CHAPTER IV

THE APPLICATIONS

4.1 Introduction

The Neural Network control techniques have an ability to cater to the
nonlinearity and complexity of processes without knowing the relation between inputs

and outputs. The recent upsurge in_naufe

etwark control research, (A. K. A. Wahub, M.

Petcherdsak, 2001), for cxamplE had dode mioh BrrweEks on neural network already.
However, those investig Lot ' 2 hyk . Moreover, the purpose of
those previous resear ; . gontral the rez ; -i \Perature for obtaining good
productivity and the desifed 4 o Uaranteed the control objective
especially in cases of pl ] I h istubance changes. The purpose
of this research is to ¢0ntrg ‘_.» \concentratic \ in the reactor by manipulating
the jacket set point temperz : g high u" of the desired product. The

product concentration set poi S8 nUCh: ssible; therefore, the certain product

In thigje u @ri':'g is designed and used

for set point trackin%nd disturbe Setion in bo :'j nominal and plant-model

mismatch conditions, corgpgad with the convﬂlonal PID control.

%uﬂlmnﬂ njﬂﬂr:s] Io]/i execute the given
conundrum, “A Neural Network Modefing and Contréifor tio id Process”,
theseanﬁﬂ@ qaim?ily fa‘gdﬁﬂsj ﬁ‘?ﬁTER Il and
some agdltlonally more in this chapter and the appendices.

4.2 Hybrid Etherification Process

This is a combined process, using a Continuous Stirred Tank Reactor

(CSTR), a Pervaporative Membrane Unit and a Heat Jacket for temperature adjustment.



30

Every species, except for the product, are separated while the reaction takes place,
which causes the product to shift to higher levels of quantity and quality. The process

schematic diagram is shown in Figure4.1.
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C represents Isobutene, by-product
P represents ETBE, desired product

W represents Water, by-product
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4.2.1 White Box Mathematical Model

The white box mathematical model of the process is derived from
Material Balance and Energy Balance equations. This supposes to be a real plant for

simulation, under the following assumptions:

1. Concentration and temperature are distributed uniformly both in the

reactor and the jacket.

\ssabumrungrat, 2003).

3. The amoui i tor wallls is negligible compared

material balance equations

v @2)
v @3)
v (@.4)

@5)

%Wuﬁﬂ en ‘5 -

@)

The rate of the reactions and kinetic parameters can be expressed as

follows:

=k a,a; —apay /| K,

—_ 4.7
! 1+K,a,; e
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a,

=k, —24— (4.8)
TRk e

k =exp (3.55 - 2286) (4.9)

T,

k, =exp(36.57— 13653J (4.10)

(4.11)

(4.12)

llowing relationship:
(4.13)
,.é"g'“""“ﬁ Stimated by using UNIFAC method.
yer MEavHITY CoeNicienis can be exbi A- .7: » fO“OWS:
(4.14)

@ummmw 9N .
MIAYBRNNINNNY |,

The total heat capacity can be expressed as follows:

CC+CC+CC+CC

C, = (4.17)
P C,+C,+C,+C,
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Where C_,, C_q, and C, are obtained from Perry’s Chemical Engineer's

Handbook, C,, is calculated by these method:

- JOHN GARVIN liquid heat capacity: More details can be found in (John
Garvin, 2002).

- JOBACK, critical temperature and normal boiling point: More details

can be found in (Dragon Technolo 19985

M, and x, can"bx ncentration of each species and

reactor volume.

e summation of heats from

(4.18)

(4.19)

e ﬂ'::'.r;z.‘;-;g:&x:. eaction1

T T

/
Where, Q, i

L

(=57

7\

1 1
I
A jis,the heat of reaciph 2

%u g&’ ?rlluﬂ are calculate ngy the summatlon of heats of
B TRNTLS S Ta—-

T
AH, =AH?*+ [C,dT

298

(4.20)

Where, AHFi is the heat of formation of specie i
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AHF,.298 is the standard heat of formation of specie i at 298 K
C,, is the heat capacity of specie i

The standard heats of formations of species A, B and W are obtain from
Perry's Chemical Engineer’'s Handbook. The standard heat of formation of specie P is

estimated by Joback’s method (Dragon Technology, 1995).

4.2.2 Nominal Operating Condition

The operating=cond: nE-neminal case simulation is shown as

follows:

Co = 6 6X10 [mol/m’]

HUB’&WEWITW BN
ama\aﬁ*ﬁmmmmaa

T,  =303[K]

T; =303 [K]

]

T =303 [K]

sp
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T =303 [K]

UA =6.25 [J/(s K)]

V. =36x10"[m’]
V,  =5x10"[m’]

W =3.96x10" [kg

4.2.3 Process Analysis

In some_gée e tnater dlance anesenergy balance equations are
not available. In these gfuhiie t nodelbasedseontrollers can not be used.

The black box model b Jl strategies (N stwiork) is used in this research

Outputs: C,, Cy, _@_',,sf':
- =t

4.2.3.1 Controlled Vagable-Selection
. y'_

‘d

-~ T J not guara rol objeg

ve especially in cases of

disturbance change.

AULAN ﬂnaxlcw’eln;m.ww
"°”‘ﬁ°ﬁ°ﬁ“’ﬁ<‘iﬁ SMINYNaY

- G, is directly related to the control objective, but the set point is

unavailable.

- G, and Cg, the reactants concentrations, are indirectly related to the

control objective. The set point is available by setting to a small value.
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Considering C,, the small value of it can be caused by:
1. high rate of both reaction1 and reaction2

2. high permeation rate of the by product (Water), which can cause high

rate of both reactions

3. high permeation rate of A

Considering Cq : I valté g d by:

2. hig f the ductWater), which can cause a

3. hig

From these j€auSes, (i canigiia e the control objective better than

C,. because C, can be decrd@sediy e sidélteaction, but the product is not occurred
L4 s il . .

from this. Also, in case of a hight -- of B, the permeated can be recycled

back or else, the permeatie ed by the increase of the vapor

pressure of B in theZbeimeaied-side=—thereiore: \:‘1 trolled variable for this
! ’ o

process is Cg.

.ll 'FI;
4 ¥

4.2.3.2 Manipulated Variable,Selection

AULANEYINEANT .. ...
MY G a0 14 ki

side reactlon of each individual reactant may occur without producing the product.

- Considering g, the change in C; can not be occurred by manipulating

g, which is the jacket flowrate.

- Other inputs can be analyzed by the open loop responses asfollows:
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From the open loop simulation results, Figure 4.2 shows that a step
change of CAin -10% makes an increase in C; of about 0.02 kmol/m3 and a decrease in
C, of about 0.04 kmol/m’. Figure 4.3 shows that a step change of C,,, +10% makes a
decrease in Cy of about 0.01 kmol/m3 and an increase in C, of about 0.02 kmol/m®,
these indicate that the changes of C,,, has only a small effect on the controlled variable
and the desired product. Figure 4.4 shows that a step change of Cg,, -10% makes an

decrease in C of about 0.6 kmol/m” 2 rease in C, of about 0.04 kmol/m’. Figure

4.5 shows that a step change: O b . s an increase in C, of about 0.6

se indicate that the changes of

Cqi, has a great effect only a small effect on the

desired product. Figur -\ -10% makes a decrease in
i , 4 7 \\* C \ crease in C, of about 1.0
kmol/m® and a decrea Jofl abdu 3\ \\

' | . S .' 3 :\»

change of T, +10% 9 '\. nd an increase in T, of about

Figure 4.7 shows that a step

5K, an decrease in Cy e in C, of about 0.7 kmol/m’.

Figure 4.6 and Figure 4.74ndigate thaithe " Jes ofil. have the greatest effects on the
controlled variable and the de ""’ those changes are related to the
control objective, therefore, T. ca » ppropriate manipulated variable for
this process. ' -

AX

i

1
ua

ﬂUEJ’JVIEJVIiﬂEJ’]ﬂi
QW']NﬂiﬂJﬂJWT}VImaH
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Figure 4.8: Cascade Co o § oﬂor ionderEt \\\ n Hybrid Process
¥ W s, .

To achieve an effic , the systems need to be controlled. In

this research, the cascades ized to.control this etherification

hybrid process. Dijttbanees—arsine—yrt ;ﬁ' are corrected by the
secondary controller of primary controlled output

which is the main controned variable of the processes. The cascade control
configuration ﬁﬂl e 4.8. The primary
controlled vav@ wﬂﬁaﬂtﬂnnn to the prim rycontroller CBC, which also
receives ﬁ 3 ﬁ command
signaﬂfﬁo,la ﬁ“ﬁf ﬂﬁﬁ tr m EWB]Z ’ﬂ:celves the

measured process signal, Tr, and calculates the manipulated variable, Tj, and sends it
to the jacket temperature controller. Considering the dynamics of Tj, if Tj is applied
directly as the set point for jacket temperature control system, the result in control

response would be sluggish. To accommodate such an effect, it is reasonable to
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assume that the dynamics of the jacket control system can be approxumated by the first

order model (antak 1986) as follows:

k-1
T,,, (0= T,(k-1)+ v (:)Zt( ) (4.21)

The dynamics of Tj can be compensated by the equation above which is

the dynamic compensator, D, as showq in Figure 4.8. This Tjsp is the command signal

There ar sesJof ne \ ork models in this work, the
: Rgverse Model for using as a

controller in the No Meodel| Ol (NIMC) strategy. The training and
\ geénerated from the obtained white

0 b alized for achieving a good

normalization requires the maximum

box mathematical mode

performance neural network'mad .:.\r,u 0, th

e d

E—

and minimum values of each va ;:9 7D r’é if-line training, the whole data sets for

each variable from evén yIn this case, the maximum

and minimum val 3"_ ' "". But for the on-line
|!

. . Il
implementation, the dE sets from only the past and curre

t time steps are available

and the maximum and mihimum values in thefuture are unknown. In this research, the

N S (T T A

(T and T), 373“( and 273 K were uied as the maxumum and mmlm@ values for data

no@ﬂ fé];ﬁ .@ﬂﬁfﬁ %j M%rﬁ %jo’n]aa cB«ertlng back

can be@xpressed as follows:

<
1]

(x-273) / (373-273) (4.22)

x
Il

y*(373-273) + 273 (4.23)

where, y is the normalized value and x is the actual value.
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The training data and testing data were generated by the various
arhplitudeé bf excited step inputs. The excitation frequencies dsing are 1/300 Hz for
forward model training and 1/90 Hz for inverse model training. Three different sets of
data were generated, two for training and one for testing. The temperatures data signal,
T, and T, were collected by using the same sampling time of 10 sec, the concentration
data signal, Cg, was collected by using the sampling time of 120 sec. The training was

done by the Levenberg-Marquardt using the “early stopping method”. The

Mean Square Error (MSE) va Je is the cff or network selection and also for
stopping weights and biasgs adjust . ining, the neural network is still
adjusting the weights E;n S, in Tk oae. connections, but there was no

adjustment during the tesii Siiiate | A\ sural networ performance. The details of

neural network training have béea de 19ed [ US APTER Il

The Nefiral ri 2F¢ f._. LW h represents the forward
3 ' seven nodes for both hidden
bne output node with a linear transfer
function, or [5-7-7-1] archltect r_ ne ;,__,' odel represents a future value of T,
which can be express nction of cur g T, two past values of T,

-v (k)T(k |)T(k)Tk )T(k2)
( )

Where kdenﬁ;ucﬂ ANYNINLNG
follows W’Ta”\ﬁ ﬂﬁcmmwwv’rﬂrﬂf’a ﬁescnbed as

- When an input is removed from the input data set, if the network

(k+1)
T

(4.24)

performance goes worse, that input is required for modeling, and if
the network performance does not go worse, that input can be

removed from the data set.
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- For a dynamic system modeling, it typically requires the current and
past values of the corresponding future prediction values which are
the controlled variable values for the field of process control. Thus

there are the current and past values of T, in the input data set for this

work.

In this work, the modeling is purposed for NIMC strategy. Therefore,

by the following procedure

st and second hidden layers

.9, MSE = 4.22x10°.

testing result

[

~++a+e== NN output
i g~ Target |

-
-

—_—
—
=
o

[}

Ry, | SR e

Z*_K"
e/.)

oo

1 i 1 1 1 1 1

5 10 15 20 25 30 35 40 45
time [min]

Figure 4.9: NN Forward Model Testing Result [5-5-5-1]
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Figure 4.9 shows that the network has underfit on the training data, the
~ network response is too less complex, because the network has too
less number of neurons. Thus, the number of neurons should be

increased.

2. The second guess was done using 9 nodes for both first and second
hidden layers [5-9-9-1]. The result is shown in Figure 4.10, MSE =
8.21x10°.

0.45

Scaled Tr [

©
w
.

0.25

0.2

e [min]

o Wﬁmﬂﬂﬁ‘ﬁ[wﬂ’] na

An overfit responsg is shown in gure 4.10, as jgyuthe circles, the
Q W’] a@ﬂ ‘j{%ﬂ wq\? %EI»&] a Be excitation
frequency, the network response is too much complex, because the
network has too much number of neurons. Thus, the number of

neurons should be decreased.
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3. The appropriate number of neurons in the hidden layers should lies

- between 5, 5 and 9, 9, the comparison was done by using the MSE

values as performance index as follows:

S1]82 MSE S1] 82 MSE S1|82 MSE
5 | 5 [422x10%| 7 | 5 | 00598 | g | 5 | 0.0150
) 4
5|7 0.00257 , x10 9|7 3.71x10
r 5
51| 9 [£ Cx : ey 9 8.21x10
Table 4.1: Neural Ne ' del Are parison
Where, S_i rof hidden layer
S urt nd hidden layer
As sgén fi@m Fable* c cture is [5-7-7-1] which
gave t mo ‘ rma icated by the MSE value of
8.36x10°, i
A2
The neur: urgsis shown in Figure4.11.

AULINENINYINS
PRIAATUAMINAE
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Figure 4.11: Neural
4.3.2 Neural Network Invege

The Neural del™ which - represents the inverse

dynamics of the plant is compo }J des, three nodes for the first hidden

layer, three nodes fo moid transfer function for

RY |

both hidden layers ’. 1Ster function, or [7-3-3-1]

architecture. The .‘wl e Model representing the current v 'ﬂ ue of T, can be expressed
as a function of a future Iﬁiﬁlrrent and a 3values of T, and two
ﬂum LI LT i

ARERSE TN Gy

Where, % denotes the current time step of the variables.

The obtained forward model is not one-to-one relation between inputs

and output, thus, there is only the pseudo-inverse available which replaces the output of
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forward model by the current value of the manipulated variable. The future value of the

controlled variable becomes an input and all other values are still the same.

The temperature signals, T, and Tl., are sampled every 10 sec., while the
reactant concentration, Cg, which is also the controlled variable, was added to improve

the network control performance by allowing the network to know the value of C; every

120 sec.

During the off-line training for on-line implementation. This
value can be replaced by MC er ; e d as follows:
(4.20)
The Ne f ' ture is also chosen by the
same procedure used for ghe fe o i before, the results are shown
in Table 4.2. b 477
EI‘ : \
S1(82| M 21 1182 MSE
= 5 5
110 o4 A . 3 5.70 x10
-4
15 1.96 x10 '
.0017

Table 4.2: N@Iunatﬁxll ﬂdnlimva C:)]‘ngxgw
RTRNTRUARATNREARY

S, is the number of neurons in the second hidden layer

The number of neurons in the input and output layers are 7 and 1,

respectively, all the same for all architectures.



49

From Table 4.2, the architecture [7-3-3-1] has the best performance

i:ompa'red‘ with 6ihgr~é}chitéctures by the M-SE performance index which is equal to

2.08x10°.

The Neural Network Inverse Model Architecture is shown in Figure 4.12.

e®

Lo : N

N
NN

T,(k'l)
T.(k-
T.(k-

lbiput T T
Ch——<Hiir P
-y b /g Output Layer

L
-

Figure 4.12: Neural | .; 7 Y )

The newral network performance testing restit is shown in Figure 4.13.

AULINENINYINS
PAATUAMINYAE



NN Forward Model testing result
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Figure 4.13: Neural Ne ot asting result

4.4 Neural Network Contr

After the forwa :___ odels are obtamed they will be

implemented in the PI-NI in Figure 4.14 below:

v

Figure 4.14: PI-NIMC Cascade Topology

Where, F stands for Filter, D stands for Dynamic Compensation, NNC

stands for Neural Network Controller placed by the obtained inverse model, NNM stands
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for Neural Network Model placed by the obtained forward model and Pl is a Proportional

Integral Controller.

In this research, a measured reactor temperature (T,) signal with noise
was simulated according to the electrical noise from the electronic measuring
instruments. This is a high frequency (every time step of simulation, 0.5 sec.) and low

amplitude (#2 K) noise. The exponential filter was implemented prior to the inverse

model acting as a controller for the Systemrobustness improvement. The appropriate
filter time constant, T,, is the mir M value oL that large enough to quarantine the

closed loop stability. The filierwas tuns baﬁe 2, T.=70 sec. was set. The

Nverse model are represented by two
independently trained dijfer: ---». S \ oduct of steady state gains may
not be in unity, therefore i sort Steady .~\- ets in the controlled variable.

’ ilizeéd. As such, the secondary
controlled variable (Cg) offset
is eliminated by the Integralfter a"" cont e Pl controller in the hybrid strategy
was tuned on-line by by Ziegle vhich K; is equal to -34 and T, is
equal to 80. The pe# . <---—;--——-~----w-—.f-r,-w.-:-:—r--:":':; mpared with that of the

conventional PID cdstad o.‘lg'? -NIMC cascade strategy,

I

ed for PID cascade control,
while that was applied ﬂ | rateqy. ration.of cascade control is
shown in Fiﬂu a‘ﬁyﬂamﬂﬂrfiﬁj is the secondary
controller. The tuning parameters are!kc1 is equal ta=1.95 and T,, is e@uil to 80 for PID1

withoﬂaw;e.l}«a(ﬁﬂ‘nﬁm %a’l-]o’a2w f&lp}lazaugnau integral

action, 1,2 is equal to 100,000, and no derivative action. Both controllers were set to take

the electrical noise i " emperature signals was not appl

control action every 10 sec.
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CBsp Trsp
i oL - + Tj Tjsp -
—*—53——P11)1 PID2}—— D > Plant >
CB Tr

ti @e control performance of PI-

NIMC cascade strateg INis"G : vith-th ntional PID cascade control

(PI-P) in cases of dis ismatches conditions. All

changes of disturbance® the time, t = 0 minute. The

Integral of Absolute Errg \ - «. hted Absolute Error (ITAE)

were utilized as the conifc

1€ simulation results are shown as
follows: \

4.5.1 Case 1: nominal case

In this casegthe-setPaini, € ecreased 30% from the nominal

Opefatlng Condltlo T B T~ ST eV P TPV vovin £ P o Ciré 416(9). IAE value given

o) f Us that both controllers gave
.I

the same response at the begmmng until 2 mlnutes after the set point change. After that,

f:f;;f:;';ﬁﬁﬁeﬂﬂ”wfﬂﬂ FIR TR s
AN AINIURIINA Y

by PI-NN is 266 whlle ‘I at 0
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Controlled Variable: Reactant Concentration, C‘3
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©
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e —rmee PIP
sm 1 1
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Figure 4.16(a): Nominal G
For robuglhegs “test,. the lersishould have an equalized
performance in the nominz ,r“ - P should be retuned to achieve the
same value of IAE as given by éﬁf'ﬂ& d parameters of PI-P are; K.,= -1.94,

and other parame er8, 2 ¢ used for all robustness

test of PI-P in this regge Mingl case with a retuned Pl-
P are shown in Figure "! 6(b). The'response'of PI-P is slo than before, this is related

to the decreased performance, indicated by thesincreased IAE value.

ﬂUEJ’J'VIEWl?WEJ’]ﬂ‘i
amaﬁnimumwmaa



Controlled Variable: Reactant Concentration, CB

4 B —
= : —=r™, set point |
g . | ’g, PINN l
= 8 1 PP
S ’ 3 B
® | ! 3
= 1 3
§ i 5 A i
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le: Jacket Temperature, Tj
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F A g PN, - PI-P
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Figure 4.16(b): Nominal Cas
4.5.2 Case 2: disturbance
f T . .
The feed cOncddirati i, Cy deCreased 20% from the nominal
operating condition. In this -f}.ﬁ":;__,. i er, F, has shown a prior role by
improvin closed lag :‘ SIa DY OF Pi-NIN. 1 he-simi LHaHOR-FESH | ¥ usin various filter time
p g ;._...__.... *3 g
constant, T, = 0 (no ey akigures 4.17(a), 4.17(b) and

¥

4.17(c), respectively. ==

AULINENINYINT
RIAIATAUIM TN



Controlled Variable: Reactant Concentration, CB
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Figure 4.17(a): Disturbance

Controlle
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Figure 4.17(b): Disturbance Change, -20% C,,, T, = 70 sec.
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Controlled Variable: Reactant Concentration, CB
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17(c). The IAE values are shown

catered by filtering as sho d

in Table 4.3. In this case, there ant result between using T, of 70 and

140.

)

¢ mlAE ITAE

[ ATENINE )

PI-P

.

2.-20% C,, | 219 | 99 99 | 283 |66.148 | 11,508 | 11,348 | 84,324

Case

PI-P

3.+20% Cg,, | 91 100 109 139 | 10,047 | 10,913 | 12,326 | 20,054

Table 4.3: Comparison of using various T. in PI-NN
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4.5.3 Case 3: disturbance change, +20% Cai

The feed concentration, C,,, was increased 20% from the nominal
operating condition. In this case, it was found that the response of PI-NN is stable even
without filtering as shown in Figure 4.18(a). Moreover, the response gets slower when T,

is increased as seen from Figures 4.18(a), 4.18(b) and 4.18(c), and as seen in Table 4.3

that IAE and ITAE values are increased.
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Controlled Variable: Reactant Concentration, CB
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In the following cases 4 to 9, the robustness test of PI-NN was done

using T, = 70 only.
4.5.4 Case 4: disturbance changes, -20K T,

The feed temperature, T, was decreased 20K from the nominal

operating condition. The results are shown in Figure 4.19.
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Dﬁﬁﬁﬁﬂﬂmw BN

e IAE values are 39‘for PI-NN and 118 for PI-P. Th TAE values are

AR TN

was takqn with the wrong direction in the beginning, this is the cause of large error given

from PI-P while PI-NN took the correct direction and gave smaller error.
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4.5.5 Case 5: disturbance changes, +20K T,

The feed temperature, T, was increased 20K from the nominal operating

condition. The results are shown in Figure 4.20.

Controlled Variable: Reactant Concentration, CB
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4.5.6 Case 6: plant-model mismatch, -30% k,

The reaction rate constant, k,, was decreased 30% from the nominal

operating condition. The results are shown in Figure 4.21.
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4.5.7 Case 7: plant-model mismatch, +30% k,

The reaction rate constant, k,, was increased 30% from the nominal

operating condition. The results are shown in Figure 4.19.

Controlled Variable: Reactant Concentration, CB
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4.5.8 Case 8: plant-model mismatch, -30% k,

The reaction rate constant, k,, was decreased 30% from the nominal

operating condition. The results are shown in Figure 4.20.
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4.5.9 Case 9: plant-model mismatch, +30% K,

The reaction rate constant, k,, was increased 30% from the nominal

operating condition. The results are shown in Figure 4.21.
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