
CC	AA	AA	AG	2	- 12	0.27	0.04-1.31*	
CC	AA	AA	GG		- No	ND	ND	
CC	AA		AA		23	0.80	0.35-1.8	
CC	AA					ND	ND	
CC	AA	AG	G			ND	ND	
CC	AA	G			3	ND	ND	
CC	AA	GG	AG	No	No	ND	ND	
CC	AA	GG	GG	1-1No	No	ND	ND	
CC	AC	AA	AA	313	25	0.87	0.4-1.88	
CC	AC	AA	$\overline{4 G}$		7	1.23	0.33-4.45*	
CC	AC	AAA	GG	1	No	ND	ND	
CC	AC	AG	AA	11	18	1.05	0.44-2.45	
CC	AC	\cdots	AG	6	10	2.03	0.32-3.18*	
CC	AC	AG	GG	1	No	ND	ND	
CC	AC	9 \|GG		-9AP	02°	N 212	1.72	0.17-17.34*
CC	AC	GG	${ }^{\text {AG }}$	No	2	ND	ND	
CC		QG	$\sim G G$	0 N	$\cap \mathrm{Ng}$	NR	ND	
CC	©d	6) AA	AA A	- A	d 5	1.386	0.30-6.07*	
CC	CC	AA	AG	2	2	1.72	0.17-17.34*	
CC	CC	AA	GG	No	No	ND	ND	
CC	CC	AG	AA	2	2	1.72	0.17-17.34*	
CC	CC	AG	AG	1	2	ND	ND	
CC	CC	AG	GG	No	No	ND	ND	
CC	CC	GG	AA	No	1	ND	ND	
CC	CC	GG	AG	No	1	ND	ND	

TT	AA	AG	AG	1	No	ND	ND
TT	AA	AG	GG	No	No	ND	ND
TT	AA	GG	AA	No	No	ND	ND
TT	AA	GG	AG	No	No	ND	ND
TT	AA	GG	GG	No	No	ND	ND
TT	AC	AA	AA		1	ND	ND
TT	AC	AA	AG		No	ND	ND
TT	AC	AA	GG		2	ND	ND
TT	AC	AG	AA			ND	ND
TT	AC					ND	ND
TT	AC			No		ND	ND
TT	AC	GG	,			ND	ND
TT	AC					ND	ND
TT	AC					ND	ND
TT	CC	AA				ND	ND
TT	CC	AA			No	ND	ND
TT	CC	AA			No	ND	ND
TT	CC	A	AA	No		ND	ND
TT	CC		AG	No		ND	ND
TT	CC		GG	No		ND	ND
TT	CC		AA	No	No	ND	ND
TT			9/9	No		ND	ND
TT		${ }^{\circ} \mathrm{GG}$	GG		No	ND	ND

11. Association between MTHFR, MTRR and MTR polymorphism and Down syndrome in mother aged 30 years old or less.

11.1 Study population

Of our 109 case mothers, 32 were ≤ 30 years old when their Down syndrome children were born. 64 out of 186 control mothers were ≤ 30 years old. In addition, there were no significant differences between groups in term of mean age at conception as show in table 20.

Table 20. Characteristic of responding age-matched control mothers and mothers of children with Down syndrome (≤ 30 years old)

11.2 Allele frequency

Table 21 shows the distribution of the MTHFR, MTRR and MTR genotypes in the control population was found to be in-Hardy-Weinberg equilibrium. There are no significant differences in mothers aged 30 years old or less to have children with Down syndrome compared to age-matched controf mothers. $\because \approx 9 \mathrm{Q}$ จุฬาลงกรณ์มหาวิทยาลัย

Table 21. Allele frequency of polymorphisms from MTHFR, MTR and MTRR in mothers aged 30 years old or less to have children with Down syndrome and Age-matched control mothers

Genotype	Allele	Case	Control	χ^{2}	P
		Number (\%)	Number (\%)		
MTHFR 677 C->T	C	$54 \text { (0.83) }$	106 (0.83)	0.075	0.784
MTHFR 1298 A->C	T	$\begin{aligned} & 10(0.17) \\ & 40(0.63) \end{aligned}$	$\begin{array}{r} 22(0.17) \\ 89(0.70) \\ 39(0.30) \end{array}$	0.957	0.328
MTR 2756 A->G	C	$24(0.37)$ $58(0.91)$	$\begin{aligned} & 39(0.30) \\ & 107(0.84) \end{aligned}$	1.745	0.187
MTRR 66 A->G	G A	$\begin{aligned} & 6(0.09) \\ & 46(0.72) \\ & 18(0.28) \end{aligned}$		0.053	0.818

MTHFR, Methylenetatrahydrofolate reductase; MIR, methionine synthase; MTRR, methionine synthase reductase

11.3 MTHFR 677C->T

Regarding the nuclegtide 672 of the -64 controls responding for Thai population, the distribution of the CC, CT and TT genotypes were $68 \%(43 / 64), 31 \%$ (20/64) and 1% (1764) respectively. The corresponding frequencies among all of mother who having achild with Down syndrome were found to be 72% (23/32), 25\%
 risk of mother who having a child with Downsyndrome (table 22) ©

Table 22. Frequency of MTHFR 677C->T polymorphisms in mothers aged 30 years old or less to have children with Down syndrome and Age-match control mothers

MTHFR	Case		Control
677 Genotype	$n=32(\%)$	$n=64(\%)$	Odd ratio (95\%CI)
CC	$23(72)$	$43(69)$	Ref.
CT	$8(25)$	$20(31)$	$0.73(0.25-2.10)$
TT	$1-(3)$	$1(1)$	$2.03\left(0.00^{*}-77.44^{*}\right)$
CT+TT	$9(28)$	$21(32)$	$0.80(0.28-2.23)$

Ref. $=$ Reference category, ${ }^{*}$ Calculated by Yates extract

11.4 MTHFR 1298A->C

The composite data in table 15 show that the frequencies of the nucleotide 1298 of the 64 controls responding for Thai population, the distribution of the AA, AC and CC genotypes were $48.4 \%(31 / 64)_{3} 42.2 \%(27 / 64)$ and $9.4 \%(6 / 64)$ respectively. The corresponding frequencies among atl of mother who having a child with Down syndrome were found to be $37.5 \%(12732), 50 \%(16 / 32)$ and $12.5 \%(5 / 32)$ respectively.

Odd Ratios (OR) ealeutation/were performed to determine genotype associated risk of mother who having a child with Down syndrome (table 23)

Table 23. Frequency of MTHFR 1298 A->C polymorphisms in mothers aged 30 years old or less to

Ref. $=$ Reference category
11.5 MTHFR 677C->T in combination with 1298A->C genotype and mother who having a child with Down syndrome

To investigate the joint effects of the two polymorphisms, analysis of the combined genotype distribution of the 677C->T and 1298A->C polymorphism in 32 case mothers and 64 control mothers, were performed. The prevalence and calculated OR of the combined genotypes are shown in Table 24. in controls showed no individuals with 677TT genotype. Calculated ORs for case mothers revealed no statistical significance in all genotypes.

When haplotype distributions fyere considered, EH program was used to estimate distribution of haplotype frequencies. Four possible haplotypes were observed and suggested in table 25. Data did not show significant differences neither in haplotype distributions among cases, mothers: and controls hor in the prevalence of each haplotypes compared with controls. 2 亿

The distributions of the haplotyipe combination were also observed (table 26). Except for the individuals with GFICT/298AC genotype, individuals with an other genotypes can be easily identifie of as hiaplotype. By using haplotype frequencies (f) from EH program reported previousty in table 25, we could estincate numbers of individuals with cis (C-AT-C) or trans (C-C/T-A) for the 677CT/1298AC genotype. The result showed that only probability of having cis haplotype were found in this study. Consequently, chisquare test was performed to test orl aiffereneed of distribution in each combined haplotype in caseqcompared with control group. The results did not show significant

Table 24. Frequency polymorphisms from MTHFR in mothers aged 30 years old or less to have children with Down syndrome and Age-matched control mothers

Table 25. Distribution of the haplotypes over the groups of case mothers and control.

Table 26. The distribution of MTHFR haplotype combination in DS mothers and control

	Haplotype distribution								
genotype	$677 \mathrm{CC} /$	677CC /	677CC /	677CT /	677CT /	$677 \mathrm{CT} /$	677TT /	677TT/	677TT/
	1298AA	1298AC	1298CC	1298AA	1298AC	1298CC	1298AA	1298AC	1298CC
haplotype	$\frac{C A}{C A}$	$\xrightarrow[C A]{C}$	$\frac{\mathrm{CB}}{\mathrm{CBC}}$	$\frac{\mathrm{CA}}{\overline{T A}}$	A	$\frac{\mathrm{C} \mathrm{C}}{\overline{T C}}$	$\overline{T A}$	$\overline{T \mathrm{~T}}$	$\underline{T C}$
Controls	$\mathrm{n}=19$	$\mathrm{n}=18$	$\mathrm{n}=6$	$\mathrm{n}=11$		$\mathrm{n}=0$	$\mathrm{n}=1$	$\mathrm{n}=0$	$\mathrm{n}=0$
$\mathrm{n}=64$	Ref.	Ref.	Ref.			Ref.	Ref.		
DS	$\mathrm{n}=6$	$\mathrm{n}=13$		$\mathrm{n}=5$		$n=0$	$\mathrm{n}=1$	$\mathrm{n}=0$	$n=0$
Mothers	$x^{2}=0.296$	$x^{2}=1.25$	$x^{2}=0.10$	2 $=0.038$			$x^{2}=0.064$		
$\mathrm{n}=32$	$\mathrm{P}=0.586$	$\mathrm{P}=0.217$		$p=0.8$			$\mathrm{P}=0.8$		

C A, C C. T A, and T C implied 677C-1298A, 677C-1298C, 677T-1298A, and 677T-1298C haplotypes respectively. $n=$ estimated number of cases whión were calculated based on probability of haplotype frequencies after EH calculation. $\mathrm{P}=\mathrm{P}$ value
$x^{2}=$ Pearson's chi-square if $n>5$ or Yates' correction if $n<5$ which were used to compared number of combined haplotypes in each groups with that in controls $i=\Omega$
11.6 Association between MTRR pofymorphisms and Down syndrome

MTRR 66A->G
As show th Tabie 27, The frequencies of the MTRR genotypes (AA, AG, GG) among Age-match control mothers were 53\%(34/64), 41\%(26/64) and 6\%(4/64) respectively. The corresponding frequencies among mothers having children with Down
syndrome were $47 \%(15 / 32), 50 \%(16 / 32)$ and $3 \%(1932)$ yespectivey..
OddRatios (OR) calculation were performed to determine genotype associated risk of mother whothaving thild with Down syndrome. 6

Table 27. Frequency of MTRR 66 A->G polymorphisms in mothers aged 30 years old or less to have children with Down syndrome and Age-match control mothers

Ref. $=$ Reference category. ${ }^{*}$ Caloulated by Yates' extract

ศนยวิทยทรพยากร

11.8Association between MTR polymorphisms and Down syndrome

จหาลงกรณมหาวิทยาลัย
 MTR 2756 A->G

Regarding the nucleotide 2756 of the 186 controls responding for Thai population, the frequencies of the MTRR genotypes AA, AG and GG among Age-match control mothers were $69 \%(44 / 64), 30 \%(19 / 64)$ and $1 \%(1 / 64)$ respectively. The corresponding frequencies among mothers having children with Down syndrome were $81 \%(26 / 32), 19 \%(6 / 32)$ and $0 \%(0 / 32)$ respectively.

Table 29. Frequency of MTR 2756 A->G polymorphisms in mothers aged 30 years old or less to have children with Down syndrome and Age-match control mothers

MTR	Case	Control	Odd ratio (95\%CI)
2756 Genotype	$\mathrm{n}=32(\%)$	$\mathrm{n}=64(\%)$	
AA	$26(81)$	$44(69)$	Ref.
AG	$6(19)$	$19(30)$	$0.55\left(0.17-1.70^{*}\right)$
GG	$0(0)$	$1(1)$	ND
AG+GG	$6(19)$	$20(31)$	$0.51\left(0.16-1.57^{*}\right)$
MTR methioninnn			

MTR, methionine synthase. Ref. = Reference category. Calculated by Yates' extract.
11.9 Association between MTHFR and MTR in mothers aged 30 years old or less to have children with Down syndrome and Age-matched control mothers

Table 30. Interaction between MTHFR and MTR in mothers aged 30 years old or less to have children with Down syndrome and Age-match control mothers .

11.10 Association between MTRR and MTR in mothers aged 30 years old or less to have children with Down syndrome and Age-matched control mothers

Table 31. Interaction between MTRR and MTR in mothers aged 30 years old or less to have children with Down syndrome and Age-match control mothers

