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NOMENCLATURE 
 

A, B, C, D Correlation constants for each compound 

Ci  Concentration of component i (mol/m3) 

Cpi  Liquid heat capacity at 293.15 K (J/(mol K)) 
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CHAPTER I 

 

INTRODUCTION 

 
 Methyl methacrylate (MMA), which is carried out for producing polymethyl 

methacrylate (acrylic plastics) and polymer dispersions, is an important chemical 

polymer intermediate. The world production capacity has been double increased in 

past 15 years and the MMA demand is still expected growth in the future (Spivey et 

al., 1997). The MMA can be manufactured by many routes (Nagai, 2001). An 

esterification of mathacrylic acid with methanol in a batch reactor is a successful 

route for producing MMA on account of providing the maximum yield (Witczak and 

Skrzypek, 2010). In a batch reactor with exothermic reactions, the heat-released of 

reactions in heating period may become very large very quickly and the heat-

generated exceeds the cooling capacity of the reactor (Konakom, Kittisupakorn and 

Muujtaba, 2008; Mujtaba, Aziz and Hussain, 2006). As a consequence, the 

temperature reaches to runaway. To overcome this problem, conventional control 

strategies have been carried out to solve this problem (Aziz, Hussain and Mujtaba, 

2000; Cho, Edgar and Lee, 2008; Babu and Jyotsna, 2001; Szeifert, Chovan and 

Nagy, 1999). In contrast, the conventional model based control strategies can be 

applied to control the systems, the controller performance be dependent on the 

accuracy of the mathematical model.  

 To improve the control performance, neural networks is a new interested 

approach that can be carried out successfully to capture the dynamics of nonlinear and 

complex systems (Alippi and Piuri, 1999; Mujtaba, Aziz and Hussain, 2006; Kim et 

al., 2004; Loh and Fong, 1995; Murray, Neumerkel and Sbarbaro, 1992; Yu and 

Gomm, 2003). Neural networks have the advantages of distributed information 

processing and the inherent potential for parallel computation. The potential for the 

processing and approximation relates to operating data without the prior knowledge of 

the process. It can learn adequately accurate models and give good non-linear control 

when model equations are not know or only partial state information is available. 

Neural networks can be employed to be a mathematical model, an estimator and a 
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controller. Kittisupakorn et al. (2005) demonstrated dynamic neural network 

modeling for hydrochloric acid recovery acid process to predict the concentration 

profile of a hydrochloric acid recovery process consisting of double fixed-bed ion 

exchange columns. Rusinowski and Stanek (2007) presented a method and example 

results of calculations of neural modeling of steam boilers. Charoenniyom et al. 

(2011) applied neural network to be a modeling for the methyl methacrylate 

production process in a batch reactor and Thampasato et al. (2011) proposed neural 

network modeling for a batch crystallizer. For the process control, Nueaklong et al. 

(2011) investigated neural network modeling for a hard chrome electroplating process 

to predict the plating solution temperature in a hard chrome electroplating bath and 

applied the neural network inverse model as a controller for controlling plating 

solution temperature to the desired temperature range. Daosud et al. (2005) presented 

the neural network for inverse model to be a controller for a steel pickling process. 

Kittisupakorn et al. (2009) presented a multi-layer feedforward neural network based 

model predictive control for a steel pickling process. The neural network for forward 

model is applied as mathematical model to predict the state variables in the model 

predictive control algorithm. For the use of a neural networks as an estimator, 

Arpornwichanop and Shomchoam (2009) applied neural network as an estimator to 

estimate the unmeasured state variables for fed-batch bioreactors.  

The goal of this work is to improve a control technique to control a MMA 

production process. To achieve this, this work is applied a neural network forward 

model to predict a dynamics behavior and a neural network inverse model to control 

the process integrated with the dynamic optimization. Both neural networks are 

trained based on Levenberg-Marquardt algorithm. Optimal structures of the neural 

network are chose based on mean square error (MSE). An obtained optimal structure 

for forward model is carried out to predict a reactor temperature over a prediction 

horizon within model predictive control algorithm for searching optimal control 

actions via successive quadratic programming (SQP). The neural network controls 

consist of a neural network direct inverse control (NNDIC) and a neural network 

based model predictive control (NNMPC). Robustness of the proposed controls is 

investigated with respect to parameters mismatch. In addition, this work presents a 

dynamic optimization to find out an optimal operating temperature to achieve 
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maximizing the MMA product. An optimal temperature result is represented a set 

point for the control design. 

 

1.1 Research Objective 

  

 The objective of this research is aimed at carrying out process modeling for the 

prediction of the concentration and the temperature profiles of the MMA and the 

controller design of a based neural network in a batch reactor for the MMA 

production.  

 

1.2 Scopes of Research 

 

 The scopes of this research are as follows. 

 1.2.1 The MMA production process for esterification of a methacrylic acid with 

methanol in a batch reactor is studied in this research. 

 1.2.2 A neural network forward model is applied to predict a concentration of 

methyl methacrylate and a reactor temperature, and a neural network inverse model to 

predict a set point of a jacket temperature. The neural network forward and inverse 

models have been developed based on Lenvenberg-Marquardt training algorithm.

 1.2.3 The neural network base model predictive control (NNMPC) and the 

neural network direct inverse control (NNDIC) are developed to be a controller for 

the temperature control in the batch reactor of the production.    

  

1.3 Contributions of Research 
  

 The main contributions of this research are as follows. 

 1.3.1 The neural network for the prediction temperature profile in a batch 

reactor of the MMA production process has been used to represent the process. 

 1.3.2 The NNDIC controller and NNMPC controller has been developed to 

control the MMA production process to a target value desired. 
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1.4  Methodology of Research 

 

  The methodologies of this research are as follows. 

 1.4.1 Literature review and plan research is studied. 
 1.4.2 Mathematical model of a MMA production and neural network modeling 

of the MMA production is created.  
 1.4.3 An optimal neural network forward model for a prediction of a 

concentration and temperature profiles, and an optimal neural network inverse model 

for a prediction of a set point of jacket temperature profile of the MMA production is 

determine. 
 1.4.4 A dynamic optimization is applied to find an optimal operating 

temperature to achieve maximizing the desired product. 
 1.4.5 NNDIC controller design to control temperature in the batch reactor is 

created. 
 1.4.6 NNMPC is created 

 1.4.7 All simulation results are collected and summarized. 
 1.4.8 Data analysis and writing a thesis is prepared 
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CHAPTER II 

 

LITERATURE REVIEWS 
 

 This chapter presents literature reviews of a MMA production process, a neural 

network for modeling and a neural network based control. 

 

2.1. Methyl methacrylate Production Process 

 

 Methyl methacrylate can be produced in different ways on C2-C4 hydrocarbon 

feed stocks. In the present review, the recent commercialized and expected MMA 

technologies will be described and a comparison of these production routes. While 

Rohm and Hass Co. began to industrially produce a methacrylic ester (ethyl 

methacrylate) first in 1933, ICI reformed the Rohm’s method and commercialized 

MMA in 1937 by acetone cyanohydrine (ACH) process. Recently, MMA can be 

produced in many routes. Most of these new processes have been developed for an 

environmentally friendly production of MMA and thereby the development of 

catalysts was the key technology.    

 Koichi Nagai (2001) studied routes of a MMA production in different ways 

base on C2, C3 and C4 hydrocarbon and demonstrated the recent commercialized and 

expected MMA technologies. In addition, this paper presents the comparison between 

advantages and disadvantage of each production processes.  

 Hai-feng et al. (2006) presented intermetallic Pb-Pb catalysts to produce MMA 

base on direct oxidative esterification of methacrolein with methanol in a slurry 

reactor. The reaction was operated at 80 °C, 3.8% (w) of catalyst, 2 hour. Resulting, 

the selectivity and the yield of MMA were 90% and 76.5%, respectively. 

 Witczak et al. (2010) studied the esterification kinetics between methacrylic 

acid and methanol with heteropolyacids catalysts in a batch reactor. The reaction was 

operated at 313 K to 348 K and initial molar ratios of reactants from 3 to 10.  In 

addition, this paper shows an effect of catalyst, temperature and molar ratio. 

Resulting, these catalysts can be used instead homogeneous catalysts. 
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2.2. Neural Network Modeling and Controller Design 

 

 Recently, neural networks have been successfully applied for controlling and 

modeling in many chemical processes which are complexity and non-linearity. Neural 

networks only require an input and an output data from plant and have the advantages 

of distributed information processing. In many cases, when sufficiently rich data are 

available, it can provide fairly accurate models for nonlinear controls when model 

equations are not known or only partial state information is available (Kittisupakorn, 

2009).   

 Limpornchaijaroen (1996) demonstrated recurrent feedforward neural network 

for modeling of gravity flow tank process and continuous stirrer tank reactor. Neural 

network inverse models for process control are studied composing of adaptive neural 

network controller (1), adaptive neural network controller without error (2), adaptive 

neural network controller with error (3), nonlinear internal model controller (4) and 

simple feedback neural network controller (5). In addition, this paper presents the 

comparison of their controller performance of set point changing, load changing and 

parameter changing. In the simulation results for set point changing, the controllers 

number 2, 3, 4 and 5 have better performance than the PID controller. For load 

changing, the controllers number 4 and 5 have better performance than the PID 

controller. For parameter changing, the controllers number 1, 2, 3 and PID controller 

are overshoot less than controller number 4 and 5. 

 Nanmjaruskochakorn (1997) studied model temperature changing of a liquid 

steel in a BOF’s process during tapping and adding some additive using neural 

networks. This study shows that an optimal architecture of neural network for process 

modeling consists of 11 nodes in an input layer, 4 nodes in a hidden layer and a node 

in an output layer. A learning rate and momentum values of the neural network 

prediction are 0.01 and 0.5, respectively. An error of the forecast model to the real 

values was found to be 7 ºC. 

 Somsiri (1997) applied neural network to determine temperature profile of a 

liquid steel in a BOF’s process. In addition, this paper presents neural network 

parameters and process parameters which effect to a process temperature. The 

simulation results show that an optimal neural network architecture consist of 11 input 
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nodes in an input layer, 4 nodes in a hidden layer and 1 node in an output layer. A 

learning rate and momentum of neural network prediction are 0.01 and 0.5, 

respectively.  

 Tangteerasunun (2004) proposed neural network models for a prediction of a 

concentration profile of hydrochloric acid in a pickling process that is complexity and 

highly nonlinear. The network is trained using backpropagation and Lenvenberg-

Marquaedt techniques and MSE minimum technique is used to find an optimal neural 

network architecture. Resulting, the optimal neural network architecture of 

concentration of cation resin from 0 to 3,000 ppm, 3,000 to 6,000 ppm and 

concentration of anion resin from 0 to 2,000 ppm were [5-11-13-2],  [5-8-9-2] and [5-

13-13-2] respectively. The simulation result shows that the multilayer feedforward 

neural network models with two hidden layers provide sufficiently accurate prediction 

of the process. 

 Daosud (2005) investigated the use of a neural network direct inverse model-

based control strategy (NNDIC) to control a steel pickling process. An optimal neural 

network architectures are determined by the mean squared error (MSE) minimization 

technique. The robustness of the proposed inverse model neural network control 

strategy is investigated with respect to change in disturbances, model mismatch and 

noise effects. Simulation results show the superiority of the NNDIC controller in the 

cases involving disturbance, model mismatch and noise while the conventional 

controller gives better results in the nominal case. 

 Saeyang (2005) described a neural network model to predict a solid percentage 

and viscosity of shampoo in a shampoo production tank. The neural network is trained 

using backpropagation and Lenvenberg-Marquardt algorithm. Accuracy evaluation of 

the receiving model is determined base on Root Mean Square Percent (RMSP) Error 

and Maximum Percent (MP) Error. The simulation results show that the multiplayer 

feed forward neural network model with 5 nodes in first hidden layer and 9 nodes in 

second hidden layer provides the best prediction of solid percentage and viscosity. 

The RMSP and MP of an optimal neural network structure for the prediction of solid 

percentage and viscosity are 9.71%, 8.83%, 15.73% and 42.83%, respectively. 

 Daosud (2006) proposed a neural network based model predictive control for 

multivariable system in a steel pickling process to control hydrochloric acid 
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concentrations in acid baths. The neural network is trained using Lenvenberg-

Marquardt algorithm. The achieving algorithm is tested to control in many cases 

consisting of set point changing, disturbance, model mismatch and presence of noise. 

In addition, this paper shows the comparison between two different control strategies 

consisting of neural network direct inverse control (NNDIC) and Dual mode (DM). 

Resulting, the DM control gives good control for the steel pickling process and 

removes the offset when compared to NNDIC and PI controller. 

 I. M. Mujtaba, N. Aziz and M. A. Hussain studied three different types of 

nonlinear control strategies composing of a generic model control, a direct inverse 

model control and a internal model control and implemented in batch reactors using 

neural networks techniques. In addition, a dynamic optimization problem with a 

simple model are solved a priori to obtain optimal operation policy in term of reactor 

temperature with an objective to maximize the desired product in a given batch time. 

The simulations show that all types of controller perform well the tracking the optimal 

temperature profile and achieving target conversion to the desired product.  

 Shomchom (2006) demonstrated an on-line optimal control with a neural 

network estimator of an ethanol production in a fed-batch reactor to modify an 

optimal feed profile. The neural network is applied to estimate unmeasured state 

variable. The simulation results show that the on-line optimal control with the neural 

network estimator gives a better performance than an off-line optimal control.   

 Neueaklong et al. (2011) presented a neural network modeling for a hard 

chrome electroplating process to predict a plating solution temperature in a hard 

chrome electroplating bath. The aim was to apply the neural network inverse model-

based control (NNDIC) strategy for controlling plating temperature to desired 

temperature range. For the performance comparison between the NNDIC and a 

conventional PI control under nominal case and mismatch cases, it is found that the 

conventional PI controller gives better results than NNDIC in both cases. 
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2.3 Neural Network base Model Predictive Control  

 

 MPC is an advanced method of process control that has been in use in the 

process industries. The model used in MPC is generally intended to represent the 

behavior of complex dynamic systems. However, the performance for behavior 

prediction of MPC depended on model accuracy.  Recently, neural network modeling 

is achieved to solve this problem for prediction the process outputs. Neural network 

based model predictive control (NNMPC) are used in many control configurations 

and can be applied in plant uncertainties (Kittisupakorn et al., 2009; Ławryńczuk, 

2008; Damour et al.; 2010).    

 Wei et al. (2002) proposed MPC strategy based on a feedforward neural 

network model for polypropylene process. In order to infer on line product properties, 

a dynamic process model was developed. A recursive prediction error method was 

used to update the model parameters when there is a significant model prediction 

error. To obtain an optimal control strategy during grade transitions, a nonlinear MPC 

controller was applied based on a neural network model which is trained using an 

inputs and an outputs data of a process model. Performance of the nonlinear controller 

was compared with a conventional PID controller. The results indicate that the MPC 

controller can obtain satisfactory performance and consequently results in significant 

reduction in transition time and product variability. 

 Daosud (2006) presented a neural network based model predictive control 

strategy (NNMPC) for improvement of a steel pickling process. The controlled 

variables are the hydrochloric acid concentrations in the acid baths. In the training 

step for modeling, multiple-input single-output multilayer feedforward neural network 

models are developed using input-output data sets which obtain from mathematical 

model simulation. In the control algorithm, the neural network models are applied for 

prediction of the future process response in a model predictive control (MPC) 

algorithm to determine an optimal control actions using the successive quadratic 

programming (SQP). The algorithm is tested to control in the steel pickling process. 

The simulation results show that the NNMPC is better performance than conventional 

PI controller.  
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 Kiran and Jana (2009) demonstrated cell growth and metabolite production 

greatly depending on the feeding of the nutrients in fed-batch fermentations. A 

strategy for controlling the glucose feed rate in fed-batch baker’s yeast fermentation 

and a novel controller was studied. The different between the specific carbon dioxide 

evolution rate and oxygen uptake rate was applied as controller variable. The neural 

network based model predictive is developed to be a controller. The performance of 

the controller was evaluated by the set point tracking. The result shows that the 

controller is a good performance for control. 

 Kittisupakorn et al. (2009) developed a multi-layer feedforward neural network 

model based predictive control. In the acid baths three variables under controlled are 

the hydrochloric acid concentrations. In the modeling, multiple input, single output 

recurrent neural network subsystem models are developed using input–output data 

sets obtaining from mathematical model simulation. In the control (MPC) algorithm, 

the feedforward neural network models are used to predict the state variables over a 

prediction horizon within the model predictive control algorithm for searching the 

optimal control actions via sequential quadratic programming. The proposed 

algorithm is tested for control of a steel pickling process in several cases such as for a 

set point tracking, a disturbance, a model mismatch and presence of noise. The results 

for the neural network model predictive control (NNMPC) overall show better 

performance in the control of the system over the conventional PI controller in all 

cases. 

 Konakom et al. (2010) proposed neural network-based model predictive control 

(NNMPC) for definition optimal policy tracking and determined by dynamic 

optimization of a batch reactive distillation column. Multi-layer feedforward neural 

network model and estimator are developed and used in the model predictive control 

algorithm. The simulation results show that the NNMPC provides satisfactory control 

performance for set point tracking problems. The robustness of the NNMPC is 

investigated with respect to plant/model mismatches and is compared with a 

conventional proportional controller (P). It has been found that the NNMPC provides 

better control performance than the P controller does in all cases. 
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CHAPTER III 

 

THEORY 

 
3.1 Methyl methacrylate 

  

 Methyl methacrylate (CAS No. 80-62-6) is a clear liquid state, colorless, 

volatile and flammable liquid with ester-like odors. Its vapor is irritating to the eyes, 

nose and throat. Fire should be extinguished with carbon dioxide, dry chemical or 

foam. The general property following the table 3.1   

 
Figure 3.1 Molecular structure of MMA 

 

Table 3.1 MMA property  

Property MMA 

Molecular formula 
Molecular weight 
Appearance 
Density 
Melting point 
Boiling point 
Water solubility 
Viscosity 

C5H8O2 
100.12 g/mol 

Colorless liquid 
0.94 g/cm3 

-48 °C 
101 °C 

1.5g/100ml (25 °C) 
0.6 cP at 20 °C 

 

The most of MMA is polymerized to produce homopolymers and copolymer 

with the largest application being the casting, molding or extrusion of polymethyl 

methacrylate (PMMA) or modified polymers. A major application of MMA polymers 

and copolymers is in surface coatings and impregnation resins to give color fastness 

and weather-resistance properties to latex paints and lacquer resins. 
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3.2 Methyl methacrylate Manufacturing 

 

The present and proposed manufacturing routes for MMA based on natural gas 

or crude oil raw materials. It is convenient to further categorize these various 

manufacturing routes according to the specific raw materials. Specifically, Figures 3.2 

shows outline general routes based on propylene, ethylene and isobutane/isobutylene. 

Methanol is a common raw material for all process to produce MMA. The 

commercial viability of a process is determined by the aggregate of raw material cost 

and utilization, operating costs with particular attention to energy related charges, 

waste disposal costs, environmental impact and plant capital investment.  

3.2.1 C2 routes 

   Ethylene can be used to produce MMA via propionaldehyde, propionic 

acid or methyl propionate. The key step of this route is the condensation reaction of 

such an intermediate with formaldehyde to make methacrolein, methacrylic acid and 

MMA. 

  1) BASF’s process: In this route, MMA is made from ethylene via 

propionaldehyde, methacrolein, methacrylic acid as follows: 

 

   CH2=CH2 + CO + H2 CH3CH2CHO (3.1) 

   

   CH3CH2CHO + HCHO CH2=CH(CH3)-CHO+H2O (3.2) 

   

   CH2=CH(CH3)-CHO CH2-C(CH3)-COOH (3.3)

    

   CH2-C(CH3)-COOH MMA (3.4) 

(CH3)2NH 

O2 

CH3OH 
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 Figure 3.2 Routes to MMA 
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  2) Other C2 route  

   Propionic acid or methyl propionate process have been examined in 

many enterprises for a long time. Propionic acid is produced by hydrocarbonylation 

reaction of ethylene for which metal carbonyl is used as a catalyst, or by oxidation of 

propionaldehyde and methacrylic acid. If one of these methods would be 

industrialized, it could become a simple and excellent process because of its fewer 

steps. 

 

   CH3CH2COOH+HCHO CH2=C(CH3)-COOH + H2O (3.5) 

 

   CH3CH2COOCH3+HCHO CH2=C(CH3)-COOCH3+H2O (3.6) 

 

 3.2.2. C3 routes 

 1) New Acetone Cyanohydrins (ACH) process 

   The conventional ACH method is based on the C3 route. In this 

process, ACH is hydrated to α-hydroxy isobutylamide with the manganese oxide 

catalyst in absence of sulfuric acid and then is esterified by methylformate to provide 

methyl-hydroxy isobutylate. Methylformate becomes formamide at this time. After 

that, the formamide is dehydrated to give hydrogen cyanide (HCN) which is recycled 

in the ACH preparation process. Methyl α-hydroxy isobutylate is converted to MMA 

in dehydration reactions. 

 

 (CH3)2–C(OH)CN+H2O (CH3)2–C(OH)CONH2 (3.7) 

   

 (CH3)2–C(OH)CONH2+HCOOCH3→(CH3)2C(OH)COOCH3+HCONH2 (3.8) 

   

 (CH3)2–C(OH)COOCH CH2=C(CH3)COOCH3 + H2O (3.9) 

   

 HCONH2 → HCN + H2O   (3.10) 
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HF 

  2) Isobutyric acid process 

   In this route, methacrylic acid is made from propylene and isobutyric 

acid and this route is researched by Atochem and Rohm. Propylene, carbon 

monoxide, water and large quantities of hydrogen fluoride are mixed at low 

temperature. After that, the methyl methacrylate is produced by the oxidation of 

isobutyric acid. Main problems of this route are dangerous of hydrogen fluoride and 

corrosion. 

 

   CH2=CHCH3 + CO + H2O → (CH3)2–CHCOOH (3.11) 

 

   (CH3)2–CHCOOH + 2
1

O2 → CH2=C(CH3)COOH + H2O (3.12) 

 
   
 3.2.3 C4 routes 

  1) Escambia process 

    Isobutylene is oxidized to provide α-hydroxy isobutyric acid using 

N2O4 and nitric acid at a low temperature of 5–10 ºC in liquid phase. After 

esterification and dehydration, MMA is obtained. However, this process does not 

seem to be economical by favorable because the yield is not sufficient and there are 

some problems such that large amounts of nitric acid and NOx should be handled.  

  2) Methacrylonitrile (MAN) process 

   Asahi Chemical Co. developed and commercialized a route via 

methacrylonitrile (MAN) for MMA production.  

 

 (CH3)3C–OH + NH3 + 32O2 → CH2=C(CH3)CN + 4H2O (3.13) 

 

 CH2=C(CH3)CN + H2SO4 + H2O → CH2=C(CH3)–CONH2·H2SO4 (3.14) 

 

 CH2=C(CH3)–CONH·H2SO4 + CH3OH 

  → CH2=C(CH3)COOCH3 + NH4HSO4  (3.15) 

  



31 
 

   MAN process can be produced by ammoxidation almost in the same 

step as acrylonitrile which is produced in large quantities. Afterwards, MAN process 

has been hydrated by sulflic acid to methacrylamide. The same process as in 

conventional ACH was adopted because the yield of MAN process can be equal to 

that of acrylonitrile and the total yield is superior to the above-described two-step 

oxidation method. 

  3) Direct oxidative esterification process 

   Asahi Chemical established and started in 1998 a new process based on 

direct oxidative esterification of methacrolein which does not produce by-products 

such as ammonium bisulfate. The raw material is the same tert-butanol as in the direct 

oxidation method. In contrast with the direct oxidation process, this direct oxidative 

esterification process has only two steps. Methacrolein is produced in the same way as 

in the direct oxidation process by gas phase catalytic oxidation, is simultaneously 

oxidized and is esterified in liquid methanol to get MMA directly.   

 

 CH2=C(CH3)–CHO + CH3OH + 12O2 → CH2=C(CH3)–COOCH3 + H2O (3.16) 

   

  4) C4 direct oxidation process 

  The reactions by the direct oxidation method consist of two-step: 

Firstly, the oxidation of isobutylene or TBA with air to produce methaacrolein and 

then oxidation of methaacrolein to produce methacrylic acid. Secondly, the 

esterification by methanol to produce MMA 

 

 CH2=C–(CH3)2 (or (CH3)3C–OH)+O2→CH2=C(CH3)–CHO+H2O (3.17) 

 

 CH2=C(CH3)–CHO+ 2
1

O2 → CH2=C(CH3)–COOH (3.18) 

 

 CH2=C(CH3)–COOH+CH3OH → CH2=C(CH3)–COOCH3+H2O (3.19) 
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 In this research, MMA is produced by esterification between methacrylic acid 

and methanol with dodecatungstophoric acid catalyst and reaction carried out in the 

liquid phase as follow:  

 
 CH2=C(CH3)-COOH + CH3OH          CH2=C(CH3)-COOCH3+H2O (3.22) 

 

 Esterification is a chemical reaction used for making esters. The reaction in 

which a caboxylic acid combines with an alcohol in the presence of a catalyst 

(commonly concentrated sulphuric acid) to form an ester is called Esterificatin 

reaction. It is reversible reaction. The esters so formed are fruity in odors. They are 

sweet smelling compound.  

 

3.3 The Mathematical Model for Methyl Methacrylate Process 

 

 The mathematical model for esterification reaction of a methyl methacrylate in a 

batch reactor is studied to describe in this simulation work.  

 

 CH2=C(CH3)-COOH + CH3OH          CH2=C(CH3)-COOCH3+H2O (3.23)  

    (A)        (B)      (C)          (D) 

  

 The kinetic equation of the esterification reaction of methacrylic acid with 

methanol obtained from Witczak et al. (2010) is assumed reversible reaction occur in 

liquid phase as show below:  

 

  DC
C

CcatCk
.

C
C

BCACcatCkAR 7.02301   (3.24) 

 

 where CA, CB, CC, CD and Ccat refer to concentration of methacrylic acid, 

methanol, methyl methacrylate, water and catalyst in mol/m3, respectively. 

 The reaction rate constants (k1, k2) at several temperatures determined based on 

the basis of the experimental data, were used to establish the activation energy (Ea) 
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and the frequency factor (k0). To do so, an Arrhenius-type temperature dependence of 

the reaction constants was used. 

  )
rRT

aE
(kk exp0  (3.25) 

 

 where R is the gas constant. 

 From Witczak et al. (2010), the reaction rate constants for this reaction are 

described by the following equations.  

   

  )
63600

exp(9601 rRT
k   (3.26) 

  )
67320

exp(6002 rRT
k   (3.27) 

 

 3.3.1 Mass balance 

  The mass balance describes the change of each components in a batch 

reactor which is expressed as follows: 

 

   AR
dt

AdC
  (3.28) 

   AR
dt

BdC
  (3.29) 

   AR
dt

CdC
  (3.30) 

   Ä
D R

dt
dC

  (3.31) 

  

 3.3.2 Energy balance 

  The energy balance describes the change of temperature in a reactor and a 

jacket. Assuming the amount of heat retained in the walls of the rest of the system, an 

energy balance around the reactor give the following model. 

            (3.32) 

rCpV
jQrQ

dt
rdT





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jCpjpjV

jQ)jTjsp(TrCpjpjF

dt
jdT 
  (3.33)  

     Qr  = -ΔHRAV (3.34) 

   )rTjUA(TjQ   (3.35) 

 

  where Q, HΔ and U are heat released from reaction (kJ/min), heat of 

reaction (kJ/kmol) and heat transfer coefficient (kJ/(min m2 °C)), respectively. 

   

3.4 Neural Networks Introduction 

  

 The original inspiration for the term Artificial Neural Network came from 

examination of central nervous systems and their neurons, axons (sends signals), 

dendrites (receives signals) and synapses (connects an axon to a dendrite) which 

constitute the processing elements of biological neural networks investigated by 

neuroscience. Axons are signals sender to dendrites which are signals receiver and the 

axons and dendrites are connected by synapses. In an artificial neural network simple 

artificial nodes are called variously such as neurons, processing elements (PEs) or 

units. These neurons are interconnected to each other in complex arrangements to 

transmit the information between the brain and receptors. Figure 3.3 shows a 

schematic sketch of the natural sets of neurons that consist of axons, dendrites, 

synapses and soma (cell body).  

http://en.wikipedia.org/wiki/Central_nervous_system
http://en.wikipedia.org/wiki/Neuron
http://en.wikipedia.org/wiki/Axons
http://en.wikipedia.org/wiki/Dendrites
http://en.wikipedia.org/wiki/Synapses
http://en.wikipedia.org/wiki/Biological_neural_networks
http://en.wikipedia.org/wiki/Neuroscience
http://en.wikipedia.org/wiki/Node_(neural_networks)
http://en.wikipedia.org/wiki/Artificial_neuron
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Figure 3.3 Axons, dendrites and synapse in a biological neuron 

 

 The mentioned basic concept of biological neural network lead to research in 

the area of the mechanism and model of human brain including develop the model to 

solve complex problems in science and engineering. The first artificial neuron was 

created in 1943 by McCulloch and Pits. They proposed the model of a simple neuron 

which seemed appropriate for modeling symbolic logic and its behavior.  

 

3.5 Components of Neural Networks  

 

 The neural networks consist of many interconnected neurons or nodes and many 

functions for calculation of neural networks outputs. In each node, there are many 

components that are used to build a neural network. These components are described 

as the follow: 

 3.5.1 Summation function 

  Summation function, which is mathematical mapping with function u(w,x) 

where w, x refer to metric weight and input vector, respectively, is used to combine 

inputs signal from each nodes. The simplistic summation function is found by 

multiplying each components of x vector by the corresponding component of w vector 

and then adding up all the products. Summation function is applied to transform those 
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inputs signal to next function that is transfer function. The summation equation as 

show below:   

    ui(w,x)  =   


n

j jixijw
1

  (3.36) 

  where x and w are the column vector of n inputs and row vector of n 

weights as follow: 

 

    x           =     [x1, x2, x3, …, xn]T (3.37) 

 

    w         =      [wi,1, wi,2, wi,3, …, wi,n] (3.38) 

 

 3.5.2 Transfer function  

           Transfer function or activation function transformed summation or net 

that receive from outputs of summation function to neural network outputs. In the 

transfer function, the total summation of the inputs and the weighting factors can be 

compared with some threshold to determine the neural network outputs. The transfer 

functions as show below:   

  1)  Linear transfer function 

   The linear transfer function is utilized in the output layer for output 

expansion purpose. The result that receives from this transfer function is a linear and 

the calculation can be expressed as equation (3.40) and figure 3.4. 

 

        1, if net ≥ 1 

     f (net)  =   net   if  -1 < net  < 1 (3.39) 

                              -1, if net ≤ -1 

 

  2) Log-Sigmoid transfer function 

   The Log-Sigmoid transfer function is a subset of nonlinear transfer 

functions. This transfer function will convert high positive value into 1 and converted 

high negative value into 0. The calculations of the transfer function as show in 

equation (3.41) and figure 3.5. 
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     f (net)  =   nete1
1    (3.40) 

 

 

 
 

Figure 3.4 Linear transfer function 

 

 

  
 

Figure 3.5 Log-Sigmoid transfer function 
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  3) Tan-Sigmoid transfer function 

   One of nonlinear transfer functions is Tan-Sigmoid transfer function. 

The transfer function will transform high positive value into 1 and converted high 

negative value into -1. The equation and figure are shown below: 

 

    f (net)  =   netenete

netenete


    (3.41) 

 

 
 

Figure 3.6 Tan-Sigmoid transfer function 

 

 3.5.3 Error function    

  An objective of a network training is to minimize difference values 

between target values and network output values until the difference values less than 

expect value. The difference values are transformed to an error function that has an 

effect to the network structure. Type of error function are given by  

  1)  Sum square error 

   This error function is combination of square difference between 

network output values y and target values p.  

    SSE = 
2

1
)(




N

i ipiy   (3.42) 

 

f (net) 

net 

-1 

+1 

0 
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  2)  Mean square error 

   This error function measures the average of the square error. The error 

is the amount of quantity difference between network output values y and target 

values p and N refer to numbers of data.  

 

    MSE = 
2

1
)(1





N

i ipiy
N

 (3.43) 

 

 3.5.4 Learning Function 

  The purpose of the learning function is adjusting of the connection weight 

values that connect the inputs of each processing elements to achieve the desired 

results. Information is stored and distributed throughout the network via the 

interconnection weights. There are classified into two types: 

 

 Table 3.2 Learning functions 

 

Learning algorithm 

Supervised learning Unsupervised learning 

Perceptron Additive Grossberg (AG) 

Adaline Adaptive Resonance Theory (ART) 

Backpropagation Continuous Hopfield (CH) 

Boltzman Machine (BM) Learning Matrix (LM) 

Associate Reward Penalty (ARP) Learning Vector Quantizer (LVQ) 

 

  1) Supervised learning 

   A supervised learning requires a teacher for determination network 

outputs that accord with teaching data. In the learning network, a training process 

consists of the input and output data. During the training, the neural network output is 

compared to the teaching data and the weight values are adjusted for the network 

outputs according with teaching data that is target value. This learning algorithm tries 

to minimize the difference between teaching data and the network output. This 

http://en.wikipedia.org/wiki/Expected_value
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different values are called error. This error reduction is created over time by 

continuously modifying the input weights until acceptable network accuracy is 

reached. 

 

 
 

Figure 3.7 Supervised learning 

 

  2) Unsupervised learning 

   An unsupervised learning or self-supervised learning does not require a 

teacher for determination network outputs. The network determines using only inputs 

data. Sometimes this learning algorithm is called self-supervised learning. These 

networks look for regularity or trend in the input signals and make adaptations 

according to the function of the network. 

 

 
 

Figure 3.8 Unsupervised learning 
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3.6 Neural Networks Architecture 

 

 3.6.1 Network Structure 

  1) Feedforward neural networks allow the signals travel from an input to 

an output one way only. There is no feedback in the network such as the output of any 

layer. Feedforward neural networks tend to be straight forward networks that 

associate inputs with outputs. 

 

 
 

Figure 3.9 Feedforward neural networks 

   

  2) Feedback neural networks, which allow the signals travel in both 

directions of the network, are very powerful networks. These networks are dynamic 

which their states change continuously until they reach an equilibrium point. These 

remain at the equilibrium point until the change and a new equilibrium need to be 

found. 
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Figure 3.10 Feedback neural networks 

  

 3.6.2 Network Layers 

  The number of operating nodes in parallel are called layer. A layer of a 

neural network consists of the input vector p, a weight matrix w, the summation units, 

the bias vector b, the transfer function units and the output vector a. Each elements of 

the input vector is connected to each nodes in each layers though the weight matrix. 

The simply neural network structures compose of a layer that is an output layer. In a 

single-layer neural network, the structure does not have a hidden layer and shows in 

figure 3.9. The multi-layer neural network structure consists of hidden layer(s) and 

output layer and shows in figure 3.10. The input vector represents the raw information 

that is fed into the network. A hidden layer is between an input and an output layer. 

An output layer is the last layer of the networks that depends on the activity of the 

hidden layers and the weights between the hidden and output layers   
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Figure 3.11 Single-layers neural networks 

 

  The matrix p, which is previously defined, consists of individual inputs p1, 

p2, p3,…, pR. There inputs are connected to each nodes though the weight matrix w 

which is now becoming an S×R matrix as defined below: 

 

    w  = 

RSRSSS

R

R

www

www
www























,2,1,

,22,21,2

,12,11,1









 (3.44) 

 

    b =    121 S
T

Sbbb   (3.45) 

   

    a =    121 S
T

Saaa   (3.46) 

 

  The network output can be expressed as follows: 

 

    a 1S  = f   11*   SRRS bpw  (3.47) 
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  Now consider a network with several layers. Each layer has its own 

weight matrix, its own bias vector, a net input vector and an output vector. Figure 

3.12 introduces some additional notation to distinguish between these layers. This 

figure will use superscripts to identify the layers. Specifically, this figure is appended 

the number of the layer as a superscript to the names for each of these variables. Thus, 

the weight matrix for the first layer is written as w1, and the weight matrix for the 

second layer is written as w2. This notation is used in the three-layer network.  

 

 
 

Figure 3.12 Multi-layers neural networks 

   

  As shown, there are R inputs, a1 nodes in the first layer, a2 nodes in the 

second layer, etc. As noted, different layers can have different numbers of nodes. The 

outputs of layers one and two are the inputs for layers two and three. A layer whose 

output is the network output that is called an output layer. The other layers are called 

hidden layers. The multi-layer neural network in Figure 3.12 has an output layer 

(layer 3) and two hidden layers (layers 1 and 2). 
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3.7 Training Algorithm 

 

 The aim of network training is to minimize error between targets and network 

outputs. Training is procedure to determine optimal values of the connection weights 

and biases. Training is begun by initially assigning arbitrary small random values to 

the weights. This proceeding is iterated until a satisfactory model is obtained. In this 

work, we concerned the feedforward neural network which utilizes the supervised 

training method.  

  3.7.1 Back propagation Algorithm (Zilouchian and Jamshidi, 2001) 

  Back propagation algorithm is one of the most popular algorithms for 

training a network due to its success from both simplicity and applicability 

viewpoints. The algorithm consists of two phases: Training phase. In the training 

phase, first, the weights of the network are randomly initialized. Then, the output of 

the network is calculated and compared to the desired value. In sequel, an error of the 

network is calculated and used to adjust the weights of the output layer. In a similar 

fashion, the network error is also propagated backward and used to update the weights 

of the previous layers. Figure 3.13 shows how the error values are generated and 

propagated for weights adjustments of the network. In the recall phase, only the 

feedforward computations using assigned weights from the training phase and input 

patterns take place. Figure 3.12 shows both the feedforward and back propagation 

paths. The feedforward process is used in both recall and training phases. On the other 

hand, as shown in Figure 3.12 (b), back propagation of error is only utilized in the 

training phase. In the training phase, the weight matrix is first randomly initialized. 

After that, the output of each layers are calculated starting from the input layer and 

moving forward toward the output layer. Thereafter, the error at the output layer is 

calculated by comparison between actual output and the desired value to update the 

weights of the output and hidden layers. 
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Figure 3.13 Back Propagation of the Error in a Two-Layer Network 

 

 

 
a) Forward propagation  

 

 

 
b) Backward propagation  

 

 Figure 3.14 Forward Propagation and Backward Propagation in Training Phase 
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  There are two different methods of updating the weights. In the first 

method, weights are updated for each input patterns using an iteration method. In the 

second method, an overall error for all the input output patterns of training sets is 

calculated. In other words, either each of the input patterns or all of the patterns 

together can be used for updating the weights. The training phase will be terminated 

when the error value is less than the minimum set value provided by the designer. For 

the disadvantages of back propagation algorithm, the training phase is very time 

consuming. During the recall phase, the network with the final weights resulting from 

the training process is employed. Therefore, for every inputs pattern in this phase, the 

output will be calculated using both linear calculation and nonlinear activation 

functions. The process provides a very fast performance of the network in the recall 

phase. There is one of its important advantages. The methodology of the conventional 

backpropagation method is mentioned below (Hussain, 1994):  

 Inputs are summed and propagated to the hidden layer for a node j as: 

 

   



Ni

i jbipijWjnet
1

1  (3.48) 

 

 Output from node j is given by 

 

   )(2
jnetfja    (3.49) 

  

 where f is the transfer function or activation function used in the hidden nodes 

 Hidden layer output is propagated to node k at the output layer given as: 

 

   



jN

j kbjakjWknet
1

2  (3.50) 

  

 Output from the node k is: 

   )(3
knetfka    (3.51) 
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 Error is calculated at the output layer as: 

 

   2

1

3 )(
2
1




kN

k
kk ape  (3.52) 

  

 Weights are adjusted along the negative gradient descent of the error given as: 

 

   
kjw
e

kjw



   (3.53) 

  

 Weights in the output and the hidden layers are then corrected using equations 

below: 

   



kN

k
kjkijjji waaaw

1

3122 )1(   (3.54) 

 and  2333 )1()( jkkkkkj aaaapw    (3.55) 

 

  The constant η (called the learning rate, and nominally equal to one) is put 

in to speed up or slow down the learning if required. 

  The gradient descent is simply the technique where parameters, such as 

weights and biases, are moved in the opposite direction to the error gradient. Each 

step down, the gradient results in smaller errors until an error minimum is reached. 

The network can get a better performance using an approximation of Newton’s 

method called Levenberg-Marquardt. This technique is more powerful than the 

gradient descent, but also requires more memory. 

 3.7.2 Levenberg-Marquardt method  

  Like the quasi-Newton methods, the Levenberg-Marquardt algorithm was 

designed to approach second-order training speed without having to compute the 

Hessian matrix. When the performance function has the form of a sum of squares (as 

is typical in training feedforward networks), then the Hessian matrix can be 

approximated as 

   JTJH   (3.56) 
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and the gradient can be computed as 

 

   eTJg   (3.57) 

 

where J is the Jacobian matrix that contains first derivatives of the network errors with 

respect to the weights and biases, and e is a vector of network errors. The Jacobian 

matrix can be computed through a standard back-propagation technique that is much 

less complex than computing the Hessian matrix. 

  The Levenberg-Marquardt algorithm uses this approximation to the 

Hessian matrix in the following Newton-like update: 

 

   eTJIJTJkwkw 1_][1 


 (3.58) 

 

  When the scalar µ is zero, this is just Newton's method, using the 

approximate Hessian matrix. When µ is large, this becomes gradient descent with a 

small step size. Newton's method is faster and more accurate near an error minimum, 

so the aim is to shift toward Newton's method as quickly as possible. Thus, µ is 

decreased after each successful step (reduction in performance function) and is 

increased only when a tentative step would increase the performance function. In this 

way, the performance function is always reduced at each iterations of the algorithms. 

 
3.8 Model Predictive Control 

 

 MPC is a widely used meaning to deal with large multivariable constrained 

control issues in an industry. The main aim of a MPC is to minimize a performance 

criterion in the future that would possibly be subject to constraints on the manipulated 

inputs and outputs, where the future behavior is computed according to a model of the 

plant. MPC is a set of algorithms based on the models. MPC pays more attention to 

the function, than to the formulation, of the model. The function of a prediction model 

is based on the past information and the future inputs to predict the future output. Any 
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collection of information, as long as it has the function of prediction, irrespective of 

the concrete form, can be the prediction model. (Seborg et al., 2004)  

 The basic ideas of model predictive control are follows: 

  1. Explicit use of a model to predict the process output at future time 

instants.  

  2. Calculation of a control sequence minimizing an objective function. 

  3. Receding strategy, so that at each instant the horizon is displaced 

towards the future that involves the application of the first control signal of the 

sequence calculated at each step.  

 The methodology of all the controllers belonging to the MPC family is 

characterized by the following strategy, represented in figure 3.15:  

  

 
 

Figure 3.15 MPC Strategy 
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 The set points for the control calculations, also called target, are calculated from 

an economic optimization based on a stead state model of the process, traditionally, a 

linear model. The control calculations are based on current measurements and 

predictions of the future values of the outputs. The predictions are made using a 

dynamics model, typically a linear empirical model such as a multivariable version of 

the step response of difference equation models. Alternatively, transfer function or 

state space models can be employed. For very nonlinear processes, both physical 

models and empirical models, such as neural networks, have been used in nonlinear 

MPC. 

 The objective of the MPC control calculations is to determine the sequence of 

control moves so that the predicted response moves to the set point in an optimal 

manner. The actual output y, predicted output yp and manipulated input u are shown in 

figure 3.15. At the current sampling instant, denoted by k, the MPC strategy 

calculated the set of M values of the input {u(k+i-1), I = 1,2,…,M}. The set consist of 

the current input u(k) and M-1 future in inputs. The input is held constant after the M 

control moves. The inputs are calculated so that a set of P predicted outputs {yp(k+i), i 

= 1,2,…,P} reaches the set point in an optimal manner. The control calculations are 

based on optimizing an objective function. The number of predictions P is referred to 

as the prediction horizon while the number of control moves M is called the control 

horizon. 

 The idea of model predictive control is to utilize a model of the process in order 

to predict and optimize the future system behavior. The model form can be described 

by the following. 

 

   ))(),(( tUtXfX   (3.59) 

 

 The control law of the model predictive control is determined from the 

minimization of the controlled variable and manipulated variable. The optimization 

problem is as follows. (Kittisupakorn, 2008) 

 Objective function :  

ft

sp dtUWXXW
0

2
2

2
1 ))()((min   (3.60) 
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 State space model : ))(),(( tUtXfX   (3.61) 

 Manipulated variable constraint : maxmin UUU   (3.62) 

 State variable constraint : maxmin XXX   (3.63) 

 Terminal state constrain : spf XttX  )(  (3.64) 

where W1 and W2 are the weighting factors on the controlled and manipulated 

variables, respectively, tf is the terminal time, Umin and Umax are the minimum and 

maximum bounds of manipulated variables and Xmin and Xmax are the minimum and 

maximum bounds of state variables. 

 A distinguishing feature of MPC is its receding horizon approach. Although a 

sequence of M control moves is calculated at each sampling instant, only the first 

move is actually implemented. Then a new sequence is calculated at the next 

sampling instant, after new measurements become available; only the first input move 

is implemented. This procedure is repeated at each sampling instant.  

 
3.9 Optimization 

 

 Optimization refers to the choosing of the best element from some set of 

available alternatives. This technique is one of the major quantitative tools in 

industrial decision making. A wide variety of problem in the design, construction, 

operation, and analysis of chemical plants (as well as many other industrial processes) 

can be resolved by optimization (Edgar et al., 2001). The objective of dynamic 

optimization problem is to compute an optimize condition for production processes. 

 The key elements of an optimization are  

  1. Objective Function 

  2. Constrains 

  3. Decision Variable 

 An objective function, which refers to equations created to determine the best 

values of decision variables (maximum or minimum values), is a mathematical 

function. There may be more than one objective function for a given optimization 
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problem. There are different types of objective function depending on the needs and 

uses. 

 Constraints are values definition of feasible region of the process. There are 

classified into two types as follow: 

  1. Equality constraints are constraints that indicate the limits of the 

process or its product such as the purity of the products, mass and energy balance. 

  2. Inequality constraints are constraints that indicate the limit due to 

design and other limits 

 Decision variable refers to the change of parameters which effect to objective 

function. In optimization method, decision variable is changed to determine maximum 

or minimum of objective function and is used set point in process control system. 

 The optimization models represent problem choices as decision variables and 

seek values that maximize or minimize objective functions of the decision variables 

subject to constraints on variable values expressing the limits on possible decision 

choices. The optimization model description is stated as: 

 

   max/min  f (x)  objective function 

  

 Subject to:  h(x) = 0  equality constraints (3.65)

     g(x) ≥ 0  inequality constraints (3.66) 

 

 where x is a vector of n decision variables (x1, x2, …, xn), 

  h(x) is a vector of equations of dimension 

  g(x) is a vector of inequalities of dimension 
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Figure 3.16 Neural network model predictive control flowchart  

ODE form of nonlinear mathematical model 
y’ = f(x,t) 

Transform ODE equation using Euler’s method 

Defined step size 
dt = 1 second 

Calculated  yn+1 at  tn  
    tn+1 =  tn+dt 
    yn+1 =  yn+dt*f(yn) 

 

NLP equations 

Sampling time  
Every 2 minuts 

Solved nonlinear linear optimization with constrained using Successive Quadratic Programming 

Transform inequality constrained  equality constrained 
min f(x)     min f(z) 
st.  gL ≤ g(x) ≤ gU    st.  g(z) = 0  

Defined initial guess 

Neural network modeling (Neural network forward model) 

Measurement; Tr(k-1), Tr(k), Tj(k-1), Tj(k), CC(k-1), 
CC(k) as inputs of neural network model 

Prediction; Tr(k+1), Tj(k+1), CC(k+1) 

Manipulated variable; Tjsp(k) 
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CHAPTER IV 

 

NEURAL NETWORK FORWARD MODEL AND NEURAL 

NETWORK INVERSE MODEL FOR THE PROCESS 

 
4.1 Neural network modeling 
  

 In this part, a neural network model is applied to predict a concentration of 

MMA and a temperature of the process. The training, testing and validating data sets 

for a neural network modeling are generated from the obtained mathematical model. 

In the generating data for the network training, the network is trained in many 

possible scenarios consisting of plant certainty and plant uncertainty cases composing 

of rate of reaction, heat of reaction and overall heat transfer coefficient. For the setting 

data to train, the manipulated variable is changed in the range 260-380 K as step 

change. 

 The generated data requires normalization for achieving a good performance 

neural network modeling. In the normalization step, all data were scaled in range of 

minimum and maximum value. The minimum and maximum data were compared to 

0.05 and 0.95, respectively. An equations for data normalization and converting back 

can be expressed as follows:  

 

  05.0
)minmax(

)05.095.0)(min(







xx

xx
norx  (4.1) 

 

  min)05.095.0(

)minmax)(05.0(
x

xxnorx
x 




  (4.2) 

 

 where x and xnor are the actual and normalized values, respectively. 

 The data were normalized between 0.05 and 0.95 because the output of network 

is calculated from sigmoid activation function. Therefore, data in each groups of 

variable were scaled according to the corresponding data range. In the training step, 
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the network is trained using the Levenberg-Marquardt algorithm and is determined 

the optimal structure based on MSE. During the training, the neural network adjusts 

the weights and biases in each nodes connection but there does not adjust during the 

testing and validating to evaluate the neural network performance. 

 The structure for forward model consists of 8 nodes in the input layer and 3 

nodes in the output layer. The nodes for the input layer compose of the past and 

present values of the reactor temperature Tr, the concentration of methyl methacrylate 

CC, the jacket temperature Tj and the set point of the jacket temperature Tjsp which are 

a function of the reactor temperature, the jacket temperature and the concentration of 

methyl methacrylate. The nodes for the output layer are to predict the future values of 

the reactor temperature, the jacket temperature and the concentration of methyl 

methacrylate as follows: 

 

CC(k+1), Tr(k+1) = f (CC(k-1), CC(k), Tr(k-1), Tr(k), Tjsp(k-1), Tj(k),Tj(k-1), Tjsp(k)) (4.3) 

 

 where k denotes the current time of the variables. 

 In the neural network design step, the appropriated neural network structure is 

defined by choosing the number of nodes in the hidden layer. The neural network 

forward model is trained using Levenberg-Marquardt algorithm. The sigmoid function 

is used as the activation function of the nodes in the hidden layers and linear function 

is used as the activation function in its output layer. The common objective of the 

neural network training is to minimize the error between the predicted neural network 

values and actual targeted values. The equation for MSE calculation is shown below: 

 

   MSE = 
2

1
)(

1




n

i piTaciT
n

 (4.4) 

 

 where n is the number of data, Tac is the actual targeted temperature values and 

Tp is the predicted neural network values. 

 After training step, the trained neural network is tested by testing data sets and 

validating data sets for the performance monitoring. If the MSE values of the testing 

data are not desired, the obtained neural network is not suitable and requires more 
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training. It can be done by reinitialize the weights and biases and retain the neural 

network. On the other hand, if the MSE values of the testing data are desired, the 

obtained neural network is validated with validating data set. If the MSE value of 

validating set is not desired, the network struture is changed by changing the numbers 

of hidden layers and the number of nodes in the hidden layer. In this research, the 

number of hidden layer is varied from 1 node to 20 nodes.  

 Basic steps of the neural network designing are shown in figure 4.1. Many 

procedures of the neural network designing are summarized in this figure. The 

examples of training data sets for this process are shown in figures 4.2 to 4.9  

 After generating data, all of generating data sets are integrated, normalized and 

randomized, respectively. Figures 4.5-4.7 show the set point of the jacket temperature, 

the concentration of MMA and the reactor temperature obtaining. After that, the total 

obtained data are classified into 3 sets consisting of the training, testing and validating 

as 60%, 30% and 10% of the total obtained data, respectively. The numbers of 

samples for training, testing and validating data sets are 2,700, 1,400 and 400, 

respectively. 
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Figure 4.1 Procedure for the obtaining forward and inverse neural network model 

Generate input/desired 
data for training, 

validating and testing  
 

Design the structure of network              
 - The number of hidden layers  
 - Nodes of hidden layer 
  

Initial weight 
 

Train the network with training data 
sets until MES less than desired value 

 

Examine the 
desired MSE 

Obtain the optimal 
neural network model 

Yes 

Test the neural network 
with testing data sets  

 

Set the new structure by 
changing the number of 
hidden layers and nodes 
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No 
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with validating data sets  
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Figure 4.2 Set point of the jacket temperature (Tjsp) for the training data set 1 of the 

forward model   
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Figure 4.3 The jacket temperature (Tjsp) for the training data set 1 of the forward 

model   
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Figure 4.4 Concentration profile of MMA for the training data set 1 of the forward 

model   
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Figure 4.5 Reactor temperature profile (Tr) for the training data set 1 of the forward 
model 
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Figure 4.6 Data summation of the set point of the jacket temperature for the forward 

model 
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Figure 4.7 Data summation of the jacket temperature for the forward model 
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Figure 4.8 Data summation of the concentration profile of MMA for the forward 

model 
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Figure 4.9 Data summation of the reactor temperature for the forward model 
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4.2 Neural Network Inverse Model 

 
 In this part, the neural network inverse model is applied to control the process. 

The detailed procedure to find the inverse neural network model is summarized in the 

figure 4.1. The structure for inverse model consists of 8 nodes in the input layer and a 

node in the output layer.  

 The optimal neural network inverse model is utilized to predict the manipulated 

variable (set point of jacket temperature). The prediction of manipulated variable for 

controller requires the past and present values of the process outputs and the past 

values of manipulated variable as well as it requires the future value of set point of 

reactor temperature. The input and output pattern for the inverse model is shown 

below. 

 

Tjsp(k)  = f -1 (CC(k-1), CC(k), Tr(k-1), Tr(k) ), Tj(k-1), Tj(k), Tr(k+1), Tjsp(k-1)) (4.5) 

 

 where k denotes the current time of the variables. 

 In this work, the optimal structures are selected by the minimum MSE method. 

The numbers of nodes in the hidden layers are varied from 1 to 20 nodes. Table A.1 

and A.2 show the MSE values obtained from the neural network forward model and 

Table A.3 and A.4 show the MSE values obtained from the neural network inverse 

model for the process. Based on the minimizing MSE error values, it is found that 

numbers of nodes in hidden layer for the forward model and inverse model are 6 

nodes in first hidden layer and 8 nodes in second hidden layer and 4 nodes in first 

hidden layer and 8 nodes in second hidden layer which the best to be applied 

respectively.  The optimal neural network architectures for the forward model and 

inverse model are [8-6-8-3] and [8-4-8-1] as show in figures 4.10 and 4.11, 

respectively. 

 

4.3 Simulation Results 

 

 After training process, the neural network for forward model and inverse model 

are validated by the sets of validating data for the performance monitoring. Figures 
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4.18-4.20 show the results of neural network model validating which is the optimal 

neural network structure (8-6-8-3 structure). The results in these figures indicated the 

forward neural network models for prediction of the concentration of MMA and the 

reactor temperature profiles. Figures 4.23 shows the results of the inverse neural 

network model validating which is the optimal structure (8-4-8-1 structure). The 

results in this figure represented the manipulated variable or control action for the 

process Tjsp.   
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Figure 4.10 The neural network forward of the process (structure 8-6-8-3) 
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Figure 4.11 The neural network inverse model of the process (structure 8-4-8-1) 
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Figure 4.12 The testing set 1 result of the concentration of MMA for the neural 

forward network model (structure 8-6-8-3) 
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Figure 4.13 The testing set 1 result of the reactor temperature for the neural network 

forward model (structure 8-6-8-3) 
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Figure 4.14 The testing set 1 result of the jacket temperature for the neural network 

forward model (structure 8-6-8-3) 
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Figure 4.15 The testing set 2 result of the concentration of MMA for the neural 

forward network model (structure 8-6-8-3) 
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Figure 4.16 The testing set 2 result of the reactor temperature for the neural network 

forward model (structure 8-6-8-3) 
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Figure 4.17 The testing set 2 result of the jacket temperature for the neural network 

forward model (structure 8-6-8-3) 
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Figure 4.18 The validating set result of the concentration of MMA for the neural 

forward network forward model (structure 8-6-8-3) 
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Figure 4.19 The validating set result of the reactor temperature for the neural network 
forward model (structure 8-6-8-3)  
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Figure 4.20 The validating set result of the jacket temperature for the neural network 
forward model (structure 8-6-8-3) 
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Figure 4.21 The testing set 1 result of the manipulated variable for the neural network 

inverse model (structure 8-4-8-1)  
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Figure 4.22 The testing set 2 result of the manipulated variable for the neural network 

inverse model (structure 8-4-8-1)  
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Figure 4.23 The validating set result of the manipulated variable for the neural 

network inverse model (structure 8-4-8-1) 

 

4.4 Dynamic Optimization 

 
 In this work, a Matlab program is written to solve the optimization problem 

using a successive quadratic programming (SQP) algorithm in Matlab Optimization 

Toolbox. The written program is tested to determine an optimal temperature of the 

exothermic batch reactor studied by Aziz et al. (2000). The temperature results show 

that this program is effective and applicable to determine an optimal temperature of 

this work. 

 In this type of problem, the objective is to determine the optimal temperature 

policy maximizing the amount of a desired product concentration for a given fixed 

batch time subject to bounds on the reactor temperature. The problem can be written 

mathematically as 

    )(max ftcC
rT

 (4.6) 

 Subject to ),,),((
.

tpTtxfx r   process model (4.7)

    )0()( 0 xtx   initial condition (4.8)
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    (Tr)min Tr (Tr)max  (4.9)

    *
ff tt    (4.10)

 where x is the vector of state variables, 
.
x is the derivative of x with respect to 

time (t) and p is the process parameters. The batch time (tf) is specified for 10 hours. 

The lower bound on the temperature is the initial temperature that operates at the 

ambient condition and the lower and upper bound is dictated by the maximum 

temperature of the experimental data used by Witczak et al. (2010) to build their 

models. 

 The dynamic optimization maximizing production concentration with respect to 

variations of time intervals: 1, 2, 4 and 8 intervals have been carried out. The 

simulation results with different time intervals are shown in figure 4.23. Table 4.1 

reports the temperature and the concentration of MMA (desire product) of each time 

intervals. It has been found that at the final time, the maximum product achieved at 

the case of 8 intervals. The obtained temperature profile is represented the set point of 

the reactor temperature for controller design.  

 
Table 4.1 Optimization results 
 
 
Interval 

 
Off-line optimal temperature (K) 

 

 
CC(tf) 

Time (min) 

0 75 150 225 300 375 450 525 

1 342.5 13.934 

8 348.0 348.0 347.5 345.9 341.6 333.5 328.2 324.8 13.962 
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   Figure 4.24 Temperature profile for the optimization problem 
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CHAPTER V 

 

THE CONTROLLER DESIGN BASED NEURAL NETWORK FOR 

THE TEMPERATURE CONTROL OF THE PROCESS  

 
 This chapter describes a neural network based model predictive control 

(NNMPC), a PID control and a neural network direct inverse control (NNDIC) for 

temperature controlling in several cases such as a nominal case and parameter 

mismatch cases. In addition, this chapter demonstrates the robustness and 

performance of the proposed controllers. 

  

5.1 Neural Network based Model Predictive Control (NNMPC)  

 

 An obtained neural network forward model in chapter IV is applied as a 

predictor to predict future values of outputs over a prediction horizon (p) within a 

model predictive control algorithm. An optimal manipulated variable (Tjsp) is 

determined by solving a optimization problem to minimize a specified objective 

function subject to the neural network model and lower and upper bound of the 

manipulated variable. To understand clearly in this concept, a structure for the 

NNMPC controller is shown in a figure 5.1. The Matlab program is used to solve a 

minimization problem using a successive quadratic programming (SQP) algorithm. 

The form of an objective function for the manipulated variable determining is shown 

below: 

    




p

i
jsprrspT

TWikTikTW
jsp 1

2
2

2
1 }{)}()({min  (5.1) 

 Subject to 

   Neural network for forward model in chapter 4 

   (Tjsp)min ≤ )( ikT jsp   ≤ (Tjsp)max, i = 1,2,3,…,P (5.2) 

   Tr(k+p) = Trsp(k+p) (5.3) 
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where p is a parameter specifying the prediction horizon, M is the control horizon, Wi 

is the weighting parameter used to give different weights to different squared tracking 

error and Trsp is the set point of the reactor temperature obtained off-line optimization. 

 
 
 
 
 
 
 
 
 

 
 

Figure 5.1 The NNMPC strategy 
 
 In order to tune parameter of the NNMPC, the decreasing of the prediction 

horizon effect to produce more rigorous control action, faster response and more 

overshoot. On the other hand, the increasing of control horizon tends to produce less 

rigorous control action, slowly response and less overshoot. From the reason, the 

applied prediction horizon and the used control horizon for the temperature control 

are 5 and 5 respectively. 
 

5.2 Neural Network Direct Inverse Control (NNDIC)  

 

 In this part, a neural network inverse model is applied to control the process. 

The method of a neural network training as a controller is presented in chapter 4. An 

optimal neural network inverse model [8-4-8-1] is utilized to predict the manipulated 

variable (the set point of the jacket temperature). The prediction of the manipulated 

variable for controller requires the past and present values of the process outputs and 

the past values of the manipulated variable as well as it requires the future value of the 

set point of the reactor temperature. Figure 5.2 shows the structure of the NNDIC for 

controlling of reactor temperature. 

Tr(k), Tr(k-1), Tj(k) 

Optimizer 
Trsp(k+i) 

i = 1,2,…,p 

Neural Network Model 

Process 
Tjsp(k) 

Objective function 
Equality constraints 
Inequality constraints 
 

Tjsp(k+i-1) 

i = 1,2,…,M 

 Tj(k-1), CC(k), CC(k-1) 
  

Model Predictive Control 

Tjsp(k-1) 
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 The performance of the NNDIC controller is tested using uncertainty of the 

process. They consist of kinetic rate, heat of reactions and heat transfer coefficient.  

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.2 The structure of the NNDIC strategy 

 

5.3 Simulation Results 

 

 In the simulation studies, the objective is to control the reactor temperature to 

the set point by adjusting the set point of the jacket temperature. They are divided into 

2 cases which are the nominal case and parameter mismatch cases. The mismatch 

cases consist of increasing 30% of k1, decreasing 30% of k2, increasing 30% of ΔH 

and decreasing 30% of U from its nominal values. The closed-loop performance of 

the NNMPC, NNDIC and PID control are indicated by the integral of absolute value 

of the error (IAE).  

 For the nominal case, the process parameters are presented in Table A.1. Figure 

5.3 shows the control of the reactor temperature using NNMPC and figure 5.4 and 5.5 

show it with PID control and NNDIC, respectively. The results in these figures 

indicate that the NNMPC can bring the temperature closely to the set point without 

overshoot oscillations and offset. In contrast, the NNDIC and PID control case the 

overshoot and oscillation of the control variable. For the comparison between NNDIC 

and PID control in term of the offset, the NNDIC has the offset but the PID control 

has not offset. For the response of the manipulated variable, the manipulated variable 

adjustment of the NNMPC is smooth than the NNDIC and PID control. 

Tr(k-1), Tr(k), Tj(k-1), Tj(k) 

Trsp Tr(k+1) Tjsp(k)  
Direct Inverse 

Controller 

 
Process 

CC(k-1), CC(k) 

Tjsp(k-1) 
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Figure 5.3 The temperature control using NNMPC under the nominal case: (a) the 

control variable (Tr) and (b) the manipulated variable (Tj) 
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Figure 5.4 The temperature control using PID control under the nominal case: (a) the 

control variable (Tr) and (b) the manipulated variable (Tj) 
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 Figure 5.5 The temperature control using NNDIC under the nominal case: (a) 

the control variable (Tr) and (b) the manipulated variable (Tj) 
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 For the model mismatch cases, the rate of reaction for forward reaction, the rate 

reaction for reverse reaction, the heat of reaction and overall heat transfer coefficient 

are considered as the model mismatch parameters. The percent choosing for 

parameters mismatch is considered the percent changing from its nominal values that 

affect to the process response tending to more rigorous response. From this reason, 

the model mismatch parameters is divided into 6 cases consisting of increasing 30% 

k1, decreasing 30% k2, increasing 30% k1 and decreasing 30% k2, increasing 30% ΔH, 

decreasing 30% U and the last case increasing 30% k1, decreasing 30% k2, increasing 

30% ΔH and decreasing 30% U from its nominal value.  

 The results of parameter mismatch cases for the NNMPC, PID control and 

NNDIC are shown in figure 5.6 to 5.11. These figures show that the proposed controls 

can control the process and bring the temperature to the set point. For the comparison, 

the NNMPC give the best control performance among all control in all parameter 

mismatch cases and the NNDIC is more robust than PID control. 

 The performance index in terms of the absolute error (IAE) of three different 

controls consisting of the NNMPC, the PID control and the NNDIC in nominal case 

and parameter mismatch cases for performance testing are summarized in Table 5.1.  

 

Table 5.1 Performance indices of the NNMPC strategy, the PID control strategy and 

the DIC strategy for the nominal and model mismatch cases 

 

Cases 

IAE values 

NNMPC NNDIC PID 

Nominal 422.0569 422.4777 422.9892 

+30%k1 421.0025 421.2645 433.2399 

-30%k2 421.1529 422.0130 424.3498 

+30%k1, -30%k2 421.4568 421.6259 434.5736 

+30%ΔH 415.2102 419.5642 433.8296 

-30%U 435.0598 456.2135 550.6485 

+30%k1, -30%k2, +30%ΔH, -30%U 447.0252 462.7851 584.9196 
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Figure 5.6 The temperature control using NNMPC under the parameter mismatch 

case (-30% U): (a) the control variable (Tr) and (b) the manipulated variable (Tjsp) 



82 
 

0 60 120 180 240 300 360 420 480 540 600
290

300

310

320

330

340

350

360

Time (min)

Te
m

pe
ra

tu
re

 (K
)

 

 

Tr
Trsp

  
(a) 

0 60 120 180 240 300 360 420 480 540 600
260

280

300

320

340

360

380

400

Time (min)

Te
m

pe
ra

tu
re

 (K
)

 

 

Tj

  
(b) 

 

Figure 5.7 The temperature control using PID control under the parameter mismatch 

case (-30% U): (a) the control variable (Tr) and (b) the manipulated variable (Tjsp) 
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Figure 5.8 The temperature control using NNDIC under the parameter mismatch case 

(-30% U): (a) the control variable (Tr) and (b) the manipulated variable (Tjsp) 
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Figure 5.9 The temperature control using NNMPC under the parameter mismatch 

case (+30% k1, -30% k2, +30% ΔH and -30% U): (a) the control variable (Tr) and (b) 

the manipulated variable (Tjsp) 
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Figure 5.10 The temperature control using PID control under the parameter mismatch 

case (+30% k1, -30% k2, +30% ΔH and -30% U): (a) the control variable (Tr) and (b) 

the manipulated variable (Tjsp)  
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Figure 5.11 The temperature control using NNDIC under the parameter mismatch 

case (+30% k1, -30% k2, +30% ΔH and -30% U): (a) the control variable (Tr) and (b) 

the manipulated variable (Tjsp) 
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 In this part, this research presents the performance of the proposed controllers in 

a best case. For the best case, the manipulated variable is extremely adjusted and the 

IAE is the least value. The proposed NNMPC and conventional PID controllers are 

new tuned to a best case. After that, the obtained NNMPC and PID controller are 

applied to control the process in certainty and uncertainty cases  

 First, the simulations are presented in a nominal case. Figure 5.12 and 5.13 

show the control of the temperature using NNMPC and conventional PID controllers, 

respectively. These figures indicate that the both controls can bring the temperature 

closely to set point with an overshoot and an oscillation. Nevertheless, the 

conventional PID controller gives more an overshoot and an oscillation than the 

NNMPC does. For the comparison of the response of the manipulated variable, the 

manipulated variable adjustment of the NNMPC controller is smoother than the 

conventional PID controller. 

 Next, the simulations are investigated in parameters mismatch cases. For the 

figure 5.14-5.17, they indicate that the NNMPC controller gives more robust and 

gives better control performance than the PID controller, similar to the nominal case 

study. The robustness of the NNMPC controller can be explained by the fact that the 

obtained neural network forward model for the use in the NNMPC controller is 

trained with the wide range of operating conditions whereas the PID control cannot 

handle the parameter mismatch as it is based on a nominal condition. Table 5.2 

summarizes the control performances of the NNMPC and conventional PID control  

Table 5.2 Performances indices of proposed controllers for the best cases 

 

Cases 

IAE values 

NNMPC PID NNDIC 

Nominal 324.6958 337.0042 422.4777 

+30%k1 323.2163 335.0225 421.2645 

-30%k2 324.1069 336.8489 422.0130. 

+30%k1, -30%k2 323.1168 335.1431 421.6259 

+30%ΔH 322.5920 333.4170 419.5642 

-30%U 342.8060 405.4955 456.2135 

+30%k1, -30%k2, +30%ΔH, -30%U 348.3206 407.4132 462.7851 
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Figure 5.12 The temperature control using the best case of NNMPC under the 

nominal case: (a) the control variable (Tr) and (b) the manipulated variable (Tjsp) 
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Figure 5.13 The temperature control using the best case of PID control under the 

nominal case: (a) the control variable (Tr) and (b) the manipulated variable (Tjsp) 
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Figure 5.14 The temperature control using the best case of NNMPC under the 

parameter mismatch case (-30% U): (a) the control variable (Tr) and (b) the 

manipulated variable (Tjsp) 
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Figure 5.15 The temperature control using the best case of PID control under the 

parameter mismatch case (-30% U): (a) the control variable (Tr) and (b) the 

manipulated variable (Tjsp) 
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Figure 5.16 The temperature control using the best case of NNMPC under the 

parameter mismatch case (-30% k1, -30% k2, +30% ΔH and -30% U): (a) the control 

variable (Tr) and (b) the manipulated variable (Tjsp) 
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Figure 5.17 The temperature control using the best case of PID control under the 

parameter mismatch case (+30% k1, -30% k2, +30% ΔH and -30% U): (a) the control 

variable (Tr) and (b) the manipulated variable (Tjsp)  
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CHAPTER VI 

 

CONCLUSIONS 

 
 An objective of this research is aimed at carrying out process modeling for the 

prediction of the process outputs and controller design of a based neural network in a 

batch reactor for a MMA production. 

 This work presents a neural network modeling for the prediction of a 

concentration profile and a temperature in the batch reactor. An obtained neural 

network modeling is applied to predict state variables over a predictive horizon within 

a model predictive control algorithm for searching the optimal control actions via 

successive quadratic programming (SQP). Two different types of nonlinear controller 

based presented neural network are the neural network direct inverse control 

(NNDIC) and a neural network based model predictive control (NNMPC). 

Robustness tests of the proposed controllers are studied with respect to the change of 

operating parameters. In addition, an off-line dynamic optimization approach is 

applied to find out an optimal operating temperature to achieve maximizing the MMA 

product at specified final time.  

 

6.1 Neural Network Forward and Inverse Models 

 

 For the neural network models, the neural network models have been developed 

based on the Lenvenberg-Marquardt training algorithm with tan-sigmoid and linear 

functions as the activation function in the hidden layer and the output layer, 

respectively. The optimal structure of the neural network is based on MSE between 

testing and validating data. In the neural network modeling (the neural network 

forward model), the optimal structure consists of 8 nodes in the input layer, 6 nodes in 

the first hidden layer, 8 nodes in the second hidden layer and 3 nodes in the output 

layer. This structure gives the best structure network for the prediction. In the neural 

network inverse model, the network is applied to be a controller for controlling the 

reactor temperature by the prediction of the manipulated variable (the set point of the 
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jacket temperature, Tjsp). The optimal structure consists of 8 nodes in the input layer, 

4 nodes in the first hidden layer, 8 nodes in the second hidden layer and a node in the 

output layer. The structure gives the best structure for the prediction of the 

manipulated variable.  

 

6.2 Neural Network based Model Predictive Control (NNMPC) 

 

 The neural network based model predictive control is tested with respect to 

changes in process parameters. It has been found that the NNMPC can bring the 

controlled variable to about its set point without an oscillations and an offset in all 

cases studies. The performance of the NNMPC controller is compared to the 

performance of the conventional PID controller and the performance of the NNDIC 

controller (another neural network model based control). For the comparison, the 

NNMPC are more robust than the conventional PID controller and the NNDIC 

controller and give better results in cases studies. For the comparison between 

NNDIC and PID controllers in term of an offset, the NNDIC controller give small 

offset but the PID controller has not an offset. For the response of the manipulated 

variable, the manipulated variable adjustment of the NNMPC controller is the 

smoothest among the NNDIC and PID controllers in all cases studies. 
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APPENDIX A 

Mean Square Error of Neural Network Modeling 
 

Table A.1 Mean squared error value of the neural network forward model: 1 layer 

Number of 
Nodes in 

Hidden Layer 

Mean square error (MSE) 

Training Testing 1 Testing 2 Validating 

1 9.5786 x10-2 9. 7416 x10-2 7.7134 x10-2 8.6567 x10-2 
2 2.3435 x10-4 2. 7492 x10-4  1.3454 x10-4 2.0988 x10-4 
3 2.2113 x10-4 4.4761 x10-4 2.9788 x10-4 4.3245 x10-4 
4 3.6755 x10-4 4.0032 x10-4 4.1234 x10-4 4.3464 x10-4 
5 6.9030 x10-4 6.2344 x10-4 5.4443 x10-4 5.6432 x10-4 
6 2.3431 x10-4 3.5566 x10-4 4.3254 x10-4 4.5687 x10-4 
7 1.1090 x10-4 3.0250 x10-4 3.2354 x10-4 4.4554 x10-4 
8 1.4403 x10-4 1.3455 x10-4 2.2356 x10-4 1.7678 x10-4 
9 1.9090 x10-4 5.6609 x10-4 3.5797 x10-4 4.9745 x10-4 
10 3.6500 x10-4 3.9032 x10-4 2.4577 x10-4 4.3651 x10-4 
11 3.3562 x10-4 3.9475 x10-4 3.5600 x10-4 3.0120 x10-4 
12 3.4565 x10-4 3.6992 x10-4 3.2349 x10-4 3.0887 x10-4 
13 4.2134 x10-4 4.8825 x10-4 5.7756 x10-4 4.0013 x10-4 
14 1.0650 x10-4 1.5998 x10-4 2.7809 x10-4 2.9889 x10-4 
15 4.9618 x10-4 5.3233 x10-4 2.6568 x10-4 3.9807 x10-4 
16 5.8334 x10-4 5.8896 x10-4 4.6981 x10-4 5.2526 x10-4 
17 3.2134 x10-4 3.3085 x10-4 4.3687 x10-4 2.2786 x10-4 
18 6.6576 x10-4 5.6358 x10-4 5.1120 x10-4 4.5189 x10-4 
19 1.9032 x10-4 1.5475 x10-4 4.2656 x10-4 3.4345 x10-4 
20 3.4355 x10-4 3.5677 x10-4 2.6546 x10-4 2.4099 x10-4 

 

 

Table A.2 Mean squared error value of the neural network forward model: 2 layers 

Nodes in 
1st

 

Hidden 
Layer 

Nodes in 
2nd

 

Hidden 
Layer 

Mean square error (MSE) 

Training Testing 1 Testing 2 Validating 

2 2 6.2529 x10-4 5.4073 x10-4 7.7144 x10-4 8.2185 x10-4 
2 4 4.0820 x10-4 5.9280 x10-4 3.0967 x10-4 2.3346 x10-4 
2 6 7.0933 x10-4 8.4642 x10-4 7.4567 x10-4 5.0784 x10-4 
2 8 6.8520 x10-4 5.7090 x10-4 3.9443 x10-4 4.5382 x10-4 
2 10 2.7087 x10-4 1.2706 x10-4 1.0884 x10-4 1.5852 x10-4 
2 12 6.8413 x10-4 4.4850 x10-4 6.5733 x10-4 3.2184 x10-4 
2 14 4.5995 x10-4 3.9011 x10-4 2.6334 x10-4 1.0231 x10-4 
2 16 7.5828 x10-4 6.0665 x10-4 7.5013 x10-4 6.6334 x10-4 
2 18 5.6457 x10-4 4.1259 x10-4 6.4480 x10-4 4.8006 x10-4 
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2 20 7.6637 x10-4 7.2852 x10-4 5.7268 x10-4 8.6440 x10-4 
4 2 6.2294 x10-4 7.8241 x10-4 8.3036 x10-4 4.6949 x10-4 
4 4 1.7404 x10-4 1.8776 x10-4 1.2378 x10-4 3.9644 x10-4 
4 6 2.3457 x10-4 4.1450 x10-4 3.5493 x10-4 6.8922 x10-4 
4 8 3.1740 x10-4 5.0300 x10-4 6.0152 x10-4 8.4624 x10-4 
4 10 3.0933 x10-4 2.6248 x10-4 1.3111 x10-4 1.3115 x10-4 
4 12 1.8288 x10-4 1.4148 x10-4 3.3854 x10-4 1.4021 x10-4 
4 14 1.9206 x10-4 1.4267 x10-4 9.7454 x10-5 2.0360 x10-4 
4 16 2.2262 x10-4 2.7477 x10-4 1.6185 x10-4 7.1939 x10-4 
4 18 6.4585 x10-5 6.9090 x10-5 6.1910 x10-5 1.9805 x10-4 
4 20 1.6621 x10-4 1.5215 x10-4 1.7694 x10-4 9.3966 x10-5 
6 2 5.4745 x10-5 4.1042 x10-5 6.9301 x10-4 9.8691 x10-5 
6 4 6.8196 x10-5 8.5523 x10-5 8.8480 x10-5 1.2185 x10-4 
6 6 1.3913 x10-4 6.5683 x10-4 3.2410 x10-4 2.3346 x10-4 
6 8 4.6068 x10-5 3.5618 x10-5 3.1400 x10-5 5.0784 x10-5 
6 10 7.1280 x10-5 5.7535 x10-5 6.8735 x10-5 1.5382 x10-4 
6 12 6.5745 x10-4 5.8256 x10-5 5.3498 x10-5 1.5852 x10-4 
6 14 1.9816 x10-4 1.3638 x10-4 9.6655 x10-5 1.2184 x10-4 
6 16 1.9718 x10-4 1.4605 x10-4 9.0586 x10-5 1.0231 x10-4 
6 18 6.2529 x10-5 8.4073 x10-5 7.7144 x10-5 1.5140 x10-4 
6 20 1.0820 x10-4 1.9280 x10-5 1.0967 x10-5 1.8006 x10-4 
8 2 5.0933 x10-4 6.4642 x10-4 8.1634 x10-4 1.6440 x10-4 
8 4 6.8520 x10-5 7.7090 x10-5 6.9443 x10-5 1.2502 x10-4 
8 6 8.7087 x10-5 9.2706 x10-5 9.0884 x10-5 8.9644 x10-5 
8 8 8.8413 x10-5 8.4850 x10-5 7.5733 x10-5 8.8922 x10-5 
8 10 1.5995 x10-4 1.9011 x10-4 2.6334 x10-5 8.4624 x10-5 
8 12 7.5828 x10-5 4.0665 x10-5 6.1739 x10-5 9.3115 x10-5 
8 14 5.6457 x10-5 5.5119 x10-5 4.0453 x105 7.4021 x10-5 
8 16 1.6637 x10-4 1.6459 x10-4 9.2069 x10-5 9.0360 x10-5 
8 18 2.2294 x10-4 2.8420 x10-4 8.3679 x10-5 7.1939 x10-5 
8 20 1.7404 x10-4 2.5738 x10-4 3.0733 x10-5 6.9805 x10-5 
10 2 5.3457 x10-4 4.0052 x10-4 1.2175 x10-4 5.2174 x10-4 
10 4 3.1740 x10-4 5.2554 x10-4 1.2121 x10-4 3.5744 x10-4 
10 6 3.0933 x10-4 7.2229 x10-5 1.1650 x10-4 4.6949 x10-4 
10 8 4.9800 x10-4 4.2100 x10-4 9.7891 x10-5 3.7615 x10-4 
10 10 4.2628 x10-4 4.3351 x10-4 1.1502 x10-4 4.2451 x10-4 
10 12 1.5844 x10-4 3.6389 x10-4 9.3881 x10-5 6.8659 x10-5 
10 14 1.2502 x10-4 4.1491 x10-4 7.7340 x10-5 3.0287 x10-4 
10 16 1.1500 x10-4 4.6842 x10-4 1.5140 x10-4 3.2381 x10-4 
10 18 1.4129 x10-4 3.2787 x10-4 1.1203 x10-4 9.4260 x10-5 
10 20 9.4605 x10-4 3.7843 x10-4 1.2363 x10-4 5.0285 x10-4 
12 2 4.8624 x10-4 3.9988 x10-4 9.4797 x10-5 3.3344 x10-4 
12 4 9.2037 x10-4 6.4067 x10-4 1.0254 x10-4 3.8528 x10-4 
12 6 3.9684 x10-4 5.1423 x10-4 1.0826 x10-4 7.8522 x10-5 
12 8 4.9800 x10-4 3.1400 x10-5 1.6654 x10-4 5.6357 x10-5 
12 10 1.2729 x10-4 4.4733 x10-4 9.8436 x10-5 4.7591 x10-4 
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12 12 2.0818 x10-4 5.0714 x10-4 9.1454 x10-5 4.0753 x10-4 
12 14 2.9318 x10-4 3.9812 x10-4 1.1694 x10-4 1.0542 x10-4 
12 16 5.1542 x10-5 3.1046 x10-4 1.2650 x10-4 5.5441 x10-5 
12 18 4.8622 x10-4 3.8621 x10-4 8.2770 x10-5 4.6587 x10-4 
12 20 1.7672 x10-4 9.7370 x10-5 1.0771 x10-4 2.0799 x10-4 
14 2 8.7652 x10-5 7.7552 x10-5 1.1302 x10-4 3.9844 x10-4 
14 4 1.8385 x10-4 8.8658 x10-5 1.0265 x10-4 9.7967 x10-5 
14 6 4.8467 x10-4 4.8709 x10-4 8.0784 x10-5 4.4031 x10-4 
14 8 2.1629 x10-4 3.1720 x10-4 9.2247 x10-5 3.2905 x10-4 
14 10 1.0408 x10-4 4.0403 x10-4 1.1828 x10-4 3.8770 x10-4 
14 12 3.8339 x10-4 3.8233 x10-4 7.8397 x10-4 2.9575 x10-4 
14 14 3.4309 x10-4 9.4203 x10-5 8.9855 x10-5 3.6253 x10-4 
14 16 3.9727 x10-4 3.9122 x10-4 1.0248 x10-4 3.8485 x10-4 
14 18 1.8947 x10-4 2.8247 x10-4 9.0845 x10-5 2.3393 x10-4 
14 20 1.6016 x10-4 2.6112 x10-4 1.0359 x10-4 6.8459 x10-5 
16 2 9.5653 x10-5 8.5453 x10-5 1.0343 x10-4 6.5517 x10-5 
16 4 3.2983 x10-4 4.2780 x10-4 1.0431 x10-4 4.8618 x10-4 
16 6 3.6352 x10-4 3.6851 x10-4 1.5301 x10-4 7.5842 x10-5 
16 8 5.4652 x10-5 8.4954 x10-5 1.0281 x10-4 3.2267 x10-4 
16 10 4.0352 x10-4 4.0056 x10-4 1.0272 x10-4 3.6646 x10-4 
16 12 6.1652 x10-5 6.1050 x10-5 9.1581 x10-5 5.6664 x10-4 
16 14 6.9886 x10-5 9.9089 x10-4 9.4660 x10-5 3.5383 x10-4 
16 16 4.5997 x10-4 4.5972 x10-4 8.6754 x10-5 8.8580 x10-5 
16 18 4.4308 x10-4 4.4371 x10-4 1.5856 x10-4 7.2281 x10-5 
16 20 3.9436 x10-4 4.9536 x10-4 9.2633 x10-5 6.3591 x10-5 
18 2 3.9737 x10-4 3.9533 x10-4 1.5382 x10-4 4.1911 x10-4 
18 4 4.5727 x10-4 4.5726 x10-4 1.0616 x10-4 5.0000 x10-4 
18 6 3.4625 x10-4 4.4829 x10-4 9.6690 x10-5 5.0074 x10-4 
18 8 4.2473 x10-4 3.2970 x10-4 1.0355 x10-4 2.4854 x10-4 
18 10 4.1223 x10-4 4.1924 x10-4 1.2687 x10-4 4.2735 x10-4 
18 12 4.8253 x10-4 3.8354 x10-4 1.4835 x10-4 7.5669 x10-5 
18 14 2.5462 x10-4 3.5263 x10-4 8.3397 x10-4 2.9933 x10-4 
18 16 2.2082 x10-4 4.2381 x10-4 1.3474 x10-4 2.4766 x10-4 
18 18 1.4812 x10-4 5.4318 x10-4 1.6494 x10-4 3.8136 x10-4 
18 20 6.4304 x10-5 7.4501 x10-4 1.8411 x10-4 2.6666 x10-4 
20 2 6.2370 x10-5 6.2677 x10-5 1.8718 x10-4 3.3733 x10-4 
20 4 6.2599 x10-5 6.2793 x10-5 1.9158 x10-4 4.2568 x10-4 
20 6 2.4720 x10-4 3.4826 x10-4 1.7104 x10-4 3.6774 x10-4 
20 8 4.4108 x10-4 8.4898 x10-4 1.5034 x10-4 6.2389 x10-5 
20 10 4.2184 x10-4 3.2682 x10-4 9.4437 x10-5 2.8097 x10-4 
20 12 2.0365 x10-4 5.0465 x10-4 1.5928 x10-4 4.5992 x10-4 
20 14 1.5559 x10-4 3.5459 x10-4 9.6201 x10-5 4.4297 x10-4 
20 16 3.2816 x10-4 3.2316 x10-4 1.5887 x10-4 4.4891 x10-4 
20 18 2.8948 x10-4 4.8248 x10-4 1.5846 x10-4 5.1564 x10-4 
20 20 1.7004 x10-4 3.7204 x10-4 1.6605 x10-4 3.4227 x10-4 
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Table A.3 Mean squared error value of the neural network inverse model: 1 layer 

Number of 
Nodes in 

Hidden Layer 

Mean square error (MSE) 

Training Testing 1 Testing 2 Validating 

1 9.4761 x10-3 7.1000 x10-3 9.1000 x10-3 8.5602 x10-3 
2 8.9042 x10-3 3.7000 x10-3 7.8000 x10-3 6.6003 x10-3 
3 9.4761 x10-5 8.3969 x10-5 8.6630 x10-5 7.5356 x10-5 
4 4.0194 x10-4 6.2261 x10-5 7.1207 x10-5 7.6768 x10-5 
5 5.9030 x10-5 3.3392 x10-5 1.0475 x10-5 2.3419 x10-5 
6 4.5889 x10-5 2.1934 x10-5 5.5400 x10-5 4.0243 x10-5 
7 5.4250 x10-5 2.9000 x10-4 3.1309 x10-4 1.6003 x10-4 
8 1.4403 x10-4 1.0000 x10-4 2.1019 x10-4 2.8950 x10-4 
9 7.1729 x10-5 8.5006 x10-5 7.6124 x10-5 8.5906 x10-5 
10 8.2035 x10-5 7.6441 x10-5 6.6324 x10-5 7.9535 x10-5

 

11 3.9475 x10-5 3.4129 x10-5 1.3714 x10-5 2.4572 x10-5
 

12 7.7896 x10-5 9.0778 x10-5 6.4565 x10-5 7.4689 x10-5
 

13 7.8825 x10-5 9.8954 x10-5 7.1012 x10-5 8. 9839 x10-5
 

14 7.0650 x10-5 7.8000 x10-5 6.9000 x10-5 8.3590 x10-5
 

15 4.9613 x10-5 1.4000 x10-4 3.1967 x10-4 2.2909 x10-4
 

16 5.8896 x10-4 1.3000 x10-4 4.1967 x10-4 2.8374 x10-4
 

17 3.3085 x10-4 2.3000 x10-4 5.1955 x10-4 3.7747 x10-4
 

18 5.6358 x10-4 4.6014 x10-4 3.1034 x10-4 3.2485 x10-4
 

19 8.9375 x10-4 2.9000 x10-4 1.6000 x10-4 2.2709 x10-4
 

20 3.2787 x10-4 1.5810 x10-4 8.6938 x10-5 1.2352 x10-4
 

 

Table A.4 Mean squared error value of the neural network inverse model: 2 layers 

Nodes in 
1st

 

Hidden 
Layer 

Nodes in 
2nd

 

Hidden 
Layer 

Mean square error (MSE) 

Training Testing 1 Testing 2 Validating 

2 2 7.0040 x10-4 4.2024 x10-4 2.6232 x10-4 1.5595 x10-4 
2 4 4.7799 x10-4 2.8679 x10-4 2.7789 x10-4 1.4778 x10-4 
2 6 2.0386 x10-4 1.2232 x10-4 2.7350 x10-4 1.5320 x10-4 
2 8 2.4496 x10-4 1.4697 x10-4 2.7809 x10-4 1.4651 x10-4 
2 10 1.9686 x10-4 1.1812 x10-4 3.2515 x10-4 1.4278 x10-4 
2 12 6.8753 x10-4 4.1252 x10-4 2.7508 x10-4 1.4363 x10-4 
2 14 9.9904 x10-4 5.9942 x10-4 2.5380 x10-4 1.5039 x10-4 
2 16 3.4325 x10-4 2.0595 x10-4 2.7002 x10-4 1.4774 x10-4 
2 18 2.2607 x10-4 1.3564 x10-4 2.9417 x10-4 1.4395 x10-4 
2 20 6.6468 x10-4 3.9881 x10-4 2.5076 x10-4 1.5963 x10-4 
4 2 9.3216 x10-4 5.5930 x10-4 1.3571 x10-4 9.1772 x10-5 
4 4 4.9567 x10-4 2.9740 x10-4 1.4068 x10-4 1.0103 x10-4 
4 6 6.1516 x10-4 3.6909 x10-4 1.0923 x10-4 4.9637 x10-4 
4 8 3.6992 x10-5 2.0184 x10-5 1.0795 x10-5 2.0489 x10-5

 

4 10 3.5701 x10-4 2.1421 x10-4 1.2490 x10-4 5.0353 x10-4 
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4 12 1.7585 x10-4 1.0551 x10-4 1.1716 x10-4 5.8241 x10-5 
4 14 1.0601 x10-4 6.3607 x10-5 1.0884 x10-4 7.3651 x10-5 
4 16 1.5750 x10-4 9.4502 x10-5 1.0402 x10-4 4.1231 x10-4 
4 18 3.1696 x10-4 1.9018 x10-4 8.3286 x10-5 2.9449 x10-4 
4 20 3.8094 x10-4 2.2857 x10-4 1.3153 x10-4 2.7635 x10-4 
6 2 6.9794 x10-4 4.1877 x10-4 1.2505 x10-4 4.4112 x10-4 
6 4 1.4605 x10-4 8.7632 x10-4 9.2063 x10-5 5.9253 x10-5 
6 6 4.9258 x10-5 2.9555 x10-5 9.9169 x10-5 3.5626 x10-4 
6 8 3.4007 x10-4 2.0404 x10-4 8.3594 x10-5 4.1469 x10-4 
6 10 4.4512 x10-4 2.6707 x10-4 9.9698 x10-4 7.6653 x10-5 
6 12 1.8181 x10-4 1.0909 x10-4 1.1250 x10-4 3.1634 x10-4 
6 14 2.2022 x10-4 1.3213 x10-4 9.5463 x10-5 3.2907 x10-4 
6 16 5.6656 x10-5 3.3994 x10-4 9.7872 x10-5 3.5789 x10-4 
6 18 8.2262 x10-5 4.9357 x10-4 1.0377 x10-4 4.4307 x10-4 
6 20 2.2339 x10-4 1.3403 x10-4 8.2289 x10-5 4.1111 x10-4 
8 2 6.0140 x10-4 3.6084 x10-4 1.0927 x10-4 3.5943 x10-4 
8 4 2.6536 x10-4 1.5922 x10-4 1.0778 x10-4 5.6431 x10-4 
8 6 7.4695 x10-5 4.4817 x10-5 1.1331 x10-4 6.1708 x10-5 
8 8 6.5543 x10-5 3.9326 x10-4 1.0578 x10-4 3.9125 x10-4 
8 10 2.1522 x10-4 1.2913 x10-4 9.9558 x10-5 8.6510 x10-5 
8 12 1.0943 x10-4 6.5657 x10-5 9.1739 x10-5 3.4965 x10-4 
8 14 5.4714 x10-5 3.2828 x10-4 1.0453 x10-4 3.3431 x10-4 
8 16 1.2714 x10-4 7.6286 x10-5 9.2069 x10-5 6.4207 x10-5 
8 18 9.7238 x10-5 5.8343 x10-5 1.3679 x10-4 4.7914 x10-4 
8 20 8.6199 x10-5 5.1720 x10-5 1.0733 x10-4 6.6855 x10-4 
10 2 7.5147 x10-4 4.5088 x10-4 1.2175 x10-4 5.2174 x10-4 
10 4 5.8674 x10-5 3.5204 x10-4 1.2121 x10-4 3.5744 x10-4 
10 6 1.5831 x10-5 9.4984 x10-5 1.1650 x10-4 4.6949 x10-4 
10 8 5.2911 x10-4 3.3431 x10-4 9.7891 x10-5 3.7615 x10-4 
10 10 1.2988 x10-4 7.7926 x10-5 1.1502 x10-5 4.2451 x10-4 
10 12 6.6408 x10-4 3.9845 x10-4 9.3881 x10-5 6.8659 x10-5 
10 14 1.9041 x10-4 1.1425 x10-4 7.7340 x10-5 3.0287 x10-4 
10 16 1.5285 x10-4 9.1708 x10-5 1.5140 x10-4 3.2381 x10-4 
10 18 5.4845 x10-5 3.2907 x10-4 1.1203 x10-4 9.4260 x10-5 
10 20 1.4987 x10-4 8.9920 x10-5 1.2363 x10-5 5.0285 x10-5 
12 2 5.5831 x10-4 3.3499 x10-4 1.9243 x10-4 4.1261 x10-5 
12 4 1.2269 x10-4 7.3614 x10-5 6.8226 x10-5 1.0376 x10-4 
12 6 8.0852 x10-5 4.8511 x10-4 8.7085 x10-5 2.1585 x10-4 
12 8 1.3576 x10-4 8.1458 x10-5 5.6357 x10-5 8.6791 x10-5 
12 10 3.2778 x10-4 1.9667 x10-4 7.1408 x10-5 2.7600 x10-4 
12 12 1.0752 x10-4 6.4511 x10-5 4.0973 x10-5 7.8445 x10-5 
12 14 8.3939 x10-5 5.0363 x10-5 9.4262 x10-5 4.4522 x10-4 
12 16 1.7434 x10-4 1.0460 x10-4 4.8182 x10-4 1.6717 x10-4 
12 18 1.3559 x10-4 8.1357 x10-5 5.2265 x10-4 1.5445 x10-4 
12 20 1.1010 x10-4 6.6062 x10-5 9.7875 x10-5 1.3012 x10-4 
14 2 8.7770 x10-5 5.2662 x10-5 2.5176 x10-4 9.1259 x10-5 
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14 4 6.4977 x10-5 3.8986 x10-4 3.1106 x10-4 3.8470 x10-4 
14 6 7.9484 x10-5 4.7690 x10-4 3.2230 x10-4 1.2840 x10-4 
14 8 1.1857 x10-4 7.1141 x10-5 3.2905 x10-4 2.9475 x10-4 
14 10 7.0411 x10-5 4.2247 x10-4 4.4680 x10-4 3.8470 x10-4 
14 12 1.3309 x10-4 7.9855 x10-5 7.7704 x10-5 3.2672 x10-4 
14 14 3.3316 x10-4 1.9990 x10-4 2.7174 x10-4 2.4611 x10-4 
14 16 1.4286 x10-4 8.5719 x10-5 3.8685 x10-4 4.9419 x10-4 
14 18 1.1457 x10-4 6.8743 x10-5 6.5082 x10-5 4.4843 x10-4 
14 20 1.2199 x10-4 7.3194 x10-5 6.8959 x10-5 1.9251 x10-4 
16 2 2.0068 x10-4 1.2041 x10-4 8.9700 x10-5 2.0225 x10-4 
16 4 2.2099 x10-4 1.3259 x10-4 3.1902 x10-4 7.6555 x10-5 
16 6 2.2251 x10-4 1.3351 x10-4 2.5010 x10-4 4.6206 x10-4 
16 8 4.7112 x10-5 2.8267 x10-4 7.7276 x10-5 1.6010 x10-4 
16 10 9.5744 x10-5 5.7446 x10-5 2.4378 x10-4 8.8669 x10-5 
16 12 7.3360 x10-5 4.4016 x10-4 8.4838 x10-5 4.6245 x10-5 
16 14 2.3066 x10-4 7.5842 x10-5 1.5242 x10-4 1.8156 x10-4 
16 16 1.1306 x10-4 6.7839 x10-5 1.1610 x10-4 3.3682 x10-4 
16 18 1.3701 x10-4 8.2208 x10-5 2.3051 x10-4 3.2672 x10-4 
16 20 5.8961 x10-5 3.5377 x10-4 4.9112 x10-4 2.4611 x10-4 
18 2 4.3475 x10-5 2.6085 x10-4 1.3251 x10-4 1.6551 x10-4 
18 4 3.4474 x10-4 8.8500 x10-5 3.3856 x10-4 6.4376 x10-5 
18 6 9.4707 x10-5 5.6824 x10-5 1.3290 x10-4 2.5140 x10-4 
18 8 6.8695 x10-5 4.1217 x10-4 7.3321 x10-5 1.7390 x10-4 
18 10 4.2930 x10-4 2.5758 x10-4 1.6045 x10-4 4.7970 x10-4 
18 12 1.3277 x10-4 7.9661 x10-5 1.5242 x10-4 1.6551 x10-4 
18 14 3.3128 x10-4 1.9877 x10-4 4.7351 x10-4 1.9690 x10-4 
18 16 2.1691 x10-4 2.6646 x10-4 4.6681 x10-4 3.7357 x10-4 
18 18 1.1144 x10-4 6.6861 x10-5 1.1963 x10-4 3.4361 x10-4 
18 20 1.0398 x10-4 6.2389 x10-5 1.8634 x10-4 1.5868 x10-4 
20 2 1.1308 x10-4 6.7845 x10-5 9.5603 x10-5 5.5780 x10-5 
20 4 1.1452 x10-4 6.8715 x10-5 2.3247 x10-4 1.8530 x10-4 
20 6 3.3860 x10-4 3.6754 x10-4 5.3702 x10-5 9.1618 x10-5 
20 8 1.7229 x10-4 6.2329 x10-5 4.1503 x10-4 1.9690 x10-4 
20 10 5.9858 x10-5 2.8067 x10-4 5.1230 x10-5 1.2935 x10-4 
20 12 1.2713 x10-4 7.6277 x10-4 2.1521 x10-4 1.8777 x10-4 
20 14 1.3418 x10-4  8.0510 x10-4 1.9281 x10-4 8.9676 x10-5 
20 16 9.1245 x10-5 4.4881 x10-4 3.1820 x10-4 5.6219 x10-5 
20 18 4.8430 x10-4 5.1564 x10-5 8.2275 x10-5 3.0956 x10-4 
20 20 1.0529 x10-4 3.4227 x10-4 4.7887 x10-4 5.0071 x10-4 
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APPENDIX B 

Process Parameters 

 
 The reactions kinetics and physical properties foe the esterification 

reaction for methyl methacrylate in a batch reactor are shown in Table B.1. 

Those parameters are referred from Witczak et al. (2010) as well as William L. 

Luyben (2007) 

 Table B.1 Esterification and physical properties of MMA system 

Symbol Value Unit 

CpA 167.817 (J/mol K) 
CpB 81.080 (J/mol K) 

CpC 191.202 (J/mol K) 

CpD 1000 (J/mol K) 

ρA 1015 kg/m3 

ρB 791.8 kg/m3 

ρC 940 kg/m3 

ρD 1000 kg/m3 

ρj 1000 kg/m3 

ΔH -57500 J/mol 

MWA 86.08 kg/kmol 

MWB 32.04 kg/kmol 

MWC 100.12 kg/kmol 

MWD 18.00 kg/kmol 

V 0.0025 m 

U 274.42 J/sec m2 K 

A 0.05 m2 

Vj 0.001 m3 

R 8.314 kJ/kmol K 

Ccat 28.9 mol/m3 

Fj 3.5×10-5 m3/sec 
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Table B.2 Initial condition of MMA system 
Symbol Value Unit 

CA(0) 15 mol/m3 
CB(0) 45 mol/m3 

CC(0) 0 mol/m3 

CD(0) 0 mol/m3 

Tr(0) 298 K 

Tj(0) 298 K 
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APPENDIX C 

Proportional Integral Derivative Control (PID) Strategy  

 
 The PID control strategy is a generic is a generic control loop feedback 

mechanism (controller) and wildly used in industrial control system. The block 

diagram of PID controller is shown in figure C.1. 

 

 

 

 

 

 
     Figure C.1 Closed loop control of PID 
 
 Proportional, integral and derivative action can be combined by each of the 

modes operate in parallel. The parallel form of the PID control algorithm is given by 

 

    ])()(1)([)(  



dt

tdedtteteKptp D
I

C  (C.1) 

 where e   =  ysp – y (C.2) 

   KC  =  controller grain 

   I   = integral time 

   D  =   derivative time 

   u(t) = controller output or manipulated variable 

   y  = process output 

   ysp  = set point 

   p  = bias value, this constant value is the output of the controller 

when the error equal to zero. Bias value is very often initially set at mid-scale (50% of 

controller output) 

 

 
PID Controller 

 
Process 

ysp e(t) u(t) y 

- 

+ 

http://en.wikipedia.org/wiki/Control_loop
http://en.wikipedia.org/wiki/Feedback_mechanism
http://en.wikipedia.org/wiki/Feedback_mechanism
http://en.wikipedia.org/wiki/Controller_(control_theory)
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APPENDIX D 

Controller Performance Index 
 

 For the process control, the performance indices are a very important design 

tools available to Engineers. One can quantitatively specify a desired system 

performance and from it mathematically calculate a set of system parameter(s). 

Formally a performance index is defined as a quantitative measure of the system so 

that a set of parameters in the system can be adjusted to meet the required 

specification optimally. There are at least four types of popular indices consisting of 

ISE, IAE, ITAE and ITSE. They are defined as follows: 

 1) Integral of the square error (ISE) 

   dtteISE )(
0

2



  (D.1) 

 2) Integral of the absolute error (IAE) 

   



0

)( dtteIAE  (D.2) 

 3) Integral of the time absolute error (ITAE) 

   



0

)( dttetITAE  (D.3) 

 4) Integral of the time square error (ITSE) 

   



0

2 )( dttteITSE  (D.4) 

 where e(t) is the deviation of the response from the set point. 

 If the error between output and set point of the system is large, ISE is better 

than IAE because the errors are squared and thus contribute more to the value of the 

integral. On the other hand, if the error is small, IAE is better than ISE because when 

the small errors (less than one) are squared, they become even smaller. 

 Figure D.1 is shown the characteristics of the step response of a second order 

underdamped process. The following terms are used to describe the dynamic of 

underdamped process. 
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Figure D.1 Performance characteristics for the step response of an underdamped 

process 

 

 1) Rise Time, tr is the time process output takes to first reach the new steady 

state value. 

 2) Time to First Peak, tp is the time required for the output to reach its first 

maximum value. 

 3) Settling Time, ts is the time required for process output to reach and 

remain inside a band whose width is equal to  5% of the total change in y for 95% 

response time. 

 4) Overshoot, OS = a/b (% overshoot is 100a/b). 

 5) Decay Ratio, DR = c/a (where c is the height of second peak). 

 6) Period of Oscillation, P is the time between two successive peaks or two 

successive valleys of the response. 
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APPENDIX E 

Euler’s Methods  

 
 In order to use Euler's Method to generate a numerical solution to an initial 

value problem of the form: 

   ),( yxf
dx
dy

  (E.1) 

   y(x0) = y0 (E.2) 

 

 
Figure E.1 Euler’s method for a range 

 

 We decide upon what interval, starting at the initial condition, we desire to find 

the solution. We chop this interval into small subdivisions of length h. Then, using the 

initial condition as our starting point, we generate the rest of the solution by using the 

iterative formulas: 

   hxx nn 1  (E.3) 

   ),(1 nnnn yxfyy       n = 0,1,2,…  (E.4) 

 

To find the coordinates of the points in our numerical solution, we terminate this 

process when we have reached the right end of the desired interval. 
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