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Image registration is essential in treatment planningrand position verification for
highly radiation conformal delivery methods. The purpose-efithis study is to evaluate the
accuracy of image registrationin Varian Eclipsé‘v. 8.6:17and"Oneentra V. 3.2.303 treatment
planning system (TPS). Thensthe suitable image registration method of mutual information
and match point between planning computed tomography and cone beam computed
tomography are observeddfor 20 i€adsand neck cases.

The image registzation #erifications were performed in.2 TPSs using ImSim
commercial QA software. The three set of im'cfges from ImSim commercial QA software,
which the first one was stationany. the second set was 3, 10, 15 degrec rotation and the third
set was 5, 10, 15 mm translation in X /Y, and Z axcs, were imported to Eclipse and Oncentra
TPSs. The registration was made between the statﬁlnar\ and moving images. The registration
errors were observed for mutual information and gnatch paint registration algorithms in each
TPS. Then the planning €T umage and cone beam CT image for 20 head and neck patients
were registered on the Cclipse TPS by the mutual in'fqrn}ation and match point methods. The
position shifts by the two methods wele compared and evaluated with those registered
optimization by radiation oncologist. | 4 _;‘ .

For the registration ©f lmSim phantom, the Belipse TPS shows slightly better
registration than Oncentra TPS. The mutual lntmmdtlon'Jmethod demonstrates slightly less
registration error than match point method, because pixel by pixel is used for mutual
information while 4 points is selected for the match p@fi'n"r registration method. The ImSim QA
software can check both translation and rotation with no influence of setup position compared
with the phantomeor paticnt study, The registration erroris increased=swhen moving set is
rotated -5 degree for all axes.

For cone beamC1 registration with planning CT of head and ncck patlents the mean
deviation from registered optimization by radiation oncologist for mutual information method
are 2.02 +2.00 mm and 0.82 + .16 degree and tor match point method are 3.05 + 2.92
mm and 1.31 £ 1.35 degree=TIhe mutual information also shows supcrior image registration
than match*poinfimgthod!

From the result the mutual information and match point methods can assist the
medical ongologist to optimize the image registration easily and reliably without image
misalignment.
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CHAPTER |

INTRODUCTION

1.1 Background and rationale

Treatment of advanced techniques sucna as 3D conformal, intensity modulated
radiotherapy (IMRT) and volumetric' ar¢ therapy (VMAT) require accurate
delineation of tumor volumes and surrounding hé‘élthy tissues for treatment planning,
maintained accurate patient setup [1] a_njj compensated for anatomic change during a
course of multifraction treatment. Usually, fan beam X-ray computed tomography
(FBCT) is the primary imaging-modality for structure delineation, beam placement
and patient position.eheck Data from other modalities such as magnetic resonance
imaging, magnetic resenange spectroscopy (MRI/MRS) and cone-beam computed
tomography (CBC)&T\(: used to register by combining the specific benefit of each
modality together. This'is become ihc’reaéin‘gly necessary for tumor and normal tissue
delineation and assessment of patient.anatomical change [2]. Image registration is the
tool to visualize the anatomical structure c arly and accurately.

The benefit of each |mag|ng Mot ahty such as MRI provides superior soft
tissue relative to CT and can be used to enhance or suppress different tissues such as
fat, the images are shown in Flgllf PET and SPECT can provide unique
information about different cellular and phys'mloglc processes to help assess normal
and diseased tissues [2] FSo the Integration nf-tmse modalities together can provide
better interpretation and de0|s1®—of doctor—to" dlagnostlc or treat the patient, the
example is shown inFig.1.2. _..J.-".;_x =

A B

Fig. 1.1, Two types of images A) CT with contrast and B) MRI image datasets.



Fig. 1.2, Examples of different multlmodallty lmaglpg data available for treatment planning by A) CT
with contrast, B) PET and C) CT with cohtrast and PE‘i’ fu§|on images.

§ IR Ak

Another application of image reglstratronl‘rls to verify the patient position for
beam placement before trea‘tme,nL This pmcess‘ Is used to check the position of
isocenter that should be at the same posmom as in the treatment planning process.
Kilovoltage cone-beam computerlzed tomography systems (CBET) integrated into the
gantry of Imearjccelerator can be employed to-acquire-high-resolution volumetric
images of the gqyent in the treatment position. The system anQ'_ image registration are
shown in Fig. 1.3+

Fig. 1.3, A) The CBCT system and B) image registration of planning CT and CBCT for patient setup
verification.



Image registration is an integrated part of patient management in modern
radiotherapy. Image registration is used to find the spatial correspondence between
two image datasets acquired at different time. The image registration process is
shown in Fig. 1.4. [2]

StudyAdata [ ! ! E '
(statlonary) l

Study B” data Opti

T W,

The two sets of image, stationary and moving set, are compared. The
objective of image registration-is to bring the input image into alignment with the base
image by applying a optimize transformatiﬁgtparameter to the moving image. Proper
registration techniques gan tmprove patlent .se;tup dose delivered and anatomical
changes. —

The image-guided system (IGRT) Wlth integrated kilovoltage x-ray imaging
systems and utilizing CBCT reconstruction te”'hnlques could monitor anatomical
changes during- the course of multifraction radiotherapy treatment the images are
compared agams‘t the reference fan beam CT (FBCT) |mages _Errors in the patient
position can be corrected by a couch translation or couch rotation. This leads to the
reduction of treatment margin and the reduction of dose iin normal tissue. The
complication would be less while the tumour control would be increase.

While, the process.of image registration between FBCT and CBCT can reduce
the uncertainties in.delivering dose to the target volume, it is impartant to evaluate the
uncertainties ‘arising from the image registration'process. The ‘methods to acquire the
image registration errors include the. visual inspection, identification of corresponding
point.landmarks, internal and external fiducial markers.

The /purpese of this /study is 'to jinvestigate the aecuracy of automatic
algorithms provided by two treatment'planning systems using Imsim QA software and
to validate the suitable image registration method between FBCT and CBCT in head
and neck cancer.




1.2 Research objective

1. To determine the accuracy of image registration of two treatment planning
by using QA software.

2. To determine the suitable method of image registration to acquire the
accurate coordinates in head and neck setup position.

AULININTNEINS
AR TUNNINGAY



CHAPTER 11

REVIEW OF RELATED LITERATURE

2.1 Theories

2.1.1 Head and neck cancer [3] = =
/s

Radiotherapy, either alone or delivered.coneurrently with chemotherapy, is a
definitive treatment modality-for head a\tgd neck-squamous cell carcinomas. As shown
in Fig. 2.1, the volumes that need to be irradiated in head and neck cancers (HNCs)
are complex, making‘if'c‘rlgllenging to aélequately irradiate the entire targeted volumes
while still safely pr_g.tecﬁn djacent normal tissues. Many critical structures such as
the brain stem, the optie apparatus, and the parotid glands are often located within a
> treatment volumes; yet the differences in tumoricidal doses
and tolerance doses o 'ir.r.nal St‘ru_'ctuE_Q are often large, demanding a concave dose
0se gradients.at the tumor boundaries. Conventional two —
dimension (2D) radiotherapy ;and, quitexﬂep, three — dimension (3D) conformal
radiotherapy (CRT) €annot meet th§§e strihgent requirements due to their inability to
produce sophisticated dose distributions, resulting in reluctant compromise between
adequate tumor coverage ‘and protection- pf sensitive structures. Advancement of
computer optimization and igtbnéity —‘.i'j@.dulated radiation therapy (IMRT)
significantly improved the coniformity of the dose distributions as well as the gradient
of dose fall — off. — —'_J

CWw2

C

Fig. 2.1, A) lllustration of complex tumor volumes in relationship with numerous normal organs in
vicinity. B) The tumor volumes include the gross tumor volume (GTV), high- risk clinical tumor
volume (CTV1), and C) low-risk clinical tumor volume (CTV2).



Although early clinical results of 3D — CRT and IMRT for patients with HNCs
are promising, uncertainties in the radiation delivery of these sophisticated plans
become a great concern. In particular, the question of whether these highly conformal
dose distributions can be precisely delivered to the patients over a protracted course of
6 to 7 weeks of treatment becomes paramount. Specifically, can we safely reduce the
planning margins while patient positioning uncertainties persist? Can these problems
be solved with implementation of image guidance? What kind of image guidance is
optimal in these patients? To answer these questions, imaging guidance in radiation
management of HNC patient is applied.

2.1.2 Image-guided radiation therapy (1IGRT) [4]

Radiation therapy.s aJocal treatment that is designed to treat the defined
tumor and spare the'surrounding normal tissue from receiving doses above specified
dose tolerances. There are many: factors that may contribute to differences between
the planned dose«distribution and the delivered dose distribution. One such factor is
uncertainty in patient position on the treatment unit. IGRT is a component of the
radiation therapyprocess that incorporates imaging coordinates from the treatment
plan to be delivered in order to ensure the patient is properly aligned in the treatment
room.

Image-guided radiation.therapy (IGRT) is the process of frequent two and
three-dimensional imaging, during’a course, of radiation treatment, used to direct
radiation therapy utilizing the imaging coordinates of the actual radiation treatment
plan. The patient is localized in the treatment room in the same position as planned
from the reference imaging dataset. An example.of imaging for treatment guidance
which is used today are: "

2.:1.2.1 Portal itmaging [5]

Portal imaging has progressed from the use of film as the imaging detector,
through screen/camera imagers and liquid ionization chambers, to solid-state flat-
panel detectors. Although there are institutions still equipped with and using the older
detector Systems, ithe flat-panel imager is emerging as the new standard detector for
portal imagingdn IGRT.

2.1.2.2 The electronic portal imaging:device (EPID) [6]

EPID.is a‘relatively new‘development in portal imaging. It consists' of an
Image acquisition unit fitted to the linear accelerator (Linac), and a component that
digitizes and displays these images on a computer screen. The unit should provide
high resolution and high contrast images, to allow rapid verification of treatment field
shape and position immediately after the patient's X-ray exposure. Recent
developments include the software to analyze portal images and compare them with
treatment planning images for setup accuracy and localization.



2.1.2.3 Ultrasound (US)

In ultrasound, a signal generator is combined with a transducer. Piezoelectric
crystals in the signal generator convert electricity into high-frequency sound waves,
which are sent into tissues. The tissues scatter, reflect, and absorb the sound waves to
various degrees. The sound waves that are reflected back (echoes) are converted into
electric signals. A computer analyzes the signals and displays the information on a
screen. [7]

Ultrasound (US) is ene method of periorming IGRT for prostate cancer, and
several devices are commercially available for this'purpose. Most US-IGRT systems
operate by comparing US Images obtained at time of treatment to X-ray computed
tomography (CT) images.ebtained at time of planning so as to measure daily prostate
misalignments. However«this«*“cross-modality” comparison approach has inherent
difficulties (in partsbecause the prostate base is frequently difficult to visualize on
CT), and discrepancigsbetween US and other IGRT approaches have been reported.

A new system oifersian alternative by incorporating an US system in the CT
simulation room in addition te the US system in the treatment room. This second US
system is used to.acquire an ' US reference scan at the time of planning and allows for
an intramodality comparison ©f-planned ‘and' treatment images. In both rooms, an
infrared imaging syStem that tracks:.the pdsjtion of the US probe is used to relate the
US scans to the room coordinages and to the machine isocenter. This ceiling-mounted
camera system is located at the foot of each treatment couch. Recent results indicate
that this intramodality ‘@pproach providés?’_‘ more accurate measures of prostate
misalignment than does the conventional cros'sirridzdality approach. [8]

2.1.2.4 Computéd Tomograpﬁy](G:T‘)

The intreduction-of-computed-tomography:(CT)rin=clinical practice resulted in
high quality 3D-images, which allowed precise definition of tumor shape and location.
This information motivated technology development, which would allow planning
and delivery of radiation in a more conformal way aimingto give enough dose for
disease elimination while sparing healthy tissues[9]. In-room CT planar radiography
is useful for setup'guided by either bony landmarks or implantedfiducials but is of
limited' use 1n° assessing soft tissue position and [shape. In-room CT has been
developed to assist soft-tissue target alignment before the start of treatment. In one
approach a conventional CT scanner is placed in.the treatment room 0n'the same
couch axis asthe LINAC gantry. Another-approach uses a kV source aad diagnostic
detector mouanted to the treatment gantry at 90° with réspect to'the LINAC[5].



2.1.2.5 Conebeam computed tomography (CBCT) [10]

Conebeam x-ray CT (CBCT) is a developing imaging technique designed to
provide relatively low-dose high-spatial-resolution visualization of high-contrast
structures in the head and neck and other anatomic areas.

Conebeam x-ray CT (CBCT) is a relatively recent installmentin the growing
inventory of clinical CT technologies. The first prototype clinical CBCT scanner was
adapted for angiographic applications in 1982: The arrival of marketable scanners in
the last 10 years has been, in part, facilitatec.by parallel advancements in flat panel
detector (FPD) technology, improved compuling.power, and the relatively low power
requirementsof the x-ray tubes used in_ CBCT. These advancements have
allowed CBCT scanners. to-be sufficiently inexpensive and compact for operation in
office-based head and neckas.well as dental imaging applications. These systems are
distinguished by _as€onical x-raybeam geometry and the use of 3D reconstruction
algorithms; most recent models are also fit with FPDs. For the fundamental of CBCT
is described in the'topic below:

2.1.3. Fundamental principles of €T and CBCT

Although there aré numerous differences between CBCT and conventional
fan-beam CT techniques, many of the fundamental physical concepts are the same.

2.1.3.2 Fundamental princip!es of CT [10]

The original clinical €T scanner was introduced by Sir Godfrey N. Hounsfield
in 1967. Data acquisition was -based on a translate-rotate parallel-beam geometry
wherein pencil beams of x-rays-were directed at-a detector opposite the source and the
transmitted intensityof photons incident on the detector swas measured. The
gantry would «thén both translate and rotate to capture _x=ray attenuation data
systematically from multiple points and angles. Although x-ray. sources, acquisition
geometries, and detectors have rapidly evolved since Hounsfield's original scanner,
the theory behind CT has not changed.

The attenuation of a monochromatic x-ray. beam through a
homogeneous object is described by the Lambert-Beer law:

= Ioe_#x

Where | is the transmitted photon intensity, |, is the original intensity, x is the
length of the x-ray paththrough the object, and« p is the linear attenuation
coefficientof., the “» material = traversed.. * This | ‘expression | thanges for
Inhomogenecus materials suchias human tissue:

I =Ipe~Jmxax

Line integrals of the linear attenuation coefficients, u, can be obtained by
taking the negative logarithm of the above expression. A line integral at
angle ¢ through the object isthe ray sum, a set of which at a given # constitutes a



projection. The computational problem in CT is to determine p at a given point from a
large set of projections obtained at varying gabout the object, a computation based on
the theory formulated by Radon in 1917.

Data acquisition in conventional CT imaging has evolved through4
generations of acquisition geometries. First-generation scanners used parallel pencil
beams of x-rays and required both translation and rotation of the source and a single-
detector apparatus. Second-generation scanners introduced fan-beam x-ray
geometryand used a single-detector linear array. In third-generation scanners, the
single-detector arc was introduced in conjunction with fan-beam x-ray geometry.
Fourth-generation scanners used a fan-beam a}' C‘?ys and a circular detector array. In
current practice, multidetector helical CT (MD T).seanning is most frequently used,
answering the call for reduced acquisition times.-MDCT is loosely based on third-
generation geometry, though the detector array has multiple rows of detectors.

aisition‘of CBCT [10]

he X-ray bgam forms a conical geometry between the
(base) (Fig 2.1). This is in contrast to conventional fan-
llimator restricts the x-ray beam to apprOX|mater 2D

ign of the gantry to eventually construct an image set
composed of multlp axial sections.«n 3CT systems using a 2D FPD, however, an
entire volumetrlc datasetican/be acqmred v<71‘th a smgle rotation of the gantry. Incident

with flat- panel detec n; mdeed,. with u’i easing numbers of rows in MDCT
' fmlly approximates that of a conebeam
system.

F -
B (Betector

Fig. 2.2, Depiction of CT acquisition geometries. A) Conebeam geometry in a compact office-based
system designed for the patient to sit upright. B) Conventional fan-beam geometry as it is used in
MDCT scanners with the patient supine.
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2.1.3.3 Flat panel detectors (FPDs) [10]

Digital FPDs enable the direct conversion of x-ray energy into a digital signal
with high spatial resolution. The fundamental design consists of a screen of
scintillator crystals grown ontoa matrix of photodiodes embedded in a solid-state
amorphoussilicon  (aSi:H) or  selenium layer. Incident x-rays are
photochemically converted to light by the scintillator film and transmitted directly to
the photodiode array where the signal-intensity. charge is stored. Thin-film transistors
fabricated into theaSi:H matrix relay @ .signal intensity proportional to the
stored charge in the photodiode array, whigh is, in turn, proportional to the incident
photons on the scintillator layer. The FPD-usedin the MiniCAT is an indirect-
conversion system based on a eesium iodide (€st) scintillator embedded in an aSi:H
layer. Csl scintillators produce superior —spatial resolution owing to the
microscopic columnar structure of the Csl substrate, which serves essentiallyas a
fiber-optic conductor for the signal intensity being transmitted to the photodiode
array. FPD arrays-afford greater spatial resolving potential with similar noise intensity
when  compared wiiii© theirs x-ray. intensifier/charge-coupled device (CCD)
predecessors.

2.1.4 Image quality of CBCH- |10}

Several physical / descriptors and _parameters are. commonly enlisted to
characterize the quality of an image. In char_aqt_erizing CT systems, quantum noise,
spatial resolution, contrast resolution, and detector quantum efficiency (DQE) are of
particular interest. Quantum noises fundam‘éntally related to image quality and is a
function of dose, tissue transmissivity, and voxel,size. Noise is, in turn, a principal
determinant of contrast resolutien-and, to afles?sér extent, spatial resolution, which,
along with artifacts, constitute the major observable determinants of overall image
quality. CBCTwimaging with FPD technology typically. affords excellent spatial
resolution with-a-relatively low patient dose, Contrast resofution suffers, however, due
to increased x-ray scatter and the reduced temporal resolution and dynamic range of
the FPDs. Scatter will be addressed in detail due to Its particular impact on contrast
resolution. Dynamic range and temporal resolution will also.be addressed in addition
to several proposed approaches to improvements in CBCT image quality.

2.1.4.1 Spatial resolution [10]

The spatial resolution of an imaging system is its ability to (discriminate
objects ofidifferentyattenuation-at smeall separation distances. It is typicatly described
as the spatial, frequency (measured in line pairs per.centimeter [Ip/cml) that can be
discriminated with a 10% detection of true contrast. The "modulation transfer
function” (MTF) relates the percentage of actual contrast conferred to the spatial
frequency of inserts in a phantom and is the product of the Fourier transform of a
composite of functions describing image blur, unsharpness, and contrast response in
reference to the ability to resolve line pairs per unit length. Spatial resolution is
determined primarily by the inherent blurring in the detection apparatus and the
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individual area of the detection elements. Superior spatial resolution is one of the
most attractive qualities of CBCT imaging and is largely the result of FPD technology
and isotropic data acquisition.

2.1.4.2 Low-contrast detectability [10]

Contrast resolution describes the ability of an imaging system to discriminate
differences in tissue attenuation, as measured in HU. The low-contrast detectability in
CBCT systems depends on both the dynamic range and temporal resolution of the
detector as well as x-ray scatter and quantum.noise:

CBCT systems _under evaluation for head and neck imaging are typically
described as having soft-tissue. contrast discrimination of approximately 10 HU.
Modern MDCT scanners«havescontrast resolution approaching 1 HU. This limited
contrast resolutioneremains asbarrier to the extension of CBCT technologies into
diagnostic imaging, imwhich detection of small changes in soft-tissue attenuation is a
premium. Receni reseaich has focused on scatter reduction and improvements in
dynamic range and iemparal resolution in ‘an effort to improve contrast resolution
without unnecessarily increasing patient dose. In fact, 3-HU discrimination has been
achieved in experimental’ CBCT systems, ‘though this has yet to translate to
commercial scanness. ;

2.1.5 Image registration [11]

Image registration is the process of trénsfd;rming different sets of data into one
coordinate system. Data may be multiple phoetographs, data from different sensors,
from different times, or from different vie’vi)‘poihts; It is used in computer vision,
medical imaging, military automatic target recognition, and compiling and analyzing
images and data~from=satetlites:=Registration=is=necessary: «1 order to be able to
compare or integrate the data obtained from these different measurements. In this
study, the rigid body model is used to registering with registration methods. The rigid
body model is discussed below:

2.1.5.1 Rigid body'modeli[12]

Far medical imaging, the most constrained spatial transformation model is the
rigid body model. This model asserts that distancessand internal angles.within the
images ‘cannel he- changed, during registration. As the name implies, this model
assumes that.the object behaves in‘the real world as a'rigid body, 'susceptible to.global
rotations and translations, but internally immutable. This model is well suited to
object such as individual bones, which cannot be deformed. To a reasonable
approximation, this model is also applicable to the brain, which is encased in bones
that protect it from forces that might lead to deformations. However, it is well
established that this is only an approximation, since parts of the brain, such as the
brainstem, are subject to distortions induced by cardiac and respiratory cycles. For
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images accumulated over many cardiac and respiratory cycles, these movements may
result in a blurred but highly consistent signal that follows the rigid body assumptions
quite well. However, for images acquired with a very short time frame, these
movements can produce very clear violations of the rigid body model assumptions.

Medical images often consist of voxels that differ in the real world distances
that they represent along the X, Y and Z axes. For example, it is common for the slice
thickness in magnetic resonance imaging @ata to be larger than the size of individual
pixels within each slice. If ignored, these anisotropies in voxel size will clearly lead to
apparent violations of the rigid body model; evensfor solid structures that accurately
follow the rigid body assumptions in «thessreal world. Consequently, any
implementation of a rigid body model must explicitly correct for voxel sizes to ensure
that the real world distances-and angles that are being represented do not change. In a
worst case scenario, six differeat voxel sizes may be involved: three anisotropic voxel
sizes from one image, and three different anisotropic voxel sizes from the other
image. A properly implemented rigid body model for transforming such images may
choose any one of these'voxel sizes or may even select some other arbitrary voxel
size. However, calculations must be included to rescale distances to compensate for
the various voxel sizes. For the rigid-body model to be applicable, all six of the voxel
sizes must be known accurately.-If the voxel'sizes are not known with certainty, the
best strategy is to sean a phantom with known dimensions to determine the true voxel
dimensions since errofs in specification of ‘the voxel dimensions will lead to
unnecessary errors in‘registrations produced using a rigid body model. If this is not
possible, the calibration error can-be estlmate‘d by adding additional parameters to
augment the rigid body model: a5

In three dimensions, the rigid body model requires specification of six
independent parameters. it s traditional (but “not necessary) for three of these
parameters to specify a three dimensional translation that/is either preceded or
followed by the-sequential-application-of specified rotations-around each of the three
primary coordinate axes. However, before considering the three dimensional model, it
is useful to consider the simpler case of two dimensions. In two dimensions, the rigid
body model requires only three independent parameters.

For this resedrch, the llandmark-based registration method and" Intensity-based
registration method wereused, they are described below:

2.1.5.2 Landmark-based registrationsmethods [11]

Landmarks'can be anatomical, i.e. salient and accurately locatable points of
the morphology of the visible anatomy, usually identified interactively by the user.
Technically, the identification of landmark points is a segmentation procedure, but we
reserve the classification segmentation-based registration for methods relating to
segmentation of structures of higher order, i.e. curves, surfaces and volumes.
Landmark-based registration is versatile in the sense that it, at least in theory, can be
applied to any image, no matter what the object or subject is. Landmark-based



13

methods are mostly used to find rigid or affine transformations. If the sets of points
are large enough, they can theoretically be used for more complex transformations.
Anatomical landmarks are also often used in combination with an entirely different
registration basis methods that rely on optimization of a parameter space that is not
(nearly) convex are prone to sometimes getting stuck in local optima, possibly
resulting in a large mismatch. By constraining the search space according to
anatomical landmarks, such mismatches are unlikely to occur. Moreover, the search
procedure can be sped up considerably. A drawback is that user interaction is usually
required for the identification of the landmarks. in landmark-based registration, the
set of identified points is sparse compared withethe original image content, which
makes for relatively fast optimization procedures. Such algorithms optimize measures
such as the average distanee between each landmark and its closest counterpart, or
iterated minimal landmarkedisiances. For the optimization of the latter measure the
iterative closest point (ICR)algorithm and derived methods are popular. Its popularity
can be accredited to_its versatility (it can be used for point sets, and implicitly and
explicitly defined“€urves, surfaces and volumes), computational speed and ease of
implementation. ThesProcrustean optimum'ban sometimes be computed, but is more
commonly searched for using general optimization techniques. Yet other methods
perform landmark regisiration- by - testing™a number of likely transformation
hypotheses, which gan, for example, be formulated by aligning three randomly picked
points from each point et invelved. Commen @ptimization methods here are quasi-
exhaustive searches, graph matching.and dynamic programming approaches.

ol il

2.1.5.3 Mutualinformation-based methods [2]

For data from different riodalitics where the pixel intensities of corresponding
anatomy are typieally (and inherently) different, registration. metrics based on simple
differences or praducts-of-intensities-are-not-effectiverin-these cases, sophisticated
metrics based On intensity statistics are more appropriate. \When using these metrics,
there is no dependence on the absolute Intensity values. One such metric that has
proved very effeCtive for registering image data from different modalities is called
mutual information (M1)-.As the name impliges, this metric is based on the information
contenty’0f the 'two [imaging studiésiand «is" computed directly. from the intensity
distributions of the studies.

According to information theory, the information content H of a “signal” is
measured by the expectation (of thé'log) of the probability distribution furiction (PDF)
of'the signal.values. For image data,-the ‘'signal values ‘are the gray-scalé intensities
and the PDF s the'narmalized histogram of these intensities. The information.content
in the image data is

H(y) = ~Ellog, pU] = = ) p(y) log, vy,
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Where p(I,) is the probability distribution function of the intensities I, of
Study A (Fig. 2.3).

tissue

)

I, intensity —

Fig. 2.3, A) 3D image volume B) probability density function of the image intensiteis

The joint orgeombined information content of two imaging studies has the
same form and represents the information épntg_nt of the two studies fused together.
This is computed as il

H(ly, 1g) == Z Z p(}}j IB’) log; p(Ia, Ig),

Where p(L,, Iz) i the 2D joint probability distribution function of the
intensities 1, of-Study A and I of Study B (Fig. 2.4). This PDF/is constructed from
the pairs of gray=scale values at each common point in Study A'and Study B.

P(Ler Zur)

[l F f "WEN W A

original MR

A B C

Fig. 2.4, A) Two-dimensional joint-intensity histogram constructed from B) an MR scan (Study A) and
C) a transformed (reformatted) CT (Study B)
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The joint or total information content for the two imaging studies is always
less than or equal to the sum of the individual information contents:

H(ly, 1) < H(ly) + H(lp),

If there is no redundant information in the pair of imaging studies (e.g., they
are completely independent), the joint infarmation of the pair is simply the sum of the
information in Study A and Study B:

H(ly ) = H(z) #H (),

If there is some redundant information, then-the joint information content will
be less than the sum of thesdnformation in the two studies:

H@ g lp) <IH(Iy) + H(3),

The amount of'shared or mitual information is just the difference between the
sum of the individual information contents and the joint information content,

ML i) = H) R H(5)— H( 1),

Solving for MiI'from the above equations,

_1_4

MIQ15) = D>l ly) l¢g2 {9 o 1)/ 10p)),

The mutual information between two imaging studies can be thought of as the
information in Study-B-that-is-also-present-in-Study-A--Accordingly, one way to
describe mutualdnformation is as the amount of informationin‘Study B that can be
determined (or predicted) from Study A. To completely predict Study B from Study
A, each intensity-value in Study A must correspond to exacily one intensity value in
Study. When this is the case the joint intensity histogram has the same distribution as
the histogram of Study-A, and, H(Iz,/5):equalsyH (15). (The, Mi-is therefore equal to
H(I), and Sutdy/B at this point can be thought of as a “recolored” wversion of Study
A

A major advantage of mutual information is.that it is robust te, missing or
incomplete informatiomn: Forexample;a tumar might show,up Clearly,on™an MR study
but be indistinct on a corresponding:CT study. Over the tumor volume the mutual
information is low, but no prohibitive penalties are incurred. In the surrounding
healthy tissue the mutual information can be high, and this becomes the dominant
factor in the registration.
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2.1.6 Validation of registration accuracy

There are many techniques to assess image registration error, often employed
in combination. These include (a) visual inspection, (b) identification of
corresponding point landmarks, (c) internal and external fiducial markers, (d)
comparison with previously validated methods, (e) use of virtual and physical
phantom, (f) misalignment of images by artificial transformation of images either
randomly or systematically sampling the parameter space and (g) consistency using
three images [14]. The example of some technigtieswas discussed below.

2.1.6.1 Visual inspection![12]

One of the quickest walidation methods to 1mpiement is simple visual
inspection of the sesult. Although this ‘may seem like and informal and potentially
unreliable approach, some research have shown that visual inspection can detect 2
mm  misregistrations of brain’ VIR1 images to brain. CT images quite reliably.
Misregistration can be aceurately identified even when one of the images is a low-
resolution PET image. ln general, if'the images look misregistered, they probably are
misregistered, and vistal inspection should be used as a routine ongoing validation
approach at every gpportunity.

2.1.6.2 Use of virtual.and physical phantom [12]

In the absence of gold standards, simulations are sometimes used to estimate
registration accuracy. A common strategy IS to take real data and deform it using an
appropriate spatial transformation - modgl Whi"le‘s-iimulating the addition of noise and
other factors thought to be relevant in limiting registration acguracy. Simulations are
most useful whein-addressing the-guestion-of how sensitive a registration method is to
some particular-aspect of the data. For example, simulations might be very helpful
when trying to choose the optimum amount of smoothing that should be applied to
images for intensity based intramodality registration. The results of such simulations
can serve a very important role in optimizing the performance of a registration
method:"HoweVer, in the,context of validation simulationsyhave définite limitations
that can make.them overestimate or underestimate registration accuracy. Simulations
are especially poor in the context of comparing different methods to one another. The
limitations of simulations derive from the fact that they are based on models of reality
and not on‘igality itself.<These models may omit factors that limii registration
accuracy in the real world, or'they may overestimate the degree to which a.limiting
factor is actually present. The models used to create simulated data for registration
necessarily include spatial transformation models, interpolation models, and models
of noise. Registration methods typically also implement spatial transformation
models, interpolation models, and noise models either explicitly or implicitly. If the
two sets of models are congruent, but this provides little assurance that actual
performance will be as good. To the extent that the models are not congruent, any
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poor performance will be difficult to evaluate since it can be blamed on the
discrepancy between models.
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2.2 Review of related literature

Wang X et al. [15] evaluated the accuracy and efficiency of 3 image
registration algorithms for CT and MRI fusion by using 12 sets of CT and MRI scans
in 12 nasopharyngeal carcinoma (NPC) patients. Three algorithms of registration
which were Mark-and-link, Interactive, and Normalized mutual information (NMI)
were evaluated by performing statistical analysis of the coordinate difference between
CT and MR anatomical landmarks along the x, y, and z axes. The time required to
complete the registration process using three algorithms was also recorded to evaluate
the efficiency of each image registration. The‘result 1s shown in Table 2.1 and Table
2.2.

Table 2.1, The registration erroisfor 3'image registration algorithms.

X (mm) (Y (mm) | Z(mm)
Mark-and-link 0.66 1.03 0.58
Interactive s A% 907Q 1.04 0.64
Normalized mutual information-(NMI) | 0.68 1.03 0.56

Table 2.2, Mean time reguiredifor CT/MRI registraiion.

Algorithms: + Time (min)
Mark-and-link , 6.25
Interactive A 5.25
Normalized mutual information (INM1) 5.15

From this result, all three registration éli}—()rithms, mark-and-link, interactive,
and NMI, could-provide accurate CT/MRI registration. However the mark-and-link
method was mosi‘time consuming.

Plaquin N."and Rangel A. [1] used phantom to evaluate a commercially
available three modality image guided radiation therapy system (IGRT) which consist
of megaveltage (MV) .planar,. kilovoltage (KV) planar,and conebeam CT imaging
system. The registration was performed between ‘appropriate ‘digitally reconstructed
radiographs (DRRS) of pelvic phantom from conventional CT scan and three modality
of IGRT image dataset. Seventeenscontrolled displacements of the couch. from the
referencespositionswere made=fon the MV kv, and EBCT images~Of these 17
displacements, 12.accurate displacements were made.in eachof the three orthogonal
directions independently and the remaining 5 were combinations of all three
directions. The three registration methods, automatic image registration,
semiautomatic registration and manual registration, was performed by Varian
equipment.
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All imaging modalities used three image registration have average residual
translation setup error less than 1 mm by kV planar imaging and automatic image
registration were found to give the highest accuracy and precision overall.

Buhl SK, Duun-Christensen AK, Kristensen BH, Behrens CF. [16]
performed the Clinical evaluation of 3D/3D MRI-CBCT automatching on brain
tumors for online patient setup verification. Initially, a multi-modality phantom was
constructed and used for a guantitative comparison of CT-CBCT and MRI-CBCT
automatching. Following the phantom experument, three patients undergoing
postoperative radiotherapy for malignant bram _tumors received a weekly CBCT. In
total 18 scans was matched with both €T and MRI as reference. The CBCT scans
were acquired using a Clinac X 2300 linear accelerator (Varian Medical Systems)
with an On-Board imager(OBl):

The phantem  experiment on CT-CBCT and MRI-CBCT automatching
obtained similar resulis.A significant difference was observed only in the longitudinal
direction where MRI-CBCT resulted in the best match (meanand standard deviations
of 1.85+2.68 mm fogCT and/~0,05+2:55 mm for MRI). For the clinical experiment,
the absolute diffegence in couch shift coordinates acquired from MRI-CBCT and CT-
CBCT automatchingy were <2 smm_ in _the wvertical direction and <3 mm in the
longitudinal and lateral directions. For yaw rotation differences up to 3.3 degrees were
observed. Mean values and standard ceviations were 0.8+0.6 mm, 1.5+1.2 mm and
1.2+1.2 mm for thesvertical, longitudinal” and lateral directions, respectively and
1.95+1.12 degrees for the rotation (n=17). -

From the result, it is feasible to use MRI as reference when conducting 3D/3D
CBCT automatching for online patient setup verification.

Fox T.,_Huntzinger C., Hohnstone P., Ogunleye I. and Elder E. [17]
evaluated the performance of the image registration software for automatically and
repositioning Dy 3D offset of a phantom using kilovoltage onboard imaging (OBI)
system. The geometric rigid phantom and anthropomorphic head phantom containing
a humanoid skeleton were used to assess the precision and accuracy of the automated
positioning system. The.geometric phantomgtranslation offset of 3 mm, 5 mm and 9
mm wer€ perfofmed land anthropemorphic phantom offsetWere'5 may, 10 mm and 15
mm. Test was«also perfermed with!combined shifts in the three principal directions
with the ‘phantom offset by 5 mm to 10 mm simultaneously. Then the couch rotation
was performed with 2 and 5 degree. The final perfermed were combined.translation
and rotation ‘6i phantom:.

Fram.the translation only; average magnitude of displacementiwas less than
0.75 mm for each of three principal directions. Combine translation and rotations had
the greatest average deviation in lateral, longitudinal and vertical direction. For all
dimensions, the magnitude of the deviation does not appear to be correlated with the
magnitude of the actual translation introduced.

From this result, the OBI system has been successfully integrated into a
feasible online radiotherapy treatment guidance procedure. Evaluation of each
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patient’s resulting automatch should be performed by therapists before each treatment
session for adequate clinical oversight

Ryan et al. [18] quantified prostate misplacement that result from automatic
bone matching (BM) and image matching (IM) registration algorithms. 204
megavoltage CT (MVCT) images and plannlng CT from 8 high- rlsk tomotherapy

Mean and maximur rostate positioning errors were 3.7+2.1 mm and

11.8 mm for bone matching and 4. 3 Mmeah mm for image matching,
respectively. -

From this s itis S nage registration should be used for
bone matching instead ofdma atching fa \‘ therapy ostate patients.
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CHAPTER IlI

RESEARCH METHODOLOGY

3.1 Research design

This study is an obse ne d ascriptive study research.

3.2 Research design model o

Fig 3.1, Research design model.
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3.6 Materials
3.6.1 ImSim QA software

ImSim QA software (Modus Medical Devices Inc., North Routledge Park
London ON N6H 5L6, Canada), which is shown in Fig. 3.3, is the software designed
to aid the physicist testing a range of ical imaging and radiotherapy applications
such as rigid and elastic image fu W IGRT and 4D imaging systems. It is
ideal for training in image tation, 3D margin growing and

CT/MRIPET imaging. /

ImSim QA p i vmns that can be extensively
edited and transformed, before bein M CT, MR & PET simulated
images. With the ability te*add noise, change ity, change slice spacing and re-

orientate, the phai hen rted to the test application,
minimizing the use oféthe real/scan ncrea efficiency of testing. Real
DICOM images gah alsabe imported into, IMSIMQA ing, without having to re-

scan.

Fig. 3.3, ImSim QA software.

ﬂuwm HAINYINT

a. Eclipse treatment planning system,

ARIBINIAUNANINLLA L.

ICF, USA\) is a treatment planning for all modalities such as 3D conformal, IMRT,
electron, proton, and brachytherapy. Eclipse helps dosimetrists, physicists, and
physicians efficiently create, select, and verify the best treatment plans for their
patients. The configuration of Eclipse TPS is shown in Fig. 3.4
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Fig. 3.4, Eclipse treatment planninggsy:stem showing 3D dose distribution.

b. @ncentratreatment plénning system

Oncentra treatment planning version. 3.2.303 (Nucletron B.V., 3900 AX
VENENDAAL, The Netherlands}), which is shown in Fig. 3.5, is a treatment planning
for brachytherapy. It is volume-based plannEQgréystem that includes state-of-the-art
optimization algorithms to ensure efficient treatment planning.

T s
=yl ——— l(_mnmw{mmm::
e

CEL] %[0 [ 4] L T % efalil maa ERALICIC T TN
a7 Calbmter Bocorstnution 3 Actieation [ Normalosbon  *, Optinizeion il Presarption. ()

Fig. 3.5, Oncentra treatment planning system.
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3.6.3 Head and neck patient image

a. CT simulator scanner

The 4 slice CT scanner (LightSpeed RT GE Medical system, Waukesha, WI,
USA.), which is shown in Fig. 3.6, has the ability to simultaneously collecting 4 rows
of scan data. The distance from tube to isocenter is 606 mm. The distance from tube

to detector focus is 1062 mm. Bor r is 800 mm which allows images to be
reconstructed with a larger field of vie '

software for treatment planning is virtual sim oftware which can reconstructed
raw image into 3D imamfgene_rjte DRR«(digital reconstructed radiograph) in
many directions.w hermores~this ftwarion oncologist to plan
treatment and mar t on Nt via moving laser in om directly.

T TRTR Jing CT.
= ;ﬁ%“-— )
a
'b.\ Varian conebeam CT A g

-
Varian.cone-beam CT (Version 2.1. al imaging modality

that become avaiﬁle on linear acceler. at 90° on the gantry of linear
accelerator. The imager support arm carries an amorphous_silicon detector with an

active rectangular i?aging area of 397 X 298 mm. For the bow-tie filter is a

mechanical device, tha ted i t  tube to filter the X-ray beam. Made
of Aluminum for-QBI, this de se ‘ [Ejete quality of the CBCT
projections, ch™are reconstru into 3D CBCT "images. re“are two bow-tie

filters provided; a full-fan bow-tie, */hich is used for acquisition of head Ws and the

TS T T

Reduced skin doses.

e Reduced X-ray scatter, which results in improved image quality.

e Reduced charge trapping in the detector.

e Allow large X-ray techniques to be used without saturating the
detector.
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For the rotation, the gantry must rotate through slightly more than 360° for a
full scan and 200° for a half scan.

CBCT is a high-resolution, low-dose digital imaging system that allows users
to confidently manage patient and target movement — both before and during
treatments, with 3 modes of kilovoltage (kV) imaging: digital radiographic, cone-
beam CT (CBCT), and fluoroscopic imaging. The image and its information which
acquired from CBCT on offline review software on on-board imager (OBI) workstation can
be imported to TPS in treat planning
uncertainty in head and neck

The linear accelerator e

il .|-.-
Fig. 3.7, Varian linear a
# fbaineid - LA

3.6.4 Manufacturer cyli
. products. Designed
to simulate th man body, they contain several type: i’ n this case air water
and PMMA, which are arp outlines and contrasts
ntom is shown in Fig.

Fig. 3.8, Manufacturer cylindrical QA phantom.
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3.6.5 Catphan phantom

The phantoms are used to complete comprehensive performance evaluations
of axial, spiral and multi-slice CT scanners and to implement quality assurance
programs. The Catphan phantoms are constructed from modules that fit snugly into a
durable 7.9"(20 cm) housing. The modules used in the Catphan 504 are made from
solid-cast materials. This constructi nates material absorption of water and
leaks associated with water bath phér1 I as problems related to varied water
sources. /

The test modules"hﬁluded with C antoms are used to conduct a

variety of test measurgmgn;s;ncjudlngwaluaﬂﬂns.oﬂhﬂollowmg
e Scan SW lice width and" Shee-sgp_m_tlwty profile)

High resol 0 20 or 21 Ilne pairs-per cm)

-

e Point spread functmﬂ:and m n transfer function (MTF) for the X,
y,and z axes. .- *5?,4' =
The Catphan ph*aftom is shown in Flg é 9.

Fig. 3.9, Catphan phantom 504.
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3.7 Methods

As an essential prerequisite for the treatment planning process and, in
particular for the correlation process, the image that were converted into the
treatment planning system must reflect the real geometry of the patient, possible
distortions of the images had to be minimized. In addition, the accuracy of the
registration software in the treatment planning program was essential. So this study
would start with the quality assurance of data transferred to treatment planning
systems (Eclipse and Oncenira) included the methed of automatic registration in each
treatment planning system.

3.7.1 QA of data.transferred to treatment planning systems (TPS)

3.7441" Tmagesinpput using the manufacturer cylindrical QA
phantom for CT scaaning ‘

The cylindrcalQA phantom'Was scanned with the GE LightSpeed CT.
Parameters for scanningwere 120 kVp, smart mA (automatic exposure control mode:
AEC), matrix 512 X 512. The image datasets of phantom had different slice thickness
of 1.25, 2.5, 3.75, 5 and 10 mm, large and small FOV. The QA of data transferred
from CT to treatment planning system were performed as the followings:

a. Scan parameter co‘h‘sistency
oot b
Different field of view within one CT data.set might give wrong dimensions of
the phantom or patient. A €T-#mage dataset for 10 mm slice thickness of two different
field of views, large and small, were introduced into Eclipse and Oncentra TPSs. The
TPS should show: no-warning:=The-dimensions of the-phantoin were measured with
the ruler tool from-the TPS.

b. Slice thickness

Aset of CT scanned with‘varying slice thickness of 1.25,12:5,:3.75 and 5 mm,
was transferred ta both TPSs. The system should not give any warning or comment.
This illustrated that the construction of the volume was performed correctly.

c. CTy\number representation

The homogeneous slice of image dataset was transferred to both TPSs to
observe CT number by determining mean and standard deviation of CT number in a
region of interest (ROI) 2 X 2 cm? size, it is shown in Fig. 3.10. The CT number was
compared with the original CT numbers measured on CT workstation.
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. 9 —
F&_@,Q,Placing of RQI for CT number measurement.

/d(
CT image "pa_i'k part of QA phantom were imported to both
TPSs. The distance h gap and the angle of ramp which shown in Fig. 3.11

were measured in don the phantom. These values were compared between
those measured from

r

il T
Fig. 3.11, Measurement of position on QA phantom image dataset.

3.7.1.2 Image input using the Catphan phantom for conebeam CT
scanning

The Catphan sphantom«was scanned by “Varian CBCT with'stendard + dose
head ‘'mode whichioperated- at 100 k\p, 145 mAs, 360 projections and 384 X 384
matrix. The reconstructed slice thickness was 2.5 mm. The process of QA of data
transferred was performed by the following.
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a. CT number representation

CBCT image dataset of contrast sensitometric part of Catphan phantom was
imported to Eclipse TPS. The CT number in the TPS was determined in term of the
mean and standard deviation in a region of interest (ROI) 7 X 7 mm? size, it is shown
in Fig. 3.12, the reading values were compared with the standard CT number of each
material. The materials were acrylici d r"i air, Teflon, PMP, LDPE and polystyrene.

"l';:'

y s :"_';"“ : "?..4:;1}' ‘
b. ImagE'gez;metry truction

¢{axes were measured
ize of phantom.

Eclipse TPS.
by ruler tool o

Fig. 3.13, Measurement of CBCT image dataset of Catphan phantom.
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3.7.1.3 Image input using density phantom generated from ImSim
QA software

Image dataset that was used in this part was simulated phantom which
generated from ImSim QA software. ImSim QA software had three types of phantom
there were density phantom for QA of ImSim, Simple brain phantom for registration
by mutual information method and bran }hantom for registration by match point

method. These three types of pt Fig. 3.14.

4".#-'
==

Fig. 3.14, A) Densit B Simple ,_ hantom and C) Branch phantom
g ) éﬂr@mpm i in p ) p

.--,.-ﬂ" ‘fy .
Q

a. CT number re

CT n using ImSim QA

oth TPSs and the CT

software. CT daﬂ) d |D
number in a ROl-was determined as shown in Fig. 3.15. These values were compared
with the original nurnb%:generated from Imm

Fig. 3.15, Measurement position of CT number on density phantom.
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b. Image geometry

The image dataset of whole generated phantom from ImSim was imported in
both TPSs. The size of inner cylindrical in X, Y, and Z axes were measured in TPS
which shown in Fig. 3.16. This result was compared with ImSim data.

Y
|

'.d

a8
A4

L A

oM

N AN L phantom.

-

R\

,
\
|
\
" B, 1 L
: : \
%
-~ \ 1
ﬂ.l"’p - = -
= ) .
Y )

Flg Vo

3.7.2 Verificatic e Tegis ati “\. metho in TPS using ImSim QA
software - W i A\ %

The methods ti ation method and match point
method. The verification f thodﬁ@” formed by the following.

J oy .,,.-

3.7.2.1 ImSim '_ "‘[3’ .

| image dataset by translating
) e translation in all axes
simultaneously at- ‘rotation image dataset, the
rotating of 5, 10 and 15 degree we ed in each axis and also all axes in the
same manner as the translatlon The dataset of transformed images are shown in Table
3.1 which included 25

Tab.esﬂuﬂ’lnm &L‘I@ INHINT

Stationa

(10, 10, 10), (15, 15, 15)

(5,0, 0), (0, 5, 0), (0, 0, 5), (10, 0, 0), (0, 10, 0), (0, O, 10),
(15, 0, 0), (0, 15, 0), (0, 0, 15), (5, 5, 5),
(10, 10, 10), (15, 15, 15)

Rotation 5,10, 15
set degree
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3.7.2.2 Mutual information method

Simple brain phantom which had three image datasets as described above
generating by ImSim QA software was registered on Eclipse TPS and Oncentra TPS.

3.7.2.3 Match point method

Branch phantom which had specific paint. generating by ImSim QA software
and had three sets were registered on Eclipse #PS«and Oncentra TPS. In this method
the 6 specific points were selected to mark foimateh point processing.

3.7.3 Verification«of image registration methods of TPS using head and

neck patient image
l

After phantom image dataset was employed to verify:mutual information and
match point method of registration, the head and neck patient image was selected to
verify the two methods of image registrations for clinical application in patient setup
verification. All patients were delivered CBCT imaging to verify the position in
treatment room at the first day of treatment program. The method was performed by
the following: wy

£
3.7.3.1 Data acqtiisition
« Ad

Image acquisition for treatment planning was performed by computing
tomography (CT) and conebeam CT. They were used. for patient setup verification
before receiving the treatment. These complementary aspects could be integrated into
treatment planning by correfation-of the-images from-different inodalities.

The planning CT imaging parameters were 120 k\/p,"Smart mA (automatic
exposure control mode: AEC), matrix 512 X 512. The reconstructed slice thickness
was 2.5 mm. During the scan, patients were immobilized in the supine position with a
thermoplastic mask.

CBCT image datasét/was dcquired-under steéndards dose #iead mode which
had 100 kVp,«145 mAs; 360 projections and 384 X 384 matrix. The reconstructed
slice thickness was 2.5 mm. During the scan, patients were immobilized in the supine
position with a thermoplastic mask and were positiened the same as petforming CT
imagrmg.

The examples of head andneck patient image datasets.from planning.CT and
CBCT modalities are shown in Fig. 3.17.
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(3))(&3)

Fig. 3.17, A) Planning GT image dataset and'B) CBCT image dataset of head and neck patient.

3.7.3#2 Head and neck patjent image dataset

Planning CT image dataset of 20 head and neck patients were selected as the
stationary image dataset(reférence image) and the corresponded CBCT image dataset
of 20 patients on the first day treatment were Selected to be the moving image dataset.

3.7.3.3 Imported data s
These two image datasets were importei_:i,tg Eclipse TPS.
3+.3.4 Registration
CBCT image dataset was registered with planning' CT image dataset by
mutual information and match point method. For match point method, the 4 selected

points were marked on specific anatomy of head and neck by observers who expert in
anatomical structure.

3.8 Outcome measurement

Variable: independent variables
: dependent variables

image registration method, TPS
registration error, registration
deviation
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3.9 Data collection

The measurement of registration error and registration deviation was collected
in distance (mm, cm) and rotated (degree) for Eclipse and Oncentra TPSs.

3.10 Data analysis
3.10.1 Phantom image dataset registration by ImSim QA software

For Eclipse TPS, the position shift by mutual information and match point
methods were reported by registration property that included in the software. These
shift values were compared with the actual shifts that were applied by ImSim QA
software. The registration.errorwas occurred when these two values were different.

For Oncentsa TPS,the distant measurement of the same point on reference and
moving image dataset#of phantom was performed by an observer. The difference in
measurement wasiregistiation error for these two registration methods.

3.10.2 Head and'negk patient image dataset registration

This image dataset of CBCT couldibe imported from OBI workstation only to
Eclipse TPS to registéred with planning €T, So, the position shift value was
determined by Eclipse’ TPS method. The coordinate of optimized image registration
by radiation oncologist on the OBl workstaﬂ_Otji on the first day was used as the gold
standard. The registered coordinates by the two methods of auto image registration
between planning CT and CBCT were determined and the differences in the
coordinate between optimized by radiation,:fo'ne{')iogist and auto method were the
deviation of image registration method.

3.11 Benefit of the study

e AssSist the radiation oncologist to optimize the position shift easily and
reliably by suitable image. registration method.

¢ Improve planning target volume (PTV) delineation;

e “Accurate dose tq target volume and argan at risk.

3.12 Ethical'Consideration

Although this study was performed in phantom and used image of patient,
however the ethical approval was processed by Ethics Committee of Faculty of
medicine, Chulalongkorn University.



CHAPTER IV

RESULTS

4.1 QA of data transferred to treatment planning systems (TPS)

4.1.1 Image input using the ménw/y ylindrical QA phantom for CT

scanning — j

The signal los
and Oncentra TPSs co
was within tole
dimension within 2

ata t ansformWT workstation to Eclipse

T_ umber reading at various position of phantom
0 and |mage recon tion had the accurate
ge datasets of dlfferent slice thickness and

fields of view st -
al
-

n imported CT image dataset with slices
of two difference fi 10 mm slice thickness. The
dimensions of the phant he ruler tool from each TPS and the
results shown in Fig. 4.1 and'4.2 illustrated e value for large and small FOV in

both TPSs.

%mawom S RN IREAR
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4
Fig. 4.2, Measurement of A) large_and B) small FOVaof CT ir image nage dataset with the ruler tool from
Oncentra TPS.

When importing of CT | age—'da{as;t with varying slice thickness, both TPSs
did not give any ing or comment, This means that the construction of the volume
was performed correcth K _ 4', T 4
s d’.l
<. £ ada iy 1,4- #
Ly |
r repre!senta’uf-j:rlﬁIr .

The result of CT numﬁbr‘cbnsistencl =;!f"ii\;&.'éier WhICh was a part of phantom is
shown in Table 4.1 and 4.2. The EFroT rangersf:CI number measured by Eclipse TPS
was 0.03 - 0.33 and measuree-by Gncentra TPM‘O 04 —1.19.

|~ — — = J
Table 4.1, CT num_bé'r: error reading from Eclipse TPS and CT workstation:. .
] —
| CT No. i
"-{lpper lower center “right left
CT Workstation 0.90+2.41 0.36+2.69 1.03+2.69 0.85+2.49 0.57+2.58
Eclipse TRS _ 1.20+2.25 0.30+2.75 1.00+2.47 1.00+2.47 0.90+2.65
Erron | 2030 | Y 10.06% 0.08 3 ¥t 0.33

Table 4.2,'CT number error reading from Oncentra TPS and CT workstation.

i CT No, . K
f 1 A upper | . dower | |, center Fight | % "lleft
CT Workstation 0.90+2.41 .0.3622169 1.03+2.69 0.85+£2.49 0.57+2.58
‘Oncentra TPS 0.86+2.59 0.06+£2.74 2.22+2.75 0.17£2.8 1.67+2.96
Error 0.04 0.30 1.19 0.68 1.10
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d. Images geometry reconstruction

The geometry measurement by both TPSs compared with phantom
measurement is shown in Table 4.3 and 4.4. The errors of measurement of Eclipse
TPS were 0.14 mm and 0.1 degree and error of Oncentra TPS measurement were 0.17
mm and 0.45 degree.

Table 4.3, Measurement comparison between phantom and image data on Eclipse TPS.

Distance between*gap Slope of ramp
Phantom 143 mm 44.9 degree
Eclipse 1144 mm 45 degree
Error 014 mm 0.1 degree

|
Table 4.4, Measuremeat'€omparison between phantom and image data on Oncentra TPS.

Distance between gap Slope of ramp
Phantom wd l.3dmm 44.9 degree
Oncentra s 011.47 mm 45.35 degree
Ergor 0.47'mm 0.45 degree
"'-j.,r':’.._

4.1.2 Image input using the Catphan _phgptom for conebeam CT scanning

a..CT number representation

The resu_ft of CT number measurement from Eclipse‘ TPS is shown in Table
4.5, the measurement was compared with the standard CT number for each material.
The error range of €T number measurement was 0.2 — 19.

Table 4.57CT number error reading from Eclipse TPS'compared with standard CT humber of material.

Air (-1000) Acrylic | Derlin | Teflon | PMP | LDPE | Polystyrene
upper | lower | (120) (340) (990) | (-200) | (-100) (-35)

Measure. | -997.7 | -994.9 | 1243 359.0 | 1008.2°1 -201.7_ | -99.8 373 +3]
T +4:064 21191 ["+34.80 | %£29.36,| +30.64 | *24:91" | +31.06 i B

Error o 3.1 4.3 19 18.2 1.7 0.2 43
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b. Images geometry reconstruction

The measurement of the size of phantom in Eclipse TPS compared with the
real size of phantom is shown in Table 4.6.

Table 4.6, Compare measurement between phantom and image data on Eclipse TPS.

X axis'(cm) Y axis (cm)
Real phantom 15 15
Measurement in Eclipse 15.14 14.92
Error 0.14 0.08

4.1.3 Imagerinpuirusing density phantom generated from ImSim QA
software \

For ImSim QA'sofiware, the valueof CT number in each region which shown
in Fig. 3.13 and size ofiphantom aleng X; Y and Z axes were comparable with the
value that displayed in Eclipse and Oncentra TPSs. The result of quality assurance of
ImSim QA softwarg was illustrated as follows:

a. CT number representation dda
iy -!j.l_i
The result of CT numbérdisplayed in each TPS was shown in Table 4.7 and
4.8. The error range in Eclipse TPS was 1 - 9and.in-Oncentra TPS was 0 — 8.

Table 4.7, CT number error reading from Eclipse TPS and ImSim QA software.

CT No.
1 2 3 4 5 6 7 8 9 10 11 bg
ImSim -400 | -200 | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 1000 | 20
Eclipse TPS | -409 |"-205% 95 | 191 | 299 19395 | 491 | 599 | 695 | 791 | 995 | 11
Error 9 5 b 9 1 5 9 1 5 9 5 9

Table 4.8, CT number error reading from Oncentra TPS and ImSim QA software.

CT'No.
1 2 3 4 5 6 7 8 9 10 11 bg
ImSim -400 | -200 | 100" |"200 | 300 | ‘400 "| 500 ["600 1700 | 800" 1000 | 20

Oncentra TPS | -408 | -204 | 96 | 192 | 300 | 396 | 492 | 600 | 696 | 792 | 996 | 28

Error 8 4 4 8 0 4 8 0 4 8 4 8
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b. Image geometry

The measurement of density phantom by both TPSs was compared with value
generated from ImSim QA software. The results are shown in Table 4.9 and 4.10, the
error range measured from Eclipse TPS was 0.38 — 0.42 mm and error range from
Oncentra TPS was 0.89 — 1.88 mm.

Table 4.9, Geometry measurement of density phantom.along=X; Y and Z axes by Eclipse TPS.

Xo(mm) = Y (mm) Z (mm)

ImSim 2977 38.71 117.42

Eclipse TPS 38.33 S0 117.00
error 0.38 0.39 0.42

Table 4.10, Geometrysmeasurement of density phéntom along X, Y and Z axes by Oncentra TPS.

X ghmy=—=" LY\(m) Z (mm)

ImSim 38.71 il 38.71 117.42

Oncentra TPS 39.70 A % 89.60 119.30
error 0.99 i 0.89 1.88

4.2 Registration of ImSim phaatem imagé—éataset
dd

Using phantom that was-generated from ]mSim QA software for stationary,
translation and rotation -image -datasets, ‘the  registration errors from mutual
information and'match point registration methods in Eclipse ;TPS were within 0.34
mm when registered- with-translation.-set-Forrotation.setregistration error was within
0.95 mm. The-segistration errors are shown in Table 4.11 aad 4.12. From these
results, the average registration error was less at the z direction, it was greatest when
applying transformation in all axes simultaneously which is shown in Fig. 4.3 and 4.4.

Table 4.11,/Registration error.from registered.by.mutual information method.in Eclipse TPS.

Applied transformation X axis Y axis Zaxis | 'XYZaxes | Average
(mm) (mm) (mm) (mm) (mm)
Translations5mm 0:03 0103 0.02 0:08 0.04
Translation: 10'mm 0.00 0.04 0.02 0.28 0.09
Translation: 15 mm 0.14 0.12 0.11 0.04 0.10
Rotation: 5 degree 0.10 0.02 0.02 0.18 0.08
Rotation: 10 degree 0.18 0.19 0.02 0.34 0.18
Rotation: 15 degree 0.18 0.17 0.05 0.28 0.17
Average (mm) 0.11 0.10 0.04 0.20 0.11
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Table 4.12, Registration error from registered by match point method in Eclipse TPS

Applied transformation X axis Y axis Zaxis | XYZaxes | Average
PP (mm) (mm) (mm) (mm) (mm)
Translation 5mm 0.14 0.04 0.14 0.23 0.13
Translation 10 mm 0.10 0.18 0.14 0.25 0.17
Translation 15 mm ' 0.31 0.34 0.22

Rotation 5 degree 0.05 0.24 0.20

| 0.12

Rotation 10 degree 2N o4y 0.49 0.34
Rotation 15 degree | 051 | € [ _0:06 0.95 0.54
Average (mm) ‘ 2 : | 0.42 0.27

0.35 - //'/ \ _Applied transformation
. /A’/l\\\\\‘\\ n
L /AL AN
Illﬂ d W\
‘*§ 0.15 llm "\\‘\. ® XYZ axes
Lo ) B8 N\

e tra at ﬂ 1"? 7. g ate  rotate

1 Eclipse TPS.

pplied transformation
| on

@ X axis
WY axis

Z axis

XYZ axes

translate translate translate rotate  rotate rotate
5mm 10mm 15mm 5 degree 10 degree 15 degree

Fig. 4.4, Registration error from match point method in Eclipse TPS.
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For Oncentra TPS, the results from these two methods of registration are
shown in Table 4.13 and 4.14 and in Fig. 4.5 and 4.6. Registration error was less than
0.05 £ 0.02 cm for registration with translation set and for rotation set registering, the
registration error was less than 0.33 = 0.08 cm. The graphs showed higher registration
error which was the same as in Eclipse when applying transformation in all axes.

Table 4.13, Registration error from Vr'_ ‘ | formation method in Oncentra TPS.
SO/, J—
. . Is | XYZaxes | Average
Applied transformation . tem) (cm ' (cm) (cm)
Translation 5mm 0.0 2o 0.03 0.02
Rotation 5 degree L AN - - 0.07
Rotation 10 degree o < 0.17 0.10
TR 0.10 0.06
i m o] ncentra TPS.
% b= AL% XYZ axes | Average
Applied transforma M ‘
PP y Cem) | em) (cm) (cm)
Translation 5mm 3 0 0.04 0.03
Rotation 5 degree . ' 4;’;‘ 0 0.15 0.09
Rotation 10 degree 0.0} = 0.03 0.33 0.14
Average (cm) Dhe o, - 008 04 0.17 0.09
‘7;-——:7,
AT TR,
- l'""ﬁ"'?-'-', f 1‘:‘
0.16 =— -
[ ﬂ |
— 014
g [ ° lied tra;sformatlon
<= 012 r
,° 1 9‘ R _ﬁ-f“_ . I & X axis
u A1t F) v o
: | - B™ L .
Z axis
% 006 p N
)
2 04 _ S &
1R
. translate rotate rotate
5mm 5 degree 10 degree

Fig. 4.5, Registration error from mutual information method in Oncentra TPS.
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0.35
o
0.30
—_ Applied transformation
E o025 on
g 0.20 : - — @ X axis
s \ 1 1, r ] . WY axis
5 0.15 - — , -
s B, \, / ; A Z axis
k7] B B -
Ei," 0.10 - . . - 7 - ® XYZ axes
0.05 +— .._
0.00 -
\ e
n Oncentra TPS.
For the verification istratit \ ne mutual information gave
slightly better result than match point met yoth TPSs, which shown in Fig. 4.7
J e - fg 1

and 4.8. The mean registra

or both methods were less than 1.5
mm in both TPSs. \

emtration error (mm)
g Nz ¢ By (&

0.00 - = o/
" i fan trahslaté’ tes /" Totdle 10 (ot
m 0 egr egree ree ‘
Fig. 4.7, Comparison of registration error between mutual information (MI) and match point (MP)
methods in Eclipse TPS.
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Fig. 4.8, Comparison ofi registratic error bt .: ! mutu ' 0 (MI) and match point (MP)

methods in Oncentra TPS.

4.3 Registration of CBCT af J& i 7 itient image datasets

The deviatio h pt
registered opti L:# ogists areJisted 1w Te
respectively. Fo

registration from
ble 4.15 and 4.16,
tionwas 2.02 + 2,00 mm
degree) rotation. For

(0 — 8.87 mm) —
match point method, the mean deviation was 3.05 + 2.92 mm (0.02 — 17.86 mm)

translation and 1.31 + 1 35 degree (0 —6.62 dqgree) rotation.

ﬂﬁﬂ?ﬂﬁlﬂﬁﬂﬂﬂﬂ‘i
a‘mmmm UANINYA Y
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Table 4.15, Deviation of mutual information image registration from optimization by radiation

oncologist.
Case Translation (mm) Rotation (degree)
X Y Y4 X Y Y4
1 8.87 4.01 2,31 0.12 1.64 2.15
2 4.89 5.47 4132 0.57 1.73 1.79
3 1.14 0.19 g8 0.40 0.50 2.49
4 0.81 0.03 1,00 0.39 0.57 1.65
5 0.64 0.51 1.10 0.30 0.31 0.94
6 0.05 39 1.14 0.09 0.00 0.97
7 0.60 1.16 . 0.45 0.29 0.41 1.08
8 3.55 1.33 3.12 0.04 0.06 0.47
9 1.44 0:85 0.00 0.15 0.57 3.28
10 0.14 Qa5 2.39 0.04 0.82 0.43
11 0.22 0,22 11.46 0.03 0.01 0.34
12 0.02 0B 10.57 0.04 0.06 1.17
13 1.79 Qi14, .41 0.06 0.47 0.08
14 0.86 .20 3.67 0.24 0.20 0.74
15 2.35 1495 1.81 0.86 0.04 0.13
16 4.86 4.02 219 1.02 0.02 1.56
17 1.49 2.90 -4 57 0.4 0.31 1.99 1.08
18 0.67 1,02 1.45 0.12 0.07 0.27
19 1.24 0.22 1.69 0.32 0.38 0.37
20 5.40 8.65 . 2.9P44 g4 6.89 1.63 4.26
," '3
FYP ¥ o Y

Table 4.16, Deviation of match pointimage registratidn:fr.om optimization by radiation oncologist.
" et " |

Case Translation (rﬁm) e Rotation (degree)
X L Zos faml . X Y Z
1 9.68 552 3.10 0.78 o 1.67 2.39
2 4.46 4.33 BB 1.18 s 13.99 1.15
3 = 0:80 376 0:22 -+ 10.30 2.70
4 - 1400 0.24 1572 0.39 . 097 1.54
5 6:52 3.19 0.99 0.18 i 0.05 1.93
6 313 3.43 2.28 3.38 0.14 0.80
7 1.80 2.38 1.32 031 | 0.00 0.95
8 2.64 1.49 4.02 1.71 1.44 0.25
9 0.94 1.40 0.10 1.95 2.03 0.86
10 1.62 1,59 2.13 0.93 0.25 0.08
11 0.88 0.63 0.80 0.04 0.10 0.03
12 0.19 0.85 0.02 3.36 1.50 0.56
13 1.04 0.18 3.76 1.24 0.00 0.05
14 1.05 3.83 2.54 0:39 0.48 1.58
e 3.70 0.95 442 1.96 0.62 0.74
16 6.39 3.96 17.86 5.60 0.31 2.13
17 2.12 3.36 8.85 1.85 1.67 1.32
18 2.03 0.91 1.73 0.59 0.23 0.55
19 3.11 2.60 4.51 3.87 2.19 0.42
20 5.66 8.59 3.86 6.62 1.97 1.99
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For these two registration methods, the mutual information method gave the
less registration deviation in clinical used compared with match point method. The
deviation of translation and rotation of these two methods are shown and compared in
Fig. 4.9 and 4.10.

10.00

translation deviation (mm)
[
=

Fig. 4.9, Translation devia ion of ” on (! natch point (MP) methods in head and
neck patient image. ol

m Ml

on deviation (degree)

mMP
AUl
0.50
e/

awwa~“x%* RibERE

F|g 4.10, Rotation deviation of mutual information (MI) and match point (MP) methods in head and
neck patient image.




CHAPTER V

DISCUSSION AND CONCLUSION

5.1 Discussion

The image registration accuracies arising from IGRT process are (a) the
accuracy of the spatial coordinates of the image with respect to the megavoltage (MV)
treatment beam, (b) the accuracy in image registration.and (c) the accuracy of patient
re-positioned [14]. The accuracy of the spatial coerdinate of the image can be
minimized from the @Arof the TPS and the megavoltage machine. The uncertainty
which called registraiton‘error.eaibe determined by many methods [1, 16, 17, 18]. If
the factors (a) and (b)~are_eliminated, the accuracy of patient position could be
acquired. The introductien of ImSim software (Modus Medical Devices Inc., North
Routledge Park Lendon,s Canada) ean solve the parameter influence such as,
coordinate accuracy and mevement of the.marker, so the actual image registration
error caused by software of registration COIJJld be determined.

The registration‘errars using ImSif_n software for Eclipse and Oncentra TPSs
are slightly differents’ The maximuna registration errors from Eclipse and Oncentra
TPS with the simultaneous translation and rotation in all axes are shown in Table 5.1.
Eclipse TPS gives slightly better result than Oncentra TPS in both translation set and
rotation set of registration. ¥/

The registration @rror from Eclipse and Oncentra TPS increases when the
degree of transformation is h|gher Note thgt,the registration between reference set
and apply rotation set contributes the regls_t;a_t!or_l_error more than registration with
apply translation set. The registration with moving set which apply transformation in
all axes (X, Y.and Z) contributes the registration-error more than moving set which
apply only oné &xis, the result agree with the other study [17]. The registration error
for the transformation on Z axis of moving set is less than registration error applying
transformation in other axes, this may be due to the limitation of ImSim QA software
which can display only X and Y plane not Z plane.

Table 5.15Comparisan of maximum registration errorfrom Eclipse and Oncentra TPSs

Maximum registration error
Translation set (mm) Rotation set.(mm)
Eclipse TPS 0.34 0.95
Oncentra TPS 0.50 3.30

For mutual information and match point method, the registration error in graph
of Fig. 4.7, 4.8 and Table 5.2 show the better result of mutual information than match
point method in all cases of simulated ImSim phantom for both TPSs. The mutual
information delivers the better result (less registration error) than match point method
because match point method is highly user dependent and relies on the skill of the
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user to locate the same point in each image. To minimize the residual registration
error, the several iterations is required. So this is not possible in clinical use to
perform several times per case to increase accuracy. For mutual information, it uses
averaging intensity to match two sets of image. Regardless of the skill of the user in
aligning the land mark, mutual information consistently results in more accurate
registration [15].

Table 5.2, Comparison of average registration errog from mutual information and match point
methods.

Mutual information (imm) Match point (mm)
Eclipse TPS 0.11 0.27
Oncentra TPS 0.60 0.90

Our work shew beiter result when comparing the average registration error
with other studies [1, 45, 1641 7], it Is shown in Table 5.3. The other studies used the
marker or phaniem to' determine the registration error which may add the
uncertainties, while ouf method considers only uncertainty from the algorithm.

Table 5.3, The average registration erraor from.mutual;information and match point methods compare
with other studies. ‘

Mutual information (mm) Match point (mm)
This study o 0.27
Wang X. et al 1930 1.03
Plaquin N. and Rangel A: ==7; 1
Buhl SK. et al. 3 -
Fox T. et al. ORI = -

The image dataset that is generated by ImSim QA software both reference
and moving image dataset have the same characteristic of aata such as pixel size,
resolution or even_gontrast of image. The another benefit of this phantom is the setup
position, because It has no influence factors such as positioning error from patient
setup, anatomy change in patient or even spatial information obtained with different
imaging modality. ‘So=sfrom this result, {the ImSim QA software can reduce
uncertainties: Then ' the' registration. error. arising ‘from' the algorithm can be
determined. This shouldbe emphasized because all'the parameters are deleted.

Inthead and neck CBCT image registered with planning CT image, we use
registering optimization by radiation oncologist in GBI workstation on clinical basis
as'a gold stapdard. The mean registration deviation is 2.02'+ 2,00 mm. Ffe deviations
occur'when ecomparing coordinate between optimize oy radiation oncologist-and two
methods of auto registration, the maximum difference are more than tolerance value
or 2 mm and 2 degree because they include the registration error which occur by the
software of registration in TPS, and also the difference of voxel size between
planning CT and cone beam CT. Another cause is the optimization from radiation
oncologists, sometimes they localize on the interest region not covering the whole
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image. However, our results are comparable to other studies. Hou J and Guerrero M
[20] reported the mean shift of 2.8 + 0.2 mm in soft tissue target in evaluation of nine
target points in head and neck cancer. The clinical result also illustrated the same way
as the ImSim phantom registration that the mutual information gives slightly better
result than match point method. This could be explained by the misalignment of
reference points in both stationary and moving images.

5.2 Conclusion

The Eclipse TPS cont '. '-' i i f registration than Oncentra
TPS. The Eclipse TP @ register between planning
CT and CBCT for patie i ‘

From mutual information anc ethod of automatic registration,

the best one is m ' ation | 3 t 0 methods can provided

The factors iay i ‘ ﬁ_ nage registratio process include the dose,
FBCT slice width, CBCT and/FBCT matrix size, 1‘*\ Igorlthm and selection of
the image region & jistere § es arameter effects should

be undertaken in the t 'r fture so tha _‘ \\ rate image registration in

ﬂuﬁl’ﬂ’lﬂﬂﬁwmﬂ‘i
ammmm UANINYA Y
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