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 Computational cost is one of the major problems in animating smoke. 

Recently, adaptive grid refinement using octree structure has been proposed which 

is a successful method for reducing the computational cost of detail-preserving fluid 

simulation. Although octree grid is optimized for details, viewing angle is not 

addressed. Smoke distant from the viewing screen or beyond the viewing frustum, 

which usually has less visual attention and is unnecessary for high-detail simulation, 

can be optimized for speed. However, applying such view-dependent optimization to 

the octree grid directly might cause animation artifacts and loss in natural fluid 

behaviors. In this thesis, we have presented a method for view-dependent adaptive 

grid refinement, extending the traditional octree grid by considering the viewing 

frustum, as well as the variation in fluid quantities as criteria for grid refinement. In our 

method, refinement conditions with adaptive thresholds are proposed to optimize the 

grid for both viewing angle and details. The proposed method preserves visual 

details and fluid behaviors which allows high-detail smoke animations with a 

relatively less computational cost. In addition, particles, which are more flexible to 

conform to obstacle-fluid boundaries, are integrated to enhance animation and 

reduce artifacts caused by dynamic refinements. Overall, the method provides a 

flexible framework for optimization that can be applied for various fluid simulations. 
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CHAPTER 1 
Introduction 

 

Figure 1.1 Smoke simulation generated by ®Blender 2.5 

1.1 Introduction and Problem State 

Physically-based fluid simulation is a widely used technique for 
animating smoke, fire and other fluid phenomena. Even though physically-based 
simulation can generate physically realistic results as well as stunning effects, which are 
impossible for the artist to animate manually frame-by-frame, it usually comes with high 
computational cost as a trade-off. Since the main focus of graphics and realism is on 
generating plausible visual effects rather than accuracy, a challenging topic is how to 
minimize the computational cost, while being able to obtain as highly detailed 
animations as possible. 

Grid-based simulation is a common approach for physically-based fluid 
animations. [1-4] use fixed uniform grid for animating smoke. The method works well for 
coarse grids, but since animation is becoming more and more in demand in the special 
effects industry, animating on a fixed uniform grid in a larger domain, or refinement for 
higher detail is not scalable, because of its high computational cost consumption. 

To address this, several adaptive grid refinement were introduced to 
optimize the simulation. [5,6] replace the traditional fixed uniform grid with an adaptive 
non-uniform grid using an octree structure. Adaptive grid refinement on an octree 
structure has been successful in optimizing the simulation. The grid is subdivided only 
in some specific areas that require higher detail and are merged to save computational 
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cost when details are no longer necessary. The methods can be speed up by utilizing 
high performance parallel computing of graphic hardware such as that implemented in 
[7]. Overall, these adaptive grid techniques allow the capturing of small visual details at 
a lower computational cost compared to the earlier fixed uniform grid.  

Beside an octree grid, [8] propose a view-dependent grid to optimize the 
simulation based on viewing angle. Instead of being constructed on Cartesian 
coordinates as usual, the grids are constructed on the transformed polar coordinate that 
is most fit for the viewing angle. With a view-dependent grid, fluid details gradually 
decrease proportionally as the distance from the camera increases, thus providing 
constant screen-space detail across the simulation domain. In addition, fluid that is far 
beyond the visible scene is not computed. However, unlike the octree grid, view-
dependent grid is subdivided uniformly on the transformed coordinates; thus, grid size is 
fixed and not adaptive for detail optimization. 

Up until now, fluid simulations are performed faster with current 
hardware and technology; nevertheless, they are not fast enough as people always 
expect animations with higher details. This research proposes an optimization 
improvement for smoke simulation on an octree grid that allows faster simulations with 
details preserved in the visual result. 

1.2 Objectives of Study 

In this research, we propose a method to animate smoke that consumes 
less computational cost but still preserves the visual results. The objective is to 
minimize unnecessary computational cost for speed while still preserving any small 
visual details and natural behaviors of smoke that usually disperse when the 
optimization is applied. 

We have realized that a large simulation domain contains lots of distant 
fluids which usually have less visual attention; thus, small-scale details can be 
neglected in these regions, as well as hidden or distant smoke. Since the octree grid is 
optimized for details but not for viewing angle whereas the view-dependent grid is 
optimized for viewing angle but not for details, we present an improved method for 
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animating smoke on octree grid in order to additionally refine the octree grid by a view-
dependent level-of-detail. 

1.3 Scope of Study 

We have studied only in optimizing a grid-based smoke simulation which 
assumes smoke as incompressible and homogenous fluids. Our consideration is to 
reduce unnecessary computational cost while still remaining physically realistic and 
preserving visual details. The proposed method is based on a view-dependent level-of-
detail and a structure of octree grid which is an adaptive structure over space and time. 

1.4 Expected Benefits 

The proposed method should improve the simulation performance e.g., 
consume relatively lower computational cost and extend the possibility for higher detail 
and larger domain simulation. The method should be beneficial for various computer 
graphics applications i.e., game industries, movie special effects and advertisements. In 
addition, the adjustable thresholds in our method allow the user to flexibly weight 
between details and computational cost to compromise for various simulation scenarios. 
Also, the method is fast and easily implemented, yet capable to be integrated as an 
extension of a current grid-based solver. 

1.5 Publications 

R. Bunlutangtum and P. Kanongchaiyos, Adaptive Grid Refinement 
Using View-Dependent Octree for Grid-Based Smoke Simulation, The 4th International 
Conference on Motion in Games, LNCS 7060, (2011):204-215. 

R. Bunlutangtum and P. Kanongchaiyos, Enhanced View-Dependent 
Adaptive Grid Refinement for Animating Fluids, Accepted to be published in The 10th  
International Conference on Virtual Reality Continuum and Its Applications in Industry, 
(2011). 

R. Bunlutangtum and P. Kanongchaiyos, Smoke Simulation with View-
Dependent Adaptive Grid Refinement, Accepted to be published in The 4th International 
Conference on Computer and Electrical Engineering, (2011). 
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1.6 Definition 

1  Domain: a defined area for the simulation, containing fluids, 
obstacles and/or empty spaces. The domain is usually defined as 
three-dimensional rectangular cuboids. 

2  Cell: a discrete computational unit that represents continuous 
quantities of fluid, usually defined as a cubic volume. A domain is 
composed of cells which are associated with the grid resolution; 
higher resolution means more number of cells per unit volume. Each 
cell can be fluid, obstacle or empty cell. 

3  Element:  a single unit of an array. For example, an array with 
dimensions of 2 x 2 x 2 contains 8 elements. 

4  Grid: refers to a structure made up of a series of intersecting vertical 
and horizontal axes used to structure grid-based fluid content. Grids 
divide space into cubic cells, with each cell storing discrete fluid 
quantities i.e., pressure, velocity, and density. 

5  Fixed Uniform Grid: a grid containing cells that all have the same 
size and with uniformly positioning throughout space and time. 
Number of cells does not change over time. 

6  Adaptive Grid: a grid containing cells with non- uniformity in size. 
Their size and position are usually determined by the octree 
structure. Each cell has unpredictable adjacent neighboring cells. 
Number of cells can change adaptively over time. 

7  Grid Refinement: an optimization process for grid-based simulation 
consists of two actions i.e., grid subdivision: refining the grid to 
obtain details and grid merging:  coarsening the grid to reduce the 
computational cost.  

8  View-Dependent Grid Refinement:  grid refinement that consider a 
viewing frustum, positions and perspective as criteria for subdivision 
and merging. 
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9  Rendering: a process for generating an image or motion picture 
from 3D space, or in another word, 3D fluid volume is projected into 
2D via rendering. 

1 0  Frame: a still image or a snapshot of an animation. Basically, an 
animation is composed of several frames in a sequence. 

1 1  Viewing Frustum: the region of 3D space to be displayed on the 
screen.  The shape of the viewing frustum varies depending on what 
kind of camera lens is being used, but typically a rectangular 
pyramid is used for perspective view. The viewing frustum is 
bounded by the field of view (FOV) of the camera, a near clipping 
plane and a far clipping plane (see Figure 1.2). 

 

Figure 1.2 Viewing Frustum 

1 2  Field of View (FOV): or angle of view, describes the angle of 
projection by the camera’s lens onto the focal plane. A larger degree 
FOV results in a wider perspective view. A camera's angle of view 
can be measured horizontally, vertically, or diagonally. 

 

Figure 1.3 Field of View 
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1.7 Research Procedure 

Our research is planned for an 8-month period starting in December 2010 and ending in August 2011. The process can be 
summarized into 7 stages as follows. 

 
Task Start Duration 

(months) 
12/10 1/11 2/11 3/11 4/11 5/11 6/11 7/11 8/11 

Theory and literature reviews Dec  10 4 
         

    

    

Algorithm design Feb  11 3 
         

   

   

Application design Apr  11 2 
         

  

  

Application Implementation May 11 2 
         

  

  

Result evaluation June 11 2 
         

  

  

Conclusion July  11 1 
         

 

 

Thesis report July  11 2 
         

  

  

Table 1.1 Research Procedure 

 
  

6 
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CHAPTER 2 
Literature Reviews 

Fluid phenomena such as droplets splashing, rising smoke and fire are 
some of the stunning natural effects that today can be artificially generated by computer 
graphics and is hard to distinguish the difference between a “real” one and a “fake” one. 
There are several techniques to animate such fluid phenomena. In general, fluid 
simulation can be categorized into physically-based and non physically-based methods. 
Physically-based methods have benefit over non-physically based methods in several 
ways i.e., produce physically realistic and allow high-detail fluid simulation which are 
impossible for the artists to animate manually frame by frame. In this section, we review 
four different types of physically-based fluid simulation. 

2.1 Grid Based Method 

 

Figure 2.1 Grid-based fluid simulation using octree structure (image from: [9])  

Grid based fluid simulation was first introduced in computer graphics by 
[1], but  because their model uses an explicit integration scheme, their simulations are 
only stable if the time step is chosen small enough; therefore, the simulation is relatively 
slow. [2] proposed an unconditionally stable simulation by using semi-Lagrangian 
advection scheme with implicit solvers. However, numerical dissipation was severe in 
this method. [3] introduced a vorticity confinement term to model the small scale rolling 
features characteristic of smoke to compensate the numerical dissipation caused by the 
implicit model. The methods have been extended to other fluid phenomena such as fire 
[10], explosion [11], viscoelastic materials [12] and bubbles [13]. These previous works 
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can be categorized as fixed uniform grid as the grid are subdivided uniformly and their 
cell’s position are fixed throughout the simulation domain. 

               

Figure 2.2 Left: Fixed Uniform grid. Right: View-dependent grid. (image from: [8]) 

 

Figure 2.3 A view-dependent water simulation on rendering views (above) and top 
views (below) (image from: [8]) 

 A fixed uniform grid is simple and straightforward to implement 
compared to others. It works well for coarse grids but unfortunately, when applied to 
larger domains or higher grid resolutions, the simulation encounters a scalability 
problem since it consumes a high computational cost due to its uniform grid size.  
Adaptive grids, on the other hand, are an alternative method that consumes relatively 
lower computational cost by dynamically reducing and increasing the number of cells in 
domain over time. [14,15] introduced adaptive mesh refinement (AMR) for compressible 
flows while [9] presented an adaptive mesh method using an octree. In computer 
graphics, the octree data structure has been proposed for adaptive grid refinement by 
[5] and asymmetric octree by [6], which results in detail optimization, while [8] propose a 
method that is optimized for viewing angle by using a view-dependent grid, decreasing 
fluid details as distance from the camera increases, thus providing constant screen-
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space detail across the simulation. However, contrary to the adaptive grid using octree, 
view-dependent grid is subdivided uniformly, thus, lacking detail optimization.  

One of the main problems with octree grids is their dynamic and 
irregular structure, which is contrary to the design of graphics hardware. [7] present a 
problem decomposition for parallel processing that takes advantage of the graphics 
hardware while reducing expensive hierarchy traversals on non-uniform and adaptive 
octree grids. 

 

Figure 2.4 Smoke simulation using octree grid refinement on GPU (image from: [7]) 

2.2 Particle Based Method 

 

Figure 2.5  Water simulation using SPH with Adaptive Kernel (image from: [16]) 

Smoothed Particle Hydrodynamics (SPH) is a commonly-used particle 
based method. With SPH, fluid is simulated on a particle system by sub-sampling a set 
of elements called particles. Each particle contains fluid attributes i.e., mass, density, 
velocity, and pressure. Fluid values and derivatives of fluid quantities at arbitrary 
positions are approximated by a set of neighboring discrete particles with a specified 
function called a “smoothing kernel”. 
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SPH was first introduced in 1977 by [17] for astrophysical simulations 
i.e., large scale structure in the universe, galaxy formation, supernova and solar 
formation. Later, many researches on computer graphics [18-22] have used the SPH 
method to simulate fluid flow. The efficiency of SPH has been improved by [16,23,24] 
with a technique called “Adaptive SPH”; adaptively adjusting kernel size to reduce 
computational time in dense areas and preserve details in sparse areas.  

SPH easily demonstrates the turbulent splashing flows and catches 
small details of fluid phenomena such as bubbles and foams. Furthermore, the 
demands of computational resources of SPH with a moderate number of particles are 
generally less than grid based or LBM counterparts. Thus, several fluid phenomena in 
games or other interactive system are simulated using the Lagrangian method. 
However, the stability, accuracy and speed of the SPH method largely depend on the 
selected smoothing kernel. Also, SPH is hardly guaranteed for its incompressibility. 

 

Figure 2.6 Adaptive Kernel (image from: [16]) 

2.3 Lattice Boltzmann Method 

[25] introduced the Lattice Boltzmann method (LBM) into the computer 
graphics community. LBM is a relatively new approach to approximating the Navier-
Stokes equations. Unlike traditional CFD methods, which solve the governing equations 
of macroscopic properties (i.e., mass, momentum and energy), the LBM is based on 
microscopic models and mesoscopic kinetic equations (the Lattice Boltzmann equation). 
The fundamental idea is to construct simplified kinetic models that incorporate the 
microscopic and mesoscopic physical processes so that the macroscopic averaged 
properties obey the desired macroscopic equations (the Lattice Boltzmann equation 
converges to the Navier-Stokes equation). 
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Figure 2.7 Water simulation using Lattice Boltzmann Method (image from: ®Blender) 

LBM provides a relatively easy and consistent way to incorporate the 
underlying microscopic interactions especially for multiphase flows with moving and 
deformable interfaces. Moreover, LBM has several advantages over other conventional 
physically-based fluid animation methods, such as in dealing with complex boundaries 
and parallelizing the algorithm. The major drawbacks of LBM are its poor scalability and 
small time steps. Moreover, the time step must be small enough to ensure the stability 
of the simulation. 

 

Figure 2.8 Water simulation using Lattice Boltzmann Method (image from: ®Blender) 

2.4 Tetrahedral Mesh Method 

Fluid simulation using an unstructured tetrahedral mesh has been 
proposed in computer graphics field by [26], [27] with a velocity-based approach and 
[28] with a vorticily-based approach while  [29] presented  a two-way coupling of fluid 
and rigid bodies. The combination of unstructured tetrahedral domains and dynamic 
remeshing at each time step creates a flexible environment for creating complex 
scenes. Later, [30] presented a technique called “isosurface stuffing” for grading mesh 
resolution across the fluid boundary, which allows for effective conformability to complex 
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boundaries. Moreover, they have presented a thickening strategy for reducing volume 
loss and artifacts of disappearing droplets or sheets during simulation. 

In general, tetrahedral meshes conform well to irregular boundaries and 
their size can be adjusted to optimize the simulation. These benefits make tetrahedral 
meshes a flexible and effective method for simulation with complex environments. 
However, simulation usually encounters complications for free surfaces and moving 
boundaries because the meshes must track the movement of those surfaces. Simulation 
also needs a specific scheme to prevent volume loss or artificial damping that usually 
occurs in droplets, filaments or thin sheets. 

 

Figure 2.9 Fluid Animation with Dynamic Meshes (image from: [29]) 

      

Figure 2.10 A cutaway view showing graded tetrahedral meshes (image from: [30]) 
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CHAPTER 3 
Theories 

In this chapter, we mention some of the physics equations that describe 
the characteristic nature of fluid motions and their simplified terms for smoke 
animations, followed by an introduction to the common solving methods for grid-based 
smoke simulation and an overview of the dynamic grid refinement methods. 

3.1 Differential operations 

Vector Calculus is a branch of mathematics 
concerned with differentiation and integration of vector fields 
primarily in three-dimensional Euclidean space (Թଷ). Vector 
calculus studies various differential operators defined on 
scalar or vector fields, which are typically expressed in terms 
of the “del operator” (׏). The four most important differential 
operations in vector calculus are summarized in Table 3.1, 
where ݌ denotes a scalar field and ࢛ denotes a two-dimensional vector field: ࢛ ൌ
ሺݑ,  .ሻ. The meaning of four differential operations in Table 3.1 is described belowݒ

1. Gradient : Measures the rate and direction of change in a scalar field. 
2. Divergence : Measures the magnitude of a source or sink at a given 

point in a vector field. 
3. Laplacian : Measures the rate at which the average value of ݌ over 

spheres centered at ࢞ ൌ ሺݔ,  ሻ as the radius of the࢞ሺ݌ ሻ deviates fromݕ
sphere grows. 

4. Curl : Measures the tendency to rotate about a point in a vector field. 

Note that the Laplacian operator is a composition of the divergence and 
gradient operations, defined as the divergence of gradient: ׏ଶ݌ ൌ ׏ ·  If the grid .݌׏
cells are square (that is, if ߲ݔ ൌ  which we assume for this article), the Laplacian ,ݕ߲
simplifies to: 

݌ଶ׏ ൌ
௜ାଵ,௝݌ ൅ ௜ିଵ,௝݌ ൅ ௜,௝ାଵ݌ ൅ ௜,௝ିଵ݌ െ ௜,௝݌4

ሺ߲ݔሻଶ  
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Operator Definition Finite Different Form 

Gradient ݌׏ ൌ ൬
݌߲
ݔ߲ ,

݌߲
݌׏ ൰ݕ߲ ൌ ൬

௜ାଵ,௝݌ െ ௜ିଵ,௝݌
ݔ2߲ ,

௜,௝ାଵ݌ െ ௜,௝ିଵ݌
ݕ2߲ ൰ 

Divergence ׏ · ࢛ ൌ
ݑ߲
ݔ߲ ൅

ݒ߲
׏ ݕ߲ · ࢛ ൌ

௜ାଵ,௝ݑ െ ௜ିଵ,௝ݑ
ݔ2߲ ൅

௜,௝ାଵݒ െ ௜,௝ିଵݒ
ݕ2߲  

Laplacian ׏ଶ݌ ൌ
߲ଶ݌
ଶݔ߲ ൅

߲ଶ݌
݌ଶ׏ ଶݕ߲ ൌ

௜ାଵ,௝݌ െ ௜,௝݌2 ൅ ௜ିଵ,௝݌
ሺ߲ݔሻଶ

൅
௜,௝ାଵ݌ െ ௜,௝݌2 ൅ ௜,௝ିଵ݌

ሺ߲ݕሻଶ
 

Curl ׏ ൈ ࢛ ൌ ተ

݅ ݆ ݇
߲
ݔ߲

߲
ݕ߲

߲
ݖ߲

ݑ ݒ ݓ

ተ ൌ ൬
ݓ߲
ݕ߲ െ

ݒ߲
ݖ߲ ,

ݑ߲
ݖ߲ െ

ݖ߲
ݔ߲ ,

ݒ߲
ݔ߲ െ

ݔ߲
 ൰ݕ߲

Table 3.1 Summary of differential operators in two dimensional vector fields 

3.2 The Navier-Stokes Equations 

The Navier-Stokes equations describe the motion of fluid, formulated by 
French physicist and engineer Claude-Louis Navier and Irish mathematician George 
Gabriel Stokes. The Navier-Stokes equations are a set of non-linear differential 
equations in terms of rate of change of fluid quantities over time.  These equations are 
a combination of terms; each term defines individual fluid properties (i.e., advection, 
pressure, diffusion, viscosity and external forces). For computer graphics, fluid 
compressibility can be neglected due to its high computational cost and lack of 
important role in the simulation. This lead to a simpler form of Navier-Stokes equations, 
called “The Incompressible Navier-Stokes equations” or “Euler Equations”: 

׏ · ࢛ ൌ 0 Equation 3.1 

࢛߲
ݐ߲ ൌ െሺ࢛ · ࢛ሻ׏ െ

1
݌׏ߩ ൅ ࢛ଶ׏ߥ ൅  Equation 3.2 ࡲ
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Where ߭ is the kinematic viscosity, ߩ is the fluid density, ݌ is the scalar 
pressure field, ࡲ is external forces (or body forces), ࢛ is a velocity vector field: ࢛ ൌ
ሺݔ, ,ݒ ൌ׏ : is the vector operator of spatial partial derivatives ׏ ሻ, andݓ ሺ ப

ப୶
, ப
ப୷
, ப
ப୸
ሻ. 

The Navier-Stokes equations are obtained by imposing that fluid 
conserves both mass (Equation 3.1) and momentum (Equation 3.2).  Equation 3.1 is 
“Mass conservation” or “Continuity equation”, states that fluid velocity field has “zero 
divergence” which notifies that the velocity flux that flow inward and outward at any 
infinitesimal volume should be equal. Equation 3.2 is a “momentum conservation 
equation” derived from Newton’s second law: ࡲ ൌ  ,The term on the left hand side .ࢇ݉
 is the rate of change of velocity with respect to time, defined by right hand side ,ݐ߲/࢛߲
components i.e., advection, pressure, viscosity diffusion, and external forces as 
described below. 

1. Advection: represents the “self-advection” of the velocity field, which 
means velocity causes the fluid to transport itself as well as its quantities 
such as density, temperature, pressure and velocity along with the flow. 
It is a time independent acceleration of the fluid with respect to space. 

࢛߲
ݐ߲ ൌ   . . .   െ

ሺ׏ ·    ࢛ሻ࢛ … 

2. Pressure Gradient:  states that the fluid should propagate from higher 
to lower pressure areas by the amount of its pressure difference. 

࢛߲
ݐ߲ ൌ   . . .   െ

1
ߩ    ݌׏ … 

3. Viscosity Diffusion: determines how fast the fluid diffuses its velocity to 
surrounding neighbors. The parameter represents a kinematic viscosity 
of the fluid; thick fluid which has higher kinematic viscosity diffuses its 
velocity quicker and tends to flow slowly. Viscosity in gases is very low, 
thus in some case, this term can be negligible. 

࢛߲
ݐ߲ ൌ   . . .  ൅׏ߥ

ଶ࢛    … 
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4. External Forces: or body forces are any other forces that affect the fluid 
movement. Gravity force, buoyancy force are external forces. 

࢛߲
ݐ߲ ൌ   . . .  ൅ࡲ    … 

Other fluid quantities are also described with similar Navier-Stokes 
equations. Here are the Navier-Stokes equations that describe density and temperature 
respectively. 

ࢊ߲
ݐ߲ ൌ െሺ࢛ · ࢊሻ׏ ൅ ݇ௗ׏ଶࢊ ൅  Equation 3.3 ࡿ

߲ܶ
ݐ߲ ൌ െሺ࢛ · ሻܶ׏ ൅ ଶܶ׏்݇ ൅  Equation 3.4 ܪ

Equation 3.3 is a color density equation, where ࢊ is a vector field 
denotes the color density of smoke in alpha (transparency), red, green and blue 
respectively: ࢊ ൌ ൫݀ఈ, ݀௥, ݀௚, ݀௕൯.  Color density is advected (transport) along a 
velocity field and diffuses due to viscosity in a similar manner as the Navier-Stokes 
Equations that describe velocity. The first term is a density advection term. It states that 
density should follow the velocity field. The second term is a diffusion term, where ݇ௗ 
denotes a viscosity constant of density. High viscosity means color density diffuses itself 
to its surroundings quicker. ࡿ is a color density added from external sources.  

Equation 3.4 is the temperature equation, where ܶ is the fluid 
temperature, ்݇ is a viscosity constant of temperature and  ܪ is any temperature 
added from external sources. For the full form of the temperature equation, we refer the 
reader to [11].  

3.3 Equations for Smoke Simulations 

Smoke has its own characteristics and behaviors apart from other fluids; 
for instance, smoke does not have an exact boundary as liquid and smoke tends to 
diffuse away while liquid is clustering together. These unique characteristics and 
behaviors need a specific scheme for simulation. In this section, we have gathered the 
essential equations specified for smoke simulation. 
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For visual simulation, smoke can be assumed as an incompressible and 
homogeneous fluid. The viscosity term shown in Equation 3.2 can be neglected since 
the fluid motion is usually below the speed of sound and hence, the appearance of 
viscosity is dominated by the numerical dissipation [3]. The Navier-Stokes equations can 
be reduced to Euler equations as follows.  

׏ · ࢛ ൌ 0 Equation 3.5 

࢛߲
ݐ߲ ൌ െሺ࢛ · ࢛ሻ׏ െ

1
݌׏ߩ ൅  Equation 3.6 ࡲ

Equation 3.5 is a mass conservation equation (or called continuity 
equation) and Equation 3.6 is a momentum conservation equation. Note that fluid 
density  ߩ is constant both in space and time since we assume smoke as an 
incompressible and homogeneous fluid. 

The Navier-Stokes equations that describe density (Equation 3.3) and 
temperature (Equation 3.4) can neglect their viscosity terms as well. Below are their 
simplified equations. 

ࢊ߲
ݐ߲ ൌ െሺ࢛ · ࢊሻ׏ ൅  Equation 3.7 ࡿ

߲ܶ
ݐ߲ ൌ െሺ࢛ · ሻܶ׏ ൅  Equation 3.8 ܪ

Buoyancy is a fluid behavior that causes smoke to rise due to 
temperature and fall downwards due to gravity. [3] model these effects by defining an 

additional force that is directly proportional to the density and the temperature.  

௕݂௢௨௬ ൌ െࢠߩߙ െ ሺܶߚ െ ௔ܶ௠௕ሻࢠ Equation 3.9 

Where ݖ ൌ ሺ0,0,1ሻ points in the upward vertical direction, ௔ܶ௠௕ is the 
ambient temperature of the air and α and  β are the thermal buoyancy constant for 
density and temperature respectively.  Note that when ߩ ൌ 0 and ܶ ൌ ௔ܶ௠௕ , the 
buoyancy force is zero. 
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3.4 Grid Based Fluid Simulation 

In this section, we first overview the grid based fluid simulation and its 
underlying structure. Then we describe the mathematical discretization of fluid equations 
and a successive approach for solving these equations on a grid structure. 

3.4.1 Overview 

Grid-Based Fluid Simulation is an Eulerian approach. Instead of treating 
fluid as moving particles and tracking each particle movement as in Smooth Particle 
Hydrodynamics (SPH), Grid-Based Fluid Simulation uses a grid to represent the fluid 
quantities. The MAC Grid (MAC stands for Marker-and-Cell), an original grid used in 
fluid simulation was first introduced by [31]. It stores velocity at cell faces and stores 
other quantities such as pressure and density at the center of each cell. 

 

 
 

 

(a) (b) 

Figure 3.1 (a) Voxel of MAC grid (image from: [1]) 
 (b) Grid-based structure (image from: [2]) 

[1] used relatively coarse grids to simulate fluid in 3D. [2] modified the 
MAC grid to store velocity at cell center for simplicity, and introduced a semi-Lagrangian 
advection scheme with an implicit method, which treats cells as particles during the 
advection step to achieve a stable simulation.  Within a decade, a variety of works have 
been introduced using grid-based method such as fire [10], explosions [11], viscoelastic 
materials [12] and bubbles [13]. 
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The grid-based approach has many advantages compare to others, e.g., 
reliable, stable at large time steps, high quality of smooth liquid surfaces and efficient 
for parallel computing.  Furthermore, it is suitable to represent the fluid volume, 
especially for smoke that usually spreads itself out over the domain.  These make grid-
based methods capable for smoke simulations. 

3.4.2 Discretization of Navier-Stokes Equations 

This section shows how to discretize the continuous field of fluid 
described by the Navier-Stokes equations into a discrete grid space and the step-by-
step of how to solve these equations on the grid structure. 

The method described here is based on a stable fluids technique 
proposed by [2]. First of all, equation 2 is simplified by applying the Helmholtz-Hodge 
Decomposition: 

Զ
࢛߲
ݐ߲ ൌ Զ൬െሺ࢛ · ࢛ሻ׏ െ

1
ߩ ݌׏ ൅ ܝଶ׏ݒ ൅ ۴൰ Equation 3.10 

Equation 3.10 is a divergence-free equation, where Զ is the projection 
operator that projects any vector field onto its divergence-free component.  The 
following step is to apply Equation 3.11 and Equation 3.12 into Equation 3.10. 

Զ
࢛߲
ݐ߲ ൌ

࢛߲
ݐ߲  Equation 3.11 

Զሺ݌׏ሻ ൌ 0 Equation 3.12 

The result is a projected Navier-Stokes equation as shown below.  

࢛߲
ݐ߲ ൌ Զሺെሺ࢛ · ࢛ሻ׏ ൅ ܝଶ׏ݒ ൅ ۴ሻ Equation 3.13 

The pressure term is dropped and the equation is in a simpler form. The 
right hand side of Equation 3.13 has only one unknown variable; velocity ࢛ሺ࢞ሻ, where 
ሻ࢞ሺ࢛ ൌ ሼݑ, ,ݒ ࢞ ሽ andݓ ൌ ሼݔ, ,ݕ  ሽ.  To solve the projected Navier-Stokes equationݖ
(Equation 3.13) for velocity, which is in a differential form, we split Equation 3.13 into 
four separate terms and sequentially solve term by term as illustrated below. 
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ሻ࢞଴ሺ࢛
௔ௗௗ௙௢௥௖௘௦
ሱۛ ۛۛ ۛۛ ሮۛ ሻ࢞ଵሺ࢛

௔ௗ௩௘௖௧
ሱۛ ۛۛ ሮ ሻ࢞ଶሺ࢛

ௗ௜௙௙௨௦௘
ሱۛ ۛۛ ሮۛ ሻ࢞ଷሺ࢛

௣௥௢௝௘௖௧
ሱۛ ۛۛ ሮۛ  ሻ࢞ସሺ࢛

Before performing these four steps, we first initialize our domain with an 
empty grid.  Also, velocity ࢛଴ must be given as an initial value. Then four steps are 
performed sequentially each iteration. The detail of each step is as follows. 

Adding forces 

External forces ࡲ including gravity force, vorticity confinement force, 
buoyancy force and any user-defined or control forces are added to each cell at this 
step. The following equation adds external forces to the cell’s current velocity. 

ሻ࢞ଵሺ࢛ ൌ ሻ࢞଴ሺ࢛ ൅  Equation 3.14 ࡲݐ∆

Equation 3.14 is derived by a “Forward Euler Method” for speed and 
simplicity. It is a first-order accuracy method but efficient enough for visual simulation. 
Higher-order accuracy methods such as Runge-Kutta which is a second order accuracy, 
BFECC method [32] and the MacCormack method [33] can also be used.  These higher 
order accuracy methods might result in a detail improvement but they are relatively 
slower than the Forward Euler Method. 

Advection 

To solve the advection term of Equation 3.13, instead of directly moving 
fluid quantities along the velocity field which would be unstable at large time steps, the 
semi-Lagrangian advection scheme is used for stability as introduced by [2]. The 
advection scheme using the semi-Lagrangian method is a first-order accurate 
discretization scheme both in time and space. Cells are treated as particles, each 
located at cell’s center. Each particle is traced back in time using its current velocity to 
find its previous position. Then the fluid quantities (density, velocity, pressure etc.) at 
that position replace the fluid quantities at the current position. Here is the mathematical 
representation of the advection step derived from the Euler Method. 

ሻ࢞ଶሺ࢛ ൌ  ሻሻ Equation 3.15ݐ∆െ,࢞ଵሺܲሺ࢛
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Figure 3.2 (a) Semi-Lagrangian advection (image from [2]). 
(b) Fluid velocity interpolation (image from: GPUGems, ®Nvidia 2004). 

Since previous position is not always located at the cell’s center, 
interpolation is required. For speed and simplicity, bilinear interpolation is used for two 
dimensional grids and trilinear interpolation is used for three dimensional grids. 

Note that there exist many higher accuracy advection schemes such as 
back and forth error correction [32], MacCormack [33], QUICK [34],  FLIP [35] which 
can also be used. These higher order advection schemes produce stable yet higher 
detail simulations, but they also require relatively higher computational cost as well. 

Diffusion 

Diffusion describes the spreading behavior of fluids. Each cell 
exchanges its quantities with neighbors until the equilibrium is reached. For explicit 
implementation, using the Forward Euler is straightforward. Unfortunately, this is 
unstable when fluid propagates further than the neighboring cells. The implicit method 
by tracing back in time is used. However, unlike the advection step, this term cannot be 
solved cell-by-cell directly since there are many unknown variables contained within the 
Laplacian operator. Thus, the only way is to solve as a sequence of linear equations. 
Here is the implicit equation which can be solved by using matrix operations, where ࡵ is 
the identity matrix. 

ሻ࢞ଶሺ࢛ ൌ ሺࡵ ൅  ሻ Equation 3.16࢞ଷሺ࢛ଶሻ׏ݐ∆ݒ
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By applying a finite difference of ׏ଶ along with the fact that cell 
dimension is cubic: ߲ݔ ൌ ݕ߲ ൌ  Equation 3.16 can be rewritten in two-dimensional ,ݖ߲
discrete form as follow. 

 

,ଶሺ࢛݅ ݆ሻ ൌ ,ଷሺ࢛݅ ݆ሻ ൅ ݐ∆ݒ ቊ
ଷሺ࢛݅ ൅ 1, ݆ሻ ൅ ଷሺ࢛݅ െ 1, ݆ሻ ൅ ,ଷሺ࢛݅ ݆ ൅ 1ሻ ൅ ,ଷሺ࢛݅ ݆ െ 1ሻ െ ,ଷሺ࢛݅4 ݆ሻ

ଶݔ߲ ቋ

The solution to the above equation is obtained by solving a matrix of 
linear equations. The commonly used method is the “Jacobi Iteration”. 

Projection 

The final step is the projection step which projects back the solution to a 
none divergence-free term as it was before applying the Helmholtz-Hodge 
Decomposition.  The projection step is done by adding the pressure term back into 
Equation 3.13. First of all, we need to solve for pressure which is still an unknown 
variable. Equation 3.18 is a Poisson equation that we solve for the pressure ݌. Once 
the pressures are known, we then find ݌׏ each cell and substitute back into Equation 
3.17. The result is the velocity of the current time step which is the final solution of the 
Navier-Stokes equations. 

ሻ࢞ସሺ࢛ ൌ ሻ࢞ଷሺ࢛ െ ݐ∆
1
ߩ  ሻ Equation 3.17࢞ሺ݌׏

ሻ࢞ሺ݌ ଶ׏ ൌ
ߩ
ݐ∆ ׏ · ଷ࢛

ሺ࢞ሻ Equation 3.18 

The Navier-Stokes equations of color density (Equation 3.3) and 
temperature (Equation 3.4) can be evaluated with the same approach as for velocity. 
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3.4.3 Boundary Conditions 

Boundary conditions define fluid behaviors at simulation boundaries and 
fluid surfaces. There are two types of boundary conditions: 

Neumann boundary conditions 

At the fluid boundary, the pressure gradient in a direction of normal 
vector to the boundary must equal zero, or in another word, fluid pressure at the 
boundary must equal to the solid obstacle pressure. This condition is to ensure that no 
flow passes through solid walls. 

݌߲
߲݊

ሺ࢞ሻ ൌ ሻ࢞ሺ݌׏ · ࢔ ൌ 0 Equation 3.19 

Dirichlet boundary conditions 

On a fluid-solid boundary surface, velocity must satisfy “no-slip condition” 
due to the viscous effects. To enforce no-slip condition, the tangential component of the 
velocity of the fluid must be the same as the tangential component of the velocity of the 
surface. If we designate the velocity of the rigid surface as ࢂሺ࢞ሻ and that of the fluid as 
 the no-slip boundary ,ݐ ሻ, and select a unit tangent vector to the surface as࢞ሺ࢛
condition can be stated as 

ሻ࢞ሺ࢛ · ݐ ൌ ሻ࢞ሺࢂ ·  ݐ
 

Since there is no mass transfer across the boundary, the normal 
components of the velocity at the boundary are equal. If ࢔ represents the unit normal 
vector, we have: 

ሻ࢞ሺ࢛ · ࢔ ൌ ሻ࢞ሺࢂ ·  ࢔
 

As a consequence of the two above conditions, we arrive at the 
conclusion that the fluid velocity must match the velocity of the rigid surface at every 
point on it. 

ሻ࢞ሺ࢛ ൌ  ሻ Equation 3.20࢞ሺࢂ
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Figure 3.3 Schematic representation of no-slip boundary condition. 

 

3.4.4 Vorticity Confinement 

   
 

(a) (b) 

Figure 3.4 (a) Vorticity direction is along the fluid rotation. 
(b) Vorticity confinement force increase circulation (image from: [4]) 

Although using the semi-Lagrangian method for advection term is 
unconditionally stable even with arbitrary large time steps but when simulated with large 
time steps or large grid spacing, the fluid animation suffers from high numerical 
dissipation and results in sticky motions. [3] deal with numerical dissipation using a 
method called “Vorticity Confinement”. Vorticity is the tendency for elements of the fluid 
to spin or rotate. The idea is to inject some amount of vorticity during simulation to 
cause fluid to flow swirly. By definition, vorticity is the curl of fluid velocity: 

࣓ ൌ ׏ ൈ  Equation 3.21 ࢛

 ௖௢௡௙ࢌ

 ࣁ
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In Equation 3.21,  ࣓ denotes vorticity and ࢛ denotes velocity. Vorticity is 
a vector with a direction parallel to the axis of rotation. Its direction can be determined 
by using the right hand rule. 

ࣁ ൌ |࣓|׏ Equation 3.22 

ࡺ ൌ
ࣁ
|ࣁ| Equation 3.23 

Equation 3.22 computes the vorticity gradient while Equation 3.23 
computes a normalized vorticity location vectors, where ࡺ is the normalized vorticity 
location vector that points from lower to higher vorticity concentrations, the direction of 
which is perpendicular to the axis of rotation. Then the magnitude and direction of the 
paddle wheel force is computed by Equation 3.24. 

௖௢௡௙ࢌ ൌ ࡺሺ݄ߝ ൈ ࣓ሻ Equation 3.24 

Where ࢌ௖௢௡௙ is the vorticity confinement force for generating swirl 
effects.  0 < ߝ is used to control the amount of vorticity force to add back into the flow 
while ݄ is a grid scale. Note that vorticity confinement force (Equation 3.24) is treated 
as one of the external forces ࡲ (see Equation 3.14). 

3.5 Adaptive Grids 

Since special effects are getting important in today industry, there is 
even more demand for larger domains and higher detail fluid animations. Fluid 
simulation using a fixed uniform grid encounters a scalability problem, since increasing 
the grid resolution uniformly for entire domain requires a substantial amount of 
computational cost associated with the increased numbers of cells. Adaptive grids, on 
the other hand, are the alternative technique that consumes relatively lower amount of 
computational cost by partially reducing and increasing the grid resolution by means of 
a level-of-detail approach. This way, the simulation is optimized for any larger domains 
or higher detail animations. The octree grid and the view-dependent grid are described 
in the following subsections. 
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3.5.1 Octree Grid 

The octree grid is basically a simulation grid constructed by using the 
octree structure. It has several advantages compared to fixed uniform grid structure; 
flexible and can be partially change its resolution for detail optimization. Grid resolution 
is changed by a method called “grid refinement”. Simulation using octree grid has the 
following important criteria: where and when to perform grid refinement in order to 
properly optimize the simulation. Another criterion is how to discretize physics equations 
and advect fluid quantities on octree grid, which is adaptive and non-uniform structure. 
Grid refinement, tracing semi-Lagrangian paths and solving the Poisson equation on 
octree grid are described in the following subsections. 

 

     

Figure 3.5 Adaptive grid using octree structure (image from: [9]) 
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3.5.1.1 Grid Refinement 

Grid refinement is performed at every iteration of the simulation. It 
consists of two opposite tasks i.e., subdivision and merging.  Subdivision is performed 
in order to increase the grid resolution and allows fine details to be captured while 
merging is performed to reduce the grid resolution and the computational cost. If 
subdivision and merging are performed in an appropriate way, the grid should be 
optimized and result in a low computational cost consumption. 

[6] use variations in smoke density to decide where and when to perform 
subdivision and merging. The idea is that cells should be subdivided for higher 
resolution if their neighboring cells are relatively different to each other. On the other 
hand, cells should be merged for lower resolution if the variations of fluid quantities 
among neighboring cells are no longer significant. The criterion for subdivision can be 
written as follows: 

,ݔሺܥ ,ݕ ሻݖ ൌ ,|ߩ௫ଶ׏|൫ݔܽ݉ ห׏௬ଶߩห, ൯|ߩ௭ଶ׏| ൐ ܶ Equation 3.25 

Where ߩ denotes smoke density, ׏௫ଶߩ is a finite difference of  ߲ଶݔ߲/ߩଶ,   
 are defined likewise and ܶ is a specified threshold. Once there exists a  ߩ௭ଶ׏ and ߩ௬ଶ׏
cell node ሺݔ௜, ,௜ݕ ,௜ݔሺܥ ௜ሻ in the octree grid such thatݖ ,௜ݕ ௜ሻݖ ൐ ܶ, which means if the 
density difference among its neighboring cells exceed the specified threshold, then that 
cell node should be subdivided. The velocity field, as well as the density distribution of 
any newly generated child node, is obtained by trilinear interpolation. 

On the other hand, if a node has children and they do not have sufficient 
details any more, they can be merged and removed. To check whether the children 
nodes should be merged or not, a new density function is computed for the considered 
node by sub-sampling the smoke density distributions of its children nodes. If the 
maximum difference between the sub-sampled density and the original densities at the 
children nodes is smaller than a specified threshold, the children nodes should be 
merged and removed. 
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3.5.1.2 Tracing Semi-Lagrangian Paths 

Since the octree grid is adaptive and non-uniform over space and time, 
advection step cannot be performed regularly. The semi-Lagrangian scheme does not 
need changes as long as the tracing is kept inside an octree node. However, when its 
path intersects with one of the six bounding faces of the node, we need to find the 
appropriate neighboring node where the path can continue.  

[6] describe six possible cases for semi-Lagrangian path tracing in an 
octree. In Figure 3.6, solid lines represent the octree partitions. Dashed lines represent 
the uniform grids inside octree nodes. The voxel at the head of the path is called the 
source, and the voxel at the tail of the path is called the destination, since fluid 
quantities are traced from the destination to the source, and the velocity at the source is 
transferred to the destination. (a) Both the source and destination voxels belong to the 
grid of the same node. (b) The source and destination voxels belong to two different 
nodes with the same resolution. (c) The resolution of the destination node is higher than 
that of the source node. (d) The resolution of the destination node is lower than that of 
the source node. (e) The destination node is a child of the source node. (f) The source 
node is a child of the destination node. 

 

Figure 3.6 Six possible cases for semi-Lagrangian path in octree structure  
(image from: [6]) 
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3.5.1.3 Solving Possion Equation 

Soving Equation 3.18 on the octree grid, which is adaptive and non-
uniform, requires a particular discretization of the Possion equation. Since the 
discretization is closely related to the second vector form of Green's theorem that 
relates a volume integral to a surface integral, [5] developed an adaptive discretization 
on an octree data structure using the Green’s theorem stated as follows. 

 

Figure 3.7 Left: one large cell neighboring four smaller cells. Right: zoom of 
computational cell. (image from: [5]) 

Consider the discretization of Equation 3.18 for a large cell with 
dimensions: ∆ݕ∆ , ݔ and ∆ݖ neighboring small cells as depicted in Figure 3.7. First 
rescale Equation 3.18 by the volume of the large cell to obtain ௖ܸ௘௟௟∆׏ݐଶ ݌ሺ࢞ሻ ൌ

௖ܸ௘௟௟׏ߩ ·  ሻ. The right hand side of the equation now represents the quantity of࢞ଷሺ࢛
mass flowing in and out of the large cell within a time step ∆ݐ in m3s-1. This can be 
further rewritten as 

௖ܸ௘௟௟׏ · ൫࢛ߩଷሺ࢞ሻ െ ሻ൯࢞ሺ݌׏ݐ∆ ൌ 0 Equation 3.26 

This equation implies that the ݌ߘ term is most naturally evaluated at the 
same location as ࢛ଷሺ࢞ሻ, namely at the cell faces, and that there is a direct 
correspondence between the components of ݌׏ and ࢛ଷሺ࢞ሻ. Moreover, substituting 
Equation 3.17 into Equation 3.26 implies ௖ܸ௘௟௟׏ · ସ࢛ ൌ 0 or  ׏ · ସ࢛ ൌ 0 as desired. 

Invoking the second vector form of Green's theorem, one can write 
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௖ܸ௘௟௟ ׏ · כ࢛ ൌ ෍ ൫࢛௙௔௖௘כ · ௙௔௖௘ܣ൯࢔
௙௔௖௘௦

 

where ࢔ is the outward unit normal of the large cell and ܣ௙௔௖௘ 
represents the area of a cell face. In the case of Figure 3.7, the discretization of the ݔ 
component ߲ݔ߲/כݑ of the divergence reads 

כݑ߲

ݔ߲ ൌ
ଶܣכଶݑ ൅ ଷܣכଷݑ ൅ ସܣכସݑ ൅ ହܣכହݑ െ ଵܣכଵݑ

ݖ∆ݕ∆ݔ∆  

where the minus sign in front of ݑଵܣכଵ accounts for the fact that the unit normal 
points to the left. Then  

כݑ߲

ݔ߲ ൌ
ሺݑଶכ ൅ כଷݑ ൅ כସݑ ൅ ሻ/4כହݑ െ כଵݑ

ݔ∆  

The ݕ and ݖ directions are treated similarly. Once the velocity 
divergence is computed, we solve for the pressure gradient by constructing a linear 
system of Equation 3.18. Invoking again the second vector form of Green's theorem: 

௖ܸ௘௟௟׏ · ሺ∆݌׏ݐሻ ൌ ෍ ൫ሺ∆݌׏ݐሻ௙௔௖௘ · ൯࢔
௙௔௖௘௦

௙௔௖௘ܣ Equation 3.27 

The remaining discretization of the pressure gradient ሺ݌׏ሻ௙௔௖௘ is carried 
out in such a manner that the resulting matrix is symmetric. It has been shown that the 
system still yields a consistent approximation when the gradients are calculated with 
standard central differences applied to the direct neighbor cells, as long as the 
perturbation in the pressure location is ࣩሺ∆ݔሻ [7]. 

 

Figure 3.8 Pressure discretization on octree (image from: [7]) 
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Figure 3.8 shows a 2D example of the octree grid where the pressure 
gradient of the large cell can be obtained by: 

෍ ሺ݌׏ · ሻ࢔
௙௔௖௘௦

௙௔௖௘ܣ ൌ ቀ
ଵ݌ െ ଴݌
ݔ∆ ൅

ଶ݌ െ ଴݌
ݔ∆ ቁ

1
ݔ∆2 ൌ ҧ݌ െ ଴݌ Equation 3.28 

In this notation, ݌ҧ is the arithmetic average of ݌ଵ and ݌ଶ. The 
discretization yields a large and sparse linear system with an equation for every cell of 
the grid. 

Once the pressure gradient is found at every face, we obtain the 
pressure value from Equation 3.17 by carrying out the computation in a manner similar 
to that of the velocity divergence above. 

3.5.2 View-Dependent Grid 

               

Figure 3.9 Left: Traditional unifrom grid. Right: View-dependent grid (image from: [8]) 

Departing from the adaptive grid using octree structure, the view-
dependent grid explores the use of a non-Cartesian, stable fluid method solver to obtain 
a view-dependent level-of-detail. A Cartesian coordinate system is not always an 
optimal fit to some dynamics problems, such as flow around an airfoil or through a pipe. 
In these cases it is useful to define a new coordinate system that fits the problem at 
hand, mapping it to a regular grid for the purpose of computation. 

For a view dependent simulation proposed by [8], a cylindrical 
coordinate system with the camera positioned on the central axis is used. In this 
coordinate system, a grid is built to resemble the camera viewing frustum. The 
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computational grid provides fine detail close to the viewing position and geometrically 
reduces detail with distance from the viewer. 

To solve the equations for fluid flow in transformed coordinated system 
other than Cartesian, coordinate transformation must be applied. Transformed 
coordinates and Grid generation are described in following subsections. 

3.5.2.1 Transformed Coordinates 

                 

Figure 3.10 Cylindrical coordinate system (image from: [8]) 

Fluid equations are solved in the transformed coordinate then mapped 
back to the Cartesian space when needed. There are two approaches to the coordinate 
transformation: a direct transformation and an inverse transformation. Given a regular, 
orthogonal grid defined in a Cartesian space, the direct approach requires a set of one-
to-one functions that map Cartesian coordinates to a cylindrical coordinate system: 

ݎ  ൌ ,ݔሺݎ ,ݕ ሻݖ ൌ ඥݔଶ ൅  ଶ Equation 3.29ݕ

ߠ  ൌ ,ݔሺߠ ,ݕ ሻݖ ൌ tanିଵ ቀ
ݕ
 ቁ Equation 3.30ݔ

 ݄ ൌ ݄ሺݔ, ,ݕ ሻݖ ൌ  Equation 3.31 ݖ

And the inverse map back to the Cartesian coordinates are: 

ݔ  ൌ ,ݎሺݔ ,ߠ ݄ሻ ൌ  Equation 3.32 ߠݏ݋ܿݎ

ݕ  ൌ ,ݎሺݕ ,ߠ ݄ሻ ൌ  Equation 3.33 ߠ݊݅ݏݎ
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ݖ  ൌ ,ݎሺݖ ,ߠ ݄ሻ ൌ ݄ Equation 3.34 

Moreover, if we have a field ݑሺݎ,  ,ሻ defined in the computational spaceߠ
applying the chain rule yields: 

ݑ߲
ݔ߲ ൌ

ݑ߲
ݎ߲

ݎ߲
ݔ߲ ൅

ݑ߲
ߠ߲

ߠ߲
 Equation 3.35 ݔ߲

ݑ߲
ݕ߲ ൌ

ݑ߲
ݎ߲

ݎ߲
ݕ߲ ൅

ݑ߲
ߠ߲

ߠ߲
 Equation 3.36 ݕ߲

which provides Cartesian partial derivatives for ݑ in terms of the 
transformation. Second order derivatives may be found similarly. 

3.5.2.2 Grid Generation 

For view dependent fluid simulation in the computational space using 
cylindrical coordinate system ሺݎ, ,ߠ ݄ሻ , the grid is constructed by placing the viewer at 
the origin of the cylindrical system. The view depth corresponds to a radial coordinate ݎ, 
viewing direction corresponds to an angle ߠ, and elevation to ݄. 

 

Figure 3.11 View-dependent polar computational grid (image from: [8]) 

Each cell’s dimension has to be cubic-like in order to solve the system 
without numerical complexity. The proportions of each cell are kept consistent by 
maintaining a constant ratio of the depth of each cell to the arc length 
produced by sweeping its angular increment. The height of a cell can 
simply be kept constant. This produces a convenient, geometrically 
increasing function to define a view dependent grid.  
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Assume that the center of the first grid cell is at a radial distance ݎ଴ from 
the origin, and that each cell’s angular dimension is ∆ߠ. To enforce all cell to have 
uniform spatial dimensions (i.e. equivalent of a square or cubic), then the radial depth of 
the cell should be ݎ଴∆ߠ. Here are the constrain equations numbering from n = 0. 

ሺ0ሻݎ ൌ  ଴ Equation 3.37ݎ

ሺ݊ݎ ൅ 1ሻ ൌ ሺ1 ൅  ሺ݊ሻ Equation 3.38ݎሻߠ∆

Equation 35 and equation 36 can be written in a closed form as follow. 

ሺ݊ሻݎ ൌ ଴ሺ1ݎ ൅  ሻ௡ Equation 3.39ߠ∆

 

 

Figure 3.12 Proportion of polar computational grid 
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CHAPTER 4 
Proposed Method 

 

Figure 4.1 Screen Shots of smoke simulation using our method 

In this section, we propose a view-dependent adaptive grid refinement 
which is an improved method to efficiently optimize the simulation grid, since smoke 
simulation using the octree grid such as [5,6] does not address the viewing angle. Their 
grid refinements are associated only with variation among the neighboring cells but 
viewing angle is not considered. To be precise, distant smoke that is far beyond the 
visible scene, which is unnecessary for fine detail simulation, is poorly optimized in 
these previous works. Therefore, with a general idea from the view-dependent grid 
proposed by [8], we propose a method to refine the octree grid associated with the 
viewing information along with the variation of neighboring cells. Overall, the method 
optimizes the simulation grid for lower computational cost as well as preserves the 
visible details.  

In addition, particles, which are flexible to conform to obstacle-fluid 
boundaries, are integrated into our model to enhance the animations and reduce the 
artifacts caused by dynamic refinements. 

We first overview the overall process of the smoke simulation with a 
brief introduction to each steps to give a general concept of the simulation framework, 
and to point out where our method is placed in. Then in the following section, we 
describe the structure of the octree grid. Follow by the details to each step, including 
our proposed view-dependent adaptive grid refinement method. 
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4.1 Overview 

The overall process of smoke simulation can be divided into four major 
steps i.e., initializing the grid, refining the grid, updating cells and rendering.  The 
simulation starts with the initializing grid step. Other steps are then sequentially 
executed repeatedly until the simulation reaches its end or is halted. The simulation 
process flow including our refinement method is summarized in Figure 4.2, where its 
corresponding steps are detailed in the following subsections. 
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Input
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Optimized
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Figure 4.2 A process diagram of smoke simulator with adaptive grid refinement 

Initializing the Grid 

Before any simulation can be performed, the grid, which is an 
infrastructure of the simulation, must be first constructed and initialized with some initial 
values. Generally, the grid is initialized using user-given initial fluid values (i.e., velocity, 
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density, pressure, temperature). The result of this process is the octree-structured grid. 
But since the grid refinement has not been performed, the grid is structured as a 
uniform subdivision; same cells’ size entire domain.  

After the grid is successfully constructed and every time before proceed 
to the next following steps,  a decision must be made; determine  whether the 
simulation will be paused or continued, if so, halt the simulation or otherwise continue 
on the refinement step. 

Refining the Grid 

The octree grid without refinement, when passed through the fluid 
solver, spends more computational cost due to its un-optimized structure. Grid 
refinement is an optional step that optimizes the grid before performing any heavy 
computation.  

The input of this step is an un-optimized octree grid. In this step, cells 
are partially merged and subdivided. Our view-dependent adaptive grid refinement is 
applied in order to optimize the octree grid for both viewing and details. Further details 
for our method is described in section 4.3. The output is an optimized octree grid that is 
ready for the value updating step. 

Updating Cells 

After applying the refinement method, the grid is well optimized and 
ready for the simulation step which is the part that takes the most computational time. 
We have constructed a solver to solve for smoke equations, the details are described in 
Section 4.4. Once we obtain all the updated values, the grid is then passed to the next 
step for rendering the results. 

Rendering 

At this step, the computed data is rendered as an animation on screen. 
The fluid values of every cell, along with their positions, are the input for the rendering 
process. Several rendering techniques can be applied e.g., billboarding, volumetric 
rendering or soft particle rendering. Light and shadow can also be applied for a realistic 
visual result. 
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In our work, we have presented a coupling between billboarding and 
particle system which combine their benefits together to enhance animation quality and 
reduce the artifacts caused by dynamic grid refinements. Details are described in 
Section 4.5. 

4.2 Structure of Octree Grid 

 

Figure 4.3 Logical structure of octree grid 

We have constructed an adaptive grid using the octree structure as 
illustrated in Figure 4.3. A cell is a fundamental unit of the octree grid. Its size and 
position are adaptable but constrained by the octree structure. Generally, cell 
dimensions are a power of 2 (denoted as 23) whereas higher power such as 43 may 
cause a rapid changing in grid size during the grid refinement, resulting in animation 
artifacts and discontinuity in fluid values. 

Each cell is defined by its position vector ࢞ ൌ ሺݔ, ,ݕ  ሻ, velocity vectorݖ
࢛ ൌ ሺݑ, ,ݒ ࢊ ሻ, four-dimensional density vectorݓ ൌ ሺ݀௔, ݀௥, ݀௚݀௕ሻ and a scalar 
pressure ݌. Note that ݀௔, ݀௥, ݀௚, ݀௕ denote color value of transparency, red, green and 
blue respectively. All fluid quantities including velocity are stored at cell's node, similar 
to [2], since storing the velocity at the cell’s faces, e.g., traditional MAC grid [31], 
requires more memory. Moreover, storing all fluid quantities at cell’s node is 
straightforward to implement.  
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4.3 View-Dependent Adaptive Grid Refinement 

 

Figure 4.4 Illustration of octree grid using view-dependent adaptive grid refinement 

Grid refinement is performed throughout the domain to optimize the grid, 
i.e., subdivide for acquiring detail in particular regions or merge for saving computational 
time for faster simulation. Refinement conditions are used to decide for each cell 
whether to perform subdivision or merging. In general, refinement conditions are defined 
by comparing only the fluid variation with arbitrary constant thresholds such as the one 
proposed in [6]. However, this refinement scheme is not sufficient for view-dependent 
optimization. We have modified these conditions with additional parameters for 
addressing the viewing angle; thus, not only is fluid detail optimized, but also the 
viewing angle as well. 

The idea to optimize the grid for both viewing angle and details is that 
cells should be divided for higher resolution if they are too close to the camera or their 
neighboring cells are relatively different to each other. On the other hand, cells should 
be merged for lower resolution if their distances to the camera are too far for any fine 
details to be visualized or the variation of fluid quantities between the neighboring cells 
are no longer significant. However, not only do the fluid variation and the distance from 
the camera affect the grid refinements, the dimensions of the viewing frustum and their 
perspectives are also important parameters that should be properly weighted with the 
refinement conditions in order to achieve an effective detail-preserved optimization.  
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We have proposed an improved refinement method by considering both 
the variation in the fluid quantities and the viewing information to perform additional 
refinement based on the view-dependent level-of-detail. Briefly, we have presented a 
“view-dependent weighting factor” as a factor to weight the refinement thresholds. Thus, 
in this manner, thresholds are adaptive and directly proportional to the viewing frustum. 
Thresholds with view-dependent weighting are called “adaptive thresholds” and the 
refinement with conditions using these thresholds is called “view-dependent adaptive 
grid refinement”. 

Measuring the variation in the fluid quantities is described in subsection 
4.3.1 while a view-dependent weighting factor is described in subsection 4.3.2., and the 
adaptive thresholds for merging and subdivision are described in subsection 4.3.3. 

4.3.1 Measuring Fluid Variation 

Fluid variation measures the difference of fluid values among adjacent 
cells, which roughly indicates the amount of detail to be preserved. High fluid variation 
implies sharp edges of fluid boundaries where details are usually needed, whereas low 
fluid variation implies steady flows or empty spaces where details can be neglected. 

In general, the fluid variation is indicated by measuring only the variation 
of density using an equation defined by [6]. However, we found that measuring the 
variation in velocity is also a good representative inferring the variation of other fluid 
quantities as well. Since density is always advected (carried) by velocity fields; thus, 
measuring the velocity itself yields relevant results. Moreover, by measuring the 
variation of velocity, Laplacian terms shown in Equation 4.1 do not need to be 
computed, as they can be obtained directly from the diffusion step during solving the 
Navier-Stokes equations (see Table 4.2). Our equation for measuring the fluid variation 
by velocity is as follows. 

,ݔሺܥ ,ݕ ሻݖ ൌ ,|ݑ௫ଶ׏|ሺݔܽ݉ ,|ݒ௫ଶ׏|  ሻ Equation 4.1|ݓ௫ଶ׏|

Equation 4.1 measures the variation of velocity, where ݑ, ,ݒ  denote ݓ
scalar components of velocity vector: ࢛ሺ࢞ሻ ൌ ሼݑ, ,ݒ  ݔ is a Laplacian on the ݑ௫ଶ׏ .ሽݓ
direction: ׏௫ଶݑ ൌ ߲ଶݔ߲/ݑଶ, and ׏௫ଶݒ and ׏௫ଶݓ are defined likewise. 
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4.3.2 View-Dependent Weighting Factor  

 

Figure 4.5 Viewing Frustum shown in 3D (right) and its diagonal cross-section (left), 
shaded areas are visible volume. 

In this subsection, we determine any possible factor that should affect 
the view-dependent grid refinement. These factors are grouped together and rewritten 
as a mathematical relation called a “view-dependent weighting factor”. 

Suppose that we are observing an arbitrary object within a rectilinear 
perspective view. If we move the camera away from the object at constant speed, then 
the observed size of that object should be decreased hyperbolically. In addition, if we 
move the camera away and increase the object's actual size accordingly, then with 
some proportion, the observed size should be preserved as constant. This same 
proportion is inherited for constructing a view-dependent weighting factor as the grids 
resolutions over distance should be coarsened away in a manner that the observed grid 
resolution still remains constant. 

Let Ψ represent a view-dependent weighting factor, and ݎ and ܴ be the 
Euclidean distance measured from camera to an arbitrary cell’s node and from the 
camera to the front clipping plane respectively (see Figure 4.5). Ψ should then be 
proportional to ݎ. Moreover, Ψ should be affected by dimensions of the viewing frustum 
and its perspective. For instance, Ψ should be greater if ݎ is large with respect to ܴ or 
the viewing frustum has high perspective. The view-dependent weighting factor is 
defined as: 

Ψ ൌ ߙ ቀ
ݎ
ܴቁ Equation 4.2 

Where ߙ is the camera’s perspective ratio defined as follows: 
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ߙ ൌ
ܦ
2ܴ ൌ ݊ܽݐ ൬

ߠ
2൰ Equation 4.3 

Equation 4.3 refers to the viewing frustum (Figure 4.5). ܦ is the diagonal 
length of the front clipping plane: ܦ ൌ ଶܪ√ ൅ܹଶ, where ܪ and ܹ are height and 
weight of front clipping plane respectively. ܴ is the Euclidean distance from camera to 
the center of front clipping plane, ߠ is the camera’s field of view (abbreviated as FOV, 
also called angle of view) measured diagonally. 

4.3.3 Adaptive Thresholds 

Grid refinement is performed by means of refinement conditions i.e., 
merging condition and subdivision condition. In general, refinement conditions 
comparing the fluid variation with constant thresholds are used. However, to further 
perform a view-dependent adaptive grid refinement, we propose refinement conditions 
incorporated with “adaptive thresholds” as stated below. 

Let ܶ  be a constant threshold for grid refinement specified on a viewing 
frustum’s front clipping plane with FOV 90o. Then an adaptive threshold for an arbitrary 
viewing frustum at distance ݎ and FOV ߠ is defined as follows.  

כܶ ൌ ሺ߬Ψ߶ሻܶ Equation 4.4 

Where ܶכ is the adaptive threshold, Ψ is the view-dependent weighting 
factor and  ߬ is a view-dependent coefficient specifying the weight that the viewing 
angle should affect the grid refinement. 

Image resolution (or output resolution), which is simply a multiplication of 
height and weight of screen, is another factor that should be considered. The grid 
resolution does not need to be greater than image resolution, for example, if we lower 
the image resolution but keep everything else fixed, the grid can be allowed to be 
coarser (since details are negligible in a low-resolution image). To address this, we 
define a resolution ratio (׎) as a square root of grid resolution over image resolution: 
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߶ ൌ ඨ
௚௥௜ௗݏ݁ݎ
௜௠௔௚௘ݏ݁ݎ

 Equation 4.5 

 For example, a resolution ratio of four means the grid resolution is twice 
finer than the image resolution which is unnecessary, thus the computed thresholds are 
factored to coarsen the grid for faster simulation. 

4.3.4 Refinement Conditions 

Once we obtain both fluid variation and adaptive thresholds for each cell, 
we compare them cell by cell to decide whether to merge or subdivide the grid using 
the following refinement conditions. 

,ݔሺܥ ,ݕ ሻݖ ൐ ௦ܶ
 Equation 4.6 כ

,ݔሺܥ ,ݕ ሻݖ ൏ ௠ܶ
כ  Equation 4.7 

Equation 4.6 and Equation 4.7 are the refinement conditions for 
subdivision and merging respectively. ܥሺݔ, ,ݕ  ሻ is a fluid variation (see subsectionݖ
4.3.1). ௦ܶ

is an adaptive threshold for subdivision and ௠ܶ כ
כ  is an adaptive threshold for 

merging. These adaptive thresholds are inherited from Equation 4.4, written as follows. 

 ௦ܶ
כ ൌ ሺ߬Ψ߶ሻ ௦ܶ Equation 4.8 

 ௠ܶ
כ ൌ ሺ߬Ψ߶ሻ ௠ܶ Equation 4.9 

Where ௦ܶ and ௠ܶ are respectively the constant threshold for grid 
subdivision and merging defined at front clipping plane of a viewing frustum at distance 
ܴ and FOV 90o. 

Refinement conditions categorize each cell in to one of three stages i.e., 
subdivision, merging and idle. If Equation 4.6 is satisfied then the subdivision stage is 
assigned. Likewise, if Equation 4.7 is satisfied then the merging stage is assigned. 
Otherwise, if neither Equation 4.6 nor Equation 4.7 is satisfied, then an idle stage is 
assigned; therefore, no refinement is performed.  
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Figure 4.6 Relation between stages on fluid variation versus cell-to-camera distance 

Figure 4.6 is a graphical plot of the fluid variation ܥሺݔ, ,ݕ -ሻ versus cellݖ
to-camera distance ݎ. The plot shows the relation between these three refinement 
stages. Shaded area labeled as  is the subdivision stage,  is the idle stage and  
is the merging stage. Cells tend to change their current stage from merging to idle and 
from idle to subdivision stage if their variation ܥሺݔ, ,ݕ  is ݎ ሻ increases or the distanceݖ
increased or both are increased. 

 

Figure 4.7 Comparison of using different camera’s FOV 

Figure 4.7 shows the comparison of several parameter adjustments. 
Steepness of slope indicates tendency of stage transition, or in another word, grid may 
coarsened faster and merged harder for steep slope (a) and vice versa for flat slope (b). 
There are many parameters that effect the steepness of slope. For instance, steepness 
of slope may be increased by applying a greater view-dependent coefficient (increase 

߬), using a wider FOV camera (increase ߙ) or rendering with a lower output resolution 
(increase ׎).  

Figure 4.7(c) is a case that uses a refinement model proposed by [6]. 
The refinement is depend only on fluid variation but not on cell-to-camera distance. Grid 
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refinement has no view-dependent optimization since refinement thresholds ௦ܶ and ௠ܶ 
are constant throughout the domain. 

 

Figure 4.8 Comparison of applying constant thresholds in different values 

Sensitivity of stage transitions between subdivision, merging and idle 
correspond to the differential value of the adaptive threshold ௦ܶ

and ௠ܶ כ
כ  which can be 

adjusted by altering the constant threshold ௦ܶ and ௠ܶ. In Figure 4.8 (a), ௦ܶ is close to 

௠ܶ which results in a narrow idle stage area; hence, it is sensitive to stage transition, 
whereas Figure 4.8 (b), ௦ܶ is much different to ௠ܶ therefore, it is tolerant to stage 
transition. As stage transitions consume computational cost, assigning inappropriate 
thresholds may result in an excessive overhead due to frequent merging and 
subdivision, or otherwise result in an inefficient optimization; thus, thresholds must be 
carefully selected. Moreover, to prevent excessive refinement overhead, grid size should 
be gradually adapted at each time step, which can be done by performing only one 
operation (i.e., subdivision, merging, or idle) per cell each iteration. This reduces 
recursive subdivision and merging overhead and also prevents rapid changing in cell 
size that might cause animation artifacts. 

4.4 Solving Smoke Equations 

Recall from Chapter 3, the Navier-Stokes equations summarized in 
Table 4.1 are solved cell-by-cell to update their fluid values. We have constructed a 
solver to solve these smoke equations. Since the input grid is already optimized, the 
computation cost here should be lower, with respect to the non-optimized grid. Solving 
the Navier-Stokes equations consists of four sub-stages related to the four terms of the 
equation, i.e., added force, advection, diffusion, projection (see section 3.4.2 for details). 
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Each sub-stage as summarized in Table 4.2 is performed with a semi-Lagrangian 
scheme [2] for unconditional stability. Moreover, a vorticity confinement [3] is applied 
within the added force stage for nice swirling effects.  We use a method proposed by [5] 
for discretizing the Navier-Stokes equations on the octree grid. 

Velocity 
׏ · ࢛ ൌ 0 Equation 3.1 

࢛߲
ݐ߲ ൌ െሺ࢛ · ࢛ሻ׏ െ

1
ߩ ݌׏ ൅ ࢛ଶ׏ߥ ൅  Equation 3.2 ࡲ

Density ߲ࢊ
ݐ߲ ൌ െሺ࢛ · ࢊሻ׏ ൅  Equation 3.7 ࡿ

Temperature ߲ܶ
ݐ߲ ൌ െሺ࢛ · ሻܶ׏ ൅  Equation 3.8 ܪ

Table 4.1 Smoke Equations 

Velocity ࢛଴ሺ࢞ሻ
௔ௗௗ௙௢௥௖௘௦
ሱۛ ۛۛ ۛۛ ሮۛ ሻ࢞ଵሺ࢛

௔ௗ௩௘௖௧
ሱۛ ۛۛ ሮ ሻ࢞ଶሺ࢛

ௗ௜௙௙௨௦௘
ሱۛ ۛۛ ሮۛ ሻ࢞ଷሺ࢛

௣௥௢௝௘௖௧
ሱۛ ۛۛ ሮۛ  ሻ࢞ସሺ࢛

Added Forces ࢛ଵሺ࢞ሻ ൌ ሻ࢞଴ሺ࢛ ൅  ࡲݐ∆ Equation 3.14 

Advection ࢛ଶሺ࢞ሻ ൌ ,࢞ଵሺܲሺ࢛ െ∆ݐሻሻ  Equation 3.15 

Diffusion ࢛ଶሺ࢞ሻ ൌ ሺࡵ ൅  ሻ࢞ଷሺ࢛ଶሻ׏ݐ∆ݒ Equation 3.16 

Projection ࢛ସሺ࢞ሻ ൌ ሻ࢞ଷሺ࢛ െ ݐ∆
1
ߩ  ሻ࢞ሺ݌׏ Equation 3.17 

ଶ׏  ሻ࢞ሺ݌ ൌ
ߩ
ݐ∆ ׏ · ଷ࢛

ሺ࢞ሻ  Equation 3.18 

Density 
ሻ࢞଴ሺࢊ

௔ௗௗ௙௢௥௖௘௦
ሱۛ ۛۛ ۛۛ ሮۛ ሻ࢞ଵሺࢊ

௔ௗ௩௘௖௧
ሱۛ ۛۛ ሮ  ሻ࢞ଶሺ࢛

Added Forces ࢊଵሺ࢞ሻ ൌ ሻ࢞଴ሺࢊ ൅  ࡿݐ∆ Equation 4.10 

Advection ࢊଶሺ࢞ሻ ൌ  ሻሻݐ∆െ,࢞ଵሺܲሺࢊ Equation 4.11

Temperature 
଴ܶሺ࢞ሻ

௔ௗௗ௙௢௥௖௘௦
ሱۛ ۛۛ ۛۛ ሮۛ ଵܶሺ࢞ሻ

௔ௗ௩௘௖௧
ሱۛ ۛۛ ሮ ଶܶሺ࢞ሻ 

Added Forces ଵܶሺ࢞ሻ ൌ ଴ܶሺ࢞ሻ ൅  ܪݐ∆ Equation 4.12

Advection ଶܶሺ࢞ሻ ൌ ଵܶሺܲሺ࢞, െ∆ݐሻሻ Equation 4.13 

Table 4.2 Discretization of smoke equations 
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Note that diffusion terms are neglected in Equation 3.7 and Equation 3.8 
since the appearance of viscosity is dominated by the numerical dissipation [3], except 
for Equation 3.6 since the velocity diffusion term can be reused for measuring the fluid 
variation (Equation 4.1) in the refinement process. Moreover, velocity dominates the 
effect of other fluid quantities; either color density or temperature is advected by 
velocity. Thus, it is worth computing the diffusion term of velocity. 

Referring to Table 4.2, we solve for velocity first, followed by solving for 
density then temperature respectively. Solving for the added forces step and the 
advection step is straightforward. Nevertheless, the most complicated of all part is the 
diffusion and projection steps. These steps contain Possion equations i.e., equations 
with Laplacian terms (׏ଶ) and gradient terms (׏) which need a specific discretization 
specifically on the octree grid which is an adaptive and non-uniform structure. We follow 
a discretization scheme proposed by [5]. ׏ ·  of Equation 3.18 is discretized by using ࢛
Green’s theorem as follows: 

׏ · ࢛ ൌ
∑ ൫࢛௙௔௖௘ · ௙௔௖௘௙௔௖௘௦ܣ൯࢔

௖ܸ௘௟௟
 Equation 4.14 

where ࢔  is the outward unit normal, ܣ௙௔௖௘ is the area of cell face, and 

௖ܸ௘௟௟  is the volume of a cell.  

In a similar way, the theorem is applied to ׏ଶ࢛  of Equation 3.16 and 
࢛ଶ׏ of Equation 3.18, where  ݌ଶ׏ ൌ ሺ׏ଶݑ, ,ݒଶ׏ ሻݓଶ׏ ൌ ׏ · ሺ࢛׏ሻ and ׏ଶ݌ ൌ ׏  ·
ሺ݌׏ሻ. Their discretizations can be written as follows. 

׏ · ሺ࢛׏ሻ ൌ
∑ ൫ሺ࢛׏ሻ௙௔௖௘ · ௙௔௖௘௙௔௖௘௦ܣ൯࢔

௖ܸ௘௟௟
 Equation 4.15 

׏ · ሺ݌׏ሻ ൌ
∑ ൫ሺ݌׏ሻ௙௔௖௘ · ௙௔௖௘௙௔௖௘௦ܣ൯࢔

௖ܸ௘௟௟
  Equation 4.16 

Although we have successfully discretized these Poisson equations, we 
cannot directly solve them cell by cell individually because they are associated with 
multiple variables. Thus, the only way is to solve these equations at once by 
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constructing a set of linear differential equations. We use a “Jacobi iteration” method 
since it is a common, fast, and effective one. 

Once ݌׏ is computed at every faces and substituted back into Equation 
3.17, we obtain a velocity ࢛ସ which is the solution of the Navier-Stokes equations of 
velocity (Equation 3.1 and Equation 3.2). 

4.5 Coupling with Particle System 

There are a number of ways to represent the computed result. Since 
billboarding and particle system are fast and are typically used for modelling fluids such 
as fire, explosions, and smoke, we couple these two methods to combine their 
advantages together. The computed density values, composed of transparency, red, 
green and blue color data are directly used for constructing billboards, which is a fast 
and an effective way to represent the existence of fluid density within the domain. 
Meanwhile, we use the computed velocity vector fields to model the motion of particles, 
since particles can move freely from cell to cell throughout the domain, which yields a 
better representation of continuous motions. In addition, they conform well to curved 
and complex boundaries, which can be used to reduce artifacts caused by coarse grids.  

Particles are released and advected freely throughout the simulation 
domain by using the computed velocity field from the view-dependent octree grid to 
model their motions. There are many available methods to model the particle motion 
such as the Euler method, Runge-Kutta methods, BFECC method [32] and the 
MacCormack method [33]. In this work, we prefer to use the Euler method since it is 
fast and simple and provides a sufficient accuracy for most situations. The method is 
described as follows.  

௜ܲሺ࢞௜, ݐ ൅ Δݐሻ ൌ ௜ܲሺ࢞௜, ሻݐ ൅  Equation 4.17 ࢛

Each particle ௜ܲ is defined by its position ࢞௜. During the simulation, the 
particle is moved forward by a velocity ࢛, where ࢛ is obtained by a linear interpolation 
of velocity stored in the nearest neighboring cells. Figure 4.9 is a schematic view of our 
hybrid system. 
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Figure 4.9 A schematic view of our hybrid system 
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CHAPTER 5 
Implementation 

In this chapter, we introduce an implementation model that derives 
concepts and general ideas described earlier to a practical simulation. In our 
implementation, we encapsulate the underlying infrastructure with the hierarchical 
classes, which provide effective layers of management. Major topics considering 
implementation on a three-dimensional array are described in this chapter. 

5.1 Overview 

We have implemented the octree grid on three-dimensional array which 
exploits several benefits over trees or other structures. First, the octree grid can be 
derived from an array with less modification from the prior model since the simulation 
using a fixed uniform grid is usually implemented on an array as well. Also, using an 
array is easily switchable between the adaptive octree grid and the fixed uniform grid by 
sharing the same array-based infrastructure and coding. Moreover, accessing the 
memory with arrays is fast (by instance indexing) and uses less overhead for grid 
refinements. The major drawback of using arrays is the memory usage that relies on its 
size, not the actual octree grid resolution. Since arrays use predefined memory 
allocation, therefore, the memory usage is not adaptive during the simulation. Although 
the grid is refined or optimized for speed; the simulation still uses the same memory as 
that for fixed uniform grid. However, if the memory usage is not a major constraint then 
using an array is a preferable choice. 

5.2 Storing Octree Grid on Array 

 

Figure 5.1 Cell size with various ranks 
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In this section, we introduce a model for storing the octree grid on an 
array structure and describe a direct mapping between the octree grid and array. 

From our definition, a “cell” is a fundamental unit of the octree grid while 
an “element” is a fundamental unit of the array. Since the octree grid contains cells with 
various possible sizes, we define a variable called “rank” (denote as ܴ) to identify their 
size: 

ோ݁ݖ݅ݏ݈݈݁ܿ ൌ ݔ∆  ൌ ݕ∆ ൌ ݖ∆ ൌ ሺ݈݈ܿ݁݁ݖ݅ݏ଴ሻ2ோ  Equation 5.1 

 ோ means cell size at an arbitrary rank ܴ, where ܴ is an any݁ݖ݅ݏ݈݈݁ܿ
positive number e.g., 0, 1, 2, 3, …  ∆ݔ,  are dimensions of cell which should ݖ∆ and ݕ∆
be equal for cubic cells. 

Smallest cells are called “base cells”. Base cells have a size that 
allocated to an array element. A cell with rank ܴ ൌ 0 (denoted as ݈݈ܿ݁݁ݖ݅ݏ଴) is a base 
cell. A cell with higher rank has its size a power of 2 of its base size. This procedural 
produces a hierarchical grid with a subdivision of 23. 

A base cell contains only one array element while cells with higher ranks 
contain multiples (see Figure 5.1). Each cell contains a rank along with its individual 
fluid values (i.e., pressure, density, velocity); hence, a single array element of each cell 
is sufficient for storing the cell’s fluid values. We define a “leader element” as a 
representative of all array elements in a cell to stores such fluid quantities. In this 
implementation, the bottom left corner element is chosen to be a leader element. If 
there exists a cell with rank ܴ that contains an arbitrary element with an index of  
࢞ ൌ ሺݔ, ,ݕ  of that cell can be found (כ࢞ denotes as) ሻ then the index of a leader unitݖ
by: 

כ࢞ ൌ ࢞ െ ݀݋݉࢞ ሺ2ோሻ Equation 5.2 
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Figure 5.2 Above: logical representation of octree grid. Below: model for storing octree 
grid on 3D array. 

Figure 5.2 (Below) illustrates our model for storing the octree grid on a 
three-dimensional array. Each cell may contains many array elements depends on its 
size (defined by its rank) but only one element is selected as a “leader element” for 
storing the fluid quantities of that cell. This model is encapsulated under the 
infrastructure of layers, hidden array and underlying management from outside direct 
access. Figure 5.2 (Above) illustrates our encapsulated octree grid which is a common 
perception for higher level implementation. 

5.3 Recursive Cell Retrieval 

Several simulation steps need cell retrieval as a part of their operations. 
For example, the added forces step needs to access all cells in a domain in order to 
update their cell’s velocity. 
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For-looping is a common approach to access all array elements one by 
one. It works well if most of the elements store data. However, in our array, only a 
leader element per cell stores valid fluid quantities, which is usually sparse over 
domain, hence, for looping in this particular grid structure is time wasting. 

Instead of accessing elements one by one, we use a recursive function 
to access only some specific elements those are likely to be leaders ranging from the 
highest rank to the lowest rank recursively. Equation 5.3 specify cells those are likely to 
be leaders of rank  ܰ, where ܰ is any positive number ranging from the highest rank to 
the lowest rank: ܰ ൌ ሼܴ௠௔௫ , ܴ௠௔௫ െ 1,… ,2,1,0ሽ. Whenever there exist an array 
element with an index ࢞  and a rank ࡾ that satisfy both Equation 5.3 and Equation 5.4 
then that element is a leader element of that particular cell. 

݀݋݉ ࢞ ሺ2ேሻ ൌ 0 Equation 5.3 

ܴ ൌ ܰ Equation 5.4 

Figure 5.3 is an example scenario to demonstrate the sequence of 
recursive cell retrieval. The recursive function starts with N=2 and terminate itself 
whenever a leader element is found.  
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Initial : octree grid with unknown 
leader elements 

 ܰ ൌ 2 

 ܰ ് ܴ  
   ܰ ൌ ܴ 

 ܰ ൌ 1 

 ܰ ൌ 0 

 

  

Final : all leader elements are 
found  (highlighted units) 

Figure 5.3 Sequence of finding leader elements using recursive approach 
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5.4 Linear Interpolation 

 

Figure 5.4 Normalizing the grid for data interpolation 

Since fluid quantities are stored discretely at each cell center, the 
interpolation is essential in order to retrieve continuous quantities. There are several 
interpolation methods. However, in this implementation we use a “linear interpolation” 
since it is fast and simple and have sufficient accuracy for visual simulation. However, 
the octree grid is adaptive and has non-uniform structure; thus, an interpolating formula 
cannot be applied directly but must be constructed in an adaptive way for a particular 
octree region.  

Refer to Figure 5.4(b), if we want to obtain a velocity ࢛ሺݔ,  ሻ at anݕ
arbitrary target point marked as  then velocity of the neighboring cells must be 
interpolated. In general, bilinear interpolation interpolates between 4 points (for 2D 
grids) and trilinear interpolation interpolates between 8 points (for 3D grids). In practical, 
neighboring cells and their positions on the octree grid are adaptive, such as the one 
shown in Figure 5.4(a); hence, complicated for handling with these typical interpolations. 
Therefore, we must first mathematically normalize the grid for easily interpolation. Figure 
5.4(a) is the original octree grid while Figure 5.4(b) is a normalized one. The processes 
are detailed as follows. 

Let a cell that contains a target point  have a rank ܴ. In the case that 
every neighboring cell have the same rank ܴ, then four cells under a rectangular 
perimeter are chosen as interpolating cells, or eight cells under cubical perimeter for 
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trilinear interpolation. Interpolation in this manner is straightforward (see below). 
However, if there exists a cell within the perimeter such that its rank is not equal to ܴ 
then that cell needs normalization before any interpolation can be performed. 

 

Figure 5.5 Recursively merging cells into a preferred size 

Normalization is a process to obtain an imaginary cell with rank ܴ. 
Figure 5.5 illustrate the steps of this process. Suppose that we prefer a cell with rank ܴ 
(Figure 5.5(c)), but current cells have rank ܴ െ 1 (Figure 5.5(b)), then a normalization is 
performed. Four neighboring cells with rank ܴ െ 1 are imaginarily merged to form a 
single preferred rank ܴ cell (Figure 5.5(c)). Its fluid quantities are obtained by arithmetic 
averaging of four pre-merge neighboring cells. For example, a velocity of a merged cell 
is:  

଴࢛ ൌ
ଵ࢛ ൅ ଶ࢛ ൅ ଷ࢛ ൅ ସ࢛

4  

 If there exists a hierarchical subdivision, for example, the upper right 
corner of grid shown in Figure 5.5(a), then recursive normalization for that level is 
performed.  

Overall, Figure 5.4(a) shows an original octree grid while Figure 5.4(b) is 
a normalized one. Any cells within a rectangular perimeter are normalized to the same 
rank of the cell that contains a target point . So far, the grid is ready for interpolation. 

Refer to Figure 5.4(b), we obtain velocity ࢛ሺݔ,  ሻ at the arbitrary targetݕ
point  by the following bilinear interpolation. 

ሺ௫,௬ሻ࢛ ൌ
ଵݔሺ௫బ,௬బሻሺ࢛ െ ଵݕሻሺݔ െ ሻݕ ൅ ଵݔሺ௫బ,௬భሻሺ࢛ െ ݕሻሺݔ െ ଴ሻݕ ൅ ݔሺ௫భ,௬బሻሺ࢛ െ ଵݕ଴ሻሺݔ െ ሻݕ ൅ ݔሺ௫భ,௬భሻሺ࢛ െ ݕ଴ሻሺݔ െ ଴ሻݕ

ሺ∆ݔሻଶ
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or equivalently, in matrix operations: 

,ݔሺ࢛ ሻݕ ൌ
ሾݔଵെݔ ݔ െ ଴ሿݔ ൤

,଴ݔሺ࢛ ଴ሻݕ ,଴ݔሺ࢛ ଵሻݕ
,ଵݔሺ࢛ ଴ሻݕ ,ଵݔሺ࢛ ଵሻݕ

൨ ቂ
ଵݕ െ ݕ
ݕ െ ଴ ቃݕ

ሺ∆ݔሻଶ  

Note that since the cell’s dimension is cubic; thus, we can assume 
ݔ∆ ൌ  for the above equations.  For three-dimensional domains, trilinear interpolation ݕ∆
is applied instead which can be performed in a similar way. 

5.5 Discretization of Differential Operations 

According to the Poisson equations described chapter 4.4, their 
implementation can be done in a recursive way. For example, the ݔ components of 
׏ ·  is obtained by subtraction between left adjacent cells and right adjacent cells and ࢛
factored by their faces sizes (see Equation 4.14), where left and right adjacent cells are 
obtained by recursive cell retrieval. 

 

Figure 5.6 An example of quardtree structure 
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In the case of Figure 5.6, the ׏ ·  * of a cell marked as ݌ଶ׏ and ࢛ଶ׏ , ࢛
are discretized as follows. 

׏ · ࢛ ൌ
ݑ߲
ݔ߲ ൅

ݒ߲
ݕ߲ ൌ

ହݑ െ ቀݑଶ2 ൅ ଷݑ
4 ൅ ସݑ

4 ቁ
ݔ߲ ൅

଼ݒ െ ቀݒ଺2 ൅ ଻ݒ
2 ቁ

ݕ߲  

࢛ଶ׏ ൌ ሺ׏ଶݑ,  ሻݒଶ׏ where 

 

ݑଶ׏ ൌ
߲ଶݑ
ଶݔ߲ ൅

߲ଶݑ
ଶݕ߲

         ൌ
ቀݑଶ2 ൅ ଷݑ

4 ൅ ସݑ
4 െ ଵቁݑ ൅ ሺݑହ െ ଵሻݑ
ሺ߲ݔሻଶ ൅

ሺ଼ݑ െ ଵሻݑ ൅ ቀݑ଺2 ൅ ଻ݑ
2 െ ଵቁݑ

ሺ߲ݕሻଶ  

ݒଶ׏ ൌ
߲ଶݒ
ଶݔ߲ ൅

߲ଶݒ
ଶݕ߲

         ൌ
ቀݒଶ2 ൅ ଷݒ

4 ൅ ସݒ
4 െ ଵቁݒ ൅ ሺݒହ െ ଵሻݒ
ሺ߲ݔሻଶ ൅

ሺ଼ݒ െ ଵሻݒ ൅ ቀݒ଺2 ൅ ଻ݒ
2 െ ଵቁݒ

ሺ߲ݕሻଶ  

݌ଶ׏ ൌ
߲ଶ݌
ଶݔ߲ ൅

߲ଶ݌
ଶݕ߲ ൌ

ቀ݌ଶ2 ൅ ଷ݌
4 ൅ ସ݌

4 െ ଵቁ݌ ൅ ሺ݌ହ െ ଵሻ݌
ሺ߲ݔሻଶ ൅

ሺ଼݌ െ ଵሻ݌ ൅ ቀ݌଺2 ൅ ଻݌
2 െ ଵቁ݌

ሺ߲ݕሻଶ  

  



59 
 

CHAPTER 6 
Results and Discussion 

In order to evaluate our refinement method, we have constructed and 
compared results in different simulation scenarios i.e., varying the view-dependent 
coefficient (Section 6.2), varying the camera’s viewing angle (Section 6.3), varying the 
output resolution (Section 6.4) and finally simulation with and without particles (Section  
6.5). 

The efficiency of our method is measured by comparing both 
computational cost and visual result to the simulation without the view-dependent 
adaptive grid refinement. Computational cost is compared by measuring the simulation 
time in seconds per frame while visual results are compared by animation quality. 
Details of our experiments and their evaluation are described in the following 
subsections. 

6.1 Simulation Environment 

Figure 1.1 illustrates the environment used in our experiments, where 
the simulation domain is constructed on a 128 ൈ 80 ൈ 48 grid size and a camera is 
placed nearby for rendering the output scene. All experiment results reported in this 
article were performed on a machine with dual core CPU 2.40 GHz and 2 GB of RAM. 
Typical simulation times using our method were about 10 seconds per frame when 
performed on an octree grid with approximately 100,000 nodes and 340,000 particles. 

 

Figure 6.1 Environment for smoke simulation on an octree grid with VD-refinement 
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6.2 Varying View-Dependent Coefficient ( ࣎ ) 

We have demonstrated the effect of the view-dependent adaptive grid 
refinement by varying only the view-dependent coefficient (߬) while other parameters 
are fixed. Figure 6.2 are the comparison side-by-side between the visual results (left 
sides) and the cut-away views (right sides) showing their octree grid sturcture. In this 
scenario, smoke is injected into a domain vertically with an amount of upward force. By 
increasing the view-dependent coefficient, the number of large nodes is increased while 
the number of small nodes is decreased. Table 6.1 shows the timing and the number of 
nodes of Figure 6.2. 
 

 

No View-
Dependent
Refinement

  

߬ ൌ 1 
  

߬ ൌ 2 
  



61 
 

 ߬ ൌ 5 
  

 ߬ ൌ 10 
  

 ߬ ൌ 20 

Figure 6.2 Comparison of different VD-refinement 

 
VD Coefficient (߬) Number of Nodes Time per frame (Sec) Speed-up (%) 
No VD Refine. 111,868 9.10 - 
1 97,770 8.47 7.28 
2 87,683 8.00 14.10 
5 66,172 7.19 26.57 
10 49,176 6.33 44.13 
20 27,700 6.62 37.58 

Table 6.1 Number of nodes and timing in different VD coefficient 



62 
 

Applying a greater view-dependent coefficient reduces the number of 
cells in the simulation domain. Simulation achieves more frame rates but detail loss is 
relatively greater. On the other hand, if a lower view-dependent coefficient is applied, 
more details are preserved but with higher computation cost as well. Grid refinement 
with a view-dependent coefficient of 1 is an optimal weighting between details and 
computational cost since the amount of optimization matches the proportion of grid 
perspective. However, in our experiment, the view-dependent coefficient can be 
assigned up to approximately 5 before detail loss becomes noticeable. This is because 
the foreground smoke, which usually has higher detail, occludes other smoke with lower 
detail behind. 

6.3 Varying Camera’s Viewing Angle (FOV) 

In this scenario, smoke is moving rightward and being distracted by two 
oscillating spheres as it passes through. In Figure 6.3, we have changed the camera’s 
viewing angle (FOV) from wide to narrow in order to demonstrate the effective of our 
refinement method on various viewing. According to this experiment, when widen the 
camera’s viewing angle, fluid details are coarsened. However, since all visual scenes 
accordingly get smaller due to the perspective effect, the detail of the fluid on output 
screen is still preserved. The corresponding timings of Figure 6.3 are reported in Table 
6.2. 
 

FOV = 20o

  

 FOV = 30o
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FOV = 50o

  

FOV = 60o

Figure 6.3 Comparison of different camera FOV 

 
FOV (degree) Number of Nodes Time per frame (Sec) Speed-up (%) 
No VD Refine. 104,075 10.34 - 
20 100,833 9.73 5.90 
30 84,049 8.36 19.13 
50 68,052 7.63 26.24 
60 42,510 6.70 35.23 

Table 6.2 Timing of the simulation using our method with various FOV 

6.4 Varying Resolution Ratio (׎) 

We have simulated a turbulence flow over a cylindrical rod and vary only 
the output resolution to demonstrate the result of applying different resolution ratio. 
Figure 6.4 compares the results of applying different output resolution and the 
corresponding timings of Figure 6.4 are shown in Table 6.3. 

Accoarding the the results, lowering the output resolution (increasing the 
resolution ratio) results in a coarser grid and speeds up the simulation. However, the 
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simulation preserves its details whether the output resolution has changed, since with 
our method, the grid resolution is refined related to the output resolution. 

 

Figure 6.4 Turbulence flows over a cylindrical rods at different output resolutions. Actual 
output size (right) and enlarged size (left). 

 
Scene Resolution Ratio (׎) Time per frame (Sec) Speed-up (%) 
- No VD-Refine. 10.62 - 
Figure 6.4(a) 0.5 9.88 6.97 
Figure 6.4(b) 1 9.05 14.78 
Figure 6.4(c) 2 8.14 23.35 

Table 6.3 Timing of results shown in Figure 6.4 
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6.5 Rendering with Particles 

Figure 6.5 Bouncing sphere through a sheet of particles 

We have integrated a particle system into our view-dependent adaptive 
grid and tested in various scenarios. Figure 6.6 compares the difference between using 
billboards only (right) and coupling billboards with particles (left). Figure 6.7 illustrates 
that particles and billboards together enhance the fluid motion and visual result. Figure 
6.5 is a simulation rendered with particles only to illustrate that particles can conform 
well to curve and boundaries. Additional results including others without particles are 
shown in Figure 6.8 and their corresponding timings are shown in Table 6.4.  In our 
experiments, approximately 2,000 particles are generated each frame, taking about 
0.8% of all processing time.  The timings of simulation using our method in different 
scenarios are shown separately in Table 6.4. All tests are performed with view-
dependent coefficient ߬ ൌ 1 and camera’s FOV=45o. Timings are measured in 
second/frame. Note that additional snapshots of our experiment are shown in the 
Appendix. 
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Figure 6.6 Comparison between with and without particles 

 
 

 

Figure 6.7 Dynamic flows through cylindrical rods.  
Result is rendered with approximately 340k particles. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 6.8 Screen shots of our experimental results in various scenes 
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Scenes Refine 

(s) 
Discretize 
(s) 

Particle 
(s) 

Total 
(s) 

Speed-up 
(%) 

Figure 6.5 .153 3.48 .053 3.69 - 
Figure 6.8(a) .183 9.47 .078 9.73 5.90 
Figure 6.8(b) .147 9.72 .063 9.85 5.98 
Figure 6.8(c) .131 8.90 .057 9.09 5.39 
Figure 6.8(d) .166 9.69 - 9.86 7.38 
Figure 6.8(e) .174 8.06 - 8.23 7.16 
Figure 6.8(f) .181 8.29 - 8.47 7.28 

Table 6.4 Timing in s/frame in various scenes. Speed-up is compared to another one 
without VD refinement. 

The result shows that particles can significantly enhance the visual result 
and reduce the motion artifacts caused by dynamic grid refinement. With particles, 
observers hardly notice that the simulation background is a grid-based approach. In 
addition, particles are applicable to be integrated into a typical grid-based simulation, 
since the time for processing the particles is relatively low with respect to the overall 
simulation time.  
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CHAPTER 7 
Conclusion and Future Work 

In this section, we have concluded the core idea of our proposed 
method, the problems we found in this research and the future works. 

7.1 Conclusion 

Since a current smoke simulation using octree grid is optimized for detail 
but not optimized for viewing; thus, we have presented a “view-dependent adaptive grid 
refinement” which is an improved refinement method that optimizes the grid for both 
detail and viewing. The refinement conditions with adaptive thresholds are constructed, 
incorporating viewing information with fluid variation. With our method, the amount of 
grid refinement is controlled adaptively by means of cell-to-camera distance (ݎ), view-
dependent coefficient (߬), camera’s viewing angle (ܸܱܨ) and the resolution ratio (׎).  

We have shown that optimizing the grid with the view-dependent 
adaptive grid refinement speeds up the simulation as well as preserve fluid details. 
Several parameters have been adjusted and tested on different scenarios to 
demonstrate the efficiency of the proposed grid refinement in various environments. 
According to the results, the method has successfully optimized the grid for both 
viewing angle and details. Visual details are decreased corresponding to the reduction 
of the total number of octree nodes within a domain, which results in lower 
computational cost consumption. We have also shown that the method can be 
integrated with a particle system to enhance visual results and reduce motion artifacts. 

Overall, this approach provides a flexible framework for fluid simulation 
optimization that can be applied for variety of simulation environments and real-life 
applications such as special effect in games, movies and advertisement. 

7.2 Future Works 

For future work, we plan to further speed up the simulation by culling the 
occlusion regions and invisible areas such as smoke behind the obstacles and smoke 
behind the dense smoke. The invisible areas do not have to contain fine details; 
therefore, unnecessary processing time can be reduced. 
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We have found that the simulation speed-up is depends on the grid 
orientation. If fluid flows through the domain in a direction that is orthogonal to the grid 
orientation (i.e., horizontally or vertically to the grid orientation) then fewer cells are 
subdivided and the simulation is performed faster but if fluid flow diagonally across the 
domain, more cells are subdivided and the simulation is performed slower. See Figure 
7.1 for example. 

 

Figure 7.1 (a) Fluid flow along the grid orientation.  
(b) Fluid flow diagonal to the grid orientation. 

To address this, we plan to replace the octree grid with any other 
structure that is independent to the grid orientation such as unstructured tetrahedral 
meshes or unstructured grid. 

In addition, we plan to extend our method to larger scenes with an 
adaptive level-of-detail for dynamic viewing instead of a single camera view. We have 
found that the grid needs latency for iteratively refine to the appropriate optimized 
structure; thus, rapidly changing the camera’s viewing e.g., translation, rotation or even 
zooming might cause discontinuity artifacts and detail loss in a period of time. 
Therefore, view can be changed with a limited speed relative to the simulation frame 
rates. We have planned to address this limitation by predicting the camera movement 
and refine the grid in advance by using the camera’s velocity.  
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In this chapter, our experimental results in different scenarios are shown 
as a sequence of snapshots. All experiments are performed on an octree grid with a 
128 ൈ 80 ൈ 48 resolution. The control variables are VD-coefficient ߬ ൌ 1, camera’s 
viewing angle FOV=45o and resolution ratio ׎ ൌ 1. Typical simulation times were about 
10 seconds per frame, with approximately 100,000 nodes and 340,000 particles. The 
corresponding timings are shown in Table 6.4. 

Bouncing sphere through a sheet of particles 

Frame =0 Frame =10 

Frame =20 Frame =30 

Frame =40 Frame =50 
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Frame =60 Frame =70 

Frame =80 Frame =90 

Frame =100 Frame =110 

Frame =120 Frame =130 
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Frame =140 Frame =150 

Frame =160 Frame =170 

Smoke animation with oscillating spheres. 

Frame =0 Frame =10 

Frame =20 Frame =30 
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Frame =40 Frame =50 

Frame =60 Frame =70 

Frame =80 Frame =90 

Frame =100 Frame =110 
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Frame =120 Frame =130 

Frame =140 Frame =150 

Frame =160 Frame =170 
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Flamethrower with two oscillating spheres  

Frame =0 Frame =10 

Frame =20 Frame =30 

Frame =40 Frame =50 

Frame =60 Frame =70 
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Moving flows through a set of rods. 

Frame =20 Frame =30 

Frame =40 Frame =50 

Frame =60 Frame =70 

Frame =80 Frame =90 
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Frame =100 Frame =110 

Frame =120 Frame =130 

Frame =140 Frame =150 

Frame =160 Frame =170 
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A turbulence sheet of cloud intercepted by a pillar. 

Frame =20 Frame =30 

Frame =40 Frame =50 

Frame =60 Frame =70 

Frame =80 Frame =90 
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Violet smoke flow rightward direction. 

Frame =0 Frame =10 
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Frame =40 Frame =50 

Frame =60 Frame =70 
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Smoke flow rightward with slightly upward force. 

Frame =20 Frame =30 

Frame =40 Frame =50 

Frame =60 Frame =70 

Frame =80 Frame =90 
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