CHAPTER I

FUNDAMENTAL CONCEPT OF DESIGN AND ANALYSIS OF
EXPERIMENTAL RESULTS BY THE REGRESSION TECHNIQUE

2.1 Concept of Regression Techniques

2.1.1 Introduction

Most problems have two or more interrelated variables, and it is often very interesting to
model and explore this relationship. For example, in a chemical process, if the yield of product is
related to the operating temperature, the chemical engineer may need to build a model that shows
relationship between product yield and temperature and then use it for prediction, process
optimization and/or process control.

Suppose that there is a single dependent variable or response y that depends on k
independent variables, called ‘regressor”, i.e. x,, X,, ..., X, .The relationship among these variables is
characterized by a mathematical model called the regression model. The regression model is
determined by fitting a set of sample data into-a desired equation with unknown variables. In some
situations, the experimenter knows the exact form of the true functional relationship between y and X,
Xpperer X i€ Y = ¢(x,, X,---, X,). However, in most cases, the true functional relationship is unknown,
and an appropriate function is chosen by the experimenter to approximate ¢ Low-order polynomial
models are generally used as approximate functions.

Practical regression models as representatives of the experimental results will improve
understanding, interpretation, and implementation of studied variables. Since there is a strong
interplay between design of experiments and regression analysis, success of quantitative expression
of experimental results depends upon the basis empirical regression models.

Regression methods are frequently used to analyze data from unplanned experiments, such
as those arising from observation of uncontrolled phenomena or historical records. Regression

methods are also very useful in designed experiments where something has “gone wrong."”
2.1.2 Linear Regression Models

In the standard linear regression model, three assumptions are made about the relation

between Yand X:
1. For each selected X, there is a normal distribution of Y from which the sample value can

be randomly selected. If desired, more than one Y may be drawn from each distribution.
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2. The population of values of Y corresponding to a selected X has a mean L that lies on

the straight line
L=a+pB(x - X) = o+ fBx
where O and B are parameters to be determined.
3. In all populations, the standard deviation of ¥ around its mean o + BX is equal,
denoted by O
The mathematical model is specified concisely by the equation
Y = B0+BX+ g, (2-1)

Where € is a random variable drawn from the normal distribution of N (0, G,)

In this model, Y'is the sum of the random term, €, and the statement function of X.
The function of X, according to the Assumption (2) above, determines the mean of the
populations for each individual X. For every X, the mean lies on the straight line represented
by L =0 + BX, which is the population regression line. The parameter Bo is the mean of
the population that corresponds to X = 0 : thus, BO specifies the height of the line when X =
0. B is the slope of the regression line, the change in Y per unit increase in X. As for the

variable part of Y, € is drawn randomly from N (0, G,,) : therefore, it is independent of X and

normally distributed, as the symbol N signifies.

Estimation of the Parameter in Linear and Multiple Linear Regression Models

2.1.3.1 Estimation of the Parameter in Linear and Multiple Linear Regression Models

The method of least squares is typically used to estimate the regression coefficients
in a multiple linear regression model. Suppose that n > k (n : the number of dependent
variable and k : the number of independent variables ) observations on the response
variables are available, i.e. Y41 Yor- ¥, Along with each observed response Y;» we will have
an observation on each regressor variable and let X; denote the i" observation or level of
variable X;. The data will appear as shown in Table (2-1). We assume that the error term € in

the model has £(€) = 0 and V(€) = G ? and that the {8,.} is the matrix of uncorrelated

random variables.
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Table 2.1 Data for Multiple Linear Regression

y X7 X2 Xk

y1 XII XIZ e Xlk
y2 XZI X22 e X2k
yn an an ce Xnk

We may write the model equation (Equation 2-1) in terms of the observations in

Table (2-1) as

Bo B1 it Bzxiz Tt kaik s i (2-2)

k
=B°+;B’X”+ i F=1, 2,000

The method of least squares chooses the B (i=0,1,..., k) (Equation 2-2) so that

the sum of the squares of the errors, & is minimized. The least squares function is

L = 12_1 8i2 (2'3)

'22 R ZB/

The function L is to be minimized with respect to B°' B‘ Bk. The least squares
AA A

estimators, say BO' B‘ Bk , must satisfy

A k
oL = -221 -B,- Z (2-4a)

OB8s B....B.
and
n A k A
o| - = 22 (y,-B, - 2Bx)x =0 j=1.2,.,k (2-4b)

B, 18,....5.

Simplifying Equation (2-4), we obtain
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&;1Xik o ﬁ1;xikxl1 + ﬁ2i2=1xi e Tt ﬁkzxik = ;Xikyi

i=1

These equations are called the least squares normal equations. Note that there are
p = k + 1 normal equations, one for each of the unknown regression coefficients. The

solution to the normal equations will be the least squares estimators of the regression

VANEAN A
coefficients ﬁo & &
2.1.3.2 The estimator of G7 by the Method of Least Square

It is also usually necessary to estimate gz. To develop an estimator of this

parameter, consider the sum of squares of the residuals, say
L N
SSE = ; (yi - yi)2 (2‘6)

Z_;ef (2-7)

Equation 2-6 is called the error or residual sum of squares, and it has n - p

degrees of freedom associated with it. It can be shown that
E(SS) = O°(n-p)
S0 an unbiased estimator of g2 is given by

AZ
G = &8s, (2-8)
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2.1.4  Hypothesis Testing

2.1.4.1 Hypothesis Testing

2.1.4.1.1 Hypothesis Testing of the Significance in Linear and Multiple Linear

Regression Models

The test for significance of regression is a test to determine if there is a linear
relationship between the response variable y and the subset of the regressor variables x,,

X, ....X, . The appropriate hypotheses are

Hy:B =B,=..=B.=~0 (2-9)

Hs ﬁ, *0 for at least one |

Rejection of H, in Equation (2-9) implies that at least one of the regressor variables
Xy X5 X, CONtributes significantly to the model. The test procedure involves an analysis of
variance partitioning of the total sum of squares (SS,) into a sum of squares due to the
model (or to regression) (SS) and a sum of squares due to residual (or error) (SSp

To show the above detail, we use the separation of variation

A N
yi -7 = (Y, -7) +(Y,- - Y,) (2'10)

Evaluate the sum of square of equation (2-10)

n - n A —, n A, nNA _ A
09" = 20y W 2w+ 22 - Y-y

n A A n A A n A
2-.;()/1 '7)(yi—yi):2; yi(yi‘yi)‘zv_;(yi’"yi)
n A _n
—22 y.e -2y gei
=0

Then
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n . n A _ n
2y -y V= Z(y-yP+Z(y-9) (2-11)
i=1
n —
According to equation (2-11), Term _Z_:T (y,-y )%, the total sum of square, SS, , is
n A s

divided into two terms. Term _'2_1( Y, —_y )? is a sum of square due to model (or regression),

n
SS;and Term ; (y, —§/\i )* is @ sum of square due to residual, SS;
SS; = SS; + SS, (2-12)

Now if the null hypothesis H, : & = ﬁz = .= ﬁk =0 s true, then SSYG * is

distributed as sz, when the number of degrees of freedom for X* is equal to the number of

regressor variables in the model. Also, we can show that SS,/ G ? is distributed as an o

and that SS; and SS;; are independent. The test procedure for H, : & = ﬁz =..= ﬁk =0is
to compute
Fo = SS;/ k = MS; (2-13)
SS¢/ (n —k-1) MS,

And to reject H, if F, exceeds Fy ... Alternatively, we could use the P-value

approach to hypothesis testing and, thus, reject H, if the P-value for the statistic F, is less

than QL. The test is usually summarized in an analysis of variance shown in Table (2-2).

Table 2.2 Analysis of Variance for Significance of Regression in Multiple Regression

Source of Degree of
Variation Sum of Squares Freedom Mean Square o8
n i
Regression SS,=2 (y-y ) k MS,= SS,  MS./MS,
i=1 —
k
n
Error or residual 8S, =X (y-¥ ) n-k-1 MS,= SS,
i=1

n—-k-1

n —
Total S8 =Ly n-1
=1




2.1.4.1.2 Hypothesis Testing of the Parameter in Linear and Multiple Linear

Regression Models

We are frequently interested in testing hypotheses on the individual regression
coefﬁcients. Such tests would be useful in determining the value of each of the regressor
variables in the regression model. For example, the model might be more effective with the
inclusion of additional variables or perhaps with the deletion of one or more of the variables
already in the model.

Adding a variable to the regression model always causes the sum of squares for
regression to increase and the error sum of squares to decrease. We must decide whether
the increase in the regression sum of squares is sufficient to warrant using the additional
variable in the model. In fact, adding an unimportant variable to the model can actually

increase the mean square error, thereby decreasing the usefulness of the model.

The hypotheses for testing the significance of any individual regression coefficient,

sayﬁ‘, are
Hy: B, =0
H,:ﬁi #0

If H, & = 0 is not rejected, then it indicates that X, can be deleted from the

model. The test statistic for this hypothesis is

i, = B (2-14)

(620)1/2

= Vi
IfE ﬁ, = 0 s rejected, it means _l_tOJ_> Loy, niq- NOte that this is really a partial
or marginal test because the regression coefficient, B‘ depends on all the other regressor
variables X (i # j) present in the model.
The denominator of Equa/t\ion (2-14), (ézcn)”z, is often called the standard error of

A
the regression coefficient & se (Q). That is

A

A
se @ = ©’c)” (2-15)

= |
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Therefore, an equivalent way to write the test statistic in Equation (2-14) is

N

¢ = B (2-16)

se (3)
Most regression computer programs provide the t test for each model parameter.

2.1.4.2 Hypothesis Testing of the Confidence Intervals

2.1.4.2.1 Confidence Intervals on the Individual Regression Coefficients

A
Because the least squares estimator ﬁ is a linear combination of the observations,

A
it follows that ﬁ is normally distributed with mean vector ﬁ and covariance matrix G*(X'X)".

Then, each of the statistics

B,- B ji=01,..k (2-17)

—_—

(gz Cﬂ)afz

i

is distributed as t with n-p degrees of freedom, where C, is the ()" element of the xx)"
A
matrix, and g2 is the estimate of the error variance, obtained from Equation (2-8). Therefore,

a 100(1-9C) percent confidence interval for the regression coefﬂcient&,j =0,1,...,k, is

A

A A 7ay
B - te)n 0 )" <B < B+ tefyn, @C)7  (218)

Note that this confidence interval could also be written as

A

E - tOCIZ.n-p Se(ﬁ)s ﬁ‘ < ﬁ, ¥ t‘*l2.n-p se (1/31)

7%
Since se (ﬁ;) = (& C,-j)"2
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