CHAPTER 2
THEORY ON PRINCIPAL COMPONENT

Most of our statistical techniques involve operations on a single response variable
such as weight, pH, temperature, specific gravity, concentration, and the like. This is
natural because one is usually interested in a problem involving a single response.
However, there are a number of occasions where more than one response variable is
of importance in a problem, and thn§\\ hould be studied collectively in order
to take advantage of the infoqf\lu_"@w-; bo ionship among them. This is field

g 2 3 e — . s --#. .
of multivariate analysis..Mest-multivdriate techmiques are merely extensions of

E Mance.

univariate techniques su

2.1 Introduction

variables, x, into a net set

(pc’s) [6].

the original concept gog back to Karl P 201]. Iaway industrial applications,
the pc’s do have phys1caluu‘1__§.ehrpretatlon andq_c)an be used as control variables in their

own right. The Wﬁd@;&ﬂrﬂ%ﬁé‘s W,ffjiﬁ};ﬂn‘f‘aﬁoyed and in the case

of an indication &f an out-of-control gituation, the diagnosis of thii:':ondition may be
o
enhanc i t] i .
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For this study, we use PCA method. PCA is concerned with explaining the

variance-covariance structure of a set of variables through a few linear combinations

of these variables. Its general objectives are (1) data reduction and (2) interpretation.



2.2 Principal Component Analysis

Algebraically, principal components are particular linear combinations of the P
random variables X, Xj, ..., X, Geometrically, these linear combinations represent
the selection of a new coordinate system obtained by rotating the original system with
X1, X5 .., X, as the coordinate axes. The new axes represent the directions with

maximum variability and provide a si d more parsimonious description of the
covariance structure. @ | ///

e

ly on the covariance matrix X
(or correlation matrix_)"0f . -\ Xy Their de velopment does not require a
multivariate normal assuffiptién/On/the hand, p ineipal components derived for

multivariate normal populations ' erpretations in terms of the constant

density ellipsoids. Furthe e simple components when
the population is multivari

Suppose X = [X}, X;... al random variable X as the vector.
When row(m) of a dasmalmrﬂfé"éﬁés ond to samples while columns(n) correspond

to variables.

AugAmningans
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The marginal means 4 and variances o’; are define as mean, expectation or

expected value g4 = E(X;) and ¢ = E(X; - ,u,-)2 ,1=1 2, ...... , respectively.
Specifically,
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If X; is a continuous random

r x, f(x,)dx
_[, ifir ), variable with probability density
) function f; (x;)
Sl Z x,0,(x,) If X; is a discrete random variable
; with probability function p{(x;)
\
: If X; is a continuous random
('
// function f; (x;)
of= =
%S a discrete random variable
) N ith probability function p,(x;)
The behavior of such as Xj, X; , is described by
their joint probability jonfaud a n " ure A \.\..» association between them
is provided by the covari |

= E[(X, - u, X X0 i3 ,‘.?.ff | @2-1)

if X, X; are continuous

— ‘ ndom variables with the
J]] Joint density function f
(xi, X;)

( Q)(ﬂ fjﬂi ; are discrete

ﬁ Hq ﬁjﬂﬁ w EJ ’] v;nables with the

ammnm Junang Y

Similarly the expectation of a random matrix is the matrix of expected value

of the random elements. For the generalization of the variance to multidimensional
variates let define the covariance of the elements .X; and X;of X as the product moment

of those variates about their respective means;
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Cov(X, X) = EB{[Xi—EWX)IX-EX)}
= EXX) - [ECH]EWX)]

= I I xixfi(xi, %;)dxidx; - [ECQG)[EX)]

n

SO, oz":xjk]/[n(n—l)]

il

where f;(x; x;) is the joint e covariance is the variance of

X;, and we shall custo;y
the p-component rand

ion of the variance notion to

es and covariances

& 0
O 0| (22
Z=Cov(X)=| : :
_O' (o2 op |
We shall call this symrietrie-matrix-the-covaria rixr (2) of X. Where 071,07,

covariances among them. }Vhen all of the dlaggnal elements of this matrix are unity, it

is simply a m nawnﬁmn W fﬁ:ﬂﬁﬁ\auon between the i®

and j charactenq,cs 1s define to be

QWWMH?W}IWVWH’]@ 4 -

o, 0

..,Opp are respective ¥ ﬁ)e remaining elements are

J

for values of i and j ranging between 1 and p. Where p is called correlation

coefficient.

The key idea from matrix algebra related to the method of principal

components is that p x p symmetric, nonsingular matrix, such as the covariance
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matrix 2 [3], may be reduced to a diagonal matrix 4 by premultiplying and
postmultiplying by a particular orthonormal matrix U such that

UZUu=2 (2-4)

The diagonal elements of A, A;, 4, ..., Ap, are called the characteristic roots, latent
roots or eigenvalues of . The column ! b Uy, ..., Uy, are called characteristic
vectors, eigenvectors or loading vector of & teristic roots may be obtained

g rac
from the following determinantal-equati &mﬂeﬂsﬁc equation

(2-5)

where [ is the identity ‘ 82 ) lynomial in A from which

the values 4;, 4, ...,

Yi=apX = ankXi + dpk . (2-6)

‘ﬁ%’%‘ﬂﬂﬂ‘ﬁﬂ&ﬂﬁﬁz

Yi, Yi)=a;’Za; Lk=1, 2
Ta w compone:; tTthJse Ioflrr:l]agﬁ yn]‘earﬁcl:;]nb@tg Y., Yo, ...
Y, whose variances Var(Yi) = a;’Za are as large as possible. It is clear that Var(Yl) =
a;’ Za; can be increased by multiplying any a; by some constant. To eliminate this
indeterminacy, it is convenient to restrict attention to coefficient vectors of unit
length. We therefore define
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First principal component =

linear combination a;’X that maximizes
Var(ar’X) subject to a;’a; = 1
Second principal component =

linear combination a,’X that maximizes
Var(a,’X) subject to ay’a; = 1 and Cov (arX
,°X)=0

At the i® step.

i principal compo o~ /

bmatlon a;"X that maximizes

oa,a,"landCov(a,X,

ill transform p correlated
variables x;..

. Xp into p n - » ¥p» the coordinate axes of
D he ) ich make up the matrix U of
direction cosines used in ing gener; nation

27
al t\ ‘

|
respectively. The tran rmed variables are called the I incipal component of x or

e pﬁﬂm‘fﬂ“ﬁwmm

—u x~

QW’]ﬂ\ﬂﬂiﬂJ UMINENY

an will have mean zero and variance A;.

Here ¥ and x V-’ . iables and their means,
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The geometrical in on of Omponents as the varieties corresponding to
the principal axes of the of t - ons it \ c. Imagine that a sample of
N trivariate observations : - i ."3 \ inr fig 2.1 [2] where the origin of the
response axes has been taken'at # ﬁpl
a generally elhpsmdal shape m@a ¥ ﬁ__
Y: and Y3. Let us .‘.,._..‘......,.._‘J.‘ axis and denote its
“t\ Y, passes through the

: entation is completely determined by the direction cosines

A bl ¥ ﬂzfﬂiﬂ MK e RS
q RASINIANAINYINY

It is known from analytic geometry that the value of the observation [x;;, x;;,

he swarm of points seems to have

and less well defined minor axes

angles with the orig

sample mean point, its

x;3] on the new coordinate axis ¥; will be

Vi = Uy (X = X;) + Uy (X, - X,) + Uy (X5 — X3) (2-10)



14

2.3 Standardizing the Sample Principal Component

In general, sample principal components are not invariant with respect to
changes in scale. As we mentioned in the treatment of population components,
variables measured on different scales or on a common scale with widely differing
ranges are often standardized. For the sample, standardization is accomplished by
constructing the # x p data matrix of \ }zed observations

-Zu Zp
Zn 2n
. : (2-11)
[Zp Zp2
yields the sampl€ mean
(2-12)
AU NG s
and sample covariance matrix’
QW']ﬂ\ﬂﬂiﬂJﬂJW]'JWEI']ﬂEJ
(n-Do, (-Do, (- 1)01,
(n-No, @-Do, . wﬂ;
G, (el " et
ooy ouie,  ow |
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In the other hand, principal component can be calculated from correlation
matrix from above definition. Generally, extracting components from S rather than R
remains closer to the spirit and intent of principal component analysis, especially if
the components are to be used in further computations. However, in some cases, the
principal components will be more interpretable if R is used. For example, if the

variances differ widely or if the measurement units are not commensurate, the

variables will contribute very httl

components of S will be dominated by the, variables with large variances. The other
! /nccd representation in such cases,
components of R may be us

ors change when converting

rich one variance is substantially

The elgenvamesﬁidu&& Qo&f}r&l BANYINT

9 W’%ﬁ@ﬂﬂ‘iﬂéﬂ%’l@m HIR

Y2 =035 a;, = (0.987, -0.160)

The pattern we see in A4, Ay, a;, a, are quite predictable. The symmetry in a;
and a; is due to their orthogonality, a;’a, = 0. The large variance of x; in S ensures
that the first principal component y; = 0.160x, + 0.987x, weights x, heavily. Thus the

first principal component y; essentially duplicates x, and does not reflect the mutual
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effect of x; and x,. It is expected also that y; would account for virtually all of the

total variance:
4 = h =0.9865
A+4 26
The eigenvalues and eigenve
2.1 =138

A'z = 0.2 X ‘ AV) =
The first princi &? R ‘i

. (it v 14
accounts for a high propc ﬂ’:fa /ar,

(I

i
sae

Because the varia }es are fairly highly correlated(r=0.8). But the standardized

variables (x, -—i ' f?j—ﬂ)ﬂ ﬂ%’wﬂ iy, due to the equality

of the diagonal ents “vanances”} of R.

AR DIUNBIINZINE o v

those from S:

1. The present of variance accounted for by the components of R will
differ from the percent for S.

2. The coefficients of the principal components from R differ from those
obtained from S.
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3. If we express the components from R in terms of the original variables,
they sull will not agree with the components from S. By transforming
the standardized variables back to the original variables, the

component R become

141x2 + const.

0 70 ———--x2 o

As expecte sefage v ry different from the components extracted

directly from'S. T blem arises, of co \ because of the lack of scale
invariance of tHe c f ﬁ |
4. The components from & given m .u._s\ L are not unique to that R. For

example, in thg

are given b

UEVJ‘VIEWI‘WEﬂﬂ‘i

Ai=1+g lz—l

QW’]@\‘iﬂiﬂJ URIINYIAY

but the components remain the same for all value of r;

¥, =0.7071 "0 1 g 70722
g, 0,

N 070752 %2
o, o,

y, =0.7072
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In general form of principal component is

X, —X;) Xy =X,) X, = X.
SR DO P B . -

1 o, 0,

The component above does not depend on r. For example, they serve
equally well for r = 0.01 and for r = 0.99. For r = 0.01, the proportion of variance
explained by y1 is A1/(A1+A2) = (1*‘![)/(1% .01+1-0.01)=1.01/2=0.505. For r =

0.99, the ratio is 1.99/2 = 0.99 \I'h nt that the first component from a

correlation matrix accounts % 90% ariance is not meaningful. In
general, for p>2, the com {| n the ratios (relative values)
of the correlations, not € nents of a given R matrix

will serve for other R m
2.4 Principal ComponentSc

To use the principal :
compon en@ (values of the principal component
variables) for each expenmenu;}/,dgft }n%aset These scores provide the
locations of the obse data set with respect to 1S principal component axes.

necessary to compare princi

Let x, be the vector measured variables for the rth perimental units. Then the

value (Js;(:-ri))otﬁ ﬁ @mgw EJ 91 ﬁ’% experimental unit is
25 coma:aca»mm URIANYINY

Note that the eigenvectors of variance-covariance matrix that are being used to
define the principal components are normalized to have length 1, that is, a ja; =1, for
J=1,2, ..., p. This can sometimes be confusing when we are trying to interpret the
principal components by examining the elements in the eigenvectors that define the
principal components. A large element in one eigenvector may or may not be large in

another eigenvector. That is, elements within an eigenvectors are not comparable.
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This is because the eigenvectors are normalized to have length 1, which requires that
the sum of the squares of the elements in each vector must equal 1. Thus the more
elements in a single vector that are actually different from 0, the smaller each element
must be. For example, if eight elements in a vector were nonzero and if all were of
similar magnitude, they would each have a value equal to +1/N8 = +0.3536; but if

only two elements in a vector were nonzero and were of the same magnitude, they

would each have a value equal to +1/<1=‘ 7}707 1.
To make compansons%en s;genﬁ' many researchers scale the

eigenvectors by multlplw ments in @mr by the square root of the
corresponding eigenva : '. ;

called component loadi

2.6 The Number of Prmglpal Com ponents

B%%QW?WBWﬂi

There is alvxw € question of how many components retain. There is no

R A

sample components), and the subject-matter interpretations of the components. In

-)

addition, a component associated with an eigenvalue near zero and, hence, deemed

unimportant, may indicate an unsuspected linear dependency in the data.

A useful visual aid to determining an appropriate number of principal components
is a scree plot. With the eigenvalues ordered from largest to smallest, a scree plotisa

plot of /; versus p —the magnitude of an eigenvalues versus its number of variables. To
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determine the appropriate number of components, we look for an elbow (bend) in the
scree plot. The number of components is taken to be the point at which the remaining
eigenvalues are relatively small and all about the same size. Fig 2.2 shows a scree plot
for the situation with six components. An elbow occurs in the plot in Fig 2.2 at about
p = 3. That is, the eigenvalues after /, are all relatively small and about the same size.
In this case, it appears without any other evidence, that two (or perhaps three) sample

A e total sample variance.

principal component effectively s

Figure 2.2 Scree Plot -

s e UE NN TNYIN
ARIRIA IAMIINY 8 Y.

have used the estimated regression function to make inferences. Of course, it is
imperative to examine the adequacy of the model before the estimated function
becomes a permanent part of the decision-making apparatus.

All the sample information on lack of fit is contained in the residuals

e=Y-Zp (2-15)
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or yi=u'(x-%)+¢€ ) (2-16)
where
o4 = Error
Y = Response
£z ict
ﬂ N

Properties of errg

a) E(g)=0
b) Var(g) ¢
¢) Cov(g,g) 70

Or we can calculate ,_':';r:..':?'" , statistic, O, for each sample [4]. Q is

simply the sum of sqaure of fi_;--;’--w:::' of ¢ for example, for the ith sample in
JY, Xi % A4
e;‘———x,-*(!&P 2-17)
Oi=s66 ¢ (2-18)

_AUBINENINYINS
R AYTISImIANENa Y

= the matrix of th t p eigen vectors retained in the PCA
model.

The Q statistic indicates how well each sample confirms to PCA model. It is a
measure of the amount of variation in each sample not captured by the p principal
components retained in the model.

The critical value for residuals is
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6, 6}

Q. =61[c“ 26:h0 9""’(" D, } (2.19)

where
Ca = Normal deviative cutting off an area of o under the upper tail
of distribution if hg is I \ and under lower tail if hy is negative.
\

= (2.20)
91 = ': \ .
92 = ) fﬁ:u d
i
= ) ez
LT
% _ 2

AULINYNTNYINS
i ORI &

To improve the quality of goods and services, data need to be examined for
causes of variation. When a manufacturing process is continuously producing items or
when we are monitoring activity of a service, data should be collected to evaluate the
capabilities and stability of the process. When a process is stable, the variation is
produced by common causes that are always present, and no one cause is a major

source of variation.
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The purpose of any control chart is to identify occurrences of special causes of
variation that come from outside of usual process. These causes of variation often
indicate a need for a timely repair, but they can also suggest improvements to the
process. Control charts make the variation visible and allow one to distinguish

common from special causes of variation.

A control chart typically consis ta plotted in time order and horizontal

the amount of variation due to

2.8.1. X-barch il
i, Plot the indi¥idufLépsérvation or s :
ii. Create ang piot / the 'ﬁf%{"v N ‘. ple mean of all the

e /0 9\\
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Figure 2.3 95% Control Charts: Original (X1, X2) and
Principal Component (Y1, Y2)

24



25

2.8.2. Ellipse format chart — for a bivariate control region is the more
intuitive of the charts, but its approach is limited to two variables. The
two characteristics on the jth unit are plotted as a pair (x;;, x;3). The 95%
ellipse consists of all x that satisfy

(05) (2-21)

‘ &L fz)_*_(xz"fz)z =72
8,185 — 5B ; N R 2na

(2-22)

13

12+

11 ! AT
- - e e Fa
§10- o— —
3 Z

9 : E ; ¢

L

AuEINENINeIng

0 14

Method A

Figure 2.4 the quality control ellipse chart
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- Ji vﬁuoﬁl t odelPlot

..... referred Q as statistical distance, a
generalization of the T statistic. The statistic was later named Hotelling’s

L e VY P—

statiStical distance that i 1& referred to as Mahalanobis’ dlstance The two

QR AT B TR e o=

ful metric for multivariate process control. The T2 is the
procedure used to construct multivariate control charts in most software
packages such as QualStat. The following sections provide a basic primer
on the fundamental theory behind multivariate SPC.

Another method for examining information provided in a

multivariate observation is to re-express the vector as a single univariate
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statistic. There are numerous procedures for achieving this result. Below,
two different procedures are discussed. Regardless of how what
statistical method is used, the statistic must contain all the information
provided by the all the variables (assuming it uses all variables) and in
some cases, can be interpreted and used in making decisions as to the

status of a process.

k)

Consider a_process ’% rates an uncorrelated bivariate
’ l&m graphically, it is common to
of the points. In addition,

suppose therg. i celcnlating istance a particular point is

from the m _ r point). The distance between two
points is always i a8 ' ﬁw::r or value. This is true
regardless of 1y dimensions (variables) are involved in the

problem. v ;
The usual'straight-tine ¢ idean distance between two points
is measured by thmﬁ@er/é hat separate them. The squared
™
straight-line di een 3 the mean point (u;, o)
1s given by? =
j y

F;Ju U ﬂi V ﬂﬁwxﬂﬂhf (223)
R vt neniensTontsv v

the mean point.

It is of interest to note that if the distance from the mean vector
is fixed, then all points that are the same distance from the mean can be
represented by a circle with the center at the mean vector and a radius
of D. In addition, any point located inside the circle has a distance to
the mean point less than D. See the figure below.
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traight-line  distance is
pecause it assumes that each
slating the distance from the
0 the variation or the scale
differences b “ variables. To cofrect this, consider the formula

of the variables:

aﬁaWEJ\’JWWIWl’EMﬂ‘E
amaﬂn%‘ﬁ&mﬁﬁﬂﬂmﬂ @2

This particular measure is known as statistical distance. All
points satisfying 2.23 are said to have the same statistical distance from
the mean point. The Fig2.7 is an ellipse and is presented below.

(2.24)
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(xl » XZ)

(u'b u’Z)

scales involved. Since the
e measured in many different
‘varying scales and units. Second,

-:::ie;,i‘ o points can have the
ucildean or straight-line

|

distances om the mean vector. If the variances of the two variables

e WW%‘WE"‘W?T‘%‘“ R
’ﬂ W aﬁﬂomu el my &aﬂm distance

lies in the fact that the two variables used in calculating the statistical
distance are weighted inversely by their standard deviations, while

both variables are equally weighted in the straight-line Euclidean
distance. Thus, a variable with small variation will contribute more to
the statistical distance than a variable with large variation. In other

words, statistical distance is a weighted straight-line distance where
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more importance is placed on the variable with less variation to

compensate for its size relative to its mean.

Consider a scatter plot of two positively correlated variables as

represented in the figure presented below.

10

of Correlated Variables

squation of the ellipse

e SR [

N

¢ ER 28X, + 2,x% = SD? (2.26)

f u“%@l%‘ﬂ {46 ot il rinof 363 of the ellipse do not

ha¥é to be parallel to thf axis (x1, x2
qq W’] al"g Qatlj ngs ce fro ’ahl]nean pou@ that encompasses
all the points can be represented as an ellipse. This concept is

presented in the figure below.
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the beh observation vector must
follow a mati] Under this assumption, i.e
(x1, x2) ¢ riate normal. The explicit

. , 5 (Xz - ﬂz) _ ¢n2
1 - pz“ 3 ey , ‘; - 7 v 0'22 - SD
{ N K ;

(2.27)

where . represents thegcorrelation between the two variables

’ﬂ(% p’radSA @WWlﬁaﬁcﬁmts for the fact that

theariables vary toge}her and do not behave inde ndently of one

AR TR RS “‘IW“EI% S
are correlated, the major and minor axes of the ellipse differ

from that of the variable space (x1, x2). If the correlation is positive,

the ellipse will tilt upward as is evident in the figure above, whereas a
negative correlation will tilt the ellipse in a downward direction. Using

matrix notation, 2.25 can be expressed as follows:

(X - @) (X = 1) = SD? (2.28)
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where X' = (x1,x2), u' = (ul, p2), and is the inverse of the

covariance matrix :

2
¥ e ["1 "122] (2.29)
On O
, U ts the covariance between x1 and
x2. A similar or many variables in this form.

(X - p) that represents the
as Hotelling's T* statistic:

(2.30)
2.9 Interpreting Princip
Since principal components inations of the original variables, it is
often necessary to mtg?l:e-t or proﬁﬁé ‘ e lipear combination. One can

: ."The higher the loading of a
variable, the more mﬂuﬁce it of tlﬁ principal component score

and vice versa. Therefore‘one can use the laghngs to determine which variables are

ot n 5 4 ) AR BE s & v

influential? Howﬁgh should the loadmg be before we can say that a glven variable is

influen n m ﬁ! r? ﬁﬂmely, there are
no guideline El l shing how high gh. Traditionally, researchers

have used a loadmg of 0.5 or above as the cutoff point.
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