

การปรับตารางกริดแบบปรับตวัได้โดยใช้ต้นไม้อฐัภาคสําหรับการจําลองควนั

นายรินชยั บรรลทุางธรรม

วิทยานิพนธ์นีเ้ป็นสว่นหนึง่ของการศกึษาตามหลกัสตูรปริญญาวิศวกรรมศาสตรมหาบณัฑิต

สาขาวิชาวิศวกรรมคอมพิวเตอร์ ภาควิชาวิศวกรรมคอมพิวเตอร์

คณะวิศวกรรมศาสตร์ จฬุาลงกรณ์มหาวิทยาลยั

ปีการศกึษา 2554

ลขิสทิธ์ิของจฬุาลงกรณ์มหาวทิยาลยั

บทคดัยอ่และแฟ้มข้อมลูฉบบัเตม็ของวิทยานิพนธ์ตัง้แตปี่การศกึษา 2554 ท่ีให้บริการในคลงัปัญญาจฬุาฯ (CUIR)

เป็นแฟ้มข้อมลูของนิสติเจ้าของวิทยานิพนธ์ท่ีสง่ผา่นทางบณัฑิตวิทยาลยั

The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository(CUIR)

are the thesis authors' files submitted through the Graduate School.

ADAPTIVE GRID REFINEMENT USING VIEW-DEPENDENT OCTREE FOR SMOKE

SIMULATION

Mr. Rinchai Bunlutangtum

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Engineering Program in Computer Engineering

Department of Computer Engineering

Faculty of Engineering

Chulalongkorn University

Academic Year 2011

Copyright of Chulalongkorn University

Thesis Title Adaptive Grid Refinement Using View-Dependent Octree for

Smoke Simulation

By Mr. Rinchai Bunlutangtum

Field of Study Computer Engineering

Thesis Advisor Assistant Professor Pizzanu Kanongchaiyos, Ph.D.

 Accepted by the Faculty of Engineering, Chulalongkorn University in Partial

Fulfillment of the Requirements for the Master’s Degree

 ………………………………………….. Dean of the Faculty of Engineering

 (Associate Professor Boonsom Lerdhirunwong, Dr.Ing.)

THESIS COMMITTEE

 ……………………………………………….. Chairman

 (Assistant Professor Thanarat Chalidabhongse, Ph.D.)

 ………………………………………….……. Thesis Advisor

 (Assistant Professor Pizzanu Kanongchaiyos, Ph.D.)

 ……………………………………………….. Examiner

 (Nuttapong Chentanez, Ph.D.)

 ……………………………………………….. External Examiner

 (Chutisant Kerdvibulvech, Ph.D.)

 iv

รินชยั บรรลุทางธรรม : การปรับตารางกริดแบบปรับตวัไดโ้ดยใชต้น้ไมอ้ฐัภาค

สาํหรับการจาํลองควนั. (ADAPTIVE GRID REFINEMENT USING VIEW-

DEPENDENT OCTREE FOR SMOKE SIMULATION)

อ. ท่ีปรึกษาวทิยานิพนธ์หลกั : ผศ. ดร. พษิณุ คนองชยัยศ, 90 หนา้.

 การจาํลองควนัหรือของไหลประเภทต่างๆซ่ึงเป็นปรากฏการณ์ตามธรรมชาติท่ีมีความ
ซบัซ้อนสูงและใชเ้วลาในการคาํนวนมาก คุณภาพและความสมจริงท่ีไดจึ้งข้ึนอยู่กบัเวลาใน
การคาํนวณเป็นปัจจยัควบคุมหลกั ในงานวิจยัก่อนหน้าไดมี้การนาํเสนอการปรับแต่งตาราง
(Grid Refinement) เพื่อลดจาํนวนของโหนดในโดเมนจาํลอง (Simulation Domain) ลง
ผลลพัทก์็คือการจาํลองใชเ้วลาประมวลผลสั้นลง และภาพท่ีไดมี้รายละเอียดสูงข้ึน อย่างไรก็
ตามเราพบวา่ตารางการจาํลอง (Simulation Grid) ยงัสามารถลดรูปเพื่อการจาํลองท่ีเร็วยิง่ข้ึนได ้
โดยการนาํขอ้มูลจากมุมมองกลอ้งมาพิจารณาเป็นส่วนหน่ึงในขั้นตอนการปรับแต่งตาราง
(Grid refinement). แนวคิดก็คือ ควนัหรือของไหลท่ีอยู่ไกลจากกลอ้ง ย่อมมีขนาดท่ีเล็กลง
เสมอ เราจึงสามารถลดความละเอียดของไหลท่ีอยู่ไกลลงไดโ้ดยท่ีไม่ทาํให้คุณภาพของภาพ
ผลลพัทท่ี์ไดด้อ้ยลง งานวิจยัน้ีจึงไดน้าํเสนอวิธีการปรับแต่งตารางตามมุมมองกลอ้ง (View-
Dependent Adaptive Grid Refinement) โดยพิจารณาจาก ระยะห่างระหว่างของไหลกบักลอ้ง
(fluid-camera distance), องศารับภาพ (viewing angle), ขนาดภาพผลลพัท ์ (output resolution)
ซ่ึงสามารถนาํไปใชเ้พิ่มความเร็วในการประมวลผลการจาํลองควนั และของไหลประเภทต่างๆ
โดยท่ียงัสามารถคงคุณภาพและรายละเอียดของภาพผลลพัท์สูงสุดได้ นอกจากน้ีเรายงัได้
นาํเสนอการนาํอนุภาคมาใชใ้ชใ้นการแสดงผล เพื่อปรับปรุงภาพผลลพัทท่ี์ไดใ้หดี้ยิง่ข้ึน
วิธีการท่ีเราไดน้าํเสนอทั้งหมดในงานวิจยัน้ี มุ่งเนน้ให้สามารถนาํไปประยกุตใ์ชไ้ดจ้ริงในทาง
ปฏิบติั ทั้งกบัการจาํลองควนัและการจาํลองของไหลประเภทต่างๆ

ภาควิชา....................................... ลายมือช่ือนิสิต..
สาขาวิชา..................................... ลายมือช่ือ อ.ท่ีปรึกษาวิทยานิพนธ์หลกั………………..
ปีการศึกษา..................................

วิศวกรรมคอมพิวเตอร์
วิศวกรรมคอมพิวเตอร์

2554

v

5370477921 : MAJOR COMPUTER ENGINEERING

KEYWORDS : FLUID DYNAMICS , SIMULATION , NATURAL PHENOMENA

RINCHAI BUNLUTANGTUM : ADAPTIVE GRID REFINEMENT USING VIEW-

DEPENDENT OCTREE FOR SMOKE SIMULATION. ADVISOR : ASST.PROF.

PIZZANU KANONGCHAIYOS, Ph.D., 90 pp.

 Computational cost is one of the major problems in animating smoke.

Recently, adaptive grid refinement using octree structure has been proposed which

is a successful method for reducing the computational cost of detail-preserving fluid

simulation. Although octree grid is optimized for details, viewing angle is not

addressed. Smoke distant from the viewing screen or beyond the viewing frustum,

which usually has less visual attention and is unnecessary for high-detail simulation,

can be optimized for speed. However, applying such view-dependent optimization to

the octree grid directly might cause animation artifacts and loss in natural fluid

behaviors. In this thesis, we have presented a method for view-dependent adaptive

grid refinement, extending the traditional octree grid by considering the viewing

frustum, as well as the variation in fluid quantities as criteria for grid refinement. In our

method, refinement conditions with adaptive thresholds are proposed to optimize the

grid for both viewing angle and details. The proposed method preserves visual

details and fluid behaviors which allows high-detail smoke animations with a

relatively less computational cost. In addition, particles, which are more flexible to

conform to obstacle-fluid boundaries, are integrated to enhance animation and

reduce artifacts caused by dynamic refinements. Overall, the method provides a

flexible framework for optimization that can be applied for various fluid simulations.

Department : Computer Engineering Student’s Signature
Field of Study : Computer Engineering Advisor’s Signature
Academic Year : 2011

 vi

Acknowledgements

I would like to thank my thesis advisor, Asst. Prof. Dr. Pizzanu

Kanongchaiyos for his advices and assistances, my thesis committee, Asst.Prof.

Dr.Thanarat Chalidabhongse, Dr. Nuttapong Chentanez and Dr. Chutisant

Kerdvibulvech for their comments and suggessions. We also would like to thank

everyone at CUCG for the valuable discussions. I would also like to thank Blizzard for

the edutainment. Finally, I deeply wish to thank my parents for their love, understanding

and invaluable supports throughout my graduate study.

This research was partially funded by the TRF-Master Research Grants

(MAG) MRG-WI535E005, Yodia Multimedia Co.,Ltd and was in part supported by the

CUCP Academic Excellence Scholarship from Department of Computer Engineering,

Faculty of Engineering, Chulalongkorn University.

vii

Contents
Page

Abstract in Thai ... iv

Abstract in English .. v

Acknowledgements ... vi

Contents ... vii

List of Tables ... x

List of Figures .. xi

CHAPTER 1 Introduction .. 1

1.1 Introduction and Problem State ... 1

1.2 Objectives of Study .. 2

1.3 Scope of Study .. 3

1.4 Expected Benefits .. 3

1.5 Publications .. 3

1.6 Definition .. 4

1.7 Research Procedure .. 6

CHAPTER 2 Literature Reviews ... 7

2.1 Grid Based Method .. 7

2.2 Particle Based Method .. 9

2.3 Lattice Boltzmann Method ... 10

2.4 Tetrahedral Mesh Method ... 11

CHAPTER 3 Theories ... 13

3.1 Differential operations .. 13

3.2 The Navier-Stokes Equations .. 14

3.3 Equations for Smoke Simulations ... 16

3.4 Grid Based Fluid Simulation .. 18

viii

Page
3.4.1 Overview ... 18

3.4.2 Discretization of Navier-Stokes Equations... 19

3.4.3 Boundary Conditions .. 23

3.4.4 Vorticity Confinement ... 24

3.5 Adaptive Grids ... 25

3.5.1 Octree Grid ... 26

3.5.1.1 Grid Refinement ... 27

3.5.1.2 Tracing Semi-Lagrangian Paths ... 28

3.5.1.3 Solving Possion Equation... 29

3.5.2 View-Dependent Grid ... 31

3.5.2.1 Transformed Coordinates ... 32

3.5.2.2 Grid Generation .. 33

CHAPTER 4 Proposed Method .. 35

4.1 Overview .. 36

4.2 Structure of Octree Grid .. 38

4.3 View-Dependent Adaptive Grid Refinement ... 39

4.3.1 Measuring Fluid Variation .. 40

4.3.2 View-Dependent Weighting Factor .. 41

4.3.3 Adaptive Thresholds ... 42

4.3.4 Refinement Conditions ... 43

4.4 Solving Smoke Equations .. 45

4.5 Coupling with Particle System ... 48

CHAPTER 5 Implementation .. 50

5.1 Overview .. 50

5.2 Storing Octree Grid on Array... 50

ix

Page

5.3 Recursive Cell Retrieval .. 52

5.4 Linear Interpolation .. 55

5.5 Discretization of Differential Operations .. 57

CHAPTER 6 Results and Discussion ... 59

6.1 Simulation Environment ... 59

6.2 Varying View-Dependent Coefficient (࣎) .. 60

6.3 Varying Camera’s Viewing Angle (FOV) ... 62

6.4 Varying Resolution Ratio (׎) .. 63

6.5 Rendering with Particles .. 65

CHAPTER 7 Conclusion and Future Work .. 69

7.1 Conclusion ... 69

7.2 Future Works ... 69

References .. 71

Appendix .. 74

Biography... 90

x

List of Tables
Page

Table 1.1 Research Procedure ... 6
Table 3.1 Summary of differential operators in two dimensional vector fields 14
Table 4.1 Smoke Equations .. 46
Table 4.2 Discretization of smoke equations.. 46
Table 6.1 Number of nodes and timing in different VD coefficient 61
Table 6.2 Timing of the simulation using our method with various FOV 63
Table 6.3 Timing of results shown in Figure 6.4 .. 64
Table 6.4 Timing in s/frame in various scenes. Speed-up is compared to

another one without VD refinement. .. 68

xi

List of Figures
Page

Figure 1.1 Smoke simulation generated by ®Blender 2.5 ... 1
Figure 1.2 Viewing Frustum .. 5
Figure 1.3 Field of View .. 5
Figure 2.1 Grid-based fluid simulation using octree structure (image from: [9]) 7
Figure 2.2 Left: Fixed Uniform grid. Right: View-dependent grid. (image from: [8]) 8
Figure 2.3 A view-dependent water simulation on rendering views (above) and top

views (below) (image from: [8]) ... 8
Figure 2.4 Smoke simulation using octree grid refinement on GPU (image from: [7]) 9
Figure 2.5 Water simulation using SPH with Adaptive Kernel (image from: [16]) 9
Figure 2.6 Adaptive Kernel (image from: [16]) ... 10
Figure 2.7 Water simulation using Lattice Boltzmann Method (image from: ®Blender) . 11
Figure 2.8 Water simulation using Lattice Boltzmann Method (image from: ®Blender) . 11
Figure 2.9 Fluid Animation with Dynamic Meshes (image from: [29]) 12
Figure 2.10 A cutaway view showing graded tetrahedral meshes (image from: [30]) 12
Figure 3.1 (a) Voxel of MAC grid (image from: [1]) (b) Grid-based structure (image

from: [2]) ... 18
Figure 3.2 (a) Semi-Lagrangian advection (image from [2]). (b) Fluid velocity

interpolation (image from: GPUGems, ®Nvidia 2004). 21
Figure 3.3 Schematic representation of no-slip boundary condition. 24
Figure 3.4 (a) Vorticity direction is along the fluid rotation. (b) Vorticity confinement

force increase circulation (image from: [4]) ... 24
Figure 3.5 Adaptive grid using octree structure (image from: [9]) 26
Figure 3.6 Six possible cases for semi-Lagrangian path in octree structure

(image from: [6]) ... 28
Figure 3.7 Left: one large cell neighboring four smaller cells. Right: zoom of

computational cell. (image from: [5]) ... 29
Figure 3.8 Pressure discretization on octree (image from: [7]) 30
Figure 3.9 Left: Traditional unifrom grid. Right: View-dependent grid

 (image from: [8]) .. 31
Figure 3.10 Cylindrical coordinate system (image from: [8]) ... 32

xii

Page
Figure 3.11 View-dependent polar computational grid (image from: [8]) 33
Figure 3.12 Proportion of polar computational grid .. 34
Figure 4.1 Screen Shots of smoke simulation using our method 35
Figure 4.2 A process diagram of smoke simulator with adaptive grid refinement 36
Figure 4.3 Logical structure of octree grid.. 38
Figure 4.4 Illustration of octree grid using view-dependent adaptive grid refinement 39
Figure 4.5 Viewing Frustum shown in 3D (right) and its diagonal

cross-section (left), shaded areas are visible volume. 41
Figure 4.6 Relation between stages on fluid variation versus cell-to-camera distance .. 44
Figure 4.7 Comparison of using different camera’s FOV... 44
Figure 4.8 Comparison of applying constant thresholds in different values 45
Figure 4.9 A schematic view of our hybrid system .. 49
Figure 5.1 Cell size with various ranks ... 50
Figure 5.2 Above: logical representation of octree grid. Below: model for storing

octree grid on 3D array. ... 52
Figure 5.3 Sequence of finding leader elements using recursive approach 54
Figure 5.4 Normalizing the grid for data interpolation .. 55
Figure 5.5 Recursively merging cells into a preferred size .. 56
Figure 5.6 An example of quardtree structure ... 57
Figure 6.1 Environment for smoke simulation on an octree grid with VD-refinement 59
Figure 6.2 Comparison of different VD-refinement .. 61
Figure 6.3 Comparison of different camera FOV ... 63
Figure 6.4 Turbulence flows over a cylindrical rods at different output resolutions.

Actual output size (right) and enlarged size (left). ... 64
Figure 6.5 Bouncing sphere through a sheet of particles .. 65
Figure 6.6 Comparison between with and without particles .. 66
Figure 6.7 Dynamic flows through cylindrical rods. Result is rendered with

approximately 340k particles. ... 66
Figure 6.8 Screen shots of our experimental results in various scenes 67
Figure 7.1 (a) Fluid flow along the grid orientation. (b) Fluid flow diagonal to the grid

orientation. .. 70

1

CHAPTER 1
Introduction

Figure 1.1 Smoke simulation generated by ®Blender 2.5

1.1 Introduction and Problem State

Physically-based fluid simulation is a widely used technique for
animating smoke, fire and other fluid phenomena. Even though physically-based
simulation can generate physically realistic results as well as stunning effects, which are
impossible for the artist to animate manually frame-by-frame, it usually comes with high
computational cost as a trade-off. Since the main focus of graphics and realism is on
generating plausible visual effects rather than accuracy, a challenging topic is how to
minimize the computational cost, while being able to obtain as highly detailed
animations as possible.

Grid-based simulation is a common approach for physically-based fluid
animations. [1-4] use fixed uniform grid for animating smoke. The method works well for
coarse grids, but since animation is becoming more and more in demand in the special
effects industry, animating on a fixed uniform grid in a larger domain, or refinement for
higher detail is not scalable, because of its high computational cost consumption.

To address this, several adaptive grid refinement were introduced to
optimize the simulation. [5,6] replace the traditional fixed uniform grid with an adaptive
non-uniform grid using an octree structure. Adaptive grid refinement on an octree
structure has been successful in optimizing the simulation. The grid is subdivided only
in some specific areas that require higher detail and are merged to save computational

2

cost when details are no longer necessary. The methods can be speed up by utilizing
high performance parallel computing of graphic hardware such as that implemented in
[7]. Overall, these adaptive grid techniques allow the capturing of small visual details at
a lower computational cost compared to the earlier fixed uniform grid.

Beside an octree grid, [8] propose a view-dependent grid to optimize the
simulation based on viewing angle. Instead of being constructed on Cartesian
coordinates as usual, the grids are constructed on the transformed polar coordinate that
is most fit for the viewing angle. With a view-dependent grid, fluid details gradually
decrease proportionally as the distance from the camera increases, thus providing
constant screen-space detail across the simulation domain. In addition, fluid that is far
beyond the visible scene is not computed. However, unlike the octree grid, view-
dependent grid is subdivided uniformly on the transformed coordinates; thus, grid size is
fixed and not adaptive for detail optimization.

Up until now, fluid simulations are performed faster with current
hardware and technology; nevertheless, they are not fast enough as people always
expect animations with higher details. This research proposes an optimization
improvement for smoke simulation on an octree grid that allows faster simulations with
details preserved in the visual result.

1.2 Objectives of Study

In this research, we propose a method to animate smoke that consumes
less computational cost but still preserves the visual results. The objective is to
minimize unnecessary computational cost for speed while still preserving any small
visual details and natural behaviors of smoke that usually disperse when the
optimization is applied.

We have realized that a large simulation domain contains lots of distant
fluids which usually have less visual attention; thus, small-scale details can be
neglected in these regions, as well as hidden or distant smoke. Since the octree grid is
optimized for details but not for viewing angle whereas the view-dependent grid is
optimized for viewing angle but not for details, we present an improved method for

3

animating smoke on octree grid in order to additionally refine the octree grid by a view-
dependent level-of-detail.

1.3 Scope of Study

We have studied only in optimizing a grid-based smoke simulation which
assumes smoke as incompressible and homogenous fluids. Our consideration is to
reduce unnecessary computational cost while still remaining physically realistic and
preserving visual details. The proposed method is based on a view-dependent level-of-
detail and a structure of octree grid which is an adaptive structure over space and time.

1.4 Expected Benefits

The proposed method should improve the simulation performance e.g.,
consume relatively lower computational cost and extend the possibility for higher detail
and larger domain simulation. The method should be beneficial for various computer
graphics applications i.e., game industries, movie special effects and advertisements. In
addition, the adjustable thresholds in our method allow the user to flexibly weight
between details and computational cost to compromise for various simulation scenarios.
Also, the method is fast and easily implemented, yet capable to be integrated as an
extension of a current grid-based solver.

1.5 Publications

R. Bunlutangtum and P. Kanongchaiyos, Adaptive Grid Refinement
Using View-Dependent Octree for Grid-Based Smoke Simulation, The 4th International
Conference on Motion in Games, LNCS 7060, (2011):204-215.

R. Bunlutangtum and P. Kanongchaiyos, Enhanced View-Dependent
Adaptive Grid Refinement for Animating Fluids, Accepted to be published in The 10th
International Conference on Virtual Reality Continuum and Its Applications in Industry,
(2011).

R. Bunlutangtum and P. Kanongchaiyos, Smoke Simulation with View-
Dependent Adaptive Grid Refinement, Accepted to be published in The 4th International
Conference on Computer and Electrical Engineering, (2011).

4

1.6 Definition

1 Domain: a defined area for the simulation, containing fluids,
obstacles and/or empty spaces. The domain is usually defined as
three-dimensional rectangular cuboids.

2 Cell: a discrete computational unit that represents continuous
quantities of fluid, usually defined as a cubic volume. A domain is
composed of cells which are associated with the grid resolution;
higher resolution means more number of cells per unit volume. Each
cell can be fluid, obstacle or empty cell.

3 Element: a single unit of an array. For example, an array with
dimensions of 2 x 2 x 2 contains 8 elements.

4 Grid: refers to a structure made up of a series of intersecting vertical
and horizontal axes used to structure grid-based fluid content. Grids
divide space into cubic cells, with each cell storing discrete fluid
quantities i.e., pressure, velocity, and density.

5 Fixed Uniform Grid: a grid containing cells that all have the same
size and with uniformly positioning throughout space and time.
Number of cells does not change over time.

6 Adaptive Grid: a grid containing cells with non- uniformity in size.
Their size and position are usually determined by the octree
structure. Each cell has unpredictable adjacent neighboring cells.
Number of cells can change adaptively over time.

7 Grid Refinement: an optimization process for grid-based simulation
consists of two actions i.e., grid subdivision: refining the grid to
obtain details and grid merging: coarsening the grid to reduce the
computational cost.

8 View-Dependent Grid Refinement: grid refinement that consider a
viewing frustum, positions and perspective as criteria for subdivision
and merging.

5

9 Rendering: a process for generating an image or motion picture
from 3D space, or in another word, 3D fluid volume is projected into
2D via rendering.

1 0 Frame: a still image or a snapshot of an animation. Basically, an
animation is composed of several frames in a sequence.

1 1 Viewing Frustum: the region of 3D space to be displayed on the
screen. The shape of the viewing frustum varies depending on what
kind of camera lens is being used, but typically a rectangular
pyramid is used for perspective view. The viewing frustum is
bounded by the field of view (FOV) of the camera, a near clipping
plane and a far clipping plane (see Figure 1.2).

Figure 1.2 Viewing Frustum

1 2 Field of View (FOV): or angle of view, describes the angle of
projection by the camera’s lens onto the focal plane. A larger degree
FOV results in a wider perspective view. A camera's angle of view
can be measured horizontally, vertically, or diagonally.

Figure 1.3 Field of View

6

1.7 Research Procedure

Our research is planned for an 8-month period starting in December 2010 and ending in August 2011. The process can be
summarized into 7 stages as follows.

Task Start Duration

(months)
12/10 1/11 2/11 3/11 4/11 5/11 6/11 7/11 8/11

Theory and literature reviews Dec 10 4

Algorithm design Feb 11 3

Application design Apr 11 2

Application Implementation May 11 2

Result evaluation June 11 2

Conclusion July 11 1

Thesis report July 11 2

Table 1.1 Research Procedure

6

7

CHAPTER 2
Literature Reviews

Fluid phenomena such as droplets splashing, rising smoke and fire are
some of the stunning natural effects that today can be artificially generated by computer
graphics and is hard to distinguish the difference between a “real” one and a “fake” one.
There are several techniques to animate such fluid phenomena. In general, fluid
simulation can be categorized into physically-based and non physically-based methods.
Physically-based methods have benefit over non-physically based methods in several
ways i.e., produce physically realistic and allow high-detail fluid simulation which are
impossible for the artists to animate manually frame by frame. In this section, we review
four different types of physically-based fluid simulation.

2.1 Grid Based Method

Figure 2.1 Grid-based fluid simulation using octree structure (image from: [9])

Grid based fluid simulation was first introduced in computer graphics by
[1], but because their model uses an explicit integration scheme, their simulations are
only stable if the time step is chosen small enough; therefore, the simulation is relatively
slow. [2] proposed an unconditionally stable simulation by using semi-Lagrangian
advection scheme with implicit solvers. However, numerical dissipation was severe in
this method. [3] introduced a vorticity confinement term to model the small scale rolling
features characteristic of smoke to compensate the numerical dissipation caused by the
implicit model. The methods have been extended to other fluid phenomena such as fire
[10], explosion [11], viscoelastic materials [12] and bubbles [13]. These previous works

8

can be categorized as fixed uniform grid as the grid are subdivided uniformly and their
cell’s position are fixed throughout the simulation domain.

Figure 2.2 Left: Fixed Uniform grid. Right: View-dependent grid. (image from: [8])

Figure 2.3 A view-dependent water simulation on rendering views (above) and top
views (below) (image from: [8])

 A fixed uniform grid is simple and straightforward to implement
compared to others. It works well for coarse grids but unfortunately, when applied to
larger domains or higher grid resolutions, the simulation encounters a scalability
problem since it consumes a high computational cost due to its uniform grid size.
Adaptive grids, on the other hand, are an alternative method that consumes relatively
lower computational cost by dynamically reducing and increasing the number of cells in
domain over time. [14,15] introduced adaptive mesh refinement (AMR) for compressible
flows while [9] presented an adaptive mesh method using an octree. In computer
graphics, the octree data structure has been proposed for adaptive grid refinement by
[5] and asymmetric octree by [6], which results in detail optimization, while [8] propose a
method that is optimized for viewing angle by using a view-dependent grid, decreasing
fluid details as distance from the camera increases, thus providing constant screen-

9

space detail across the simulation. However, contrary to the adaptive grid using octree,
view-dependent grid is subdivided uniformly, thus, lacking detail optimization.

One of the main problems with octree grids is their dynamic and
irregular structure, which is contrary to the design of graphics hardware. [7] present a
problem decomposition for parallel processing that takes advantage of the graphics
hardware while reducing expensive hierarchy traversals on non-uniform and adaptive
octree grids.

Figure 2.4 Smoke simulation using octree grid refinement on GPU (image from: [7])

2.2 Particle Based Method

Figure 2.5 Water simulation using SPH with Adaptive Kernel (image from: [16])

Smoothed Particle Hydrodynamics (SPH) is a commonly-used particle
based method. With SPH, fluid is simulated on a particle system by sub-sampling a set
of elements called particles. Each particle contains fluid attributes i.e., mass, density,
velocity, and pressure. Fluid values and derivatives of fluid quantities at arbitrary
positions are approximated by a set of neighboring discrete particles with a specified
function called a “smoothing kernel”.

10

SPH was first introduced in 1977 by [17] for astrophysical simulations
i.e., large scale structure in the universe, galaxy formation, supernova and solar
formation. Later, many researches on computer graphics [18-22] have used the SPH
method to simulate fluid flow. The efficiency of SPH has been improved by [16,23,24]
with a technique called “Adaptive SPH”; adaptively adjusting kernel size to reduce
computational time in dense areas and preserve details in sparse areas.

SPH easily demonstrates the turbulent splashing flows and catches
small details of fluid phenomena such as bubbles and foams. Furthermore, the
demands of computational resources of SPH with a moderate number of particles are
generally less than grid based or LBM counterparts. Thus, several fluid phenomena in
games or other interactive system are simulated using the Lagrangian method.
However, the stability, accuracy and speed of the SPH method largely depend on the
selected smoothing kernel. Also, SPH is hardly guaranteed for its incompressibility.

Figure 2.6 Adaptive Kernel (image from: [16])

2.3 Lattice Boltzmann Method

[25] introduced the Lattice Boltzmann method (LBM) into the computer
graphics community. LBM is a relatively new approach to approximating the Navier-
Stokes equations. Unlike traditional CFD methods, which solve the governing equations
of macroscopic properties (i.e., mass, momentum and energy), the LBM is based on
microscopic models and mesoscopic kinetic equations (the Lattice Boltzmann equation).
The fundamental idea is to construct simplified kinetic models that incorporate the
microscopic and mesoscopic physical processes so that the macroscopic averaged
properties obey the desired macroscopic equations (the Lattice Boltzmann equation
converges to the Navier-Stokes equation).

11

Figure 2.7 Water simulation using Lattice Boltzmann Method (image from: ®Blender)

LBM provides a relatively easy and consistent way to incorporate the
underlying microscopic interactions especially for multiphase flows with moving and
deformable interfaces. Moreover, LBM has several advantages over other conventional
physically-based fluid animation methods, such as in dealing with complex boundaries
and parallelizing the algorithm. The major drawbacks of LBM are its poor scalability and
small time steps. Moreover, the time step must be small enough to ensure the stability
of the simulation.

Figure 2.8 Water simulation using Lattice Boltzmann Method (image from: ®Blender)

2.4 Tetrahedral Mesh Method

Fluid simulation using an unstructured tetrahedral mesh has been
proposed in computer graphics field by [26], [27] with a velocity-based approach and
[28] with a vorticily-based approach while [29] presented a two-way coupling of fluid
and rigid bodies. The combination of unstructured tetrahedral domains and dynamic
remeshing at each time step creates a flexible environment for creating complex
scenes. Later, [30] presented a technique called “isosurface stuffing” for grading mesh
resolution across the fluid boundary, which allows for effective conformability to complex

12

boundaries. Moreover, they have presented a thickening strategy for reducing volume
loss and artifacts of disappearing droplets or sheets during simulation.

In general, tetrahedral meshes conform well to irregular boundaries and
their size can be adjusted to optimize the simulation. These benefits make tetrahedral
meshes a flexible and effective method for simulation with complex environments.
However, simulation usually encounters complications for free surfaces and moving
boundaries because the meshes must track the movement of those surfaces. Simulation
also needs a specific scheme to prevent volume loss or artificial damping that usually
occurs in droplets, filaments or thin sheets.

Figure 2.9 Fluid Animation with Dynamic Meshes (image from: [29])

Figure 2.10 A cutaway view showing graded tetrahedral meshes (image from: [30])

13

CHAPTER 3
Theories

In this chapter, we mention some of the physics equations that describe
the characteristic nature of fluid motions and their simplified terms for smoke
animations, followed by an introduction to the common solving methods for grid-based
smoke simulation and an overview of the dynamic grid refinement methods.

3.1 Differential operations

Vector Calculus is a branch of mathematics
concerned with differentiation and integration of vector fields
primarily in three-dimensional Euclidean space (Թଷ). Vector
calculus studies various differential operators defined on
scalar or vector fields, which are typically expressed in terms
of the “del operator” (׏). The four most important differential
operations in vector calculus are summarized in Table 3.1,
where ݌ denotes a scalar field and ࢛ denotes a two-dimensional vector field: ࢛ ൌ
ሺݑ, .ሻ. The meaning of four differential operations in Table 3.1 is described belowݒ

1. Gradient : Measures the rate and direction of change in a scalar field.
2. Divergence : Measures the magnitude of a source or sink at a given

point in a vector field.
3. Laplacian : Measures the rate at which the average value of ݌ over

spheres centered at ࢞ ൌ ሺݔ, ሻ as the radius of the࢞ሺ݌ ሻ deviates fromݕ
sphere grows.

4. Curl : Measures the tendency to rotate about a point in a vector field.

Note that the Laplacian operator is a composition of the divergence and
gradient operations, defined as the divergence of gradient: ׏ଶ݌ ൌ ׏ · If the grid .݌׏
cells are square (that is, if ߲ݔ ൌ which we assume for this article), the Laplacian ,ݕ߲
simplifies to:

݌ଶ׏ ൌ
௜ାଵ,௝݌ ൅ ௜ିଵ,௝݌ ൅ ௜,௝ାଵ݌ ൅ ௜,௝ିଵ݌ െ ௜,௝݌4

ሺ߲ݔሻଶ

14

Operator Definition Finite Different Form

Gradient ݌׏ ൌ ൬
݌߲
ݔ߲ ,

݌߲
݌׏ ൰ݕ߲ ൌ ൬

௜ାଵ,௝݌ െ ௜ିଵ,௝݌
ݔ2߲ ,

௜,௝ାଵ݌ െ ௜,௝ିଵ݌
ݕ2߲ ൰

Divergence ׏ · ࢛ ൌ
ݑ߲
ݔ߲ ൅

ݒ߲
׏ ݕ߲ · ࢛ ൌ

௜ାଵ,௝ݑ െ ௜ିଵ,௝ݑ
ݔ2߲ ൅

௜,௝ାଵݒ െ ௜,௝ିଵݒ
ݕ2߲

Laplacian ׏ଶ݌ ൌ
߲ଶ݌
ଶݔ߲ ൅

߲ଶ݌
݌ଶ׏ ଶݕ߲ ൌ

௜ାଵ,௝݌ െ ௜,௝݌2 ൅ ௜ିଵ,௝݌
ሺ߲ݔሻଶ

൅
௜,௝ାଵ݌ െ ௜,௝݌2 ൅ ௜,௝ିଵ݌

ሺ߲ݕሻଶ

Curl ׏ ൈ ࢛ ൌ ተ

݅ ݆ ݇
߲
ݔ߲

߲
ݕ߲

߲
ݖ߲

ݑ ݒ ݓ

ተ ൌ ൬
ݓ߲
ݕ߲ െ

ݒ߲
ݖ߲ ,

ݑ߲
ݖ߲ െ

ݖ߲
ݔ߲ ,

ݒ߲
ݔ߲ െ

ݔ߲
 ൰ݕ߲

Table 3.1 Summary of differential operators in two dimensional vector fields

3.2 The Navier-Stokes Equations

The Navier-Stokes equations describe the motion of fluid, formulated by
French physicist and engineer Claude-Louis Navier and Irish mathematician George
Gabriel Stokes. The Navier-Stokes equations are a set of non-linear differential
equations in terms of rate of change of fluid quantities over time. These equations are
a combination of terms; each term defines individual fluid properties (i.e., advection,
pressure, diffusion, viscosity and external forces). For computer graphics, fluid
compressibility can be neglected due to its high computational cost and lack of
important role in the simulation. This lead to a simpler form of Navier-Stokes equations,
called “The Incompressible Navier-Stokes equations” or “Euler Equations”:

׏ · ࢛ ൌ 0 Equation 3.1

࢛߲
ݐ߲ ൌ െሺ࢛ · ࢛ሻ׏ െ

1
݌׏ߩ ൅ ࢛ଶ׏ߥ ൅ Equation 3.2 ࡲ

15

Where ߭ is the kinematic viscosity, ߩ is the fluid density, ݌ is the scalar
pressure field, ࡲ is external forces (or body forces), ࢛ is a velocity vector field: ࢛ ൌ
ሺݔ, ,ݒ ൌ׏ : is the vector operator of spatial partial derivatives ׏ ሻ, andݓ ሺ ப

ப୶
, ப
ப୷
, ப
ப୸
ሻ.

The Navier-Stokes equations are obtained by imposing that fluid
conserves both mass (Equation 3.1) and momentum (Equation 3.2). Equation 3.1 is
“Mass conservation” or “Continuity equation”, states that fluid velocity field has “zero
divergence” which notifies that the velocity flux that flow inward and outward at any
infinitesimal volume should be equal. Equation 3.2 is a “momentum conservation
equation” derived from Newton’s second law: ࡲ ൌ ,The term on the left hand side .ࢇ݉
 is the rate of change of velocity with respect to time, defined by right hand side ,ݐ߲/࢛߲
components i.e., advection, pressure, viscosity diffusion, and external forces as
described below.

1. Advection: represents the “self-advection” of the velocity field, which
means velocity causes the fluid to transport itself as well as its quantities
such as density, temperature, pressure and velocity along with the flow.
It is a time independent acceleration of the fluid with respect to space.

࢛߲
ݐ߲ ൌ . . . െ

ሺ׏ · ࢛ሻ࢛ …

2. Pressure Gradient: states that the fluid should propagate from higher
to lower pressure areas by the amount of its pressure difference.

࢛߲
ݐ߲ ൌ . . . െ

1
ߩ ݌׏ …

3. Viscosity Diffusion: determines how fast the fluid diffuses its velocity to
surrounding neighbors. The parameter represents a kinematic viscosity
of the fluid; thick fluid which has higher kinematic viscosity diffuses its
velocity quicker and tends to flow slowly. Viscosity in gases is very low,
thus in some case, this term can be negligible.

࢛߲
ݐ߲ ൌ . . . ൅׏ߥ

ଶ࢛ …

16

4. External Forces: or body forces are any other forces that affect the fluid
movement. Gravity force, buoyancy force are external forces.

࢛߲
ݐ߲ ൌ . . . ൅ࡲ …

Other fluid quantities are also described with similar Navier-Stokes
equations. Here are the Navier-Stokes equations that describe density and temperature
respectively.

ࢊ߲
ݐ߲ ൌ െሺ࢛ · ࢊሻ׏ ൅ ݇ௗ׏ଶࢊ ൅ Equation 3.3 ࡿ

߲ܶ
ݐ߲ ൌ െሺ࢛ · ሻܶ׏ ൅ ଶܶ׏்݇ ൅ Equation 3.4 ܪ

Equation 3.3 is a color density equation, where ࢊ is a vector field
denotes the color density of smoke in alpha (transparency), red, green and blue
respectively: ࢊ ൌ ൫݀ఈ, ݀௥, ݀௚, ݀௕൯. Color density is advected (transport) along a
velocity field and diffuses due to viscosity in a similar manner as the Navier-Stokes
Equations that describe velocity. The first term is a density advection term. It states that
density should follow the velocity field. The second term is a diffusion term, where ݇ௗ
denotes a viscosity constant of density. High viscosity means color density diffuses itself
to its surroundings quicker. ࡿ is a color density added from external sources.

Equation 3.4 is the temperature equation, where ܶ is the fluid
temperature, ்݇ is a viscosity constant of temperature and ܪ is any temperature
added from external sources. For the full form of the temperature equation, we refer the
reader to [11].

3.3 Equations for Smoke Simulations

Smoke has its own characteristics and behaviors apart from other fluids;
for instance, smoke does not have an exact boundary as liquid and smoke tends to
diffuse away while liquid is clustering together. These unique characteristics and
behaviors need a specific scheme for simulation. In this section, we have gathered the
essential equations specified for smoke simulation.

17

For visual simulation, smoke can be assumed as an incompressible and
homogeneous fluid. The viscosity term shown in Equation 3.2 can be neglected since
the fluid motion is usually below the speed of sound and hence, the appearance of
viscosity is dominated by the numerical dissipation [3]. The Navier-Stokes equations can
be reduced to Euler equations as follows.

׏ · ࢛ ൌ 0 Equation 3.5

࢛߲
ݐ߲ ൌ െሺ࢛ · ࢛ሻ׏ െ

1
݌׏ߩ ൅ Equation 3.6 ࡲ

Equation 3.5 is a mass conservation equation (or called continuity
equation) and Equation 3.6 is a momentum conservation equation. Note that fluid
density ߩ is constant both in space and time since we assume smoke as an
incompressible and homogeneous fluid.

The Navier-Stokes equations that describe density (Equation 3.3) and
temperature (Equation 3.4) can neglect their viscosity terms as well. Below are their
simplified equations.

ࢊ߲
ݐ߲ ൌ െሺ࢛ · ࢊሻ׏ ൅ Equation 3.7 ࡿ

߲ܶ
ݐ߲ ൌ െሺ࢛ · ሻܶ׏ ൅ Equation 3.8 ܪ

Buoyancy is a fluid behavior that causes smoke to rise due to
temperature and fall downwards due to gravity. [3] model these effects by defining an

additional force that is directly proportional to the density and the temperature.

௕݂௢௨௬ ൌ െࢠߩߙ െ ሺܶߚ െ ௔ܶ௠௕ሻࢠ Equation 3.9

Where ݖ ൌ ሺ0,0,1ሻ points in the upward vertical direction, ௔ܶ௠௕ is the
ambient temperature of the air and α and β are the thermal buoyancy constant for
density and temperature respectively. Note that when ߩ ൌ 0 and ܶ ൌ ௔ܶ௠௕ , the
buoyancy force is zero.

18

3.4 Grid Based Fluid Simulation

In this section, we first overview the grid based fluid simulation and its
underlying structure. Then we describe the mathematical discretization of fluid equations
and a successive approach for solving these equations on a grid structure.

3.4.1 Overview

Grid-Based Fluid Simulation is an Eulerian approach. Instead of treating
fluid as moving particles and tracking each particle movement as in Smooth Particle
Hydrodynamics (SPH), Grid-Based Fluid Simulation uses a grid to represent the fluid
quantities. The MAC Grid (MAC stands for Marker-and-Cell), an original grid used in
fluid simulation was first introduced by [31]. It stores velocity at cell faces and stores
other quantities such as pressure and density at the center of each cell.

(a) (b)

Figure 3.1 (a) Voxel of MAC grid (image from: [1])
 (b) Grid-based structure (image from: [2])

[1] used relatively coarse grids to simulate fluid in 3D. [2] modified the
MAC grid to store velocity at cell center for simplicity, and introduced a semi-Lagrangian
advection scheme with an implicit method, which treats cells as particles during the
advection step to achieve a stable simulation. Within a decade, a variety of works have
been introduced using grid-based method such as fire [10], explosions [11], viscoelastic
materials [12] and bubbles [13].

19

The grid-based approach has many advantages compare to others, e.g.,
reliable, stable at large time steps, high quality of smooth liquid surfaces and efficient
for parallel computing. Furthermore, it is suitable to represent the fluid volume,
especially for smoke that usually spreads itself out over the domain. These make grid-
based methods capable for smoke simulations.

3.4.2 Discretization of Navier-Stokes Equations

This section shows how to discretize the continuous field of fluid
described by the Navier-Stokes equations into a discrete grid space and the step-by-
step of how to solve these equations on the grid structure.

The method described here is based on a stable fluids technique
proposed by [2]. First of all, equation 2 is simplified by applying the Helmholtz-Hodge
Decomposition:

Զ
࢛߲
ݐ߲ ൌ Զ൬െሺ࢛ · ࢛ሻ׏ െ

1
ߩ ݌׏ ൅ ܝଶ׏ݒ ൅ ۴൰ Equation 3.10

Equation 3.10 is a divergence-free equation, where Զ is the projection
operator that projects any vector field onto its divergence-free component. The
following step is to apply Equation 3.11 and Equation 3.12 into Equation 3.10.

Զ
࢛߲
ݐ߲ ൌ

࢛߲
ݐ߲ Equation 3.11

Զሺ݌׏ሻ ൌ 0 Equation 3.12

The result is a projected Navier-Stokes equation as shown below.

࢛߲
ݐ߲ ൌ Զሺെሺ࢛ · ࢛ሻ׏ ൅ ܝଶ׏ݒ ൅ ۴ሻ Equation 3.13

The pressure term is dropped and the equation is in a simpler form. The
right hand side of Equation 3.13 has only one unknown variable; velocity ࢛ሺ࢞ሻ, where
ሻ࢞ሺ࢛ ൌ ሼݑ, ,ݒ ࢞ ሽ andݓ ൌ ሼݔ, ,ݕ ሽ. To solve the projected Navier-Stokes equationݖ
(Equation 3.13) for velocity, which is in a differential form, we split Equation 3.13 into
four separate terms and sequentially solve term by term as illustrated below.

20

ሻ࢞଴ሺ࢛
௔ௗௗ௙௢௥௖௘௦
ሱۛ ۛۛ ۛۛ ሮۛ ሻ࢞ଵሺ࢛

௔ௗ௩௘௖௧
ሱۛ ۛۛ ሮ ሻ࢞ଶሺ࢛

ௗ௜௙௙௨௦௘
ሱۛ ۛۛ ሮۛ ሻ࢞ଷሺ࢛

௣௥௢௝௘௖௧
ሱۛ ۛۛ ሮۛ ሻ࢞ସሺ࢛

Before performing these four steps, we first initialize our domain with an
empty grid. Also, velocity ࢛଴ must be given as an initial value. Then four steps are
performed sequentially each iteration. The detail of each step is as follows.

Adding forces

External forces ࡲ including gravity force, vorticity confinement force,
buoyancy force and any user-defined or control forces are added to each cell at this
step. The following equation adds external forces to the cell’s current velocity.

ሻ࢞ଵሺ࢛ ൌ ሻ࢞଴ሺ࢛ ൅ Equation 3.14 ࡲݐ∆

Equation 3.14 is derived by a “Forward Euler Method” for speed and
simplicity. It is a first-order accuracy method but efficient enough for visual simulation.
Higher-order accuracy methods such as Runge-Kutta which is a second order accuracy,
BFECC method [32] and the MacCormack method [33] can also be used. These higher
order accuracy methods might result in a detail improvement but they are relatively
slower than the Forward Euler Method.

Advection

To solve the advection term of Equation 3.13, instead of directly moving
fluid quantities along the velocity field which would be unstable at large time steps, the
semi-Lagrangian advection scheme is used for stability as introduced by [2]. The
advection scheme using the semi-Lagrangian method is a first-order accurate
discretization scheme both in time and space. Cells are treated as particles, each
located at cell’s center. Each particle is traced back in time using its current velocity to
find its previous position. Then the fluid quantities (density, velocity, pressure etc.) at
that position replace the fluid quantities at the current position. Here is the mathematical
representation of the advection step derived from the Euler Method.

ሻ࢞ଶሺ࢛ ൌ ሻሻ Equation 3.15ݐ∆െ,࢞ଵሺܲሺ࢛

21

Figure 3.2 (a) Semi-Lagrangian advection (image from [2]).
(b) Fluid velocity interpolation (image from: GPUGems, ®Nvidia 2004).

Since previous position is not always located at the cell’s center,
interpolation is required. For speed and simplicity, bilinear interpolation is used for two
dimensional grids and trilinear interpolation is used for three dimensional grids.

Note that there exist many higher accuracy advection schemes such as
back and forth error correction [32], MacCormack [33], QUICK [34], FLIP [35] which
can also be used. These higher order advection schemes produce stable yet higher
detail simulations, but they also require relatively higher computational cost as well.

Diffusion

Diffusion describes the spreading behavior of fluids. Each cell
exchanges its quantities with neighbors until the equilibrium is reached. For explicit
implementation, using the Forward Euler is straightforward. Unfortunately, this is
unstable when fluid propagates further than the neighboring cells. The implicit method
by tracing back in time is used. However, unlike the advection step, this term cannot be
solved cell-by-cell directly since there are many unknown variables contained within the
Laplacian operator. Thus, the only way is to solve as a sequence of linear equations.
Here is the implicit equation which can be solved by using matrix operations, where ࡵ is
the identity matrix.

ሻ࢞ଶሺ࢛ ൌ ሺࡵ ൅ ሻ Equation 3.16࢞ଷሺ࢛ଶሻ׏ݐ∆ݒ

22

By applying a finite difference of ׏ଶ along with the fact that cell
dimension is cubic: ߲ݔ ൌ ݕ߲ ൌ Equation 3.16 can be rewritten in two-dimensional ,ݖ߲
discrete form as follow.

,ଶሺ࢛݅ ݆ሻ ൌ ,ଷሺ࢛݅ ݆ሻ ൅ ݐ∆ݒ ቊ
ଷሺ࢛݅ ൅ 1, ݆ሻ ൅ ଷሺ࢛݅ െ 1, ݆ሻ ൅ ,ଷሺ࢛݅ ݆ ൅ 1ሻ ൅ ,ଷሺ࢛݅ ݆ െ 1ሻ െ ,ଷሺ࢛݅4 ݆ሻ

ଶݔ߲ ቋ

The solution to the above equation is obtained by solving a matrix of
linear equations. The commonly used method is the “Jacobi Iteration”.

Projection

The final step is the projection step which projects back the solution to a
none divergence-free term as it was before applying the Helmholtz-Hodge
Decomposition. The projection step is done by adding the pressure term back into
Equation 3.13. First of all, we need to solve for pressure which is still an unknown
variable. Equation 3.18 is a Poisson equation that we solve for the pressure ݌. Once
the pressures are known, we then find ݌׏ each cell and substitute back into Equation
3.17. The result is the velocity of the current time step which is the final solution of the
Navier-Stokes equations.

ሻ࢞ସሺ࢛ ൌ ሻ࢞ଷሺ࢛ െ ݐ∆
1
ߩ ሻ Equation 3.17࢞ሺ݌׏

ሻ࢞ሺ݌ ଶ׏ ൌ
ߩ
ݐ∆ ׏ · ଷ࢛

ሺ࢞ሻ Equation 3.18

The Navier-Stokes equations of color density (Equation 3.3) and
temperature (Equation 3.4) can be evaluated with the same approach as for velocity.

23

3.4.3 Boundary Conditions

Boundary conditions define fluid behaviors at simulation boundaries and
fluid surfaces. There are two types of boundary conditions:

Neumann boundary conditions

At the fluid boundary, the pressure gradient in a direction of normal
vector to the boundary must equal zero, or in another word, fluid pressure at the
boundary must equal to the solid obstacle pressure. This condition is to ensure that no
flow passes through solid walls.

݌߲
߲݊

ሺ࢞ሻ ൌ ሻ࢞ሺ݌׏ · ࢔ ൌ 0 Equation 3.19

Dirichlet boundary conditions

On a fluid-solid boundary surface, velocity must satisfy “no-slip condition”
due to the viscous effects. To enforce no-slip condition, the tangential component of the
velocity of the fluid must be the same as the tangential component of the velocity of the
surface. If we designate the velocity of the rigid surface as ࢂሺ࢞ሻ and that of the fluid as
 the no-slip boundary ,ݐ ሻ, and select a unit tangent vector to the surface as࢞ሺ࢛
condition can be stated as

ሻ࢞ሺ࢛ · ݐ ൌ ሻ࢞ሺࢂ · ݐ

Since there is no mass transfer across the boundary, the normal
components of the velocity at the boundary are equal. If ࢔ represents the unit normal
vector, we have:

ሻ࢞ሺ࢛ · ࢔ ൌ ሻ࢞ሺࢂ · ࢔

As a consequence of the two above conditions, we arrive at the
conclusion that the fluid velocity must match the velocity of the rigid surface at every
point on it.

ሻ࢞ሺ࢛ ൌ ሻ Equation 3.20࢞ሺࢂ

24

Figure 3.3 Schematic representation of no-slip boundary condition.

3.4.4 Vorticity Confinement

(a) (b)

Figure 3.4 (a) Vorticity direction is along the fluid rotation.
(b) Vorticity confinement force increase circulation (image from: [4])

Although using the semi-Lagrangian method for advection term is
unconditionally stable even with arbitrary large time steps but when simulated with large
time steps or large grid spacing, the fluid animation suffers from high numerical
dissipation and results in sticky motions. [3] deal with numerical dissipation using a
method called “Vorticity Confinement”. Vorticity is the tendency for elements of the fluid
to spin or rotate. The idea is to inject some amount of vorticity during simulation to
cause fluid to flow swirly. By definition, vorticity is the curl of fluid velocity:

࣓ ൌ ׏ ൈ Equation 3.21 ࢛

 ௖௢௡௙ࢌ

 ࣁ

25

In Equation 3.21, ࣓ denotes vorticity and ࢛ denotes velocity. Vorticity is
a vector with a direction parallel to the axis of rotation. Its direction can be determined
by using the right hand rule.

ࣁ ൌ |࣓|׏ Equation 3.22

ࡺ ൌ
ࣁ
|ࣁ| Equation 3.23

Equation 3.22 computes the vorticity gradient while Equation 3.23
computes a normalized vorticity location vectors, where ࡺ is the normalized vorticity
location vector that points from lower to higher vorticity concentrations, the direction of
which is perpendicular to the axis of rotation. Then the magnitude and direction of the
paddle wheel force is computed by Equation 3.24.

௖௢௡௙ࢌ ൌ ࡺሺ݄ߝ ൈ ࣓ሻ Equation 3.24

Where ࢌ௖௢௡௙ is the vorticity confinement force for generating swirl
effects. 0 < ߝ is used to control the amount of vorticity force to add back into the flow
while ݄ is a grid scale. Note that vorticity confinement force (Equation 3.24) is treated
as one of the external forces ࡲ (see Equation 3.14).

3.5 Adaptive Grids

Since special effects are getting important in today industry, there is
even more demand for larger domains and higher detail fluid animations. Fluid
simulation using a fixed uniform grid encounters a scalability problem, since increasing
the grid resolution uniformly for entire domain requires a substantial amount of
computational cost associated with the increased numbers of cells. Adaptive grids, on
the other hand, are the alternative technique that consumes relatively lower amount of
computational cost by partially reducing and increasing the grid resolution by means of
a level-of-detail approach. This way, the simulation is optimized for any larger domains
or higher detail animations. The octree grid and the view-dependent grid are described
in the following subsections.

26

3.5.1 Octree Grid

The octree grid is basically a simulation grid constructed by using the
octree structure. It has several advantages compared to fixed uniform grid structure;
flexible and can be partially change its resolution for detail optimization. Grid resolution
is changed by a method called “grid refinement”. Simulation using octree grid has the
following important criteria: where and when to perform grid refinement in order to
properly optimize the simulation. Another criterion is how to discretize physics equations
and advect fluid quantities on octree grid, which is adaptive and non-uniform structure.
Grid refinement, tracing semi-Lagrangian paths and solving the Poisson equation on
octree grid are described in the following subsections.

Figure 3.5 Adaptive grid using octree structure (image from: [9])

27

3.5.1.1 Grid Refinement

Grid refinement is performed at every iteration of the simulation. It
consists of two opposite tasks i.e., subdivision and merging. Subdivision is performed
in order to increase the grid resolution and allows fine details to be captured while
merging is performed to reduce the grid resolution and the computational cost. If
subdivision and merging are performed in an appropriate way, the grid should be
optimized and result in a low computational cost consumption.

[6] use variations in smoke density to decide where and when to perform
subdivision and merging. The idea is that cells should be subdivided for higher
resolution if their neighboring cells are relatively different to each other. On the other
hand, cells should be merged for lower resolution if the variations of fluid quantities
among neighboring cells are no longer significant. The criterion for subdivision can be
written as follows:

,ݔሺܥ ,ݕ ሻݖ ൌ ,|ߩ௫ଶ׏|൫ݔܽ݉ ห׏௬ଶߩห, ൯|ߩ௭ଶ׏| ൐ ܶ Equation 3.25

Where ߩ denotes smoke density, ׏௫ଶߩ is a finite difference of ߲ଶݔ߲/ߩଶ,
 are defined likewise and ܶ is a specified threshold. Once there exists a ߩ௭ଶ׏ and ߩ௬ଶ׏
cell node ሺݔ௜, ,௜ݕ ,௜ݔሺܥ ௜ሻ in the octree grid such thatݖ ,௜ݕ ௜ሻݖ ൐ ܶ, which means if the
density difference among its neighboring cells exceed the specified threshold, then that
cell node should be subdivided. The velocity field, as well as the density distribution of
any newly generated child node, is obtained by trilinear interpolation.

On the other hand, if a node has children and they do not have sufficient
details any more, they can be merged and removed. To check whether the children
nodes should be merged or not, a new density function is computed for the considered
node by sub-sampling the smoke density distributions of its children nodes. If the
maximum difference between the sub-sampled density and the original densities at the
children nodes is smaller than a specified threshold, the children nodes should be
merged and removed.

28

3.5.1.2 Tracing Semi-Lagrangian Paths

Since the octree grid is adaptive and non-uniform over space and time,
advection step cannot be performed regularly. The semi-Lagrangian scheme does not
need changes as long as the tracing is kept inside an octree node. However, when its
path intersects with one of the six bounding faces of the node, we need to find the
appropriate neighboring node where the path can continue.

[6] describe six possible cases for semi-Lagrangian path tracing in an
octree. In Figure 3.6, solid lines represent the octree partitions. Dashed lines represent
the uniform grids inside octree nodes. The voxel at the head of the path is called the
source, and the voxel at the tail of the path is called the destination, since fluid
quantities are traced from the destination to the source, and the velocity at the source is
transferred to the destination. (a) Both the source and destination voxels belong to the
grid of the same node. (b) The source and destination voxels belong to two different
nodes with the same resolution. (c) The resolution of the destination node is higher than
that of the source node. (d) The resolution of the destination node is lower than that of
the source node. (e) The destination node is a child of the source node. (f) The source
node is a child of the destination node.

Figure 3.6 Six possible cases for semi-Lagrangian path in octree structure
(image from: [6])

29

3.5.1.3 Solving Possion Equation

Soving Equation 3.18 on the octree grid, which is adaptive and non-
uniform, requires a particular discretization of the Possion equation. Since the
discretization is closely related to the second vector form of Green's theorem that
relates a volume integral to a surface integral, [5] developed an adaptive discretization
on an octree data structure using the Green’s theorem stated as follows.

Figure 3.7 Left: one large cell neighboring four smaller cells. Right: zoom of
computational cell. (image from: [5])

Consider the discretization of Equation 3.18 for a large cell with
dimensions: ∆ݕ∆ , ݔ and ∆ݖ neighboring small cells as depicted in Figure 3.7. First
rescale Equation 3.18 by the volume of the large cell to obtain ௖ܸ௘௟௟∆׏ݐଶ ݌ሺ࢞ሻ ൌ

௖ܸ௘௟௟׏ߩ · ሻ. The right hand side of the equation now represents the quantity of࢞ଷሺ࢛
mass flowing in and out of the large cell within a time step ∆ݐ in m3s-1. This can be
further rewritten as

௖ܸ௘௟௟׏ · ൫࢛ߩଷሺ࢞ሻ െ ሻ൯࢞ሺ݌׏ݐ∆ ൌ 0 Equation 3.26

This equation implies that the ݌ߘ term is most naturally evaluated at the
same location as ࢛ଷሺ࢞ሻ, namely at the cell faces, and that there is a direct
correspondence between the components of ݌׏ and ࢛ଷሺ࢞ሻ. Moreover, substituting
Equation 3.17 into Equation 3.26 implies ௖ܸ௘௟௟׏ · ସ࢛ ൌ 0 or ׏ · ସ࢛ ൌ 0 as desired.

Invoking the second vector form of Green's theorem, one can write

30

௖ܸ௘௟௟ ׏ · כ࢛ ൌ ෍ ൫࢛௙௔௖௘כ · ௙௔௖௘ܣ൯࢔
௙௔௖௘௦

where ࢔ is the outward unit normal of the large cell and ܣ௙௔௖௘
represents the area of a cell face. In the case of Figure 3.7, the discretization of the ݔ
component ߲ݔ߲/כݑ of the divergence reads

כݑ߲

ݔ߲ ൌ
ଶܣכଶݑ ൅ ଷܣכଷݑ ൅ ସܣכସݑ ൅ ହܣכହݑ െ ଵܣכଵݑ

ݖ∆ݕ∆ݔ∆

where the minus sign in front of ݑଵܣכଵ accounts for the fact that the unit normal
points to the left. Then

כݑ߲

ݔ߲ ൌ
ሺݑଶכ ൅ כଷݑ ൅ כସݑ ൅ ሻ/4כହݑ െ כଵݑ

ݔ∆

The ݕ and ݖ directions are treated similarly. Once the velocity
divergence is computed, we solve for the pressure gradient by constructing a linear
system of Equation 3.18. Invoking again the second vector form of Green's theorem:

௖ܸ௘௟௟׏ · ሺ∆݌׏ݐሻ ൌ ෍ ൫ሺ∆݌׏ݐሻ௙௔௖௘ · ൯࢔
௙௔௖௘௦

௙௔௖௘ܣ Equation 3.27

The remaining discretization of the pressure gradient ሺ݌׏ሻ௙௔௖௘ is carried
out in such a manner that the resulting matrix is symmetric. It has been shown that the
system still yields a consistent approximation when the gradients are calculated with
standard central differences applied to the direct neighbor cells, as long as the
perturbation in the pressure location is ࣩሺ∆ݔሻ [7].

Figure 3.8 Pressure discretization on octree (image from: [7])

31

Figure 3.8 shows a 2D example of the octree grid where the pressure
gradient of the large cell can be obtained by:

෍ ሺ݌׏ · ሻ࢔
௙௔௖௘௦

௙௔௖௘ܣ ൌ ቀ
ଵ݌ െ ଴݌
ݔ∆ ൅

ଶ݌ െ ଴݌
ݔ∆ ቁ

1
ݔ∆2 ൌ ҧ݌ െ ଴݌ Equation 3.28

In this notation, ݌ҧ is the arithmetic average of ݌ଵ and ݌ଶ. The
discretization yields a large and sparse linear system with an equation for every cell of
the grid.

Once the pressure gradient is found at every face, we obtain the
pressure value from Equation 3.17 by carrying out the computation in a manner similar
to that of the velocity divergence above.

3.5.2 View-Dependent Grid

Figure 3.9 Left: Traditional unifrom grid. Right: View-dependent grid (image from: [8])

Departing from the adaptive grid using octree structure, the view-
dependent grid explores the use of a non-Cartesian, stable fluid method solver to obtain
a view-dependent level-of-detail. A Cartesian coordinate system is not always an
optimal fit to some dynamics problems, such as flow around an airfoil or through a pipe.
In these cases it is useful to define a new coordinate system that fits the problem at
hand, mapping it to a regular grid for the purpose of computation.

For a view dependent simulation proposed by [8], a cylindrical
coordinate system with the camera positioned on the central axis is used. In this
coordinate system, a grid is built to resemble the camera viewing frustum. The

32

computational grid provides fine detail close to the viewing position and geometrically
reduces detail with distance from the viewer.

To solve the equations for fluid flow in transformed coordinated system
other than Cartesian, coordinate transformation must be applied. Transformed
coordinates and Grid generation are described in following subsections.

3.5.2.1 Transformed Coordinates

Figure 3.10 Cylindrical coordinate system (image from: [8])

Fluid equations are solved in the transformed coordinate then mapped
back to the Cartesian space when needed. There are two approaches to the coordinate
transformation: a direct transformation and an inverse transformation. Given a regular,
orthogonal grid defined in a Cartesian space, the direct approach requires a set of one-
to-one functions that map Cartesian coordinates to a cylindrical coordinate system:

ݎ ൌ ,ݔሺݎ ,ݕ ሻݖ ൌ ඥݔଶ ൅ ଶ Equation 3.29ݕ

ߠ ൌ ,ݔሺߠ ,ݕ ሻݖ ൌ tanିଵ ቀ
ݕ
 ቁ Equation 3.30ݔ

 ݄ ൌ ݄ሺݔ, ,ݕ ሻݖ ൌ Equation 3.31 ݖ

And the inverse map back to the Cartesian coordinates are:

ݔ ൌ ,ݎሺݔ ,ߠ ݄ሻ ൌ Equation 3.32 ߠݏ݋ܿݎ

ݕ ൌ ,ݎሺݕ ,ߠ ݄ሻ ൌ Equation 3.33 ߠ݊݅ݏݎ

33

ݖ ൌ ,ݎሺݖ ,ߠ ݄ሻ ൌ ݄ Equation 3.34

Moreover, if we have a field ݑሺݎ, ,ሻ defined in the computational spaceߠ
applying the chain rule yields:

ݑ߲
ݔ߲ ൌ

ݑ߲
ݎ߲

ݎ߲
ݔ߲ ൅

ݑ߲
ߠ߲

ߠ߲
 Equation 3.35 ݔ߲

ݑ߲
ݕ߲ ൌ

ݑ߲
ݎ߲

ݎ߲
ݕ߲ ൅

ݑ߲
ߠ߲

ߠ߲
 Equation 3.36 ݕ߲

which provides Cartesian partial derivatives for ݑ in terms of the
transformation. Second order derivatives may be found similarly.

3.5.2.2 Grid Generation

For view dependent fluid simulation in the computational space using
cylindrical coordinate system ሺݎ, ,ߠ ݄ሻ , the grid is constructed by placing the viewer at
the origin of the cylindrical system. The view depth corresponds to a radial coordinate ݎ,
viewing direction corresponds to an angle ߠ, and elevation to ݄.

Figure 3.11 View-dependent polar computational grid (image from: [8])

Each cell’s dimension has to be cubic-like in order to solve the system
without numerical complexity. The proportions of each cell are kept consistent by
maintaining a constant ratio of the depth of each cell to the arc length
produced by sweeping its angular increment. The height of a cell can
simply be kept constant. This produces a convenient, geometrically
increasing function to define a view dependent grid.

34

Assume that the center of the first grid cell is at a radial distance ݎ଴ from
the origin, and that each cell’s angular dimension is ∆ߠ. To enforce all cell to have
uniform spatial dimensions (i.e. equivalent of a square or cubic), then the radial depth of
the cell should be ݎ଴∆ߠ. Here are the constrain equations numbering from n = 0.

ሺ0ሻݎ ൌ ଴ Equation 3.37ݎ

ሺ݊ݎ ൅ 1ሻ ൌ ሺ1 ൅ ሺ݊ሻ Equation 3.38ݎሻߠ∆

Equation 35 and equation 36 can be written in a closed form as follow.

ሺ݊ሻݎ ൌ ଴ሺ1ݎ ൅ ሻ௡ Equation 3.39ߠ∆

Figure 3.12 Proportion of polar computational grid

35

CHAPTER 4
Proposed Method

Figure 4.1 Screen Shots of smoke simulation using our method

In this section, we propose a view-dependent adaptive grid refinement
which is an improved method to efficiently optimize the simulation grid, since smoke
simulation using the octree grid such as [5,6] does not address the viewing angle. Their
grid refinements are associated only with variation among the neighboring cells but
viewing angle is not considered. To be precise, distant smoke that is far beyond the
visible scene, which is unnecessary for fine detail simulation, is poorly optimized in
these previous works. Therefore, with a general idea from the view-dependent grid
proposed by [8], we propose a method to refine the octree grid associated with the
viewing information along with the variation of neighboring cells. Overall, the method
optimizes the simulation grid for lower computational cost as well as preserves the
visible details.

In addition, particles, which are flexible to conform to obstacle-fluid
boundaries, are integrated into our model to enhance the animations and reduce the
artifacts caused by dynamic refinements.

We first overview the overall process of the smoke simulation with a
brief introduction to each steps to give a general concept of the simulation framework,
and to point out where our method is placed in. Then in the following section, we
describe the structure of the octree grid. Follow by the details to each step, including
our proposed view-dependent adaptive grid refinement method.

36

4.1 Overview

The overall process of smoke simulation can be divided into four major
steps i.e., initializing the grid, refining the grid, updating cells and rendering. The
simulation starts with the initializing grid step. Other steps are then sequentially
executed repeatedly until the simulation reaches its end or is halted. The simulation
process flow including our refinement method is summarized in Figure 4.2, where its
corresponding steps are detailed in the following subsections.

START

Initialize Grid

Initial Values

Merge / Divide
Cells

Update Cell’s
values

Input
Initial Fluid

Values

octree grid
(uniform)

Optimized
octree grid

Updated
octree grid

Render

Updated
octree grid

Scene

Simulation?

yes

noEND

Display
Mornitor

Figure 4.2 A process diagram of smoke simulator with adaptive grid refinement

Initializing the Grid

Before any simulation can be performed, the grid, which is an
infrastructure of the simulation, must be first constructed and initialized with some initial
values. Generally, the grid is initialized using user-given initial fluid values (i.e., velocity,

37

density, pressure, temperature). The result of this process is the octree-structured grid.
But since the grid refinement has not been performed, the grid is structured as a
uniform subdivision; same cells’ size entire domain.

After the grid is successfully constructed and every time before proceed
to the next following steps, a decision must be made; determine whether the
simulation will be paused or continued, if so, halt the simulation or otherwise continue
on the refinement step.

Refining the Grid

The octree grid without refinement, when passed through the fluid
solver, spends more computational cost due to its un-optimized structure. Grid
refinement is an optional step that optimizes the grid before performing any heavy
computation.

The input of this step is an un-optimized octree grid. In this step, cells
are partially merged and subdivided. Our view-dependent adaptive grid refinement is
applied in order to optimize the octree grid for both viewing and details. Further details
for our method is described in section 4.3. The output is an optimized octree grid that is
ready for the value updating step.

Updating Cells

After applying the refinement method, the grid is well optimized and
ready for the simulation step which is the part that takes the most computational time.
We have constructed a solver to solve for smoke equations, the details are described in
Section 4.4. Once we obtain all the updated values, the grid is then passed to the next
step for rendering the results.

Rendering

At this step, the computed data is rendered as an animation on screen.
The fluid values of every cell, along with their positions, are the input for the rendering
process. Several rendering techniques can be applied e.g., billboarding, volumetric
rendering or soft particle rendering. Light and shadow can also be applied for a realistic
visual result.

38

In our work, we have presented a coupling between billboarding and
particle system which combine their benefits together to enhance animation quality and
reduce the artifacts caused by dynamic grid refinements. Details are described in
Section 4.5.

4.2 Structure of Octree Grid

Figure 4.3 Logical structure of octree grid

We have constructed an adaptive grid using the octree structure as
illustrated in Figure 4.3. A cell is a fundamental unit of the octree grid. Its size and
position are adaptable but constrained by the octree structure. Generally, cell
dimensions are a power of 2 (denoted as 23) whereas higher power such as 43 may
cause a rapid changing in grid size during the grid refinement, resulting in animation
artifacts and discontinuity in fluid values.

Each cell is defined by its position vector ࢞ ൌ ሺݔ, ,ݕ ሻ, velocity vectorݖ
࢛ ൌ ሺݑ, ,ݒ ࢊ ሻ, four-dimensional density vectorݓ ൌ ሺ݀௔, ݀௥, ݀௚݀௕ሻ and a scalar
pressure ݌. Note that ݀௔, ݀௥, ݀௚, ݀௕ denote color value of transparency, red, green and
blue respectively. All fluid quantities including velocity are stored at cell's node, similar
to [2], since storing the velocity at the cell’s faces, e.g., traditional MAC grid [31],
requires more memory. Moreover, storing all fluid quantities at cell’s node is
straightforward to implement.

39

4.3 View-Dependent Adaptive Grid Refinement

Figure 4.4 Illustration of octree grid using view-dependent adaptive grid refinement

Grid refinement is performed throughout the domain to optimize the grid,
i.e., subdivide for acquiring detail in particular regions or merge for saving computational
time for faster simulation. Refinement conditions are used to decide for each cell
whether to perform subdivision or merging. In general, refinement conditions are defined
by comparing only the fluid variation with arbitrary constant thresholds such as the one
proposed in [6]. However, this refinement scheme is not sufficient for view-dependent
optimization. We have modified these conditions with additional parameters for
addressing the viewing angle; thus, not only is fluid detail optimized, but also the
viewing angle as well.

The idea to optimize the grid for both viewing angle and details is that
cells should be divided for higher resolution if they are too close to the camera or their
neighboring cells are relatively different to each other. On the other hand, cells should
be merged for lower resolution if their distances to the camera are too far for any fine
details to be visualized or the variation of fluid quantities between the neighboring cells
are no longer significant. However, not only do the fluid variation and the distance from
the camera affect the grid refinements, the dimensions of the viewing frustum and their
perspectives are also important parameters that should be properly weighted with the
refinement conditions in order to achieve an effective detail-preserved optimization.

40

We have proposed an improved refinement method by considering both
the variation in the fluid quantities and the viewing information to perform additional
refinement based on the view-dependent level-of-detail. Briefly, we have presented a
“view-dependent weighting factor” as a factor to weight the refinement thresholds. Thus,
in this manner, thresholds are adaptive and directly proportional to the viewing frustum.
Thresholds with view-dependent weighting are called “adaptive thresholds” and the
refinement with conditions using these thresholds is called “view-dependent adaptive
grid refinement”.

Measuring the variation in the fluid quantities is described in subsection
4.3.1 while a view-dependent weighting factor is described in subsection 4.3.2., and the
adaptive thresholds for merging and subdivision are described in subsection 4.3.3.

4.3.1 Measuring Fluid Variation

Fluid variation measures the difference of fluid values among adjacent
cells, which roughly indicates the amount of detail to be preserved. High fluid variation
implies sharp edges of fluid boundaries where details are usually needed, whereas low
fluid variation implies steady flows or empty spaces where details can be neglected.

In general, the fluid variation is indicated by measuring only the variation
of density using an equation defined by [6]. However, we found that measuring the
variation in velocity is also a good representative inferring the variation of other fluid
quantities as well. Since density is always advected (carried) by velocity fields; thus,
measuring the velocity itself yields relevant results. Moreover, by measuring the
variation of velocity, Laplacian terms shown in Equation 4.1 do not need to be
computed, as they can be obtained directly from the diffusion step during solving the
Navier-Stokes equations (see Table 4.2). Our equation for measuring the fluid variation
by velocity is as follows.

,ݔሺܥ ,ݕ ሻݖ ൌ ,|ݑ௫ଶ׏|ሺݔܽ݉ ,|ݒ௫ଶ׏| ሻ Equation 4.1|ݓ௫ଶ׏|

Equation 4.1 measures the variation of velocity, where ݑ, ,ݒ denote ݓ
scalar components of velocity vector: ࢛ሺ࢞ሻ ൌ ሼݑ, ,ݒ ݔ is a Laplacian on the ݑ௫ଶ׏ .ሽݓ
direction: ׏௫ଶݑ ൌ ߲ଶݔ߲/ݑଶ, and ׏௫ଶݒ and ׏௫ଶݓ are defined likewise.

41

4.3.2 View-Dependent Weighting Factor

Figure 4.5 Viewing Frustum shown in 3D (right) and its diagonal cross-section (left),
shaded areas are visible volume.

In this subsection, we determine any possible factor that should affect
the view-dependent grid refinement. These factors are grouped together and rewritten
as a mathematical relation called a “view-dependent weighting factor”.

Suppose that we are observing an arbitrary object within a rectilinear
perspective view. If we move the camera away from the object at constant speed, then
the observed size of that object should be decreased hyperbolically. In addition, if we
move the camera away and increase the object's actual size accordingly, then with
some proportion, the observed size should be preserved as constant. This same
proportion is inherited for constructing a view-dependent weighting factor as the grids
resolutions over distance should be coarsened away in a manner that the observed grid
resolution still remains constant.

Let Ψ represent a view-dependent weighting factor, and ݎ and ܴ be the
Euclidean distance measured from camera to an arbitrary cell’s node and from the
camera to the front clipping plane respectively (see Figure 4.5). Ψ should then be
proportional to ݎ. Moreover, Ψ should be affected by dimensions of the viewing frustum
and its perspective. For instance, Ψ should be greater if ݎ is large with respect to ܴ or
the viewing frustum has high perspective. The view-dependent weighting factor is
defined as:

Ψ ൌ ߙ ቀ
ݎ
ܴቁ Equation 4.2

Where ߙ is the camera’s perspective ratio defined as follows:

42

ߙ ൌ
ܦ
2ܴ ൌ ݊ܽݐ ൬

ߠ
2൰ Equation 4.3

Equation 4.3 refers to the viewing frustum (Figure 4.5). ܦ is the diagonal
length of the front clipping plane: ܦ ൌ ଶܪ√ ൅ܹଶ, where ܪ and ܹ are height and
weight of front clipping plane respectively. ܴ is the Euclidean distance from camera to
the center of front clipping plane, ߠ is the camera’s field of view (abbreviated as FOV,
also called angle of view) measured diagonally.

4.3.3 Adaptive Thresholds

Grid refinement is performed by means of refinement conditions i.e.,
merging condition and subdivision condition. In general, refinement conditions
comparing the fluid variation with constant thresholds are used. However, to further
perform a view-dependent adaptive grid refinement, we propose refinement conditions
incorporated with “adaptive thresholds” as stated below.

Let ܶ be a constant threshold for grid refinement specified on a viewing
frustum’s front clipping plane with FOV 90o. Then an adaptive threshold for an arbitrary
viewing frustum at distance ݎ and FOV ߠ is defined as follows.

כܶ ൌ ሺ߬Ψ߶ሻܶ Equation 4.4

Where ܶכ is the adaptive threshold, Ψ is the view-dependent weighting
factor and ߬ is a view-dependent coefficient specifying the weight that the viewing
angle should affect the grid refinement.

Image resolution (or output resolution), which is simply a multiplication of
height and weight of screen, is another factor that should be considered. The grid
resolution does not need to be greater than image resolution, for example, if we lower
the image resolution but keep everything else fixed, the grid can be allowed to be
coarser (since details are negligible in a low-resolution image). To address this, we
define a resolution ratio (׎) as a square root of grid resolution over image resolution:

43

߶ ൌ ඨ
௚௥௜ௗݏ݁ݎ
௜௠௔௚௘ݏ݁ݎ

 Equation 4.5

 For example, a resolution ratio of four means the grid resolution is twice
finer than the image resolution which is unnecessary, thus the computed thresholds are
factored to coarsen the grid for faster simulation.

4.3.4 Refinement Conditions

Once we obtain both fluid variation and adaptive thresholds for each cell,
we compare them cell by cell to decide whether to merge or subdivide the grid using
the following refinement conditions.

,ݔሺܥ ,ݕ ሻݖ ൐ ௦ܶ
 Equation 4.6 כ

,ݔሺܥ ,ݕ ሻݖ ൏ ௠ܶ
כ Equation 4.7

Equation 4.6 and Equation 4.7 are the refinement conditions for
subdivision and merging respectively. ܥሺݔ, ,ݕ ሻ is a fluid variation (see subsectionݖ
4.3.1). ௦ܶ

is an adaptive threshold for subdivision and ௠ܶ כ
כ is an adaptive threshold for

merging. These adaptive thresholds are inherited from Equation 4.4, written as follows.

 ௦ܶ
כ ൌ ሺ߬Ψ߶ሻ ௦ܶ Equation 4.8

 ௠ܶ
כ ൌ ሺ߬Ψ߶ሻ ௠ܶ Equation 4.9

Where ௦ܶ and ௠ܶ are respectively the constant threshold for grid
subdivision and merging defined at front clipping plane of a viewing frustum at distance
ܴ and FOV 90o.

Refinement conditions categorize each cell in to one of three stages i.e.,
subdivision, merging and idle. If Equation 4.6 is satisfied then the subdivision stage is
assigned. Likewise, if Equation 4.7 is satisfied then the merging stage is assigned.
Otherwise, if neither Equation 4.6 nor Equation 4.7 is satisfied, then an idle stage is
assigned; therefore, no refinement is performed.

44

Figure 4.6 Relation between stages on fluid variation versus cell-to-camera distance

Figure 4.6 is a graphical plot of the fluid variation ܥሺݔ, ,ݕ -ሻ versus cellݖ
to-camera distance ݎ. The plot shows the relation between these three refinement
stages. Shaded area labeled as is the subdivision stage, is the idle stage and
is the merging stage. Cells tend to change their current stage from merging to idle and
from idle to subdivision stage if their variation ܥሺݔ, ,ݕ is ݎ ሻ increases or the distanceݖ
increased or both are increased.

Figure 4.7 Comparison of using different camera’s FOV

Figure 4.7 shows the comparison of several parameter adjustments.
Steepness of slope indicates tendency of stage transition, or in another word, grid may
coarsened faster and merged harder for steep slope (a) and vice versa for flat slope (b).
There are many parameters that effect the steepness of slope. For instance, steepness
of slope may be increased by applying a greater view-dependent coefficient (increase

߬), using a wider FOV camera (increase ߙ) or rendering with a lower output resolution
(increase ׎).

Figure 4.7(c) is a case that uses a refinement model proposed by [6].
The refinement is depend only on fluid variation but not on cell-to-camera distance. Grid

45

refinement has no view-dependent optimization since refinement thresholds ௦ܶ and ௠ܶ
are constant throughout the domain.

Figure 4.8 Comparison of applying constant thresholds in different values

Sensitivity of stage transitions between subdivision, merging and idle
correspond to the differential value of the adaptive threshold ௦ܶ

and ௠ܶ כ
כ which can be

adjusted by altering the constant threshold ௦ܶ and ௠ܶ. In Figure 4.8 (a), ௦ܶ is close to

௠ܶ which results in a narrow idle stage area; hence, it is sensitive to stage transition,
whereas Figure 4.8 (b), ௦ܶ is much different to ௠ܶ therefore, it is tolerant to stage
transition. As stage transitions consume computational cost, assigning inappropriate
thresholds may result in an excessive overhead due to frequent merging and
subdivision, or otherwise result in an inefficient optimization; thus, thresholds must be
carefully selected. Moreover, to prevent excessive refinement overhead, grid size should
be gradually adapted at each time step, which can be done by performing only one
operation (i.e., subdivision, merging, or idle) per cell each iteration. This reduces
recursive subdivision and merging overhead and also prevents rapid changing in cell
size that might cause animation artifacts.

4.4 Solving Smoke Equations

Recall from Chapter 3, the Navier-Stokes equations summarized in
Table 4.1 are solved cell-by-cell to update their fluid values. We have constructed a
solver to solve these smoke equations. Since the input grid is already optimized, the
computation cost here should be lower, with respect to the non-optimized grid. Solving
the Navier-Stokes equations consists of four sub-stages related to the four terms of the
equation, i.e., added force, advection, diffusion, projection (see section 3.4.2 for details).

46

Each sub-stage as summarized in Table 4.2 is performed with a semi-Lagrangian
scheme [2] for unconditional stability. Moreover, a vorticity confinement [3] is applied
within the added force stage for nice swirling effects. We use a method proposed by [5]
for discretizing the Navier-Stokes equations on the octree grid.

Velocity
׏ · ࢛ ൌ 0 Equation 3.1

࢛߲
ݐ߲ ൌ െሺ࢛ · ࢛ሻ׏ െ

1
ߩ ݌׏ ൅ ࢛ଶ׏ߥ ൅ Equation 3.2 ࡲ

Density ߲ࢊ
ݐ߲ ൌ െሺ࢛ · ࢊሻ׏ ൅ Equation 3.7 ࡿ

Temperature ߲ܶ
ݐ߲ ൌ െሺ࢛ · ሻܶ׏ ൅ Equation 3.8 ܪ

Table 4.1 Smoke Equations

Velocity ࢛଴ሺ࢞ሻ
௔ௗௗ௙௢௥௖௘௦
ሱۛ ۛۛ ۛۛ ሮۛ ሻ࢞ଵሺ࢛

௔ௗ௩௘௖௧
ሱۛ ۛۛ ሮ ሻ࢞ଶሺ࢛

ௗ௜௙௙௨௦௘
ሱۛ ۛۛ ሮۛ ሻ࢞ଷሺ࢛

௣௥௢௝௘௖௧
ሱۛ ۛۛ ሮۛ ሻ࢞ସሺ࢛

Added Forces ࢛ଵሺ࢞ሻ ൌ ሻ࢞଴ሺ࢛ ൅ ࡲݐ∆ Equation 3.14

Advection ࢛ଶሺ࢞ሻ ൌ ,࢞ଵሺܲሺ࢛ െ∆ݐሻሻ Equation 3.15

Diffusion ࢛ଶሺ࢞ሻ ൌ ሺࡵ ൅ ሻ࢞ଷሺ࢛ଶሻ׏ݐ∆ݒ Equation 3.16

Projection ࢛ସሺ࢞ሻ ൌ ሻ࢞ଷሺ࢛ െ ݐ∆
1
ߩ ሻ࢞ሺ݌׏ Equation 3.17

ଶ׏ ሻ࢞ሺ݌ ൌ
ߩ
ݐ∆ ׏ · ଷ࢛

ሺ࢞ሻ Equation 3.18

Density
ሻ࢞଴ሺࢊ

௔ௗௗ௙௢௥௖௘௦
ሱۛ ۛۛ ۛۛ ሮۛ ሻ࢞ଵሺࢊ

௔ௗ௩௘௖௧
ሱۛ ۛۛ ሮ ሻ࢞ଶሺ࢛

Added Forces ࢊଵሺ࢞ሻ ൌ ሻ࢞଴ሺࢊ ൅ ࡿݐ∆ Equation 4.10

Advection ࢊଶሺ࢞ሻ ൌ ሻሻݐ∆െ,࢞ଵሺܲሺࢊ Equation 4.11

Temperature
଴ܶሺ࢞ሻ

௔ௗௗ௙௢௥௖௘௦
ሱۛ ۛۛ ۛۛ ሮۛ ଵܶሺ࢞ሻ

௔ௗ௩௘௖௧
ሱۛ ۛۛ ሮ ଶܶሺ࢞ሻ

Added Forces ଵܶሺ࢞ሻ ൌ ଴ܶሺ࢞ሻ ൅ ܪݐ∆ Equation 4.12

Advection ଶܶሺ࢞ሻ ൌ ଵܶሺܲሺ࢞, െ∆ݐሻሻ Equation 4.13

Table 4.2 Discretization of smoke equations

47

Note that diffusion terms are neglected in Equation 3.7 and Equation 3.8
since the appearance of viscosity is dominated by the numerical dissipation [3], except
for Equation 3.6 since the velocity diffusion term can be reused for measuring the fluid
variation (Equation 4.1) in the refinement process. Moreover, velocity dominates the
effect of other fluid quantities; either color density or temperature is advected by
velocity. Thus, it is worth computing the diffusion term of velocity.

Referring to Table 4.2, we solve for velocity first, followed by solving for
density then temperature respectively. Solving for the added forces step and the
advection step is straightforward. Nevertheless, the most complicated of all part is the
diffusion and projection steps. These steps contain Possion equations i.e., equations
with Laplacian terms (׏ଶ) and gradient terms (׏) which need a specific discretization
specifically on the octree grid which is an adaptive and non-uniform structure. We follow
a discretization scheme proposed by [5]. ׏ · of Equation 3.18 is discretized by using ࢛
Green’s theorem as follows:

׏ · ࢛ ൌ
∑ ൫࢛௙௔௖௘ · ௙௔௖௘௙௔௖௘௦ܣ൯࢔

௖ܸ௘௟௟
 Equation 4.14

where ࢔ is the outward unit normal, ܣ௙௔௖௘ is the area of cell face, and

௖ܸ௘௟௟ is the volume of a cell.

In a similar way, the theorem is applied to ׏ଶ࢛ of Equation 3.16 and
࢛ଶ׏ of Equation 3.18, where ݌ଶ׏ ൌ ሺ׏ଶݑ, ,ݒଶ׏ ሻݓଶ׏ ൌ ׏ · ሺ࢛׏ሻ and ׏ଶ݌ ൌ ׏ ·
ሺ݌׏ሻ. Their discretizations can be written as follows.

׏ · ሺ࢛׏ሻ ൌ
∑ ൫ሺ࢛׏ሻ௙௔௖௘ · ௙௔௖௘௙௔௖௘௦ܣ൯࢔

௖ܸ௘௟௟
 Equation 4.15

׏ · ሺ݌׏ሻ ൌ
∑ ൫ሺ݌׏ሻ௙௔௖௘ · ௙௔௖௘௙௔௖௘௦ܣ൯࢔

௖ܸ௘௟௟
 Equation 4.16

Although we have successfully discretized these Poisson equations, we
cannot directly solve them cell by cell individually because they are associated with
multiple variables. Thus, the only way is to solve these equations at once by

48

constructing a set of linear differential equations. We use a “Jacobi iteration” method
since it is a common, fast, and effective one.

Once ݌׏ is computed at every faces and substituted back into Equation
3.17, we obtain a velocity ࢛ସ which is the solution of the Navier-Stokes equations of
velocity (Equation 3.1 and Equation 3.2).

4.5 Coupling with Particle System

There are a number of ways to represent the computed result. Since
billboarding and particle system are fast and are typically used for modelling fluids such
as fire, explosions, and smoke, we couple these two methods to combine their
advantages together. The computed density values, composed of transparency, red,
green and blue color data are directly used for constructing billboards, which is a fast
and an effective way to represent the existence of fluid density within the domain.
Meanwhile, we use the computed velocity vector fields to model the motion of particles,
since particles can move freely from cell to cell throughout the domain, which yields a
better representation of continuous motions. In addition, they conform well to curved
and complex boundaries, which can be used to reduce artifacts caused by coarse grids.

Particles are released and advected freely throughout the simulation
domain by using the computed velocity field from the view-dependent octree grid to
model their motions. There are many available methods to model the particle motion
such as the Euler method, Runge-Kutta methods, BFECC method [32] and the
MacCormack method [33]. In this work, we prefer to use the Euler method since it is
fast and simple and provides a sufficient accuracy for most situations. The method is
described as follows.

௜ܲሺ࢞௜, ݐ ൅ Δݐሻ ൌ ௜ܲሺ࢞௜, ሻݐ ൅ Equation 4.17 ࢛

Each particle ௜ܲ is defined by its position ࢞௜. During the simulation, the
particle is moved forward by a velocity ࢛, where ࢛ is obtained by a linear interpolation
of velocity stored in the nearest neighboring cells. Figure 4.9 is a schematic view of our
hybrid system.

49

Figure 4.9 A schematic view of our hybrid system

50

CHAPTER 5
Implementation

In this chapter, we introduce an implementation model that derives
concepts and general ideas described earlier to a practical simulation. In our
implementation, we encapsulate the underlying infrastructure with the hierarchical
classes, which provide effective layers of management. Major topics considering
implementation on a three-dimensional array are described in this chapter.

5.1 Overview

We have implemented the octree grid on three-dimensional array which
exploits several benefits over trees or other structures. First, the octree grid can be
derived from an array with less modification from the prior model since the simulation
using a fixed uniform grid is usually implemented on an array as well. Also, using an
array is easily switchable between the adaptive octree grid and the fixed uniform grid by
sharing the same array-based infrastructure and coding. Moreover, accessing the
memory with arrays is fast (by instance indexing) and uses less overhead for grid
refinements. The major drawback of using arrays is the memory usage that relies on its
size, not the actual octree grid resolution. Since arrays use predefined memory
allocation, therefore, the memory usage is not adaptive during the simulation. Although
the grid is refined or optimized for speed; the simulation still uses the same memory as
that for fixed uniform grid. However, if the memory usage is not a major constraint then
using an array is a preferable choice.

5.2 Storing Octree Grid on Array

Figure 5.1 Cell size with various ranks

51

In this section, we introduce a model for storing the octree grid on an
array structure and describe a direct mapping between the octree grid and array.

From our definition, a “cell” is a fundamental unit of the octree grid while
an “element” is a fundamental unit of the array. Since the octree grid contains cells with
various possible sizes, we define a variable called “rank” (denote as ܴ) to identify their
size:

ோ݁ݖ݅ݏ݈݈݁ܿ ൌ ݔ∆ ൌ ݕ∆ ൌ ݖ∆ ൌ ሺ݈݈ܿ݁݁ݖ݅ݏ଴ሻ2ோ Equation 5.1

 ோ means cell size at an arbitrary rank ܴ, where ܴ is an any݁ݖ݅ݏ݈݈݁ܿ
positive number e.g., 0, 1, 2, 3, … ∆ݔ, are dimensions of cell which should ݖ∆ and ݕ∆
be equal for cubic cells.

Smallest cells are called “base cells”. Base cells have a size that
allocated to an array element. A cell with rank ܴ ൌ 0 (denoted as ݈݈ܿ݁݁ݖ݅ݏ଴) is a base
cell. A cell with higher rank has its size a power of 2 of its base size. This procedural
produces a hierarchical grid with a subdivision of 23.

A base cell contains only one array element while cells with higher ranks
contain multiples (see Figure 5.1). Each cell contains a rank along with its individual
fluid values (i.e., pressure, density, velocity); hence, a single array element of each cell
is sufficient for storing the cell’s fluid values. We define a “leader element” as a
representative of all array elements in a cell to stores such fluid quantities. In this
implementation, the bottom left corner element is chosen to be a leader element. If
there exists a cell with rank ܴ that contains an arbitrary element with an index of
࢞ ൌ ሺݔ, ,ݕ of that cell can be found (כ࢞ denotes as) ሻ then the index of a leader unitݖ
by:

כ࢞ ൌ ࢞ െ ݀݋݉࢞ ሺ2ோሻ Equation 5.2

52

Figure 5.2 Above: logical representation of octree grid. Below: model for storing octree
grid on 3D array.

Figure 5.2 (Below) illustrates our model for storing the octree grid on a
three-dimensional array. Each cell may contains many array elements depends on its
size (defined by its rank) but only one element is selected as a “leader element” for
storing the fluid quantities of that cell. This model is encapsulated under the
infrastructure of layers, hidden array and underlying management from outside direct
access. Figure 5.2 (Above) illustrates our encapsulated octree grid which is a common
perception for higher level implementation.

5.3 Recursive Cell Retrieval

Several simulation steps need cell retrieval as a part of their operations.
For example, the added forces step needs to access all cells in a domain in order to
update their cell’s velocity.

53

For-looping is a common approach to access all array elements one by
one. It works well if most of the elements store data. However, in our array, only a
leader element per cell stores valid fluid quantities, which is usually sparse over
domain, hence, for looping in this particular grid structure is time wasting.

Instead of accessing elements one by one, we use a recursive function
to access only some specific elements those are likely to be leaders ranging from the
highest rank to the lowest rank recursively. Equation 5.3 specify cells those are likely to
be leaders of rank ܰ, where ܰ is any positive number ranging from the highest rank to
the lowest rank: ܰ ൌ ሼܴ௠௔௫ , ܴ௠௔௫ െ 1,… ,2,1,0ሽ. Whenever there exist an array
element with an index ࢞ and a rank ࡾ that satisfy both Equation 5.3 and Equation 5.4
then that element is a leader element of that particular cell.

݀݋݉ ࢞ ሺ2ேሻ ൌ 0 Equation 5.3

ܴ ൌ ܰ Equation 5.4

Figure 5.3 is an example scenario to demonstrate the sequence of
recursive cell retrieval. The recursive function starts with N=2 and terminate itself
whenever a leader element is found.

54

Initial : octree grid with unknown
leader elements

 ܰ ൌ 2

 ܰ ് ܴ
 ܰ ൌ ܴ

 ܰ ൌ 1

 ܰ ൌ 0

Final : all leader elements are
found (highlighted units)

Figure 5.3 Sequence of finding leader elements using recursive approach

55

5.4 Linear Interpolation

Figure 5.4 Normalizing the grid for data interpolation

Since fluid quantities are stored discretely at each cell center, the
interpolation is essential in order to retrieve continuous quantities. There are several
interpolation methods. However, in this implementation we use a “linear interpolation”
since it is fast and simple and have sufficient accuracy for visual simulation. However,
the octree grid is adaptive and has non-uniform structure; thus, an interpolating formula
cannot be applied directly but must be constructed in an adaptive way for a particular
octree region.

Refer to Figure 5.4(b), if we want to obtain a velocity ࢛ሺݔ, ሻ at anݕ
arbitrary target point marked as then velocity of the neighboring cells must be
interpolated. In general, bilinear interpolation interpolates between 4 points (for 2D
grids) and trilinear interpolation interpolates between 8 points (for 3D grids). In practical,
neighboring cells and their positions on the octree grid are adaptive, such as the one
shown in Figure 5.4(a); hence, complicated for handling with these typical interpolations.
Therefore, we must first mathematically normalize the grid for easily interpolation. Figure
5.4(a) is the original octree grid while Figure 5.4(b) is a normalized one. The processes
are detailed as follows.

Let a cell that contains a target point have a rank ܴ. In the case that
every neighboring cell have the same rank ܴ, then four cells under a rectangular
perimeter are chosen as interpolating cells, or eight cells under cubical perimeter for

56

trilinear interpolation. Interpolation in this manner is straightforward (see below).
However, if there exists a cell within the perimeter such that its rank is not equal to ܴ
then that cell needs normalization before any interpolation can be performed.

Figure 5.5 Recursively merging cells into a preferred size

Normalization is a process to obtain an imaginary cell with rank ܴ.
Figure 5.5 illustrate the steps of this process. Suppose that we prefer a cell with rank ܴ
(Figure 5.5(c)), but current cells have rank ܴ െ 1 (Figure 5.5(b)), then a normalization is
performed. Four neighboring cells with rank ܴ െ 1 are imaginarily merged to form a
single preferred rank ܴ cell (Figure 5.5(c)). Its fluid quantities are obtained by arithmetic
averaging of four pre-merge neighboring cells. For example, a velocity of a merged cell
is:

଴࢛ ൌ
ଵ࢛ ൅ ଶ࢛ ൅ ଷ࢛ ൅ ସ࢛

4

 If there exists a hierarchical subdivision, for example, the upper right
corner of grid shown in Figure 5.5(a), then recursive normalization for that level is
performed.

Overall, Figure 5.4(a) shows an original octree grid while Figure 5.4(b) is
a normalized one. Any cells within a rectangular perimeter are normalized to the same
rank of the cell that contains a target point . So far, the grid is ready for interpolation.

Refer to Figure 5.4(b), we obtain velocity ࢛ሺݔ, ሻ at the arbitrary targetݕ
point by the following bilinear interpolation.

ሺ௫,௬ሻ࢛ ൌ
ଵݔሺ௫బ,௬బሻሺ࢛ െ ଵݕሻሺݔ െ ሻݕ ൅ ଵݔሺ௫బ,௬భሻሺ࢛ െ ݕሻሺݔ െ ଴ሻݕ ൅ ݔሺ௫భ,௬బሻሺ࢛ െ ଵݕ଴ሻሺݔ െ ሻݕ ൅ ݔሺ௫భ,௬భሻሺ࢛ െ ݕ଴ሻሺݔ െ ଴ሻݕ

ሺ∆ݔሻଶ

57

or equivalently, in matrix operations:

,ݔሺ࢛ ሻݕ ൌ
ሾݔଵെݔ ݔ െ ଴ሿݔ ൤

,଴ݔሺ࢛ ଴ሻݕ ,଴ݔሺ࢛ ଵሻݕ
,ଵݔሺ࢛ ଴ሻݕ ,ଵݔሺ࢛ ଵሻݕ

൨ ቂ
ଵݕ െ ݕ
ݕ െ ଴ ቃݕ

ሺ∆ݔሻଶ

Note that since the cell’s dimension is cubic; thus, we can assume
ݔ∆ ൌ for the above equations. For three-dimensional domains, trilinear interpolation ݕ∆
is applied instead which can be performed in a similar way.

5.5 Discretization of Differential Operations

According to the Poisson equations described chapter 4.4, their
implementation can be done in a recursive way. For example, the ݔ components of
׏ · is obtained by subtraction between left adjacent cells and right adjacent cells and ࢛
factored by their faces sizes (see Equation 4.14), where left and right adjacent cells are
obtained by recursive cell retrieval.

Figure 5.6 An example of quardtree structure

58

In the case of Figure 5.6, the ׏ · * of a cell marked as ݌ଶ׏ and ࢛ଶ׏ , ࢛
are discretized as follows.

׏ · ࢛ ൌ
ݑ߲
ݔ߲ ൅

ݒ߲
ݕ߲ ൌ

ହݑ െ ቀݑଶ2 ൅ ଷݑ
4 ൅ ସݑ

4 ቁ
ݔ߲ ൅

଼ݒ െ ቀݒ଺2 ൅ ଻ݒ
2 ቁ

ݕ߲

࢛ଶ׏ ൌ ሺ׏ଶݑ, ሻݒଶ׏ where

ݑଶ׏ ൌ
߲ଶݑ
ଶݔ߲ ൅

߲ଶݑ
ଶݕ߲

 ൌ
ቀݑଶ2 ൅ ଷݑ

4 ൅ ସݑ
4 െ ଵቁݑ ൅ ሺݑହ െ ଵሻݑ
ሺ߲ݔሻଶ ൅

ሺ଼ݑ െ ଵሻݑ ൅ ቀݑ଺2 ൅ ଻ݑ
2 െ ଵቁݑ

ሺ߲ݕሻଶ

ݒଶ׏ ൌ
߲ଶݒ
ଶݔ߲ ൅

߲ଶݒ
ଶݕ߲

 ൌ
ቀݒଶ2 ൅ ଷݒ

4 ൅ ସݒ
4 െ ଵቁݒ ൅ ሺݒହ െ ଵሻݒ
ሺ߲ݔሻଶ ൅

ሺ଼ݒ െ ଵሻݒ ൅ ቀݒ଺2 ൅ ଻ݒ
2 െ ଵቁݒ

ሺ߲ݕሻଶ

݌ଶ׏ ൌ
߲ଶ݌
ଶݔ߲ ൅

߲ଶ݌
ଶݕ߲ ൌ

ቀ݌ଶ2 ൅ ଷ݌
4 ൅ ସ݌

4 െ ଵቁ݌ ൅ ሺ݌ହ െ ଵሻ݌
ሺ߲ݔሻଶ ൅

ሺ଼݌ െ ଵሻ݌ ൅ ቀ݌଺2 ൅ ଻݌
2 െ ଵቁ݌

ሺ߲ݕሻଶ

59

CHAPTER 6
Results and Discussion

In order to evaluate our refinement method, we have constructed and
compared results in different simulation scenarios i.e., varying the view-dependent
coefficient (Section 6.2), varying the camera’s viewing angle (Section 6.3), varying the
output resolution (Section 6.4) and finally simulation with and without particles (Section
6.5).

The efficiency of our method is measured by comparing both
computational cost and visual result to the simulation without the view-dependent
adaptive grid refinement. Computational cost is compared by measuring the simulation
time in seconds per frame while visual results are compared by animation quality.
Details of our experiments and their evaluation are described in the following
subsections.

6.1 Simulation Environment

Figure 1.1 illustrates the environment used in our experiments, where
the simulation domain is constructed on a 128 ൈ 80 ൈ 48 grid size and a camera is
placed nearby for rendering the output scene. All experiment results reported in this
article were performed on a machine with dual core CPU 2.40 GHz and 2 GB of RAM.
Typical simulation times using our method were about 10 seconds per frame when
performed on an octree grid with approximately 100,000 nodes and 340,000 particles.

Figure 6.1 Environment for smoke simulation on an octree grid with VD-refinement

60

6.2 Varying View-Dependent Coefficient (࣎)

We have demonstrated the effect of the view-dependent adaptive grid
refinement by varying only the view-dependent coefficient (߬) while other parameters
are fixed. Figure 6.2 are the comparison side-by-side between the visual results (left
sides) and the cut-away views (right sides) showing their octree grid sturcture. In this
scenario, smoke is injected into a domain vertically with an amount of upward force. By
increasing the view-dependent coefficient, the number of large nodes is increased while
the number of small nodes is decreased. Table 6.1 shows the timing and the number of
nodes of Figure 6.2.

No View-
Dependent
Refinement

߬ ൌ 1

߬ ൌ 2

61

 ߬ ൌ 5

 ߬ ൌ 10

 ߬ ൌ 20

Figure 6.2 Comparison of different VD-refinement

VD Coefficient (߬) Number of Nodes Time per frame (Sec) Speed-up (%)
No VD Refine. 111,868 9.10 -
1 97,770 8.47 7.28
2 87,683 8.00 14.10
5 66,172 7.19 26.57
10 49,176 6.33 44.13
20 27,700 6.62 37.58

Table 6.1 Number of nodes and timing in different VD coefficient

62

Applying a greater view-dependent coefficient reduces the number of
cells in the simulation domain. Simulation achieves more frame rates but detail loss is
relatively greater. On the other hand, if a lower view-dependent coefficient is applied,
more details are preserved but with higher computation cost as well. Grid refinement
with a view-dependent coefficient of 1 is an optimal weighting between details and
computational cost since the amount of optimization matches the proportion of grid
perspective. However, in our experiment, the view-dependent coefficient can be
assigned up to approximately 5 before detail loss becomes noticeable. This is because
the foreground smoke, which usually has higher detail, occludes other smoke with lower
detail behind.

6.3 Varying Camera’s Viewing Angle (FOV)

In this scenario, smoke is moving rightward and being distracted by two
oscillating spheres as it passes through. In Figure 6.3, we have changed the camera’s
viewing angle (FOV) from wide to narrow in order to demonstrate the effective of our
refinement method on various viewing. According to this experiment, when widen the
camera’s viewing angle, fluid details are coarsened. However, since all visual scenes
accordingly get smaller due to the perspective effect, the detail of the fluid on output
screen is still preserved. The corresponding timings of Figure 6.3 are reported in Table
6.2.

FOV = 20o

 FOV = 30o

63

FOV = 50o

FOV = 60o

Figure 6.3 Comparison of different camera FOV

FOV (degree) Number of Nodes Time per frame (Sec) Speed-up (%)
No VD Refine. 104,075 10.34 -
20 100,833 9.73 5.90
30 84,049 8.36 19.13
50 68,052 7.63 26.24
60 42,510 6.70 35.23

Table 6.2 Timing of the simulation using our method with various FOV

6.4 Varying Resolution Ratio (׎)

We have simulated a turbulence flow over a cylindrical rod and vary only
the output resolution to demonstrate the result of applying different resolution ratio.
Figure 6.4 compares the results of applying different output resolution and the
corresponding timings of Figure 6.4 are shown in Table 6.3.

Accoarding the the results, lowering the output resolution (increasing the
resolution ratio) results in a coarser grid and speeds up the simulation. However, the

64

simulation preserves its details whether the output resolution has changed, since with
our method, the grid resolution is refined related to the output resolution.

Figure 6.4 Turbulence flows over a cylindrical rods at different output resolutions. Actual
output size (right) and enlarged size (left).

Scene Resolution Ratio (׎) Time per frame (Sec) Speed-up (%)
- No VD-Refine. 10.62 -
Figure 6.4(a) 0.5 9.88 6.97
Figure 6.4(b) 1 9.05 14.78
Figure 6.4(c) 2 8.14 23.35

Table 6.3 Timing of results shown in Figure 6.4

65

6.5 Rendering with Particles

Figure 6.5 Bouncing sphere through a sheet of particles

We have integrated a particle system into our view-dependent adaptive
grid and tested in various scenarios. Figure 6.6 compares the difference between using
billboards only (right) and coupling billboards with particles (left). Figure 6.7 illustrates
that particles and billboards together enhance the fluid motion and visual result. Figure
6.5 is a simulation rendered with particles only to illustrate that particles can conform
well to curve and boundaries. Additional results including others without particles are
shown in Figure 6.8 and their corresponding timings are shown in Table 6.4. In our
experiments, approximately 2,000 particles are generated each frame, taking about
0.8% of all processing time. The timings of simulation using our method in different
scenarios are shown separately in Table 6.4. All tests are performed with view-
dependent coefficient ߬ ൌ 1 and camera’s FOV=45o. Timings are measured in
second/frame. Note that additional snapshots of our experiment are shown in the
Appendix.

66

Figure 6.6 Comparison between with and without particles

Figure 6.7 Dynamic flows through cylindrical rods.
Result is rendered with approximately 340k particles.

67

(a) (b)

(c) (d)

(e) (f)

Figure 6.8 Screen shots of our experimental results in various scenes

68

Scenes Refine

(s)
Discretize
(s)

Particle
(s)

Total
(s)

Speed-up
(%)

Figure 6.5 .153 3.48 .053 3.69 -
Figure 6.8(a) .183 9.47 .078 9.73 5.90
Figure 6.8(b) .147 9.72 .063 9.85 5.98
Figure 6.8(c) .131 8.90 .057 9.09 5.39
Figure 6.8(d) .166 9.69 - 9.86 7.38
Figure 6.8(e) .174 8.06 - 8.23 7.16
Figure 6.8(f) .181 8.29 - 8.47 7.28

Table 6.4 Timing in s/frame in various scenes. Speed-up is compared to another one
without VD refinement.

The result shows that particles can significantly enhance the visual result
and reduce the motion artifacts caused by dynamic grid refinement. With particles,
observers hardly notice that the simulation background is a grid-based approach. In
addition, particles are applicable to be integrated into a typical grid-based simulation,
since the time for processing the particles is relatively low with respect to the overall
simulation time.

69

CHAPTER 7
Conclusion and Future Work

In this section, we have concluded the core idea of our proposed
method, the problems we found in this research and the future works.

7.1 Conclusion

Since a current smoke simulation using octree grid is optimized for detail
but not optimized for viewing; thus, we have presented a “view-dependent adaptive grid
refinement” which is an improved refinement method that optimizes the grid for both
detail and viewing. The refinement conditions with adaptive thresholds are constructed,
incorporating viewing information with fluid variation. With our method, the amount of
grid refinement is controlled adaptively by means of cell-to-camera distance (ݎ), view-
dependent coefficient (߬), camera’s viewing angle (ܸܱܨ) and the resolution ratio (׎).

We have shown that optimizing the grid with the view-dependent
adaptive grid refinement speeds up the simulation as well as preserve fluid details.
Several parameters have been adjusted and tested on different scenarios to
demonstrate the efficiency of the proposed grid refinement in various environments.
According to the results, the method has successfully optimized the grid for both
viewing angle and details. Visual details are decreased corresponding to the reduction
of the total number of octree nodes within a domain, which results in lower
computational cost consumption. We have also shown that the method can be
integrated with a particle system to enhance visual results and reduce motion artifacts.

Overall, this approach provides a flexible framework for fluid simulation
optimization that can be applied for variety of simulation environments and real-life
applications such as special effect in games, movies and advertisement.

7.2 Future Works

For future work, we plan to further speed up the simulation by culling the
occlusion regions and invisible areas such as smoke behind the obstacles and smoke
behind the dense smoke. The invisible areas do not have to contain fine details;
therefore, unnecessary processing time can be reduced.

70

We have found that the simulation speed-up is depends on the grid
orientation. If fluid flows through the domain in a direction that is orthogonal to the grid
orientation (i.e., horizontally or vertically to the grid orientation) then fewer cells are
subdivided and the simulation is performed faster but if fluid flow diagonally across the
domain, more cells are subdivided and the simulation is performed slower. See Figure
7.1 for example.

Figure 7.1 (a) Fluid flow along the grid orientation.
(b) Fluid flow diagonal to the grid orientation.

To address this, we plan to replace the octree grid with any other
structure that is independent to the grid orientation such as unstructured tetrahedral
meshes or unstructured grid.

In addition, we plan to extend our method to larger scenes with an
adaptive level-of-detail for dynamic viewing instead of a single camera view. We have
found that the grid needs latency for iteratively refine to the appropriate optimized
structure; thus, rapidly changing the camera’s viewing e.g., translation, rotation or even
zooming might cause discontinuity artifacts and detail loss in a period of time.
Therefore, view can be changed with a limited speed relative to the simulation frame
rates. We have planned to address this limitation by predicting the camera movement
and refine the grid in advance by using the camera’s velocity.

71

References

[1] Foster, N., Realistic Animation of Liquids, Graphical Models and Image
Processing 58 (September 1996): 471-483.

[2] Stam, J., Stable fluids, Proceedings of the 26th annual conference on Computer
graphics and interactive techniques, ACM Press/Addison-Wesley Publishing
Co., p. 121–128.

[3] Fedkiw, R., Stam, J., and Jensen, H. W., Visual simulation of smoke,
Proceedings of the 28th annual conference on Computer graphics and
interactive techniques, Citeseer, p. 15–22.

[4] Stam, J., Real-time fluid dynamics for games, Proceedings of the Game
Developer Conference, Citeseer.

[5] Losasso, F., Gibou, F., and Fedkiw, R., Simulating water and smoke with an
octree data structure, ACM Transactions on Graphics, 23 (August 2004): 457.

[6] Shi, L. and Yu, Y., Visual smoke simulation with adaptive octree refinement,
Computer Graphics and Imaging, Citeseer, p. 13–19.

[7] Ament, M. and Straßer, W., Dynamic Grid Refinement for Fluid Simulations
on Parallel Graphics Architectures, EUROGRAPHICS SYMPOSIUM ON
PARALLEL GRAPHICS AND VISUALIZATION, Citeseer.

[8] Barran, B. A., View dependent fluid dynamics, Texas A&M University, 2006.

[9] Popinet, S., Gerris: a tree-based adaptive solver for the incompressible Euler
equations in complex geometries, Journal of Computational Physics 190
(September 2003): 572-600.

[10] Nealen, A., Physically Based Simulation and Animation of Gaseous
Phenomena in a Periodic Domain, I Can, (2001).

[11] Feldman, B. E., OʼBrien, J. F., and Arikan, O., Animating suspended particle
explosions, ACM Transactions on Graphics 22 (July 2003): 708.

[12] Goktekin, T. G., Bargteil, A. W., and OʼBrien, J. F., A method for animating
viscoelastic fluids, ACM Transactions on Graphics 23 (August 2004): 463.

[13] Zheng, W., Yong, J.-H., and Paul, J.-C., Simulation of bubbles, Graphical
Models 71 (November 2009): 229-239.

72

[14] BERGER, M. and OLIGER, J., Adaptive mesh refinement for hyperbolic

partial differential equations☆, Journal of Computational Physics 53 (March
1984): 484-512.

[15] BERGER, M. and COLELLA, P., Local adaptive mesh refinement for shock
hydrodynamics, Journal of Computational Physics 82 (May 1989): 64-84.

[16] Adams, B., Pauly, M., Keiser, R., and Guibas, L. J., Adaptively sampled
particle fluids, ACM Transactions on Graphics 26 (July 2007): 48.

[17] Lucy, L. B., A numerical approach to the testing of the fission hypothesis, The
Astronomical Journal 82 (December 1977): 1013.

[18] Mathieu Desbrun and Marie-paule Gascuel, Smoothed Particles: A new
paradigm for animating highly deformable bodies, Proceedings of EG
Workshop on Animation and Simulation, Springer-Verlag, pp. 61-76.

[19] Simon Premzoe, Tolga Tasdizen, James Bigler, Aaron Lefohn, R. T. W.,
Particle-Based Simulation of Fluids, Computer Graphics Forum 22 (September
2003): 401-410.

[20] Enright, D., Marschner, S., and Fedkiw, R., Animation and rendering of
complex water surfaces, ACM Transactions on Graphics 21 (July 2002).

[21] Matthias Müller, David Charypar, M. G., Particle-Based Fluid Simulation for
Interactive Applications, Proceedings of the 2003 ACM
SIGGRAPH/Eurographics symposium on Computer animation, Eurographics
Association, pp. 154-159.

[22] Müller, M., Solenthaler, B., Keiser, R., and Gross, M., Particle-based fluid-
fluid interaction, ACM Press.

[23] Hong, W., House, D. H., and Keyser, J., Adaptive particles for incompressible
fluid simulation, The Visual Computer, 24 (May 2008): 535-543.

[24] He Yan, Zhangye Wang, Jian He, Xi Chen, Changbo Wang, Q. P., Real-time
fluid simulation with adaptive SPH, Computer Animation and Virtual Worlds,
20 (2009): 417-426.

[25] W Li, X Wei, A. K., Implementing Lattice Boltzmann Computation on
Graphics Hardware, The Visual Computer, 19 (2003): 444-456.

[26] Feldman, B. E., OʼBrien, J. F., and Klingner, B. M., Animating gases with hybrid
meshes, ACM Transactions on Graphics, 24 (July 2005): 904.

73

[27] Feldman, B. E., OʼBrien, J. F., Klingner, B. M., and Goktekin, T. G., Fluids in

deforming meshes, Proceedings of the 2005 ACM SIGGRAPH/Eurographics
symposium on Computer animation - SCA ’05, (2005): 255.

[28] Elcott, S., Tong, Y., Kanso, E., Schröder, P., and Desbrun, M., Stable,
circulation-preserving, simplicial fluids, ACM SIGGRAPH ASIA 2008 courses
on - SIGGRAPH Asia ’08, (2008): 1-11.

[29] Klingner, B. M., Feldman, B. E., Chentanez, N., and OʼBrien, J. F., Fluid
animation with dynamic meshes, ACM SIGGRAPH 2006 Papers on -
SIGGRAPH ’06, (2006): 820.

[30] Chentanez, N., Feldman, B. E., Labelle, F., OʼBrien, J. F., and Shewchuk, J. R.,
Liquid simulation on lattice-based tetrahedral meshes, Proceedings of the 2007
ACM SIGGRAPH/Eurographics symposium on Computer animation,
Eurographics Association, p. 219–228.

[31] Harlow, F. H. and Welch, J. E., Numerical Calculation of Time-Dependent
Viscous Incompressible Flow of Fluid with Free Surface, Physics of Fluids, 8
(1965): 2182.

[32] Kim, B., Liu, Y., Llamas, I., and Rossignac, J., Advections with significantly
reduced dissipation and diffusion., IEEE transactions on visualization and
computer graphics, 13 (2007): 135-44.

[33] Selle, A., Fedkiw, R., Kim, B., Liu, Y., and Rossignac, J., An Unconditionally
Stable MacCormack Method, Journal of Scientific Computing 35 (November
2007): 350-371.

[34] Molemaker, J., Cohen, J. M., Patel, S., and Noh, J., Low Viscosity Flow
Simulations for Animation, Proceedings of the 2008 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation, (2008): 9-18.

[35] Zhu, Y. and Bridson, R., Animating sand as a fluid, ACM Press.

74

Appendix

75

In this chapter, our experimental results in different scenarios are shown
as a sequence of snapshots. All experiments are performed on an octree grid with a
128 ൈ 80 ൈ 48 resolution. The control variables are VD-coefficient ߬ ൌ 1, camera’s
viewing angle FOV=45o and resolution ratio ׎ ൌ 1. Typical simulation times were about
10 seconds per frame, with approximately 100,000 nodes and 340,000 particles. The
corresponding timings are shown in Table 6.4.

Bouncing sphere through a sheet of particles

Frame =0 Frame =10

Frame =20 Frame =30

Frame =40 Frame =50

76

Frame =60 Frame =70

Frame =80 Frame =90

Frame =100 Frame =110

Frame =120 Frame =130

77

Frame =140 Frame =150

Frame =160 Frame =170

Smoke animation with oscillating spheres.

Frame =0 Frame =10

Frame =20 Frame =30

78

Frame =40 Frame =50

Frame =60 Frame =70

Frame =80 Frame =90

Frame =100 Frame =110

79

Frame =120 Frame =130

Frame =140 Frame =150

Frame =160 Frame =170

80

Flamethrower with two oscillating spheres

Frame =0 Frame =10

Frame =20 Frame =30

Frame =40 Frame =50

Frame =60 Frame =70

81

Frame =80 Frame =90

Frame =100 Frame =110

Frame =120 Frame =130

Frame =140 Frame =150

82

Moving flows through a set of rods.

Frame =20 Frame =30

Frame =40 Frame =50

Frame =60 Frame =70

Frame =80 Frame =90

83

Frame =100 Frame =110

Frame =120 Frame =130

Frame =140 Frame =150

Frame =160 Frame =170

84

A turbulence sheet of cloud intercepted by a pillar.

Frame =20 Frame =30

Frame =40 Frame =50

Frame =60 Frame =70

Frame =80 Frame =90

85

Frame =100 Frame =110

Frame =120 Frame =130

Frame =140 Frame =150

Frame =160 Frame =170

86

Violet smoke flow rightward direction.

Frame =0 Frame =10

Frame =20 Frame =30

Frame =40 Frame =50

Frame =60 Frame =70

87

Frame =80 Frame =90

Frame =100 Frame =110

Frame =120 Frame =130

Frame =140 Frame =150

88

Smoke flow rightward with slightly upward force.

Frame =20 Frame =30

Frame =40 Frame =50

Frame =60 Frame =70

Frame =80 Frame =90

89

Frame =100 Frame =110

Frame =120 Frame =130

Frame =140 Frame =150

Frame =160 Frame =170

90

Biography

Rinchai Bunlutangtum was born in Bangkok, Thailand, on August 1,
1988. He began his schooling at the Pasawee Elementrary School, and then continued
his education at Bangkok Christian College, where his major’s studies was physics and
mathematics. In 2005, the year he gained his diploma, he entered Chulalongkorn
University in Bangkok to be trained as an engineer. After four years of studied, he
received his bachelor’s degree and a scholarship for continuing master’s degree in
Computer Engineering, Chulalongkorn University.

	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	CHAPTER I Introduction
	1.1 Introduction and Problem State
	1.2 Objectives of Study
	1.3 Scope of Study
	1.4 Expected Benefits
	1.5 Publications
	1.6 Definition
	1.7 Research Procedure

	CHAPTER II Literature Reviews
	2.1 Grid Based Method
	2.2 Particle Based Me
	2.3 Lattice Boltzmann Method
	2.4 Tetrahedral Mesh Method

	CHAPTER III Theories
	3.1 Differential operations
	3.2 The Navier-Stokes Equations
	3.3 Equations for Smoke Simulations
	3.4 Grid Based Fluid Simulation
	3.5 Adaptive Grids

	CHAPTER IV Proposed Method
	4.1 Overview
	4.2 Structure of Octree Grid
	4.3 View-Dependent Adaptive Grid Refinement
	4.4 Solving Smoke Equations
	4.5 Coupling with Particle System

	CHAPTER V Implementation
	5.1 Overview
	5.2 Storing Octree Grid on Array
	5.3 Recursive Cell Retrieval
	5.4 Linear Interpolation
	5.5 Discretization of Differential Operations

	CHAPTER VI Results and Discussion
	6.1 Simulation Environment
	6.2 Varying View-Dependent Coefficient
	6.3 Varying Camera’s Viewing Angle (FOV)
	6.4 Varying Resolution Ratio
	6.5 Rendering with Particles

	CHAPTER VII Conclusion and Future Work
	7.1 Conclusion
	7.2 Future Works

	References
	Appendix
	Vita

