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Chapter 1

INTRODUCTION

At present, we know that our universeis expanding with acceleration [1, 2, 3],
but we do not know the exact cause. We believe that the expansion of the universe
is driven by some energy. The popular soluition for the problem is called dark
energy where we use thesword datrk” because we domnot know what kind of energy
it is. The dark energy*hassnang candidates suclhi"as the cosmological constant
[4], the 3-form field [5fFand" the bcala% field [6).. The famous models are scalar-
tensor theories [7] because it cldarly explams how the universe can expand with
acceleration. It also explaing the mﬂatl@n [8] generated by the scalar field to drive
the exponential expangion of the umvel-‘fs_e. However, these models have a crucial
problem that if we have ghe scaiar" field ﬁ,lhng space throughout the universe, then
why we have never detected it, For example Qumtessence model [6, 9] uses scalar
field to drive the universe by buppomng:t-hat the scalar field is rolling down a
potential in a runawyay forri. ~ At late-time the klnetlc energy of the scalar field

can be neglected bee‘mw the driving force from the po’rentlal is very small and

the friction force from the Hubble parameter is large.” We call this the slow-roll
condition. This condition can cause the equation of state parameter equal to
negative one. The requiredsparameter in‘thie equation of state for the accelerated
expansion is less than” —1/3.'Mereoyer, from the obseryation data the equation
of state parameter today is —1.1 4 0.14 [3]. But the scalar field of the model is
massless, namely dntetaction:rangé of thaiscalarficld is infinity. Thus, we should
have detected the interaction of the scalar field, but we never have. Model which
can solve this problem is the Chameleon dark energy model [10, 11, 12, 13, 14]
which we will review in chapter 2. The model is one of the scalar-tensor theories
as a Quintessence model, but the chameleon scalar field is not massless. The
model is situated on the hypothesis that the scalar field has coupling with matter
through the conformal coupling term, then mass of the scalar field depends on
the local density. Therefore, we call the scalar field a chameleon. The model can
address the vital problem of the scalar-tensor theories because in the high density

region, the mass of the scalar field is very large, but it is tiny in the low density



region. Thus, we cannot see the effects of the scalar field on the earth because
the interaction range is very short due to large density with respect to outer space
density. Experiments for finding interaction of the chameleon found constraints
on the chameleon-photon coupling [15, 16] and the strongest constraints on the
chameleon-matter coupling come from particle colliders [17, 18]. Namely, the

coupling constant is not arbitrary and the exact value has not been found.

From observation of the rotation curve of galaxies, we found that the circular

velocity of objects which orbit around the center of the galaxy is nearly constant,
while the Newton’s law predlcts \‘jﬁ/ locity should reduce at large distance.
In order to keep the Newton & ust have more unobserved mass
which we call dark matt dé@( Mes not interact with anything
except through gravity ;

rms a halo that covers the

entire galaxy (or galaxie al lensing data, it is found

that we need more ma 0] ‘ r with the rotation curve’s
missing mass. Since we xact roﬁe],g of dark matter in the halo,
many theoretical pro o&sed which we review briefly

In chapter 3, we ce “: s - leon scalar field on the rotation
curves by using fifth force % force con om the coupling of matter with
the scalar field in the Emstem,,fﬁ_m We. ez alculate effects in the gravitational
lensing by using tl}Beffectlve dz:nsm}{ anm sure of the dark matter

coupling constant othé"g S are ﬂown in chapter 4, and our

conclusions are available in chapter 5.

ﬂ‘UEJ’WlEJWﬁ‘WEJ']ﬂ'ﬁ
ama\mimumqwmaﬂ



Chapter 11

THEORETICAL REVIEWS

2.1 Dark Energy from the Scalar-Tensor Theo-

ries
-
« Note : We use signatuse’( =+ +) and Roman indices (e.g. p,v) are 0,1,2,3

while English character indigés(¢e.g. @,l]) are 1,2,3: %

Dark Energy and Equatign/of State Parameter
’ :} )

Our universe has two large scale _propeﬁi@sz isotropy and homogeneity. Namely,
the universe looks the samgin all directions and everywhere. The two properties

lead to Friedmann-Robertson-Walker (FRW {)}metrio as the following [19, 20]
T

2 2, 2 - .

o5 = _Ad_t ¢ (t'}'<1 =N

where a(t) is the scaletactor which represents am expansion factor for the distance

4 126” + sin? 9d¢2>> , (2.1)

in the universe and K| is a constant which deseribesthe geometry of the spatial
section of spacetime.” From the observational data [1, 2, 3], we can assume the
FRW metric terbe flat FRW, metrig, (/-=:0); Then, theflat FRW metric with

cartesian coordinate is

ds® = —di* +02(t) (da® + dgP + d=2). (2:2)

At present, we knew that our universe is expanding with acceleration. We can

calculate an acceleration of the universe as the following.

From the flat FRW metric, we obtain the metric tensor for expanding uni-

verse as the following
-1

9 = 9 s (23)



and

g = : (2.4)

We choose matter in the universe to be perfect fluid which rest in the comoving
coordinates and have isotropic pressure for satisfying the isotropic property. Then,

the energy-momentum tensor is given by

+ Py, (2.5)

where p is a matter dens ) i 'ﬁqual to energy density in the

Natural unit, P is press v d U#.is a four-velocity of the fluid. Since

the perfect fluid is at rest

(2.6)
Thus, the energy-mor tens (rest ct fluid becomes
(2.7)
a’P
From definition of lie Christoffel symbol: 2
Y= Y]
— - nf:j ). (2.8)

“”°““°ﬁ“ﬁﬁ?ﬁﬁz‘f%'§w i

(0;gjn + O ng— OGij)
AN mn%mw%ﬂ@ﬂa e
( —o ZJ)
% g
= 5 (-D(=0oa’y),
_ %(_1)(—2)@5“,

. FO = da(s’ij' (29)

v



In the similar way, we obtain

. 1,
Tio = 59" (9igox + Bogr; — Oagjo):

2
1 .
= 59"(83'901' + 90gij — 9igjo),
L
= 59 (D0gis);
1 _ i
= 5(], 2(8()@2(5]'),
1
2
(2.10)
where the other Christoffe ﬁtbe Einstein’s field equation
R=8 (2.11)
where R, is the Ricci : v R is; \ icci scalar. Take the metric tensor on
the equation, we obtai
_ i{_ T (2.12)
where T' is a trace of the energy=moine ensor. Then, the Einstein’s field
FLW /
equation can be W }_ e ' £,
S ]
R;w =l ¢ :
|
w 87TG ( - Tg,“,> ) (2.13)

e BUEANENINGIAS
sﬁﬁ’a ﬁ%mw ANEIA

= Tr

a2 a’P

\ a2 a’P

= —p+3PF (2.14)



For uv = 00, the Einstein’s field equation becomes

1
Ry = 8nG (Too - §Tgoo> .

From a definition of the Ricci tensor

Ry, = R}y, = 0l — 0,10, + T3, Iy, — T I (2.15)

Aw™ ov pw= o

the Ricci tensor component 00 is

A Tw A Tw
)\wFOO - FOwFO)\’

(2.16)

Thus

T =P (2.17)

The above equation imcalled the acceleration equatiﬂ of the universe. If we take
the covarlanceﬁierlvatlﬁm the Einstein’s/field e E]uations, we obtain

BT

— —g,,,, = 7TGV (2.18)

el A @W LI 75 -

0. Theréf ore, the right hand side (RHS) is equal to zero too. We obtain
V#T,, = 0. (2.19)

The above equation means the energy-momentum tensor is conserved. Since p are

dummy indices and we can contract with the metric tensor, then

VAT, = VT = go, (V,TH). (2.20)



The best way to obtain density and pressure from the energy-momentum tensor
is to obtain from T* because it does not depend on any coordinates (invariance).

The T# can be written as
T = T,9""
p —1
a’P a™?

]
a’P a2

. (2.21)
For v =0, we obtair/
‘To, =0,
; a
7 T = pt
S0 = pr3tppys (2.22)
The above equatio ':-T"-'-:?.'::-z-f Sintt “"T-'-------E;:f". is very important in
cosmology. The equ ‘-In , bW [T L p and P, is
: J
P up : (2.23)
swssne o AN NN YT ™
P p+ 3 (p+ wp :
AN ﬂﬂﬂ‘ifﬁtﬂﬂ%ﬂﬂ%ﬂ’]ﬁ d
L 34w (2.24)
p a
If w is a constant, the equation can be solved,
1dp 1da
-— = =3(1
pdt (1+w)7 adt’
d d
o —(np) = =301+ w)a(lna),
/d(lnp) = —3(1+w) [ d(lna),
Inp = —3(1+ w)(Ina) + Const.,



At present, we define t = ty, a = ag and p = py. For simplicity, we define ay equal
to 1. Then

Inpy = —3(1+ w)(Inl) 4 Const.,
c.Inpy = Const. (2.25)
The solution becomes
Inp = —3(1+ w)(Ilna) + Inpy,

(2.26)

can be approximated to be

The pressure from m 7 INTVErse

zero because we take 1on-relativistic particles. We call the matter

that is a dust form. F is not equal to zero. Thus

(2.27)
and we obtain
(2.28)
Then, the energy density of m ,ég_; deci as the universe expands. For radia-
tion that includes pho relativisti he/Lagrangian density is
' )
' (2.29)

M
] J
where F),,, is the field stgegth tensor. From a definition of the energy-momentum

= AUEINENIBUINT

(2.30)

ARSI 8

2 [(dV=g 5£EM)
T = Lo + V=
vV —4g ( 59;“/ B g,uu

where

=g = T_ggw(sguw

Ao
6£E‘M _ 1 <6F F)\o F)\a 6F>\a )
OGuw 4\ 0guw Y




OLEuMm _ 1 <2FM6F>\U)
0Guw 4 0w

_EFAU_(sF’\"
2 89
_lF/\a(s(gUVF)l\/)
2 O

Y

= —OFFY,

— (2.31)

(2.32)

Therefore, the energy-

(2.33)
I

. . .
Trace of the energy-momentuni ténsor o ation is

' 1 .
= FME,, — —(4)F*C’FM,

AU INYNTNEING .

Since the traceq!)f enelfgyjmqmeptgm telrrlsrorrfoghe radlat}on Wal to zero, thus
RANTUNRIINGAE
—pr + 3(wp,) =0,

1
.. Wradiation = g (235)

Then, we obtain
pr o a . (2.36)

The energy density of radiation reduces as universe expands where the decreasing

rate faster than the energy density of matter.
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From the acceleration equation of the universe, we found that the universe

can expand with acceleration when w < —%.

ArG
= T (p+ 3wp),
ArG
= 714 3w)p,
3
1
~ia>0 when w< -3 (2.37)

Q|

Thus, matter and radiation are not the cause of accelerated expansion, and dark

energy must have equation of s

(2.38)

This is a condition for @

‘cand es.
For example, the g ‘/ré n_n.\..\ of the dark energy can-

didates proposed by Eing - Qrigi proposed to obtain a static
universe, namely Eingfel ed~tha 1 \ loes not expand or shrink.
Then, energy density o onst.). From the continuity

equation, we obtain

(2.39)

Then, the cosmologlcalfcgtant can be t e, dark energy. However, it is not defini-
tive because t ﬂﬁ‘ﬂfé w&b i?ate parameter is not
exactly equal o0 minus one as uncertainties around the minus one value

ﬁre e gugt]lo? param ,;le’rq nan tell u@wlﬂher something

is or is not a dark energy candidate. The equation of state parameter of dark
energy must be less than minus one-third (wpg < —%) in order to accelerate the

expansion of the universe.
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Scalar-Tensor Theories

The theory is situated on a hypothesis that we have scalar field in the space
throughout the universe, and it is rolling down a scalar potential. Then, at the
late-time, the scalar field becomes dark energy because of the slow-roll condition

[19, 20]. We can illustrate this mechanism as in Figure 2.1.

). (2.40)

where ¢ is the scalal -‘ d ife i'.la al. The energy-momentum

— . . i
tensor for the scalar 4 ld is (we will prove 1n section'2.2.1)

fiA SINEVEEAT) e
Since ¢ is a scalar quantity, then ¥V Wﬁobtaln o/
AT .

The energy density of scalar field is (the energy-momentum tensor component
puv = 00)

—p = ¢%00p00¢ — (1) <%90080¢50¢ + %gii 00 + V(¢)) )

We assume that the scalar field is homogeneous throughout the space (9;¢0 = 0).
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Then, we obtain
p = O0oddod + ( 9% 0000 + V(¢))
= 2+ (50 v@).
= %q'sz’ +V(9). (2.43)

And the pressure of the scalar field is (the energy-momentum tensor component

puy = it)

1 ..
P - 390,000+ V(0))
_ 14 ' \ ‘ (2.44)
Therefore, the equa aranieter S th alar field is
(2.45)
The w, depends on kine B o SR WA | of the scalar feld. Equation

: ft

varying the action with respect

p—V (¢)> ) (2.46)

Hﬂ-mﬂ WMSJQQQW
awwmmm@mﬂmaﬂ .

5V(¢) = 8(;5 0, (2.48)
T = Y g0 (2.49)
Then
I v )
55 — /da:\/_( OV50 50

- [ 2 g5 <—%g“”vﬂ¢vy¢—V(¢>>. (2.50)
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Integrate by parts on the first term of RHS

/ d'z/=g (=V,0V"50) = —/—9gV 050 boundary + / Az (V 0/ =9),
_ / d'o/—g(V'V,$)56, - at boundary 66 = 0,
= [ day=gvropss (251)

So, we obtain

S 9 oV

e —— . 2.52

5 Vo 35) (2:52)
Slnce = 0, the equation o lar field is

, (2.53)
For flat spacetime (M 9t = [, the equation is called
the Klein-Gordon equaii ) the scalar field is homoge-
neous throughout the s
09 =
(2.54)

From a definition eithe
velocity and distancgto the ea

motion becomes

ﬂUH?ﬂEM§ﬂ&1ﬂi o5
g | ﬁﬂﬁfmm}m?ﬂm 1

4+n

in the Quintessence model, V(o) , the field will roll down the potential.
And the field slow rolls when the drlvmg force is small and the friction is large
where H is large at late-time. Then, the kinetic term is much smaller than the
potential term, and it can be neglected. The equation of state parameter can be

approximated to be

Q

We

Q
I
—

oWy (2.56)
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So, the scalar field can be the dark energy and also flexible value than the cos-
mological constant because if we keep the kinetic term, the equation of state

parameter can change from minus one a little.

2.2 Chameleon Dark Energy Model

The chameleon dark energy model is one of the scalar-tensor theories, which can
explain why we have never found an interaction of the scalar field on the earth.
However, the scalar-tensor theories do motshave only one problem. The other
problem is the scalar-tensor theories assutiethat our universe is dominated by
the scalar field. One way to solve tliis problem is coupling the scalar field with
matter. This coupling alse"Solves tlie coincidence problem [21, 22]. The coin-
cidence problem is the guestion of Whly in the present day we have the matter
density in roughly the same order of magnltude as the dark energy density (the
density parameter of anatger ds/about _D 276 and of dark energy about 0.72 [3])
while the density parameter of radlatlon is nearly zero (about 8.24 x 107 [3]). If
scalar field couples with matger, it will igqre@se the matter density and reduce the
dark energy density to the same order off'glggnitude. In the chameleon model, the
scalar field couple with matter thiough the -;_g;onformal coupling term which come

from conformal transformation. The conformal transformation is a transformation

J=

between general action of the scalar-tensor theories inf the Jordan frame and ac-

tion in the Einsteiﬁ_ fifame which has the Einstein-Hilb:ffé'_r_-f action term. We choose
the Einstein frame to be our frame because the Einstein-Hilbert action term leads
to the Einstein’s field equation. Moreover, the matter and the scalar field couple

together in this/frame;

2.2.1~, Chameleon Equation of Motion

We consider a general action with a single scalar field:

/d4x\/_< PR — (af) —V(¢)> —/d4$£m (Yms Gur)» (2.57)

where ¢ is the chameleon scalar field, Mp; is the reduced Planck’s mass (Mp, =
2.43 x 10'8GeV) and 1), is the fermion field. The key point of this model is the
conformal coupling of the scalar field and fermion field where the fermion field

follows the geodesics of a metric g,,. The metric g,, relates to the Einstein frame
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metric g,, as the following

g/u/ = A2(¢)g/wa (258)

where A(¢) is the conformal coupling term. We now vary this action in order to

obtain the equation of motion of chameleon scalar field:

S = / d*z/—g ( — PSR — 5(8¢) -6V (¢)> — / d* 5L (Vs G

+/d4m5\/_—g ( . (2.59)
where .
(2.60)
and
(2.61)
(2.62)

Then, we obtain

o - QUEIRED IR
q VRS NN N8 Y

/ d'x \/_ 5g"” (M”R (90) V(¢)). (2.63)

2 2

Integrate by parts the second term of the RHS;

[ V=3 (=9,09"50) = V=49 000 iy + [ A 56V (9,0073),
- /d4:c\/—_g(V“Vu¢)5¢, "~ at boundary d¢ = 0,
= [ day=gvropss (2.64)
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Thus

55 = [y ( P (5 Ry + Ryubg™) + (V6)5 ¢——5¢)

0¢
0L, oL,
_ / dAe <8~W 0G,w + d)m 5%)
/d4 \/_ 5 v (‘]\IZI%IR_ (8¢) _ V(¢)> ] (2.65)

After variation with respect to ¢, we obtain

v=a 5 =0
Vi — —
where
(2.66)
Then, we obtain
m A - 0
\ 3¢> g;w ’
A2guu = 0;
V2¢——— )Azg;w =0
From a definition ¢ ;-:* matter:
2.67
i )| (2.67)
From action m (Vm, A% (@) guv).
enﬁiﬁziiﬁaﬁﬁﬁfﬁ JiicE
qui_ __ 2 0L (2.68)
bawwmmmmmﬂmaa
g () () -
Vo 96 i 490 v ;
where
1 0A OlnA
Zﬁ_qb - 36 = ay, (2.69)
0w _ o Oy _ 1 2.70
O (¢) = O A%(0) (@70)
ov = V,¢ (2.71)

3
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Thus
V2 — Vi +agT" g, = 0. (2.72)
The trace of energy-momentum tensor can be written as
™ g = Tuwg" =T =T. (2.73)

Therefore, the equation of motion of the chameleon scalar field in the Einstein

frame is

(2.74)

We approximate that m rfect fluid which is pressureless

(non-relativistic). Ther omentum tensor of matter is

—pm- But the energy-m tem frame does not conserve

O [] L€
because the matter co e \ us, the conserved energy-

momentum tensor cum tensor.

0. (2.75)

In order to get Tﬁd’) ' i on for, se eld from the action (2.57):
(2.76)

We now vary the ahove 2

(5S¢ = /d41'

A uﬂ&mﬂ%’wmm
aﬁ%a@ﬂwummmaﬂ .

- 5ngu¢v,,¢+ g“”5VM¢V,,¢+ g‘“’V GOV, 6, (2.79)

2
SV (9) = a; 56.

Then

1 1 1
08y = / '/ =g (—§5g"”Vu¢VV¢ = 59" 0VupVLo = 59"V V¢ — ¢ ¢>

+ / diz <—T_ggﬂy5gM”) (—(VZ—¢)2 - V(¢)) . (2.80)
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After variation with respect to g, we obtain

5S¢ - gl“/ 1 af
Sow = VI ( VoV, ¢) +v=g(-2) (—59 VadVi6 —V(6) ) .
V- 1
= —Tg <vu¢>vy¢ ~ G <§g“ﬂva¢w¢ + V(¢)>> : (2.81)
From a definition of the energy-momentum tensor of the scalar field:
2 65
() = 4
T, = \/—_g S (2.82)
Therefore
T\ = V.6V w + V(¢>) (2.83)

Since the covariant deriv: responds to the partial deriva-

tive, thus

T(¢) 030 —|— V(gb)) (2.84)

The covariant derivati tensor of scalar field is

\ —g B 0u 3050 + V(¢)>

I (2.85)
From the metric comp |
VI = (70,0009 VA 0.5 (50,0904 V10)).
= "-él{- —‘:%'-T._ﬁ‘;:a.j;z_i{g a¢aa¢) + VMV(¢))-
We use chain rule at the ) ﬁ = V.,y 0"¢). Then
VHT) = (V 9)0,0 + 0,6(V"0,0) = 90" OV" 0 = g V9 06,
%ﬁ@ﬁﬂ%%@ﬂ@qﬂ?w s
u¢+3u<25 (V*0 ¢ IOV, 0a ¢,
QW &Nﬂ‘im URNINYIAY
V,0ud = 0,000 — 1,000, (2.86)
VEO,p = g"0a0,0 — g"°T4,000,
= 0"0,¢ — g"°T2,0r0. (2.87)

Then

0. 0(V*0,0) — 0°¢V,0a0 = 0,0(0"0,¢ — g"°Th,000) — 0°4(0,00¢ — I'5,0x0),
= —0%¢I'h,0\p + 0“¢I'5, 020,
= 0. (2.88)
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From the equation of motion, we obtain

VAT = (V29— Vi),
= —asT™0o,¢, (2.89)

and
VAT = 0T, . (2.90)

We now see that the energy-momentum tensor of matter in Einstein frame is not

conserved. Nevertheless, the densit the Einstein frame must obey the conti-

nuity equation (p oc @30+,

e to define a new density which is

conserved in Einstein fra

From V“T,ET) =V, Iy at for v =0 the covariant derivative of

energy-momentum t i i ' herefore, we obtain

"0, (2.91)

(2.92)

Since we assume that the verse is pressureless (P = 0). Then

(2.93)
We define a new d ‘ﬁﬂﬁﬁﬁﬁﬁﬁﬁi5ﬁ=‘?:f‘ rame as
[y ; )| (2.94)

WA L1310 (w0
R ﬂﬂ%ﬁﬁﬂﬁﬁﬁ neige

10AY . :

(0 (294 () L 30 — (c)

p <A8¢)¢+p +3Hp 0P,
asdp® + PO 4 3HPO = aydp®,

- P9+ 3HpO = 0. (2.95)

Finally, the equation of motion of the chameleon scalar field which depends on

conserved density is
V2 = Vg +aspl) A(9). (2.96)
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However, the definition of conserved density in the most of original chameleon

models is p(©) = pA3(¢). Because, there define with respect to Tff while the pre-

vious definition defines with respect to T%. We will show a consistency of the two

definitions as the following.

Since det(C Ay xp) = C™ det(A,xn), we obtain

det(gu) = det(A*(¢)guw),
*(¢) det(gyu),

Therefore, the trace of transform to be

b

Thus

e NN INYIN S

%= pA* ().

ne AMARSAI AU NN Y

2.2.2 Chameleon Mechanism

Omin and Mass of the Chameleon Scalar Field

(2.97)

(2.98)

(2.99)
(2.100)

(2.101)

Since we define the scalar field to be dark energy, the scalar potential V' (¢) must be

a runaway form because it can satisfy slow-roll condition in the late-time universe.
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We thus choose the scalar potential in a power-law potential as in quintessence

models. Aien
V(p) = o (2.102)

where M is a constant in unit of mass. From the Klein-Gordon equation, V2¢ —

V., = 0, we found that the equation of motion of chameleon had effective potential:

V2¢ = V7¢+O‘¢pmA(¢)a

1 0A
223
—

o |

pm?

Y (6 .“'--:i (2.103)
We choose the confi ing is tl rm A(¢p) = eP/MPt where
[ is coupling constan %\\1 d chameleon scalar field. We can
illustrate the effective p of the éhameleon i\ lar field as in Figure 2.2.

A

Y]

g g
AU INENTNYINS
e A SRS HUANTIY N B o

the scaldr potential V(¢), and the other from its coupling to matter density p.

We now see that the potential has minimum when £ is positive. Then, value

of the scalar field which minimize the effective potential (¢,in) is

oV, 0
0 — e /8 /Bd)min/MPl
= N/t —lpme )

¢min MP
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M4+n 4
n n+1 = pmeﬁqum/MPly
¢min MPl
qﬁn-i‘-l — ﬁ M Pl M4+n 1
min 5 pm 6,3¢min/MPl ’
5+ 4
qsn-ll-l _ ﬁ MPl "M 1
min

B pm  Mpf™ ePomin/Mpr:

Since reduced Planck’s mass is a very large value (Mp; = 2.43 x 108GeV), we

assume that ef¢min/Mpt ~ 1 Thus

(2.104)

- \ (2.105)
. .l g” Pl> |¢min7

e G\ L
) ”(E: -%\\, .‘1:: Pl,
1/2

— O e
. . Ry ¢
E) i
. ¥ 1.
and again we assume efgmin Pﬁg};ﬁ R
. flarers ' N
i ; 415 g )

) . (2.106)

We now see that u nahs 1ty where at the higher

density region sucha: i ..\J e mass in empty space.
Namely, interaction xglge of the mediated scalar ﬁe}mon the Earth is very short.
We then have never detgc d its effects. thls scalar field is called a chameleon.

The mechamﬂ %H{Jl Wﬂ%ﬁ Wﬂmlﬂﬁed as in Figure 2.3.

Moreover when the scalar ﬁeld stays at the mlnlmum mm we can ne-

glect wq @;ﬁrﬁﬁ ﬁﬁqu gjl"r@ 1E1] and late-time
acceleration of universe erefore, it is called that chameleon dark energy

model.
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Figure 2.3: Left picture re ential for large matter density

and right picture repre r small matter density.
Thin-shell and Thi

The dynamics of the ¢ e object can be separated

into two regimes, th me. We consider a massive
object has spherical sy density, p., and radius, R..

From

not depend on time) and

We assume that the ¢h n scalar fie (dox
&) Thus

T oo, U
e e S A DA NS
AN AINEAY .,

r2sin? 6

O (0" ¢

We use the flat spherical coordinate because we neglect effect of the spacetime
curvature on the chameleon scalar field. Then, we obtain

V2% = 0,0,0+150.6+1% 8.6, -TL =TI =0,
= o+ 00+ 00, Th=Th="
T T r
2
02 + ~0,0. (2.108)
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Then, the equation of motion of the chameleon is reduced to

Po  2do

i 6+ agp(r)A(9). (2.109)

where p(r) = p. for r < R. and p(r) = pe (density outside the object) for r > R,.
We now see that solution or profile of chameleon on massive object depends on the
boundary conditions. If we demand the solution to be non-singular at the origin

and the field value outside the object depends on the outside density. Then, the

o0, (2.111)

boundary conditions are

where ¢ is the field / inimi er potential at the density

Poo (outside the obje diuG f . (2.104) a d for inside the object (den-
\'\\

’ new minimum when local

sity p.) we denote b

density changes becauge uring the change, the field

is not at rest at the mindmuinir it i effective potential. Then, ¢

Ry

e object according to the boundary

condition d¢/dr = 0 at r z-’ﬁ, ,—fl:b" fé’ me initial value (does not necessarily be

D ~— D). (2.112)

Thin— ’w ﬂ\d‘ﬂ is negligible and the
dynamics are %mlnaﬁd by mxfﬁerm —— gﬂ?e field value stays at
the initial Fhric en r becomes
s ) 114 64 31 TS

¢( ) ¢c for O<r< Rroll; (2113)
d
df 0 at r = lel, (2.114)

where R, is a radius which the field begins to roll (R,.; < R.). Then, in this
regime, we have the short range that the chameleon scalar field rolls out from the
minimum point of the effective potential between the two difference density (p.

and po ).
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Thick-shell regimes: The friction term is not dominating in this case, then
the field is displaced from ¢. and begin to rolls on the effective potential as soon

as it is released at origin (or R,.,; — 0). Then
¢i 2 ¢ at r=0, (2.115)

Therefore, in this regime, the range that the chameleon scalar field rolls out from

the minimum point of the effective potential is a long range.

Figure 2.4: A galaxy can bend the light path which cause image of star or galaxy

in the backgrﬂvun&]e’g NENINBINT

First, W?.]‘ nsider the metrié which h%s] a-spherical symmétry:
ds 2a: — iagzu g\ Jﬂr? ;gyélz sinﬁed;j (2.116)
Divide the metric by proper time, d7, we obtain a Lagrangian.
dt? dr? , d6? d¢?
2
L = —A(r)c P—i_B( )ﬁ—i—r o — +r? ém 9d 5
= —A(r) A+ B(r)i? + 1207 + 1% sin® 7. (2.117)

For simplicity, we suppose that light travels on § = 7 plane. Then

L=—A@) A2+ B(r)i*+r2¢%. (2.118)
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We now take this Lagrangian into the Euler-Lagrange equation:

oL oL

8_% =0, (8_%> . (2.119)
For component :

oL oL

i 0, (E) , (2.120)

0 = 0.(—2Ac%),

constant.

For component ¢:

(2.121)
We define two const
(2.122)
(2.123)
where L is the angular momentum of lig erefore, the Lagrangian becomes
) 2
| (2.124)

Slnced;ile trﬂ u ﬂ kauw Hﬂﬁtwdgﬂllﬂxﬁqual to zero. Then,
A9 AININ ua/n'mma d

E? 12
Bi? = -
" A 2
2 2
2 oo 2L (2.125)

AB  Br?
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For simplicity, we define u = 1/r. Then

dr\ 2
- (8
T
du\ > 1
_ 2 _
= (—7" E) , du-—ﬁdr,
_(_pdudoN
do dr )’
_ 2
(o
YR (2.126)
Therefore, we obtain /
(2.127)

From the above equati ection angle of light when we
know the metric component A{r) and £ The deflection angle of light defines

as in Figure 2.5.

:;f;,— -;i

=
Aud ‘VIEJ NS

ARIAINIUURIINYA Y

Figure 215: 6 is the deflection angle of light, b is the impact parameter and r, is a

shortest distance between the trajectory of light and center of the lensing galaxy.

In addition, we can fix the constants £ and L by the boundary conditions

at infinity [23, 24].
dt

i 1 as 1 — 00, (2.128)

and A(outside object) = A(Schwarzschild) = 2GM  Then

TC

A=1 as r — 00. (2.129)
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The constant E at infinity becomes
E = Acl = c. (2.130)

Since F is constant, it equals to E inside the spherical symmetry metric. Moreover,

the constant L is the angular momentum of light. Then
L=r%=rc~bec (2.131)

Because if the deflection angle is very small, we can assume r; ~ b (in fact, the

deflection angle of the galaxy or ister has value in unit of arcsec, then this
approximation is justified) yn the simple equation to calculate
the deflection angle of lig ,.4

—

2.4 Spherica

From a spherically symmetri 1C Cnatural unit (c = 1,7 = 1)
2 / 2 Vi

ds® = — A (#) dt=F=B{(1)a

=

The components of Ricci tens E:_‘; en as [25]

‘df* + r* sin® 0d¢>. (2.133)

S 1

O £

1

- = A/
TR o ot T YE

[ ]

AUEAnREMINgINg

= gt s tans T T W (2.135)
AN sy Thefay
9 Ry = R+ Ro+ Ry,
- _2;,1413 - 2532 * (BB;;)’ (2.136)
Rﬁ = Rg, *.» spherical symmetry,
where A’ = g—f, B = %—f and A" = ?9271;1 respectively. From the Einstein’s field

equation:
1
R, — §gw,R = 81GT ),
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or
1
R — 5551% =Gl (2.137)
where G is the Einstein’s tensor (G = 8rGT}). For component t and r, we
obtain

¢ ¢ 1
2
1

(2.138)

(2.139)

We assume that matter ims us, the energy-momentum

tensor is

(2.140)
Then, Eqn. (2.138) and (2.139) boec
= ﬁ-xj 87Gp,
At = 87@/@ (2.141)
ol @B A P
Y BRI NN
q) . — _87GP. (2.142)

Brz ¢ rAB = Qs

There&ﬁlﬂﬁﬂgm&lcma gd?ﬂ(ﬂl;lﬁtﬂ star when we

know de%sity and pressure or vise verse.

2.5 Rotation Curve and Dark Matter Halo

From observation of circular velocity of star orbiting around the center of galaxies,

we found that the velocity is higher than predicted. The predicted value comes
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from the Newton’s law through gravity. Then, the Newton’s law for an object

circularly orbiting around the galactic center can be written as

GM(r)m — muv?
e (2.143)

where m is a mass of an object, v. is a circular velocity and M(r) is a mass of a

galaxy at radius r. Thus, the circular velocity is

GM (r)

. (2.144)

Ve =

Now, we see that at large distance the yelocity must be decreasing because far
from the galactic center the M(r) is a coustant. Plot of circular velocity versus
distance is called a rotation.curve. From observational data the average velocity is
quite constant and higher thanthe pr-édicted value in the far region. According to
the Newton’s law, we must™have 1OTd 1mass in the galaxy than observed, however
we had never detectedj__it‘."‘ We shoul'g",i also assume that those invisible masses
do not have any otHer intepactions e;(cept gravity. We call the invisible mass
is a dark matter. For the dalk mattef Covermg a galaxy called a dark matter
halo. Then, the rotation euwve 1s¢a ctu(nal evidence for the existence of dark
matter. After calculating the Whole massaof the galaxy from observation velocity,
we found that dark matter/is nuich mor@f@an the visible mass. Furthermore, in
the gravitational lensing pﬁerréﬁié_non wei&@ft‘d that the mass of the galaxy which

causes the deflection of light ismore than_‘,t‘ﬁe;_'ct)hserved mass. [t has the same order

of magnitude as th_dsﬂ_a implied from the rotation curves': [Af we assert that the dark

matter does not exisi, it means the theory of gravitatig_]i such as Newton’s law or

General Relativity is;iil_lcomplcte and need certain mogiﬁcations.

Although, we knowsthe amount of anasses of the dark matter halo, but we
do not know the exact profile of dark matter 'because it had never been detected
directly. Several profiles of dark matter were proposed. We will show some profiles

that wevarequsingsn thisswork.

2.5.1 NFW Profile

The Navarro-Frenk-White (NFW) profile [26], which comes from the N-body sim-
ulation of the cold dark matter (CDM) is often used to describe the mass distribu-
tion of dark matter halo because the density is proportional to 1/r3. However, the

profile has a singularity at the origin of the halo. The mathematical expression is

pnrw (r) = (2.145)
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where a is the scale radius, py is the characteristic density which depends on
critical density of the universe determined by the Hubble parameter. The two
parameters are used to fit data of the rotation curves. Mass at arbitrary distance

can be obtained from

M(r) = /Or drp(r)ridr. (2.146)

Since the density diverges at the origin, the physical mass of a galaxy is then given

(2.147)

As r — oo the mass beg ‘ \ e the edge of the halo to be
the virial radius, ra0,Whare fhe at 0 energy is equal to 1/2 of average

potential energy of the gyst the following

(2.148)

where ¢ is the concentr esg). Then, the accumulated

mass is

e

o .. |

a + Ta00

ﬂuﬂ?mﬂﬁ’w@ﬂﬂﬁ)
e AHDASD By,

density within the virial radius, rogg. Therefore

M(ry0) = 4ma’pg (111(1 +o) - — ) ;
s c
= 47rﬂp0 <ln (1+c¢)— c) ,
4713y,

3 c
- 2 (1 +e)—
3 p003<n( +C) 1+C>’

4 3
_ ”;200 Prmcans (2.150)
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where pmean = o35 (ln (14+¢)— ) In addition, we know that the characteristic

density of the halo and the crltlcal density of the universe are related by

L0 = OcPerity (2151)

where ¢, is a dimensionless constant which is called the characteristic overdensity
2

H
of the halo and pg.; = 2—G (where H is the Hubble parameter). Then
T

In(1+ ¢) ——> (2.152)

,& Thus, we obtain
B, ey

pmean cpcmt 3
C

and the mean density within

200 X s s (it (2.153)
2.154
+¢)) ( )
Therefore, the accu
(2.155)
Now, we will find the ci . s of ¢ 3 the NFW profile. From Eqn.
(2.147), we obtain ]
M(r
T /7200 >
fi -+ TC/T’QOO
In(1+ c:c) (2.156)

1+cx

- NI NN WA e
ammnmn%ﬂmaﬂ @i

Then
vi(r)  GM(r) a0
Vi r GM(rxo)’
M(r) ra0
M(T’Qoo) r ’
M(r) 1

M(’I“Q()()) $’
Amrgopo/c® (In (1 + cx) — 1+c:c) 1
Arrpopo/c (In (1 +¢) — %)

Y
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because x = 1 at r = ryq.

CAr) . (n(ter)—85) 1L
Vi (ln(l—f—c)—l—ic)

Therefore, the circular velocity of the NFW profile is

1 In(1+czx)—cx/(1+ cx)

ve(r) = ‘/200\/5 : (2.158)

In(l4+¢)—c/(1+¢)

Although, the NF'W profile is supported by simulation from the ACDM model

(model of the universe which coutai
constant), but results from si \tion tional data have contrast. From
observations on low sur@nesq@ ies and gas-rich dwarf galaxies,

the rotation curves aro

-old dark matter and the cosmological

ite are a constant slope while
the simulations indicad the cusp. This is known as
the core-cusp proble ns the density around the

center of LSB galaxies ig ar:

2.5.2 1ISO Profile

Pseudo-isothermal (ISO) p 'o posesithat dark matter stay in the isother-

— ':
mal sphere because we want the consta ular velocity at large distance, then

e oAl

the kinetic energy“ojeach dark Iﬁfa?c}tgr‘é
of the pseudo-isothy :

(2.159)

29

¢a 1 th—
where pp and {4, bk fte ot bty i Yobe o) ofthe dark matter halo

respectively. A%‘Ilarge distance, the-profile becoges the singulagsothermal sphere

(SIS) , | " o
Circulﬁﬂgﬁmgﬂsot ne%ﬂ% W}m@dﬁ e constan

mal profile can produce a constant slope of

the rotation curves around the center of the galaxy. The mass of ISO halo can be

written as

M) = /O " p(r) 2,

= /47T—p0 2r2dr,
0 1_|_(L)

R

= dnpyR? <r — R.arctan (%)) .
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The above equation is equal to zero when r = 0, then M (0) = 0.

S M(r) = 4mpoR? (r — R.arctan (é)) . (2.160)
Then the circular speed becomes
_ L JEM0)
r
Ve = 47er0R2 1— ia,rctan - ) (2.161)

The circular velocity of the IS ,f/u)s on two fitting parameter (p, and
Re).

2.6 Equatlo

From the energy-morie D \ I unit:
: (2.162)
and UF = ( we obtain
pc? = ‘ P2 pcv, + P2
| PV + pi= PN 0 Uy + Pv’”vy pULV; + Pz
peuy, g e % y + P POV, + P”y”z ,
pcv, WE== S e e 2 pv + P + P
X (2.163)

where E = f3. For thmon-re ativi nid, 5 < 1, V@Wﬂl neglect the terms that

contam [ for the non—rgl ivistic fluid. T

ﬂ‘LJEJ’Jo%’I ﬂ%ﬁﬂﬂ’]ﬂi

AR G B

For approx1mately flat cartesian spacetime, we obtain

(2.164)

v, " = 9,T" = 0.
For p=10
T +0,T% = 0,
“ope) + () = 0,
O+ V- (pt) = 0, (2.165)
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which is the continuity equation.
For p=1
oHT™ +0,T7 = 0,
éat(pcvi) + 9i(pv'"v" + P) + 9;(pv'v’) = 0,
Oup') + Bipviv') + Dy{p'v) — 0P,
p(O" + 100" + 007 + 2'0') = —0;P.

ow, we can neglect the divergence term

If the fluid does not have source fo
(0;v"). Then W

Therefore, we obtain
(2.166)

The above equation i ler equation of fluid.

’ S

AULINENINYINg
ARIANTAUIM TN



Chapter 111

EFFECTS OF CHAMELEON SCALAR FIELD

In order to find effects o n scalar field on the rotation curve

and gravitational lensing, s are pressure and density of the
scalar field. Since the upling with matter, energy-

momentum tensor of m——' _conserve ‘energy-momentum tensor of

(3.1)

(3.2)

From Bianchi’s identitysthe energy-momentum tensor must be conserved, but the

energy-momeﬂuu Elyrfgf %(g]t&j ﬂ\ﬁ Bﬁaﬂ ’}lﬂ ‘§the coupling with the

scalar field. Then, conserved quantlty in Elnstem s field equatlons becomes the

m“':iwwﬁ“m ﬂJ"VI’T] NENa Y

v, 1" (3.3)

(total)

where

VTl = VLl ey + VTS, (3.4)

(total) — (ma
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The energy-momentum tensor of matter (perfect fluid) and scalar field are

—p
P
P

T#(matter) _

, (3.5)
P

T = 090,60 — o) (égaﬁaaqbam + V(cb)) : (36)

erical symmetry, for consistency, we suppose
% atic too. Then

:

Since we suppose that the halo has s

the chameleon has spherical s

T = af¢>at¢—6:<

— G000 —W 4/

0059(%53905 + 9% 0,0040) + V(¢)>

= 07000 (3.7)
and :
I = 9 ¢0.¢ — ) 0 g 0, '0090sp + 9% 05 p0p0) + V(¢)) ,
= ¢"0,00,¢ — : GO-P) + V(¢)) :
= L0600 V(G (3.8)
From spherical sy1n ﬁ"f""—m*_' or is
ﬁ (3.9)
DLk ﬂwswqm
Thefe%rmmﬂ TN &
T = —pwy = po) = ﬁ + V(o) (3.10)
/9 =P, = Py = ;5; V(o). (3.11)

Then, the Einstein’s field equations with total energy-momentum tensor can be

written as
B-1 B’ 12
BN B saGlpn+ 2+ V) (3.12)
(B-1) A q5’2
B2 AR 81G(—P,, 35 + V(). (3.13)
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We will set the pressure of matter to zero by assuming that the dark matter is the

non-relativistic fluid. We now define the effective density and effective pressure as

¢/2

pers = Pt 5p +VI(9), (3.14)
2
Pyr = 2= -V(9) (315)

There are useful tools to find the effect on gravitational lensing, but we must know
a profile of the scalar field in the dark matter halo. We will calculate the profile

in the next section.

3.2 Chameleon Profile for Dark Matter Halo

First, we consider thée equation of moﬁfon of the chameleon scalar field

NP = Vgt oy, A(6). (3.16)

We assume that the scalarfiald is Stdt}b and spherical symmetric. The effect of

the spacetime curvature for the halo o1 ﬁh& scalar field is negligible. Then

Lol 2 d*<;5~ /N
T g £ agp(r)A(9), (3.17)

where p(r) depends on profile-of dark matter halo such as Navarro-Frenk-White

(NFW) or pseudo- 1s<1thermal (ISO). We choose a qelf—mteractlng potential (power-

Ay M4+n
law potential), V(qb) e and conformal couplmg in the exponential form
A(¢) = eP/Mpi a5 the'original chameleon dark energy model. Therefore
@°p 0 |29/ © M QA P~
1L (Ll Ve 3.18
dr? ) rar T ¢"+1 i Mplp( ) ( )

We can_obtain_the profile of the chameleon by-a numerical niethod because this
is a non-linear differential equations - We set the dynamics of chameleon in the
thick-shell regime [30]. Namely, we assume that the value of the scalar field which
minimizes the effective potential (¢,,:,,) only stay at the exterior of dark matter
halo. The value of the scalar field in the interior of halo is not ¢,,;, but ¢(r) that
is determined by the matter density of the halo.

Then, we will solve Eqn. (3.18) from the edge to the center of dark matter
halo. In this work, we choose a constant in a self-interacting potential M = 10~3eV
because we want to refer the constraint of M from profile of the chameleon scalar
field on the Earth [10, 11, 12, 13, 14].
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For an analytic solution, we approximate the equation to be a linear differ-
ential equation by neglect the potential term and set e®?/Mpt ~ 1 since Mp; is very

large and M is small. We obtain

d*¢  2do 6]
v = " (319)
1 d 3

r2 d?”( T) = M_Plp(r)'

/d)/,,.?
¢l"'2|r=0

:2 (¢'7%)|p=0- (3.20)

(3.21)

The ¢'(r) at Tmae 18 ﬁt nece 7€10, Wﬁuppose ¢ (Tmaz) = . The

Tmae 1S the distance at the density of dark matter equal to the density of the

background uﬁﬁ S 1'3 %ﬂm’?w ‘f] I] i

maw

amamim;immm

Substitute C' into Eqn. (3.21), we obtain

poM@) 1 ( , B
/ f— —_— —_—
¢ (T) N 47TMpl r2 * r2 Wmaa 47TMpl M(rmam) ’
I6; ar?
_ M - M N mazxr

47TMpl’)"2( " (Tma )) + r2

We define
/
ar? ba (3.22)
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Thus
B

W M(T’) — M(rmam) -+ Oé,), (323)

¢'(r)

where M (7p,q,) is an accumulated mass of the halo and o’ relates to changing of
field value at the edge of halo. This is a chameleon profile for the dark matter halo

when we approximate the equation of motion to be a linear differential equation.

3 Solutions of Chameleon Profile

%&i profiles, the chameleon profile
epa

depends on o/ (or «) so 4 cases as the following;

' ——
Case I:a/ =0. ' \

From the above equation

az))- (3.24)

—

For r < rmae, M(r) S0, the chameleon field will

increase from the edge

atways 1negative.
2 NN .
1 ofthalo u‘.-‘g to singular as r — 0.

Lol v

Ll

o)

-

¥

i}".
e

)
Case I : o < M(r,, > . ‘

i3] L

b
E&

[
L

For 7 — Tpnas, the mass o '»;'5! e to be M (r) o~ M(rma,). Thus

(3.25)

Vi
The field decrease fron 2 A %But, for r — 0 the mass of
halo tends to zero ) — 0. Then

3 Y |

AUBNYEREHEART Y om

Elie :ailwlﬁlﬁlﬁrﬁe%ﬁ ﬁcﬁeﬁf%‘ﬁ ﬁhﬁeadﬁe profile looks
Case III : o/ = M(7p4.). Then

B

&' (r) M2 M(r)). (3.27)

The field always decreases from the edge to the center of halo, and for r = 0 we
obtain the non-singular boundary condition

d¢

(r=0)=0. (3.28)
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Then, in this case, the field does not become singular at the origin which it is a

physical boundary condition and always used in all the original chameleon dark

energy models.

Case IV : o/ > M (ryaz). Therefore, as r — 0

B
' M (7maz . 2
S 0) = e (M) + ) (329)
The field always decreases similar. t III, but it truncates at finite r (before
r — 0) because ¢'(r) is very , % unphysical.
-
——

3.3 Constrai “hameleon Coupling

Constan "
%{I. .

Normally, we require’there is %s noularit he field anywhere in the entire

space. Then, the boundary co ditjﬁf

The solution Whic ma these bou onditions is case III. Thus, the

profile is m — rz a0
Integrate the ﬂﬂmrﬁﬂ’ﬂﬁbwgq ﬂﬁ
amae/ﬂ D7 2ebHRRH
o oto) o

where ¢(0) is the field value at the origin (r = 0). Now, we see that the coupling
constant will be the maximum when ¢(0) = 0. Moreover, the maximum value will

decrease when the halo becomes more massive. Therefore

47TMPl¢oo

Brmae = =21
T ar

(3.32)
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Since we have

1(nt1)
o = Mpy | -—2 (—) : 3.33
P = M (5 b \ Mg (833
where py, is the background density of universe (~ 1072°kg/m?), then
1/(n+1
ﬁ 47TMPl u n Mél ( M )4+n /( )
mar  — i), AP )
fO mar —]V‘;g ) dr /Bmaz P MPl

1/(n+1
AxMp; ( M, < M )4+n> /( )( 1 )1/n+1
= —————Mp | n—— | — ;
fo | /Bma:c

io n) 1/(n+1)

n+1 _

max e Y

7 2B AN PITRNRVICES)
/Bmaa: = - = % ‘ \ y ) ) . (334)
%R 00 Pl

Surprisingly, we founc coup ing consta as maximum value which de-
pends on profile of the Jtter. But ‘inthe case I and case II we do not have

the constraint because ¢( 1 t] ‘ﬁ becomes —oo (no constraint)

accordingly.

3.4.1 The FifthForce

e AUEANENINENT
RIS Ipena

K= (total) = (matter)
and
VI = —agTimd o,
'.'VNT{:rlzjatter) = a¢T(m)aV¢

From the approximation that the dark matter is the non-relativistic fluid (pres-

sureless), we obtain

v, T = —aypd’¢. (3.35)

(matter)
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If v =i, the LHS will equal to the equation of motion of the fluid. Thus
p(B0' + T - V') = —agpdip, - P =0. (3.36)

In this case the fluid has only rotation while the gradient has only the radial
direction due to spherical symmetry, then v - V = 0. We obtain

p(O') = —aypdio, (3.37)
—ayVo. (3.38)

ST
I

This is the acceleration of the fifth, for which acts on matter in the Einstein

frame (g,,). The fifth force does no the g, frame because we set the

Since we choose the
force acts on it (we ignore
). Then, the Newton’s laws

the center of a galax
pressure of dark matte

can be written as

(3.39)

Moreover, the gravitatigrﬂ force has onla}adial direction, then the object has a

cnteipetal s ) Eg];ﬂ INEINT 2,
ﬁm am% fmﬁﬂ 8y

Therefore, the circular velocity which includes the fifth force is

ve(r) = \/G]\:{(r) + 0z¢r%. (3.40)

In this work, we use the exponential form for the coupling term (A(¢) = e#¢/Mrt),

then

cove(r) = \/Gﬂf(r) + ]é;%. (3.41)
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Thus, the circular velocity depends on the profile of the dark matter halo and the
profile of the chameleon scalar field. Furthermore, from Eqn. (3.23) the fifth force
depends on 2. Then, if the chameleon scalar field does not couple with matter
(or B = 0), the effect from the fifth force will not occur.

NFW Halo

From the NFW profile, pypw (1) = L)Q, the mass of NFW halo is
T + 5

Mypwr(r) & C '.‘ ! {./ T)-@ir). (3.42)
: ens!'y pg. ar

It depends on the charaeteris scale radius, a. In this work,

we use data from Ref. /
and circular velocity-at vi / 2 - ave to find the relationship
4 v'

s ; ) parameters in Ref. [32].

¢ concentration parameter, c,

between the parame r

From the accumulated : -.-l {\\ 2 05
= ‘4‘ oy - l‘ﬁ“

and circular velocity at ¥irial rad.,. B84 \
‘ - 1

J 00)
55 @ oo

ey’
B‘/QOO It - OO ) )
\' 7200

ﬂummﬁﬁaa%tﬁﬁﬁ

— A
ARVABFURANINGINY 6w

And we have r999 = ca. Therefore, we obtain the scale radius which depends on
Vago and ¢ (where H = 72km s~*Mpc™" [3]).

_ Vaoo
10Hc'

(3.43)

We obtain

(3.45)

For the characteristic density, we start at the circular velocity of the NF'W profile

B 1 In(l1+4cz)—cx/(1+ cx)
ve(r) = V200\/x W tc—c/tc)
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Then
GM(r) v \/1 In(14cx)—cx/(1+ cx)
r 200 In(l1+c¢)—c/(1+¢) ’
GM((r) _ oy 200 In(14cx)—cx/(1+ cx)
r 2000 In(l1+c¢)—c/(1+c) ’
_ _ Vagraoo (In (14 cx) — ca/(1+ cx)
LM = =g ( (14 )—c/(1+c) ) (3.46)
~ Vigoraoo ((In (L4 cr/rago) — cr/raoo/ (1 + cr/raoo)
G ( , In(1+¢c)—c/(1+c) )‘(3‘47)
And since "
‘ (3.48)
then |
dM(r) \ L i)
o r VT L+ crfra 2
jy m \\xw ( 200>
LN
2007200 ﬂ'f“ | 1 /10
N @ 1ng \‘ ((1 + cr/r200)2> - (349
Thus bl < e

p(r) = V300C _.-;:..'J*_:. e ' 7"/27?200)2) . (3.50)
From the NFW pro : _
v ] (s
ﬁug _ ﬂzﬁ Wﬁﬁﬁ cr/r‘zozoo )
er [raoo (1 + ¢ /7‘200 4mr2G \In (14 ¢)— ¢/(1+¢) +cr/rao)?)
IRIANA mwmm ¢
- 12%; (1n(1+c)/i2$(1+c)>’

= 47‘%22 (ln(l T o) - o/(1+ c)> ‘ (3:51)

The above equation uses only the concentration parameter (¢) and the circular
velocity at virial radius (Va90) where we can calculate the scale radius (a) from
Eqn. (3.45). Therefore, from these relations, we can find the mass of the NFW
halo by the data from Ref. [32].
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ISO Halo

Po
P
1+ (R—)

Miso(r) = 4mpoR? (r — R, arctan (}%)) )

From ISO profile, prso(r) = the mass of the ISO halo is

Then, the mass depends on the central density, py, and the core radius, R.. For-

tunately, the two parameters are available in [32], then it is easy to calculate.

The Parametrized M§” //

General form of the N an be v
Q%h‘
- N

(3.52)
where « is a parame ; ifting parameters. If o = 1, it becomes the
NFW profile. Mass of

M(r)
- o o3 —ad a4 ia,—r T
et = rs) (3.53)

where 5 F7 is a hyperyometrlc unction. We obtain m

Nﬁ i %W@ ﬂﬁ(ﬂﬂ’—]ﬂ Srfr). (65

Then, the curcu ar velocity of pardnetrlzed model is o/

QRN

Qu(r) =

a,—r/rs),  (3.55)

where we fit the parameters «, r; and py with the observational data.

3.5 Gravitational Lensing

We suppose that light comes from infinity (outside the dark matter halo), and
then travels through the dark matter halo as in Figure 3.1.
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rk matter halo.

The metric insi i e ha -s e not unique, but they still
have continuity conditi . The me ' side the halo is the Schwarzschild
metric

d92 + 12 sin® 0dp?. (3.56)

1alo, we use a general form of

spherically symmetry metric is tI; metric inside the halo:
ds® = —A(r 2445 B) ydr? _W 0 + r? sin” Odg*. (3.57)

We can calculate th he deflection angle of light .ﬁ .132) as

A(r)Bfg) v*  B(r)’

For the Schvii 1&&1@3 W ﬂmm Edbmbbrkrts A(r) and Br), then

we can find the deflection angle eagily. But, for&e metric 1nsu&,the halo we must

w QERARTUN I NN

3.5.1 Deflection Angle from the Schwarzschild Metric

For Schwarzschild metric used outside the halo, the light comes from infinity and

then approaches the dark matter halo. Thus, the metric components are

2GM

Asc(r) = 1-——-, (3.58)
1

Bse(r) = e (3.59)

rc?
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where M is a total mass of the halo. We then obtain
o _ 1 (26
o~ e " e )
1 2GMu
= \/ﬁ—zﬂ(l— = > (3.60)

The limit of integration is from u = 0 (or r = 00) to u = Rh% because the metric

is the Schwarzschild metric until light reaches the edge of halo. Thus

Ao WAL T du, (3.61)

—
where A¢ is the ang s in Figure 3.2.

“pat” |

P

fi B .
Figure 3.2: Thglgzﬁ is a sweep o angle in the@hwarzschild metric.

252 p{ME ARUNIVEIAT e e
From @z ﬁﬁrﬁgﬂgm‘;ﬂj iﬂﬂ%aﬂw@ﬁ‘ﬁéﬁiﬁimtein’s field

equations as In order to find effec he chameleon
scalar field on a deflection angle in the dark matter halo, we also add the energy-
momentum tensor of the scalar field in these equations. Since we assume the
pressure of dark matter in the halo to be zero, then the Einstein’s field equations

inside the halo with effective pressure and effective density are

(B—1) B ¢? M
52 +B2fr = 871G pm+23+ o ,

(B—1) A ¢? M
5 ap ~ Gt e ) (3.63)

(3.62)
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In this work, we use a numerical method to find the functions A(r) and B(r) where
we solve B(r) by the upper equation and then solve A(r) by the lower equation. We

substitute A(r) and B(r) from the numerical method into the following equation

du 1 1 w?
o VABR B’
1
Rhalo

integrate from w = 0 (incoming light at infinity) to u = 0 (outgoing light at

where the limit of integration is from u = t0 Umaz (Tmin = 71). We cannot

infinity) because the result of the i 1 becomes zero.

We define the angle fic hild metric between v = 0 and

u = z— to be D1 and
halo

and U,,q, to be D2. Thus, thedel ole ght, ¢, is

ide the halo between v = 7
halo

(3.64)

We can illustrate the defihitious of cach an e as Kigure 3.3.

e
P %wéijw RHVVS B4R B Ftectin ansie
RN INUNINYIAY



Chapter IV

RESULTS AND DISCUSSIONS

In this work, we use lo tness (LSB) galaxies for the inves-

tigation of effects from th d because the LSB galaxies are
047, U4325 and U3371 the

nes for the rotation velocities.

dominated by dark m
NFW profile cannot fi

Therefore, we calcul

The constraints on matte h@@l’g&n ¢

pe—

tion can be obtained from Eqn. (3.34) where y
- [t o -

-

L e
(Mpy = 2.43 x 105G ViERA poo = 10° kg

litlg constant for the non-singular solu-
e choose n = 1 and M = 1073eV

by :
& WV B Nitlossh ot | st 6 | 61 £
! ISO | 2.79221 x 1077
DDO47 ISO | 1.75644 x 107

U4325 ISO | 7.30803 x 1078
U3371 ISO 1.67904 x 10~7

Table 4.1: Constraints on the matter-chameleon coupling constant from the non

singular solution.
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The maximum values of matter-chameleon coupling constant are about 107",
Then, the chameleon effects on the rotation curves from the non-singular solution

of case III are hardly detected.

4.2 Chameleon Profiles

We use the numerical method with Eqn. (3.18) because we need actually profile
where n = 1, M = 1073eV. While B4 wa choose from Table 4.1 because we want to
see the chameleon profile in all cases of soltitions. In order to avoid the singularity
in the numerical method, we will solve Egil«(318) from the edge of dark matter
halo to 7., = 0.001 kpe. The chameleoil profiles from numerical method are

represented in the black lines.

A

Chameleon Profiles of the Case of = ()

_—

U5005 1SO Halo, 3 1.69 X 107 T U4325 ISO Halo, = 7.3x 1078
A R 487 & AR 1.5x10°F ‘ ‘ ‘ —
1x 108} S S ISR 1R
£900000} g - §1.3>< 108¢
@ T 6L
800000} Lol S 2%
he — S1.1x10°8F
700000} 10 10
600000  o—so 900000F. ‘ ‘ ‘ ]
0 200 400 60Q—8001000~1200~ @ | 500 1000 1500 2000
R(kpc) R(kpc)
U33711SO Halo, g = 1.67 x 1077 DDO189 1SO Halo, 8= 2.79x 10~/
7500000 | ‘ ‘ ]
1x10°}
700000]
900000}
S £650000"
3 p
2800000} 9600000+
= “550000"
700000}
500000 ¢
600000F% | EYALL ] ool ‘ ! ]
0, 200 400 600 800 1000 1200 0 200 400 600 800
R(kpc) R(kpc)

Figure 4.1: The chameleon profiles in the ISO halo of U5005, U4325, U3371 and
DDO189 galaxy with o/ = 0.

The profiles of all galaxies for the case o/ = 0 are singular at the origin as
Eqn. (3.24).
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_ —7
US005 NFW Halo, § = 1.76 x 10 DDO189 NFW Halo, § = 355 10”7

900 000 e : : ‘ ; : :

850000} 500000

800000 4800000
2750000¢ s
(3’7000007 geom
® 440000

650000}

550000 &+t 400000L ‘ : :

0 100 200 300 400 500 600 700 0 5 100 150 200 250
R(kpc) R(kpc)

Figure 4.2: The chameleon profilesi F'W halo of U5005 and DDO189 galaxy
with o/ = 0.

Chameleon Profiles

600 000F
500000
_400000F
3
&300000¢
200000F
100000F

0t . . .
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R(kpo)

U43251S0 Halo, 5 = 7.

60

50

40

0
R(kpe)
U33711SO Halo, B = 1.67x 1077

20

800000

6000001

$A00000¢

TR inmmIngmy
L 0l KRR ialaN 1 TiaT Y e

approxh%ation of case III.

The profiles of the case o > 0 obey Eqn. (3.25), (3.27) and (3.29). Since
the potential term is negligible, the approximate solutions can adequately explain

behavior of the chameleon scalar field in the dark matter halo.
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U5005 NFW Halo, 8= 1.76 x 10”7 DDO189 NFW Halo, = 355 x 10°/

250000
200000
<150000
3
0]
100000
50000f
| ) ) ) ) - 0 ) ) ) 4
0 20 40 60 80 100 0 5 10 15 20
R(kpc) R(kpc)

Figure 4.4: The chameleon profiles of 1J5005 and DDO189 galaxy with increasing
o' from top to bottom where the red lines zepresent the analytic approximation

of case III.

4.3 Acceleration of the Fifth Force

Since the coupling congtant fox cage Hi has constrained value, which is very small
(=~ 1077), then we canuét sée/the cffcets of the chameleon scalar field from the
profiles in case I1I. Additionally, the ca—éé Il at larger coupling constant has quite
the same shape with gase/l. Thus, 11 ft]_his work, we use only the case I (o/ =
0) to find the effects offfhe chamieleon scalar field on the rotation curves and

o
gravitational lensing. e —

US005 NFW Halo, % =369 . DDO183I NFW Halo, % = 1,152

1075k

10~ 101

lal(m/s?)

10~ 150

10~2L . [ . . . 4 , , . . . .
0.001 0.0 0.1 1 10 100 0.001 001 0.1 1 10 100

R(kpc) R(kpo)

Figure 4.5: The acceleration of the fifth force in the NFW halo of U5005 and
DDO189 galaxy increases with the coupling 5.

The acceleration of the fifth force at the origin of all galaxies and dark
matter profiles are considerably larger than the outside region because the main
contribution of the acceleration comes from derivative of the field. We use the
chameleon profile of case I, which the profile becomes singular at the origin. Thus,
the gradient of the field becomes very high accordingly. Therefore, the fifth force

pushes all objects which orbit around the center of the galaxy radially outward.
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Figure 4.6: The acceleration of the ﬁftl_'l';-’:foi"ce in the ISO halo of U5005, U4325,
U3371 and DDO189 galaxy increases with'the coupling S.
et 2220

4.4 Equation of State P:‘_Ta,i;'arneter

Normally, the equatib_n of state parameter of scalar f_i‘é}'d is equal to —1 because
of the slow-roll condition. The chameleon scalar field becomes dark energy only
outside the halo because it stays at the minimum only outside the halo. We can
neglect the kimetic énergy term of the scalar field due to ‘the slow-roll condition.
Since we choosé the dynamics of the chameleon scalar field is the thick-shell regime.
Inside the.halo, the scalar field.becomes singular and the.derivative of the scalar
field is wvery' large; then thel kinefi¢ term dominates!and 'thie equation of state

parameter of chameleon scalar field is equal to 1 accordingly.

In these results we use a very low coupling constant because we want to
show the changing of equation of state parameter of the chameleon scalar field. If
we use the coupling constant in the same order as the rotation curves, we will not

see the difference of each line.
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Figure 4.7: The equation.of state p ra@e NEW halo of U5005 and

DDO189 galaxy. 7
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Figure 4.8: The equation of state parameter in the ISO halo of U5005, U4325,
U3371 and DDO189 galaxy.
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4.5 Rotation Curves

We found that the fifth force from the chameleon scalar field can cause the slope
of rotation curves steeper (cuspier) around the central region in any dark matter
profile of any galaxies. Since the direction of the fifth force is outward, then the
circular velocity is reduced. Furthermore, the rotation curves more cusps when

we increase the coupling constant.

4.5.1 1ISO Halo

U5005 SO halo, ~..PD0189 IS0 halo, % =246
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around the core region for varying 5. The red lines represent rotation curves of

the galaxy without the fifth force.
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4.5.2 Parametrized Model

The parametrized model with o« = 0.7 cannot fit U4325 and U3371 without making

unrealistically circular velocity.

U5005 a = 0.2 Halo, £_3 =369 DDO189 ¢ = 0.2 Halo, L =123
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Figure 4.10: Rotation curves of U5005, DDO189, U4325 and U3371 parametrized

model galaxy around the core region for varying 5. The red lines represent the
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rotation curves of the galaxy without the fifth force.
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4.5.3 NFW Halo

U5005 NFW Halo, —— ’8 _369 DDO189 NFW Halo, 15 =1152
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Figure 4.11: Rotation ¢ c@ FW galaxy around the core
region for varying f. epresent otation curve of the galaxy

without the fifth for

4.5.4 Dependen

tential

There are two parameters > power n in the scalar potential

and the constant M in the s atar From the chameleon dark energy

model, parameter 7 arge, the scalar potential

is very steep, then often choose n in - (1). For example, the
simplest case is n = ﬂ Or € se m = 10"3eV.

We found that t}p tation curves ange very little for various n and the

equation of sﬂeyﬂié’}rw E}ﬁﬁaﬁﬂ&}tﬂ %)ser to —1 when the

power n is re
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U5005 NFW Halo, 8 =3x 1073, n = 0.1-4 U50051SO halo, 8= 1x 1073, n=0.1-4
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Figure 4.12: Rotation curves : U5005, BDO189 with n = 0.1 — 4 (left to

right) using NFW, ISO profile. TE’ i lines are the rotation curves without the

chameleon.

U5005 NFW Halo, 8 = 3x 103, n = 0.5 -,.i — - U5005 1SO halo, 8= 1x 1073, n = 0.5-0.8

1.0f - R

—1.0f E : . , ; 7 h

0 100 20 500 | 200 j} 600 800 1000 1200

91 Rkpo R(kpc)
DDO189 NFW Halo, § = 1x 102, n=05-08 DDO189 1SO halg} = 2x 103, n = 0.5-038

T T T T ._ - T Y T ]

] NN FTEIIRE

0.5¢
S S
$ 00 $ 00
-05} -05
-10¢, ‘ ‘ ‘ ‘ : i -1.0L, . . ‘ 1
0 50 100 150 200 250 0 200 400 600 800
R(kpc) R(kpc)

Figure 4.13: Equation of state parameter of galaxy U5005, DDO189 with n =
0.5 — 0.8 (left to right) using NFW, ISO profile.
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4.6 Constraints on Matter-Chameleon Coupling
Constant from the Rotation Curves of LSB

Galaxies

Since the chameleon scalar field can make the rotation curve more cusp, too large
value of 8 will cause result in the rotation curves contradictory to the observation.
So, we use the reduced chi-square method to find an upper bound of matter-
chameleon coupling at 95% C.L. frem retation curves where degree of freedom
of each galaxy is the following: U5005/lo.fi = 11 — 3 = 8, DDO189 d.o.f.
=11-3=38, U4325 d.of. = 16— 3 = 13and U3371 = 17 — 3 = 14 respectively.
The —3 come from three parameters which contiol the rotation curves: power n
in self-interaction potentialytwo parameters for each LSB galaxy as Table A.1 and
A2

LSB galaxy. upper. bound on 3 at 95 % C.L.
U5005 (NEVW LA\ O 102
usoos (156) £ £, A N o
U5005 (PMA 40.2) =0 6% 107
U5005 (PM a/= 07} o 9x10?
DDO189 (NFW). - T 1.75 x 1072
DDO189(ISO) 18 %407°
DDO1894PM a = 0.2) 1.75 402
DDO189PM a = 0.7) 1.85 %102
U4325 (ISO) 1 % 107
U43254PM o & 0.2) 54 ¢ 1073
U3371 (1SO) 2.7 % 10°°
U337H(PM [a|=0.2) 0.5 x 103

Table 4.2: Constraints on the matter-chameleon coupling constant from the LSB

galaxies.

According to Table 4.2, the ISO profile has the strongest constraint than
other profiles which is about 1 x 1072 — 4.8 x 10~% where other profiles are about
1.75% 1072 —6 x 1073 for NFW profile, 1.75x 1072 —9.5 x 1073 for the parametrized
model with av = 0.2 and 1.85 x 1072 — 9 x 1073 for the parametrized model with
a=0.T7.
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4.7 Deflection Angle of Light
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Figure 4.14: Deflection angle of gald;ty U5005 and U5750 with g = 1.

dots because we must set the impact

-

g

The results are shown in multipl

parameter, b, and riin the parémeter as an integer number from the center (b = 1)

to the edge (b= rmtw) of dark matter halo. The red d’ozjc-s represent the deflection
angle with chameleon while the black dots without chameleon. Moreover, the
results are shown With:-ﬁ = 1 because the coupling of matter-chameleon is stronger
than the low/8 (& 10r?)y dYeventheless; wil found, thatethere is no difference
between the red dotsand the black dots.“Bécause the ‘chameleon density is much
smaller than the dark matter density and the effective pressurefis'very small which
can befneglected. The effective density is dominated by the dark matter density.
Therefore, the chameleon scalar field does not have any effects on the gravitational

lensing.



Chapter V

CONCLUSIONS

The chameleon scalar ﬁelQ‘_ e rotation curves of galaxies by the
fifth force which comes fro% a ﬁchameleon scalar field. The fifth
force makes the rotatiowucq(cu@nd the center of the galaxies

radial direction. Moreover,

because the direction
the effects on the ro e coupling constant because

the fifth force is prop coupling /3°.

The non-singul C l ; c};@eleon profile leads to strin-
gent constraint on mat - 4 ’
1077). In such cases, 4500 J ; e chameleon scalar field. How-
ever, there are no physi gular solution. We show that
the central singularity is neral physical situation. Then,

we investigate the effects of the on fro

b ol from the profile with singularity at the
- i ’(’ o )

origin.

coupling from the ro galaxies at Qﬁ% C.L.are 1.75x 1072 —6 x
1073 for NFW profile, 1ex107% — 4.8 x 107 for ISO profile, 1.75x 1072 —9.5x 1073

for the paraﬂ rib doddt Yok 08 D298 153 X632 - 0.5 107 for the

parametrized miodel with o = 0.7. Addltlonally, the change of parameter n in the

O BRI RV R .

Finally, we cannot see effect of the chameleon scalar field on the gravitational
lensing because the density of the scalar field is much smaller than the matter

density.
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Appendix A

DATA OF THE LSB GALAXIES

These tables are partial da

‘*-ﬁdi / f4[32] where M,,, = 1.98892 x 10*Kg.
and 1pc(parsec) = 3.0856802 S 1015 /
. _\S‘_\‘: '

ki d - o

Table A.1: P aé;-’....-: T the NFW profile.
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Table A.2: Parameters for the ISO profile.
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Appendix B

UNIT TRANSLATIONAL TABLE

(mass)

= "0.197 %107 m (length)
7770 PR ™)
T /) S,

N7 5 T RN

' GeV_l
? 026 GeV

This table is more usef; _M ng: ca tions because most of the cosmologi-
cal models use the' 3 ! i .'9 e data from observation
are in the SI units = Y )
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