nisann1sieiaiuaesdiayalumvisndniiuuanisnads

UNENAADTNAT AN LA

'31/1ﬂﬂwuﬁﬁﬂum’qwﬁw@Nmiﬁm:mmwﬁﬂqmﬁmmﬁwm ANAATNNNTTUTA
aN1nATAINaINTAaNNalRailazinATulag aNTa UM A
NIARTIATIAANEATUAZANENNITARNNIADT
ANLANENANERAT PNAINTDINUNINENAE

Tn9Ann 2554

L4

a18N3Ie9INAINTiNININENat

v
o

o 1 v b4 o < a a 1= = d‘ v a o
unAntianaziNdayaatiuFN e ne U usAauAtin A 2554 Nliitanasluaaaloyey1qiny (CUIR)
Huuilndioyaetidnanaeddna BWusnasinunatufsnaae
The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository(CUIR)

are the thesis authors' files submitted through the Graduate School.

DATA DEPENDENCY REDUCTION IN DYNAMIC PROGRAMMING MATRIX

Mr. Guillermo Delgado

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science Program in
Computer Science and Information Technology

Department of Mathematics and Computer Science
Faculty of Science
Chulalongkorn University
Academic Year 2011

Copyright of Chulalongkorn University

Thesis Title Data Dependency Reduction in Dynamic Programming Matrix

By Mr. Guillermo Delgado
Field of Study Computer Science and Information Technology
Thesis Advisor Assistant Professor Chatchawit Aporntewan, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial

Fulfillment of the Requirements for the Master's Degree

.. Dean of the Faculty of Science

(Professor Supot Hannongbua, Ph.D.)

THESIS COMMITTEE

.. Chairman

(Assistant Professor Saranya Maneeroj, Ph.D.)

.. Thesis Advisor

(Assistant Professor Chatchawit Aporntewan, Ph.D.)

.. Examiner

(Assistant Professor Jaruloj Chongstitvatana, Ph.D.)

.. External Examiner

(Associate Professor Nachol Chaiyaratana, Ph.D.)

Ramesues wamla : myaam3sisisiuvestoyalummingmnuamsnaia.
(DATA DEPENDENCY REDUCTION IN DYNAMIC PROGRAMMING MATRIX)

A a a Jd o v oa J J o Y
0. ﬂlﬁﬂ‘HTJWﬂWUWH‘ﬁW'ﬁﬂ P AFLAT.FEING DINITULNITY, 50 U,

o [o @ Y a o o {
MmyruamInalalunumaiay lumsnadyrnusamad uIun Tuvuen
° J 1 e & ' < 4 I ' 9]
NUIUABTAD LU T IE0TNIaUNNUN0E19TIA5 2 woWals v aesaiuisoly
o v Aa I'4 Aa o v A
15z Teminndoavesanilasnssuuvuiaiass 1a laginamuuanmsnainizuainms
9 a J ° 1 4 = ' o 9] =
a$raunsnguazaiaa luning ldnazal MM UUUVUIUILAIIUTIANTI
[% o 2 A o] I
IBIAADH ALY LAz NEIMINININUYetoyadIemslszaunavousia 0619 lsn
A 3 A 4 o~ o v a2
MWD TIUIMTI ANV UTYITOULIZAAAUUDIDINNITNININUVOITDYA TuNT
A 1 o [) a 4 . =Y { o
@B Inid S umMImuIIUNS NFUUUULIY FIATINUADITUINTTIUAMUINN
1 9 /g Aan A g o a [g’l Aq ¥
vuasaaznge llurmniv s uauotiui luvaignanie anivszaanainly
2 A o 9 Y A a o A A o A H
FOMINININUYDITRYA Iaun e FanITUUeIBNIT 1 1awe 15 udeNTUADY
as @ o w ~ A a 1 Aa 4 P o
wnsdivuuadiaummign - uuuniGend als-rewe iy sudlulyrinivuans
o =& 1 1< ax M Yo o lg}.l ax A 4 19 Y o
watauuuvie 8819 l5na1udsve w1 I lasdauaiuasuITausI0me5 L a1
Tymiuanswainous Algluuuadienuldare msnFeudieunuisuasgiuuu

)=} A 4 Y I 1A A o o ya v 1 =
a91UNU HP Z800 U 8 ﬂEJ‘iLLE‘T@chﬁmuﬂn‘ﬁmﬁ11&11@11!’0‘1/113WHVlQL‘i’Jﬂﬂ’E)ElNiJuEJEJz

GRGHY

MAIF AN AASLAZINGINTAONNUADS . AVHOTOMF oo
a a a 14 A A ~ a a 14
A1V . INGIMITADUNUNDS .. Aeio¥e 0.M1SnYIINITINUT

_wazma lulagasaumnd.. VAN e,

Umsdnm .2554..

5273619123 : MAJOR COMPUTER SCIENCE AND INFORMATION TECHNOLOGY
KEYWORDS : DYNAMIC PROGRAMMING / DATA DEPENDENCY

GUILLERMO DELGAGO : DATA DEPENDENCY REDUCTION IN DYNAMIC
PROGRAMMING MATRIX. ADVISOR : ASST. PROF. CHATCHAWIT
APORNTEWAN, Ph.D., 50 pp.

Dynamic Programming (DP) plays an important role in solving a large number of
computational problems. As the number of cores per processor is increasing rapidly,
new software must be capable of exploiting the advantages of multi-core architectures.
A typical DP begins with constructing a matrix, and then calculating each element one
by one. The standard parallelization spawns multiple threads, one for each row, while
maintains the data dependency via thread synchronization. However, as the number of
threads increase, the performance degrades due to data dependency. Herein, we
proposed a novel method for calculating a DP matrix in parallel. In contrast to the
standard method that always calculates from up to down and left to right, our method
performs the calculation in multiple directions. Therefore, the wait time for data
dependency is remarkably reduced. To demonstrate our method, a local sequence
alignment algorithm called Smith-Waterman (SW) was chosen as an instance of DP.
However, our method is not only limited to SW algorithm, but it is applicable to other DP
problems that have similar patterns of data dependency. A comparison with the
standard method was conducted on a HP Z800 workstation with a total of eight cores.

The results show that our method performs significantly faster.

Department : ..Mathematics and Computer Science.. Student’s Signature.........................
Field of Study: ..Computer Science and.. Advisor's Signatureo.oeeevinnnn
..Information Technology..

Academic Year : ..2011..

Vi

Acknowledgement

| would like to acknowledge my advisor, Professor Chatchatwit
Aporntewan, at the department of Mathematics in Chulalongkorn University, for all his
patience, help and support. Without his ideas and hard work this thesis would have
never been possible. He has always been there whenever | needed him for the thesis or
any other aspect of my life. Today, | am happy to consider him a friend. | would also like
to thank my family, friends and specially my girlfriend; who encouraged me to get
involved in this rewarding project.

May | dedicate this work to all the people mentioned above. Without
them, this work would never be done. | have encountered many problems while working

in this thesis, but they were so little compared to all the support given by these people.

Abstract

Abstract

Contents

(T e
(ENGHSN) 1t

ACKNOWIEAGEMENT. ...ttt e e e e e e e e e e e e et aeeeeeaeeeens

Contents

T oL =1 o1 T TP

LISt Of FIQUIES. e e e e e e e

Chapter

L O AU ON . e e e e e e

1.1 Objectivesg....~ .. L. B Yoormart 42 N
1.2 SCope OF tNE WOTK... oo e
1.3 Problem Formulation..........ooooi e

1.4 EXpected OUICOMES.iuiiiie ittt

[l Theoretical BaCKGrOUNG........cooiiiiiiee e e e

2.1 DYNamiC ProgramMiNgea o coseeeeeeeeeeeeereeeeesaeseeeaaaeaaaaaasaessnnnnennneeeeeeeeeeeeess
2.2 Smith-Waterman AlGOrithm..........uueeiiiiiii e
2.3 Multi-core ArchiteCture. e
2.4 Parallelization.
2.5 Data Dependency in Parallel Computing........oooviiiiiiiiiiiiiieenn,

2.6 NON-UNiform MemOrY ACCESS. iiiiiiiieiiiiiiee e s eeiiiee e e siiee e e e e eieeaae e

[l Data Structure and AIgorithmic DeSIgN........uuuviiiiiiiiiii e

3.1 Uni-Directional Filling (UDF)ooiiiiiiee e
3.2 Bi-Directional Filling (BDF)coviiiiiiiieecee e,
3.3 A Theoretical Comparison between UDF and BDF............ccccvvvvivieiinnn.
3.4 Data StrUCTUIMES. ...t
3.5 Code EXPlanation...........uueeeiioiei e

< 0t O 5 S EUUURURRR

Page

Vi

Vii

viii

Chapter Page
35,2 BDF 20
3.6 NUMA OptimizZation.........eeeeie st 26
IV Experimental Results and DiSCUSSION............uuuuiiiiiiiiei e 27
V CONCIUSION. .ttt 33
RETEIENCES. . ittt 34
ADPENAICES. ..o e 35
AppPendiX A PUDIICATIONS.i e 36
Appendix B UDF SOUICE COAEC.....uuuiiiii ittt 40
Appendix C BDF SOUICE COOB. . ..iiii ittt 44

Biography.......cooviveee g L N R i e e rerrer e e r e e 50

Table
1
2

List of Tables

A table used by DP to calculate F(6)...........ccoovviiiiiiiieinn,

A comparison of access time between local and remote memory

Figure

© o ~N o o b~ w N

- A A
w N - O

List of Figures

An execution tree generated to obtain F(6)...............cooooiiiiiiiiin,
Data dependency of sequence alignment...........ccccccoeiiiiiiiiiiiiiiiieeeeee.
Single-core and multi-core architeCtures........cccvveeiviiiiiee e
An NUMA architecture with two NOdes..........ccooviiiiiiiiie e
A graphical representation of UDF...........oiiiiiiii e
A graphical representation of BDF........cccoiiiiii
Critical points in UDF and BDF ..o
A graphical representation of data structures for BDF.................cooen.
A comparison of delays generated by UDF and BDF.................cccvvee,
A comparison of elapsed times between UDF and BDF..........................
BDF’s speedup compared with UDF............cooiiiiiiiii,
Core utilization of UDF and BDF........cccco oo

A comparison of elapsed times between the best and the worst cases..

11
12
13
14
15
28
29
30
31
32

CHAPTER |

Introduction

Dynamic Programming (DP) has been used to solve a wide range of
computational problems [1]. DP is based on problem decomposition, recursively
breaking down a problem into smaller sub-problems. The identical sub-problems are
computed only once, hence avoiding redundant computation. We focus on the bottom-
up approach where the solutions are iteratively generated from small to large sub-
problems. In this process, a table or an array called “DP matrix” is needed [2]. A
sequential algorithm fills the matrix element by element. In contrast to parallel
computing, where multiple matrix elements are calculated simultaneously while
maintaining the data dependencies, e.g. the calculation of an element depends on the
others.

The patterns of data dependency are varied among DP problems.
However, most of them including sequence alignment can be formulated as filling a two-
dimensional table, and they share the similar pattern where the matrix element at row /
and column j, denoted by m[i,j], depends on mfij-1], m[i-1,j-1], and m[i-1,]. In other
words, m[i,j] cannot be calculated if the other three elements have not been computed
yet. The classical parallel algorithm partitions the data in rows and fills multiple rows
simultaneously [3]. To maintain the data dependency, a row cannot precede the row
above. As a result, the degree of parallelism is bounded by the data dependency.

In this thesis, we propose a novel data partitioning that reduces the data
dependency and elevates the degree of parallelism. Instead of filling the matrix in only
row-wise direction, we fill the matrix in both row-wise and column-wise directions, and
name it “Bi-Directional Filling (BDF)” as oppose to the classical uni-Directional Filling

(UDF).

1.1 Objectives

® To design an algorithm that reduces data dependencies in parallel

dynamic programming.

® To create a program of the proposed algorithm, in order to execute
and measure performance in real hardware.
® To compare the performance of both the classical and the proposed

algorithms.

1.2 Scope of the Work

® We aim to parallelization only on multi-core architectures.

® QOur programming is based on Microsoft .NET and C#.

1.3 Problem Formulation

Basically the goal of this project is creating a parallel algorithm to fill a
matrix m, where the calculation of a matrix element depends on other elements that
have been previously calculated. To be more specific, the element m/i,j] needs to wait
the calculations of mfij-1], m[i-1,/-1], and m[i-1,j] where m[ij] denotes the matrix
element at row / and column j. The classical parallelization approach assigns a thread to
each row, and synchronizes threads to maintain data dependency. However, as the
number of cores increases, the overall performance drops dramatically. The major
bottleneck is due to the data dependency we have mentioned. As a result, we need to
invent a new algorithm that will reduce the dependencies, and will make the

performance scalable with the number of cores.

This work aims to address the following issues.

® Theoretically, how to reduce the data dependencies in bottom-up
dynamic programming algorithms such as the local sequence
alignment [4].

® How to go from a theoretical model to a real software implementation

® Performance gain due to data dependency reduction.

1.4 Expected Outcomes

® A novel method for parallel construction of DP matrix and the
reduction in data dependencies.

® An implementation of parallel SW algorithm with our method and the
faster execution time compared to the classical method.

® A demonstration of real-world applications, for instance, local

sequence alignment.

CHAPTER I

Theoretical Background

This chapter is dedicated to explain some fundamentals in computer

science and current technologies that are important to understand the rest of thesis.
2.1 Dynamic Programming

Dynamic Programming (DP) is a widely used problem solving method
characterized by problem decomposition [1]. The basic idea is to break down the initial
problem into smaller sub-problems in order to reach a final solution. When compared
with other methodologies, Dynamic Programming’s advantage is that each sub-problem
will be executed only once, avoiding redundant computation.

A classic example where DP provides great benefits is the Fibonacci
Problem. This problems receives an integer n as the input, and calculates the Fibonacci
value F(n) as the output.

Figure 1 shows the execution tree produced by the classic recursive
approach to obtain F(6). Several sub-problems are executed more than once. For
instance F(2) is executed up to 5 times for a relatively small problem size. That is a

waste of computational power and time.

F(6)

AN

F(4)

4/\ /\.

F(3) F(2)

NN N

F(3) F(2) F(2) F(1) F(2) F(1)

/\

F(1)

Figure 1: An execution tree generated to obtain F(6).

Dynamic Programming solves the redundant computation by creating a
table where the values of the sub-problems will be stored. Then, when the solution to a
previously solved sub-problem is needed, it can be taken directly from the table instead
of calculating it again.

In the previous example we know that, in order to calculate F(6), we are
going to need F(5), F(4),F(3),F(2) and F(1). DP takes an advantage of this characteristic
and starts the execution from the basic case, making it bigger until reaching the final
solution. As a basic case, we know that both F(1) and F(2) have the value 1. Table 1
shows the table used by the DP algorithm to store all the previous values until reaching
the final solution. To calculate the value of a sub-problem, it is only necessary to add the

two previous values in the table.

n F(n)
1 1
2 1
3 2
4 3
5 5
6 8

Table 1: A table used by DP to calculate F(6).

There are two different approaches to solve a DP algorithm. Top-down
approach and Bottom-up approach.

a) Top-down approach: top-down DP follows the classic recursive
execution. The difference is that when a sub-problem is solved, the

solution will be stored in memory. That way, when the same solution

is needed again, the sub-problem does not need to be calculated
again. This approach goes form bigger to smaller sub-problems to
find a solution.

b) Bottom-up approach: bottom-up DP goes one step further. It modifies
the execution so that it will start by calculating first the smallest sub-
problem (basic case). Then, the execution will go from smaller to
bigger sub-problems until reaching the final solution. Both the
Fibonacci example and the case studied in this thesis follow the

bottom-up approach.

A classic example of the bottom-up approach uses a 2D table or a
dynamic programming matrix to store the solutions. Filling the matrix starts from small to
large sub-problems. A sequential algorithm fills the matrix element by element, but a
parallel algorithm calculates multiple matrix elements simultaneously while maintaining
the data dependencies, e.g. the calculation of an element depends on the others.

The data dependency of parallel sequence alignment is shown in Figure
2. The calculation of m/i,j] needs the calculated values of m[i,j-1], m[i-1,j-1], and m[i-1,].

This pattern is common found in many applications.

j=1 j=2 j=3

i=1 ad
i=2 U
i=3

Figure 2. Data dependency of sequence alignment.

2.2 Smith-Waterman Algorithm

We choose a local sequence alignment called Smith-Waterman algorithm
[4,5] as an example for our illustration. Sequence alignments have been used
extensively in bioinformatics and demanded a great computational power due to large
problem size, e.g. human chromosome 1 is about 247 million nucleotides long. Local
sequence alignment aims to identify the local similarity between two sequences and
provides the optimal alignment score.

A simplified version of Smith-Waterman [6] is defined as

M(i,0) = M(0,j) =0 foralli,j
.. M[i—1,j—1] if Ali] = BJi]
M[l,]]Z{ T, , S a. .
max (M[i —1,j — 1],M[i — 1,j],M[i,j —1]) otherwise.
Note that Afi] and BJj] are the ith and jth letters of sequences A and B respectively. The

optimal alignment score is defined as argmax; ; M[i, j]. Therefore, to obtain the best

alignment score all matrix elements must be calculated.
2.3 Multi-core Architecture

The current trend of microprocessors is moving towards multi-core (see
Figure 3). Single core cannot be improved further due to the fundamental limits in terms
of electrical power and transistor density. A strategy to exploit multi-core processors is
to spawn threads. Each thread will be executed in parallel. Now desktop computers with
4 to 12 cores are commercially available, and everyone can afford. Consequently, we

opt to parallelization on multi-core architectures.

Core core0 || core1 core0 || Core1 Core0 || Corel
| Ucache || L1cache |
L1 cache L1 cache L1 cache L1 cache L1 cache | TS cache | | T cache I
L2 cache L2 cache L2 cache L2 cache [13 cache][13 cache |
Single core AMD Optetron, Athlon Intel Core Dun, Xeon intel Hanium 2

Figure 3. Single-core and multi-core architectures.

2.4 Parallelization

After choosing to create a parallel application to solve a given problem,
the programmer needs to decide which parallel approach is going to be utilized. The
problem has to be divided into different tasks with dependencies between them. This
process is called decomposition. In high-level programming, there are mainly three
kinds of decomposition:

a) Task decomposition: this approach divides the execution by the
functions performed. If two or more functions can be executed at the
same time, they are scheduled together. This is the simplest way of
decomposition, because it takes advantage of function
independency and requires little modification of the source code. For
example, if we use the analogy of building a house, task
decomposition would schedule installing the doors and installing the
windows at the same time.

b) Data decomposition: this kind of decompositions allows tasks to
execute the same kind of work in different parts of the data. When
calculations in one part of the data do not depend on results
obtained in other areas, this kind of decomposition tends to be the
best approach. Following the previous example, data decomposition
would assign several tasks (or operators) to paint the house at the
same time. A possible approach would be to assign each operator
one of the rooms, or one of the exterior walls.

c) Data flow decomposition: the key aspect to divide and schedule the
work is how the data flows between tasks. A classic example is the
producer-consumer problem, where the output of a task becomes the

input of another task. Data flow is the most complex and delicate kind

of decomposition. Synchronization is a key aspect to keep the
parallelization efficient. In the house building problem, data flow
decomposition would be used for installing and painting the floor.
The painting operator would need to wait until the installing operator
completes at least part of his job to continue painting. The case

studied in this thesis falls into the data flow category.

2.5 Data Dependency in Parallel Computing

Already mentioned in previous sections, data dependencies are the main
concern in this thesis. We say there is a data dependency in parallel computing, when a
thread needs to wait until another thread processes data in order to continue its
execution.

One of the most widely known examples of data dependency is the
Producer-Consumer problem mentioned in the previous section. This problem is based
in two threads or tasks. The first thread, the producer, is in charge of creating data and
locating it in a common buffer. The consumer has to remove the data from the buffer.
This process is repeated again and again until the execution is terminated. The tricky
part of this problem is that both threads depend on each other. The consumer cannot
consume data if the buffer is empty and the producer cannot produce data if the buffer
is full. That means each thread has data dependency with the other.

In this paper, we use an algorithm with a more complex data
dependency pattern than the Producer-Consumer problem. This is the Smith-Waterman
Algorithm presented previous sections. However, it is important to mention that the data
dependency pattern presented by SW is a very common one. There are several widely
used problems with exactly the same or very similar pattern. Some examples are:

- Error Diffusion Problem [2]: variations of this algorithm are used by

many computer graphics and image processing programs. It can

10

efficiently transform a gray scale image into a black and white one
while keeping the resemblance to the maximum.

- Levenshtein Distance [6]: given two strings, it calculates the number
of changes (deletions, insertions or substitutions) needed to
transform one string into the other.

- Longest Common Subsequence [14]: its aim is to identify a
subsequence of two given strings with the maximum length.

As seen in [2], the most common approach to parallelize algorithms with

the same or similar data dependency patterns to the case studied is to assign tasks with
rows of the matrix from top to bottom. The tasks perform calculations in the rows from

left to right.

2.6 Non-Uniform Memory Access (NUMA)

The demand of memory grows as the number of cores increases.
However, sharing single memory causes several problems, e.g. cache coherence,
memory latency, and bottleneck. To avoid performance penalty, a solution is to
distribute the memory [7]. Each core is connected with its local memory via a dedicated
bus. Accessing remote memory can be done through a shared communication network
which is typically slower. For the time being, a number of multi-core workstations for
instance HP Z800 have already become NUMA (see Figure 4). Each node consists of a
quad-core processor and a local memory. HP Z800 workstation is of this configuration.
NUMA-aware applications can put a thread and its frequently-used memory on the
same side to maximize the performance. We will consider code optimization for NUMA

in the very last chapter.

Core Care Core Core
he v
Core Core Core Core
Communication X
network
RAM RARM

Figure 4. An NUMA architecture with two nodes.

11

CHAPTER Il

Data Structure and Algorithmic Design

In this chapter, we will show our algorithmic design step by step plus the

data structures that are needed.

3.1 Uni-Directional Filling (UDF)

We name the classical parallelization of dynamic programming [3] as
Uni-Directional Filling (UDF). Figure 5 shows UDF with two threads, T1 and T2. Both
threads fill the matrix simultaneously from top to bottom and from left to right. Note that

the data dependency is maintained. A row has never preceded the row above.

ONONCRONC,

Figure 5. A graphical representation of UDF.

UDF reduces the execution time of sequential algorithm, but the
performance gain is not scalable with the number of cores. UDF is seriously affected by
the data dependencies mentioned in the previous chapter. As the number of cores
increases, UDF cannot utilize them effectively. Most time, processing cores are idle
because of waiting for data dependencies. Data dependency is a fundamental limit of
parallel dynamic programming. A reduction in data dependency will improve all
computational problems in dynamic programming class.

We have observed that UDF processes only in a row-wise direction. It

might be better if we process in both row-wise and column-wise directions.

13

3.2 Bi-Directional Filling (BDF)

We propose a novel method called “Bi-Directional Filling” or BDF.
Basically, BDF fills the matrix in both row-wise and column-wise directions
simultaneously (see Figure 6). A half of threads take the row-wise direction, and another

half takes the column-wise direction.

o=

Y

Figure 6. A graphical representation of BDF.

BDF splits threads into two groups, row threads and column threads.
Roughly speaking, BDF reduces data dependencies because there are no needs to
synchronize between row and column threads. Only synchronization in the same group

is needed. The next section will elucidate and quantify the data dependency reduction.

3.3 A Theoretical Comparison between UDF and BDF

It happens to be nearly impossible to predict how UDF and BDF are
going to perform once they are transformed in a real world application. However, it is
possible to make an approximation of their performance by identifying cells in the matrix
with the highest risk of generating delays in the execution. This section shows a

comparison based on this kind of cells, which we call critical points.

We say there is a critical point when a thread needs a result calculated
by a different thread in the previous time step. The critical points generated by UDF and

BDF are shown in Figure 7 which follows this parameter setting.

14

- A bx5 square matrix.

- Two threads, representing a dual-core computer.

- The dash line represents the first thread, T1.

- The solid line represents the second thread, T2.

- A number is the ideal time unit at which the matrix element will be calculated.

- A star denotes a critical point raised by two consecutive elements.

e R
(1p2u3n4n ;__1___:’1'_3_ A EE
| " " ” " | 2 0 6%711819
= e e e '-::_-"-::: =—
|7||8||9||10| |3||7||1° 11|12

1111112131114} 15!

L——Jl——ﬂ Lo B B L)

5194121415

L——J LI LI

e i1 :'::_""::: ::_'l — :
|! " " ”10"11' 1 4 |8.|11.|13 14
L L L L |

:

A

Figure 7. Critical points in UDF (left) and BDF(right).

UDF produces 10 critical points while BDF produces only 4 critical points. It is clear that
BDF outperforms UDF in terms of critical point. But if the matrix size and number of
threads grow, the gap will increase sharply. For instance, a 100x100 matrix UDF and

BDF produce 5,000 and 99 critical points respectively.
3.4 Data Structures

A typical implementation of a matrix is a 2D array. However, BDF
accesses the array in both row-wise and column-wise directions. We found that the
column-wise access severely deteriorated performance. This is due to the fact that
physical memory is one dimensional, and 2D arrays in C# are row-major [8]. A row is
contiguous in physical memory, but a column is not. Therefore, row-wise access is
greatly benefited from cache. Cache is designated to exploit the “locality of reference,”
the next memory access tends to be a location nearby the previous access. This

behavior is common in most programs. Column-wise access obviously violates the

15

locality of reference, and may trigger “cache miss” and “page fault” which deteriorate
performance. In summary, we need a data structure that is effective for both row-wise
and column-wise access.

An alternative is to use jagged arrays. Jagged arrays allow having rows

with different lengths. Here is an example of a jagged array in C# language.
int[][] jaggedArray = new int[3][]; // allocate 3 rows

jaggedArray[@] = new int[3]; // allocate the 1st row (length = 3)
jaggedArray[1l] = new int[2]; // allocate the 2nd row (length = 2)
jaggedArray[2] = new int[1]; // allocate the 3rd row (length = 1)

Our proposed data structure for DP matrix is composed of 1D array and
two jagged arrays.

- D :a 1D array that represents the main diagonal of the matrix.

- R:ajagged array representing the elements that will be calculated row-wise.

- C:ajagged array representing the elements that will be calculated column-
wise.

A graphical representation is shown in Figure 8. This assures that

processing the matrix in column direction is exactly as fast as row direction.

Array D | |

1

— 1 1]
Array R —ED
—_]

Array C Iil

Figure 8. A graphical representation of data structures for BDF.

16

Accessing the matrix at row i and column j, M[i,j], can be transformed as follows.
D[i] ifi=j
M[i,jl = <Cl,i—j—1] ifi>]j
R[i,j—i—1] ifi<]j
With the creation of our own data structure, we allow UDF and BDF to be compared in
the same conditions. Each algorithm uses the data structure that best suits its

characteristics. For UDF that would be a 2D array, and for BDF the combination of data

structures mentioned above.
3.5 Code Explanation

This section will present the code part by part with a brief explanation of
each part. Full versions of both UDF and BDF can be found in the appendices B and C

respectively.
3.5.1 UDF

a) Global variable

// the first string of numbers to compare
public static int[] S1;

// the second string of numbers to compare
public static int[] S2;

// dynamic programming matrix
public static int[,] M;

// table dimension
public static int Dim = 10000;

// current row
public static int CurrentRow = 1;

// time spent waiting
public static int NumWaits = ©;

b) ProcessRow calculates all the values of a single row of the matrix. It also takes
care of the synchronization, warranting that a cell will not be processed if the

previous needed values are not calculated yet.

public static void ProcessRow(int row)

{

bool waited = false;

17

for (int i = 1; i <= Dim; i++)

{
while (M[row - 1, i] == -1)
{
if (waited == false)
{
waited = true;
/* wait for data dependency */
lock (typeof(UDF))
NumWaits++;
}

if (S1[row] == S2[i])
M[row, i] = M[row - 1, i - 1] + 1;
else
M[row, i] = GetMax(new int[] { M[row - 1, i - 1] - 1,
M[row, i - 1] - 1, M[row - 1, i] - 1 });
}
}

c) GetMax is a simple function that, given an array of integers, returns the

maximum value among them.

public static int GetMax(int[] values)

{
int max = 0;
foreach (int i in values)
{
if (i > max)
max = ij;
}
return max;
}

d) InitM initializes all the values in the dynamic programming matrix M. Basically, it

sets the first row and column all to zeroes, while setting any other value to -1.

public static void InitM()

{
M = new int[Dim + 1, Dim + 1];
for (int i = @; i <= Dim; i++)
{
for (int j = @; j <= Dim; j++)
{
M[i, j]=(i==0][] J==02?0: -1);
}
}
}

e) InitS creates the two strings of random integers that will be used for the

algorithm.

18

public static void InitS()
{
Random random = new Random();
S1 = new int[Dim + 1];
S2 = new int[Dim + 1];
// first character in both strings is not used for the
calculations
for (int i = @; i <= Dim; i++)

{

S1[i]
S2[i]

random.Next(4);
random.Next(4);

f) Dolt represents the behavior of a given thread in the program. Each thread will
keep processing rows until reaching the final result, while maintaining

synchronization with other threads.

public static void DoIt()

{
int Row;
while (true)
{
lock (typeof(UDF))
{
if (CurrentRow > Dim) return;
Row = CurrentRow;
CurrentRow++;
}
ProcessRow(Row);
}
¥

g) The Main function of the program will take care of several assignments and the
general management of the program. The top functionalities are:

- Initialize all the variables.

- Control the number of threads that will be used.

- Set how many times the algorithm will be executed. By doing this, we are able
to see several runs of the program at the same time and compare them to get
an idea of the average behavior of our algorithm.

- Create and initialize the tasks or threads.

- Output the results of the execution.

19

static void Main(string[] args)
{
// number of program runs. it can be changed to see the
different results
int NumRuns = 4;

// array to store the time spent for each run
TimeSpan[] times = new TimeSpan[NumRuns];

// array to store how many times the threads have to wait
int[] waits = new int[NumRuns];

// number of tasks that will be created to solve the problem
int NumTasks = 8;

// create the two random strings
InitS();

// create a stopwatch to monitor the time spent
Stopwatch watch = Stopwatch.StartNew();

for (int run = @; run < NumRuns; run++)
{
// restart every variable before each run
CurrentRow = 1;
NumlWaits = 0;
InitM();
Task[] tasks = new Task[NumTasks];
watch.Reset();
watch.Start();

for (int i = @; i < NumTasks; i++)

{

tasks[i] = new Task(() =>

{

1)
tasks[i].Start();

DoIt();

}

Task.WaitAll(tasks);

watch.Stop();
times[run] = (watch.Elapsed);
waits[run] = NumWaits;

}

Console.WriteLine("Classic algorithm performance for
NumTasks + " treads in " + NumRuns + " program runs");

Console.WriteLine("\t Run \t Time \t\t\t Wait");

for (int i = @; i < NumRuns; i++)

{

+

Console.WriteLine("\t " + (i + 1) + " \t " + times[i] + " \t
+ waits[i]);

Console.ReadLine();

20

3.5.2 BDF

a) Global variables

// the first string of numbers to compare
public static int[] S1;

// the second string of numbers to compare
public static int[] S2;

// data structure for the row threads
public static int[][] R;

// data structure for the column threads
public static int[][] C;

// data structure for the main diagonal
public static int[] D;

// table dimension
public static int Dim = 5000;

// current row

public static int CurrentRow = 1;
// current column
public static int CurrentCol = 1;

// current direction (@ = column, 1 = row)
public static int CurrentDir = 0;

// times a thread had to wait

public static int NumWaits = 0;

b) ProcessDiagonal processes one cell (x) in the main diagonal of the dynamic
programming matrix. The calculation of the mentioned cell has to be synchronized
with both the columns and the rows data structure. That is because in order to
calculate the value of the cell three previous values will be needed: the previous

one in the diagonal, one in the rows structure and another in the columns structure.

public static void ProcessDiagonal(int x)

{
bool waited = false;
N while ((C[x - 1][@] == -1) || (R[x - 1][@] == -1) || (D[x - 1]
== -1
{

if (waited == false)

{
waited = true;
/* wait for data dependency */
lock (typeof(MultiDirectional))

21

NumWaits++;

}
}
if (S1[x] == S2[x])

D[x] = D[x - 1] + 1;
else

D[x] = GetMax(new int[] { D[x - 1] - 1, R[x - 1][@] - 1, C[x

- 1150] -11);

c) ProcessRow will calculate and entire row in the R data structure. The execution
will have to be synchronized with the diagonal data structure (D) and with previous

rows in R.

public static void ProcessRow(int x)
{
if (x < Dim)
{
if (S1[x] == S2[x + 1])
R[x][@] = R[x - 1][@] + 1;
else
R[x][@]
R[x - 1][1] - 1 });
bool waited = false;
for (int i = 1; i < R[x].Length; i++)

GetMax(new int[] { R[x - 1][@] - 1, D[x] - 1,

{
while (R[x - 1][1i + 1] == -1)
{
if (waited == false)
{
waited = true;
/* wait for data dependency */
lock (typeof(MultiDirectional))
NumWaits++;
}
}
if (S1[x] == S2[i + x + 1])
R[xJ[1] = R[x - 1][i] + 1;
else
R[x][1i] = GetMax(new int[] { R[x - 1][i] - 1, R[x][i
- 1] -1, R[x - 1][1i +1] - 1 });
}

}

d) ProcessCol will calculate and entire column in the columns data structure (C).

The execution will have to be synchronized with D and the previous column in C.

public static void ProcessCol(int x)

{
if (x < Dim)

if (S1[x + 1] == S2[x])

22

C[x][e]
else
C[x][@] = GetMax(new int[] { C[x - 1][e] - 1, D[x] - 1,
C[x - 1][1] - 1 });
bool waited = false;
for (int i = 1; i < C[x].Length; i++)

C[x - 1][@] + 1;

{
while (C[x - 1][i + 1] == -1)
{
if (waited == false)
{
waited = true;
/* wait for data dependency */
lock (typeof(MultiDirectional))
NumWaits++;
}
}
if (S1[i + x + 1] == S2[x])
C[x][i] = C[x - 1][1i] + 1;
else
C[x][i] = GetMax(new int[] { C[x - 1][i] - 1, C[x][i
- 1] -1, C[x - 1][i + 1] - 1 });
}

}

e) GetMax is a simple function that, given an array of integers, returns the

maximum value among them.

public static int GetMax(int[] values)

{
int max = 0;
foreach (int i in values)
{
if (i > max)
max = ij;
}
return max;
}

f) InitM will create and initialize the three data structures that will represent the
dynamic programming matrix. This includes two Jagged arrays (one for the rows
and other for the columns) and a 1D array representing the main diagonal of the
virtual matrix. Using them together, they will behave as whole data structure that will
be time efficient when memory accesses are required in both column and row
directions. The first row and the first column of the virtual matrix will be set to

zeroes, while any other element will be set to -1.

23

public static void InitM()

{

D = new int[Dim + 1];

D[e] = o;

for (int i = 1; i < Dim + 1; i++)

{
D[i] = -1;

}

R = new int[Dim][];

C = new int[Dim][];

for (int i = @; i < Dim; i++)

{
R[i] = new int[Dim - i];
C[i] = new int[Dim - i];
for (int j = @; j < Dim - 1i; j++)
{

R[i][j] = (i ==0© ? @ : -1);
C[il[j] = (i == @ ? @ : -1);

}

}

}

g) InitS creates the two strings of random integers that will be used for the

algorithm.

public static void InitS()
{
Random random = new Random();
S1 = new int[Dim + 1];
S2 = new int[Dim + 1];
// first character in both strings is not used for the
calculations
for (int i1 = @; 1 <= Dim; i++)
{
S1[i]
S2[i]

random.Next(4);
random.Next(4);

h) Dolt will represent the behavior of each thread in the execution. It will process
either one column or one row in the matrix. The synchronization is done with the use
of the diagonal array. If the necessary value in D is not yet calculated, it has to be

processed before continuing with the rest of the execution.

public static void DoIt()
{
int Row, Col, Dir;
while (true)

{
lock (typeof(MultiDirectional))

24

if (CurrentRow > Dim || CurrentCol > Dim) return;
Row = CurrentRow;
Col = CurrentCol;
Dir = CurrentDir;
if (CurrentDir == @) // column direction
{
CurrentDir = 1;
if (D[CurrentCol] == -1)
ProcessDiagonal(CurrentCol);
CurrentCol++;
}
else // row direction
{
CurrentDir = 0;
if (D[CurrentRow] == -1)
ProcessDiagonal(CurrentRow);
CurrentRow++;
}
}
if (Dir == 0)
{
ProcessCol(Col);
}
else
{
ProcessRow(Row);
}

i) The main function of the program will take care of several assignments and the
general management of the program. The top functionalities are:

- Initialize all the variables.

- Control the number of threads that will be used.

- Set how many times the algorithm will be executed. By doing this, we are able
to see several runs of the program at the same time and compare them to get
an idea of the average behavior of our algorithm.

- Create and initialize the tasks or threads.

- Output the results of the execution.

static void Main(string[] args)

// number of program runs. it can be changed to see the
different results
int NumRuns = 4;

25

// array to store the time spent for each run
TimeSpan[] times = new TimeSpan[NumRuns];

// array to store the times a thread had to wait
int[] waits = new int[NumRuns];

// number of tasks that will be created to solve the problem
int NumTasks = 8;

InitS();
Stopwatch watch = Stopwatch.StartNew();

for (int run = @; run < NumRuns; run++)

{
// restart every variable before each run
InitM();
watch.Reset();
CurrentRow =
CurrentCol =
CurrentDir =
NumWaits = 0;
Task[] tasks = new Task[NumTasks];

ol
(Y
e weo

watch.Start();

for (int 1 = @; i < NumTasks; i++)
{
tasks[i] = new Task(() =>

{

1
tasks[i].Start();

DoIt();

}

Task.WaitAll(tasks);

watch.Stop();

times[run] = (watch.Elapsed);

waits[run] = NumWaits;
}
Console.WritelLine("BDF algorithm performance for

treads in " + NumRuns + " program runs");

Console.WriteLine("\t Run \t Time \t\t\t Wait");
for (int i = @; i < NumRuns; i++)

{

+ NumTasks +

Console.WritelLine("\t " + (i + 1) + " \t " + times[i] + " \t
+ waits[i]);

}

Console.ReadLine();

26

3.6 NUMA Optimization

As the number of cores and memory capacity are increasing, NUMA
(Non-Uniform Memory Access) will play an important role in multi-core architectures.
The new operating systems such Windows 7 and Linux support NUMA by providing a
set of system calls for controlling processor affinity and allocating memory on a specific
NUMA node. Note that setting processor affinity allows user programs to be executed
on a specific core in a specific NUMA node. For instance, affinity = OxOF prefers core 0
to 3 (the first NUMA node) and affinity = OxFO prefers core 4 to 7 (the second NUMA
node). However, applications must be aware of NUMA and use it. Otherwise, NUMA will
be managed by operating systems and probably not optimal. The worst case is
executing a thread on one node and allocating its memory on another node. In
summary, NUMA optimization is to allocate a thread and its frequently-used memory on
the same node.

Unfortunately, the current .NET framework 4.0 does not support NUMA.
So we make a direct call to Windows API via Platform Invocation Services (P/Invoke).
Two important calls are 1) SetThreadAffinityMask and 2) VirtualAllocExNuma. The first
call is for setting processor affinity of a thread. The second call is for allocating virtual

memory on a specified NUMA node.

CHAPTER IV

Experimental Results and Discussion

The data dependency analysis in the previous chapter shows that BDF
theoretically yields less number of critical points than that of UDF. Therefore, BDF is
expected to outperform UDF in practice. However, we need to implement UDF and BDF
to investigate the actual performance. The implementation involves some parameter

settings, hardware and software configurations as follows.

- HP Z800 workstation with two Intel Xeon E5520 processors (a total of
8 cores), 16GB RAM, and Windows 7 Professional 64-bit.

- In BIOS setting, hyper-threading was disabled.

- HP Z800 supported non-uniform memory access (NUMA) with two
memory nodes. Each node is comprised of four cores (a quad-core
processor). At beginning, we disabled NUMA (enabled interleaved
memory) so that the memory became homogeneous and uniform
access.

- The DP matrix was set at 20,000x20,000. We added a counter
variable for counting critical points. Elapsed time was measured by a
stopwatch (System.Diagnostics.Stopwatch).

- Smith-Waterman algorithm is a simplified version [6]. Sequences
were random.

- .NET framework 4.0 [9]. All thread programming was carried out via
System.Threading.Task. For thread synchronization, we used only the

“lock” keyword.

In order to study multiple scenarios, 8 different versions of the programs
were executed. Each one representing a number of launched threads from 1 to 8. Each
version was executed 10 times to increase reliability. The results shown in this section

are the average of the mentioned 10 runs.

28

The first aspect we wanted to compare was the number of delays
produced by the effect of data dependencies.

Section 3.3 showed a theoretical comparison of cells with high risk of
generating delays (critical points) produced by UDF and BDF. In this section we want to
calculate the actual number of delays produced by both methods in a real word
environment. In order to achieve this, we created a counter that would be increased
every time a thread has to go into a waiting process (delay).

Figure 9 shows the total number of delays varied with the number of
threads. It is clear that BDF produced less number of delays than UDF. At 8 threads,
BDF obtains a 55% reduction in the delays number. Moreover, the gap increases with

the degree of parallelism (the number of threads).

12000 ————

10000 +— —

8000 3

6000

4000

2000

Number of Delays Generated

Number of Threads

Figure 9. A comparison of delays generated by UDF and BDF.

29

p

=
@ \\
£ 10
= \
-c V.
g 8 \.\ o— UDF
&
o 6 ~——BDF

4

2

0

1 2 3 4 5 6 7 8
Number of Threads

Figure 10. A comparison of elapsed times between UDF and BDF.

Figure 10 shows the elapsed time varied with the number of threads. Itis
seen that BDF slightly outperforms UDF for all number of threads, although BDF
produces very less critical points. This can be explained by Amdahl’'s law [10,11].

Amdahl’s law states that the maximum speed up of a particular system is:
1

1-P)+ %
- Pis the fraction of the system that can be optimized.
- Sis the speed up of P.

In our system, we can divide the total elapsed time into two parts, the
execution time (1 — P) and the time waiting for data dependencies (P). BDF improves
only the fraction P. Hence, if P is small, optimizing P will not yield much overall
improvement. For instance, optimizing P = 0.1 with 100 times speedup yields 1/ (1 - 0.1
+ (0.1/100)) = 1.11 or about 11% improvement. Note that even at one thread BDF still
outperforms UDF. This is due to the fact that the data structure of BDF is composed of
many 1D arrays as opposed to one big 2D array in UDF.

However, after normalizing the total elapsed time to one, it is possible to
appreciate the real performance of BDF when compared with UDF. Figure 11 shows

BDF's speedup for each number of threads.

30

The percentage of improvement increases with the number of threads.
This implies that the fraction P also increases with the number of threads. In other words,
as we elevate the degree of parallelism by adding more threads, the fraction of time
waiting for data dependencies increases. At a certain number of threads, we believe
that this fraction will be significantly large (>50%), and data dependency will be a major
bottleneck of parallelization. Although P is as large as 50%, Amdahl’s law indicates a
very small maximum speed up at 2.0 (if P is completely removed). But the speed up is
the number of times faster than a parallel algorithm (UDF), not a sequential algorithm. If
UDF is 100 times faster than a sequential algorithm, BDF can be 2 x 100 = 200 times

faster.

BDF vs UDF Speedup

w
w

s
|
|

l\
<

BDF's Speedup
R NN
U O un

o U

1 2 3 4 5 6 7 8
Number of Threads

Figure 11. BDF's speedup compared with UDF.

Figure 12 shows a comparison of CPU utilization between UDF and BDF.
The data was collected via “Concurrency Visualizer,” a tool provided by MS Visual
Studio 2010 (Premium and Ultimate versions). At the beginning of execution (on the left),
only one core is busy due to sequential initialization. Then the program spawns multiple
threads and makes the cores busy. It is very obvious that BDF greatly improves the core

utilization. As a result, BDF runs faster.

31

Core

N W R 1N
S - IV BNy LYV

Core
— N w - [9,] o ~ [e:]

Execution Time Execution Time

[ZZ2 UDF [Other process [__] Idle process [ZZ77] BDF [_] Other process [_] Idle process
Figure 12. Core utilization of UDF (left) and BDF (right).

Figure 13 compares the best and the worst case of NUMA (Non-Uniform
Memory Access). In the best case, threads and their memory are allocated on the same
NUMA node. Consequently, threads always use local memory. In the worst case,
threads and their memory are separated on different nodes, and threads always use
remote memory. Surprisingly, the performance of the best and the worst cases does not
differ. We found that this is a cache effect. While a thread is executing a page of
memory, cache loads the next page in advance. Subsequently, moving to the next
consecutive page has no delays. To prove this, we setup an experiment as follows. A
total of 10,000 pages were allocated on local or remote memory. Each page is 4k bytes.
We performed both sequential and random reads. Table 2 shows that local memory is
as good as remote memory if it is read sequentially. In case of random read, remote
memory is about 37% slower. Cache is designed to exploit the locality of reference.
Therefore, the sequential read gains the most benefit of cache. Dynamic programming

reads the matrix sequentially, hence no difference between local and remote memory.

= \
o 2
£
=
T
g ==@==Best case
o1
= == Worst case
0 T T T 1
2 4 6 8
Number of Threads

Figure 13. A comparison of elapsed times between the best and the worst cases.

Table 2. A comparison of access time between local and remote memory.

Local memory Remote memory

Sequential read 49.40 ms 50.20 ms

Randomly read 1,594.80 ms 2,184.80 ms

Chapter V

Conclusion

BDF has proven as a promising method for reducing data dependencies
in dynamic programming tables. The implementation of BDF is not very difficult. It does
not require complicated programming, but only a little modification of DP tables using a
series of one-dimensional arrays.

The classical data partitioning like UDF has been used for long because
it is simple and easy programming. In the past, the number of processing cores in a
commercial CPU was very small, typically 2 to 4 cores. But now 4-to-12-cores
computers are quite common, and tend to be increased rapidly. Therefore, UDF may not
be sufficient to unleash the true power of multi-core architectures. In fact, data
dependency is the fundamental limit of all architectures that exploit parallelism. Any
reductions in data dependency will elevate the degree of parallelism and make the
performance scalable with the number of processing cores.

As clearly seen in the experimental results, BDF outperforms UDF in all
aspects. We strongly believe that the performance improvement of BDF will be more
significant as the number of cores increase because data dependency will become a
major bottleneck at higher level of parallelism. At 8 cores, BDF is about 31% faster than
UDF. This is not very impressive at the first glance, but it is important to note that BDF is
compared with a standard parallelization, not a sequential algorithm. A small
improvement due to BDF multiplies the speed up of standard parallelization.

Finally, we emphasize that BDF does not only improve the performance
of Smith-Waterman algorithm. It can be applied to any DP problems that have a similar
data dependency pattern. Moreover, BDF can be generalized to multi-directional filling
(MDF) for some applications, for example, multiple sequence alignment [12] and
dynamic time warping [13]. At higher dimensions, there are more data dependencies,
and MDF will play a crucial role in unleashing the true power of parallel computing.

This work has been published in JCSSE 2011 [15].

(1]

(2]

(4]

(5]

(6]

[15]

T.

Z.

A

M

M

G

References

. H. Cormen, C. E. Leiserson, R. L. Rivest, Introduction to Algorithms.

2nd Edition : McGraw-Hill, 2003.
. Dasgupta, C. H. Papadimitriou, U. V. Vazirani, Algorithms.
chapter 6, July 18, 2006.

. Akhter, J. Roberts. Multi-Core Programming, 1st Edition, Intel Press, 2006.

. Cristianini, M. W. Hahn, Introduction to Computational Genomics.

1st Edition, Cambridge University Press, 2007.
F. Smith, M. S. Waterman, Identification of Common Molecular

Subsequences. Journal of Molecular Biology 147 (1981): 195-197.

Su et al., Plagiarism Detection Using the Levenshtein Distance and

Smith-Waterman Algorithm. 3rd Int. Conf. on Innovative

Computing Information and Control (ICICIC'08) (2008) : 569.

. Manchanda, K. Anand, Non-Uniform Memory Access (NUMA).

. Drepper, What Every Programmer Should Know About Memory.

Red Hat, Inc., November 2007.

. Freeman, Pro .NET 4 Parallel Programming in C#. 1st Edition : Apress, 2010.

. M. Amdabhl, Validity of the single processor approach to achieving large

scale computing capabilities. AFIPS spring joint computer conf. (1967).

. D. Hill, M. R. Marty, Amdahl’s Law in the Multicore Era.
[EEE Computer 41 (2008) : 33-38.

. C. Edgar, S. Batzoglou. Multiple sequence alignment. Current Opinion in

Structural Biology 16 (2006) : 1-6.

. Muller, Information Retrieval for Music and Motion. Springer (2007).
Bergroth, H. Hakonen, T. Raita, A Survey of Longest Common Subsequence
Algorithms. 7th Int. Symp. on String Processing and Information Retrieval

(SPIRE 2000) (2000) : 39-48.

. Delgado, C. Aporntewan, Data Dependency Reduction in Dynamic

Programming Matrix. 8th Int. Joint Conf. on Computer Science and Software

Engineering (JCSSE) (2011) : 234-236.

AWIAINTAUUNITINY 1A
CHULALONGKORN UNIVERSITY

AWIAINTAUUNITINY 1A
CHULALONGKORN UNIVERSITY

36

37

2011 Eighth International Joint Conference
on Computer Science and Software Engineering (JCSSE)

Data Dependency Reduction in
Dynamic Programming Matrix

Guillermo Delgado
Master in Computer Science and Information Technology
Department of Mathematics, Faculty of Science
Chulalongkorn University, Bangkok, 16330, Thailand
GuillermoDelga@gmail. com

Abstract—Dynamic Programming (DP) plays an important role
in solving a large number of computational problems. As the
number of cores per processor Is increasing rapidly, new
software must be capable of exploiting the advantages of molti-
core architectures. A typical DP begins with constructing a
matrix, and then calculating each element ome by ome. The
standard parallclization spawns multiple threads, one for each
row, Wwhile maintsing the daia dependency via thread
synchronization. However, ag the number of cores Increase, the
performance degrades due to data dependency.

Herein, we propose a novel method for g a DP

2 mlaH

Chatchawit Aporntewan
Department of Mathematice, Faculty of Science
Chulalonglorn University, Bangkok, 10330, Thailand
Chatchawit. A@chula.ac.th

mfiffi-1j, mfi-1]{j-1], and mfi-1}{j]. In other words, m[il{j]
cannot be calculated if the other three elements have not been
computed yet. The classical parallel algorithm partitions the
dats in rows and fills multiple rows simnltaneously [2]. To
maintain the data dependency, a tow canniot precede the row
above, As a result, the degree of parallelism is bounded by the
data dependency.

In this paper, we propose a novel data partitioning that
reduces the data dependency and elevates the degres of
parallelism. Instead of filling the matrix in only row-wise

matrix in parallel. In contrast to the dard hod that
always calculates from up to down and lefi to right, onr method
performs the calculation in multiple directions. Therefore, the
wait time for data dependency it remarkably reduced. To
demonstrate our method, a local sequence alignment algorithm
called Smith-Waterman {(SW) was chosen as an instance of DP.
However, our method is not only limited to SW algorithm, but it
is applicable to other DP problems that have the similar patierns
of data dependency.

A comparison with the standard method was conducted on HP
Z800 Workstation equipped with two quad-core processors. The
results show that our methed performy significantly faster than
the classical approach.

Keywords-component; parallel dynamic programming; data
dependency reduction; multi-core; multi-threading

L INTRODUCTION

Dynamic Programming (DP) has been used to solve a wide
range of computational problems [1]. DP is based on problem
decomposition, recursively breaking down a problem into
smaller sub-problems. The identical sub-problems are
computed only oncg, hence avoiding redundant computation,

Our scope ig limited to the bottom-up approach where the
solutions are iteratively genersted from small to large sub-
problems. In this process, a table or an array called “DP
matrix” is needed. A sequential algorithm fills the matrix
element by element. In contrast, with parallel computing
multiple matrix elements are calculated simultancously while
maintaining the data dependency, e.g. the calculation of an
element depends on the others.

The patterns of data dependency are varied among DP
problems. However, most of them including sequence
alignment can be formulated as filling a two-dimensional table,
and they share the similar pattern where mfiffi] depends on

direction, we fill the matrix in both row-wiseandcolumn—wise
directions, and name it “Bi-Directional Filling (BDFY*

oppose to the classical Uni-Directional Filling (UDF). The
remaining sections are organized as follows. Section 2
illusirates the BDF and analyzes the reduction of data

dependency compared to that of UDF. Section 3 explains the
multi-threading implementation and makes a performance
comparison between UDF and BDF. Sections 4 discusses the
paper.

IO. FILLING THE MATRIX IN PARALLRL

A Data Dependency

As mentioned carlier, the patterns of data dependency vary
among DP problems. However, most of them share the same
pattern as shown in Fig. 1. The arrows indicate the data flow,
where the element mfi]/i] needs to wait the calculations of
mfil[i-1], mfi-1]fj-1], and mfi-1][j] where mfi][j] denotes the
matrix element at row ¢ and column j.

i=1j=2 j=3

Selm

= L]
Figure 1. A typical pattern of data dependency in DP.

B. Uni-Directional Filling (UDF)

UDF enables the parallelism by processing multiple rows
simultaneously 28 shown in Fig. 2. The rows are computed
from left to right and from top to bottom.

i=1

234 978-1-4577-0687-5/11/$26.00 ©2011 IEEE

38

e

Figure 2. A snapshot of a DP matrix processed by UDF.

C. Bi-Directional Filling (BDF)

BDF fills the matrix in both row-wise and column-wise
directions as shown in Fig. 3. The numbers indicate the order
in which the rows and the columns are processed.

o]

|
D |
|
|
I

Figure 3. A snapshot of a DP matrix processed by BDF.

1O1C

D. Data Dependency Reduction

Fig. 4 and 5 demonstrate the ideal executions of UDF and
BDF with two threads (one represented by dash lines and
another represented by solid lines). The numbers inside the
boxes are time steps where cells were updated. The stars
indicate the critical data dependency where one thread uses the
result of another thread in the previous time step. Given an
NxN matrix, the ideazl executions of UDF and BDF
contain N|N /2] and N- critical points respectively.

Even with the small example of a 5x5 matrix shown in Fig.
4 and 5, there is a big difference (10 dependencies for UDF and
4 for BDF). But as the matrix becomes bigger, the gap
dramatically increases. For example, in a 100x100 matrix the
dependencies would be 5,000 and 99 for UDF and BDF
respectively.

Hbbau
bbbt

|11||12||13||1‘||15|

mmdlecalacalecalaaa

L
|5 Il 9 ,|12.|14,|15|

L e e et]

Figure 5. An ideal execution of BDF with two threads.

IO A PERFORMANCE COMPARISON, UDF vs. BDF
The data dependency analysis in the previous section shows
that BDF vields less critical dependency than that of UDF.
Therefore, BDF is expected to UDF in practice.
However, we need to implement UDF and BDF to investigate
the real performance. This implementation involves some
parameter gettings, hardware and software configurations.

A. Smith-Watermarn (SW) Algorithm

We chose sequence alignment to make a performance
comparison between UDF and BDF. There are many
applications of sequence alignment in life science. As the
human genome project is advancing, more computational
power is needed to cope with larger problem size. Smith-
Waterman {SW) is a local-alignment algorithm [3]. We
cmployed & simplificd SW [4], which is defined as follows:

M[i,0] = M[0,j] = 0 forall , f
ML
A\ M[—1,j—1]ifA[{] = B[j]
{ma:c([) Mt —1,j — 1], M[i — 1,1, M[L,/ — 1]) otherwlse

A[:]mdB[r]a:ethe: nndj letter of sequences 4 and B
respectively. The objective of SW algorithmn is to calculate the

optimal alignment score, Milengih(4). length(B)]. In order to
do this it is necessary to compute every cell in the matrix M.

B. Datu Structures for BDF

Accessing a matrix in row-wise is faster than that in a
columm-wise fashion. This happens because the row elements
are consecutive in physical memory and are packed in a cache
line. To improve the column-wise access, we cannot simply
use a two-dimensional array. A solution is to adopt a new data
structure that gives the best performance on both row-wise and
column-wise access. The new data structure that stores a DP
maetrix is a collection of one-dimensional arrays. Each of them
is gither a partial row or a partial column that will be accessed
by BDF (see Fig. 3).

C. .NET Parallel Programming in CH

We employed C# and NET Framework 4.0 to test owt UDF
and BDF implementations. All programming was done using
System, Threading, Tagk [5]. A task (or a thread) corresponds o
2 row or a column. No calls to Windows APIs were required.
Onlya“lock' keyword was used for synchronization. The data

dency was handled by checking the condition while

Figure 4, AnldaalexecutwnofUDFmthtwu“ d

(m[]ﬁ-]] <0 && mfi-1]ff-1] < 0 && m[i-1][i] < 0) { /* wait
*/ }. Note that the matrix was initialized with negative numbers
in every cell.

235

39

D. Hardware and Software Configurations

We employed HP Z800 with two Intel Xeon ES5520
processors (a total of 8 cores), 16GB RAM, and Windows 7
Professional 64-bit. In the BIOS, hyperthreading was disabled.
HP Z800 supported non-uniform memory access (NUMA)
with two memory nodes. Each processor was connected to a
local memory and other non-local memory nodes. Accessing
local memory was faster. We disabled NUMA so that the
access time of the entire memory became homogeneous.

E. Performance Evaluation

We used SW algorithm as a benchmark. The DP matrix
was set at 20,000x20,000. Fig. 6 shows that BDF always
spends less time than UDF for any number of threads launched.
Moreover, at 8 cores BDF reduces the UDF computational time
by 31%.

20

15

10

Time (s)

—+-UDF
3 - -=-BDF

1 2 3 4 5.6 g4
Number of threads

Figure 6. Time performance comparison of UDF and BDF.
12000
10000
8000
6000
4000

—UDF
-=-BDF

Data dependency

2000

0 -

1 2 3 4 4 6f 7 <8

Number of threads

Figure 7. Data dependency comparison of UDF and BDF.

Fig. 7 shows the data dependency which is defined as the
number of times that any threads have to wait for other threads

Core

Execution Time

[EZZ21 UDF [Other process [Idle process

Figure 8. Core utilization for UDF.

"

N »

"

Core
- w o

w

Execution Time
223 BDF [Other process [Idle process
Figure 9. Core utilization for BDF.

IV. DISCUSSION

The classical data partitioning like UDF has been used for
long because it is simple and easy programming. In the past,
the number of pr ing cores in & cial CPU was very
small, typically 2 to 4 cores. But now 4-to-12-cores computers
are quite common, and tend to be increased rapidly. Therefore,
UDF may not be sufficient to unleash the true power of multi-
core architectures. In fact, data dependency is the fundamental
limit of all architectures that exploit parallelism. Any
reductions in data dependency will elevate the degree of
parallclism and make the performance scalable with the

ber of p sing cores.

in order to continue the execution. BDF dramatically red
the data dependency in a range from 55% (8 threads) to 99% (2
threads).
F. Concurrency Visualizer

Fig. 8 and 9 show the core utilization for UDF and BDF
respectively. Note that the parts where only one core is utilized
involve matrix initialization which is done sequentially. It is
very clear that BDF can make more utilization of processing
cores than UDF. The plots were drawn from “Concurrency
Visualizer,” a new tool in MS Visual Studio 2010 (only
available in Premium and Ultimate versions) [5].

236

REFERENCES

[1] T. H. Cormen, C. E. Leiserson, and R L. Rivest, Introduction to
Algorithms, 2nd ed., McGraw-Hill, 2003,
[2] 8. Akhter and J. Roberts, Multi-Core Programming, 1st ed., Intel Press,

2006.
[3] N. Cristianini and M. W. Hahn, d o C ional
Genomics, 1st od., Cambridge University Pross, 2007.

[4] Z. Su et al., Plagiarism Detection Using the Levenshiein Distance and
Smith-Waterman i 3rd Int. Conf. on Innovative Computing
Information and Control (ICICIC’0B), 2008, pp. 569.

[5] A. Freeman, Pro .NET 4 Parallel Programming in C#, 1st ed., Apress,
2010.

AWIAINTAUUNITINY 1A
CHULALONGKORN UNIVERSITY

40

Uni-Directional Filling (UDF) Source Code

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Threading.Tasks;
using System.Diagnostics;

class UDF
{

// the first string of numbers to compare
public static int[] S1;

// the second string of numbers to compare
public static int[] S2;

// dynamic programming matrix
public static int[,] M;

// table dimension
public static int Dim = 10000;

// current row
public static int CurrentRow = 1;

// time spent waiting
public static int NumWaits = ©;

public static void ProcessRow(int row)

{

bool waited = false;
for (int i = 1; i <= Dim; i++)

{
while (M[row - 1, i] == -1)
{
if (waited == false)
{
waited = true;
/* wait for data dependency */
lock (typeof(UDF))
NumWaits++;
}

}

if (S1[row] == S2[i])
M[row, i] = M[row - 1, i - 1] + 1;

else
M[row, i] = GetMax(new int[] { M[row - 1, i - 1] - 1,

M[row, i - 1] - 1, M[row - 1, i] - 1 });
}
}

public static int GetMax(int[] values)
{

int max = 0;

42

foreach (int i in values)

{
if (i > max)
max = i;
}
return max;
}
public static void InitM()
{
M = new int[Dim + 1, Dim + 1];
for (int i = @; i <= Dim; i++)
{
for (int j = @; j <= Dim; j++)
{
M[i, j]=(i==0][] j==02?0: -1);
}
}
public static void InitS()
{
Random random = new Random();
S1 = new int[Dim + 1];
S2 = new int[Dim + 17;
// the first character in both strings is not used for calculation
for (int i = @; i <= Dim; i++)
{
S1[i] = random.Next(4);
S2[i] = random.Next(4);
}
}
public static void DoIt()
{
int Row;
while (true)
lock (typeof(UDF))
{
if (CurrentRow > Dim) return;
Row = CurrentRow;
CurrentRow++;
¥
ProcessRow(Row) ;
}
}

static void Main(string[] args)

{

// number of time the algorithm will be run
int NumRuns = 4;

// array to store the time spent for each run
TimeSpan[] times = new TimeSpan[NumRuns];

// array to store how many times the threads have to wait
int[] waits = new int[NumRuns];

43

// number of tasks that will be created to solve the problem
int NumTasks = 4;

// create the two random strings
InitS();

// create a stopwatch to monitor the time spent
Stopwatch watch = Stopwatch.StartNew();

for (int run = @; run < NumRuns; run++)
{
// restart every variable before each run
CurrentRow = 1;
NumWaits = ©;
InitM();
Task[] tasks = new Task[NumTasks];
watch.Reset();
watch.Start();

for (int i = 0; i < NumTasks; i++)

{
tasks[i] = new Task(() =>

{
DoIt();

1)
tasks[i].Start();

}

Task.WaitAll(tasks);

watch.Stop();
times[run] (watch.Elapsed);
waits[run] = NumWaits;

}

Console.WritelLine("Classic algorithm performance for
treads in " + NumRuns + " program runs");

Console.WriteLine("\t Run \t Time \t\t\t Wait");

for (int i = @; i < NumRuns; i++)

{

+ NumTasks +

Console.WriteLine("\t " + (i + 1) + " \t " + times[i] + " \t "

+ waits[i]);

Console.ReadlLine();

AWIAINTAUUNITINY 1A
CHULALONGKORN UNIVERSITY

44

Bi-Directional Filling (UDF) Source Code

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Threading.Tasks;
using System.Diagnostics;

class MultiDirectional

{

1))

// the first string of numbers to compare
public static int[] S1;

// the second string of numbers to compare
public static int[] S2;

// data structure for the row threads
public static int[][] R;

// data structure for the column threads
public static int[][] C;

// data structure for the main diagonal
public static int[] D;

// table dimension
public static int Dim = 5000;

// current row

public static int CurrentRow = 1;
// current column
public static int CurrentCol = 1;

// current direction (@ = column, 1 = row)
public static int CurrentDir = ©;

// times a thread had to wait
public static int NumWaits = ©;

public static void ProcessDiagonal(int x)

{

bool waited = false;

45

while ((C[x - 1][@] == -1) || (R[x - 1][@] == -1) || (D[x - 1] == -
{
if (waited == false)
{
waited = true;
/* wait for data dependency */
lock (typeof(MultiDirectional))
NumWaits++;
}

46

if (S1[x] == S2[x])
D[x] = D[x - 1] + 1;
else
D[x] = GetMax(new int[] { D[x - 1] - 1, R[x - 1][@] - 1, C[x -
1][0% -113);

public static void ProcessRow(int x)

{
if (x < Dim)
if (S1[x] == S2[x + 1])
R[x][e] = R[x - 1][e] + 1;
else
R[x][@] = GetMax(new int[] { R[x - 1][@] - 1, D[x] - 1, R[x
- 1][1] -1 });

bool waited = false;
for (int i = 1; i < R[x].Length; i++)

while (R[x - 1][1i + 1] == -1)
{
if (waited == false)
{
waited = true;
/* wait for data dependency */
lock (typeof(MultiDirectional))
NumWaits++;
}

}
if (S1[x] == S2[i + x + 1])
R[x][i] = R[x - 1]J[i] + 1;
else
R[x][i] = GetMax(new int[] { R[x - 1][i] - 1, R[x][i -
1] - 1, R[x - 1][1 + 1] - 1 });

}
}

public static void ProcessCol(int x)

{
if (x < Dim)

if (S1[x + 1] == S2[x])
C[x][@] = C[x - 1][@] + 1,
else
C[x][@] = GetMax(new int[] { C[x - 1][@] - 1, D[x] - 1, C[x
- 11[1] - 1 });
bool waited = false;
for (int i = 1; i < C[x].Length; i++)
{
while (C[x - 1][1i + 1] == -1)
{
if (waited == false)
{
waited = true;
/* wait for data dependency */
lock (typeof(MultiDirectional))
NumWaits++;

}

}

if (S1[i + x + 1] ==

C[x][i] = C[x - 1][i] + 1;

else

S2[x])

47

C[x][i] = GetMax(new int[] { C[x - 1][i] - 1, C[x][i -
1] - 1, C[x - 1][i + 1] - 1 });

public static int GetMax(int[] values)

int max = 0;
foreach (int i in values)

if (i > max)
max = i;

return max;

public static void InitM()

D = new int[Dim + 1];
D[@] = o;
for (int i = 1; 1 < Dim + 1; i++)

D[i] = -1;

new int[Dim][];
new int[Dim][];

(int i = @; i < Dim; i++)

R[i] = new int[Dim - i];

C[i] = new int[Dim - 1i];

for (int j = @; j < Dim - i; j++)

{
R[i][j] = (i ==0 ? 0 :
Cli][3] = (i =0 ? 0

}

public static void InitS()

Random random = new Random();
new int[Dim + 1];
new int[Dim + 1];

// the first character in both strings will not be used for the

for (int i = @; i <= Dim; i++)

¥

}

{
{
}

¥

{
{
}
R =
C =
for
{
¥

¥

{
S1 =
S2 =

calculation

{
¥

S1[i]
S2[i]

random.Next(4);
random.Next(4);

public static void DoIt()

{

}

int Row, Col, Dir;
while (true)

{
lock (typeof(MultiDirectional))
{
if (CurrentRow > Dim || CurrentCol > Dim) return;
Row = CurrentRow;
Col = CurrentCol;
Dir = CurrentDir;
if (CurrentDir == @) // column direction
{
CurrentDir = 1;
if (D[CurrentCol] == -1)
ProcessDiagonal(CurrentCol);
CurrentCol++;
}
else // row direction
{
CurrentDir = 0;
if (D[CurrentRow] == -1)
ProcessDiagonal(CurrentRow);
CurrentRow++;
}
}
if (Dir == @)
{
ProcessCol(Col);
}
else
{
ProcessRow(Row) ;
}
}

static void Main(string[] args)

{

// number of times the program will run
int NumRuns = 4;

// array to store the time spent for each run
TimeSpan[] times = new TimeSpan[NumRuns];

// array to store the times a thread had to wait
int[] waits = new int[NumRuns];

// number of tasks that will be created to solve the problem
int NumTasks = 8;
InitS();

Stopwatch watch = Stopwatch.StartNew();

for (int run = @; run < NumRuns; run++)

48

}

// restart every variable before each run

InitM();
watch.Reset();
CurrentRow = 1;
CurrentCol = 1;
CurrentDir 0,

NumWaits = 0;
Task[] tasks = new Task[NumTasks];

watch.Start();

for (int i = @; i < NumTasks; i++)

{

tasks[i] = new Task(() =>

{
DoIt();

1
tasks[i].Start();

}

Task.WaitAll(tasks);

watch.Stop();
times[run] = (watch.Elapsed);
waits[run] = NumWaits;

Console.WritelLine("BDF algorithm performance for

treads in

+ NumRuns + " program runs");

Console.WriteLine("\t Run \t Time \t\t\t Wait");

for

{

+ waits[i]);

(int 1 = @; i < NumRuns; i++)

+ NumTasks +

49

Console.WriteLine("\t " + (i + 1) + " \t " + times[i] + " \t "

Console.ReadLine();

50

Biography

Mr. Guillermo Delgago was born in 1983. He obtained his degree in Computer

Science Engineering from the Antonio de Nebrija University, Madrid, Spain, in 2007.

	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	CHAPTER I Introduction
	1.1 Objectives
	1.2 Scope of the Work
	1.3 Problem Formulation
	1.4 Expected Outcomes

	CHAPTER II Theoretical Background
	2.1 Dynamic Programming
	2.2 Smith-Waterman Algorithm
	2.3 Multi-core Architecture
	2.4 Parallelization
	2.5 Data Dependency in Parallel Computing
	2.6 Non-Uniform Memory Access

	CHAPTER III Data Structure and Algorithmic Design
	3.1 Uni-Directional Filling (UDF)
	3.2 Bi-Directional Filling (BDF)
	3.3 A Theoretical Comparison between UDF and BDF
	3.4 Data Structures
	3.5 Code Explanation
	3.6 NUMA Optimization

	CHAPTER IV Experimental Results and Discussion
	Chapter V Conclusion
	References
	Appendix
	Vita

