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CHAPTER 1

INTRODUCTION

Let G be a Hausdoff topological group. A continuous function f:G — C is
said to satisty the d’Alembert’s functional equation if

SO+ () =2f()f(»), Vx,y €G. (1.1)

OnG =(R,+), this functional equation is obviously satisfied by the cosine since

we have the following identity:
cos(x+y)+cos(x—y)=2cosxcosy.

Hence, (1.1) has an alternative name cosine equation. In 1968, Kannapan
proved that the nonzero solutions of this equation on Abelian group G are of
the form

f(x):%g(x)_l, Vx € G, (1.2)

where g:G — C’is a continuous homomorphism. Consequently, the current
interest is in determining the solutions on non-abelian groups. In 2006, Yang
used the structure theory of semisimple Lie groups to find nonzero solutions on
compact connected groups, which is either in form of (1.2) or is factored

through the map %tr :SU,(C) — C. Then, Davison in his paper [1] simplified

the result by using elementary group theory and topology. Most recently in [4],
Yang provided a new insight in solving this equation as she employed the
techniques from harmonic analysis on compact groups.

In this work, we introduce and solve a new functional equation on compact
homogeneous spaces based on the d’Alembert’s functional equation. Because
any compact homogeneous space derives its harmonic analysis from the
underlying compact group, we can turn this problem into that of Yang in [4],
which allows us to reapply her arguments. Accordingly, our result is made as a
simple generalization of Yang’s to compact homogeneous spaces.



CHAPTER 11

PRELIMINARIES

In this chapter, we give basic definitions for compact groups, Haar measure and
homogeneous spaces. In addition, we give references to important fundamental
results such as the existence of Haar measure and its uniqueness (up to scalar
multiplication) on locally compact groups, and an integration formula for
G-invariant radon measure on homogeneous spaces.

2.1 Haar Measures on Compact Groups

Definition 2.1 A ropological group is a group G equipped with a topology with
respect to which the group operations are continuous; that is the maps

(x,y)>xy, GxG->G,

el w7 <> G,
are continuous. This amount to saying that
x> xy', GxG->G,
1s continuous.

Definition 2.2 A (locally) compact group is a group G equipped with a
(locally) compact Hausdorff topology.

Definition 2.3 Suppose f is a function on the topological group G and yeG.
We define the left and right translates of f through y by

L f(x)=f(y %), R, f(x)=f(xp). 2.1)

The reason for using y~'in L, and y in R is to make the maps y+— L and

y+ R, group homomorphism:

L =L1L, R_=RR. (2.2)

yz vz vz vz



Definition 2.4 Let G be a locally compact group. A left (resp. right) Haar
measure on G is a nonzero Radon measure 2 on G that satisfies u(xE) = u(E)

(resp. u(Ex)= u(E)) for every Borel set £ Gand every xeG.

Proposition 2.5 Let 4 be a Radon measure on the locally compact group G,
then

1. uis left Haar measure if and only if IG L fdu= IG fduforall feC.(G).

2. pisright Haar measure if and only if J.G R, fdpu= J.G fduforall feC.(G)

Proof. See [3, Proposition 2.9] for the left Haar measure case. The proof for the
right Haar measure case is similar. Q

Theorem 2.6 Every locally compact group G possesses a left Haar measure y .

This measure is unique up to a positive factor.
Proof. See [3, Theorem 2.10, 2.20]. Q

When p is a left Haar measure and let (E) = u(E™), it is not hard to see that z

is a right Haar measure. So the existence of left Haar measure on locally
compact group G implies that of right Haar measure.

On the other hand, if right Haar measures 4, x are given then f(E)= u(E™)
and A(E) = A(E™") define left Haar measure [, z. Uniqueness in the above
theorem means there exists a constant ¢ € R*such that 1 =¢/i. Hence,

ME)=A(E™") =ci(E™") =cu(E) . So the same statement as in Theorem 2.6 also

applies to the right Haar measure.

Let G be a locally compact group and ¢ a left Haar measure. For each fixed
xeG, letu (Ex)= u(E) for every Borel set £ G; then x_is also left Haar
measure. Indeed, 1 (yE) = u((yE)x) = u(y(Ex)) = u(Ex) = u (E) . By the
uniqueness theorem (Theorem 2.6), there is a number A(x) > 0 such that
. =A(x)u . To verify that A is independent of the original choice of iz, let u'

be any left Haar measure. Theorem 2.6 say that there exists ¢ e R* for which
H =cu. Butthen i/ (E) = p/(Ex) = cpu(Ex) = c(A(x) u(E)) = A(x) (' (E) .



Definition 2.7 The function A:G — R" is called the modular function of G. If
A =1then G is called unimodular.

In the next proposition, R _denote the multiplication group of positive real

numbers.

Proposition 2.8 Ais a continuous homomorphism fromG to R . Moreover, for

any feL(u),
_ -1
J R Sdu=AG™] fdu.
Proof. See [3, Proposition 2.24]. Q
Proposition 2.9 If K is any compact subgroup of G thenA |K =1.
Proof. A(K)1is a compact subgroup of R_, hence equal to {1} . Q

Corollary 2.10 If G is compact, then G is unimodular.

If the locally compact group G is unimodular, then it is clear from Proposition
2.5 and 2.8 that any left Haar measure y is also a right Haar measure. On the

other hand, if iz is a right Haar measure then iz = u((-)™")is a left Haar measure
which, in turn, is a right Haar measure by the same argument. This helps to
show that z= ()" is a left Haar measure. To conclude, any Haar measures

on unimodular groups are both left and right.

By Corollary 2.10, any Haar measure on a compact group is both left and right.
2.2 Case of Group which is Open in R”

Assume that G is realized as an open set in R". Recall the change of variable
formula for a differentiable map¢p:G —> R":

[ fdy=| fle(x)]det(Dp)(x)| dx (23)
oU) U

for every continuous function f'on G with support contained in ¢(U) .

Assume further that the left and right translations:

T'(g): x> gx T (g): x> xg (2.4)



be restrictions of linear or affine linear transformations. We will show how to
construct Haar measures, if exists, of the form:

u(dx) = h(x)dx, (2.5)
where dx is the Lesbegue measure on R”.

Let’s start by assuming that x is a left Haar measure. For each fixed g define
¢ =T'(g), then (2.3) becomes

. hdy = [ _h(gx)| det(DT' (g)) | d, (2.6)

for every measurable set E — G . In this case, the Jacobian determinant is

independent of the point x because T'(g) is either affine or linear.

By definition of zz in (2.5) the result of L.H.S. of (2.6) is u(gFE). Since x 1s a left
Haar measure, u(gE)= u(E)= Lh(x)dx . Equating this to the R.H.S., we get

L— h(x)dx = jE h(gx)|det(DT'(g))|dx .
A sufficient condition for the last equality to hold is the equality (2.7)
h(x)=h(gx)|det(DT"(g))| (2.7)

By plugging x = einto both sides, we get h(g)=h(e)(|det(DT'(g))(e)|)",
Vg e G. Conversely, if we simply define

h(x) = det(DT' (x))|"' Vx e G. (2.8)

Then,

h(gx) |det(DT"(2))| = (|det(DT"(2))(x)|)(|det(DT" (gx)|)™",
= (|det(DT" () )( |det(D(T" () o T" (X)) )™,
= (|det(DT"(2))| )(|det(D(T" ()| - det(D(T" ()N |) ",
= (|det(D(T" (X)) = h(x).

Since this definition of % satisfies (2.7), u defined as in (2.5) is a left Haar

measure. Similarly, we can construct a right Haar measure x by using

h(x) = det(DT" (x))[* Vx € G. (2.9)



Example 2.11 Let G be the group of affine linear transformations of the real
line. It can be identified with the subgroup GL(2,R) consisting of the matrices

a b beR
= 9 9 G 9
o 1)¢

and is homeomorphic to the open set in R*:
{(a,b)eR*|a#0} =R xR.

The operation of G is given by (a,,b,)(a,,b,) = (a,a,,a,b, + b)) because

a b\la, b (aa, ab, +b
o0 1)lo 1) (o0 1)

By restricting transformations in (2.4) to G, if g = (a,b) and x = (u,v),

T'(g)x =(au,av+b) , and T"(g)x = (au,bu+v).
So,
O(au) O(au)
0
DT'(g)= a(ai”: b a(ai: 5 = B J ,and |det(DT'(g))(x)|=a” ; while
ou ov
O(au) O(au)
0
DI@=| 5 |2 B J and |det(DT'())(x) H al.
ou ov

Using (2.8) and (2.9), the measure 4, . given by

dudy

J,f @@=, fan ™ and [ fom@) =, fun T

| ul

are a left Haar measure and a right Haar measure, respectively.



2.3 Homogeneous Spaces

Suppose H is a subgroup of the topological group G. Let G/ H be the space of
left cosets of H, and let ¢ : G — G/ H be the canonical quotient map. By

imposing the quotient topology on G/ H , we see that q is a surjective
continuous function.

Let G be a locally compact group and H its subgroup. Then, the quotient
topology for G/ H is also locally compact. Moreover, if H is closed, then this
topology is Hausdorff. See [3, Proposition 2.2] for the proofs.

Especially, when G is a compact group, then the quotient topology for G/ H
1s also compact Hausdorff. Indeed, G/ H is an image of compact group G
under the map ¢ and hence compact.

Definition 2.12 Let G be a locally compact group and S a locally compact
Hausdorff space. A left action of G on § is a continuous map (x,s) > xs from

GxS to S such that

1. s> xs is a homeomorphism of S for each xeG.

2. x(ys)=(xy)s forall x,yeG andseS.

A space S equipped with an action of G is called a G-space. A G-space is
called transitive if for every s,z € S there exists x € G such that xs=¢.

Example 2.13 (Transitive G-spaces) The quotient space G/ H where H is a
closed subgroup, and G is a locally compact group acting on G/ H by left
multiplication, i.e., (x, yH) — (xy)H . In fact, quotient spaces are almost the only

examples of homogeneous spaces.

Suppose S is a transitive G-space. Pick s, € S and define ¢:G — S by
@(x)=xs,. Then, H ={x € G : xs, =5, } is called the isotropic group of s,. Note
that H = ¢ ~'({s,}) is a closed subgroup of G, and by transitivity ¢ is a

continuous surjection of G onto S that is constant on the left cosets of H. Recall
that ¢ : G — G/ H is the canonical quotient map and observe thatgis constant

on ¢ '({u})for allu e G/ H . Hence, ¢ induces a continuous function
®:G/H — S such that®o g = ¢ . This map is injective since ®(xH) = ®(yH)
implies xs, = ys, , but then (x"'y)s, =s, andxH = yH . It is also surjective since

@ 1s surjective.



Now we have a bijection ® between S and G/ H . If we can always show that
@' is continuous then @ is a homeomorphism, and then every transitive G-
space would be topologically equivalent to some quotient space. Unfortunately,
this cannot be true, as illustrated in example 2.14. By the way, Proposition 2.15
give a sufficient condition for determining whether @ is a homeomorphism.

Example 2.14 Let G = (R, +) be equipped with the discrete topology and S =R
with the usual topology. Let G act on S by translations, (x,s) — x+s. Pick any
fixed s, eS. It’sclear that H ={x e G:x+s,=5,} ={0} . G/ H has discrete

topology, so there is no homeomorphism ® between G/ H and S .

Proposition 2.15 With notation as above, If G is o -compact then ® is a

homoemorphism.

Proof. See [3, Proposition 2.44]. a

Definition 2.16 With notation as above, a transitive G-space is called a
homogeneous space if it is isomorphic to a quotient space G/ H - that is, the
map @ is a homeomorphism. Generally, we shall identify a homogeneous S with
G/ H as they are isomorphic via® .

This identification depends on the choice of a base points, € S . But if we
choose a different base point s', = x,s,, we only need to replace H with x,Hx,';

and the map x  x,xx;' induces a homeomorphism between G/ H and G/ H'.

When G is compact group, it follows from Proposition 2.15 that every
transitive G-space is isomorphic to some a quotient space G/ H , thereby being
a homogeneous space.

2.4 G-invariant Radon Measures

Definition 2.17 Let G be a locally compact group and H its closed subgroup. A
G -invariant Radon measure on homogeneous space G/ H is a nonzero Radon
measure u that satisfies u(xE) = u(E) for any Borel set £ — G/ H and every

xeG.Note that xE = {xs:se E}.

In what follows, G is a locally compact group with a left Haar measure djx,;
and H is a closed subgroup of G with left Haar measure d/4. Both A and A,



are the modular functions of G and H, respectively. Recall that ¢: G —> G/ H
denotes the canonical quotient map ¢(x) = xH . We can define a map
P:C.(G)—>C.(G/H) by

Pf(xH)= [ f(xh)dh. (2.10)
H
If x'=xh'withh' € H , then, [ f(xh'h)d,h = [ f(xh)d,h by left-invariant of djh.
H H
Hence, Pfis well-defined and it’s not hard to see thatsupp(Pf) < ¢(supp f) .

The following theorem give a necessary and sufficient condition for the
existence of G-invariant Radon measure on homogeneous space G/ H .

Theorem 2.18 The G-invariant Radon measure ¢z on G/ H exists if and only if
A |,=A, . In this case, p is unique up to a constant factor, and if this factor is

suitably chosen we have

jG f(x)dx= j Pfdu= [ [ f(xhydhdu(xH), (2.11)

forevery feC.(G).

Proof. See [3, Theorem 2.49]. a

When the group G is compact, the Haar measure is said to be normalized if
j du=1.

In the above discussion, suppose G is a compact group with closed (thus
compact) subgroup H, and both djx, d;h are normalized. Let x € Gand
FeC/(G/H). Observe that, (Foq)(xh)=F(xH)for allh e H . Hence,

P(F o q)(xH) = [ (F o q)(xh)d,h = [ F(xH)d,h = F(xH)[ d;h = F (xH) .
By (2.11),

jGFoq(x)d,x: j P(F oq)du = j F(xH) du(xH) . (2.12)

G/H G/H



CHAPTER III

HARMONIC ANALYSIS ON COMPACT GROUPS

As a tool for solving d’ Alembert functional equation on compact groups in the
next chapter, we introduces in this chapter some basic concepts in harmonic
analysis on compact groups. The main ingredient is the Fourier expansion of
integrable functions on compact groups.

The notion of unitary representation is introduced in section 3.1. In section
3.2, the Hilbert space direct sum decomposition of the I’ -function space of a
compact group is given. An explicit formula of the Fourier series of L’ -
functions is then derived as a consequence of the decomposition. Section 3.3
presents a sufficient condition under which the Fourier series converges
uniformly and absolutely to a continuous function. The materials in this chapter
can be found in [2].

3.1 Unitary Representations

Definition 3.1 Let G be a topological group and } a normed vector space over
R or C(V #{0}). Let£(V) denote the algebra of bounded operators on) . A

representation of Gon) 1s a map

7:G—> L),
g 7(g),

such that

1. 7(gg,)=7(g)7(g,)7(e)=1,
2. for every veV, the map

G-V
g (g,

1S continuous.
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Definition 3.2 Let (z,V)be a representation of G . A subspace W < Vis said to
be invariant if, for every g € G, n(g)WW =W . Putting 7,(g) = 7(g) |, , the
restriction of 7(g)to )V, we get a representation of G on)V. One says thatz,is a

subrepresentation of rr .

The representation 7 is said to be irreducible if the only invariant closed
subspace are {0} and) . Observe that one dimensional representation V

(dimV =1) is always irreducible.

Definition 3.3 Let(z,V)and (z',V') be two representations of G . If a continuous

linear map 4:V — V' satisfies the relation
Ar(g) = 7'(g)4,

for every g € G, one says that 4 is an intertwining operator or that A intertwines

the representations 7 and z'.

Definition 3.4 The representations (z,)) and (z', V") of G are said to be
equivalent if there exists an isomorphism 4:) — V' which intertwines the
representations 7 and 7' . We write (z,V)~ (', V') if (z,V)and (x',)’) are

equivalent. The following theorem verifies that ~ is an equivalence relation.
Theorem 3.5 ~ in Definition 3.4 defines an equivalence relation.

Proof. The verifications for reflexivity and symmetry are trivial. Now suppose
we have an isomorphism 4:V — V' which intertwines 7 and 7', as well as an
isomorphism B: V' — V" which intertwines 7' and 7" . Then for eachg e G

BAn(g)=Br'(g)A=n"(g)BA.

Accordingly, an isomorphism B4 intertwines 7 and z”. It follows that the two
representations are equivalent. This asserts transitivity of the relation. a

Definition 3.6 Let H be a Hilbert space. A representation 7 of G onH is said to
be unitary if, for every g € G, z(g) s a unitary operator; this can be written

VgeG,VveH,

(e =]

Definition 3.7 The unitary representations (7, H) and (z',H’) of G are said to be

unitary equivalent if there exists a unitary map U : H — H' which intertwines
the representations 7 and 7'.



12

To show that unitary equivalence is an equivalence relation on the set of
unitary representations of G, one can follow the steps appeared in theorem 3.5
with a few modifications.

Theorem 3.8 Every irreducible unitary representation (7, H) of a compact

group is finite dimensional (dimH< o).
Proof'See [2, theorem 6.3.2]. a

Theorem 3.8 says that any irreducible unitary representation on a compact
group G, 1s a finite dimensional representation. Usually, we will denoted =

dimH .
3.2 Peter-Weyl Theorem

In this secton, a vector space V always represent a Hilbert space equipped with
norm induced by an inner product. Moreover, the integrable function spaces

L7(G), p 21, 1in this section refer to L” (G, u), where i 1s a Haar measure (both
left and right).

Definition 3.9 Let (z,))be a representation of G . The function on G defined by
7, (&)=(m(gu,v) (u,veV)

are called matrix coefficients of r . Observe that 7,  is continuous, by

continuity of the representation 7 .

Let G be a compact group. Fix (z,))), a unitary irreducible representation of G.

We denote the linear span of matrix elements of 7 by M, . M_ is a subspace of

C(G); hence also of L (G) for p >1.
Theorem 3.10 M_= M_if (z,V)~(7,V').

Proof. Suppose that(z,V)and (z',)") are unitary representations of the same
class. Then there must be a unitary 7 : V — V' which intertwines 7 and 7.

Letu,veV, thenr, (g) =(7(gu,v) =(Tx(gu,Iv) ={7'(g)Tu,Iv)' = 'y, ,(g)
, forallg e G. Hence, M, c M, .

It’s not hard to see that7™' : V' — Vis an intertwining operator for z’and r .
Similarly, M, c M, . a
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Let{e,...,e, } be an orthonomal basis of V (d, =dimV). For i, je{1,2,...,d },

we define the matrix coefficient 7 by
ﬂ’-ij(g):<7z-(g)ejaei> ngG

Then, the matrix coefficients{;z. ., Span M_.Foreachje{l,2,...d},

lj}[,je{l,z,m, '
M. denotes the subspace of M, spanned by the entries of the ;" row, that is

the functions 7, , for k=1,....,d, . We then have the following theorem.

Theorem 3.11 (Peter-Weyl Theorem) Let G be the set of equivalence classes
of irreducible unitary representations of the compact group G . Here, we use the
notations in the above discussion. Let R denote the right regular representation
of Gon’(G):

(R )x)= [(xg), [feL(G), gxeC.

Then for each 7 € G and each j e {1, 2,...,d_}, M"Y is an invariant subspace of
I’ (G) under the representation R of G and the restriction of R to M_is

equivalent to 7 . Moreover, we have the Hilbert space direct sum
decomposition:

E@G=@ M,

[7[]66

—~( 4
M,,(j) .
2 ([ G ]

[7[]66 e

——— d/f
T |.
[ﬁ]ea [7[]66

1N

Recall that

denotes the closure in L*(G) of

which is the space of finite linear combinations of matrix coefficients of finite
dimensional representations of G .

Proof. See [2, theorem 6.4.1]. a
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Definition 3.12 Let G be a compact group. For each[z] e G , we choose a
representative (z,).). When f e L'(G), we define its Fourier coefficient z(f)to
be the operator on V., such that

(Z(fyv,w)= j f(@)(n(g)v,w)dg  forall v,we)).

The map z(f) is well-defined for every f e L'(G)because for f € L' (G)if we
set B, (v,w) = I f(g)(7(g)v,w)dg , then B, (v,w)is linear invand conjugate
G

linear in w . Moreover,

8,0 [ 7@l m(@M] ] de.
<|71, Il

2.

which implies that B, is a bounded sesquilinear functional and hence the
consequence of the Riesz representation theorem implies that there is a unique
bounded linear operator (/) onV, such that B (v, w) = (z(f)v,w) for allv,we V).
Recall that Haar measure of G is finite. By Holder's inequality, I’ (G) < L'(G) ,
and thus z( /) is well-defined when f € L’ (G)

Formally, the Fourier coefficient z( /) can be expressed in the term of the

operator-valued integration

7(f) = f(@)r(g)dg (3.1)

Next, theorem 3.13 asserts that the direct sum of L*(G)in Peter-Weyl theorem

is actually orthogonal. Then, therorem 3.15, which is also known as the
Plancherel’s thorem, can be obtained as a consequence.
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Theorem 3.13 (Shur Orthogonality Relations) Let 7 and 7' be irreducible
unitary representations of G, and consider M_and M., as subspace of L*(G).

1. If [z]#[~']then, ML M.

2. If {e,} is any orthonormal basis of H_, then {\/Zﬂ'ij i, j=1...,d_}is an
orthonormal basis for M.
Proof. See [3, theorem 5.8]. Q

Theorem 3.14 (Plancherel’s Theorem) Let f € L’ (G). Then f is equal in L*(G)
to the sum of its Fourier series:

f)= 3 d (7)) (32)

[ﬁ]ea

Proof. Denote by<~,~>2 the standard inner product in L*(G) . It follows from
theorem 3.11, 3.13 that for any f € I*(G),

19=3, ZZ(f Jad.7,) d,7,)

eGjlll
d,

= z dﬂ' z<f ﬁlj>2m

i

(3.3)

, as {\/ZZJ 0, j= 1,...,d”}[ﬂ]eé forms an orthonomal basis of *(G) . Then,

PRBDWAEARACED ) dﬂZZ( [ f(g)m,(g)dg]m

[7[]6@ Jj=1 i=l [7] eG Jj=1 i=l

=Y d.[f@ dZdZﬂ,@)@(x)jdg
[rleG G J=1i=l

=Y d [/ d2d2<ﬂ(g)e,, ,><n(x>e_,,e[>jdg
[71eG G Jj=1i=l

=Y d.fr@ dz
[7]eG G Jj=

- Zd,r J £() dz<n(g)e (e, >j

—_
I

M&

<7z(g)ej ,e > <el. ,7T(x)e; >] dg

—_
Il
—_

Jj=1

=2 d Z( [ @ {7(2)e, ”(X)ej>dgj.

7Z€G Jj=1

Moreover,
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d,

d,,Z[ [ (@ (7(2)e,. m(x)e, >ng D d Z<7r( fe;.z(x)e;)

[7]eG j=1 [7]eG j=1
d,
=>d Z<7r<x )7(f)e;se;)
[7]eG Jj=1
=>.d, d, tr(z(x"7x(f)) .
[7]eG
The first equality comes from Definition 3.12. a

3.3 Absolute Convergence of Fourier series
Definition 3.15 Let )V be a finite dimensional Hilbert space and 4 € £L(V). The
Hilbert-Schmidt of A 1is defined by

Il AP =tr(Ad").
Theorem 3.16 Let / be a continuous function on a compact group G such that

> P AN l< e,
[7]eG
then
f)=3 d uw(zG6a(f)),
[7]eG

the convergence is absolute and uniform onG .

Proof. See [2, Proposition 6.6.1]. a



CHAPTER 1V

HARMONIC ANALYSIS ON COMPACT
HOMOGENEOUS SPACES

Let Ube a compact group and H its closed subgroup. In this chapter we are
interested in a compact homogeneous space of the form U/ H, by which we
denote the space of left cosets of U modulo H.

Materials in this chapter will serve as a tool for solving our d’ Alembert
functional equation on the compact homogeneous spaceU / H in the next
chapter.

4.1 LU/H) and L}(U)"

Let dix be a normalized Haar measure on U. Denote du(xH) a U-invariant

Radon measure normalized so that (2.10) in theorem 2.18 holds. In this specific
case, we prefer to normalize d;/ that appear in the theorem as well. Then, we
arrive at (2.11) which states an integration formula

J.UFoq(x)de: _[F(xH)d,u(xH),

U/H

forevery FeC,(U/H). Note that C,(U/ H)dense inC(U/ H), which, in turn,
dense in L*(U/ H) . So, this integration formula extends to every F e I*(U / H)
as well, in which case, ¢": F > Fogmaps L*(U/ H) injectively into L*(U). The
image of this map equals the space L*(U)" of right H-invariant square-
integrable functions on U. Via the topological linear isomorphism ¢”we shall
identify L*(U/ H) with L*(U)".

4.2 H-Spherical Representations

As in Chapter 3, we denote byﬁ the set of equivalence classes of irreducible
unitary representations ofU . For each[rz] e U, we can always choose a fixed

representative (7, ).
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Definition 4.1 For each irreducible unitary representation (z,V ). Define V" the

space of H-fixed vectors in ) by

Vi :{veVﬂ |‘v’heH,7z(h)v=v}.

Denote ¢, for the dimension of V. Note that 7 is said to be a H-spherical
representation if V" = {0}.
Moreover,

U/ H)={[x]eU| V" #1{0}}

denotes the set of equivalence classes of H-spherical representation of U/ H .

Lemma 4.2 Let f € ’(U)" and (x,V, ) be an irreducible unitary representation

of U . Suppose thatz(f) € £L().) 1s a nonzero linear transformation. Then,

[7]e (lﬁ).

Proof. We start with a prelude. Assume that f e I*(U)and £ is right H-
invariant. Fix an irreducible unitary representation(z,V ). For eachve ) , we

formally get by (3.1)
(/)= fEmx)v dx

= J‘f(xh’l)ﬁ(x)v dx
U
= j F0) 7 (xh)y dx
U
= [ f@r@)z (0 dx.
for all / € H.Integrating over H, er formally have

7(f)v= j j F)(x)(h)v dxdh

(4.1)
= j f(x);z(x)L j z(h)v dhjdx.

We can verify the validity of the above equations by taking the inner
product with we ) as in Definition 3.12, i.e., the above calculations are

justified by the computations in the weak sense.

By setting for eachve ),
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B, ()= j z(hyv dh.,

(4.1) implies z(f)v=x(f)P, (v). Moreover, for every k € H, we have

ﬂ(k)( j z(h)v a’hJ = j (k) w(h)v dh = j z(khyv dh = j z(hyv dh,

which implies P, (v) e V) for allve V..

Next, we prove the lemma by contrapositive. Let (7, ) be an irreducible

unitary representation of U . Suppose that [7] ¢ (U//T{ ). Then, V" = {0} by the
definition, and z(f)v==z(f)P, . (v)=0forallve).

Theorem 4.4 Let f < *(U)"” . Then f is equal in L*(U) to the sum
J= 3 d w(z(xHx() (4.2)
[z]eU/H

Proof. Since for each class [7] ¢ ((ﬁ?l )ywe have z(f) =0, the expansion (3.2)
of feI’(U)becomes

fx= 3 d te(zxHx(f)).

[7[]5(7/77

Recall that (U/ H) ={[x]€U | V" #{0}}, by Definition 4.1. O



CHAPTER V

D’ALEMBERT’S FUNCTIONAL EQUATIONS ON
COMPACT HOMOGENEOUS SPACES

In this chapter, we define the d’Alembert’s functional equation on compact
homogeneous spaces in Definition 5.1. Our main result is theorem 5.4, where
we present a method for solving the aforementioned functional equation.

5.1 D’Alembert’s Functional Equation on U/ H

Definition 5.1 Let U / H be a compact homogenous space. A continuous
function £ with domain U / H and codomain the field C of complex numbers is
said to satisfy the d’Alembert’s functional equation on U / H if, for all x,yeU,

FOoH)+ F(ov ' H) = 2F (xH)F(yH), (5.1)

and F(H)=1.

5.2 Solving the Functional Equation

Lemma 5.2 Let 4 € SL(2). Then 4+ A7 = tr(A)I,. Suppose, in addition, that 4
is unitary. Then, tr(4)=2 ifand only if 4=1,.

Proof. Let A€ SL(2). Sincedet(A) =1, the characteristic polynomial of A is
p,(x) =det(x] — 4) = x* —tr(4)x +1. By Cayley-Hamilton theorem, we have
0=p,(A)=A>—tr(A)A+1,.50,0=A"(p,(A)= A+tr(A)],+ 4™, and

A+ A = (A,

Next, assume that 4 is unitary. Suppose tr(4) =2 . Then, p ,(x)=x* —2x+1
=(x-1). So A =1is the only eigenvalue of 4. Note that 4 is diagonalizable by

Spectral theorem. Hence, there exists a unitary matrix 7" such that
A=Tdiag(l,)T" =TT = I,. The converse is obvious. a
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This lemma is the main step in the work of Yang ([4]).

Lemma 5.3 Let G be a compact group, and 7z : U — )V be a unitary irreducible
representation of dimension » . Suppose that there exists a nonzero vectorv e
such that

(r(x)+7(x) " )veCv,Vxel. (5.2)
Then eithern =1and 7 is a unitary group character, orn=2and z(U) c SU(2).

Proof. See [4]. Q
Finally, we give our main result in the following theorem.

Theorem 5.4 Suppose F 1s a nonzero solution of the d’Alembert’s functional
equation on a compact homogeneous spaceU / K . Then, there is an H-spherical
representation ¢ :U — SU(2) such that

F(xH):Z“’T(x),Ver, (5.3)

and H <kerg.

Proof. First, letq:U +— U / H be the canonical projection ¢(u) = uH,Vu € U, and
let F e C(U/K)be anonzero solution to (5.1). Obviously, f = Foge C(U)is a
right H-invariant L -function. Indeed, let x e U then f(xh) = F o g(xh)
=F((xh)H)=F(xH) = f(x),Vhe H . Since f'is continuous and U is compact, f'is
bounded. It follows that f € I*(U)" . We obtain

f= 2 du(zxHr)),

[z]eU/H
where the equality holds in I’ sense. Suppose 7(f)=0 for every class
[7]e U/H. By theorem 3.16, the series on the right converges uniformly to
both 0 and /. This contradicts the assumption that f is nonzero. Thus, we can

pick a H-spherical representation (z,)).)withz(f)#0.

To show that f satisfies d’ Alembert’s functional equation onU , letx, y e U .
Then,
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2f() f(y)=2F(xH)F(yH)
=F(xyH)+ F(xy'H)

= fO)+ f(w™).

Note that f'satisfies the d’ Alembert’s functional equation on a compact group.
To obtain solutions for f, we will reapply the idea of Yang in [4].

Let y e U be arbitrarily fixed. We can rewrite the last equation as
Rf+R.f=2f(0)f .

Remember that z(y) is a unitary operator, and recall the formula (3.1) for

calculating the Fourier coefficient. Then, by calculating the Fourier coefficient
atz of L.H.S., we obtain,

7R f+R . f)=[ flan)m(2)dg +] f(gr)n(g)dg
= [ 1(@)2(gv Hdg + [ f()m(gy)dg
= [ /(@7 ")dg + [ f(9)m(g)m(y)dg

= ( [ f(g)ﬂ(g)ng 7+ ( | f(g)n(g)dg] ()
=2z +2()).

Comparing to RHS.’s, we get z(f)(7(y") +7(»)) =272 f(»)./) =2/ (W7 (f) .
By applying an adjoint operator to both sides, we get

2/ (S = (7)) + 7))
(7)™ +2(0)) 2(f)’
(

(

2 +2(y)) 7(f)
() +7 ()" )2 ()

Next, since 7( )" # 0, there exists a vector ve ) such that z(f) v=0.

By applying both sides of the above equation tov, we get, forall y e U,

2/ (2(NV) = (2 + 7)) (7()'v). (5.5)
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We conclude from Lemma 5.3 that eitherd_ =1, ord_=2and z(U) c SU(2).

Cased_=1. Then (5.5) becomes

2107 V) =(70)+70) J(2()v). ¥ eU.
Hence, f = %(HE) _Letpbe the direct sum of zand 7 :p = 7 ® zand f = %
It’s not hard to verify thatp(U) c SU(2).
Cased. =2and 7(U) c SU(2), then (5.5) becomes
2/ (7N v)= 2, (7()'v). ¥y eU,

since z(x)+ z(x)™" = tr(z(x)) by Lemma 5.2. Hence, f = % Lettingp =7 .

Either case, ¢ 1s a H-spherical representationg :U — SU(2) such that for all
xelU

F(xH) = f(x)zl“’T(x).
B B — ) B :
Lethe H. Then 1=F(H)= f(h)= NS So, h=1,,by Lemma 5.2. This

shows H <kerg. a
By taking H = {e}, our result extends one given below:

Corollary 5.5 (D.Yang, [4]) Suppose fis a nonzero solution of the
d’Alembert’s functional equation on a compact group U. Then, there is a
representation g : U — SU(2) such that

X, (%)

f(x):T,Ver. (5.6)
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