nsaanuuLasa upgudnatuasluardaund miulasdadnscainadonruigas

al
UTEIN LAY

ﬁwﬂﬁﬁwuﬁiﬂudqwﬂwmmz‘ﬁnmmwﬁn@;maﬁmﬂ;ﬁmnimmmmumﬁmeﬁm
a1t IAINgsN AN nedtddansssidin
AMEAAINTINANERT NaINTiuMINeNae
tnnsfnu 2547
ISBN 974-53-1197-9

s

A1ANEIRIRNAINTINUNINENFE

DESIGN AND DEVELOPMENT OF CENTRAL NODE AND MOBILE
NODE FOR TELE-MEASUREMENT SENSOR NETWORK

Mr. KY-Leng

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Engineering in Electrical Engineering
Department of Electrical Engineering
Faculty of Engineering
Chulalongkorn University
Academic year 2004
ISBN 974-53-1197-9

Thesis Title DESIGN AND DEVELOPMENT OF CENTRAL NODE AND
MOBILE NODE FOR TELE-MEASUREMENT SENSOR

NETWORK
By Mr. KY-Leng
Field of Study Electrical Engineering
Thesis Advisor Associate Professor Watit Benjapolakul, D. Eng

¢

Accepted by the Faculty of Engineering, Chulalongkorn University in Partial
Fulfillment of the Requirements for the Master’s Degree

DL‘ " \""W"V‘ Dean of the Faculty of Engineering
(Professor Direk Lavansiri, Ph. D.)

THESIS COMMITTEE

......... CN ‘”T"Jma‘go"\' Chairman -

Member
(Assistant Professor Chaodit Aswakul, Ph. D.)

iv

nod o mesenuuuuasRmwnuagudnaawasiuaedeundmiulaseinedn
vezlnadaeiawaes. (DESIGN AND DEVELOPMENT OF CENTRAL NODE AND
MOBILE NODE FOR TELE-MEASUREMENT SENSOR NETWORK)

8. e : 94, 79.979R Wyanana, Auaumtin 152 wiih. ISBN 974-53-1197-9,

1
=

1 4
Tasstneanmmzuandesuuusumnliannsatlandeyaudgunsaiaaunn uaylaidum
Wrauladwiugldnuialy fai sndnavelaseiedadaauigeideuynaaiianisiin

funeanmiasdenuarssuuineanlseadtssazinadniusiem evrnsuastldvialdl

AnaNisalunisiiusasandeyassazann Jgnsausneludiurenuidsy
wane] 1u3de TnaawiredneBadmanssngis9a eiusausandeyadosdanisidaanda

ABNTULLGLRY

sagaduarnisasuntreundudeyaldfugunsainauauil inligldeuialy

U

[l
<4

annsahdunauszauguszudlidsussinuideneliuangady -

3

Tassdraiiauels vinliglavnldansnsonlfeugdanwol nnsdfussuuldiiunials
-3] dy 1 4 v a [:// a r&‘ '
sama wazdeau faenslfimatianenanfvazpaanainiasalunissegUdneainlugiann

L4
Audnand armnnsaldaulananialusaznmaueniasadag

% = dd’d =Y [o 8 o '3
satnnsnenmalulatniA LwnIzatan 1ulAs TN wazdane iy w1aaN1sani e
linwasnuldetinununsiga adrglsfion uildaunsossyiuiuiueulfidssuuressnld

WANIAINdTELLEE

TiAnenfinusarivi inaslsadurslunaasduaiaonuaifauasuassanm ssead

HiNan sl tasarefiauail

.
=3 Y d =) \/,
ANRATY AAansaninidin . aaNedeanadn (Mx

##4670621921: MAJOR ELECTRICAL ENGINEERING
KEY WORD: MOBILE NODE, TELE-MEASUREMENT, SENSOR NETWORK

LENG KY: DESIGN AND DEVELOPMENT OF CENTRAL NODE AND
MOBILE NODE FOR TELE-MEASUREMENT SENSOR NETWORK. THESIS
ADVISOR: ASSOC. PROE. WATIT BENJAPOLAKUL, D. ENG.

The conventional environmental network does not provide the feedback ability
and is not interesting for the non-scientific user. So, we propose a personal sensor
network for environmental monitoring and remote security system for company,
organization and home user.

With its long-term data collection ability, the tele-measurement sensor network
can be integrated in many research areas, especially in survey engineering, to collect the
data with a very fine resolution comparing to the conventional method (human operator).

With its feedback ability, the network allows the end user for better monitoring
and controlling their system more easily and reliably.

This network is easy to build and allows the end user to change the configuration
and easy to update the system by using the modular technique and ability to set up new
configuration from the center. It can be used as indoor or outdoor network.

By choosing appropriate microchip technologies and algorithm, we can optimize
the power consumption of the system.

In this thesis, we describe in detail about hardware and software needed for
developing this network (central and mobile nodes).

Department Electrical Engineering Student’s signature..... 6:%1»
Field of study Electrical Engineering Advisor’s signature..... £ .77 BySRe

Academic year 2004

vi

Acknowledgements

This research is possible because of the help and support of numerous
individuals. I wish to express my profound gratitude to all of them. I am
greatly thankful to Associate Professor Dr. Watit Benjapolakul, the thesis
advisor, for his continuous support, help and guidance throughout my time
as his graduate student at Chulalongkorn University.

I deeply thank Dr. Somboon Chongchaikit (thesis chairman),
Assistant Professor Dr. Chaodit Aswakul and Dr. Chaiyachet Saivichit
(thesis committee) for their valuable comments and suggestions.

I shall always be grateful to my family (my parents, my brothers and
sisters) for providing me with the best educational opportunities. They have
been a source of incessant encouragement, which have been vital to all of
my accomplishments.

This research was supported by the scholarship of AUN/SEED-Net
and JICA. T wish to express my sincere thanks to the AUN/SEED-Net and
JICA for their financial support. I also thank International School of
Engineering, Graduate School of Chulalongkorn University and Department
of Electrical Engineering of Chulalongkorn University for their great help.

I, particularly, thank Institute of Technology of Cambodia (ITC) for
giving me the best opportunities to do this research through the AUN/SEED-
Net and JICA project.

TABLE OF CONTENTS

Page
ADSIACt (THAT) .ottt et et e iv
ADSEract (ENGIISH) coviiiiiiiiiieceee ettt s st san e ba e st e naesnesne v
ACKNOWIEAZEMENLS.....ccouvereiierireriieeieestersre et e setteseaneeseeesbteeesnaeesreesssesesansaaesnreesssaennns vi
Table Of COMLENTS......ooieeiriiiieeeee ettt ettt et e sttt s nreenes vii
LISt OF FIGUIES c.uuveeuiiiiieenieiiiiireeecctteeete st siee st sene s sbesabeessessaeessaassseeuetesta et aensaenseasssesasens X
LISt OF TADIES .euviirueiriiieieeiiiiieere ettt sttt sie e ettt ate e sttt s e eeaeasssase e sansssesassessrasssesasess xi
LiSt Of ADDTEVIAtIONc.uviiiiiiieereeiiiiiiitt st sttt tsstecesttenteseeesaessiseembeesnaenasesaseeseennees xii
Chapter
I INTrOAUCHION. . ettt ettt sttt st et sabe s et eeneeesnaesne s saenasesnrans 1
1.1 Literature REVIEW......cccoiiiiiiiieniiiiieiice et cine e et 1
1.2 Overview of “Design and Implementation of Sensor Network
Node for Ubiquitous Computing Environment”.........cooeeceeeevenvurnnnen. 2
1.2.1 Key Technology.....ccoocviviiriiiiieniiiiniiniencieerenrieseeenesseeenns 2
1.2.2 Application and Performance Evaluation.........cc.cccceeceeneene, 5
1.3 Overview of “Wireless Sensor Network for Smart Roadbeds
and Intelligent Transportation SYStems”..........ccccevvverrveereereencveniuenne 7
1.3.1 Key Technology.....ccccovecviinniniincnniiiiinicceriniccceene 8
1.3.2 Test ReSults..cc..ccciininniiciiiecsiiiineeec e 11
1.4 Overview of “Computer System Senior Design”coceeoveevvenencnee. 11
1.5 Scopes and Goals.........cccccereiiniiniiriieeiieniiiniesne et 14
1.6 Expected Benefit......ccccooereevencniireriienececiiineeenee e s 15
IT' Proposed SYStem......cccciiiiiuiiimminmmiiiiiiicnicniesostcee et esesesae s sses s essesasenne 16
2.1 Hardware & Software Design for Mobile Node......cccoevuiveicnnnennne. 16
2.1.1 HardwWare........cccceevuerreenieecermrernneenreeseesnnesieeessesssecsssessnenns 16
2.2 Sofpraraesr e 16 13- 8 ™ ANR B 12N 01 18
2.2" Hardware & Software Design for the Center Computer
(Central NOdE)couvruieiiriiniciiiniccetceeeiee et eec i 22
2.2.1 HardWare........ccccevevverreneinreeseenrnnensieseeseesseesssesessecseessessnes 22
2.2.2 SOFEWATE ..veeureeeernieeieeineereetesinecee et e seeseesssaesseseseesssessrs 22
III System Implementationcccoccevmniirinieneciniiiiniece ettt 25
3.1 Component Study & Hardware Designccccecvveeeevennrieervererannnnns 25

3.1.1 PIC 16F87X and Modular Technique........cc..cceceeveceervnennen. 25

Chapter Page
3.1.2 Electrically Erasable and Programmable Read
Only Memory (EEPROM)cccuceciiviinvcniinienieeeeenneenne 38
3.1.3 Real Time Clock (RTC)...covvvrriirvernriiiienienienieseeeenvennens 41
3.1.4 Digital to Analog Converter (DAC)ccceeveverrrrcneenenne 44
3.1.5 PCF8574-Remote /O Expander.....c...ccceoeeeeevreecneecniennnne 47
3.1.6 GSM ModUulecceiiviiiiiiiiiiiiinerniieencie et 50
3. 1.7 GPS Module.......c.coiiiiriiiieciiiiiicecrce et sreenaes 57
3.1.8 Radio Link Module Hardware Design..........ccccccccercvenuenn.e. 64
3.1.9 CPU Module Hardware Designc..ccocvvevvveeienireerneeanvennne 65
3.1.10 Input Boardc...ucoiiviiiniicieiiiet ettt 66
3.1.11 Output Board.......cc..ceciviueivinenriinriinninnennseeceenenscvesenne e 68
3.1.12 RS-232 to I’C Debug & Programming Board.................. 68
3.2 Communication Protocol & Algorithmccccoveirieviiiniiiienncnninne 69
3.2.1 POrDUS . hevere e clast sttt e eethesorbsessethiesessesessnssesssssossssssassnes 69
3.2.2 MOdify FPC-DUS «....ocveerteienseeiae st sseeesesssresessesssesses s 76
323 RS-232 . ciiieiicitiresteteneceee et e nr ettt et sae e s e esnenenen 79
3.2.4 PC to Mobile Phone and Mobile Phone to Radio
Link Module Exchange Protocolccccecvvvverueceiveennnnnnnn 84
320 QM ettt naen 88
3.2.6 Radio Link Modulecocooiiiniiiiininneneece e 98
3.2.7 CPU Moduleooeeiiriinieererinieceee it eiee e nanenns 106
3.3 Software Flexibility and Utilization...........c..ccoieevveennnrncennnne pverenes 115
4 Performance Evaluation.....ii..coccciinuerrreeniinnieneeensiiinneereeseenreessesneseesssaensans 132
Data Collection, DTE-DCE Exchange Protocol and Error
DEtECHION ..cut ettt e 132
4.2 Alarm by SMS and Script EXECULION......coetiertrrerrereressnnereoraseesseennes 140
5 Conclusion and Recommendationioiuieecneeoreeniireeineestessnesseesstsiaineesasanens 143
RETETEINCES ..ccnueiiiiiiiiieciiirit ettt ettt s bt svae s sabeesbeeeebas e sasaessssessesbasons 145
LiSt Of PUDLICALIONS ..c..eeeviiiieeiieenierieeecsteneeet e eeetesste et e srsetaaeessstsesseessaesssasnenssssesseenns 147
AUhOT BIOZIAPRY ...vveiviiniiriiieeecntntce sttt ee e sve e saesae st esseesaans e s e s ssenns 152

Figure

~NONWnm AW

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

ix

LIST OF FIGURES

Page
Hardware Components 0f U?c..ooeovreeiieneeerenieeeseesnssessssessesssssseesseseessssanns 3
Software ATCHItecture 0f Us..........co..cvoiveieereeeeeseeeeosesevessesesesseses e eeeeeeeneo 4
Packet FOrmat 0f U™coovuiirereisieeseeensies s esesses e ssnss s 5
Experimental APplICationcecveevvervrerseeriienmiiniientrnieeieesirenceseeresnenseeveensessses 6
Transmission SUCCESS RAte ... c.veeiiiiiiiiiiii it 6
Mean Transmission Success Rate.......c...cccvveiiiviiieiiiniieicenianieneeeensee e 7
Node Block Diagram of Wireless Sensor Network for Smart Roadbeds and
Intelligent Transportation SYSEMSeecuieriiiieesirriieieeeieeereeesieereesre e eesneanes 9
Packet FOTMAtoocueiiiii ettt et e seeees 11
Rox’s Communications and Controlcccecvveecciiiiiiiiineenreeeccnnene e 12
Mox High-Level Block Diagram........ccccoecieviiiiiniineiiiisiiinirinsieienecnennenseaenns 13
Mobile Node ATChItECTUTEouti vt ieiieiieiiiecieisieeiteetesetaeseesresvesseaessnessseessasnseess 17
Time diagram for the Exchange of Command and Response Signaling 18
Scanning Process Chronogramc....occeeriiirrnieieiieniirnieereeeninnessseesesnesenseesssnneas 21
USART Transmit block diagram and Asynchronous Master Transmission28
USART Receive block diagram and Asynchronous Receptionc.cc....... 30
ADCONO Register (Address: 1Fh).....ccccoceiriiniiinieiiiiniieseinieiiecervenieasresseeennnas 32
A/D Block DIaBIamcccoiiiiiininiiiesiesinisnssestessaseesstssensessessssssesanessesuessucesnens 32
ADCON]1 Register (Address: OFh).....cociiiieenniniiiiiiniinicciniccee s 33
I°C Slave/Master Mode BIock DIagramoc..vvovveeronreneerieesiesesonsssssisseneenn. 36
PORTD Block Diagram in VO POrt Modeccoocceviiivenverniincienrinieeeeecenns 37
AT24CS512 Block DIagram.........cccciireiiceieeneninnneeesreeniesseessnesssesonsensuessesessesssees 39
Random/Sequential Read....ccc.ciiiriiiiniiiiiiiiiniiiiciiiinicciensieneee e siecevesnaees 40
BYyte/Page WIILEoouiiieiiiiiiiiiiiiiiiiie ittt st sase st b ene st easeaenns 41
RTC Block Diagram .ciciiiiiiiiiiiiiiiiosonietenssstetin s smeeeeessensaeesseesseenes 42
Slave Receiver/Transmitter MOdeccvooeeiiiiinieeiieniiiisie e 43
Address Map and Timekeeper REgIStersc..ccooveveveeveiriiineniiincenecreeeneene 43
PCF8591 Block DIagrami......c.cccceieeuenuiniinierieicneceneseseneseeeecsneeneeseesssemeesneenes 45
D/A CONversion SEqUETICE...c...uvuveeeirnuerirriirirrierrreiterrerssseestessaeesseeseesssessasseess 46
DAC Resistor Divider Chaincccue.iivieeisecsuisoeessssimsssssnesirsmnssresasenssaseeseensenses 46
PCF8591 Control Byte REIStErcc.ciiuirerrieiieiieienvies it et 47
PCF8574 Block DIagram.......cceeeeieruenieserinieerreetesieneesreeeesseessesseesssssrsesesenenee 48
PCF8574 and PCEF8574A Slave AddIess......cccvvveevermereneessirnneeseeeeneesnnrecassnnenne 48
WIItE MO (OULPUL) L.reiieiiiieenteitieiteiie it csbueteeaesine s ssbesbesibane s e asa e shaeesbtesnnens 49
GMBO62-GPRS OVEIVIEW ...ccceriiiiiiiriiniencieie ettt et sene e s e seeenne 51
Dimension of GPS MoQUIE..........ccvviiiierirniierecrinierceeeienie e see e snes e 62
IC-bus Configuration Using two MicroCONtrollerscoemerreeervererrreerans 72
Connection of Standard and Fast-mode Devices to the I?C-bus......................... 74
Start Condition, Bit Transfer and Stop Condition for FC-bus.........c.ccccvvreveennc. 75
Data Transfer 0n the TEC-DUSovcuevereeeeereesseseseesseseeesesssesessessessssssessnas 75
Acknowledge on the PC-DUSeveeveeeieeecceeeeeeeesssrsses s sses s 76
Format Of EEPROM (7h)...couriiiiiiiieieetecceceeeeceecieee et 79

RS-232 Logic Levels and Logic Waveformc..ccocvvvvvccencniinreenenienceeseeneennes 80

Figure

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

Page
TTL/CMOS Serial Logic Waveform..........ccovvvierieerienenniennniicesennesseseeeenenne 81
Typical MAX-232 CiICUIL.....o.vreeeiiiiiciiirieicniiniiecrceecen et seeeseeeereene s 82
RS-232 Connector Pin ASSINMENS......cccecveerrerrreriienitenieenririniesseessreesiesssesssenns 84
DTE-DCE Exchange Protocolccevieviierieniiineininiiienneiniesiessrenieeseresneenns 87
Message Flow from Server to SCreenveoeeviievviinniiecieniinniieeeeereeeeseennenns 89
Message Flow from PC to Mobile Handset.........ccccovcvreveenniiniienicnnienninnneennnne 90
SMS Message HEadersoccccouiriiiiiiiiiiieniiniiecccirie ettt 91
Packing AIZOTItRIMoocviriiiiiniiiiiiitisee ittt ceree e sta e sstaesseeseneaae 93
Unpacking AIOTItRIMccoiiiiiiiiiiiniiiieiitcsitecitiete ettt eebe e 97
Radio Link Main Program Flowchart...........ccccciiiiiinininininninneniccncnene 100
Send SMS FIOWChATTccoueeviiiiiriiiiiiiiiinsiceieesitssnnes it e e esecenneeseeesnnasaneane 103
Script Execution Flowchart...c...ocoveuviiiiiiiiniiiiiinencciincceneeccenenecsecaee 104
Send-Update Data FIoOwWChart..........cccocoiviiiiviiiiiiiie e e 105
CPU Main Program Flowchartc.ccoccoiiiiiiniiiinniiiininene e, 107
Check RxFlag Flowchartcc..ccccooiimimmininiiiiiiciiicie e 109
Scan and Store Digital Input Port Flowchartcocceeiiiiincniiccvenienneeceenie, 112
Scan and Store Analog Input Port Flowchartcccoiiininvineniniiiceenn, 113
Send Alarm Message Flag Flowchart...........cccoevvenieiiiinmiiiiinniicciecienieeeie e 114
Send Buffer Overrun Flag FIowchartccoocveiiiiiniiniiininnienecneceiee e 114
Check TPC-DUS FIOWCHAIT cvv....oo.eeviveo e iesieeesssciecss s e sesssssnsssesssssesneeons 114
Serial Port Setting FOrmi.......ccoiiiiiiiiiiiiiiiiieieiin sttt eeresseessreesaaeesreeeaas 115
Central of Tele-measurement Sensor Network Main Form..........cccccccevvveneeeee. 116
Mobile Node Record Tab........coiiiiiiiiiiiiineeaereseasaesseeseessaesessaesseses 118
Node Settings Tab.......ccocviniiiiiminrceieneerenc e 119
Over Load Message BoX.......occcoviiiiiiiiiiiiiiiicicsiine et senesnneas 122
ViIEW GTaPN Tab..iiiieiiiiiiiiiiiieecieiecte st e et eesneeseteeessaessnnaesda st e eesnesssaseessaasasnans 124
Print Record FOMMc...coiiiiiiiiiiiiieicniesieeeenienncene st snesinesnt e e e seeeeeseeeenes 126
Find the Record FOImcocoocviiiiiiiiiiiiiiiiiiecciisitesie st ctsinteee e sreesseesnre e 127
Send SMS FOIm.....ooiiiiiiiiiiiiirie ittt sttt sttt e et st e esaesr e sneesaaesaenen 128
Input Port Setting FOrm ...c.oviiiiieiiriiieieenrecierc it 129
Output Port Setting FOrm.........ccveievinririiietetnreieieee e eenaens s 131
Report Format Generated by Debug Pin of CPU Module..........cccccovvernrannenee. 133
Variation of Light Intensity versus Time (8-bit).......cccevviirvveiiriinenviensenneeennes 134
Variation of Light Intensity and Temperature (8-bit)............cccc.ivverencricrnrennen. 134
Variation of Light Intensity versus Time (10-bit)....ccoceeeeevenrvrnrenreeceesiinsivnnenne 137
Variation of Light Intensity and Temperature (10-bit) ...l 137
Comparison between LM335 and LM3B5 i...cccoiiiniiniiiiniieniininnenerece s benesineanees 139
Variation of Light Intensity and Temperature (10-bit with errors)................... 139
SREAD> MESSAEEuveevieeriieiiirieerieritenrerisesceessenasstesiesessessseessseessesssassnsasssesases 141
<REPORT> MESSAZE......cceiririerririerniernreniseestecserssaesssessnesrnessanesseesunessnessesnes 141
Radio Link Internal PrOCESS.......ocveueeuerieiuieeneenieniirieceenrenneeienseesesseessasseessens 141
Script Command Sent from Our Programccccevvveeveiiiininnienncnnnenniveennens 141
Critical INput MESSAZEcoveeirirniiriiniiiieninicsteeeeeeeetsiteee st st seesresneene 142
Buffer Overrun MesSage........cveevevimriiiiineniiiiniineeetireceereeseeseseeeeseessesaea 142
Perspective View of Mobile Node......c..cocvvrveiiicceininicnenieeneeeecsnseesene 142

Table

O 001N B WN

xi

LIST OF TABLES

Page
Major Components 0f Uooouoiveieeereereeseesessessesssessseessssssess s sonases 4
Command and Response Signallings.........ccocueecververnniinneenieenennnneneenreenieesennnes 19
Baud Rate for Asynchronous Mode..........cccoovurrieviinniiineenniinninenieeeenceseseees 27
Register Associated with Asynchronous Transmission.........cccceccoveecereecenncne. 29
Register Associated with Asynchronous Receptioncccevvvierceveniervennnenn 31
Register/Bits Associated with A/Dc.cciriimiiiiiienineninnineneneeesenenrenes 34
Register Associated with PORTDccccccciiiiiiiiiiiiiiiiieiicecrreecreeeecne 37
Best RTC of DALLAS Semiconductor Company.........ccccoeeevrveeecreernverrveereeeneens 42
Square Wave Output FTEqUeNCycccoevviiviiiiiiiiiniiniiiien i 44
Pin-Out of 30-Pin Interface Connector...........cceiiviieiiiiiiiicinrnieneene et 52
GGA Data FOrmat.......cccveiiioiiiiiiiiiiie i st cinesies et seere s eesanasssenas 62
Pin-Out of the 20-Pin Interface Connector..........cccoovieeviiiiiieninniincesene e 63
Definition of I?C-Bus TErmiNQIOgY L N e 73
RS-232 Defined Signals.......cccoceeieiiiieneiencrreiesiee ittt esae e seee e e easseeas 83

SMSC Number Associated with the Provider and Country...........cccceevvrrureneeenne. 94

xii

LIST OF ABBREVIATION

ADC Analog-to-Digital Converter

BCD Binary Coded Decimal

CAN Controller Area Network

CMOS Complementary Metal Oxide Semiconductor

DAC Digital to Analog Converter

DCE Data Communication Equipment

DGPS Differential Global Positioning System

DTE Data Terminal Equipment

DTMF Dual Tone Multi-Frequency

EEPROM Electrically Erasable and Programmable Read
Only Memory

GGA Global Positioning System Fixed Data

GLL Geographic position - Latitude / Longitude

GPRS General Packet Radio Service

GPS Global Positioning System

GSA GNSS DOP and Active Satellites

GSM Global System for Mobile Communications

GSV GNSS Satellites in View

I°C Inter-Integrated Circuit Bus

IC Integrated Circuit

ICSP In-Circuit Serial Programming

INT Interrupt line

LCD Intelligent Liquid Crystal Display

LED Light Emitting Diode

M2M Machine to Machine Communication

ME Mobile Equipment Internal Storage

MN Mobile Node

MSSP Master Synchronous Serial Port

NRZ Non Return to Zero

PBP PICBasic Pro Compiler

PDU Protocol Data Unit

POR Power-on Reset

PSP Parallel Slave Port

RAM Random Access Memory

RISC Reduce Instructions Construction Set

RMC Recommended Minimum specific GNSS data

Xiii

RMS Root Mean Square

RTC Real Time Control/Calendar

RTCM Radio Technical Commission for Maritime
Services

SA Selective Availability

SCI Serial Communication Interface

SCL Serial Clock line

SDA Serial Data Address

SIM Subscriber Identity Module

SM SIM Message Storage

SMS Short Message Service

SPI Serial Peripheral Interface

SRAM Static Random Access Memory

SSP Synchronous Serial Port

TTL Transistor-Transistor Logic

USART Universal Synchronous Asynchronous Receiver
Transmitter

USB Universal Serial Bus

VTG Course over Ground and Ground Speed

WAAS Wide-Area Augmentation System

CHAPTER 1
INTRODUCTION

1.1 Literature Review

Recent advances in wireless communications and electronics have
enabled the development of low cost, low-power, multifunctional sensor
nodes that are small in size and can communicate in short distances. The
sensor network represents a significant improvement over traditional
sensor and it can be used for various applications areas such as health,
military, industry, home, etc. For different application areas, the sensor
networks are designed with different technologies [1-2]. It is also a key
technology to obtain user’s context in the real world because it can enable
long-term data collection at scales and resolution that are difficult, if
possible, to obtain otherwise.

A large number of researchers have been working on sensor network
technologies primarily for the realization of large scale environmental
monitoring systems for military use and/or scientific use [1-4] and in this
recent year, a large number of systems have been proposed for a small
network and indoor network such as MICA [3] and U’ node that is
capable of communicating with other nodes to carry sensing data and
queries issued by users.

Wireless sensor package developed by Ara N. Knaian can be used
only for Intelligent Transportation Systems by counting passing vehicles,
measuring the average roadway speed and detecting ice and water on the
road [5]. However, they are not applicable to a non-scientific and home
user and there is no feedback path.

A Linux-Based Robot Control System. [6] developed by Traig Born
and Joel Glidden is very powerful in terms of data collection and remote
control, however, it cannot be considered as a sensor network because of
its power consumption and its size.

Before we start our discussion about the proposed method, it is good
for us to know what the requirements and characteristics of sensor
network are and how they can be chosen, applied and combined with the
existing technologies into the sensor nodes, which we can apply or
integrate to the real word and how it can help improving our daily lives.

The requirements for sensor network are:

e Sensor nodes mainly use a broadcast communication paradigm.

e Sensor nodes are limited in power, computational capacities, and
memory.

¢ Sensor nodes would have to be small, extremely robust, easily
manageable and installable at a low cost [1].

e The ability to cooperate among the sensor nodes

e The topology of a sensor network changes very frequently.

e The sensor network should be able to support a high number of
sensor nodes

¢ FEasy to control and monitor all mobile nodes just from one place.

We will discuss first about the Design and Implementation of a Sensor
Network Node for Ubiquitous Computing Environment (U*: U Cube) and
then A Wireless Sensor Network for Smart Roadbeds and Intelligent
Transportation Systems and Computer Systems Senior Design.

1.2 Overview of “Design and Implementation of a Sensor
Network Node for Ubiquitous Computing
Environment”

Ubiquitous computing is a technology aims at supporting human
activities with a number of computers and sensors that are deeply
integrated into our daily lives. Such “smart” and “attentive” services
would be realized using user’s context and preferences in the real world

[3].

U’ is a 50 mm cube that contains a power module, a CPU module, an
RF communication module and a sensor module. This U? is capable of
sensing several types of data such as temperature, brightness, and the
presence of human and sending this information to other nodes (via RF
link) and/or peripheral devices including PC and PDA (via IR link).

1.2.1 Key Technology
Hardware Implementation

In order to achieve the sensor node requirement such as small size,
low cost, low power consumption, multi-functionality and extensibility,
the U? node is divided into four physically separated modules: power

control module, processing module, communication module and
sensing/actuating module as shown in Fig 1.

» Wireless off-the-shelf sensor node

Wirelass Comm,
IrDA Comm.

Fig 1. Hardware Components of U?

Each module is connected to one another by a bus connector in order
to achieve extensibility. By choosing an appropriate technology from
Microchip [7], the U? can go to sleep mode when there are no events or
tasks to operate, thereby achieves the low power consumption
requirements. This requirement can also be achieved in software that we
implement in the sensor node. That software must make efficient use of
processor and memory. The sensor module consists of a motion sensor, a
brightness sensor, and a thermometer. As the sensor module can be
replaced, we can adopt the system to the new application easily, that is it
fulfils multifunctional requirement. For the communication module, it
consists of an RF monolithic transceiver CDC-TR-02B (300 MHz band,
On-Off keying, 115.2 kbps), helical antenna, IrDA1.0° communication
interface and one PIC Microcontroller for processing network protocol.
IrDA 1.0 communication interface is used as an interface between U’ node
and peripheral devices such as a PC or a PDA. Application programs and
sensor data can be uploaded and/or downloaded through this connection.
It is controlled by CPU module. All the necessary components are listed
on TABLE L

TABLE 1
MAJOR COMPONENT FOR U?
Sensor Motion, Photo, Temperature
RF Transceiver CDC-TR-02B (315MHz)
Micro Controller Unit PIC 18F452
Controller MCP2150
DA 1.0 Transceiver RPMS51A |

Calendar RX-8564CF
Battery Ni-MH

Software Implementation

In order to communicate among components, 1°C bus protocol has
been implemented. In general, the data may be simultaneously captured
from sensors, manipulated and streamed onto a network. Alternatively,
data may be received from other nodes and forwarded in multi-hop
routing or bridging situations.

Fig 2. Software Architecture of U’

To realize such concurrent execution within resource-restricted
hardware, we allow interruption of tasks by events. Here, an event is
defined as a process which has to be executed immediately and is
assumed to complete immediately. Event includes the arrival of wireless
packets, etc. On the other hand, a task is defined as a process, which takes

longer time than an event to finish. It includes periodic capturing of
environmental data, etc. Event-based task scheduling needs low overhead
for state transition compared to stack based approach. Accordingly this
scheme saves CPU load and power consumption. The task is controlled
by the RTC (Real Time Control or Calendar Rx-8564CF). The software
architecture is shown in Fig 2.

As we implement MAC (Media Access Control) algorithm and
CSMA/CA protocol to achieve the collision avoidance and multiple
accesses over RF wireless link, the accurate synchronization between
sending and receiving nodes is crucial for high speed and reliable
transfer. Accordingly, application tasks can be frequently interrupted by
wireless communication events, so in order to remove such load from the
CPU, we provide separate CPU for wireless communication and
application tasks. For the packet format, see Fig 3.

1.2.2 Application and Performance Evaluation

The performances of the U’ sensor node have been evaluated by
developing a simple application that detects human motion in a room (Fig
4). As an experiment, the success ratio of packet transmission was
measured. Six U’ nodes were deployed in a 9m x 12m indoor
environment. The sink node (connected to a data collection PC via IrDA)
periodically queries the other nodes (source nodes) about motion sensor
data over the RF wireless link. In response to the query, source nodes
report to the sink node whether they detected a human motion.

typedef struct

{

uintlé6 addr; // destination address
uintd type; // Zpplication ID
uint8 group; // Network ID
uint8 1length; // Packet Length
uint8 data [DATA_LENGTH] ;

//Payload (max:2S%bytes])
uintlé crc; // CRC
} packet_ type

Fig 3. Packet Format of U°

Fig 5 shows each node’s rate of successful transmission rate when the
query repetition period is 0.5 sec, 1.0 sec, and 1.5 sec. The result shows

that successful transmission rate is sufficiently high (91%) even when the
query repetition period is 1.5 sec. This is a convergence of discarding
sensor data packets on intermediate nodes if the nodes receive newer
queries. Fairness of the successful transmission varies widely when the
repetition period is large. This phenomenon results from the effect of
packet loss over multi-hop networks.

Sensor Node

an
Floading ((0"%™] Floading

--q-rﬁ Brso "--—---
E‘?.°S"E|,<”f‘2°.9'@-)
Fig 4. Experimental Application

2100
90
20
70
50
40

Transmission Success Rate [%]

a0 =ge=(} 5({sec]
= = {[smc])
20 —4i— 1 5{sac]
10 k st A — - — g -k
[4] i : — = s
1 2 3 4 5 8

Hode (D

Fig 5. Transmission Success Rate

Fig 6 shows the success rate of data transfer when the number of
nodes changes. In this experiment, each node tries to transmit a response
packet that contains sensor data at random intervals over 100 seconds.
Each packet is 13 bytes in length (including header and payload).

10¢

o
Q
T

0

Mean Transmission
Success Rate / Node [%)

60

0 L . . _
2z 3 4 5]

Number of Nodes

Fig 6. Mean Transmission Success Rate

Fig 6 shows that the success rate of the transmission varies widely as
the number of nodes increases. This is due to the unbalanced random
value used for the CSMA/CA back-off operation. As the operation to
generate good random numbers is too expensive for low power
microprocessor, only a simply random function for the CSMA/CA back
off operation was used.

1.3 Overview of “Wireless Sensor Network for Smart
Roadbeds and Intelligent Transportation Systems”

Because the congestion level on the nation’s roadway is spiralling out
of control, many techniques have been proposed to solve the problems.
The solution was regrouped into two main methods, first group uses the
information technology to make better use of the roads and the second is
to make better public transportation, the latter is the only sustainable
long-term solution to road congestion but requires a lot of investments.
However, the information technology method will be discussed.

Typically, traffic sensor systems can be classified into two types. The
first type uses sensors, placed at many points throughout the road network
that count and measure the speed of passing vehicles. This data can be
used to intelligently control traffic signals, and can be used with a simple
queuing model to predict link times on the road network. The second type
of system aims to measure link times directly, by tracking the progress of
probing vehicles through the road network. In this article, the first type of
system was used.

The most common type of traffic sensor is the in-road inductive loop.
A coil of wire of several meters in diameter is buried under the road and

connected to a roadside control box. The control box passes an electrical
current through the coil. Passing vehicles change the inductance of the
coil. In most units, the control box outputs a digital signal, based on a
threshold inductance, to be used to control traffic signals or to count
vehicles. Two loops, placed a few meters from each other, can be used as
a speed trap. Traffic can also be detected using magnetic sensors that
detect passing vehicles by measuring disturbances in the Earth’s magnetic
field. Magnetic traffic sensors are much more compact than inductive
loop traffic sensors, and thus are better able to count vehicles in bumper-
to-bumper traffic, so magnetic sensors was decided to be used in this
system.

The design for a wireless in-road traffic sensor system was presented.
The sensors are small, low in cost ($30), and extremely rugged. They
count and measure the speed of passing vehicles using magnetic
technology. They also measure information about road conditions. Each
cluster of sensors transmits data to a receiver mounted on an electrical
pole up to 300 meters away, which relays the data to a processing station.
Each sensor node consumes so little power that it can operate from a
small internal lithium battery for at least 10 years [5].

1.3.1 Key Technology

Each node is a compact, self-contained package. It contains magnetic
field sensors, a temperature sensor, a radio transmitter, a microcontroller
and a lithium battery (See Fig 7).

The node samples the magnetic field at its front and back ends (AMR:
Anisotropic Magneto-Resistor), and internally processes this data to
count vehicles and compute the average speed of passing vehicles. Once a
minute, it transmits a data packet containing its ID, vehicle counts in 10-
second bins, average speed, and temperature to the base station. All of
these fundamental design choices were motivated by a desire to achieve
the other design goals while making the most efficient use of power, to
allow for as long a battery life as possible.

To detect vehicles, the system detects excursions of the sampled
magnetic field value from a baseline. A passing vehicle generates an
excursion first below and then above the baseline, (because it pulls field
lines away from the sensor as it approaches and then pulls field lines onto
the sensor as it drives over it) providing a simple, unambiguous way to
detect multiple end-to-end vehicles. To measure the speed of a vehicle,

MOSFET
Power
: Instrumeantation
mgg,’iﬁf tic and Operational Antenna
Amplifiers
Channel A
Strap Control Microconiraller Radio Transmitter
{TMS430)
Power
MOSFET
MOSFET |
Powar
Temperature
Sensor
i Instrumentation
mgﬂgﬂ? elic and Openational —
Ampiifiers

ChannelB

Fig 7. Node Block Diagram of Wireless Sensor Network for Smart
Roadbeds and Intelligent Transportation Systems

the node waits until it detects an excursion from the baseline, and then
starts sampling at 2 kHz using two sensors, one at the front of the node
and one at the back. The waveforms at the outputs ‘of the sensors are
identical, except that they are ‘shifted in time and may have slightly
different electrical noise characteristics. The sensor waits for the signal
from the rear sensor to cross the baseline, and then counts the number of
samples until the signal from the forward sensor crosses the baseline; it is
like what we use in frequency meter. From this count, because we know
what the distance between two sensors is and how long it takes to pass
this section, it can readily compute the speed of the passing vehicle.

Since the sensor package is to be installed directly into the roadbed, it
can also measure information about road conditions, such as whether the
road is covered with snow, ice, or water. In order to do this, we use a
capacitive sensor by attaching a micro-controller output pin to an

10

electrode near the surface of the sensor package, and attaching an
adjacent electrode to a micro-controller A/D input through a simple FET
amplifier. The microcontroller would repeatedly apply a voltage step to
the electrode, wait for a varying number of microseconds, and then
sample the A/D input. By sliding the closing time of the A/D sampling
gate across the ring-down from the step, the microcontroller can use
synchronous demodulation to make the capacitive measurement.

Another approach is to measure the temperature: If the temperature is
above freezing, ice cannot be present; similarly, if the temperature is at or
below freezing, ice may be present. In addition, the rate of change of the
in-road temperature versus the air temperature is determined by the heat
capacity of the material above the sensor.

Each node has a transmitter, but no receiver. This design choice was
made primarily to cut the cost and complexity of each node, since the
nodes do not have any intrinsic need to receive commands. However, the
lack of a receiver complicates the radio protocol, since most standard
radio multiplexing techniques require each participant to be able to
receive as well as send. The protocol designed is very simple: each node
randomly selects a time slot within a 60- second interval and transmits
there. If it detects that a vehicle is present when its randomly selected
transmission time arrives, it waits for it to pass before transmitting.
Redundancy and sparse use of the channel reduce the probability of
collisions to an acceptable level. To increase the number of nodes per
base station, several frequencies can be used, with a frequency
deterministically assigned to each node. This combines both TDMA and
FDMA. In practice, in order to reduce the chance of collision, we assign
only 10 time slots in one frequency so in total, we can assign up to 80
nodes per base station (each transmitter module can support 8 channels
from 902 MHz to 928MHz ISM band at a maximum rate of 50 KB/s).

The radio transmitter used on the node requires an edge on the digital
input data at least every 33 ms; otherwise PLL may track out the
modulation. So, each transmission requires a one-character preamble to
take the PLL from lock to capture. This character may not be transmitted
correctly, so it is not protected by the packet’s CRC. Fig 8 is a diagram of
the packet sent by the node to the base station. The first character of the
packet is a magic number to identify the system type and software
version. The next six bytes are the node ID. Each node has its own unique
ID to simplify administration of the network. The last 18 10-second count
bins follow, (so that even if one message is lost, the counts are not lost),

11

followed by the average speed. The message concludes with a CCITT
CRC-16. The total message length (including the character to put the PLL
into capture mode) is 30 bytes, which takes 7.8 ms to transmit at 38,400
kb/s.

PLL Capture Magic Node 1D Avemge CCITT CRC-16

Vehicle Counts 18 10-Second Bins
Cha.['j‘.de’ N”.'g,be' (6 Bytes) (18 bytes, least lo most recent) (f’gie; (2 Bytes)

Fig 8. Packet Format
1.3.2 Test Results

According to the visual observation, it confirmed that the sensor
worked as expected. Generally, it counted vehicles that drove over it, and
did not count vehicles that swerved around the pothole (a small fraction)
or that were traveling in other lanes. The sensor double-counted certain
types of large trucks, and occasionally (perhaps once every twenty) did
not count a vehicle. The sensor performed just as well in bumper-to-
bumper traffic as it did in widely separated traffic.

1.4 Overview of “Computer Systems Senior Design”

This topic seems to be different from the above two topics, however, it
is very important to understand it because it also integrates some sensor
network characteristics and relates to our research topic as well.

First of all, some basic mechanism of what so called Robot would be
introduced. Robots typically contain three interacting sub systems such
as: Mechanical subsystem, Control & Sensory subsystem and Behavioral
subsystem. Since many researchers work in the mechanical or behavioral
areas and since the control system ties the mechanical and behavioral
aspects together to be a complete robot, only the control system will be
discussed.

The objective of this robot control system is to be general purpose,
flexible enough for a wide range of applications and inexpensive enough
to be accessible for small educational institutions [6].

12

Typically, a robot control system musts satisfy four functional
requirements [6]:

1. Provide a communication mechanism for remote control,
monitoring and configuration.

2. Acquire data from sensors.

3. Perform computations on acquired data according to
programmed behaviors or artificial intelligence.

4. Generate output signals based on these computations to drive
the robot’s mechanical subsystem.

For these requirements, it resembles our work very much that’s why
we cannot skip it.

Key Technology

Since the Linux is an open-source operating system and available at
no cost via the Internet; it is decided to be used as an operating system for
the control system board (called Rox). For the program and acquired data,
they are stored it in Flash drive because it consumes low power, contains
no moving part that lead it to be the best choice for mobile robotic
application where vibration and limited power are concerned.

Remote Robot .
Uiser Host PC l

Ll.Ld/

Mouobile
Robot

Fig. 9. Rox’s Communications and Control

Communications: As a general-purpose robot controller, Rox must
provide a communication mechanism suited to many different
applications. Perhaps Rox is to be used on an autonomous robot that
collaborates with other robots to accomplish some tasks. Perhaps Rox is

13

to be used on an Unmanned Air Vehicle conducting battlefield
surveillance while being piloted by remote control. See Fig 9. Rox is
located on the mobile robot and linked to a host computer via 900 MHz
radio modems. This host computer then serves as an operator station and
connects Rox to a larger network such as the Internet. Rox’s host also
handles network security ensuring that only authorized users gain access.

Data Acquisition: Because Rox is based on standard PC hardware,
there are a number of options available for data acquisition. Sensors can
be easily interfaced to COTS (Commercial Off-The-Shelf) data
acquisition boards that connect to USB, ISA or PCI interfaces. The
parallel port provides another sensor interfacing option. Some sensor data
can be acquired through Mox (Motor control system used by Rox), which
monitors sensors connected to the robot mechanisms to facilitate motion
control. See Fig 10.

H-Bridge
Amplifier(s)

Motor(s)

I

Sensor Feedback

User Applications

Network Laver

Operating Svstem

Deavice Driver

Muotgr Control
Boardis)

Fig 10. Mox High-Level Block Diagram

Computation: As Rox is essentially an embedded computer system,
it is composed of the major components of most personal computers such
as: Motherboard, Microprocessor, Memory, Long-term storage and
Operating System. A standard PC motherboard with SDRAM and a
Pentium 133 microprocessor provides an inexpensive computing platform
suited to almost any robotic application.

14

Output to Mechanical Subsystem: Rox provides drive signals to
the robot’s mechanical subsystem via its custom designed motor control
system (Mox). Mox integrates hardware and software components to
translate computation into actuation. The system has four major
functional components:

Motor Control Board } Motor Control
Motor Control Board Device Driver /] ~ Board(s) in Fig. 10

Motor Control Programming Library

el

H-Bridge Amplifier (4 Darlington configured NPN power
transistors)

The relationship among these components and to Rox is shown in Fig
10.

This thesis is organized as follows. In Chapter 2 we describe our
proposed solution that bases on real experiment and implementation.
Chapter 3 describes the implementation of our proposed system in more
detail including component study, format, flowchart for each algorithm
and some tricks that we use while implementing this system. The
performance evaluations of each features and comparison between the
original data in the memory and the received data from mobile phone are
interpreted in Chapter 4. Finally Chapter 5 concludes our work and the
recommendation,

1.5 Scopes and Goals

Scopes:

e Implement the mobile node by using PIC as controller and central
node by using PC as controller.

e Evaluate the system performance by comparing the original data in
the memory and the received data from mobile phone for exchange
algorithm testing.

e Evaluate the system performance by adding some error in the
received data or interrupt the mobile node while central node want
to connect to the mobile node to test the central node performance
and scheduler algorithm.

e Evaluate the system performance by making the input reach the
critical condition to test the mobile node performance and script
algorithm.

15

Goals:
e Contribute in rural development and survey engineering with our

1.6

long-term data collection capability and fine resolution capability.
Contribute in remote security system control by scanning all the
input ports and the ability to report the data when it reaches the
critical value.

Suitable for indoor and outdoor network because we choose mobile
phone system as our communication link.

Capability to change the configuration setting of the system from
remote distance.

Reduce the expense of the budget because we only spend the
money for equipment, no need to pay for the staffs every month.
Can be in hand for all kinds of users (company, organization,
military, scientist, student, home user, etc.) because they can easily
manage the network during setup as well as during operation
process.

Expected Benefit

Give an understanding on how to send data through mobile phone,
how to use AT-Command and how the message data is packaged
into 8 bits ASCII before sending (for SMS mode) and why we need
to convert it, etc.

Give an understanding on how to arrange the memory efficiently in
order to be easy when we want to retrieve data from memory, etc,
how we can update the configuration of the system by _]llSt updating
some data in that memory.

Give an experience on how to choose/select the format for
storing/sending -data when the data cannot be represented by the
whole ASCII character set.

Give an experience on how to choose/select the “Operational
Amplifier (OPAmp) for the interface board (some sensors need to
use amplifier in order to be able to connect to the microcontroller)
because some OPAmps cannot be used with the power supply 5V,
low power, high input impedance and rail to rail input/output
voltage, etc.

S TR

CHAPTER 11

PROPOSED SYSTEM

As descript above, other systems can not be in hand for non scientific
user and can not update easily whereas our proposed system is a private
network, can be in hand for scientific as well as non scientific user, easy
to update and allows the user to change the configuration by itself. It is an
outdoor and indoor network that can be used for a large or small-scale
network such as environmental monitoring and remote security system. It
is very difficult to envision how such future application should be like,
however it is desirable to specify or list some applications, so we try to
show some real applications as listed below:

o Measure the water level, gas toxic, air pollution rate, humidity,
and luminosity and monitor these values from distance.
o Measure the current intensity of the power distribution sub

center, alert the main center with the cause and cut off the
dangerous line at the exact place.

. Use as security guard: monitor the gate, doors, windows,
hallways, alert the security office and/or police stations with the
location where the unpleasant event have been occurred.

. Control the electrical appliances in the house.

2.1 Hardware & Software Design for Mebile Node
2.1.1 Hardware

In order to fulfill the flexible requirements, we divide the system into
small modules (modular system), with have specific functionalities, as
shown in Fig 11.

Radio Link Module: Use a mobile phone kit as the radio link module
to ensure the data transfer between central and mobile node (MN). We
use one PIC16F876 [7] (Programmable Integrated Circuits) and one
EEPROM 24C512 [8] (Electrically Erasable Programmable Read Only
Memory) to ensure this functionality.

17

ROM-RAM
Interrupt
Bus Control

ROM-RAM
Interrupt
Bus Control

Fig 11. Mobile Node Architecture.
MS: Mobile Station, GPS: Global Positioning System Receiver.

CPU Module: use PICI6F877 [7] to ensure the data processing,
sampling and storing data in the external EEPROM. This module
communicates with the Radio link module, some external sensor boards
and Real Time Control (RTC) DS1307 [9] via I*C protocol.

Sensor Module: As the CPU module supports digital & analog input,
some sensors can connect directly to digital input port and other sensors
that give the result as voltage (0OV to 5V such as humidity sensor,
luminosity sensor (use photo-resistor), Pressure sensor, etc.) can connect
directly to analog input port. We also reserve one RS232 port for GPS
receiver for positioning functionality.

Output Module: We fix to use I’C-Digital to analog Converter
PCF8591 [10] to provide two analog outputs for the user with 8 bits
resolution and PCF8574 [10] to provide 8 digital outputs. The buffer
amplifiers for analog outputs (to protect our DAC) and power switching
for digital outputs (for 12V and/or 220V load) is implemented but will be
add to this mobile node as necessary.

18

Power Module: will be developed by using solar panel if necessary.
Right now, we use adaptor AC~9V to supply the entire system.

CPUUp > Token >
- = — - - OIINEmp_ _ ____] _ < STA
________ R2Stor ______,|
A Data Stream
¥” 0Old Data Stream
AN Gmmmmmmmmmmm oo & STO
< _UbReady A. Send Data
STA -
Update Data Stream SMS-Alarm
UpEnd >
P UpSuc A, B _SMS_—R_C_S_C_t _____ »l
B. Update Data C. Alarm by SMS

Fig 12. Time diagram for the Exchange of Command
and Response Signaling

Note: All these features are supported by our CPU module. If we want
to use it, just connect the corresponding module then enable it from PC
(Personal Computer). This implies flexibility and saving money because
we pay for what we want. The modular technique provides not only
flexibility but also power consumption reduction as the CPU module can
go to sleep mode (I<2 mA at 5V, 4 MHz) after processing all its works (it
take about 300 ms/scan, so if we scan the input every 1 min, the CPU can
go to sleep mode for 59.7s that is equivalent to 99.5% of time).

2.1.2 Software

We implement a layer-2 protocol to Mobile node in order to archive
the flexibility to change the configuration by the user during or after the
network configuration. We also provide the feedback control by
implementing a script execution function. The program is written by
using PicBasic Pro Compiler [11-14].

19

TABLE 11
COMMAND AND RESPONSE SIGNALLINGS
Name Cﬁasrgcltler Description
STA 178 Indicate the Start of data
STO 187 Indicate the End of data
Token 196 Request for Sending data
CPUUp 205 Request for Updating data
R2Stor 214 Ready to store the old data
UpEnd 223 Indicate the End of Update-Data
OldNEmp 232 Data left in EEPROM
UpReady 241 Ready to store Update-Data
UpSuc 250 Updating is finished successfully
S 167 Synchronizing Frame Header

Radio link module: We use AT-Command to send the data and SMS
(Short Message Service) via Air-interface (mobile phone), however, as
not every mobile phone supports text mode; we implement text-to-PDU
(Protocol Data Unite) mode algorithm [15] for we can support the
majority of mobile phone. We also implement a layer-2 protocol on it in
order to ensure data transfer between the central and mobile node as
shown in Fig 12. Send the collected data, update the user
customization/setting, alarm warning (“Critical input detected!” and “The
memory is full at mobile node: RobotXXX”), send input data, feedback
control and send its report are the functionality supported by this module.
For more information about the format of these messages, see section
3.2.6. All information about this protocol is shown in TABLE II with other
constants used in our work.

Note: All the user customization, warning message and acquired data
are stored in the external EEPROM, which is AT24C512 (512kbits <
64kbytes). This EEPROM (0000h—>008Fh) stores, not only the data for
Radio link module (mobile node ID, central mobile phone number,
manager mobile phone number, SMS option, digital output port’s names,
analog output port’s names), but also a very useful data for CPU module
(options for CPU: scanning period, frame size, GPS flag, input mask,
input critical values, upper bound counter limit and alarm flag, analog
comparison status).

Here, the sampling period is the same for all input ports because we do
not know exactly the future application of each port. After the network

20

configuration, the user can only change the options for CPU. By just
changing the data at the corresponding memory location, we can allow
the user to customize the network very easily during installation as well
as after installation. The memory location from 0090h to O0OFFh is used
for alarm and report message, from 0100h to 011Fh is used to store
script’s keyword, from 0120h to 0195h is used as report format for
“READ” command, from 01AOh to 013Ch is used as report format for
“REPORT” command and from 01COh to FFFFh is used for storing
acquired data. Section 3.2.6 will discuss more detail about memory
location and script command keyword.

CPU Module: Ensure the data processing function. We sample the
input port every sampling period (integer value from 1 to 60 second or
minute) and store the data in the external EEPROM. Note that not all the
inputs are sampled; we sample only the valid input ports defined by the
input mask (reduce power consumption and storage). We suppose that
the digital input and all the analog inputs are enabled. In case we have, let
say, 2 analog inputs, our data per each sampling contains 2 bytes of
digital input, 2 bytes of analog port #0 and 2 bytes of analog port #1.

The fact that we set bit #6 of each byte to 1 is to avoid the data from
special character such as character 0, character 10, character 13, and
character 26, etc. these characters are considered as a command, not a
data, for modem and cause modem to disconnect without sending
disconnect command because the data themself have the same meaning as
a command. For GPS’s data, we store it directly without any modification
because it is printable ASCII code already.

Sending data process is controlled by the central node, it looks like
“one to many” relationship, only the center computer can ask and the
other nodes can only answer. In case that the CPU module stores the data
more than CCCCh, the CPU module will inform the Radio link module to
send the SMS with the message ““The memory is full at mobile node: 1D”
where ID is the mobile node itself. “At the same time, the CPU continue
to store up the data in that memory until it reach the address FFFEOh, at
this time, the CPU will restart to store the new data from address 01COh,
however, this is very rare because we already thought about this problem
and we finally found the algorithm then program it at the center
computer. See also Fig 13.

21

Half Total
emo Memory

MN #1 _Za —
MN#E_“—
1

“*

l
:
N #N*

‘I
i ! 1
4§

l [
. >
- r—p Time
Waiting Scanning Waiting Scatning
Time Time Time Time

Fig 13. Scanning Process Chronogram

In case that any input data reaches the critical value (data is
smaller/bigger than threshold value, predefined by the user, for analog
signal or data is different from user predefined value for digital signal),
we count up the counter by 1. We continue to count up whenever any
input is critical and the counter value is less than the upper bound counter
limit. When all inputs change to a normal value, we count down the
counter by 1 and continue to count down if all the next sampling inputs
are normal and the counter value is bigger than 0. Assume now that the
counter reaches the upper bound counter limit, the CPU Module will tell
the Radio link module to send alarm message via SMS with the current
input value from all ports beginning by the message “Critical input
detected!” and then reset the counter. After the center computer received
the alarm message, it can send the feedback command via SMS (script
format) to the mobile node to activate some output ports and reset alarm
(it’s up to the user customizations). Script format is defined by character
60 and character 62 in ASCII mode. Any text begins with ASCII
character 60 and ends with character 62 will be considered as command
word, for example: <RESET> is used to reset alarm. The reason why we
implement this format is to avoid the accidental error when unknown user
sends a wrong message to this mobile phone. In case that we do not send
the reset alarm, the mobile node will continue to report the critical port
whenever the counter reaches the Upper bound.

22

2.2 Hardware & Software design for the Center Computer
(Central Node)

2.2.1 Hardware

We need one mobile phone connected to the COM port. Right now,
we use ERICSSON T68. We implement a Serial-to-1°C interface adapter
for the Central node in order to provide the end-user the ability to
customize their network during installation. Section 3.1.12 will describe
how this board was designed.

2.2.2 Software

We implement the same layer-2 protocol (as for Radio link Module at
Mobile node) and I°C (Inter-Integrated Circuit Bus) protocol in the
central node by using the VB programming language (Visual Basic).
Moreover, we create GUI (Graphic User Interface) [16] and database
(user Application layer) for storing the mobile node information such as
mobile node ID, phone number, location (province, district, section, and
description), input and output port’s name and its critical values, etc. A
database is a place where we store information and we organize the
information in our database in such a way that our programs and
applications can provide useful functions for end-users [17]. For GUI, we
also provide the ability to the user to customize their own network by
changing the Input mask, Telephone number, etc, in short, the user can
change the data needed for Radio link module and CPU module
(0000h=>008Fh) during the network installation. We also provide some
functionalities to the user to save the input data automatically to the user-
predefined-folder, plot the record data like in MATLAB or Excel, print
the record, show how many mobile nodes this system can support with
the current configuration, etc. The latter is implemented to avoid the
problem of not enough memory to store new data at mobile node. After
reading the message, the program will automatically delete the message
from the center computer’s mobile phone preventing out of memory in
the center computer’s mobile phone.

Note: If we set Sampling Period to 0, it means that we do not want to
save the input data but scan as fast as possible (every 0.2s). This mode is
useful for the example application #4, #5 and #6. In fact, we can sample
the input faster than this; however, as we want to save the power and 0.2s

23

sampling period is fast enough, it was decided as a sampling period for
these applications.

To determine how many mobile nodes this system can support and
how long we can store the data before send it to PC, the following
formulas are used.

Nr =M/ ((Fs*2) + H) (1)
T = Np*Tg* Fg 2)
N=T/T, 3)
Where:
Nr: Number of Frames contained in the last half
memory.
M : Half Memory size constant. It is about 32544 bytes
for 64 Kbytes memory.
Fs . Frame size defined by the user.
H : Time Header. It is used to indicate the
beginning of new frame. H = 7 bytes.
T . Time needed to fill all that half memory.
Ts : Scanning period defined by the user.
Ty : Scanning time needed for 1 node. It is equal
to 4 min for 64 Kbytes memory.
N : Number of Mobile Nodes supported by this

system.

The longest Scanning time must be less than or equal to the Waiting
time. See Fig 13 for more detail.

Now let us assume that the Frame-Size is set to be 60, Time-Scan to 1
min, EEPROM size is 64 Kbytes, only one analog input port is activated.
By a simple calculation, we found that our system can finish scanning all
mobile nodes within 15480 min and can support up to 3,870 mobile
nodes. However if our system, with the same assumption, just have 15

24

mobile nodes, we need only 15%4 min. = 60 min. for scanning all the
mobile nodes but the period of scanning is 15,480+60 = 15,540 min; it
means that we scan only 60 min and after that wait for 15,480 min. for
the new scanning process.

For the following chapter, everything in this chapter will be described
in more detail especially, hardware implementation.

CHAPTER 111

SYSTEM IMPLEMENTATION

Now, let us explain about our system in detail. This chapter covers all
the necessary information for hardware, software and the way to use it.
Some experiment scenarios are included in the next chapter but its
interface board is included here.

3.1 Component Study & Hardware Design
3.1.1 PIC 16F87X and Modular Technique

PIC 16F87X is a product from MICROCHIP Company, which has many
features as descript in the datasheet [7]. Among these features, we focus
only on:

e High-performance RISC (Reduce Instructions Construction Set)

e In-Circuit Serial Programming (ICSP) via two pins

e Low power consumption (Power consumption < 2 mA typical at
5V, 4 MHz and Power consumption < 1 pA typical standby
current)

Power-on Reset (POR)

Programmable code-protection

Power saving SLEEP mode

Low-power, high-speed CMOS FLASH/EEPROM technology
10-bit multi-channel Analog-to-Digital converter .
Synchronous Serial Port (SSP) with Serial Peripheral Interface
(SPI) in Master Mode and Inter-Integrated Circuit Bus (I°C) in
Master/Slave mode

o Universal Synchronous Asynchronous Receiver Transmitter
(USART/SCI) with 9-bit address detection

For this project, PIC16F876 is chosen to be a core component for
Radio Link Module and PIC16F877 is chosen to be a core component for
CPU Module. Both of them have 8K of FLASH Program Memory (14-bit
words), 368 Bytes of Data Memory (RAM) and 256 Bytes of EEPROM
Data Memory and operate at speed up to 20 MHz clock. However, 4
MHz clock is chosen because the speed is fast enough for our application
and 1t can reduce the power consumption as well comparing to 20 MHz

26

(reduce the number of instruction per second is equivalent to reduce the
power consumption).

The reason why PIC16F876 is chosen to be a Microcontroller for
Radio Link Module is that it has big Program Memory to store the
program code, big RAM to store incoming PDU-SMS (Short Message
Service in Protocol Data Unit format) & other program variable, big
EEPROM to store incoming Text-SMS (SMS in text format) & outgoing
PDU-SMS and its input/output pin is enough to communicate with
Mobile phone, LCD (intelligent Liquid Crystal Display), I°C peripheral
(external EEPROM, RTC and Output Module). With similar reason,
PIC16F877 is chosen to be a Microcontroller for CPU Module.

In fact, PIC16F87X is not the most recent product from Microchip.
We can find the newer product such as PIC17FXXX and PICI8FXXX
that can handle all PICI6FXXX features and also have more features
such as Program Memory, RAM, EEPROM and number of Interrupt
Sources is bigger; USB, RS485 and Controller Area Network (CAN) are
supported. The reason is that we develop our program on PICBasic Pro
Compiler (PBP) version 2.30A [13], which is limited in term of keyword
and PICmicros series 17FXXX and PIC18FXXX. Another reason,
PIC18FXXX just well know in Thailand after we nearly finish our project
but the main reason is that we want to use modular technique in this
project. As we descript in chapter 2, modular technique can provide us
the flexibility to adapt to the new project and save money, because we
only use and pay for what we want, and also provide the flexibility to
update the system because we can change one module without interfere
other module.

The following paragraph will explain about the peripheral, which is
used in this project. It include USART Asynchronous mode, Analog-to-
Digital Converter (ADC), I°C Bus and I/O Port.

USART Asynchronous Mode: In this project, we use standard non-
return-to-zero (NRZ) format (one start bit, eight data bits and one stop
bit) for both RS232 port (Mobile phone and GPS module). With 4 MHz
clock, we can achieve 0.16% error at 9600 bps as shown in the TABLE III.

TABLE III

BAUD RATE FOR ASYNCHRONOUS MODE

BAUD RATES FOR ASYNCHRONQUS MODE (BRGH = 0)

FOSC = 20 MHz Fosc = 16 MHz Fosc = 10 MHz
RATE) SPERG SPBRG SPBRG
® | kpaup ERrROR |, Y@Ue | gaaup ERROR Y3 | kpauD ERROR |, VAlke
{decimal} (decimal) {decimal}
03 - - N - - - - . .
12 | 1221 175 265 122 047 207 1202 047 129
24 | 2404 047 120 2408 047 103 2404 047 64
96 | 976 173 a1 9815 018 25 9786 173 15
192 | 19.531 172 15 19231 016 12 19531 172 7
288 | 31280 851 g 21778 355 8 21250 @51 4
336 | 34722 2334 8 5714 629 8 31250 609 4
57.6 | e2500 &S 4 62500 851 3 52083 058 2
HIGH | 1.221 . 255 0977 L 255 0.610 . 256
Low | 212.500 . 0 260.000 - 0 156250 - 0
FOSC = 4 MHz Fost = 3.6864 MHz
BAUD
RATE % SPBRG " SPBRG
") | kaup ERROR (d::!umaan KBAUuD ERROR {d;i:ﬁ;l)
03 | 0300 o 207 02) 191
12 | 1202 017 51 12 o 47
24 | 2404 047 25 2.4 0 23
96 | smo &0 6 95 0 5
192 | 20833 851 2 192 o 2
288 | 31250 B.51 1 288 0 1
576 | 62500 851 0 576 0 0
HIGH | 0244 - 255 0.225) 255
Low | e2.500 . 0 57.6 4 P
BAUD RATES FOR ASYNCHRQONCQUS MODE (BRGH = 1)
FOSC = 20 MHz Fosc = 16 MHz Fosc = 10 MHz
BAUD
RATE " SPBRG 4 SPBRG SPBRG
(K} | kBAUD ERROR p d‘;g'igfm KBAUD ERROR ‘d‘;'i:fa“ KBAUD ERROR (d‘;:!,‘;fa,}
03 - = = = = = = . -
12 . . - . B d ! . .
24 . " . - i . 2441 171 255
96 | 9815 016 120 9615 0.18 103 9615 016 . &4
192 | 19231 0.18 64 19231 018 51 18531 172 3
288 | 20070 084 &2 20412 213 3 28408 136 21
336 | 33784 055 33333 079 20 32805 210 18
576 | s9524 334 20 58824 | 243 18 56818 136 10
HIGH | 4e83 . 255 3,906 ! 256 2441 i 255
Low | 1250800 - 0 1000.000 0 625.000 - 0
FoSC = 4 MHz FOSC = 3.6864 MHz
BAUD
RATE of SPBRG L SPERG
® | kpaup ERROR (d:::umaal) kBaup ERROR (d;:::fan
02 - - N N . -
12 1.202 0.17 207 12 0 191
24 | 2404 0.17 108 24 0 a5
88 | 0815 0.18 25 96 0 7
192 | 19231 0.6 12 19.2 0 n
88 | 27798 355 8 288 0 7
336 | 38714 620 6 129 2.04 6
576 | 62500 851 3 516 0 3
HIGH | 0977 . 255 0.9 : 255
Low | 2s0.000 - 0 2304 - 0

27

28

To set up an Asynchronous Transmission, the following steps are
needed:

1. Initialize the SPBRG register for the appropriate baud rate. If a
high-speed baud rate is desired, set bit BRGH (TABLE IV).

2. Enable the asynchronous serial port by clearing bit SYNC and
setting bit SPEN.

3. Ifinterrupts are desired, then set enable bit TXIE.
4. If 9-bit transmission is desired, then set transmit bit TX9.

Enable the transmission by setting bit TXEN, which will also set
bit TXIF.

6. If 9-bit transmission is selected, the ninth bit should be loaded in
bit TX9D.

7. Load data to the TXREG register (starts transmission).

If using interrupts, ensure that GIE and PEIE (bits 7 and 6) of
the INTCON register are set.

Fig 14-A and Fig 14-B show the USART Transmit block diagram and
Asynchronous Master Transmission respectively. TABLE IV shows the
Register Associated with Asynchronous Transmission.

f Data Bus

TXIF TXREG Reagister
TXIE 3
.................. 156"
. Pin Buffer
a1, F| « | and Confrol L'E
TSR Reqister] . i
intehrupt SR O L IR Rl RCB/TX/CK pin
[
TRMT SPEN

Baud Rate Generator

TX8D

Fig 14-A. USART Transmit block diagram

29

Write to TXREG 1 _re
BRG Output Word 1 37
C _
(Shit Clock) —_— L : 1 I] I 1 |——SS_ﬁ 1 .ﬁ . —
CETX i i, '
R {CK (pin) —\sTaRT Bt SN
TXIF bit o Word 1 : .
ransmit Buffer ' '
eg. Empty Flag) —i | —5 5 :
i word 1 — '
il Shitt Transmit Shifl Reg !
g. Empty Flag)——l e

ZJ

Fig 14-B. Asynchronous Master Transmission

TABLE IV
REGISTER ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Value on; Value on
Address | Name Bit7 Bit6 | Bits | Bit4 | Bity | Bit2 Bit1 Bit0 POR, all other

BOR RESETS
: oo0D 000x | 000D COOn

0Bh,8Bh, |INTCON] GIE PEIE |’
10Bh,18Bh N
0Ch PIR1 R2IE | TMRIIF | vono oooo| ooon ooos
18h RCSTA , ‘CREN . - , ERR | RX8D °| oooo -vox | vooo -nox
18h TXREG | USART Transmit Registar geao eooo | oooo ooon
&Ch PIE1 DE | “RCIE ‘88 P1IE] TMR2IE | TMRYE | 0000 coon | ooon oano
98h TXSTA TXEN TRMT | TXOD | oooo -o10) oooo -010
B©h 8SPBRG | Baud Rats Ganerator Registar 0000 00D | 0000 0000

Legand: x =unknown, - = unimplemented locations read as '0'. Shaded calls are not usad for asynchronous transmission.
Note {: Bits PSPIE and PSPIF are raserved on the PIC16FB73/876; always maintain these bits claar,

CSRC,

To setup an Asynchronous Reception, the following steps are needed:

1. Initialize the SPBRG register for the appropriate baud rate. If a
high-speed baud rate is desired, set bit BRGH (TABLE V). '

2. Enable the asynchronous serial port by clearing bit SYNC and
setting bit SPEN.

3. If interrupts are desired, then set enable bit RCIE.
4. If 9-bit reception is desired, then set bit RX9.
5. Enable the reception by setting bit CREN.

6. Flag bit RCIF will be set when reception is complete and an
interrupt will be generated if enable bit RCIE is set.

7. Read the RCSTA register to get the ninth bit (if enabled) and
determine if any error occurred during reception.

8. Read the 8-bit received data by reading the RCREG register.

30

9. If any error occurred, clear the error by clearing enable bit
CREN.

10. If using interrupts, ensure that GIE and PEIE (bits 7 and 6) of
the INTCON register are set.

,_.X64BaudRata CLK lT]ERR | [FERRJ
: ' CREN
Fosc SPBRG h . __—l _____ T_ _________ T _______
' : | 4or J MSb R3R Registar LSb ¢
" Baud Rate Generator +16 wd STOP[B 7| oo« [1| 0]|sTART|!
1 \
RC7TRX/DT Y T !
Pin Buffor D
and Control Rggvery RX9
¥
I SPEN I RXSD| RCREG Register
FIFO
A8
interrupt RCIF ¥ Data Bus

RCIE

Fig 15-A. USART Receive block diagram

Rev Shitt .

RX (pin) START, START START
T\ O Y YimaSron b (0 YOS Yoire/STOR b {9 Y] STOP
| ! il
{ Il

1
Reg = = -d _ (L 1 (! X
Rev Buffer Reg A :T o L% Vord.2 3] :
Read Rov R 11 RCREG RCREG - 1
Buffer Reg —_ - (el i IIJ'
RCREG - : =)] .
[P ’ s
RCIF ey r G e d |
{Intarrupt Flag) P iy ¢ !
[}
OERR bit £ _CZ e
f* % g
CREN LN 4
Y P 2 J e

Note: This timing disgram shows three words appaaring cn the RX input. The RCREG {recaive buffer) is read after the thind werd,
causing the OERR {ovarrun) bit to ba get.

Fig 15-B. Asynchronous Reception

Fig 15-A and Fig 15-B show the USART Receive block diagram and
Asynchronous Reception respectively. TABLE V shows Register
Associated with Asynchronous Reception.

31

TABLEV
REGISTER ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Value on: Value on
Address | Name | Bit7 Bit& BitS | B4 | Bitl | Bit2 Bit1 Bit 0 POR, all other

BOR RESETS
°}. -ROIF | ocon coox | noco oocu

0B, 8Bh, [INTCON| GIE | PEIE | TOIE | INTE | RBIE|
10Bh,18Bh |

0ch PIR1 |PSPIF™| ADIF | RCF

TMRUF| ocon coco | nooa ooon

18h RCSTA | SPEN RXa |8 R RX8D | ncop -oox | oopo -nox
1Ah RGREG |USART Recsiva Registar 0000 Q0RO | 0000 2000
8Ch PIE1 |PSPIE aDIE | RCIE | TxiE | SSPIE] coPYE] TMR2IE TMRIIE| ooco cowo | 0sen oooo
a8h TXSTA | CSRG | ~TX8- |/ TXEN:| SYNC | WMT| TX9D| oooo -v10| acow -01c
9Oh SPBRG |Baud Rate Genarator Ragister vona oooo | cocu cooo

Legend: x = unknown, - = unimplemented locations read as '(’. Shaded cells ane not used for asynchronous raception.
Note 1: Bits PSPIE and PSPIF arg reserved on PIC16F873/876 devices; always maintain thess bits clear.

Analog-to-Digital Converter: PIC16F877 has eight inputs ADC that
are used to read any analog data that come from sensor board. This ADC
uses successive approximation technique to achieve a very low
acquisition time (Analog to Digital conversion time). The A/D conversion
of the analog input signal results in a corresponding 10-bit digital
number. By using the multiplexage technique, we can connect all these 8
analog inputs to only one A/D module. This can be done by selecting the
ADCONQO, bit 5 to 3. See ADCONO register in Fig 16 and Fig 17 for
more detail.

The A/D module has high and low voltage reference input that is
software selectable to some combination of VDD, VSS, RA2, or RA3.
The A/D converter has a unique feature of being able to operate while the
device is in SLEEP mode. To operate in SLEEP, the A/D clock must be
derived from the A/D’s internal RC oscillator however; we prefer to use
Fosc/32 because at that time our CPU module is not operating at sleep
mode any more. Wake up from low-power mode is not activated from
any interrupt (Timer interrupt or Peripheral interrupt) but from our
program itself. See Fig 16.

The A/D module has four registers. These registers are:

A/D Result High Register (ADRESH)
A/D Result Low Register (ADRESL)
A/D Control Register0 (ADCONO)
A/D Control Register] (ADCON1)

bit 7-6

bit 5-3

bit 2

bit 1
bit 0

32

RWO RWO RMW-0 RWO RWO RAW-0 uo RAV-0
| aocst | Aabcso | chsz | chst | cuso [co@oNE] — | aApon |
bit 7 bit 0

ADCS1:ADCS0:; A/D Conversion Clock Select bits

oo = Foscr2
01 = Fosc/8
10 = FoSsC/32

11 = FRC (clock derived from the internal A/D module RC cecillator)

CHSZ2:CHSD: Analog Channel Select bils

a0 = channei 0, (RAGANG)

a0l =channel 1, {RA1/AN1T)

010 = channel 2, {RAZ'AN2)

011 =channel 3, (RAXAN3I)

100 = channel 4, (RASIAN4Y)

101 = channel 5, (REQANS)!D

110 = channel &, (RE1/ANG)I

111 = channel 7, (RE2ZANT)!

GOMONE: A/D Conversion Status bit

1 = AJ/D conwversion in progress (setting this bit starts the A/D conversion}

o = A/D conversion not in progress (this bit is aulomatically cleared by hardware when the A/D
conversion is complete)

Unimplemented: Read as D

ADON: A/D On bit
1 = A/D converter module is operating
¢ = A/D converter madule is shut-off and consumes no operating cumrent

Note 1: These channels are not available on PIC16F873/87 6 devices.

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as 0’
-n = Value at POR "' = Bit is set 'O’ = Bit is cleared X = Bit is unknown

Fig 16. ADCONO Register (Address: 1Fh)

CHS2.CHSO0
-ce U
H .
. _ RE2/MNT7
: RE1/ANG(Y
" »
L I
_ : . REANE(
Vam : : RAS/ANA
(Input Voltage) 4 '
: T *—XI RANANIVREF+
E 3
AD] o d g RAZ/ANZVrer-
Conwvartar b H
Qa1
H ~ v RAT1/AN1
H H
Voo : No—2ee < ravano
eees . PN P g >
VREF+ H N
'
{Referance v
Voltage) H .I.”r:
PCFG3.PCFGO
[H
WVREF- . -
N
(Raference M
Voltaga) I
T vas
PCFG3.:PCFGO

Fig 17. A/D Block Diagram

33

The ADCONO register controls the operation of the A/D module. The
ADCONI register, shown in Fig 18, configures the functions of the port
pins. The port pins can be configured as analog inputs (RA3 can also be
the voltage reference), or as digital I/O. The Registers/Bits associated
with A/D is shown in TABLE VI.

u-o U-0 RW-0 U-0 RW-0 RW-0 RWO RW-0
[aoFm | — | — | — | pcrea | pcrG2 | pcFG1 | PCFGO |
bit 7 bit 0
Lit 7 ADFM: A/D Result Format Select bit

1 = Right justified. 6 Most Significant bits of ADRESH are read as "0,
0 = Leit justified. 6 Laast Significant bils of ADRESL ara read as 0",

bit 6-4 Unimplemented: Read as '0f
bit 3-0 PCFG3:PCFGO. A/D Port Configuration Control bits:

PCFG3: | AN | ANGIY | ANSUY) AN4 | AN3 | AN2 | ANT | ANO | 1 | Cran

PCFGO | RE2 | RE1 | RE0O | RA5 | RA3 | RA2 | RA1 | RAD Refs@
oBoo A A A A A A A A Voo Vss B/O
0001 A A A A VREF+ A A A RA3 | Vss 7A
oplo D D D A A A A A Voo Vss 50
onll D D D A VREF+ A A A RA3 | Vss 4n
oL00 D D D D A D A A Voo Vss 310
olal D D D o VREF+ D A A RA3 | Vss 2n
ollx D D D D D D D D Voo Vss 0/
1080 A A A A WREF+ | VREF- | A A RA3 | RA2 612
1001 D D A A A A A A Voo Vss 810
1010 D D A A VREF+ A A A RA3 | Vss 51
1011 D D A A VREF+ | VREF- | A A RA2 | RAZ 42
1100 D D D A VREF+ | VREF- | A A RA3 | RAZ 32
1101 D D D D VREF+ | VREF- | A A RA3 | RA2 272
1110 D D D D D D D A von Vss 10
1111 D D D D VREF+ | VREF- D A RA3 | RAZ2 12

A = Analog input D = Digital ItO

Note 1: These channels are not available on PIC 16F873/876 devices.
2: This column indicates the number of analog channels available as A/D inputs and
the number of analog channels used as voltage reference inputs.

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n =¥alue at POR 1" = Bit Is set ‘0 = Bit is cleared % = Bit is unknown

Fig 18. ADCONI1 Register (Address: 9Fh)

The following steps should be followed for doing A/D conversion:
1. Configure the A/D module:

e Configure analog pins/voltage reference and digital I/O
(ADCON1)

34

¢ Select A/D input channel (ADCONO)
¢ Select A/D conversion clock (ADCONO)
e Turn on A/D module (ADCONO)
Configure A/D interrupt (if desired):
o Clear ADIF bit
o Set ADIE bit
¢ Set PEIE bit
o Set GIE bit
Wait the required acquisition time.
Start conversion:

e Set GO/ DONE bit (ADCONO)

. Wait for A/D conversion to complete, by either:

¢ Polling for the GO/DONE bit to be cleared (with interrupts
enabled); OR

¢ Waiting for the A/D interrupt

Read A/D result register pair (ADRESH: ADRESL), clear bit
ADIF if required.

For the next conversion, go to step | or step 2, as required. The
A/D conversion time per bit is defined as Tap. A minimum wait of
2Tanis required before the next acquisition starts.

TABLE VI
REGISTERS/BITS ASSOCIATED WITH A/D

Address | Name Bit7 Bit& | Bit5 Bit4 Bit3 Bit2 Bit 1 Bit o POR, MCLR,

Value on Valug on

BOR WODT

0Bh.BBh, [INTCON GIE
108h,18Bh

1 RBIF] oooo coox | o000 DoDu

=f TMRAIE] 0o ouoo [oooo pone

och PIR1 : -

8Ch PIE1 PSPIEM | ADIE J'RCIE |- TX IEL TMRIE | none ouos | ouss oeoo
1Eh ADRESH | A/D Result Ragister High Byte XX¥A XXX |unou uuud
QEh ADRESL | A/D Result Repister Low Byta XEYX XXX¥ |uBUL uuug
1Fh ADCCNO | ADCSY [ADCSD] CHS2| CHSY | CHSO | GGDONE |-~] ADON Joooo ou-ofoneo no-o
9Fh ADCON1 | ADFM PCFG3| PCFG2] PCFG1{ PCFGQ | --0- ooon | --0- oooo
85h TRISA |, PORTA Data Direction Register --11 1111|--311 1111
Q5h PORTA PORTA Data Latch when writler, PORTA pins when read --0x D000 | --Cu 0n0o
8oht! TRISE .. | PORTE Data Direction tits D000 -111]0000 -111
0oh | PORTE 1 Re2] REY | RED [---- -smx|---- -um

Legend: x = unknown, u = unchanged, - = unimplementad, raad as'0". Shaded cells are not used for A/D conversion.

35

In order, for A/D converter, to meet the specified accuracy, the charge
holding capacitor mush be allowed to fully charge to the input channel
voltage level. The maximum recommended impedance for analog source
is 10 kQ. As the impedance is decrease, the acquisition time may be
deceased, we prefer to user an amplifier for any analog source which
have high impedance output (to achieve low impedance output for short
acquisition time). According to the datasheet of PIC16F877, the
minimum acquisition time is about 19.72 us. After the analog input
channel is selected, this acquisition time must be done before the
conversion can be started.

The information about the minimum acquisition time is, actually, not
really important for us, however it can give us idea to estimate how long
A/D converter will take for each conversion. Why this information is not
so useful for us? According to the A/D conversion steps, in step 5, we can
check GO/DONE bit to be cleared. As this bit is automatically cleared by
hardware when the A/D conversion is complete, we can know when the
A/D converter is finish and so, we can start to do other tasks.

In fact, the newer version of PICBaic Pro Compiler have a command
ADCIN to do this job but our compiler does not support this command,
so we have to access to the register and follow all that 7 steps to get A/D
conversion result. The similar reason is used for USART Asynchronous
reception.

I’C Bus: PIC16F87X has Master Synchronous Serial Port (MSSP)
module build in. This serial interface is useful for communicating with
other peripheral or microcontroller devices. These peripheral devices may
be serial EEPROMs, shift registers, display drivers, A/D converters, etc.
The MSSP module can operate in one of two modes:

o Serial Peripheral Interface (SPI)
e Inter-Integrated Circuit (I"C)

However, we interest only I’C mode. Fig 19-A and Fig 19-B show the
block diagrams for the two different I°C modes of operation. In our
application, I°C Master Mode is used.

36

Internal

Data Bus
Read —@% Write
scL SSPBUF Reg
X— {2
Clock
Q-r SSPSR Reg
SDA MSb LSb
—r
"D 7

| watchDetect | Addr Matcn

als

r SSPADDReg |
START and Set, Resst
STOP bit Detect [S, Pbits
(SSPSTAT Reg)

Fig 19-A. I°C Slave Mode Block Diagram

<‘r Internal SSPM3:SSPMO,
Data Bus SSPADD<G.0>
Read —@% Write |!
SSPBUF Baud
Rate
Generator
SDA Shift
i Clock A 1
SSPSR
MSb LSh

SCL

]
]
2
i START bit, STOP bit, | =
e Acknowledge 5
E Generate ~
i 3
m —

i

Clock Arhitrate/WCOL Detect
{hold off dock source}

START bit Detect,
= STOP bit Detect

SCL in Write Collision Detect [—» SetiResst, S. P, WCOL (SSPSTAT)
Bus Coliision Clock Arbitration Set SSPIF, BCLIF
State Counter for Reset ACKSTAT. PEN (SSPCUN2)

end of XMIT/RCV

Fig 19-B. I°C Master Mode Block Diagram

As this job is supported by our PICBasic Pro Compiler, we would end
the detail here, no go in deep into the register that associated with [*C
operation. However, in section 3.2.1, we will talk about I’C bus protocol
characteristic in more detail.

37

I/O Port: Generally, some pins for these I/O ports are multiplexed
with an alternate function for the peripheral features on the device such as
PORTC that is alternate with USART and I°C Bus. In general, when a
peripheral is enabled, that pin may not be used as a general purpose 1/0
pin. In this project, PORTD is defined as input port not parallel slave port
even though it supports this alternate function.

PORTD is an 8-bit port with Schmitt Trigger input buffers. Each pin is
individually configurable as an input or output. It can be configured as an
8-bit wide microprocessor port (parallel slave port) by setting control bit
PSPMODE (TRISE<4>). In this mode, the mput buffers are TTL. See
TABLE VII for the registers associated with PORTD and Fig 20 for
PORTD block diagram in I/O port mode.

TABLE VII
REGISTERS ASSOCIATED WITH PORTD

Valus on: | Value on
Address| Name | Bit7|Bit6 | Bit5 Bit 4 Bit3 | Bit2 | Bit1 | Bit0 POR, all other

BOR RESETS
08h PORTD | RD7 | RD6 | RD5 RD4 RD3 | RDO2 RD1 RDO | xxxx xxxx | vuuu uuug
88h TRISD | PORTD Data Direction Register 1111 1111] 1111 1111

ash TRISE |- F;jj' OB 0v| pspmonﬂg;;; OR Data Direction Bits | oooo -111 [oooo -112
Legend: x = unknown, u = unchanged, - = unimplemented, read as'’. Shaded cells are not used by PORTD.

Data Data Latch 1 pin®
Eus D 0 *‘E
VR
Port S
TRIS Latch
0 Q
YR
IRIS R Schmitt
Trigger V
Input

o BuHer
RO lq
TRIS
: EN
RO Port _

Nete 1: 170 pins hava protection diodes fo Voo and Vss.

Fig 20. PORTD Block Diagram in I/O Port Mode

38

Setting a TRISD bit (=1) will make the corresponding PORTD pin an
input (i.e., put the corresponding output driver in a hi-impedance mode).
Clearing a TRISD bit (= 0) will make the corresponding PORTA pin an
output (i.e., put the contents of the output latch on the selected pin).

Reading the PORTD register reads the status of the pins, whereas
writing to it will write to the port latch. All write operations are read-
modify-write operations. Therefore, a write to a port implies that the port
pins are read; the value is modified and then written to the port data latch.

So, by setting TRISD=%11111111, PORTD is configured as 8-bit
input and then we can read the PORTD register directly (i.e., read only
one time but get the value (status) of all pins).

Note that all the information here are copied from Microchip datasheet
and modified for better understanding. It does not cover all the
information but enough for this project. Some information is excluded
because we do not use it while doing our project. We refer only what we
have used.

3.1.2 Electrically Erasable and Programmable Read Only
Memory (EEPROM)

The AT24C512 is used to store the data of surrounding environment
and other option as describe in Chapter 2. It provides 524,288 bits of
serial EEPROM organized as 65,536 words of 8 bits each. The device’s
cascadable feature allows up to 4 devices to share a common 2-wire bus.
This can be done by selecting the corresponding hardware address (A,
and A())

This device is optimized for use in many industrial and commercial
applications where low-power and low-voltage operations are essential. It
can operate at very low-voltage (down to 1.8V). It uses 2-wire serial
interface (I°C in short) to achieve bi-directional data transfer protocol and
can function up to 1 MHz clock at 5V power supply. It also has Schmitt
Triggers to suppress the inputs noise and other feature; however, the most
important point for us is the Self-timed Write Cycle, which determines
the speed of scanning process in our project. In general, this Self-timed

39

Write Cycle is about 10 ms but, with this device, we can achieve a very
low Self-timed Write Cycle (5 ms Max).

According to our experience, some applications may need the high
speed of clock for a very short reading process such as Matrix Display
Board whereas this application, low Self-timed Write Cycle is needed
because we use writing process more often then reading process. One
more thing, we can not use page write to write the data into the EEPROM
because our data length is not fix, so it will cause a serious problem while
writing across the page, therefore, Byte write is preferred and Self-timed
Write Cycle become the most important factor. Fig 21 shows the
EEPROM Block Diagram. Fig 22-A and Fig 22-B show the Random
Read and Sequential Read process whereas Fig 23-A and Fig 23-B show
the Byte write and Page write process. For the Bus characteristics, we
will talk about it in section 3.2.1.

WP
VEG —»
GND —p

8DA | LOGIC
SERIAL EN
T - GONTROL H.V. PUMP/TIMING

Loalo
P.onn
45 DEVICE Gcomp DATA RECOVERY
ADDRESSH
. GOMPARATOR LOAD |ING
Ay lFW‘ ,| DATA WORD i
A, ADDRICOUNTER z EEPROM
Y DEC M | SERIAL MuX
Pw Doyr/ACK
+ » LOGIC

= T

Fig 21. AT24C512 Block Diagram

Serial Clock (SCL): This input is used to synchronize the data
transfer from and to the device.

40

Serial Data (SDA): This is a bi-directional pin used to transfer
addresses and data into and data out of the device. It is and open drain
terminal, therefore, the SDA bus requires a pull-up resistor to Vcc
(typical 10 kQ for 100 kHz, 2 kQ for 400 kHz and 1 MHz).

Device/Addresses (Ag, A{): These inputs are used for multiple device
operations. The levels on these inputs are compared with the
corresponding bits in the slave address. The chip is selected if the
compare is true. With these two addresses, we can connect up to 22 =4
devices on the same bus.

A Read operation requires two 8-bit data word addresses following the
device address word and acknowledgment (the read/write select bit in the
device address word is set to one). In principle, there are three read
operations: current address read, random address read and sequential read
however, we interest only random address read and sequential read
because we only use these two modes in our project.

2 w B
T R 141, 2nd WORD i R]
DEVICE
a DEVICE _|r ADORESS n a ' E ‘1;
T ADDRESE E \ T [+] P
T | T T 1 | T T T T 1T 1 11
&DA LINE D—L_I_‘ o 1 1 1 Zl sl |._l_l |u 1 I T I | U
M
: D g MM 3
\] BWK H Blll K A
| G
DUNIMY WRITE K
Fig 22-A. Random Read
E A A A %
DEVICE A] [c o
ADDRESE D K K K [
- r rrrtrrrr rTvr1 111 T v 1111 THr T T T 71
SDA LE ___LC-'LIIILIII—|IIIIJlIIJ|II[IIIl||IIlIIIJJ|_I
?A DATA n DAaA R+ 1 DATA R + 2 DAIA D + §
W

Fig 22-B. Sequential Read

A write operation is divided into two modes:

Byte Write: A write operation requires two 8-bit data word addresses
following the device address word and acknowledgment. Upon receipt of
this address, the EEPROM will again respond with a zero and then clock

41

in the first 8-bit data word. Following receipt of the 8-bit data word, the
EEPROM will output a zero. The addressing device, such as a
microcontroller, then must terminate the write sequence with a stop
condition. At this time the EEPROM enters an internally timed write
cycle to the nonvolatile memory. All inputs are disabled during this write
cycle and the EEPROM will not respond until the write is complete (refer
to Fig 23-A).

Page Write: The 512K EEPROM is capable of 128-byte page writes.
A page write is initiated the same way as a byte write, but the
microcontroller does not send a stop condition after the first data word is
clocked in. Instead, after the EEPROM acknowledges receipt of the first
data word, the microcontroller can transmit up to 127 more data words.
The EEPROM will respond with a zero after each data word received.
The microcontroller must terminate the page write sequence with a stop
condition (refer to Fig 23-B).

8 w
T A 2
A i T
R DEVICE T LoD q
T ADORSES © WOMDADDREES WORD ADDRESS DATA P
SDA LNE | l | I . lnl Ill Y B l l {0 T O T l]ll I |lD
N LhA u LA A
8 g§/¢ gC c
B Bwk & g BK K
Fig 23-A. Byte Write
3 W
T R §
8 oence t SECOND 3
T ADORESS E WOAD ADOFESS (n) WORD ADDREBE (4 0wTR (0 e inen P
SDAUHE | | | lol | | | I I | | | B T T I | I | O T R | IJ/%
) LB W LA
[} S C 8 8C
B BWNK B K RK

Fig 23-B. Page Write

3.1.3 Real Time Clock (RTC)

There are so many RTC’s available on the market today; however,
DS1307 was chosen to be our real time clock because it has a
programmable square wave output signal and independence of power
supply frequency and has backup battery. In fact, this is not the best one
but enough for our project. TABLE IIX shows the best RTC’s from
DALLAS Semiconductor Company.

42

TABLE IIX
BEST RTC oF DALLAS SEMICONDUCTOR COMPANY

DS1338 1.8,3.0.33 Programmable 56x8
DS1374 18,30,33,5 v v v Programmabie 4 v

Ds1307 50 v Programmabla 568
Ds1337 131050 3 Programmable

Ds13% 20,30,33 v v v Programmabila

DS13H 13065 v Programmabla v

Ds1672 20,3033 v v 4

MAX5900 20teb55 N

The DS1307 is a low power Serial Real Time Clock, full Binary-
Coded Decimal (BCD) clock/calendar plus 56 bytes of nonvolatile
SRAM. Address and data are transferred serially via a 2-wire, bi-
directional bus. The clock/calendar provides seconds, minutes, hours,
day, date, month, and year information. The end of the month date is
automatically adjusted for months with fewer than 31 days, including
corrections for leap year. The clock operates in either the 24-hour or 12-
hour format with AM/PM indicator. The DS1307 has a built-in power
sense circuit that detects power failures and automatically switches to the
battery supply. A lithium battery with 48 mAH or greater will back up the
DS 1307 for more then 10 years in the absence of power at 25°C.

[k,

OSCILLATOR RTC
AND DNVIDER

BQUARE WAVE
SOMIOUT ~—— our P—|_

PAM
156 X 8)
CONTHOL
LOGIC

Yo FOWER
Voar ——td
GND ———=f CONTROL
SCL ————

SERUL BUS

INTERFACE AEERER :::>
SDA

ft ! 1

Fig 24. RTC Block Diagram

43

The block diagram in Fig 24 shows the main elements of the Serial
Real Time Clock. It operates as a slave device on the serial bus (I°C). It
supports Slave Receiver Mode (Data Write) and Slave Transmitter Mode
(Data Read). See Fig 25-A and Fig 25-B for more detail.

%
<Slave Addest> ¥ Werd Addruss () <Dats(n)> <O 1> <Uata {re Xl
['s] 1101000 [o] &] 0000000 | & | 0000000 | &] 0000000k | A& | X000000K | A | P |

S - START J} f
A = ACKNOWLEDGE DATA TRANSEERRED
£ - gTOP X+t BYTES + ACKNOWLEDGE)
*RIW = READ/WRITE OR DIRECTION BIY. ADORESS = DOy
Fig 25-A. Slave Receiver Mode
g
<Slave Address> T <Datain)> <Oataine () <Data (n+2]> <Daka {ne X

['s 1101000 [1 T A [oo000000c | A [x0ooooooo | & [000000 | A | xxxooxx | & | e |

| , |

5 - START

A = ACKNOWLEDGE Qm BYTES » ACKNO OTE: LASUDATABYTE IS
2 - SHLTOP e FOLLOWED BY ANOT pw%ﬁmme { A) SIGNALY
RV ~ READMWRITE OR DIRECTION BIT ADDRESS « Db

Fig 25-B. Slave Transmitter Mode

The time and calendar information is obtained by reading the
appropriate register bytes. The real time clock registers are illustrated in
Fig 26. The time and calendar are set or initialized by writing the
appropriate register bytes. As the contents of the time and calendar
registers are in the BCD format, the conversion is needed in order to get
the real data for time and calendar.

. S B S T R I B Y
00H
SECONDS oo | oH 10 SECONDS SECONDS 00-59
MINUTES
& 10 MINUTES MINUTES 00-59
HOURS Tu L) B~
T 2 ar | MR HOURS phed
DATE ¢ o 0 u o DAY -7
o223
MONTH ¢ | ou 10 DATE DATE 01-30
YEAR o o O o oy MONTH o -2
07H CONTROL
084 ™ 10 YEAR YEAR 00-99
*H 5%x8 oM lour | © o |sowe| o o | mst | Aso

Fig 26. Address Map and Timekeeper Registers

44

SQW/OUT (Square Wave/Output Driver): When enable, the
SQWE bit set to 1, the SQW/OUT pin outputs one of four square waves
(see Table IX), however, 1 Hz square wave is chosen for our application.

TABLE IX
SQUARE WAVE OUTPUT FREQUENCY

RS1 RSO SOW OUTPUT FREQUENCY
0 0 1Hz
0 | 4.096kH 2
1 0 8.192kHz
1 1 32.768klz

3.1.4 Digital to Analog Converter (DAC)

From the Internet, we can find so many available integrated circuits
that assure the digital to analog conversion such as AD5301, AD5311 and
AD5321, from Analog Devices Company, are single 8-bit, 10-bit, and 12-
bit buffered voltage-output DACs that operate from a single 2.5 V to 5.5
V supply, consuming 120 pA at 3 V. However, PCF8591 is chosen
because it is available in Thailand.

The PCF8591 is a single-chip product from Philips Semiconductor,
single-supply low power 8-bit CMOS data acquisition device with four
analog inputs, one analog output and a serial 12C-bus interface. Three
address pins A0, Al and A2 are used for programming the hardware
address, allowing the use of up to eight devices connected to the 12C-bus
without additional hardware. Address, control and data to and from the
device are transferred serially via the two-line bidirectional 12C-bus.

The functions of the device include analog input multiplexing, on-chip
track and hold function, 8-bit analog-to-digital conversion and an 8-bit
digital-to-analog conversion. The maximum conversion rate is given by
the maximum speed of the I12C-bus but this factor is not important for our
application because this time delay is very small comparing to the SMS
process (reading PDU-SMS, convert to Text-SMS and run script
execution function).

45

Even though PCF8591 support A/D conversion, we interest only D/A
conversion. To achieve two analog-output ports, two pieces of PCF8591
are needed. Fig 27 shows the block diagram of this IC.

- {mm);

‘ceus
INTERFACE

Ao —+ STATUS DAC DATA ADC DATA
AY REGESTER REGISTER AEGISTER

A U {.\‘
EXT j

VD =i

POWER DN

Vgg i

LOGIC
QSCILLATOR L'-Q'

&7

ANG —»]
AINT =i ANALOGUE
MULTI- » 5/H
AINZ —f PLEXER

AN D <]

VE APPROXIMATION
REGISTER/LOGIC

T

AOI.ITv<‘ S/H :
— AGND

Fig 27. PCF8591 Block Diagram

The format of writing the value to analog output port is shows in Fig
28. This format is for continuous writing process, it means that after
select the corresponding I°C device, we can sent the digital value to this
converter one by one and continue until the stop condition is generated.
For us, we only send the analog value just-one time when we get a
command via SMS from the central computer or manager.

The third byte sent to a PCF8591 device is stored in the DAC data
register and is converted to the corresponding analog voltage using the
on-chip D/A converter. This D/A converter consist of a resistor divider
chain connected to the external reference voltage with 256 taps and
selection switches. The tap-decoder switches one of these taps to the
DAC output line (see Fig 29).

46

proTocoL | s | acomsss {o]a]| comoare [a| oammevres [a] csmevea |a]

]
Ve alilie unalls e alls e el

YaouTt

—————————————— 1 PREYIOUS VALUE VALUE OF
HELD IN DAG DATA BYTE 1
HIGH IMPEDANCE STATE OR REGISTER
PREVIOUS VALUE MELD IN DAC REGISTER

Fig 28. D/A Conversion Sequence

Vagr 9 DAC QLT
R256
R255 £
t 1 I
t |)
¥ | I
[l §F
R3 i)8
| TAP b
DECODER :
A2 02
il DI
A1 , o
AGNO
0
7280082

Fig 29. DAC Resistor Divider Chain

With PICBasic Pro Compiler, this process can be done just with a
standard command I2CWRITE with 8-bit address. For PCD8591,
Address is a device address whereas control byte is a word address in
standard 8-bit I’C Byte/Page writes. The upper nibble of the control
register is used for enabling the analog output, and for programming the
analog inputs as single-ended or differential inputs. If the auto-increment
flag is set the channel number is incremented automatically after each

47

A/D conversion (See Fig 30). So for our application, the control byte can
be set to %01000000=64 or %01000100=68.

MEB LSB
o % X X D X X 4 CONTROL BYTE
- a=l
A/D CHANMEL NUMBER:
00 channel
L1 channel 1
10 channal 2
11 channal 3
AUTOINCREMENT FLAQ:
fawitched an i 1}
~ ANALOGUE tNPUT PROGRAMMING;
00 Four single ended inguls
AR s G 3N O
AINT —— channel 1
AINZ e GBI 2
AN ~m—— AT 3

31 Theee gitterential inputs

AIND —-:D
channel 0
AN
|_ D——— channel 1
2 d

ARMZ
AlNG

chanoel 2

10 Single ended and differential mixed

AlNG —— Chan e ©
AlNY ——————— channel }
AlNZ -

>——-——crunnel2
AING e 2

11 Two differential iInputs

AING —";: ;
channei 0
AINY i
AN ammpd
2 D— channel ¥
AN

e ANALOGUE DUTPUT ENABLE RLAG:
{anaiogue outpul activa i 1) 7280961

Fig 30. PCF8591 Control Byte Register

3.1.5 PCF8574-Remote I/O Expander

The PCF8574 is silicon CMOS circuit. It provides general-purpose
remote [/O expansion for most microcontroller families via the two-line
bidirectional bus (I°C). The device consists of an 8-bit quasi-bidirectional
port and an I’C-bus interface. The PCF8574 has a low current
consumption and includes latched outputs with high current drive
capability for directly driving LEDs. It also possesses an interrupt line

48

(INT), which can be connected to the interrupt logic of the
microcontroller. By sending an interrupt signal on this line, the remote
I/O can inform the microcontroller if there is incoming data on its ports
without having to communicate via the I?C-bus. This means that the
PCF8574 can remain a simple slave device, however, as our project needs
to read and store data every scanning time, this feature seem to be
meaningless for us. Fig 31 shows the PCF8574 block diagram.

T el 12 INTERRUPT
iNT & LoGIC LP FILTER
1 PCF8574
AD
2 4
Al 3 . - » PO
A el 1> Pt
scL— 4] N PR Y
1 INPUT 1*C-BUS P
SDA « 5 FILTER CONTROL | SHIFT TBIT w
REGISTER PORT |a » P4
PRLLCH B
PR ps
12 »p7
3
WRITE pulse
VAn 16 READ pulss
0o 3 POWER-ON
vss ——{] RESET

Fig 31. PCF8574 Block Diagram

The PCF8574 and PCF8574A versions differ only in their slave
address as shown in Fig 32.

slave address slave address
A A
ﬁ) d D
T T T T T T T T T T T T T
S|0o 1 0 0 AZ Al AD O | A S0 1 1 1 A2 A1 AD| O | A
| | | | 1 | |] [| 1

PCF8574 PCF8574A

Fig 32. PCF8574 and PCF8574A Slave Address

Each of the PCF8574’s eight 1/Os can be independently used as an
input or output. Input data is transferred from the port to the
microcontroller by the READ mode. Output data is transmitted to the port
by the WRITE mode (see Fig 33). In this project, it is used PCF8574A as
an output port only therefore; we don’t show READ mode chronogram.

(indinQ) spoIN AIM "g€ T

5CL 12\ A e gst fel 7t f8

DATA 2 VALID

ey

|
|
dave address (PCF8574) | datato port data to port
A, ! A A
£ \ l £ A" 4
T T T T T 1 | AETE W [| 1
SDA | S| 0 1 0 0 A2 A1 A0 D [jA DATA 1 A DATA?2
1 1 1 1 1 1] : 1 I 1 1 ! 1 I : ! 1 1 1
} Pt 4
start condition R/W | acknowledge | acknowledge
: fomslave | fromshve
WRITE TO I I
PORT : rW
| |
| |
DATA OUT | 1
FROM PORT I ! DATA 1 VALID
|
; tpy

6v

50

According to write mode wave form, we can see that it is not a
standard format for I2COUT command; however, by setting the 8-bit
address field by the data, this standard command still can use prettily.

3.1.6 GSM Module

Besides using ERICSSON T68 as wireless link for the system, an
alternate solution is founded. The GM862-GPRS is a GSM GPRS module
dual band GSM 900/1800 with Easy GPRS Embedded (TCP/IP stack
inside). The GM862-GSM wireless data modules are the ready solution
for all M2M wireless applications.

The GM862-GSM is specifically designed and developed by Telit for
OEM usage and dedicated to cost effective voice and telematics
applications where the Packed Data features of the GPRS are not
constrain such as:

o Telemetry and Telecontrol (SCADA applications)
e Security systems

e Cost Effective Vending machines

e Low cost POS terminals

¢ Phones and Payphones

e Automotive and Fleet Management applications

e Domestic Appliances with simple remote control

It supports:
e E-GSM 900/1800 MHz
e GSM: Compliant with GSM Phase 2/2+

e Output power up to 2W for Class 4 at GSM 900 MHz and 1W
for Class 1 at GSM 1800 MHz

e Control via AT commands (ITU, GSM, GPRS and Telit
Supplementary)

e Supply Voltage: 3.4 to 4.2V, Nominal: 3.8V
e Power consumption: Idle mode: < 3.5 mA
e Dedicated mode 250 mA (average)

51

For more information on Telit Globalstar telecommunication modules,
see www.telital.com or www.GM862.com or www.roundsolution.com.
Fig 34 shows the overview of GM862-GPRS module.

Fig 34. GM862-GPRS Overview

Even though GM862-GSM is enhanced with the on board SIM Reader
and can support so many features such as GPRS, Voice, Circuit Switch
Data Transfer, Fax, Phonebook and SMS support. However, we only use
some part of these features, Circuit Switch Data Transfer and SMS, the
other will not take into account.

As it is supplied with 3.8V, a power supply circuitry must be taken
into account very carefully. This part is the most important part in the full
product design and they strongly reflect on the product overall
performances. Fortunately, Round Solution has developed an extension
board for this GSM module.

52

The RS-ES-S1B board is developed by Round Solution to help us to
get start with GM862-GPS. It has:

50 pin Molex connector to interface the GM862 directly
9 pin RS232 interface
Jumper to power on the RS232 level shifter

30-pin connector to support ON/OFF, AXE, Reset, GPIO,
STAT-LED, audio and serial port with full handshaking.

ZIF connector to CMOS camera

TABLE X shows the pin-out of 30-pin connector. As we can see from
this TABLE, 30-pin connector support many important connections
between GM862 and RS-ES-SB1, however, we interest only in ON pin
and START pin. +3.7V and GND is internally connected, no need to take
care about this. Thank Round Solution Company for developing this
useful starting board.

TABLE X
PIN-OUT OF 30-PIN INTERFACE CONNECTOR

" Pin Pin

Number Name Number Name
1 Ear HF+ 16 START LED
2 Ear HT- 17 GND
3 Ear HF- 18 Rx PROG |
4 Ear HT+ 19 CTS
5 GND 20 RING
6 Mic HF- 21 DSR
7 Mic HT+ 22 DCD
8 Mic HF+ 23 Tx PROG
9 Mic HT- 24 DTR
10 ON 25 RTS
11 START 26 GND
12 RESET 27 PWR-GND
13 GPIO2 28 +3.7V
14 AXE 29 PWR GND
15 GPIO1 30 +3.7V

53

ON pin is used to start up the GSM module by connecting it to
ground for at least 1 second and then release. By checking the START
line, we can know whether the GSM module is powered on or not. If
START line is high after 900 ms from ON pin release, it means that the
module is powered on. This two pin is connected in to the PIC for turn-on
the GSM module.

The first step to test GM862 module is to send the command AT. If
we get the answer OK, then we are fine and can start to send other AT-
command. As it has autobauding embedded, we just fix our baud rate to
send the data. The recommended speed is 38400, 8, N, 1 (38400 baud, 8
bits without parity bit, logic inverted and 1 stop bit). However, with the
PIC microcontroller, we cannot reach this high speed with low error, so
we only use 9600, 8, N, 1 or 19200, 8, N, 1 (See TABLE III).

Among the AT-command set, some are interesting for our project.
They are:

e AT: Make the device set the right speed and character format of
the serial port.

Send: a7l
Receive: AT
o]

o AT+CSCA? : Report the current value of the default Service
Center Address (SCA), then store in the RAM and use it while
sending SMS.

AT L) sleal]

Al efelsiefaf| - Alels|elal |)] s 0 4]0 o] |
KL

From the modem’s answer, the SMSC number is 6616110400.

Other information is not interesting.

o AT+CMGF=0: Select the SMS format to be used in reading
and writing message. For this setting, PDU mode is selected
because most of mobile phone, which has build in modem,

54

supports this mode. For text mode, it is difficult to find such
mobile phone. For example, ERICSSON T68 support only PDU
mode. We can check it with AT+CMGF=? as show below

aflefolmf el = 2]
EYRIRIRI R KR R

i Nl] Y 1 T o1 80
o K]

Normally, if the modem supports both PDU and Text mode, the
modem should reply like: JeiMielef | Joj_J1J3] and then
we can select which mode we want by using the command as
below (in here, PDU mode is selected):

Al felmlaliF] - o]

S Jul R e I e
oK

AT+CPMS="ME": Select memory storages to be used for
reading, writing, sending and storing received SMS. For this
setting, Mobile Equipment internal storage (ME) is used.
However, this setting can be used only with mobile phone
ERICSSON T68, it cannot work with GM862 because the
memory for received SMS storing is "SM” (SIM SMS memory
storage). So, if we use ERICSSON T86 as wireless link module,
AT+CPMS="ME" is used, otherwise AT+CPMS="SM" is
used. For other mobile phone, please contact its AT-command
set for more detail. To check the available setting on the mobile
phone, AT+CPMS=? is used as shown below.

ALl e fof el 2

Al el mfs) =)

T 0 4) K
AT

o)y

From this reply, we can know that the memory from which
message are read and delete can be in the mobile equipment

55

message storage (ME) or in the SIM message storage card
(SM), the memory to which writing and sending operations are
made can be in ME or SIM but the memory to which received
SMs are preferably to be stored is in ME only, therefore the
following command is used to select the memory location.

23 o 1 LTI

ALzl el el -] fwl el
S R T T R R IR W S Ra 3
2l

o AT+CMGL=0: List all the new incoming message stored into
<memr>, which is ME for ERICSSON T68 and SM for
GMS862. If no new message is detected in the memory, the
modem will reply only OK.

3 A
Al feulefeTe ofx

In case there is a new message in the memory, the modem will
indicate the memory location (in here is 35), status of the message
(0 if new, 1 if already read) and the number of byte in the TPDU is
39 follow by the message and OK. For the message, we will
analyze it in section 3.2.5.

Al Jefuf sl Jo)

ALzl Jopulefif <ol ol elmaly do alal delzlatsls
o]l 2 Y51 | e TV a el o o) a) o af sl 1 alis] s ko (s (7 2]
I e e A e R T
ofifzlafs]

olxl

o AT+CMGS=<Ilength>: Send to the network a SMS message
input as a PDU. The parameter <length> can be a number from
8 to 176, which represents the length of the PDU to be sent in
bytes. For more information about PDU format, see
pack78/unpack78 algorithm in section 3.2.5.

56

AL el miiels |- |3 4]

ol sl e L) s |k el ol o Lol r o olaLalia) 1fie s) e s 4 o s]
2zl s) el o) o) o] 1] 8]

2 I R e Y R I e AN 3 T e e e
s} al7]l1] 4] 8] 2| D] 1] 2] 4} 3]0 0]

After sending this command to the modem, the same data
echoes from the modem, without following by any message, to
indicate that SMS has been send successfully, otherwise an
error message is followed as below

A1l ol mle)s|-fa) 4]
T o e R B R e R R S R
2y e) o) o] of 45T

Y 5 T S R Y Y T
e /i

elmfs] EJrirfofpj:] sjole] (in case of error)

e ATD <PhoneNumber>: Dial a given phone number in Data
Call mode (Circuit Switch Data Transfer). We use this
command to send the data from mobile node to the central
computer at baud rate 9600 bits per second.

e ATA: Answer an incoming call (Voice or Data Call)

e +++ATH: Exit the data mode and enter the command mode
then hang up the data call. For more information about ATD,
ATA and +++ATH, see Exchange of Command and Response
Signaling algorithm in section 3.2.4 and section 3.2.6.

Note that some AT-commands need to cooperate with other AT-
commands in order to achieve a complete process such as ATD should be
use with ATA and +++ATH to form a complete Data Call process, hence
these 3 AT-commands will be descript later at Exchange of Command
and Response Signaling algorithm. Our Modify HyperTerminal uses
Keystroke font. It is chosen because of its ability to differentiate one from
another character even though it is not a printable character set such as
character 26 (Ctr+Z) is displayed as a box. This information is very
useful as we work with the string manipulation because it gives use the
information of where to start/stop cutting a portion of string (take out
only the useful information) from the long input string.

57

Some people may ask why don’t we use ATHCNMI=xx,x,x,x to
indicate the Terminal Equipment that a new message is detected? And
then use AT+CMGR=0 to read all the new incoming SMS? The answer
is that during Data Call process, a new message maybe received but at
that time, the modem is busy with Data Call = that SMS is missing and
maybe not only one SMS that is missing. With the command
AT+CMGL=0, we can check the memory after we finish Data Call
process, result no even one SMS is missed. In our application, SMS play
a very important role in the hold system; it carries out the Alarm
information, Report and Script command.

3.1.7 GPS Module

In this project, GPS Received Engine Board, from Starts Navigation
Tech. Ltd, is used. This GPS module has many features such as:

e SiRF GPS Architecture (www.sirf.com)

e SiRF startll high performance and low power consumption chip
set

e Support standard NMEA 0183 protocol

e All-in-view 12-channel parallel processing
e Snap Lock 100ms re-acquisition time

e Cold start under 45 seconds, average

e Superior urban canyon performance

e Foliage Lock for week signal tracking

e Optional build-in Super Cap to reserve system data for rapid
satellite acquisition.

e Full-duplex RS-232 port for navigation and control messages
e Differential GPS capability through 2™ RS-232 port

For the electrical characteristics, we focus only on:
e Power:
o Voltage supply : 3.8Vdc ~ 6.5Vdc

o Current supply : 60mA typical for Continuous mode
and 20 mA typical for Trickle power mode.

58

o Backup Power : +2.5V t03.6V
o Backup Current: 10 pA typical
e Serial Port
o Ports . one for GPS, one for DGPS

o Electrical level : TTL level (ET-102), output voltage
level : 0 ~3.5V RS-232 level (ER-102)

o Communication: Full duplex asynchronous
o Code type : ASCII

o GPS protocol : SiRF binary/NMEA 0183 changeable
(Default : NMEA)

o GPS Output Message :

= SiRF binary >> position, velocity, altitude, status
and control

» NMEA 0183 >> GGA, GSA, GSV, RMC (VTG
and GLL are optional)

o GPS transferrate : Software command setting
(Default : 4800bps for NMEA)

o DGPS protocol : RTCM SC-104, ver 2.00, type 1, 2,

and 9
e Dynamic Condition
o Altitude 18000 meters (60000 feet) max
o Velocity : 515 meters/sec (1000 knots) max
e Accuracy ‘

o Position Horizontal
= . 15m 2d RMS (SA off)
= 10m 2d RMS, WAAS enable (SA off)
= 1 ~5m, DGPS corrected
o Velocity . 0.1m/sec 95% (SA off)
o Time : 1 us synchronized to GPS time

From these specifications, we can supply this module with 5Vdc and
3V back-up battery. As we also use one battery back-up for RTC, this
battery can be use for both RTC and GPS module. For NMEA protocol,
we only use GGA (Global Positioning System Fixed Data format)

59

because this output command can provide us information about Latitude,
N/S indicator, Longitude, E/W indicator and MSL Altitude in meter.
Other information is not taking into account.

To control/polled out the output of standard NMEA message GGA,
GLL, GSA, GSV, RMC and VTG, Query/Rate Control command is used.
The format of this command is:

$PSRF103,<msg> <mode>,<rate>,<cksumEnalbe>*CKSUM<CR><LF>

<msg> 0=GGA, 1=GGL, 2=GSA, 3=GSV, 4=RMC, 5=VTG

<mode> 0=SetRate, 1=Query

<rate> Output every <rate> seconds, off=0, max=255

<cksumEnable> O=disable Checksum, [=Enable checksum for
specified message

For our application, the below command is used.
$PSRF103,00,01,00,01*25

It means: Query the GGA message with checksum enable. By using
this command message, standard NMEA message may be polled once.
Periodic mode is not preferable for our application since everything is
controlled by CPU module and we want this CPU go to low power mode
and wake up at a predefine time (we have schedule and mask for the CPU
to work). After sending this command to the GPS module, the GPS will
reply with the message look like below string and its description/data
format is shown on TABLE XI.

SGPGGA,161229.487,3723.2475,N,12158.3416.W,1.0,7,1.0,9.0,M,,,,0000*18

However, before using this control message to poll out the GGA’s
data, we need to disable all other data for they can not disturb us while
reading and also to let GPS relax. As each command needs the checksum
field, it makes us a little bit difficult to change form one to other control
message. Facing with this problem, a Serial Communication program for

60

GPS is implemented. It generates automatically checksum field and adds
<CR><LF> to the end of the string. Some serial communication
programs do not generate <CR> or <CR><LF> to the terminal
equipment. From our program, the above command messages are
generated as below:

e Disable GGA (Global positioning system fixed data) message:

$PSRF103,00,00,00,01*24

e Disable GLL (Geographic position - latitude / longitude) message:

$PSRF103,01,00,00,01%*25

e Disable GSA (GNSS DOP and active satellites) message :

$PSRF103,02,00,00,01*26

e Disable GSV (GNSS satellites in view) message :

$PSRF103,03,00,00,01*27

e Disable RMC (Recommended minimum specific GNSS data)
message:
$PSRF103,04,00,00,01*20

e Disable VTG (Course over ground and ground speed) message:

$PSRF103,05,00,00,01*21

NMEA means National Maritime Electronic Association. The NMEA
0183 standard for interfacing marine electronic devices is a voluntary
industry standard, first released in March of 1983. The NMEA 0183
standard defines electrical signal requirements, data transmission
protocol, timing and specific sentence formats for a 4800 baud, 8-bit, no
parity, one stop bit (§N1) serial data bus. The NMEA 0183 sentences are
all printable ASCII character.

61

The data is transmitted in the form of "sentences". Each sentence
starts with a "$", a two letter "talker ID", a three letter "sentence ID",
followed by a number of data fields separated by commas, and terminated
by an optional checksum, and a carriage return/line feed. A sentence may
contain up to 82 characters including the "$" and CR/LF.

If data for a field is not available, the field is simply omitted, but the
commas that would delimit it are still sent, with no space between them.
Since some fields are variable width, or may be omitted as above, the
receiver should locate desired data fields by counting commas, rather
than by character position within the sentence.

The optional checksum field consists of a "*" and two hex digits
representing the exclusive OR of all characters between, but not
including, the "$" and "*". A checksum is required on some
sentences. The standard allows individual manufacturers to define
proprietary sentence formats. These sentences start with "$P", then
a 3 letter manufacturer 1D, followed by whatever data the manufacturer
wishes, following the general format of the standard sentences.

Some common talker IDs are:
e GP :Global Positioning System receiver
e LC :Loran-C receiver
e OM :Omega Navigation receiver

o 1II : Integrated Instrumentation

Fig 35 shows the picture of the GPS module the dimension of the
module. Table XII shows the Pin-out of the 20-pin interface connector of
the GPS module.

62

TABLE XI
GGA DATA FORMAT
Name Example Units Description
Message 1D SGPGGA GGA protocol header
UTC Time 161229487 hhmmss . sss
Latitude 37232475 ddmm.mmmm
N/S Indicator N N =north or 8=south
Longitude 12158 3416 dddmm.mmmm
EAW Indicator W E-=east or W=wesl
Posiion Fix Indicator |1 See Table B-3
Satelhites Used 07 Range (1o 12
HDOP 1.0 Hortzontal Dilution of Precision
MSL Altitude! 9.0 meters
Linits B meters
Geoid Separation' meters
Units M meters
Age of DifY. Corr. second Null Gields when DGPS s not used
Ditf. Ref. Station ID [G000
Checkstim *18
<CR»<LF> End of message termination

1. SiIRF Technology Inc. does not support geotd corrections. Values are WGS84 ellipsoid heights.

COMPONENT SIDE £ 7 i o

559

320

Fig 35. Dimension of GPS module

PCB 1=1.6 mm H
T — 1
" SQIDER SIDE £3 e '
PCB SIDE VIEW
%_m_m - e S _._,,,_?1"12 mm _._,,,mw..._.._..w__,,m,,,.,__..r!w
|5 84.7F mm=======~========] :
ERe 335
fa CJ : E
1]
4 do
T [go]] ! :
phch=20mm . | |oo|| | |
1 00| w =&
£ legll® &
[(==
a ool oy
& oo} g
=]
! [ool| +
Il=]"] : ¢
g |
oyl
@ 3075 |
gl B
Z 22606 mrm PCB TOP VIEW im

TABLE XII

PIN-OUT OF THE 20-PIN INTERFACE CONNECTOR

Pin
Number Name Description Type
1 VYANT Antenna DC Voltage Input
2 vYDC 3.8V~6.5V DC Power Input Input
K) VBAT Backup Battery Input
4 yDC {Shorted with pin 2) Input
5 PBRES Push Button Reset Input (Active Low) | Input
6 RESERVED (Reserved)
Down-load data from RS232 to flash

7 SELECT |ROM (Reserved)

8 RESERVED (Reserved)

9 RESERVED (Reserved)

10 GND Ground

1t TXA Serial Data Output A (GPS Data) Output
12 RXA Serial Data Input A (Command) Input
13 GND Ground
14 TXB Serial Data Output B (No Used) Qutput
15 RXB Serial Data Input B (DGPS Data) Input
16 GND Ground

17 RESERVED (Reserved)

18 GND Ground

19 TIMEMARK 1PPS Time Mark Output Output
20 RESERVED {Reserved)

63

64

The battery backup is used to power the SRAM and RTC when main
power is removed. Typical current draw is 10 pA. Without an external
backup battery or Gold-capacitor, the module/engine board will execute a
cold start after every turn on, resulting a long delay while turn on. To
achieve the faster startup offered by a hot or warm start, either a battery
backup mush be connected or a Gold-capacitor should be installed. To
maximize the battery lifetime, the battery voltage should not excess the
supply voltage and should be between 2.5V and 3.6V. All these
specification are taken into account by our design.

3.1.8 Radio Link Module Hardware Design

As in Fig 11 shows the block diagram of the whole system and its
functionalities are described in chapter 2, we can now start analyzing the
schematic of our Radio Link module (not shown), however, algorithms
are discussed in section 3.2. From this design, we can see that:

e The main power supply (7Vdec ~ 10Vdc) is regulated by a
regulator L7805. This regulator contains many protection
features such as current limitation, thermal, etc, which makes
this regulator become hard to be destroyed. The polarization
protection is warranted by a diode and noise reduction is
warranted by other 3 condensers. However the non-polarized
condenser should be connected as near as possible to the PIC to
reduce the noise efficiently as it eliminates the high frequency
noise.

e Power-on Reset is improved by using the NPN transistor C1815
and other auxiliary component such as condenser and resistor.
Once press the RESET button, the CPU module and Radio link
module and GPS module will be reset. We can see that this reset
system is separated one from other. The reason is that, our
system is embedded with ICSP. To facilitate the design, each
module has its own ICSP hence imply two reset systems. In the
CPU design, the reset system of GPS is connected with CPU
module, without any separation like this case.

e Have ICSP embedded to facilitate the programmer. With ICPS,
we can change the executable code any time we want to update
it, that implies the flexibility and mass production support.

e Have LCD for display the inside operations and other
information for the user.

65

e Embedded with debug capability. The connector J-DEBUG
provides the programmer enough connection to debug/monitor
the internal process, program the EEPROM and PIC. For debug
pin, a resistor 1 kQ is used to limit the current in case of short
circuit at PC side. In here, the RS-232 level is inverted in
software; no need hardware level converters. For I°C device
programming, two resistor 4.7 kQ are used to poll up SDA and
SCL pin to high

e The connector J-CPU is used to communicate with CPU
module. This connector provides enough connection to
communicate with the CPU and other I’C extension module.
With this design, we can update/change the Radio Link or CPU
module without interfere each other function. This implies the
flexibility to update/adapt to the new demand/application. The
communication between Radio Link and CPU is supported by 5
pins (I12C, Flag, RxTx, SDA and SCL); other pins are used for
ICSP, debug, reset and LED indicator.

e The internal processes are, not only displayed via LCD but also
indicated by LEDs. LED-Red is used to indicate the PIC’s
process with mobile phone such as reading/sending SMS, check
new incoming SMS and check incoming call whereas LED-
Green is used to indicate the status of I°C bus used in Radio
Link module. LED-Yellow indicates the CPU operation. It will
turn on every second but with a different turn-on delay. This
delay depends on the CPU process, if CPU is turns to work, the
LED is turn on, otherwise it is turned off for low-power mode.
Turn On/Off operations of GSM module are controlled in
software. As this GSM module is designed to work with PC
(inverted TTL level), a level converter is needed because we use
hardware serial port embedded in the PIC that cannot be change
the level by software anymore. In here, MAX232 is used.

3.1.9 CPU Module Hardware Design

The CPU module, for this design:

e The power supply is taken from Radio Link module via J-
RADIO connector. As describe above, this connector allows
the CPU module to communicate with Radio Link, ICSP, I°C
programmer, PC and LED indicator. A resistor 1 kQ2 is used to
limit the current in case of short circuit at PC side.

66

e The analog sensors can be connected to PIC via J-ANAIN
whereas the digital switches can be connected to PIC via J-
DIGIN.

e The output board (analog and digital) can be connected to PIC
via J-DIGANA. As described in chapter 2, we provide 8 digital
output pins and 2 analog output pins and it is another board, not
included in this schematic. To communicate with that output
board, J-OUTBOARD is used to connect all the digital &
analog output pins and I°C bus (SDA, SCL) from CPU board to
Output board. We do like this because we want all (input pins
and output pins) on the CPU board so we can see directly that
the input/output pins are controlled by CPU module but the
most important reason is to be easy to update the Output board
without changing the output connector (modular system).

e As our process is synchronized with the time, a RTC is used to
generate 1 Hz square-wave. Normally, this 1 Hz signal can be
taken from GPS module. However, input/output module and
GPS module are optional and can be changed easily, and we
want CPU board work independently, not depends on GPS
module = RTC is needed. This RTC is not only used for
generating 1 Hz clock but also for synchronizing the storing
data with real time calendar. This information is also used to
display the date and time on the LCD for user to see/control
whether the module is working or not working. Note that,
initially, the RTC needs to be set up for it can know what time
it is now and which frequency it should generate, so an
indicator for this RTC is need as it plays a very important role
in the CPU process. LED-Blue will turn on at the output
frequency of the RTC. To keep these data on the RTC, a
backup battery is needed. In here, a small 3V Lithium battery is
used.

e One EEPROM (24C512) is used to store the data
(configuration data and input data from sensor).

3.1.10 Input Board

This input board is made for testing purpose. It is used for measuring
the temperature and luminosity. In this design (not shown), two types of
temperature sensor IC’s are used. The first one is LM335 whereas the
second is LM35.

67

The LM335 is a precision temperature sensor [18], easily calibrated,
integrated circuit temperature sensor. Operating as 2-terminal zener, the
LLM335 has a breakdown voltage directly proportional to absolute
temperature at +10 mV/°K. With less then 1Q2 dynamic impedance, the
device operates over a current range of 400 pA to 5 mA with virtually no
change in performance. When calibrated a 25°C the LM335 has typically
less then 1°C error over 100°C temperature range. Unlike other sensors
the LM335 has a linear output, which makes interfacing to readout or
control circuitry especially easy. The LM335 operates from —40°C to
+100°C. For more information about this low cost temperature sensor,
visit National Semiconductor at www.national.com.

The LM35 series are precision integrated-circuit temperature sensors
[18], whose output voltage is linearly proportional to the Celsius
(Centigrade) temperature. The L M35 thus has an advantage over linear
temperature sensors calibrated in Kelvin, as the user is not required to
subtract a large constant voltage from its output to obtain convenient
Centigrade scaling. The LM35 does not require any external calibration
or trimming to provide typical accuracies of £1/4°C at room temperature
and 3/4°C over a full -55 to +150°C temperature range. Low cost is
assured by trimming and calibration at the wafer level. The LM35’s low
output impedance, linear output, and precise inherent calibration make
interfacing to readout or control circuitry especially easy. It can be used
with single power supplies, or with plus and minus supplies. As it draws
only 60 pA from its supply, it has very low self-heating, less than 0.1°C
in still air. The LM35 is rated to operate over a -55° to +150°C
temperature range, while the LM35C is rated for a -40° to +110°C range
(-10° with improved accuracy). For more information about this low cost
temperature sensor, visit National Semiconductor at www.national.com.

For luminosity sensor (photo resistor), we have no datasheet or
information about its characteristic so we just measures its-value in dark
place and under sunlight to see the resistance variation. From this
measure, a complete testing board is made as shown below.

This design is to adapt to the analog input characteristic described in
section 3.1.1 (maximum input impedance is 10 kQ). The other
condensers and resistor in this design are used a filter purpose (low pass
filter) to eliminate the noises (electromagnetic noise, high frequency
noise from the power supply and Poisson noise from the light source for

68

photo resistor). For LM35, a series R-C damper from output to ground is
used to improve the tolerance of capacitance of the heavy capacitive load
(LM35 can drive only 50 pf capacitive load). As this is a simple design
for testing the system performance, the result is not so good but enough to
see the evaluation of the surrounding environment.

From our experiments, we can say that LM335 is difficult to use
comparing with LM35 because LM335 needs calibration, which is
difficult to adjust by hand; moreover, if we want it to have small error
(less then 1% over 100°C range), we have to calibrate it at 25°C.
However, LM35 is about 3 times more expensive then LM335.

3.1.11 Output Board

As describe in chapter 2, Two PCF8591 are used to assure the two
analog outputs with 8-bit resolution and one PCF8574A is used to assure
the 8 digital outputs. The power switching board with 8 outputs can be
connected with this 8 digital output directly.

The design of digital output is easy, however, for analog output, we
need a very good amplifier that can operate with 5V power supply, low
power, high input impedance, low output impedance and rail-to-rail
input/output feature such as LMC6001 or MCP6001 [19].

The MCP6001 device, from Microchip, has a high phase margin,
which makes it ideal for capacitive load applications. The low supply
voltage, low quiescent current and wide bandwidth make the MCP6001
ideal for battery-powered applications:

However, we cannot find this kind of IC in Thailand and as it does not
interfere our system performance testing, we do not develop this output
board for instance.

3.1.12 RS-232 to I’C Debug & Programming Board

This board (not shown) is design to help developer easily debug the
Radio Link module and CPU module. This board is not only used for
debug but also program the EEPROM and RTC at first use. The
EEPROM needs the configuration data for work with CPU and Radio

69

Link module whereas RTC need the initial time calendar to run its real
time calendar. This board is also used for programming the PIC.

The ICSP programmer board is not part of RS232-12C board but it is
related to our development work, so we just show it, not explain. For the
software (IC-Prog), we can download from http://kudelsko.fr/prog
pic/sommaire.htm for free of charge.

The PIC serial programmer board can program EEPROM as well as
PIC16F8X, PIC16X62X, PIC16X55X, PIC16C6X and PIC1687X but we
still need RS-232 to I°C interface adaptor because the PIC serial
programmer cannot program RTC and we need to change the cable from
serial port (use with Mobile phone) to parallel port (use with EEPROM)
< not convenient for developer and user.

3.2 Communication Protocol & Algorithm
3.2.1 I’C-Bus

In consumer electronic, telecommunications and industrial electronics,
there are often many similarities between seemingly unrelated designs.
For example, nearly every system includes:

e Some intelligent control, usually a single-chip microcontroller

e General-purpose circuits like LCD drivers, remote I/O ports,
RAM, EEPROM, or data converters

e Application-oriented circuits such as digital turning and signal
processing circuits for, radio- and- video systems, or DTMF
generators for telephones with tone dialing.

To exploit these similarities to the benefit of both systems designers
and equipment manufacturers, as well as to maximize hardware
efficiency and circuit simplicity, Philips developed a simple bi-directional
2-wire bus for efficient inter-IC control. This bus is called the Inter IC or
I°C-bus. At present, Philips’s IC range includes more then 150 CMOS
and bipolar I’C-bus compatible types for performing functions in all tree
categories (Version 1.0 - 1992, Version 2.0 - 1998, Version 2.1 - 2000).
All T°C-bus compatible devices incorporate an on-chip interface, which
allows them to communicate directly with each other via I’C-bus. This

70

design concept solves the many interfacing problems encountered when
designing digital control circuits. Here are some of the features of the I*C-

bus:

Only two bus lines are required; a serial data line (SDA) and a
serial clock line (SCL)

Each device connected to the bus is software addressable by a
unique address and simple master/slave relationships exist at all
times; masters can operate as master-transmitters or as master-
receivers

It’s a true multi-master bus including collision detection and
arbitration to prevent data corruption if two or more masters
simultaneously initiate data transfer

Serial, 8-bit oriented, bi-directional data transfers can be made
at up to 100 kbit/s in the Standard-more, up to 400 kbit/s in the
Fast-mode, or up to 3.4 Mbit/s in the High-speed mode

On-chip filtering rejects spikes on the bus data line to preserve
data integrity

The number of ICs that can be connected to the same bus is
limited only by a maximum bus capacitance of 400 pF.

Designer benefits: I’C-bus compatible ICs allow a system design to
rapidly progress directly from a functional block diagram to a prototype.
Moreover, since they ‘clip’ directly onto the I’C-bus without any
additional external interfacing, they allow a prototype system to be
modified or upgraded simply by ‘clipping’ or ‘unclipping’ ICs to or from
the bus. Here are some of the features of I°C-bus compatible ICs, which
are particularly attractive to designers:

e Functional blocks on the block diagram correspond with the

actual ICs; designs proceed rapidly from block diagram to final
schematic

e No need to design bus interfaces because the I*C-bus interface

is already integrated on-chip

Integrated addressing and data-transfer protocol allow systems
to be completely software-defined

The same IC types can often be used in many different
applications

71

e Design-time reduces as designers quickly become familiar with
the frequently used functional blocks represented by I’C-bus
compatible ICs

e ICs can be added to or removed from a system without affecting
any other circuits on the bus

e Fault diagnosis and debugging are simple; malfunctions can be
immediately traced

e Software development time can be reduced by assembling a
library of reusable software modules.

In additional to these advantages, the CMOS ICs in the I*C-bus
compatible range offer designers some special features, which are
particularly attractive for portable equipment and battery-backed systems.
They all have:

e Extremely low current consumption
e High noise immunity
e Wide supply voltage range

e Wide operating temperature range

The I’C-bus concept: The I°C-bus supports any IC fabrication
process (NMOS, CMOS, bipolar). Two wires, SDA and SCL, carry
information between the devices connected to the bus. Each device is
recognized by a unique address (whether it is a microcontroller, LCD
driver, memory or keyboard interface) and can operate as either a
transmitter or receiver, depending on the function of the device.
Obviously an LCD driver is only a receiver, whereas a memory can both
and receiver and transmit data. In additional to transmitters and receivers,
devices can also be considered as masters and receivers, devices can also
be considered as masters or slaves when performing data transfers (see
Table XIII). A master is the device, which initiates a data transfer on the
bus and generates the clock signal to permit that transfer. At that time,
any device addressed is considered a slave.

The I°C-bus is a multi-master bus. This means that more then one
device capable of controlling the bus can be connected to it. As masters
are usually micro-controllers, let’s consider the case of a data transfer
between two microcontrollers connected to the I°C-bus (see Fig 36).

72

MICRO - LCD BTATIC
CONTROLLER DRIVER RAM OR
A EEPROM
| |
[SPA | | |
| scL
MICRO -
GATE CONTROLLER
ARRAY ADC B
MEEEAY

Fig 36. I°C-bus Configuration Using Two Microcontrollers

This highlights the master-slave and receiver-transmitter relationships
to be found on the I’C-bus. It should be noted that these relationships are
not permanent, but only depend on the direction of data transfer at that
time. The transfer of data would proceed as follows:

e Suppose microcontroller A wants to send information to
microcontroller B:

o Microcontroller A (master), addresses microcontroller B
(slave)

o Microcontroller A (master-transmitter), sends data to
microcontroller B (slave-receiver)

o Microcontroller A terminates the transfer

e If microcontroller A wants to receive information from
microcontroller B:

o Microcontroller A (master) addresses microcontroller B
(slave)

o Microcontroller A (master-receiver) receives data from
microcontroller B (slave-transmitter)

o Microcontroller A terminates the transfer.

Even in this case, the master (microcontroller A) generates the timing
and terminates the transfer. Only master can generate the clock signal on
the I°C-bus whatever it is master-transmitter or master-receiver.

The possibility of connecting more then one microcontroller to the
I°C-bus means that more then one master could try to initiate a data

73

TABLE XIII
DEFINITION OF I°C-BUS TERMINOLOGY
TERM DESCRIPTION
Transmitter The device which send data to the bus
Receiver The device which receives data from the bus
Master The device which initiates a transfer, generates clock signals
and terminates a transfer
Slave The device addressed by a master
Multi-master More then one master can attempt to control the bus at the
same time without corrupting the message
Arbitration Procedure to ensure that, if more than one master
simultaneously tries to control the bus, only one is allowed to
do so and the winning message is not corrupted
Synchronization Procedure to synchronize the clock signals of two or more
devices

transfer at the same time. To avoid the chaos that might ensue from such
an event, an arbitration procedure has been developed. This procedure
relies on the wired-AND connection of all I°C interfaces to the I°C-bus.

If two or more masters try to put information onto the bus, the first to
produce a ‘one’ when the other produces a ‘zero’ will lose the arbitration.
The clock signals during arbitrations are a synchronized combination of
the clocks generated by the masters using the wired-AND connection to
the SCL line. For more detailed information concerning arbitration, see
I’C-bus specification from Philip because it is out of our scope. Even
though in this project, we have two masters but we do not use this
arbitration to control the I*C-bus. We implement a modify I°C-bus for our
application as descript in the next section.

General characteristics: Both SDA and SCL are bi-directional lines,
connected to a positive supply voltage via a current-source or pull-up
resistor (see Fig 37). When the bus is free, both lines are HIGH. The
output stages of devices connected to the bus mush have an open-drain or
open collector to perform the wired-AND function.

Bit transfer: Due to the variety of different technology devices
(CMOS, NMOS, bipolar), which can be connected to the I°C-bus, the
levels of the logical ‘0’ (LOW) and ‘1’ (HIGH) are not fixed and depend

74

on the associated level of Vpp. One clock pulse is generated for each data
bit transferred.

+Vpp
-y
rosistors Rpf] [Il] Rp

SDA (Serial Data Line}

SCL (Serial Clock Line)

T

1
! scuLanz_J mg&nz_] 57 !
! SCLK DATA !
Lm IN _|
DEVICE 1 " DEVICEZ wecex

Fig 37. Connection of Standard and Fast-mode Devices to the I°C-bus

Data validity: The data on the SDA line must be stable during the
HIGH period of the clock. The HIGH or LOW state of the data line can
only change when the clock signal on the SCL line is LOW (see Fig 38)

START and STOP conditions: Within the procedure of the I°C-bus,
unique situations arise which are defined as START (S) and STOP (P)
condition (see Fig 38).

e A HIGH to LOW transition on the SDA line while SCL is
HIGH is one such unique case. This situation indicates a
START condition.

e A LOW to HIGH transition on the SDA line while SCL 1is
HIGH defines as STOP condition.

START and STOP conditions are always generated by the master. The
bus is considered to be busy after the START condition. The bus is
considered to be free again a certain time after the STOP condition. The
bus stays busy if a repeated START (Sr) is generated instead of a STOP
condition.

75

r—== ,

r
{ { b—— | -
SDA I\ | vyl I \ L/ SDA
i I |] —— I I
| | 1 | | |
| 1 : : - | | —_
scL g |\ i/ \ / \ / I gl scL
1 S f , . 1P
" | data ne | change } T it
START oondition i stable; | ofdsta | STOP condition
| data valid) allowed |

Fig 38. Start Condition, Bit Transfer and Stop Condition for [*C-bus

Transferring data: every byte put on the SDA must be 8-bits long. The
number of bytes that can be transmitted per transfer is unrestricted. Each
byte has to be followed by an acknowledge bit. Data is transferred with
the most significant bit (MSB) first (Fig 39). If a slave can’t receive or
transmit another complete byte of data until it has performed some other
function, for example servicing an internal interrupt, it can hold the clock
line SCL low to force the master into a wait state. Data transfer then
continues when the slave is ready for another byte of data and releases
clock line SCL.

In some cases, it’s permitted to use a different format from the I’C-bus
format (for CBUS compatible devices for example). A message which
starts with such an address can be terminated by generation of a byte. In
this case, no acknowledge is generated.

r=1

Y y 5]
SRV 't S o U e 0 G (0 G
| MSE acknowladgament acknowlaagement | SF
|
I
|
|

signal from slave signd rom racaiver

byta complale,
Intarrupt within slave

-

[|
||
||
Intanupts are serviced | |

sc. | 8 [\ / A fAN T/ \l J AN f-_m
or T2 S\ Sa e 1 2 3-8 5 or
Lir_l ACK ACK LE_I

clack lina hald iow whila

START or STOP or
repaated START repealed START
conditian candition

Fig 39. Data Transfer on the I°C-bus

Acknowledge: Data transfer with acknowledges is obligatory. The
acknowledge-related clock pulse is generated by the master. The
transmitter release the SDA line (HIGH) during the acknowledge clock
pulse. The receiver mush pull down the SDA line during the acknowledge

76

clock pulse so that it remains stable LOW during the HIGH period of this
clock pulse (see Fig 40). Of course, set-up and hold times mush also be
taken into account.

Usually, a receiver which has been addressed is obliged to generate an
acknowledge after each byte has been received, except when the message
start with a CBUS address. When a slave doesn’t acknowledge the slave
address (for example, it’s unable to receive or transmit because it’s
performing some real-time function), the data line must be left HIGH by
the slave. The master can then generate either a STOP condition to abort
the transfer, or a repeated START condition to start a new transfer.

If a slave-receiver does acknowledge the slave address but, some time
later in the transfer cannot receive any more data bytes, the master mush
again abort the transfer. This is indicated by the slave generating the not-
acknowledge on the first byte to follow. The slave leaves the data line
HIGH and the master generates a STOP or repeated START condition.

If a master-receiver is involved in a transfer, it mush signal the end of
data to the slave-transmitter by not generating an acknowledge on the last
byte that was clocked out of the slave. The slave-transmitter must release
the data line to allow the master to generate a STOP or repeated START
condition.

=

DATA OUTPUT ‘J'\
BY TRANSMITTER |
I
[
I
I

e W
rot acknowledge

al:kmmladga;
SCL FROM
MASTER . | | ! 2 __M

ra)
START
condition

DATA OUTPUT
BY RECEIVER

I
|
|
I
|
I
I

clock pulse for
acknowledgement

Fig 40. Acknowledge on the I*C-bus

3.2.2 Modify I’C-Bus

Looking back to Fig 11, we can see that our system is I’C-bus multi-
master mode; however, this mode is not used in this system to exchange

77

the information between Radio Link and CPU module. We create another
protocol to do this function.

First of all, let us explain why the I’C-bus multi-master mode is not
used in this system? The reason is that:

e At first, our microcontroller are not supported I°C hardware
interface, so this multi-master mode become a very difficult
task to do in software since we have sample at less twice time
the clock frequency to detect the falling edge or rising edge of
the SDA to detect the start and stop condition. If each
microcontroller do only this task, it is not difficult to
implement this algorithm, but since each microcontroller have
to monitor the input (for CPU) and especially the incoming call
and message (Radio Link), this task becomes harder to
implement. Moreover, if the incoming call and message are
synchronized with the CPU process (sampling the input data),
it is not difficult to implement this algorithm as well, but since
this process is taken randomly with different time delay, this
task becomes very hard to implement. To solve this problem,
our algorithm is implemented.

e After we find PIC16F8XX, the multi-master mode is solved.
However, during sending/receiving data process, if CPU
detects some errors and sends that information via I’C-bus to
Radio Link, what will happen? The hardware interrupt does not
occur because during sending/reading process (especially
update data process because we have to wait for the update data
sending by central node and these data are very important
because it characterizes the mobile node process), all the
interrupt sources are disable, so the information sent by CPU
will be loss if there are more then two byte are sent because the
hardware register can handle only 2 bytes (SSPBUF and
SSPSR). So, as we’ve already implemented -the modify I’C
protocol and as it works well, we continue to use this protocol
for our system.

We still use I°C-bus to send out the exchange information but with
additional 3 lines and one byte in the EEPROM at address 7h.

e I2C line: is used to indicate both microcontrollers that the I°C-
bus is busy. We loss one line just for keeping this information
but we can write a very simple program to check the I°C-bus

78

whether it is busy or not, no need to sample the I°C-bus at twice
time clock frequency. The main problem is not this twice time
clock frequency and how to know that the I°C-bus is free, but
how to solve the problem when these two microcontrollers
become both master-transmitter and try to address the slave
device (EEPROM and RTC or other I°C slave device), which
one will get token to uses ’C-bus? Right?

¢ Flag line: is used by microcontroller A to read the acknowledge
signal from other microcontroller B that it has some thing to tell
microcontroller A and already noted on the white board
(EEPROM, location 7h). After reading and executing the
command on the white board, microcontroller A have to clean
the white board (clear the correspond bit on the EEPROM (7h)).

e RxTx line: is used by microcontroller B to tell microcontroller
A that it has some thing to tell and already noted on the white
board (EEPROM, locate at 7h). This line is set to LOW as
acknowledge signal is generated and will bet set to HIGH when
microcontroller B check there is nothing on the white board.

The RxTx line of microcontroller A is connected to Flag line of
microcontroller B and vise versa.

The design of these Flag line and RxTx line is came from SDA line
(bi-directional), however, we would like to separate this SDA line into
two as Flag line (for receiving the signal) and RxTx line (for transmitting
the signal). The same reason, we loss two lines but we can use a very
simple algorithm to control the exchange information between these two
microcontrollers.

Each information is written as binary format on the white board, if it is
‘1°, the information is true otherwise the information is invalid (see Fig
41).

For more detail information about the process of each microcontroller
with the white board, see section 3.2.7 and 3.2.8.

So, to exchange the information from one microcontroller to other,
I’C-bus protocol is used with additional 3 pins and one byte of EEPROM.
With this design, each microcontroller can run the task asynchronously
and come back to read/write the data on the I’C device like multi-master
mode with a simple algorithm to implement into the PIC.

79

716/5(4(|3[2|1]|0

|— Buffer Over-run
Critical Input (Alarm) L Set by CPU module
Future use (reserve) Clear by Radio Link module

Future use (reserve)

<READ>
<REPORT> Set by Radio Link module
Do commands {Set Port) 4 Clear by CPU moduie

Future use (reserve)

Fig 41. Format of EEPROM (7h)

3.2.3 RS-232

RS-232 is a “complete” standard. This means that the standard sets
out to ensure compatibility between the host and peripheral systems by

specifying:

1) Common voltage and signal levels
2) Common pin wiring configurations

3) A minimal amount of control information between the host and
peripheral systems.

Unlike many standardss which simply specify the electrical
characteristics of a given " interface, RS—232 specifies electrical,
functional, and mechanical characteristics in order to meet the above
three criteria. However, we just take some of these aspects of the RS—-232
standard to be discussed below.

Electrical Characteristics: The original RS-232 standard was
defined in 1962. As this was before the days of TTL logic, it should not
be surprising that the standard does not use 5 volt and ground logic levels.
Instead, a high level for the driver output is defined as being +5 to +15
volts and a low level for the driver output is defined as being between —5
and —15 volts. The receiver logic levels were defined to provide a 2 volt
noise margin. As such, a high level for the receiver is defined as +3 to

80

+15 volts and a low level is —3 to —15 volts. Fig 42 illustrates the logic
levels and logic waveform defined by the RS-232 standard. It is
necessary to note that, for RS—232 communication, a low level (-3 to —15
volts) is defined as a logic 1 and is historically referred to as “marking”.
Likewise a high level (+3 to +15 volts) is defined as logic 0 and is
referred to as “spacing”.

The RS-232 standard also limits the maximum slew rate at the driver
output. This limitation was included to help reduce the likelihood of
cross—talk between adjacent signals. The slower the rise and fall time, the
smaller the chance of cross talk. With this in mind, the maximum slew
rate allowed is 30 V/ms. Additionally, a maximum data rate of 20k
bits/second has been defined by the standard. Again with the purpose of
reducing the chance of cross talk, the impedance of the interface between
the driver and receiver has also been defined. The load seen by the driver
is specified to be 3kW to 7kW.

.............

=5V T -15V
RECEIVER ' ' DRIVER
INPUT ouTPUT
! THRESHOLD ! !
Fig 42-A. RS-232 Logic Levels
Mark -10¥
~, startl 0 | 1| 23|14 5| 6|7 |swp
Space +10V

Fig 42-B. RS-232 Logic Waveform

For the original RS-232 standard, the cable between the driver and the
receiver was also specified to be a maximum of 15 meters in length. This
part of the standard was changed in revision “D” (EIA/TIA-232-D).
Instead of specifying the maximum length of cable, a maximum

81

capacitive load of 2500 pF was specified which is clearly a more
adequate specification. The maximum cable length is determined by the
capacitance per unit length of the cable, which is provided in the cable
specifications.

Fig 43 shows the RS-232 waveforms in TTL or CMOS level. RS-232
communication is asynchronous. That is a clock signal i1s not sent with
the data. Each word is synchronized using its start bit, and an internal
clock on each side, keeps tabs on the timing.

Logic '1' +5V
Tsmo 112]3lals5]6]7]swr

Logic 0’ — 0V

Fig 43. TTL/CMOS Serial Logic Waveform

The diagram above shows the expected waveform from the UART
when using the common 8N1 format. 8N1 signifies § Data bits, No Parity
and 1 Stop Bit. The RS-232 line, when idle is in the Mark State (Logic 1).

A transmission starts with a start bit, which is (Logic 0). Then each bit
1s sent down the line, one at a time. The LSB (Least Significant Bit) is
sent first. A Stop Bit (Logic 1) is then appended to the signal to make up
the transmission. The Fig 43 shows the next bit after the Stop Bit to be
Logic 0. This must mean another word is following, and this is its Start
Bit. If there is no more data coming then the receive line will stay in its
idle state (logic 1).

We have encountered something called a "Break" Signal. This is when
the data line is held in a Logic 0 state for a time long enough to send an
entire word. Therefore, if you don't put the line back into an idle state,
then the receiving end will interpret this as a break signal. The data sent
using this method, is said to be framed. That is the data is framed between
a Start and Stop Bit. Should the Stop Bit be received as Logic 0, then a
framing error will occur. This is common, when both sides are
communicating at different speeds.

82

Almost all digital devices, which we use, require either TTL or CMOS
logic levels. Therefore the first step to connecting a device to the RS-232
port is to transform the RS-232 levels back into 0 and 5 Volts. As we
have already covered, this is done by RS-232 Level Converters.

Two common RS-232 Level Converters are the 1488 RS-232 Driver
and the 1489 RS-232 Receiver. Each package contains 4 inverters of the
one type, either Drivers or Receivers. The driver requires two supply
rails, +7.5 to +15v and -7.5 to -15v. As you could imagine this may pose
a problem in many instances where only a single supply of +5V is
present. However the advantages of these IC's are they are cheap.

Another device is the MAX-232. It includes a Charge Pump, which
generates +10V and -10V from a single Sv supply. This IC also includes
two receivers and two transmitters in the same package. This is handy in
many cases when you only want to use the Transmit and Receive data
Lines. You don't need to use two chips, one for the receive line and one
for the transmit line. However all this convenience comes at a price, but
compared with the price of designing a new power supply it is very
cheap.

Yo
ce 1 " 16 [OveC .
Vi' : :] GN:) 1 0¥, 9
C1- [] TR1OUT s Rt =~
C2+ Max 237 [IREIN e £) —
Co —IRELOUT e S D e T
v- O 1 TRIIN Makziz | L
TR20UT [TR2IN L1
REZIN] 8 g [CJRE2Z0UT . A L
RE2S2 D TTL
2l e u (’ CHDS
Pinouts for the MAX-2323, 14 j,_/\] 1
R5-232 Driver/Receiver. Jls

Fig 44. Typical MAX-232 Circuit

There are also many variations of these devices. The large values of
capacitors are not only bulky, but also expensive. Therefore other devices
are available which use smaller capacitors and even some with inbuilt
capacitors. (Note: Some MAX-232 can use 1 uF Capacitors). However,
the MAX-232 is the most common, and thus we will use this RS-232
Level Converter in our system.

83

Functional Characteristics: RS-232 has defined the function of the
different signals that are used in the interface. These signals are divided
into four different categories: common, data, control, and timing. TABLE
XIV illustrates the signals that are defined by the RS-232 standard. As
can be seen from the TABLE there is an overwhelming number of signals
defined by the standard. The standard provides an abundance of control
signals and supports a primary and secondary communications channel.
Fortunately few applications, if any, require all of these defined signals.
For example, only eight signals are used for a typical modem. Some
simple applications may require only four signals (two for data and two
for handshaking) while others may require only data signals with no
handshaking. The complete list of defined signals is included here as a
reference, but it is beyond the scope of this document to review the
functionality of all of these signals.

Mechanical Interface Characteristics: In particular, RS-232
specifies a 25—pin connector. This is the minimum connector size that can
accommodate all of the signals defined in the functional portion of the

TABLE XIV
RS-232 DEFINED SIGNALS
CIRCUIT
MNEMONIC CIRCUIT NAME* CIRCUIT DIRECTION CIRCUIT TYPE
AB Signal Common - Common
BA Transmitted Data (TD) To DCE Data
BB Received Data (RO) From DCE
CA Raquest to Send (RTS) To DCE
CB Clearto Send (CTS) From DCE
cC DCE Ready (DSR) From DCE
CD DTE Ready (DTR} To DCE
CE Ring Indicator (R1} From DCE
CF Recelved Line Signal Detector** (DCD) From DCE Contral
CG Signal Quality Detector ; From DCE
CH Data Signai Rate Detector from DTE To DCE
Cl Data Signal Rate Detector from DCE From DCE
cl Ready for Recelving To DCE
RL Remote Loopback To DCE
LL Local Loapback To DCE
™ Test Mode From DCE
DA Transmitter Signal Element Timing from DTE | To DCE
DB Transmitter Signal Element Timing from DCE | From DCE Timing
(8]] Recelver Signal Element Timing From DCE From DCE
SBA Secondary Transmitted Data To DCE Data
sBB Secondary Recelved Data From DCE
SCA Secondary Request to Send To DCE
SCB Secondary Clear to Send From DCE Control
SCF Secondary Received Line Signal Detector From DCE

*Signals with abbrevialions in parentheses are the sight most commonly used signals.
**This signal Is more commonly referred to as Data Carrier Detect (DCD).

84

standard. The pin assignment for this connector is shown in Fig 45. The
connector for DCE equipment is male for the connector housing and
female for the connection pins. Likewise, the DTE connector is a female
housing with male connection pins. Although RS-232 specifies a 25—
position connector, it should be noted that often this connector is not
used. This is due to the fact that most applications do not require all of the
defined signals and therefore a 25—pin connector is larger than necessary.
This being the case, it is very common for other connector types to be
used. Perhaps the most popular is the 9-position DB9S connector, which
is also illustrated in Fig 45. This connector provides the means to transmit
and receive the necessary signals for modem applications, for example.
For our application, only TD (Tx), RD (Rx) and Ground (GND) line are
used between the Air-modem (mobile phone or GSM module) and
PC/Radio Link Module.

25-PINCONNECTOR

PROTECTIVE GROUND 1
TRANSMIT DATA LINE (TD) G SECONDARY T
RECEIVE DATA LINE (RO} G— TRANSMITCLOCK S-PIN CONNECTOR
REQUEST TO SEND (RTS) (O SECONDARY RD
CLEARTO SENDCTS) g | RECEIVER GLOCK
— LocAL LOGPBACK)
DATA SET READY (DSR) CH— SECONDARY RTS DATA CARRIER DETECT (DCD) 10 &
SIGNAL GROUND RECEIVE DATA LINE (RD§~—0) DATA SET READY (DSR)
) (3} — DATATERMINAL READY (DTR} (RDy
NATACARRIER DETECT (DCD) ‘ REQUEST TO SEND (RTS)
O3 — REMOTE LOGPBACK TRANSMIT DATA LIE (TD)——O)
RESERVED = DATA TERMINAL READY {DTR)——}) CLEAR TO SEND (CTS)
RESERVED O] — RING INDICATE (R) GREND N 5 RING INDICATE (RI)
UNASSIGNED g-— DATA erg DETECT
SECONDARY DCD 1'Es' v “T‘SM“(;';:LDC"
SECONDOARY CTS 95

Fig 45. RS-232 Connector Pin Assignments

3.2.4 PC to Mobile Phone and Mobile Phone to Radio Link
Module Exchange Protocol

At this exchange protocol level, AT-Command plays a very important
role as it i1s used to establish the connection and disconnect the
communication. Section 3.1.6 already mention about this command but
not in detail. Now let see how we use this command to
establish/disconnect the connection.

To establish a connection, PC (DTE) sends the command ATD
<phonenumber><CR> to the mobile phone (DCE) that is connected to
PC via serial port, where phonenumber is phone number to be dialed.

85

After send this command, the PC should wait for response from modem.

The possible responses are:

e CONNECT 9600 : means that the call modem is now on line
and the exchange data can be started

e BUSY : means that the line called is busy and the
communication can not be established. If
the PC wants to connect to the mobile
node, the PC needs to retry again later.

e NO ANSWER : means that the receiver did not answer the
call and the communication can not be
established. So try again later.

e NO CARRIER : means that the modem handshaking has not
been successful, so the user needs to check
for mobile registration and signal strength
and eventually retry.

So, it is necessary for the PC (central node) to check whether the
response CONNECT 9600 has been received or not, if not, the

connection does not establish.

Suppose now that this step can be done successfully, and then we go
forward to see what happen at mobile node. When an incoming call is
detected, the modem (DCE) at mobile node will report an unsolicited
code to the Radio Link module (DTE), which may be:

e RING

e +CRING: VOICE

e +CRING: ASYNC

e +CRING: REL ASYNC :

: means the extended format of

incoming call indication is disabled
and a call (voice or data) is incoming

i means the extended format of

incoming call indication is enabled
and a voice call is incoming

: means the extended format of

incoming call indication is enabled
and an asynchronous transparent
data call is incoming

means the extended format of
incoming call indication is enabled
and an asynchronous reliable (not
transparent) data call is incoming

86

e +CRING: SYNC : means the extended format of
incoming call indication is enabled
and a synchronous reliable (not
transparent) data call is incoming

e +CRING: FAX : means the extended format of
incoming call indication is enabled
and a fax call is incoming.

By detecting a RING code, the Radio Link can now answer to this call
by sending the command ATA<CR> and then wait for response:

e CONNECT 9600 : means the incoming call was a DATA one
and called modem is now on line and then
the exchange data can now start.

e ERROR : means no incoming call is found, call may
have been lost.

e NO CARRIER : means the incoming call was a DATA one
and the modem handshaking has not been
successful so we need to check for mobile
registration and signal strength and modem
settings.

e OK : means the incoming call was a VOICE call
and 1is now active and then the
communication can now start.

Note that after the PC calls the MN, even the MN can receive a call
with RING code, but it does not mean that the communication is
established even though after the MN answers with ATA<CR>
command. After the MN answers to the call, both sides have to wait for a
response CONNECT 9600 send by the provider (see Fig 46).

After both sides detect CONNECT 9600 response, the exchange data
can now start. Chapter 2 already mentioned about this exchange data
process. Now suppose that everything is finish and the mobile node want
to disconnect the connection, +++ATH<CR> is used to exit the data
mode and enter the command mode then hang up the data call.

87

DTE

Central Node Provider Mobile Node
DTE DCE DCE D
ATD XXXXXXXXXX
~~~~~~~~~~~~~~~~~ RING |
P ATA
. CONNECT9600 | _.oo-t=-ao._ CONNECT 9600
< Exchange Data (see Fig 12)
+++ATH
| NOCARRIER | gl NO CARRIER
ATD XXXXXXXXX R
| st 2 RING R
= ATA
CONNECT 9600 | ___.oo-t=eee___ CONNECT 9600
Exchange Data (see Fig 12)
+++ATH
""""" 1
NO CARRIER NO CARRIER

Fig 46. DTE-DCE Exchange Protocol

A 4




88

We can note that only the central node can ask for a connection to be
established and only the mobile node decides whether to disconnect or
not because only the mobile node knows when to disconnect (finish
sending all the data out from EEPROM). However, to prevent an
unpleasant case, the central node has right to disconnect the connection if
there is no data received in a period predefined by us (typically 2s).

This predefined delay is chosen with the reason that some time, the
modem at central node receives data and also updates the data into the
buffer with practically unlimited size, but the program itself don’t know
whether the data has been updated or not because of the multitasking
supported by the PC (the PC may not only run our program but also other
program and so if the PC is not fast enough, this problem is occurred). To
prevent this 2s monitoring time is chosen. This 2s monitoring time is used
to monitor whether the incoming data has been changed or not, if yes, the
timer will be reset otherwise the timer will start until it reach 2s value,
and then the connection will be disabled by the central node.

3.2.5 SMS

SMS is the abbreviation for Short Message Service. SMS is a way of
sending short message to mobile telephones and receiving short messages
from mobile telephones. “Short” means a maximum of 160 bytes.
According to the GSM Association, “Each short message is up to 160
characters in length when Latin alphabets are used and 70 characters in
length when non-Latin alphabets such as Arabic and Chinese are used”.

The message can consist of text character, in which case the message
can be read and written by human beings. SMS text messages have
become a staple of wireless communications in Europe and Asia/Pacific
and are gradually gaining popularity in North America. The message also
can consist of sequences of arbitrary 8-bit bytes, in which case the
message probably is created by a computer on one end and intended to be
handled by a computer program on the other.

The part of our application on the computer/mobile node creates an
SMS message to be sent to the mobile node/computer. This message is
handed off to the short message center of our local telephone company
which telephone number of the mobile we want it to send to. The
telephone company finds the mobile and passed the SMS message to it.



89

"Hello, world" ﬁ

Content Server Short

Message
Center

[ |
[ |
: SMS Message ‘L i
| |
I |
| ] |
| — 1 m |
[ - |
| |
I SIM :
| "Hefio, | | |
| world" |
| |
[ |
| :
[

I Handset |

Fig 47. Message Flow from Server to Screen

The message has a flag set in it that tells the handset to pass the
message to the SIM (Subscriber Identity Module). The message also has a
flag that says which application on the SIM should receive the message.
When the SIM received the message from the handset, it checks to see
which application to give it to and hands it off to the mobile side of our
application. Fig 47 illustrates the flow of traffic.

Receiving a message works exactly the same way, only in reverse.
The mobile side of our application generates an SMS message, attaches
the telephone number of our air modem and hands it over to the handset.
The handset passes it to the network that delivers it to our PC/mobile
node. See also Fig 48.

Because the mobile network is an active participant in moving
messages between our application and a mobile device, we have to be
much more concerned with the details of formatting the messages we
send. Remember the mobile network actually looks at the bytes in our
message (actually in the headers on our message) to figure out what to do
with it. We will discover that there are lots of things besides who should



90

PC l—l

D Air
AT Commands Modem

S —{ SMS-C

SMS-SUBMIT ﬂ
' i = oste
------------- Wireless ("Air") Connection SMS-DELIVER
—— Wired ("Copper") Connection

Fig 48. Message Flow from PC to Mobile Handset

receive the message that we can tell the GSM network and its SMS
contain not only the message but also lots of other information that
instructs the networks as to how and when we want this to happen.

The two standards that govern the construction of SMSs what we will
be using are:

o 3GPP 23.040 : Technical realization of SMS
o 3GPP 24.011 : PP SMS support on the mobile radio interface

These standards cover the encoding of the message that gets delivered
to the destination handset and the encoding of the instructions to the GSM
network and the SMSC. Fig 49 shows the complete SMS header diagram.
We build all the headers, so-we will have to remember -whom we are
talking to and what we are saying to them as we build our SMS message.

Let’s start by sending a simple “Hello, world” message to the mobile
phone at +66 50 48 32 51. What we do is pack in a hex-encoded byte
blob all the information needed to get this message to its destination
along with the message itself and ship this blob off to the carrier’s SMSC
which in turn will get it to where it is going.



91

Message to Your SIM
Application

— A
‘ T— Instructions to SIM
Instructions to Handset

Instructions to SMS-C

Instructions to Air Modem

Fig 49. SMS Message Headers

The byte blob is an SMS SUBMIT Transfer Protocol Data Unit
(TPDU) that consists of the following fields:

1) Transfer protocol parameters = 0x01 (an SMS_SUBMIT TPDU)
2) Message reference number = 0x00 (let the handset assign it)

3) Length of destination number in digits = 0x0A (10 digits)

4) Type of destination number = 0x91 (international format)

5) Destination telephone number (nibble swapped) = 0x6605842315
6) Protocol identifier = 0x00 (implicit)

7) Data coding scheme = 0x00 (GSM default alphabet)

8) Message length = 0x0C (there are 12 character in “Hello, world”)
9) Message = 0xC8329BFD6681 EE6F399B0OC (“Hello, world™)

The coding of the actual message, “Hello, world”, requires some
explanation. No stone is left unturned when it comes to optimizing the
use of the air interface. If we had transmitted the ASCII characters as
bytes, we would has wasted a bit for every character we sent because
ASCII character are coded on 7 bits and sending this message as an 8-bit
byte wastes 1 bits. Now, 1 bit is not big deal if we have megabytes of
memory and gigabytes of disk space, but on an air interface this
represents a waste of one-eighth of the channel capacity and this cannot
be tolerated.

What we do is very simple (see Fig 50). First, we put the first
character into the first byte. Next, we take the low-order bit of the seven



92

bits of the second ASCII character and stuff it in the unused high-order
bit of the first byte. Now we put the six remaining bits of the second
character into the second byte. Next, we take the two low-order bits of the
seven bits of the third ASCII character and stick them into the two unused
high-order bits in the second byte, and so forth. Here is the result of
applying this packing algorithm to “Hello, world”:

Unpacked H e 1 1 0
Unpacked 1001000 1100101 1101100 1101100 1101111
Packed 11001000 00110010 10011011 11111101 01100110
Packed C8 32 5B FD 66
Unpacked , w 0 T
Unpacked 0101100 0100000 1110111 1101111 1110010
Packed 10000001 11101110 01101111 00111001 10011011
Packed 81 EE 6F 39 9B
Unpacked 1 d

Unpacked 1101100 1100100

Packed 00001100

Packed 0C

So the complete SMS SUBMIT TPDU for “Hello, world” looks
like this:

01000A91660584231500000CC8329BFD6681EE6F399B0OC

All we have to do now is use an AT command to send this TPDU off
to the SMSC. This is the send-message AT command:

AT+CMGS=<TPDU _length><CR>
<SMSC address><TPDU><CTRL-Z>



93

The SMSC address is the telephone number of the SMSC to which the

handset should send the TPDU. Like the destination telephone number,
the telephone number of the SMSC consists of three sub-fields:

1) Length of the telephone number in octets = 0x06 (1+5 = 6 octets)

2) Format of the SMS telephone number = 0x91 (international format)
3) Telephone number of SMSC (nibble swapped) = 0x6661114000 (5

octets)

( Pack78 )

Add=AddText + 1
L = [length(TextSMS)*7/8]
AddT=0, Bits=0, J=1

A 4

Bits=7 ?

Return

AddText : First address of the
Text SMS where it is stored.

AddPDU : First address of the
TPDU where the packed data
will be stored.

Bits=0
Add=Add+1

A 4

Read Add, B0, Bl
B0=(B0 & 01111111) >> Bits
B1 =B1 << (7-Bits)
B0=B0|Bl1
AddT=AddPDU +]
Write AddT, B0
Add=Add +1
Bits = Bits + 1
J=J+1

A 4

L : Total length of the TPDU
which is calculate from length
of Text SMS (before Packing)

Add, AddT, Bits and J are
counter vanables.

BO and B1 are variables

Fig 50. Packing Algorithm



94

This particular SMSC is in the VoiceStream network, where the
handset set we are using as our air modem is registered. This phone
number is belonging to DTAC Mobile Phone Company. If we subscribe
to other provider, this number should be change to that SMSC number.
TABLE XV shows the SMSC of some company that we found it from
Internet.

TABLE XV
SMSC NUMBER ASSOCIATED WITH THE PROVIDER AND COUNTRY
Country Provider SMSC Number
Cambodia MOBITEL 85512000024
SAMART 85516800000
Belgium MOBISTAR 3295955205
MOBISTAR 32495002530
PROXIMUS 32475161616
ORANGE 32486000005
France SFR 33609001390
BOUYGUE 33660003000
ITINERI 33689004000
ITINERI 33689004431
ITINERI 3368900458
Indonesia TELKOMSEL 6281100000
EXELCOMINDO 62818445009
Malaysia ADAM 60173600010
CELCOM 60193900000
MUTIARA 60162999000
MAXIS 60120000015
New Zealand VODAFONE 6421600600 .
Pakistan MOBILINK 92300000042
Singapore MOBILE ONE 6596845999
MOBILE ONE 6596845997
SINGTEL 6596400001
SINGTEL 6596500001
SINGTEL 6598189999
SINGTEL 6596197777
STARHUB 6598540020
Thailand AIS 6618310808
DTAC 6616110400

Finally, the following code is what we write to the modem in order to
send “Hello, world” to the mobile phone +66 50 483 251:



95

AT+CMGS=23<CR>
06916661114000
01000A91660584231500000CC8329BFD6681 EE6F399BOCE

= 1s ASCII character 26 (Uppercase Greek xi), which is equivalent to
CTRL-Z

The corresponding unpacking algorithm that we need when receive
message from the handset is shown in Fig 51.

When the mobile phone receives a message, we can use
AT+CMGL=0 to list the entire unread message or just to get the index
and then use AT+CMGR=index to read one by one. As you can see how
AT+CMGL=0 works better comparing with AT+CMGR, that is why we
decide to use this command at central node as well as at mobile node.

For decoding the incoming SMS, it is not so different. Let’s see
together for message mentioned in section 3.1.6:

o [f AT+CMGL=0 was used:
AT eiml )L =] o]

AjTfefmicif=]o] e|msl1]] 85 fof ] ]ls] 3]
ofefof lelefef 1 lsfof fafofofafolalel 1|6} el ajola}olel7]2]
Elo)of o) o BRI EIOIEII BRI 2IE] 2] 2 2l s3] e s o 2] o)A
Jfcfofefefefajofala] 1|85 Al A 5] 8]2| 8| 8] 4] 5] 6] Al 7] 1] 4] 8] 2]
Df1]2]4]s]

ofx]

After received a string +CMGL:, the number 35 indicates the
memory location, in where the incoming SMS was stored. This
index is very useful for us because we will use it to delete the
correspond message in the memory to prevent out of memory in
the mobile phone. It is also used to read the message with the
command AT+CMGR as shown in the next paragraph. The
following number 0 indicate the status of the message. The
number 0 means this is a received message that has not been



96

read, and if it is number 1, it means this received message has
been read already. The number 39 indicates the TPDU length in
text mode.

o [f ATHCMGR=35 was used (35 is the index of the SMS in the
memory. We get it from AT+CMGL=0 as show above)

AT efmla) Rl =] 2]s]

Al mslal-l2)s) slelmelnl] Sl

ofefs|le] el sl 1)) o) o] o] 4] o)a) ) JE)E) AN 5] 8] 7] 2]
(sfof ol ofolsl{o)izoe e )it )o olzhelleliz] - | s[4 2] 6] o) 5] 22 A
SJclole] ol ol af o] afa] )5 )ial Al 5|82l 8] 8] 4] 5] 6 Al 7] 1] 4] 8]2]
Df1]2|2]3]

ofxJ

After received the string “+CMGR:” the following number 1
indicates that this message has been read already. And for
number 39, it indicates the same meaning as in AT+CMGL=0.

From these two AT commands, we can see that the SMS_DELIVER
TPDU is the same. That is:

ol ool o|EIEIEIIEl )l Iz ElE] 1 o)) s ] o) o) 2 o)Al
Zcfof el o) sl a0 Ala] 1] s | ala) 5] 8] 2] 8] 8| 4] 5] 6] Al 7] 1] 4] 8] 2]
D] 1]2]4]3]

It is in the same general format as the data in the AT+CMGS
command, namely the SMSC telephone number followed by a TPDU. In
this case, however, it is the telephone number of the SMSC delivering the
message and an SMS_DELIVER TPDU rather then and SMS_SUBMIT
TPDU. In other words, the TPDU is being delivered to the handset rather
then the handset submitting a TPDU to the network. We will discover
that what is delivered is not exactly the same as what is submitted.



( Unpack78 )

A 4

L=length (Text SMS)
Bits=0, I=0, J=0

BO=TSMS[I-1]
B0=B0 >> (8-Bits)

Bits <7>7
y

No

B1=TSMS([]]
B0=B0 | (B1 << Bits)
B0=B0 & 01111111

»
Bl

4

Write (AddText + J), BO

Bits=(Bits+1) // 8

Fig

TSMS : is a buffer
that store TPDU
from serial port.

AddText : is the first
address from where
the unpacked strings
are stored.

L : is the length of
unpacked string. It is
read directly from
TPDU.

Bits, I and J are
counter variables

BO and B1 are
variables

51. Unpacking Algorithm

97



98

The SMSC phone number is just like the one we send to, so let’s
analyze the SMS_DELIVER TPDU. We will be using 3GPP TS 23.040
standard to do this.

1) Transfer protocol parameters = 0x04 (SMS_DELIVER with no
more coming)

2) Length of original address = 0x0A (10 bytes)
3) Type of original address = 0x91 (international format)

4) Original address (nibble swapped) = 0x6649498726
(+6694947862)

5) Protocol identifier = 0x00
6) Data coding scheme = 0x00

7) Service center timestamp (nibble swapped) = 0x50208261902282
(Y/M/D/H/M/S/Zone =2005 February 28, 16:09:22, GMT-7)

8) Length of message = 0x18 (18h = 24 ASCII character = [24*7/8] =
21 bytes)

9) Message =
4369929A1C0699A0A4135AA58288456A71482D1243
(“CRITICAL INPUT DETECTED!”)

Now we can verify that 39 = (1-+1+1+5+1+1+7+1+21).

3.2.6 Radio Link Module

So far, we only talk about the components and  standard
protocols/algorithms plus - some modifications. Now, let see our
algorithms implementing in this module. As picture can-descript more
then letter, we will explain our algorithm by flowchart. These flowcharts
are direct translation from the PICBasic Pro. One function/Procedure in
PICBasic Pro will be represented by one flowchart. However, we will not
take all function and procedure to show in this limited report, we take
only the important one.

Main Program: This is the program that will run endlessly (see Fig
52). It starts by initial the GSM module and set the mobile settings, by
using AT command, such as set baud rate, read Service Center Number
and store in RAM for use while sending SMS, select SMS format and



99

select the memory zone to store incoming SMS. See section 3.1.6 for the
detail of AT command set.

After initialize the handset, we initialize the variables, display and
some pins, for use in the next step. At this time, we also check the present
of I*C programmer by looking at 12C pin. If this connection is detected
(I2C is HIGH), we change the SDA and SCL line to input/high
impedance (z) in order to let I*C-bus free.

The endless loop (main loop) is started from this point. We begin by
checking LSB of DataF and then execute the corresponding task (send
corresponding SMS) set by this variable (variable in EEPROM ($7), use
for I*C-bus multi-mater mode, see section 3.2.2). After checking and
executing (CheckRxFlag), we clear the corresponding bit and update it
back to the white board (EEPROM ($7)) for CPU to check and clear the
acknowledge pin (set RxTx to HIGH). Next step is to read date and time
from RTC and display it on LCD, and then check 4-MSB of DataF to see
whether it is clear or not. If it is cleared, we will set our RxTx pin to
HIGH, otherwise keep it LOW (CheckComFlag).

From this point, we start to work with modem. We have to wait about
4s to detect the code “RING”, if after 4s is passed and no code is
detected, we start to check the incoming SMS, otherwise we jump to
Send-Update Data procedure. Checking SMS’s process takes about 0.7s.
If unread SMS is detected, we start to decode and delete this message as
describe in section 3.2.5. After decoding this SMS and storing the
message, in text format, in the corresponding EEPROM, we execute our
script function to do what the script wants us-to do. If <READ> and/or
<REPORT> command is detected, we will set the corresponding bit in
DataF and update back to the white board. At this time, we also check if
the 4-MSB of DataF is clear or not, if it is cleared, we start to run
SendSMS function (see Send SMS section for more detail) otherwise; we
set our RxTx pin to LOW. Finally, we jump back to the main loop and do
like this forever.

Read SMS: See section 3.2.5



Start

Turn-On handset, Set baud rate
Read/Store SMSC, Select SMS format

Select memory zone, Init variables, [/O

o

Y

2C=17?

No

Check I*C-bus
Read RTC, Display
High RxTx, Script=0

» Main Looo
A

A

SDA=7Z,SCL=Z

Check Rx flag, Update DataF
Read RTC, Display
Check Com Flag, Release I*C-bus

Enable 4s-Timer (T)

<

y

Send-TTndate Data.

P

Wait for “RING”

A

\

Check New SMS
Read SMS -
ScripExecute
Find ? Yes Delete SMS
Check I*C-bus, Update DataF,
Release I’C-bus
4-M DataF=0 ?
A Yes
T.ow RxTx Send SMS

A

Fig 52. Radio Link Main Program Flowchart

100



101

Send SMS: For the coding process, see section 3.2.5. For this
procedure (see Fig 53), the input variables are:

e Script: is a pointer to indicate which kind of SMS should be
send. SMS is set according to the Script variable as follow:

o Script0=1:
Script.1 =1 :
Script.2=1 :

o Script3=1:

o Script=0

Send “The memory is full at mobile
node: ROBOTXXX”

Send "Critical input detected"

Send <Report> follow by "All your
commands are well done"

Send SMS according to <Read>
command. The format look like data in
EEPROM from address $121 to $195

: Do nothing and exit procedure.

e AutoNum: indicates which destination SMS should be sent to.

o AutoNum=“0" : Return to the same number (the one

who just send a SMS to this mobile
node)

o AutoNum=“1” : Send SMS to predefined number

located in the EEPROM from
address $12 and $22. The SMS can
be sent to just the one located from
address $12 or both of predefined
destination address. This option is
set in EEPROM ($4). If this
EEPROM value is 1, then only the
destination located from address $12
can be sent to, and if it i1s 2, then
both of them can be sent to.

o AutoNum = “2” : Send SMS to predefined number and

also the one who send us SMS. For
predefined number, it depends on the
value of EEPROM (§11).

e SendOption: locates in EEPROM ($11), note BO. This byte can
carry the value 1 or 2. It is used to indicate which predefined
number should be sent. BO has to work with Bl (EEPROM
($21)) which is a temporary option (initially B1=0, see Fig 53)



102

o B0=1, B1=X : means that “Send to only one predefined
number that located from address $12”.
This predefined number belongs to
central phone number.

o B0=2,B1=0 : means that “Send to both predefined
number, but now, it is time to send the
first one”

o B0=2,B1=2 :means that “Send to the second
predefined number located from address
$22”. This number belongs to manager’s
phone number.

If AutoNum = “2”, we start to send the predefined number first and
then reset AutoNum to “0”, but not update to the memory (EEPROM
($4)), and then go back to the top of SendSMS function to send with
AutoNum = “0”. It looks like infinite loop, however, after sending SMS
process, we check these variables whether to go back to the top of
procedure or exit procedure (see Fig 53).

Even though this SendSMS procedure supports many options, we only
use AutoNum = “0” and “1”. For AutoNum = “2” is reserved for other
application or future use. Any recommendations are welcome.

Script Execution: We can say that this function is a new innovation
technology for sensor node. With this feature, we can order the sensor
node or DTE to do some tasks as we order it. We intend to develop this
feature to execute more complicated script like to schedule the tasks, not
only set or clear the task that make the feedback feature more interesting.
For the current version of Script Execution, see Fig 54.

This algorithm is based on string manipulation. After detecting the
character “<” in the message (text format not PDU), we will read the
following text (we use space as marker to separate each word) and
compare it to all the predefined keyword and input/output port name. If
they match each other, we will read the following text that defines the
corresponding action of the keyword then execute it as it 1s. We scan like
this until the end of the message.



( SendSMS ) y

BO=EEPROM ($11)
B1=EEPROM ($21)

\

Nl)m=Central

Num=Manager

<« |

Script.0=1? Y
Message to TPDU
(see section 3.2.5)
. AT+CMGS...
Message="“Memory is full...”
Wait for “ERR”
If no “ERR” & success

o

A

Message="Critical input...”

103

Load B0, B1
IfB0=2 & B1=0 = B1=2
@ and go back to SendSMS.
Yes If AutoNum="2" =
AutoNum="0"
M = <REPORT>
essage = <REPORT and go back to SendSMS
‘
@ ( Return )

Yes

Message = <READ>

Fig 53. Send SMS Flowchart



104

CScript Execution)

A

Check *C-bus
AutoNum=EEPROM ($4)
Reload Output value to Buffer(0,1,2)
L=length (SMS), I=0

a A
Yes ( Return )

Compare all the output port’s
name located from $40 to $88
with SMS from location (I+1)

The same method, compare
SMS with keyword located at
$100, $106, $110

In any case, if SMS match the
port name or keyword, do the

corresponding task and I =1+
length (keyword/port name)

Fig 54. Script Execution Flowchart

Send-Update Data: This procedure ensures the data exchange
between mobile node and central node. The exchange protocol is
illustrated in Fig 12 whereas Fig 55 illustrates the way to implement this
protocol.



(Send-Update Data )

y

ATA<CR>

Wait for “CONNECT” about 30s

Check I*C-bus
B1=Rx (get byte from USART)

B1=CPUUp
Yes

B1=Token

Yes

Send STA
Send Data
Send STO

Get Total Address (AddT)

Store character from PC

105

(take from Rx of USART)
to Buffer
AddT> $1C0
Manipulate that character
Yes Store back to EEPROM
Send OIdNEmp y
Wait for RZStor about 7s Send UpSuc
R2Stor ? bt
Yes
Send STA
Send Data >
Send UpReady
: +++ATH<CR>
Wait for STA about 30s Clear USA%T buffer
Release I°C-bus
Wait 1s

L

Yes

A 4

( Return )

Fig 55. Send-Update Data Flowchart



106

3.2.7 CPU Module

For this module, besides the main program (main loop), other
function/procedure such as CheckRxFlag (also has in Radio Link Module
but not complicate like this one), ScanAndStoreDig, ScanAndStoreAna,
SendAlarm and SendBufferOverRun are important as well. We will
discuss about this function/procedure one by one.

Main Program: In this module, we also start our program by initialize
some pins and variables for use in the next step (see Fig 56). At this time,
we also check the present of I°C programmer. If this connection is
detected, we change the SDA and SCL line to input/high impedance (z)
in order to let I*C-bus free.

The main loop is started from this point. We begin by checking the
scanning period value (T2). If it is bigger then 0, then the normal
operation is selected, otherwise, jump to the next step in order to scan as
fast as possible. If T2 > 0, we will go to low power mode until the rising
edge of input clock is detected. Next, we check 4-MSB of DataF
(EEPROM ($7)) and execute the corresponding task setting by Radio
Link module (see CheckRxFlag section). After executing and updating
DataF, we check the 4-LSB of DataF whether to clear the acknowledge
pin (RxTx) or not. These process belong to our modify I°C protocol.
After everything is finish, we start to check T2 again. Normally, we can
separate the program into 2 parts since the first test of T2, however, as
each process have many things in common, and so to check every time
the process is different is better. In here, if T2 = 0, it means that the
security guard function is enable so, we only read the input from digital &
analog port and check with the critical value to decide whether the inputs
reach alarm condition or not. These processes are assured by
ScanAndStoreDig and ScanAndStoreAna procedure. If T2 # 0, the
normal operation is enable so, we start to read RTC and count up the
scanning period counter (I2) by 1. After this, we check whether [2=T2 or
not, if it is that case, we start to read and store the value from digital and
analog input to corresponding input-buffer (ScanAndStoreDig and
ScanAndStoreAna). For GPS, we check first if EEPROM (8$5) =17, we
read GPS data and store it otherwise this process is skipped.



Start

A

< Init I/O, variables >

Main Loop

4

) 4

T2>0 Yes

A

107

Y

Go to low power mode until
rising edge of clock is detected

A 4

ScanAndStoreDig
ScanAndStoreAna
I

A

Check I?C-bus, Load AlarmF
CheckRxFlag, Update DataF,
CheckComFlag

Read RTC. 12=12+1

J2=0if J2 > N2
Write Data to EEPROM

nld
L ]

y

Update DataF,
ChekComPFlag
Release I’C-bus

<0 >

2=T2

Yes

A

ScanAndStoreDig
ScanAndStoreAna
Read GPS if GPSFlag="1"

Reset AddT, BuffF and J2 if
AddT>$FFDO

12=0, J2=J2+1

FORNTS

Yes

Write Frame header to
EEPROM ($HHMMSS)

Yes

Go to low power mode
until low-level clock is
detected

Go to low power mode
for 0.15s

4

Fig 56. CPU Main Program Flowchart



108

Now, it is time to store the data from input-buffers to EEPROM.
However, before this process start, checking the available memory is
taken into account by comparing the total address counter with predefined
threshold ($FFDO0 was decided because we check only the address where
to start storing the data not where the data is located at the last). This
value is calculate and chosen with the maximum data in byte for one
sampling time (2 for Digital input + 2*8 for Analog input + 10 for
Latitude + 11 for Longitude + 6 for Altitude = 45 bytes) whereas the free
space between $FFFF and $FFDO is 47 bytes > 45 bytes = OK. If the
total addresses counter > $FFDO then we start to store the data from
beginning ($1C0) and also reset alarm for buffer over run automatically.
If everything is OK, we reset 12, count up the frame size counter (J2) by 1
and store the frame header if J2 = 1 or reset J2 if J2 >= N2 (frame size
value), then store the input data from input-buffer to EEPROM byte by
byte. Page write can not be used in this case because our data’s length is
not fix (depend on the setting), so random write mode is used, result need
more time for each write process as it is recommended by Atmel
company.

Finally, we update DataF to the white board (this data can be changed
by ScanAndStoreDig and ScanAndStoreAna) and check the 4-LSB of
DataF to see whether to release the acknowledge line (make RxTx pin
HIGH) or keep it LOW. After all, if T2 > 0, we go to low power mode
until falling edge or LOW state of clock line is detected, otherwise, just
go to low power mode for a while (about 0.15 s) and then jump back to
main loop to repeat all the step forever.

As you can see that if we omit this low power mode (don’t want to
save the power consumption), we can scan faster then this (about 0.1 ms)
because, at that time, the factor that limits the scanning speed is the
conversion time of analog to digital (20 us for each input, so the delay for
8 inputs is about 80 us (time for reading all the 8 digital input is 1' us) or
just say 0.1 ms. This delay can be smaller if the input impedance of
analog port is smaller then 10 kQ. From this calculus, section 2.2.2 say
that the maximum scanning speed is about 0.2 s.

CheckRxFlag: These function do similar actions as CheckRxFlag
function in Radio Link module. However, the task is different (see Fig
57). Instead of sending SMS, this function has to prepare the SMS string
according to the type of SMS that is defined by Radio Link module.



< Check RxFlag )

(Flag=0 and
4-M DataF) > 0

DataF.4=1

No

A

Prepare the string for
<READ> from
Digital/Analog buffer
DataF.4=0

GPSFlag =1

Yes

Prepare the string for
<READ> from GPS buffer

DataF.5=1

i,

No

A

Prepare the string for
<REPORT>
DataF.5=0

A

DataF.6=1

No

A 4

Set 8-Digital Output Ports
Set 2-Analog Output Ports
DataF.6=0

>
l

y

( Return >

<« Y /\4

Fig 57. Check RxFlag Flowchart

109



110

This function begins by checking the acknowledge pin of Radio Link,
which is Flag pin for CPU. If this pin is LOW and 4-MSB of DataF
differs from O, the analyzing process starts otherwise, we do nothing.
Support that this condition is true, so we will check DataF bit by bit as

below:
e DataF.4=1
e DataF.5=1
e DataF.6 =1

: means that Radio Link module want CPU

module to prepare the message for <READ>
command. So, CPU will prepares the message
for READ command with the data taking from
mput-buffer and then reset that bit to 0 but not
yet update back to the white board. We will
write it back later in byte not bit by bit. For how
to prepare that message, we would skip it
because we don’t want go to too deep in the
programming technique.

: means that Radio Link module want CPU

module to prepare the message for <REPORT>
command. After prepare that message, CPU
will reset that bit to 0. This action is interpreted
by Radio Link module as a command to send
SMS but if only 4-MSB of DataF is 0,
SendSMS function will not run because this
function needs other variable as describe in
section 3.2.6.

: means that Radio Link detects a script that

controls the output ports. So after executing the
script successfully, the Radio Link module
wants CPU module to send these values (digital
output state and/or analog output state) to the
corresponding output ports. After receiving this
message from Radio Link module, CPU module
will execute this command and reset the
corresponding bit to 0. For how to set the output
port is too deep into programming technique, so
we want to skip it here, however, section 3.1.4
and 3.1.5 can answer these questions.

See also Fig 41 for more information about DataF (EEPROM ($7))
format and message format in the EEPROM.



111

ScanAndStoreDig: This function will read the digital input and store
in input-buffer for SMS (Dataln[0]) if the digital mask (DigMask) is
bigger then 0, and compare with digital critical value (DigCrit =
EEPROM ($31)). If the value from input port is the same as the value of
DigCrit, we count down alarm counter (AlarmC[0]) while it still bigger
then 0, otherwise alarm is activate (SendAlarm function is executed). The
input port value is coded into 2 bytes, as shown in Fig 13, and store in the
input-buffer (DataS). After storing, we check the total counter address
(AddT) whether it is over $CCCC or not ($CCCC is about 80% of total
memory), if yes, SendBufferOverRun procedure is executed and then
disable Send Buffer Overrun flag because we want to send this
information just only one time. This flag will be reset automatically when
we start to store the data from the beginning ($1C0). See Fig 58.

ScanAndStoreAna: This function will check all the analog input
mask (AnaMask) and see bit by bit. If the bit is set to 1, the
corresponding analog input port will be activate and start the analog to
digital conversion. After the conversion is finish, we store it in input-
buffer for SMS (Dataln[1 to 8]) and then round this value to just 8-bit and
then compare with the corresponding analog critical value (AnaCri).
However, the comparison mode 1s chosen by looking at analog
comparison flag (AnaComp = EEPROM ($3F)), if the correspond bit is 1,
it means “Check if analog input is bigger then critical value or not”
otherwise the comparison word is “Check if analog input is smaller then
critical value or not”. In both case, if the condition is true, SendAlarm
function is executed) otherwise, count down alarm counter (AlarmC[port
index]) while it is still bigger then 0. The input port value is coded into 2
bytes, as shown in Fig 13, and store in the input-buffer (DataS). After
storing, we check the total counter address (AddT) whether it is over
$CCCC or not, if yes, SendBufferOverRun procedure is executed and
then disable Send Buffer Overrun flag. See Fig 59.

SendAlarm: This function will- check whether alarm  counter
(AlarmC) “is still smaller then alarm value (critical value of the
corresponding port (digital and/or analog)) or not, if yes, we just count up
AlarmC by 1, otherwise we continue to check whether alarm sending by
SMS flag (AlarmF) is enabled or not, if AlarmF is enabled (AlarmF =
“1”), we reset AlarmC and set the corresponding bit of DataF to 1 for
Radio Link to see that CPU module has message to send out. Finally, exit
function (see Fig 60).



112

C ScanAndStoreDi g)
DigMask >0

Yes

B0=Read DigCri
B2=Read PORTD
Store B2 to Dataln[0]

BO = B2

Yes

SendAlarm AlarmC[0] = AlarmCJ[0] - 1

A 4

«

A 4

B0=B2 & %00001111
B0=B0 | %01000000
B1=B2 >> 4
B1=B1 | %01000000
DataS[0]=B1
DataS[1]=B0

AddT>$CCCC

A

No SendBufferOverRun
BuffF =0

<
A 4

( Return )

Fig 58. Scan and Store Digital Input Port Flowchart




113

( ScanAndStoreAna ) y
Ana = ReadAna]l]
4 BO0=Ana>>?2
I=0,J=1 Dataln[J]=B0
B1 = AnaCrit
Y
I<8 AnaComp|[I]=1
Yes
No
Dataln[J] =0
A"
1 AlarmC[J] = AlarmC[J] - 1
y ]
SendAlarm '
v B0 <BI
y No
. o >
V,‘ Yes
AlarmC[J] = AlarmC[J] - 1

B0=B2 & %00111111
B0=B0 | %01000000
B1=B2>>4
B1=B1 | %01000000
DataS[J]=B1
DataS[J+1]=B0
I=1+1,]J=J+1

]

A
( Return )

AddT>$CCCC

Yes

SendBufferOverRun
BuffF =0

Fig 59. Scan and Store Analog Input Port Flowchart



114

SendBufferOverRun: For this function, we just check whether alarm
sending by SMS flag (AlarmF) is enabled or not. If it is enabled, we will
set the corresponding bit of DataF to 1 and exit the function simply (See
Fig 61). Fig 62 illustrates CheckI*C-bus algorithm.

Now, you can see how the mobile node works and can imagine how to
react to the event coming from input ports or mobile phone, hence we
will leave the explanation right here.

( SendAlarm ) ( SendBufferOverRun)

AlarmC[J]
< AlarmV

Yes
DataF.0 =1

L

AlarmC[J] = AlarmC[J] + 1 ;
L { Return )
Fig 61. Send Buffer Overrun
@ Flag Flowchart

Yes
DataF.1 =1
( CheckI2C )
A
AlarmC[J] =0 While (12C=1 and n<100)
n=n+l1, Pause 5 ms
< Wend
A If =100 = Restart Program
Return Pause 10 ps
While 12C=1
Fig 60. Send Alarm Pause 10 ms
Wend
Message Flag Flowchart

A

( Return )

Fig 62. Check I°C-bus
Flowchart




115

3.3 Software Flexibility and Utilization

As you can see clearly about the functionality of mobile node, in this
section, we would like to present you our complete program for the
central node. This program is named as “Central of Tele-measurement
Sensor Network”. It has built-in database and other functionality as
mention in chapter 2, section 2.2.2.

Each forms and some command buttons, check boxes, option buttons,
list boxes, combo boxes, driver list boxes, directory list boxes, file list
boxes, scroll bars, text boxes and labels will be given a short description
and explanation on how to use it. In this program, we divide it into 8
forms according to its functions. Let see one by one, start from the
overview of this program to see how it looks like. Fig 63 illustrates this.

«. SerialPort Setting

' F Port prﬁpreties
Cannect using lIZEI b1 ~]
Bits per secon |SE;|]D |
Data bits ’B ~]
Parity | MNone _vJ
Stop bits |1 ~l
Flows control I Hadvsare _vJ
Cancel 1

Fig 63. Serial Port Setting Form

This form allows the user the ability to select the communication port
and configure its setting. Automatically, this form will show all the
available COM port supported by your computer. For the question “How
to do this?” we can only say it is out of scope for this document and it is
too deep in to programming level that is difficult to be explained in brief
like this.



116

After choosing your corresponding COM port and appropriate setting
such as baud rate, data bits, parity and stop bit from the corresponding
combo box, just click OK, we will do the rest for you.

After click OK button, this form will we be hidden and unloaded from
the memory in order to free the memory for other application. However,
before this form is unloaded, it will load the main form as show in Fig 64.

tral of Telemeasuiement Sensor Hetwork V.01 - [13:63:441 -

LA View Graph

B Scan Mobilaiﬁéda T ﬁ%'Mobiie Node Records | {1 Nodle Settings

No Mobile Detected

rnobla phone detected or unable to communicate with PC !

Check Mobile Phone

Fig 64. Central of Tele-measurement Sensor Network Main Form

This form consists of 4-Tab menus named as Scan Mobile Node,
Mobile Node Records, Node Settings and View Graph. As its name,
each Tab menu has it own functionality. In here, a message box display
that no mobile phone is detected because, in fact, we do not connect the
mobile phone with the PC via COM1 as it inspects. We do this because
we want to show that our program is build with many intelligent artificial
algorithms. However, we do no guaranty that this program will run with
no error because, as during testing period, no error is found, we also can
not imagine all the possibility that error can come out, hence no error
detection/correction algorithm is implemented. This message box will not



117

appear if the mobile phone is connected to the PC via a correct port
chosen by the first form.

Scan Mobile Node: This Tab is use to display any information
concerning the store/update process with the process’s time then mobile
node name, start/stop time and the result of the process for each mobile
node as show below:

samedi, 12-mars-2005 at 14:39:21

Update Start >>>

ROBOTO003 >> START 14:39:22 => STOP 14:40:15 ERROR: NETWORK IS BUSY
ROBOTO008 >> START 14:40:17 => STOP 14:41:10 ERROR: NETWORK IS BUSY
ROBOTO001 >> START 14:41:12 => STOP 14:42:06 ERROR: NETWORK IS BUSY
ROBOTO002 >> START 14:42:08 => STOP 14:43:05 ERROR: NETWORK IS BUSY
ROBOTO005 >> START 14:43:07 => STOP 14:44:03 ERROR: NETWORK IS BUSY
ROBOT004 >> START 14:44:05 => STOP 14:44:58 ERROR: NETWORK IS BUSY
ROBOTO006 >> START 14:45:00 => STOP 14:45:53 ERROR: NETWORK IS BUSY
ROBOTO009 >> START 14:45:55 => STOP 14:46:48 ERROR: NETWORK IS BUSY
ROBQOTO010 >> START 14:46:50 => STOP 14:47:43 ERROR: NETWORK IS BUSY
ROBOTO007 >> START 14:47:45 => STOP. 14:48:38 ERROR: NETWORK IS BUSY
End Process

This information will be saved automatically while this program is
turn off. The name is generated automatically with the date-time
information (for example: 2005-03-12--14-39-21.rtf) whereas the path of
this file is the default part set by the user (see Node Setting Tab). This
error information come from the first test (no mobile phone is connected).

Mobile Node Records: This Tab is used to record the mobile node
information into database. It allow the user to add, edit, save, delete the
record (record means the information corresponding to each mobile node)
and also allow the user to print the data corresponding to each record or
all the record. The Print button will load the Print Record form for you
and Find button will load Find the Record form for you. See Print
Record form and Find the Record form. Fig 65 illustrates this Tab.

By clicking on a cell of the Flex Grid (look like a table that bound to
the database, located on the top of the form), the corresponding
information will be shown on the text box (MNode ID, MNode Num,
Province and Description) and the NODE ID cell is also highlighted with
clear green background to attract attention of the user.



118

Store button is used to connect to the mobile node (the one that is
displayed on MNode ID text box) to retrieve the data. In Fig 65, if we
click on Store or Update or SMS button, the corresponding mobile node
will be ROBOT009.

Update button is used to retrieve data from the corresponding mobile
node as Store button, however, after received all the data, the PC will
send back the new setting data to that mobile node.

SMS button is used to send a script command to the corresponding
mobile node. It will load Send SMS form for you. See Send SMS form.

Check ID button is used to verify whether the mobile node that is
connecting to our PC (while programming) is belonged to our group or
not because that mobile node can be our product but is not used with this
project. By a simple click on this button, our program will read the
corresponding information from EEPROM and compare it to all the
existing mobile node IDs in the database. If we can not find any ID match
this information, it means that this mobile node does not belong to this
group/project; otherwise, we will display all its information on the text
box.

& Centrat of Telemeasurement Sensor Network ¥.01 - [14:39:48]
B Scan Mobile Node | [g Mobile Node Records]_ [ Node Settings (o

NODEID  [NODENUM | PROVINCE | DESCRIPTION
ROBOTO08 012532235  PHNOM PENH “PARK WAY

A View Graph

ROBOTO01 012576490 PHSA CH&S
RDBOTOD2 D125764sy O MnEAP ‘PRSALEU -
ROBOTO05 012783002 'MEKOMG RIVER SIDE
[~ . PENH
| ROBOTNO4 }D‘I 2783088 ,PHNUM € ’RIVEFN SIDE
012855453 : BAYOM TEMPLE
£odpapst o TMBEAR Y LENG
ROBOTOD3 : 069030208 ;BATTAMBANG EPHDNM SAM POV

"~ |RoBQTOI0 | 070495160 fF‘HNDM PENH

| ROYAL PALACE
ROBOTO07 -094347862 | SIRMREAP

| PROJECT

" ~NewRecord - Description ) .
- . Add Edit
. [5:MNode ID RQBOTONG KY LENG Stara o b Delete
PN priertis
MNoda Num 0ED483261 Update
Province SIRMREAR sms || b Eind
{ | —— CheckiD
STATUS : COM1 OPEN |

Fig 65. Mobile Node Records Tab



119

Node Settings: This Tab is used to set the mobile node setting or we
can say that it is used to set the project properties. It consists of 4 frames
(Port Setting, Port Setting Result, Data Setting and Send Alarm to) and
many things more.

L Central of Telemeasurement Sensor Network V.01 - [15:11:01]

B Scan Mobile Node | Il Mobile Node Records | Node Settings

Port Setting‘ Parts Setting Result

¥ Input Parts ¥ Alarm by SMS Save Seting

M Qutput Ports Alarm Counter T

™ R8232farGPS v Write to Mobile

i Node >>>>

D@ BEtling o i Pheck DAl g RoRe—— 5 ( ;%ewu;;r;; NNNNNN

Sampling Period 2 |Minute =] Al Cngad Ingst Foste svmaliasbie | Moile Node

Frame Size ‘ 5 Sample/Frame ;
| MemorySize  [64 KBytes (512 Kbits) | ScanAl
Update All

~Sand Alarm to

[ Center Computor | FGE0483051
i e |
. I Mananger's mobite

Default Path |U YCOr-Lenoibdy ThesswB-Cndeiady Thess Dentra: Mada-01uAl Reports

B rang, ~GED iis s DS => Choose |BEESENR(ODl] ~

STATUS . COM1 OPEN

Fig 66. Node Settings Tab

Port Setting frame: is used to group the option related to input/output
port of the mobile node. It consists of:

e Input Ports check box: is used to enable or disable the input
port of mobile node. If it-is checked, the Input Port Setting
form will be loaded for you, so you can give a name to a
physical port name for you can recognize it easily. See Input
Port Setting form for more detail.

e Output Ports check box: is used to enable or disable the output
port of mobile node. The same as for Input Ports check box, if it
is check, the Output Port Setting form will be loaded and then
you can give each physic port a virtual name, enable or disable,
etc. See Output Port Setting form for more detail.

o RS232 for GPS check box: is used to enable or disable the RS-
232 port of mobile node. If it is checked, the mobile node will



120

read the GPS coordinate and store it as other input data;
otherwise, the mobile node will leave this RS-232 port free.

o Alarm by SMS check box: is use to enable or disable alarm by
SMS option. If it is checked, the mobile node will report any
unpleasant condition by SMS to the central node (PC that run
this program) and/or manager mobile phone. That message can
be “Critical input detected at mobile node” or “The memory is
full at mobile node: ROBOTXXX”.

e Alarm Counter text box: is used to set the upper bound counter
limit for the mobile node while critical input is detected. See
chapter 2 and Fig 60 for more detail. This value is named as
AlarmV in the program at mobile node. The value 0 means that
if the input reaches the critical value, alarm by SMS will be
activated directly no need to count how many time the input
value is criticize.

Port Setting Result frame: is used to display the status of enable port
with its virtual port name, physical port name, coefficients, alarm level,
etc. As you can see on the text box inside this frame, it display both input
and output status. The two scroll bars is used to slide the text box to see
the information that can not be displayed.

Data Setting frame: is used to group the scanning/storing process
properties. It consists of:

o Sampling Period text box/combo box: 1s used to set the
sampling period value on the mobile node. It specifies the
mobile node how often mobile node has to scan the input and
store that data to the memory.

o Frame Size text box: is used to set the frame size value on the
mobile node. It indicates to the mobile node how often mobile
node has to add the frame header, containing the synchronizing
frame header and time information, to the data stream. See Fig
13 for more information about the format of frame header

e Memory Size combo box: is used to calculate the scanning
frequency for the central node. This property is used by central
node only, not for mobile node. It will determine how long we
can leave the mobile node to store the data and so we can know
when to retrieve the data from mobile node. See Check Setting
button.



121

Send Alarm to frame: is used to group the wireless link property. It
contains the central computer phone number and manager phone number.
The central computer check box is automatically checked when you fill
its text box with a phone number. If you fill both text boxes, it means that
you want mobile node to send SMS alarm to both numbers. If you want
just only one, please fill the first text box, it is taken as a priority number.

Default Path text box: is used to store the location where to store the

retrieve data and report. By clicking on this button | 1ocated next to the

Default Path text box, the Folder View form will be loaded and then you
can select where you want the data and report to be stored. For this
setting the default path is:

I DEs-Lengihdy ThesisiB-CadeNy Thesis Central Nude-010 Reports

Check Setting button: is used to calculate how many mobile nodes
can be supported by this system and how long we can let the mobile node
keep storing the data. Just a simple click on it, the result will be display
on a label just in front of Choose combo box. For this setting, the result
from calculation is:

[N TRV s PRVPASPY SRS SPIIR S 4/ S USSR S PP SUTE S S SPoUNI NRCE S
PN TR fr S an CEITTHONT e e e by dERen T e

From this information, we can decide how often central node have to
retrieve the data from mobile node. To set this value to the central node,
we just choose one value from Choose combo box located next to this
label. For this setting, the longest time for the central node to retrieve data
1s 6 days as show below:

e gpranriads 70 Bestreg eends L DBV B =3 Choose

Suppose we choose to scan every 7 days or other value bigger than 6
days, after choosing this value from Choose combo box, a message box,
as shown in Fig 67, will be load to tell you that you can not choose this
value for retrieve the data from the mobile node for this system. Auto
Scan according to Schedule button will be enabled only when the correct
value is chosen from this combo box.



122

Note that, if the settings (number of input port, scanning period, frame
size) are not yet controlled by Check Setting button, Save Setting,
Write to Mobile Node, Scan All, Update All, Auto Scan according to
Schedule button are not active. To active these buttons, you can read the
setting directly from mobile node, if it is connected to the PC via “RS232
to FC Debug & Programming Board debug and programming board”, or
by clicking on Check Setting button.

entral of Telemeasurernent Sevsor Metwork $,01 -117

® Scen Mobile Node : | "§ Mabile Node Records | Node Settings ¥ view Graph
~Port Sefing Ports Seting Result s
Check Setting
¥ InputPors ’ ’ I?/" Alurm hySMS Seve Seting
W Output Ports - AlanmiCounter
™ RS232forGPS U Write to Mobile
Node >>»»>
-Data Setting - e —— ek Dig i ”::"l;:adfrum
SemplingPeriod [ 2 Mimie <] | | FGe puEene e & Mobile Node
Frame Size ’ it . AL NI T Nk I, L
Memory Size - |5 ol WL, __ SconAl
RV J Update All
, " Please chogse the Period of Scan smaller then 6 Days 3.67 H - T
-Send Alarm to - e ' i o Auto Scan
s according to
¥ Canter Computor ,:E Schedule
" Mananger's mob i Sl

] ] 1}) ;i : g

Dgtg@lt Path ]!) A Lengihty TheseWVE-Cadaihdd Thews Cardnal Mode-01d Deponts

Cmebn e e Y 0T T e o e i 4 g e e

=> Choose

STATUS : COM1 OPEN

Fig 67. Over Load Message Box

Save Setting button: After checking the setting of this system, we can
save it by clicking on this button, so next time, when you run this
program; these values will be set automatically at the right place.

Write to Mobile Node button: is used to save these setting to the
mobile node while the mobile node is connected to the PC. This button is
very useful during system setting. We can initialize the mobile node to
recognize our system only by this button. Transparently, this button will
copy the date-time information from the central node to the mobile node
(into RTC register) automatically.



123

Read from Mobile Node button: is used to read the system setting
from the mobile node while it is connected to the central node via “RS232
to FC Debug & Programming Board debug and programming board”.
See Fig 43.

Scan All button works the same ways as Store button, however, with
only one click on this button, all the mobile node will be connected and
retrieve the data by the central node.

Update button is used to retrieve data from all mobile nodes as Scan
All button, however, after received all the data, the PC will send back the
new setting data to those mobile nodes.

Auto Scan according to Schedule button is used as Scan All button,
however, this retrieve action is activated automatically every scanning
period chosen from Choose combo box. Without any intervention from
operator, scanning and storing process will be made automatically.

View Graph: This Tab is used for displaying the result that we
retrieve and save to the hard disk of central node. If the user don’t like
this interface provide by our program, they can use Microsoft Excel to
plot the data as their need. The data is saved in a format that can be read
from Microsoft Excel without any modification. Just want to tell you that
if the user wants to see the evaluation of each input port with the time,
our tool provided by this program is more powerful. Fig 68 shows the
overview of this Tab. This Tab consists of 3 frames, each frame groups a
group of functionality as describe below.

Select Data to Plot frame: consists of:

e Driver List box: is used to display all the existing drive (Fixed
drive such as drive C or drive D on the hard disk; or Removable
drive such as floppy drive, Zip drive or USB Flash drive; or
CD-ROM drive, etc...) on the computer. From the default
folder, where we store the data, drive D is selected.

e Directory List box: is used to display all the existing folder in
the selected drive. From the default folder, where we store the
data, “KY-Leng\My Thesis\VB-Code\MY Thesis Central Node-
01\All Reports” is selected.



124

e File List box: is used to display all existing file in the selected
folder. From the default folder, we find only one file, which is
ROBOT007.gra.

k2 Central of Telemeasurement Sensor Network V.01 - [18:44:15]

B Scan Mobile Node | [l Mobils Node Records | B Node Setings |
r~Select Data to Plot-—————— ~Select Port
=R 7] | ¢ Anal € Aaed & i
& Ana.i € Apa s € gt
i | E3Kv-Leng Al Ana? s
£ My Thesis ~ = P
£3VB-Code Al S
EMY Thesis Central ~ .
£5 All Reports - Temp-Li4335 [*C]
] 3501 35,01
20.008 e weor 20.008
. 21006 21.006
14.004 14,004
7.002° 7.002
0 0
08:44.09 ‘1 ) 12:02:09
<] | v »]
BEIT %

Fig 68. View Graph Tab

Select Port frame: is used to give the user facility to plot any data
from the corresponding physical port. In this frame, only the physical
ports are display because the virtual port name is some time too long to
display. However, when you move the mouse on any physical port, the
corresponding - virtual port name 1is display as ToolTipText (The
ToolTipText is a brief description of a control that appears when the user
holds the mouse pointer over the current Toolbox page without clicking).
Moreover, after clicking on any option button of the input port, the virtual
port name will we display on the frame in where the corresponding data
will be plotted (see Fig 68). Initially, all the option button are disabled to
indicate that no data to display, so the user have to select a file on file list
box before plotting any data.



125

While clicking on the file (example ROBOT007.gra), our program
will read all the setting saving along with the data to enable only the port
that are enable in the system. This feature is very useful because we can
use this program to plot other data even the setting of their system are
different from the current setting supported by our system.

After select on the file, we can now start to plot the data of any enable
input port by just clicking on the option button of that input port. Fig 68
shows the data of analog input port number 1 (Ana.l) drawing by our
program. The corresponding virtual port name is “Temp-LM335” follow
by its unit “[*C]”. Below the graph, a horizontal scroll bar is used to slide
the graph step by step or Jump d1rect1y to some where but manually

whereas other two buttons <& 221 are used to slide the graph
automatically. After clicking on any of these buttons, the slide will move
automatically according to the direction as indicated by these buttons
until the end. During this mode, the user can also stop it by clicking on

<l will change to Pause butto

Print Record form: This form is used to help user to print the data by
listing all the existing report in a check list box as show in Fig 69. By
default, when the user click on Print button, the option as show in Fig
69-A is selected (Print the Current Record), however, the user can change
it to another option (Print by Mobile Node ID) by just clicking on this
new option and select a mobile node ID from a combo box located just
below this option button. To view a file, just click on its name from the
list box. To print, the user select any files they want to print by checking
the corresponding name, so it means that the user can select more then
one file and print it just only one time by simply click on OK button.

Setup Printer button is used to setup the printer before we can print
this file, otherwise, a default printer will be selected to do this job. It is
the same as other application, so no need to explain more then this.

Find the Record form: is used to help the user to find the mobile node
information. It allows the user to select what kind of information they
know from mobile node, so they can use this information as a keyword to
search the complete information. We provide 3 kinds/categories of



126

keyword such as search by Mobile Node ID, search by Mobile Node
Number and search by Province. After selecting a keyword type from
Find By combo box, the user can input the keyword into Find What text
box and then click on Find button; the rest will be carry by our program.

A Print Record

rReportrange : View

@ Printthe Currentrecord | ! s
£ Print by Mobile node ID

This prooggran is writtsn by ¢

|

[

|

|

[ Mr.EKi-lLeng, iszcturz at ITC in Eleovrical
Department |
|
|
)

[.12005-03-14-14-04-35

For more information, please contact me by

Fig 69-A. Print Current Record Form

3 Print Record

~Repartrange —-—-—--~m~w—--~ . ~View

¢ Printthe Current record
& Print by Mabile node 1D

ROBQOTOU? _:j

This program is written by :

7]2004-12-05—09-41-54 +
{72004-12-04-09-41-5
[(12004-12-03-09-41-5
[.12004-12-06—09-41-5
{j2005-02-15-13-55-5

|

|

!

!

| Mr EY-Leng, iecture at ITC in Elecnrical
Departuent |

|  Far wore information, please orntact mas by
{

!

|

| Email : lengRitc.edu. kh

I
!
I
!

lengcallrobaot@yshoo. fr

[12005-02-23—16-53-4
{1}2005-02-23-18-53-4
[[12005-02-24-19-29-0
[712005-02-28—17-44-3

Project Name : Central of Telemsasuremxent Sonsor
Hetwark

i Herziorn V.01

Node ID @ RUBOTOO7?

12005-02-28-18-03-11 | | |pata received :
[12005-02-26~18-66-02 | | [From - ZO0STBZiZImmul-ie-ay
|1 2005-02-28-19-24-22 :
1712005-02-28—-20-01-25 Confimuratioms:
(2005-02-28-20-03-47 | | [Scmn Tim= S second
[]2005-02-28—20-29-42 Frame Size 10
{12005-02-28—20-35-37 Input Fort's Name:

{12005-03-01-10-37-49
{12005-03-01-10-41-3

SetUp Printer |  cancal | 0K

Fig 69-B. Print Record by Mobile ID Form



127

If the keyword matches a record, it will highlight that NODE ID cell
and update this information to all text boxes (MNode ID, MNode Num,
Province and Description). If the keyword belongs to Province type, the
first one that matches the record will be display and if the user continues
to click on Find button again, the next record that matches this keyword
will be displayed, and so on. See also Fig 70.

& Lentyal weasurement Semor Notwork V. 01 - [1%:24:01]

W Scen Mobile Node ) gl Mobile Node Recordsr (5 Node Seftings |

! View Graph

NODEID. . |[NDDENUM |PROVINCE | DESCRIPTION
| |ROBOTODE 012532235 -PHNOMPENH PARKWAY
ROBOTOO! 012576490 PHSA CHAS
|ROBOTO02 ;012576491 VS'RMHEAP |PHSALEU
5 9 ' | N
oo D e
ROBDT o0 ~i,,~12érq4';3 e e il 8 % Find the Record
el v
ROBOTO0S (50483251 o Ar
|ROBOTO03 0R3030203  BATTAMBAMG  PHONM SAM POV \ Y j
“PHNOM PENR ; Find By: {rv obiie HNade 1D :.!
SIRMREAP (PROJECT Find What : [FOBC T 070 |

% ............. F l;d- ............... 1| Exit Find |
New Record B Desciiﬁﬁnn , ‘
- - : . Add Edit
MNode ID - ROBOTOI0 FOYAL PALALE Stom || ——
] | D Delete
MNode Num 170495160 Updete || |
Province [ FHNOM PENH avs || inda Find
! B | Print Chack ID

Fig 70. Find the Record Form

Send SMS form: is used to give user the facility to send the SMS
directly from computer, no need to type the script by telephone keyboard,
which is not convenient. To type the script by computer keyboard is
much easier but to just click is the easiest action to do that is why we
provide this facility to the user via Send SMS form as shown in Fig 71.
This form also support the keyboard input to edit the script by the user if
they want, however, as far as we provide this feature, no one want to type
the script by them self, just use mouse, we can do nearly everything here.

As you can see, the name of each text box and check box of the first
two frames are taken from Output Port Setting frame.



128

% Send SMS

—Analngﬂutput port's Value~ SMS Script for Dutput Board—

MOTORO1 [0 MOTORO02 [ :C “RESET

; MOTORIL=4 00 2 MO
CodTVIL=1-4D00KR1=1

r Digit‘al Output port's Value T

T™VOT - W OH LAMPO1 T OFF
TV02 [T OFF  LAMPO2 [T~ OFF
DOORM W ON  LAMPO3 I OFF
DOOR02 I~ OFF  LAMPD4 T~ OFF

- Keywords
[~ RESET ¥ REPORT
¥ RESETALL I~ READ

Send J Edt |

Fig 71. Send SMS Form

After selecting all the output port you want to activate/deactivate, just
move the mouse to click on Generate Script button, the script will be
send to the SMS text box automatically as shown in Fig 71. After your
verification, you can send this message to a corresponding mobile node
by just clicking on Send button.

Note that the script is executed line by line, word by word, so the first
script will be taken in action first and then the next. By this way, some
keywords have to be fixed when writing in to SMS text box. For example
RESET ALL and REPORT. If we write RESET ALL after any script but
before REPORT, we can say that the report message will be report all
zero because of the action of RESET ALL or if we write REPORT first
and RESET ALL at the last, the report will have no meaning because we
don’t know: the current status of each ‘output port after mobile node
execute a script. However, Generate Script button will arrange this
problem for you, but if you really want it to work different way as we do,
you can edit the script by using the computer keyboard. One more thing,
all the output value settled by this program will remain in the memory, so
next time, if the port already activated/deactivated, and you want to send
SMS again, those port will be displayed in blue color as show in Fig 71 to
tell the user that, if everything is ok, the current values of the mobile node
output port are the same as we display here.



129

Input Port Setting form: This form allows the user to enable or
disable the input port of the mobile node. If the port is enable, the mobile
node will scan/read the data from that port and store it in the memory
(EEPROM) otherwise, the mobile node will skip that port in order to save
the power consumption and memory as mention in Chapter 2.

To enable/activate a port, the user just checks on the corresponding
Analog Input Port.X or Digital Input Port.X, where X is the port index
from O to 7 as shown in Fig 72. From this figure, we can say there are
only 3 analog port are activated, they are Port.0, Port.1 and Port.2. With
this form, the user can give each port a virtual name according to the
application. In here, Analog Input Port.0 is named as Light Sensor, Port.1
as Temp-LM335, etc.

¥ Input Port Setting

rAnalog Input-—- Part's Name --—— Coeft.A -~ CoelE.B ------ — it~ Thieshold —— - Digital lﬁputhw Part's Name - Alatm -,

W Fotli [LightZensor  fuoma oo O > | Jas I Poto | ro
W Potl [TempiM336  Josges  [2750 [ > | [ademe r Pot1 | r
W Po2 [TenpiM3  [o4zes B0 [T > [[48:8 I Pot2 | r
I Potd | [ E | <o I Pot3 | r
I Patd | [ [2 | <} I Potd | r
I Pots5 | I [t | __J e I Pots | r
I~ Poté | [ E | s I Poté | r
I Pot? | [ B [ RENC I Pot7? | r

Exit ] o |

Fig 72. Input Port Setting Form

As the result read from any analog input port are stored in 10-bit
binary format which correspond to 5V, we need to transform this
dimension (binary value that correspond to 5V or voltage) to other
dimension (°C or Kelvin) as we want by using the formula:

Y=AX+B

Where: A & B are the coefficient. X is original dimension and Y is
final dimension. Take Port.1 as an example.

10-bit binary can represent up to 1023 unit that corresponds to SVDC.
However, from LM335, 10 mV corresponds to 10°C and at 20°C, the



130

output voltage from LM335 is about 2.93 V, hence the coefficient A and
B (CoeffA, CoeffB) are calculated as show below:

1023 o 5V
0mV < 10 °C
= 1 SV = SV *100 =0.4889 °C
1023 1023

Hence, CoeffA = 0.4889

As LM335 give a reference temperature in Kelvin (at 0°C, we can find
the output voltage from LM335 about 2.73V), so CoeffB = -273. Let
verify these coefficients with following information: 2.93 V correspond
to 20°C.

5V =t 1023
= 2.93V & 599.478 = take 599
Y =0.4889*%599 - 273 =2928511-273=19.8511°C = 20°C = OK

So with this linear transformation, we can transform a value from one
dimension to a value in other dimension without any problem. However,
as for photo resistor, the variation of its resistance versus light intensity is
exponential function, not linear, which implies that this program is still
limited but enough to survey or monitor its variation. If the user thinks
that this is not enough, we can update this feature later by using the table,
at this time, the user have to input the correct table value for the
transformation function that make the non-scientific user get headache.
For this reason, we stop our development here.

For the threshold value, the user can input any value in Threshold text
box of the corresponding input port name. After this text box losses focus
that means the user finishes input the value for this variable, so we can
start our calculation transparently and change back this value to a correct
value that can be used for mobile node because the mobile node have a
limit resolution. From the value inputting by the user, we will convert it
to a corresponding 10-bit binary and round it to 8-bit binary value then
convert it back to original dimension. Because of the binary
representation, that is why the correct value maybe differs from the
original one that defined by the user. See Chapter 2 for the reason why
we need to round this value to just 8-bit.



131

The comparison mode can be chosen by clicking on button 2 :
This button will trigger automatically from one mode to other mode.
After setting the input pin for mobile node, the user just click on OK
button, we will record these setting, convert it to binary value and put it to
a correct location in the system setting string, which is ready to write to
EEPROM of mobile node.

Everything will be done automatically and transparently by our
program to make user feel comfortable and have no headache while using
this program.

Output Port Setting form: This form allows the user to define a
virtual name for the output port name in order to be easy to remember.
Each output name has a limit length to just 7 characters. This limitation is
chosen, not because of our limitation but because we want to write many
command in a limited SMS length. The number of enable port does not
interfere the scanning process of the mobile node/central node, that is
why we recommend that enable all the output ports and give them a name
so you can easily control them via SMS anytime you want.

% Quput Port Setting

Analog Output port's name

W Potd |MOTOROT ¥ Port1 IMDTDHDE

~ Digital Dutput port's hame

|| @ opero [T ¥ Potd [LAMFDI
W Pot1 [Tviz ¥ Pat5 [LaMPO2
o Pot2. [DDORY W Pors JLamPo3
F Pot3 [DDORDZ P Pot? [LamPo4

Fig 73. Output Port Setting Form



CHAPTER 1V

PERFORMANCE EVALUATION

After everything has been implemented, we can now start to test our
system performance by creating some scenario as describe below. In this
chapter, we divide it into 3 sections, each section correspond to a scenario
and in each section, the test condition and result will be described,
analyzed and shown in order to prove/evaluate our system performance.

4.1 Data Collection, DTE-DCE Exchange Protocol and
Error Detection

For this scenario, we let the mobile node to collect the data from 3
sources: luminosity (photo-resistor), temperature in Kelvin (LM335) and
temperature in °C (LM35). These sensors are placed in Center of
Excellence in Telecommunication Technology Laboratory (on my desk)
to sense the luminosity and temperature in this room for a period of 6
days.

The settings for this system are:

e Data Setting: See Fig 75
o Sampling Period : 2 minutes
o Frame Size : 5 samples/frame
o Memory Size : 64 Kbytes
e Input Port Setting: See Fig 81 4
o Port.0 Light Sensor : A=0.0049, B=0.0, Y=A.X+B >
5.00 V(4,985 volt)
o Port.1 Temp-LM335 : A=0.4889, B=-273.0, Y=A.X+B >
49.67 °C (3,226 volt)
o Port.2 - Temp-LM35 : A=0.4889, B=0.0, Y=A.X+B >
48.89 °C (0,489 volt)

From this setting, we find that
e Total Mobile Node supported by this system is 1772 nodes
e Scanning Period = 6 days, 3.67H

We start running our system from Saturday, 05/03/2005 at 14:06:00
and stop it on Monday, 14/03/2005 at 16:21:38.



133

For this experiment, only one node is used. To verify the collected
data, one computer is used to run our Modify HyperTerminal program to
store the data sent by CPU module from debug pin. These data are
reported in 8-bit format (not 10-bit format) because we just want to
monitor whether the CPU module work well or not. If we use 10-bit
format, we need to write the conversion function to change from 10-bi
binary to printable ASCII character, which is not our target. For 8-bit, we
can send it out directly with printable ASCII from 0 to 255 because this
format is supported by USART as shown in Fig 74.

¥ Serial Communication V.01 " Q@@
Dlﬁ.]élfq] ¥ None ™ <CR> ¢ <CR»<LF> ]

Send Test

] ¢ Courier (‘EEE

Feport an 8 bit rescoluticn without GPS'= dsts
Scan Tine 120
Frame Size &

Analog Input

Digital Inpnt 6
Alarn Counter 0
ADDT=4412
Index Tinslndex Lig dna .l Ara. 1l ina 2 Ana 2 Ana. 4 Ans S Ana b Ans 7
461 14:8:9 0 196 153 13 0 U 0 0 0
467 14:100:8 0 196 153 14 i 0 I i U
4773 14:12:% 1] 1498 163 12 L U f 2] i
479 14:14:79 [t} 196 153 14 0 U il ] [
485 14:16:8 0 137 11153 14 0 0 a ] 4
498 14:19:3 a 196 153 i 0 U 0 a U
504 14:20.8 0 195 153 12 [ 0 I 1] U - )
510 14:22.8 a 1985 153 ' 12 0 0 0 ] il o
JSTATUS: COM1 & Open P
Fig 74. Report Format Generated by Debug Pin of CPU Module,
Received with our Modify HyperTerminal
From the debug-report in Fig 74, we can verify that:
e Scanning Time =120  : means 120 s <> 2 minutes
e Frame Size =5 : means 5 samples/frame
e Analog Input =7 : 7= %00000111 in binary, so it means

that only Ana.0, Ana.l and Ana.2 are enable.
e Digital Input=0 : All digital inputs are disabled



134

60:¢2:60
60:8E:LC
60:¥5:60
60:01:2¢
60:92:01
60:0v-2¢
60:95:01
60:¢l:€C
60:8Z:1 1
60:vv'€C
60:00:¢1
60:91:00
60:2e:Cl
60:8%:00
60:v0-€1L
60:0¢:10
60:9E€L
60:¢S:10

60:80-v1

m

it)

b

(8-

14/03/2005

ht Intensity versus Time

1on of Li
05/03/2005 to Monday,

t

Varia
Saturday,

1g 75.

F

aJnjelaawa |

60:8¥:€C 60:81-€C
60:¥1:€C 60:¥L:€C
60:0¥:2C 60:0¥:2C
60:90:22 60:90:¢¢
60:¢€:1C 60:2¢'Le
60:85:0C 60°85°0C
60:¥2:0C 60:92:02
60-05:61 60:05°61
60:9L:61 609161
60:¢v:8L 60:2v:8lL
60:80:81 608081
60:vE L1 = 60VELL
60-00°Z1L 60:00:41
60-:9291 60:9291
60:25'Gl 60:25'Gl
60:8L:Gl 608L°Gl
60:v7vl 60¥¥vl
60:01:¥1 60:0L:¥1L
60:9¢:€l 60:9e€lL
60:20°€l 60:20°€lL
60:82:C1 60822l
604511 60-¥GiLL
60:0Z:L1 60:02:L1
60:9%:01 60:9¥:01
60:C1:0l 60:2L:0L
60:8€:60 60°8€°60
60:10:60 60:10:60
60:0€:80 60:0€:80
60:95:20 60:95:20
60:22:20 60:22:20
60:817:90 60:81:90
E 6017190 60:¥71:90
60:01:S0 60:0%°S0
60-90°50 60:90:50
¥ 60:2€-70 60:2e:¥0
60:85°€0 60°85°€0
60:¥2:€0 60:¥2'€0
60:05:20 60:05°20
60:91:20 60:91:20
60:2v:10 60:2:10
60'80:10 60:80:L0
60:¥€:00 60:+€:00
60:00:00 60:00:00

W &

it)

b

ty and Temperature (8

06/03/2005

ht Intensi

18

1on of L1
On Sunday,

1g 76. Variat

.

F



135

In order to be able to compare with the real data in the EEPROM, we
open it with Microsoft Excel and write the formula to transform 8-bit
binary to 10-bit binary and then use CoeffA and CoeffB to transform to
corresponding dimension (voltage, degree C or Kelvin). The result of
measuring light intensity by photo resistor after transformation is shown

in Fig 75. Fig 76 shows the variation of light intensity and temperature on
Sunday, 06/03/2005.

Now, let us interpret this graph before comparing it with the data in
EEPROM to see what we can know from this graph/report.

Fig 75 illustrates that the light intensity 1S drop to minimum at night
time and start to increase exponentially to the sunlight intensity (from
06:00 to 09:00, Fig 76 shows this variation more clearly) then about
09:00, the light intensity jump to high level and vary upon the turn-on/off
of the neon lamp in the laboratory. According to the topology of this
laboratory and the place where we install our sensor node, only me and
other student sitting opposite to me that has more influence to this light
variation than other students because when we come to the laboratory, we
turn-on the light hence cause a big variation to the photo resistor. Other
students also interfere to this value but not too much because they stay far
away from our desk (from the sensor node). On Saturday night
(12/03/2005), we can see that the light intensity did not drop down to
minimum because on that day, some student come to the laboratory and
forgot to turn-off the light when they went back home.

As mentioned in Chapter 3 (Section 3, Input Port Setting form), the
variation of resistance of the photo resistor versus light intensity is not
linear, imply the output voltage from resistor divider is not linear as well.
One more, we do not have light meter (photographic equipment that
measures the intensity of light) to compare with the output voltage of
resistor divider in order to find the transformation coefficients (CoeffA
and CoeffB), therefore, we leave it in voltage dimension not in lux or
candela (1 lumen per square meter = 0.0929 foot candle).

Fig 76 shows the variation of light and temperature on Sunday,
06/03/2005. From 00:00 to 06:00, the light intensity in the laboratory is
still at the minimum level. In this period, the temperature in this room
increase little by little as the daytime is coming. From 06:00 to 09:00, the
light intensity increases with the presence of sunshine in the room.
However, as the room is not open to the sunshine (because of the curtain),
the light intensity is limited (in voltage, the maximum of this variation is



136

about 2.3V) comparing with the presence of neon lamp while it is turned-
on as we can see a big gape from 1.7V to 3.5V at 09:00. From 09:00 to
17:30, the light intensity seems to be stable around 3.5V then jumps to
3.8V because at that time, other student came and turn-on other lamp. We
can see that around 12:00, the light intensity dropped down to 2.3V
because at that time, we went out to have lunch and then turn off the
light, so this value came from the sunlight, not from neon lamp. We also
can see that the light intensity from lamp source is noisier then from
sunlight. This is due to the random process of photon created in the neon
lamp (Poisson law). About 22:00, every one went out and all the lamps
are switched off, therefore the light intensity dropped to the minimum
immediately. For the temperature in this room, at 09:00, we turned on the
air conditioner, so the temperature decreased little by little from 30°C to
26°C and then increased little by little at 15°clock.

Fig 76 also shows that the resolution of the temperature is about 2°C.
This 1s due to the resolution of DAC. After round the data to 8-bit, this
ADC is the same as 8-bit ADC. From section 3.3, we can see that:

10-bit : 1023 <& 500°C

= o1 <  0.4887°C=0.5°C
g-bit : 255 &  500°C

= =L <  1.96°C=2°C

Now, look at the result reported by the CPU via Radio Link module.
Fig 77 shows the variation of the light intensity like Fig 75 and Fig 78
show the light intensity and temperature variation like Fig 76. However,

Fig 77 and Fig 78 are obtained via wireless connection, not direct from
CPU like Fig 75 and Fig 76.

We can see that Fig 77 shows the same thing as Fig 75, it means that
the communication between the central node and mobile node via air
modem is established so well, no interruption or loss of data. This result
can prove that our exchange algorithm and other associated algorithm,
implementing in central node and mobile node, for the transmission work
as expected.

The same for Fig 78 and Fig 76, however, Fig 78 shows the
temperature variation more smoothly because the resolution of our ADC
is 10-bit that implies 0.5°C resolution. From this figure, the minimum
temperature is about 25.5°C (at 14’clock) and the maximum temperature



137

¢T84

apeyJoA

t)

1

b

E 60

(10-

Saturday, 05/03/2005 to Monday, 14/03/2005

mec

ty versus Ti

ht Intensi

12

Tle

ariation o

\Y

ig 77.

F

60°8¥'€2
60:¥1:€C
60:0¥:2¢
60:90:2¢2
60:¢e:1e
60:85:02
02
60:05:6}
609161
60:2y'81
60-80:81
60°¥€-L1

E 60:00:L1

60:92:91
60:25:51
60:81:S1
60yl
60:0L:¥1
60-9¢:€1
60:20:€}
60:8¢:Cl
60:4G:11
60:02:1 1
60:9v:01
60:21:0lL
60-8£:60
60:70:60
60-0¢:80
60:96:20
60:¢¢°L0

€ 60:81°90

601 :90
60:0%-S0
60:90:90
60:2E-¥0
60:95:€0
60:¥2:€0
60°05:20
6091120
60:¢¥:10
60:80:10
60:¥€:00
60:00-00

60:8v:€¢
60:v}-€C

A8
80:10

¥£:00
60:00-:00

Fig 78. Variation of Light Intensity and Temperature (10-bit)
On Sunday, 06/03/2005




138

is about 31°C (at 09:00). The temperature increased little by little from
00:00 to 09:00, then dropped around 11:00 and reached the minimum
around 14:00 then went up little by little from 20:00.

Just these two experiments, we can test out exchange algorithm
whether it works well or not. Moreover, before we transfer these data via
wireless link, a copy version of this data is made via a PC in order to
verify it with 10-bit to 10-bit resolution. As the result shows that a copy
from the memory and a received version from wireless link are the same.

Fig 79 shows the comparison result of LM335 and LM35. As
mentioned in section 3.1.10, LM335 needs calibration that is why we
cannot get the same result (we calibrate by hand); however, the results
from LM335 can be accepted because it is just 1.77°C. We can adjust this
difference by changing CoeffB from -273 to -274.77. Other remark, the
result from LM35 look noisier then LM335 because LM335 has low pass
filter at its output, where as LM35 just has a heavy capacitive load
protective. Anyways, these results are applicable for monitoring
application because the error is just 0.5°C. An alternative solution to
improve these results is to use active low pass filter (amplifier + low pass
filter) to improve both problems (noise and heavy capacitive load).

However, we do not satisfy at this point, we would like to test our
program flexibility. To do this, we change the copy version of this data,
save it back to the mobile node and then retrieve it via mobile phone.
What we have changed are:

e Delete Frame header to delete the frame synchronize
information. This information is very useful as we mention in
chapter 2. For this modification, we first delete the complete 7
bits of this frame header at location 5776 (14:06:09), then delete
just 5 (odd number) at location 5998 (15: 06:09), then we delete
6-(even number) at location 6220-(16: 06:09), and finally, we
delete totally one frame at location 6442 (17: 06:09).

e At location 6664 (18: 06:09), we delete the data in the frame
just 1 byte, then 2 bytes at location 6886 (19: 06:09).

The result of this modify version are shown in Fig 80. From this
figure, we can see that there is no data loss at 14:06:09 because we lost
only frame header not data. This is done by our program. It generates
automatically time information for that data (data in the frame that we
delete its header) from data of old frame information. At other points



139

60:8¥:£2
60:7l:ce
60:01:¢cc
60:90:¢C
60:2¢: L2
60:8G:0¢
60:v2:0¢
60:05:61
60:91:61
60:C¥'8l
60:80:81

60:8

60:8

60:9

OO~ ~NOOTFDOR
Lk ol bt et o R

60:80:10
60:7€:00
60:00:00

] L e v o

vHyesguwd |

B 8 W

Fig 79. Comparison between LM335 and LM35

[
p—
22
3

=]
[l

60862 |
60:95:22
60:22:22
60:9%:12
60:01:12
60:VE:02
60:8561
60:22:61
60:07°g1
60:0L:8}
60:vE-L1
60:8:9}
60:24:9)
60:98:G}
60:00:G1
60:92:7}
60:8°C1
60:2L:C)
60:98:Z}
60:00:Z}
60:v2:0 1
60:8%:01
60:2L:01
60:9€:60
60:00:60
60:v2:90
60:8%:20
60:21:20
60:98:90
60:00:90
60:72:50
60:8%°50
60:2L:0
60:0€:€0
60:00:€0
60:v2:20
60:8%:10
60:24:10
60:9€:00
60:00:00

60:1t:€C

E 60:85:2¢

60:2¢:2C

e 60:9%:1C

60:01:1C
60:¥€:0C
60-85'61

£ 60:¢C'6)

60:99:81
60-01:81
60:vt:L1
60:8v:91
60:21:91
60:9€:G1
60:00:G1
60:92:v1
60:8v:€l
60:21:€l

= 50:92:Z)

60:00:C1
60:¥C:11

g 60:81:01

60:21:01
60:9¢£:60
60:00:60
60:92:80
60:8%:20
60:¢1:20
60:9¢£:90
60:00:90
60:%2:G0
60:8¥:10
60:CL:¥0
60-9¢:€0
60:00:€0

= 60:42:20

60:8p:10

E 60:21:10
® 60:9€:00
E 60:00:00

ion of Light Intensity and Temperature

(10-bit with errors) on Sunday, 06/03/2005

Fig 80. Variat



140

(15:06:09, 16:06:09, 18:06:09 and 19:06:09); the data are interrupted
because we read it at wrong place. However, the data are interrupted only
in that frame, when the next frame header is detected; their following data
will be recovered normally.

So we can see that event the error propagates from one sample to other
sample, this error cannot propagate to corrupt other frame, the interrupted
data is just only in that frame. For the point 17:06:09, the data is lost
completely, no time information, and represented as a gape, but only in
this frame, the next frame will be recovered normally. Note that even the
data is lost more then one frame; we only put it to O only for one frame.

So, if we set the frame size too big, and if such error happened it could
infect many information. However, if we set the frame size too small, we
lost the memory to store the data because one input take only 2 bytes for
analog input and 8 digital input take only 2 bytes but only 1 frame header
take the memory up to 7 bytes. So it is you to decide this value.
Fortunately, if the error happened at the end of frame, the error data
propagates only from that point to the end of that frame and if it was lost,
we will fill it with O and this 0 will propagates in the same way.

4.2 Alarm by SMS and Script Execution

To test this feature, we just keep the system setting as the first
scenario, connect Debug pin of Radio Link module to the computer
running our modify HyperTerminal and then test its functionality one by
one as shown below:

<READ> and <REPORT> command: After sending one of these
script commands to the mobile node, the mobile node will report a SMS
as shown in Fig 81 and Fig 82.

For <RESET ALL>; <RESET> and other script for output port can be
verify by PC via debug pin. The internal process is shown in Fig 83. The
script that we send look like Fig 84 and the corresponding reply message
are shown in the preview Fig 81 and 91.

One more, we create undesired input for the CPU to see whether it can
send us the critical message or not. As the result, we get a message as
shown in Fig 85. Finally, we just let this mobile node to store the data
until the address counter (AddT) surpasses $CCCC to see whether the



141

mobile node can send us the buffer overrun message or not. As the result,
we get a message as shown in Fig 86.

Fig 81. <READ> Message Fig 82. <REPORT> Message
Internal Process Explications
RSA <RESET ALL> is executed
A0=204 Analog Port.0 is set to 204 = CCh
Al=0 Analog Port.l is set to O

Digital Port.0 is turn on
< | Digital Port.6 is turn on
<RESET> is executed

RP <REPORT> 1is executed

RD <READ> is executed

Fig 83. Radio Link Internal Process

% Send SMS

~Analog Output , : SMS Script for 0 utput Board ————————
* MOTORO1 [CC MOTORO2 [an | | [<RESET
o CHALL » < MOTORDI =CC c HOTORED 2=
- : I <TYWO1I=1: WJ’_’.AHPD -1 > <RESET
Digital Dutput port's Value > {REFORT > READ::

Vo1 P ON  LAMPO1 T 0OFF
TvD2 [~ OFF  LAMPO2 T OFF

DEI1E6R1 114000010004 31 E6494387265

, ) ~ 1 | oonnasacesTi e 4RoE0AC ARRFDRTE

- DQDRON T HER] \IAMR03 § i DA E29FB26R40371 CFATCD27F 52375097

I~ OFF M aFF 4.30986F 47BRC262B D 936FC 70036 1E

DQpRoz 1 LAMPO4. - T [592FESE 3498B0 222050793164 14F2
{305C7931683441 Ry

~ Keywaords

W RESET ¥ REPORT ‘ ot
¥ RESET ALL ¥ READ '

_ Generate Script I

Fig 84. Script Command Sent from Our Program



142

From these figures, we can verify that our Read SMS, Script
execution, Send SMS and other association functions that we
implemented in Radio Link and CPU module work as expected.

Fig 85. Critical Input Fig 86. Buffer Overrun
Message Message

It seems that our chapters 2 and 3 is too long and have many things to
describe but in this chapter, we just have little thing to analyze. This is
not strange; a hard beginning makes a good ending. Fig 87 shows the
perspective of our mobile node.

Fig 87. Perspective View of Mobile Node



CHAPTER YV

CONCLUSION AND RECOMMENDATION

This research tries to implement and evaluate the system performance
of mobile node and central node for Tele-measurement Sensor Network
that are based on hardware and software implementation.

We have described the algorithms and the reason why these
algorithms are chosen. We have implemented the mobile node, sensor
board, some output boards, programming and debugging board and
written programs in VB in order to test the system performance as well as
to make a complete system that works in reality, not only simulation
environment.

We evaluate the system performance by running our program (Central
of Tele-measurement Sensor Network) in a window platform and turning
on our mobile node to collect the data in real environment, then retrieving
that data and comparing with the data that we get from other program
(modify HyperTerminal). We also add some errors to that data in order to
test the intelligent capability of our program.

The result has shown that all the features/functionalities work as
expected (both sides) and we note that the frame size plays a very
important role for error detection feature and data protection from
propagation error. However, the frame size also influences the scanning
time since it needs more bytes to store its information (frame header).

We also observed that the low pass filter can help reducing the noise
(electromagnetic and. Poison noise, etc.) to-get smoother result. Poor
quality power-supply also causes a noisy result since it supplies unstable
voltage to the ADC module in PIC.

By using the mature technologies (GSM, Microcontroller, etc.), we
can guarantee the stability, reliability and durability of our system.

By using the modular technique, we can update our system to feed the
new environment/system/need easily.



144

FUTURE WORK

This system can work properly in the area where it is covered by the
GSM network. The extended version of this mobile node (combined with
Ad-Hoc network technology) should be implemented in the future
research in order to extend the coverage area of the system.

This system has only one central node to control the mobile nodes and
to store/update all the data retrieved from mobile nodes. The extended
version of this central node (combined with internet connection) should
be 1mplemented in the future research in order to be able to extend the
coverage area as well as the control/remote node of the system.



10.

REFERENCES

Ian F. Akyildiz, Weilian Su, Yogesh Sankarasubramaniam, and
Erdal Cayirci. A Survey on Sensor Networks. Georgia Institute
of Technology, IEEE Communications Magazine. (August
2002): 102-114.

David Shepherd. Networked Micro-sensors and The End of the
World as We Know It. IEEE Technology and Society
Magazine. (Spring 2003): 17-21.

Yoshihiro Kawahara, Masateru Minami, Hiroyuki Morikawa and
Tomonori Aoyama. Design and Implementation of a Sensor
Network Node for Ubiquitous Computing Environment.
Proceeding of the 58" IEEE International Conference on
Vehicular Technology. 5 (October 2003): 3005-3009.

Alan Mainwaring, Joseph Polastre, Robert Szewczyk, David Culler,
and John Anderson. Design and Implementation of Wireless
Sensor Networks for Habitat Monitoring. Intel Research
Laboratory, Berkeley Intel Corporation, EECS Department
University of California at Berkeley, College of the Atlantic
Bar Harbor.
http://www.cs.berkeley.edu/~polastre/papers/masters.pdf,
2003.

Ara N. Knaian. A Wireless Sensor Network for Smart Roadbeds and
Intelligent Transportation Systems. Massachusetts Institute of
Technology.
http://www.media.mit.edu/resenv/pubs/theses/AraKnaian-
Thesis.pdf, 2000.

Traig Born and Joel Glidden. Computer Systems Senior Design: A
Linux-Based Robot Control System. University of ‘Arkansas at
Little Rock, Donaghey College of Information Science and
Systems Engineering.
http://theduchy.ualr.edu/classes/syen4386/cs sd.pdf, 2003.

http://www.microchip.com
http://www.atmel.com
http://www.dalsemi.com

http://www.phillip.com



11.

12.

13.
14.

15.

16.

17.

18.
19.

146

Chuck Hellebuyck. Programming PIC Microcontrollers with
PicBasic. Newnes, 2003.

Christian Tavernier. Les Microcontroleurs PIC Applications.
DUNOD, 2000.

PicBasic Pro Compile. Micro Engineering Labs, 1999.

John IOVINE. PIC Microcontroller Project Book. McGraw-Hill,
2000.

Scott B. Guthery, and Mary J. Cronin. Mobile Application
Development with SMS and the SIM Toolkit. McGraw-Hill,
2002.

Evangelos Petroutsos. Mastering Visual Basic 6. SYBEX, 1998.

John Connell. Beginning Visual Basic 6 Database Programming.
Wrox Press, 1998.

http://www .national.com

http://www.linear.com



List of Publications

Design and Development of Mobile and Central Nodes for Tele-
measurement Sensor Network. ECTI Annual Conferences (ECTI-CON), 12-
13 May 2005, Pattaya, Thailand.



148

Design and Development of Mobile and Central Nodes
for Tele-measurement Sensor Network

KY-Leng and Watit Benjapolakul

Department of Electrical Engineering, Chulalongkorn University, Bangkok 10330, Thailand
E-mail: lengcallrobot@yahoo.fr, watit.b@eng.chula.ac.th

ABSTRACT

The conventional environmental network does not
provide the feedback ability and is not interesting for the
non-scientific user. So, we propose a personal sensor
network for environmental monitoring and remote
security system for company, organization and home
user. This network is fast, easy to build and allow the end
user to change the configurations and easy to update the
system by using the modular technique and ability to
setup new configuration from center. It can be used as
indoor or outdoor network. By choosing an appropriate
technology from Microchip and algorithm, we can
optimize the power consumption. In this paper, we will
describe in detail about hardware and software needed for
developing this network (central and mobile nodes).

Keywords: Mobile Node, Tele-measurement, Sensor
Network

1. INTRODUCTION

Recent advances in wireless communications and
electronics have enabled the development of low cost,
low-power, multifunctional sensor nodes that are small in
size and can communicate undeterred in short distances.
The sensor network represents a significant improvement
over traditional sensor and it can be used in various
application areas such as health, military, industry, home,
etc. For different application areas, the sensor networks
are designed with different technologies [1-2]. It is also a
key technology to obtain user’s context in the real world
because it can enable long-term data collection at scales
and resolution that are difficult, if possible, to obtain
otherwise. A large number of researchers have been
working on sensor network technologies primarily for the
realization of large scale environmental monitoring
systems for military use and/or scientific use [1-4] and in
this recent year, a large number of systems have been
proposed for a small network and indoor network such as
MICA [3] and U® node that is capable of communicating
with other nodes to carry sensing data and queries issued
by users. Wireless sensor package developed by Ara N.
Knaian can be used only for Intelligent Transportation
Systems by counting passing vehicles, measuring the
average roadway speed and detecting ice and water on the
road [5]. However, they are not applicable for a non-
scientific and home user and have no feedback path. A
Linux-Based Robot Control System [6] developed by

Traig Born and Joel Glidden is very powerful in term of
data collection and remote control, however, it cannot be
considered as a sensor network because of its power
consumption and its size. The Personal Tele-
measurement Network is a private network, easy to
update and allows the users to change the configuration
by themselves. It is an outdoor and indoor network that
can be used in a large or small-scale network such as
environmental monitoring and remote security system. It
is very difficult to envision how such future application
should be like, however it is desirable to specify or list
some applications, so we try to show some real
applications as listed below:

o Measure the water level, gas toxicity, air pollution
rate, humidity, and luminosity and control the dam
gate.

o Measure the current intensity of the power
distribution sub center, alert the main center with the
cause and cut off the dangerous line at the exact
place.

e Use as security guard: monitor the gate, doors,
windows, hallways, alert the security office and/or
police stations with the location where the unpleasant
event have been occurred.

e Control the electrical appliances in the house.

2. HARDWARE & SOFTWARE DESIGN FOR THE
MOBILE NODE

2.1 Hardware:

In order to fulfill the flexible requirements, we divide
the system into small modules (modular system), which
have specific functionalities, as shown in Fig. 1.

Radio Link Module: Use a mobile phone kit as the
radio link module to ensure the data transfer between
central and mobile node (MN). We use one PIC16F876
(Programmable Integrated Circuits) and one EEPROM
(Electrically Erasable Programmable Read Only
Memory) to ensure this functionality.

CPU Module: use PIC16F877 to ensure the data
processing, sampling and storing data in the external
EEPROM. This module communicates with the Radio
link module, some external sensor boards & Real Time
Control (RTC) via I’C protocol.



Interrupt

Interrupt
Bus Control : K

Bus Control

I"C/Input/Outp

Fig. 1: Mobile Node Architecture.
MS: Mobile Station, GPS. Global Positioning
System Receiver.

Sensor Module: As the CPU module supports digital
& analog input, some sensors can connect directly to
digital input port and other sensors that give the result as
voltage (OV to 5V) can connect directly to analog input
port. We also reserve one RS232 port for GPS receiver.

Output Module: We fix to use I’C-Digital to Analog
Converter AD5301 or PCF8591 to provide two analog
outputs for the user with 8 bits resolution and PCF8574 to
provide 8 digital outputs.

Note: All these features are supported by our CPU
module. If we want to use it, just connect the
corresponding module then enable it from PC (Personal
Computer). This implies flexibility and saving money
because we pay for what we want. The modular technique
provides not only flexibility but also minimizing the
power consumption as the CPU module can go to sleep
mode (I<2 mA at 5V, 4 MHz) after processing all its
works (it take about 300 ms/scan, so if we scan the input

PC MN  pC MN

CPUUp Token ]

< ONEmp__ ) Y« STA

R2Stor
L - - »>
TTTTTTTTa Data Stream
K Old Data Stream
M e e | STO
¢« UpReady

_STA A: Send Data

PC MN
Update Data Stream ] SMS-Alarm
TV, EVEEN
Vil UpSuc i
C: Alarm by
B: Update Data SMS

Fig. 2: Time diagram for the Exchange of
Command and Response Signallings

149

Table 1: Protocol Constants

L Name Cgasrg:tler Description |
___STA 178 Indicate the Start of data
| STO 187 Indicate the End of data
Token 196 Request for Sending data
CPUUp | 205 Request for Updating data
R2Stor 214 Ready to store the old data
UpEnd 223 Indicate the End of Update-Data
OIdNEmp 232 Data left in EEPROM .,
UpReady 241 Ready to store Update-Data
UpSuc 250 Updating is finished successfully
S 167 Synchronizing Frame Header

every 1 min = CPU can go to sleep mode for 59.7s &
99.5% of time). Because the GSM module & Radio Link
module cannot go to sleep mode, we do not say that our
system consume less power than other systems, however,
we try to minimize it as much as we can.

2.2 Software:

We implement a layer-2 protocol to Mobile node in
order to archive the flexibility to change the configuration
by the user during or after the network configuration. We
also provide the feedback control by implementing a
script execution function.

Radio link module: We use AT-Command to send
the data and SMS (Short Message Service) via Air-
interface (mobile phone), however, as not every mobile
phone supports text mode; we implement text-to-PDU
mode algorithm [7] for we can support the majority of
mobile phone. We also implement a layer-2 protocol on it
in order to ensure data transfer between the central and
mobile node as shown in Fig. 2. Send the collected data,
update the user customization/setting, alarm warning,
send input data, feedback control and send its report are
the functionality supported by this module. All
information about this protocol is shown in Table 1 with
other constants used in our work. -

Note:: All the user customization, warning message
and acquired data are stored in the external EEPROM,
which is AT24C512 (512kbits <> 64kbytes). This
EEPROM stores, not only the data for Radio link module
(central mobile phone number and manager mobile phone
number), but also a very useful data for CPU module
(options for CPU: scanning period, frame size, input
masks, input critical values, digital output port’s name,
analog output port’s name, upper bound counter limit and
alarm flag). Here, the sampling period is the same for all
input ports because we do not know exactly the future
application of each port. After the network configuration,
the user can only change the options for CPU. By just
changing the data at the corresponding memory location,
we can allow the user to customize the network very
easily during installation as well as after installation.

CPU Module: Ensure the data processing function.
We sample the input port at every sampling period



@E@@ [Z]E;J [\E]E]IZE [ZIEE]
MSIVByte Eyte
a at for

@E@@ IZIEE,J

¥
MSByte

[\E]E] EIE

Y
LSByte

t for Digital input i RO

Time Header Data in 1 sampling time

@EEEE@@EJE———EEJ@@

-Minute (ZBytes) |
Second (2Bytes)

igital Port, : Analog :
 #Dto#7  Porfl|

Frame .
Header

Fig. 3: Data Format in EEPROM

(integer value from 1 to 60 second or minute) and store
the data in the external EEPROM. Note that not all the
inputs are sampled; we sample only the valid input ports
defined by the input mask (fo reduce power consumption
and storage). Fig. 3 shows the data format for analog
input, digital input and frame format that we use in our
program. We suppose that the digital input and all the
analog inputs are enabled.

The fact that we set bit #6 of each byte to 1 is to
avoid the data to be special characters such as character 0,
character 10, character 13, and character 26, etc. these
characters are considered as a command, not data, for
modem and cause modem to disconnect without sending
disconnect command because the data themself have the
same meaning as a command.

Sending data process is controlled by the central
node, it looks like “one-to-many” relationship, only the
center computer can ask and the other nodes can only
answer. In case that the CPU module stores the data
more than FFEOh, the CPU module will inform the Radio
link module to send the SMS with the message “The
memory is full at mobile node: ID” where ID is the
mobile node itself. At the same time, the CPU continues
to store the new data until it reaches the full memory then
restart again. However, ‘this is very rare because we
already thought about this problem and we finally found
the algorithm then program it at the center computer. See
also Fig. 4.

In case that any input data reaches the critical value
(data is smaller/bigger than threshold value, predefined
by the user, for analog signal or data is different from
user predefined value for digital signal), we count up the
counter by 1. We continue to count up whenever any
input is critical and the counter value is less than the
upper bound counter limit. When all inputs change to a
normal value, we count down the counter by 1 and
continue to count down if all the next sampling inputs are

150

Memug‘ ‘ Memory
MN #1 I
' 1
] : ]
MN #2 I

it
(R

P i S i »

e e Pl Tim
Weiting Scanning Waiting Scamning
Time Time Time Time

Fig. 4: Scanning Process Chronogram

normal and the counter value is bigger than 0. Assume
now that the counter reaches the upper bound counter
limit, the CPU Module will tell the Radio link module to
send alarm message via SMS with the current input value
from all ports beginning by the message “Critical input
detected!” and then reset the counter. After the center
computer received the alarm message, it can send the
feedback command via SMS (script format) to the mobile
node to activate some output ports and reset alarm (it’s up
to the user customizations). Script format is defined by
character 60 and character 62 in ASCII mode. Any text
begins with ASCII character 60 and ends with character
62 will be considered as command word, for example:
<RESET> is used to reset alarm. The reason why we
implement this format is to avoid the accidental error
when unknown user sends a wrong message to this
mobile phone. In case that we do not send the reset alarm,
the mobile node will continue to report the critical port
whenever the counter reaches the Upper bound.

3. HARDWARE & SOFTWARE DESIGN FOR THE
CENTER COMPUTER (CENTRAL NODE)

3.1 Hardware

We need one mobile phone connected to the COM
port. Right now, we use ERICSSON T68. We implement
a Serial-to-I°C interface adapter for the Central node in
order to provide the end-user the ability to customize
their network during installation.

3.2 Software

We implement the same layer-2 protocol (as for
Radio link Module at Mobile node) and I*C protocol in
the Central node by using the VB programming language
(Visual Basic). Moreover, we create Graphic User
Interface and database (user Application layer) for
storing the Mobile node information such as mobile node
ID, phone number, location (province, district, section,
and description), and critical value, etc and also provide
the ability for the user to customize his own network by
changing the Input mask, Telephone number, etc. In
short, the user can change the data needed for Radio link
module and CPU module during the network installation.
We also provide some functionality to the user to save the
input data automatically to the user-predefined-folder,
plot the record data like in Excel, print the record, show



how many mobile nodes this system can support with the
current configuration, etc. The latter is implemented to
avoid the problem of not enough memory to store new
data at mobile node. After reading the message, the
program will automatically delete the message from the
center computer’s mobile phone preventing out of
memniory in the center computer’s mobile phone.

Note: If we set Sampling Period to 0, it means that
we do not want to save the input data but scan as fast as
possible (every 20 ms), so the GPS feature is disabled. In
fact, we can sample the input faster than this; however, as
we want to save the power and 20 ms sampling period is
fast enough, it was decided as a sampling period for our
applications.

To determine how many mobile nodes this system
can support and how long we can store the data before
send it to PC, the following formulas are used.

Nr =M/ ((F5*2) + H) (1)
T = Np*Tg* Fs (2)
N=TT, 3)

Where:

Nr : Number of Frames contained in the last half
memory.

M : Half Memory size constant. It is 32768 bytes
for 64kbytes memory.

Fg : Frame size defined by the user.

H : Time Header. It is used to indicate the

beginning of new frame. H = 7 bytes (Fig. 3).

T : Time needed to fill all that half memory.

Ts : Scanning period defined by the user.

Ty : Scanning time needed for 1 node. It is equal
to 4 min for 64kbytes memory.

N : Number of Mobile Nodes supported by this
system.

The longest Scanning time must be less than or equal
to the Waiting time. See Fig. 4 for more detail.

4, ACTUAL WORKS

As now we finish implementing our layer 2 protocols
(Fig. 2A and Fig. 2B), communication link between
mobile node and central node, algorithm that we use to
avoid the out of memory at mobile node, send/receive
SMS and script execution, so we have tested the
following applications:

e Remote Control via SMS: Dial with receive/send
SMS, script execution and digital output [8].

e Read temperature via SMS: Dial with receive/send
SMS, script execution and temperature sensor.

¢  Monitor the current in power transmission line:
Dial with analog input, exchange command and
signaling, data format and scanning process.

In all of the tested applications above, we are
satisfied with the results expected.

151

5. CONCLUSIONS AND FUTURE WORK

These applications are starting points for our future
work. It looks simple and different from our real target.
However, it can let us know and understand more about
what we need and what we should do in the following
steps. We intend to design and develop a pilot platform of
central and mobile nodes for tele-measurement sensor
network, which can support the functionalities stated
above in the very near future.

6. ACKNOWLEDGEMENT

The authors wish to thank the AUN/SEED-Net’s
Collaborative Research Support Project (JFY2004) for
supporting this work.

7. REFERENCES

[1]1L E. Akyildiz, W. Su, Y. Sankarasubramaniam, and E.
Cayirci, “A Survey on Sensor Networks”, Georgia
Institute of Technology, IEEE Communications
Magazine, August 2002, pp. 102-114.

[2]1D. Shepherd, “Networked Micro-sensors and the End
of the World as we know it”, I[EEE Technology and
Society Magazine, Spring 2003, pp. 17-21.

[3]Y. Kawahara, M. Minami, H. Morikawa, and T.
Aoyama, “Design and Implementation of a Sensor
Network Node for Ubiquitous Computing
Environment”, Proceeding of 58" IEEE International

Conference on Vehicular Technology, Vol. 5,
2003, pp. 3005-3009.

[4] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler,
and J. Anderson, “Design and Implementation of
Wireless Sensor Networks for Habitat Monitoring”,
Inte]l Research  Laboratory, Berkeley Intel
Corporation, EECS Department, University of
California at Berkeley, College of the Atlantic Bar
Harbor, htp.//www.cs.berkelev.edu/~polastre/papers/
masters.pdf, 2003.

[57A. N. Knaian, “A Wireless Sensor Network for Smart
Roadbeds and Intelligent Transportation Systems”,
Massachusetts Institute of Technology,
http.//www.media.mit.edu/resenv/pubs/theses/AraKnai

an-Thesis.pdf, 2000.

[6] T. Born and J. Glidden, “Computer Systems Senior
Design: “ A Linux-Based ‘Robot Control System”,
University of Arkansas at: Little Rock, Donaghey
College of Information Science and Systems
Engineering,
http./theduchy.ualr.edu/classes/sven4386/cs sd.pdyf,
2003.

[7]1S. B. Guthery, and M. J. Cronin, Mobile Application
Development with SMS and the SIM Toolkit,
McGraw-Hill, 2002.

(8]1D. Rey, Interfaces GSM, Montages pour téléphones
portables, FEditions Techniques et Scientifiques
Frangaises, Paris, 2004,




152

Author Biography

KY-Leng was born in 1979 in Battambang province, Cambodia. In
2001, he received his Dip. Ing. in Electrical Engineering from Institute of
Technology of Cambodia (ITC), Cambodia. From 2001, he has worked at
ITC as a full time lecturer. His research interests are in the mobile
communication system, electronics and computer programming.



	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	Abbreviations
	Chapter I Introduction
	Chapter II Proposed system
	Chapter III System implementation
	Chapter IV Performance evaluation
	Chapter V Cinclusion and recommendation
	References
	List of Publications
	Vita



