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CHAPTER I

INTRODUCTION

1.1 Background and statement of problem

Every pharmaceutical product is obliged to indicate an expiration date on its
packaging, which is estimated using a statistical model. According to the International
Conference on Harmonisation of Technical Requirements for Registration of
Pharmaceuticals for Human Use guideline (ICH, 2003) currently used in Europe, the
United States and Japan, drug expiration study is divided into two parts: determining
the shelf life of each batch and assaying whether the data from different batches can
be combined for an overall estimation of a single shelf life. A one-sided 95%
confidence limit was suggested in the guideline for expiration period determination.
Although widely used, the one-sided 95% confidence limit inherently provides an
overestimation of the drug expiration. There are several alternative models that
provide a more sound statistical prediction, but to date there has been no single model

that stands out.

In a previous study, Shao and Chen (1997) estimated drug expiration periods
using different packaging in general experiments. The data was collected at 0, 3, 6, 9,
12, and 18 months after manufacture, then a lower predicted bound was used to
predict the drug expiration period for comparison with the United States Food and
Drug Administration’s (U.S. FDA) approach. The results showed that the drug’s
labeled shelf life under their study were 27 and 26 months for a bottle container and
blister package respectively, while the FDA’s approach provided a labeled shelf life

for a bottle container of 26 months.

Komka et al. (2010) used a tolerance interval for drug expiration period
prediction for comparison with the lower 95 % confidence interval which is suggested

by the ICH guideline. The results showed a much wider interval in their new approach



than that of the ICH guideline, resulting in a significantly shorter expiration period.
They also compared the interval width against different sources of variation, which
was narrower when tablet-to-tablet variability was lower compared with the analytical

measurement error.

Moreover, Srimaneekarn et al. (2012) studied drug expiration period based on
simulated drug strength data. They determined that the suitable proportion value of lot
variability in lower prediction interval model was more effective than the lower
confidence interval model or the lower prediction interval model. The results showed
that different experimental designs and different total variabilities presented very

similar simulation results for the expiration period estimation.

According to the ICH guideline (2003), a model for drug expiration prediction
is a linear model with a time variable. The aim of this study is to develop a linear
model for single batch drug expiration prediction using a prediction interval where the
variation comes from two sources: the lot variation (/) and the measurement
error (0). An approach for determining the proportion of lot variation (7) is

proposed.

1.2 Objective

1. To determine the proportion of lot variation (7)
2. To develop a model for drug expiration prediction for single lot using a
prediction interval with the proper proportion of lot variation

3. To investigate the number of drug samples for expiration period prediction



1.3 Area of Study

1. Simulated data is used.
2. The given drug strength (y;j) is a linear mixed-effects model, which is
reduced as time increases:
Yijk = Bo + Piti + aij + &iji -
Yijk 1s the drug strength at time ¢;.
Bo is the drug strength at manufacturing time, given B, = 100%.
B, is the fixed constant for fixed effect t;, given f; = —0.5.
t; isthe fixed effect time, given t; = 0,3,6,9,12,18, 24, 36.
a;; 1s the random effect between lots (pill to pill, or bottle to bottle)
&;jk 1s the random error from measurement.
3. The given proportion of lot variation is
¥ o2 o2

e
0?2 of +03

o*=1, a; @ N(0,07) and g; iid N(0,032).
4. Probability that the drug strength is greater or equal to L at time 7 is

calculated as the criterion.

1.4 Significance of the study

1. Estimating the proportion of lot variation (1)
2. Developing a proper drug expiration prediction model

3. Investigating the number of drug sample for expiration period prediction



1.5 Methodology

1. Literature review

2. Study 1: Proportion of Lot Variability Determination and Model Development

a.
b.
C.

d.

Simulation of drug strength with given parameters
Estimation of parameters: By, B, 6
Estimation of the proportion of lot variation ()
Calculation of the drug expiration period

1. True drug expiration period

ii. Predicted drug expiration period

3. Study 2: Investigation the number of samples

a.

b.

Simulation of drug strength with different numbers of samples and
replications

Comparison of the results

4. Conclusion and discussion



CHAPTER 11

LITERATURE REVIEW

2.1 Theoretical Basis
Linear Regression
The simple regression model with one variable is

Y = o+ X+, (2.1
where
Y is a response vector size n X 1,
X 1s a independent variable vector size n X 1,
Bi 1s regression parameter; / = 0 and 1
is an error vectorsizen X 1 ;  ~ N(0,02).
Parameter S, and ; can be estimated from n observations by ordinary least
square method, and the predictor,
9 = Bo+ Buix, (2.2)
is used for the study.

Confidence intervals for the regression surface

Y, 1s estimated from equation (2.2) by given x = x,. Thus, a lower

100 (1 — @)% confidence intervals for 9, is

5}* - ta,n—ZO-\/v_*a
(2.3)

where t, ,,_, 1s the upper a critical point of a z-distribution with n — 2

degrees of freedom,



o is a standard error,
v, = x,(XTX) 1x,T

{¥ x?-2x,nx+nx?}

n ¥ (x;—x)?

(T xZ-nx?+n(x,.—x)?}

n Y (x;—%)2
_ 1, (u-x)?
R ley— %)% 2
X, 1S a x observation.

Prediction intervals for the response

Given value of x = x,, from equation (2.1), then

Y* — :80+ :le* + *
If we assume that

. ~N(0,0?)

and , isindependent of €T = (g, &y, ..., &),

then
E.—y.] =xp—-xp=0
Var[y, —y.] =Var[y.] + Var[y.]
=c?x,(XTX)x,T + 02
= o%v, + 0?
And

. —y.) ~ N(0, (6%v, + a?).



Thus a lower 100(1 — @)% confidence intervals for y,(prediction interval) is

9, — tgn_p\/ozv* + o2
>

- 5 _ 2 (1, D)2 2
9.~ ta,, \[ o2 (= + > (xi—f)z) np (2.4)

Mixed-Effects Model

A mixed-effects model for one fixed-effect is written as

Vije = U+ Bi + ayj + & (2.5)
where
1 is the general mean,
B; s the fixed effect,
@;; 1s arandom variable representing the deviation from population of
the sample,
&;jk 18 a random error representing the deviation from measurement of
the sample j,
and

id
a;j l: N(0,a?),

gijk l: N(0,0}%)



The model with two sources of random variation, a;; and &, , is sometimes

called a hierarchical model or a multilevel model. The variance between observations

is o/ corresponding to a correlation of

of _ _of
T = —2 = > >

Variance Components

According to a;;s are independently and identically distributed,
iid
al-j ) N(0,0'lz).

Consequently,

E(a’l-j) = 0, Vl,]

(2.6)

COV(aij,al-,j,) =0, Vii and j,j except i=1i"andj ="

From mixed-effects model (2.5),
Yijk = U+ Bi + a;j + &iji,
a;;s are random effects, so E (yl- jk) should be conditional mean
E(yijklaij) = u+ B + ayj.
Thus, the residual can be written as

€ijk = Yijk — E()’ijk|“ij)-



Consequently,

E(Eijk)= 0, Vl,],k
and

COV (&, €njirs) = 0, Vi, i',j,j'and k, k" except i =i',j = j" and
k=k'

and also

CoV(ejw,au;) = 0, Vi i',j,j'and k.

From mixed-effects model (2.5),
Vijk = U+ Bi + ai; + €k,
Var(yijr) = Var(p+ B + aij + &)
= Var( al-j) + Var(sl-jk)
2

— 2
o, = of + opn

Since o and g2 are the components of the variance of'y, they are called

“variance components”.
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Variance Components Estimation

ANOVA estimator from balanced data was used for variance estimation. The
methodology is to do ANOVA method as if the model is a fixed effects model and

then derive the expected mean squares under mixed effects model.

Table 2.1: Analysis of variance estimators for variance estimation

Source of Sum of Expected
d.f. Mean Square
Variation Squares Mean Squares
Group (a;;) (a-1) SSA MSA = SSA/(a-1) no;® + 0,2
Within Group am-1) SSE MSE = SSE/a(n-1) O

From Table 2.1,
MSA = SSA/(a-1) = no? + 0,2
and MSE = SSE/a(n-1) = 0,2,
so ;% and 7,,? can be estimated as
0,2 = (MSA — MSE)/n

and O,° = MSE.
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2.2 Related Studies

From previous study, Shao and Chen (1997) estimated drug expiration period
in difference package in general experiment. The data was collected at 0, 3, 6, 9, 12,
18 months after manufactured, then lower predicted bound was used to predict the
drug expiration period comparing with the United States Food and Drug
Administration (U.S. FDA) approach. The result shown that the drug labeled shelf life
under their study were 27 and 26 months for bottle container and blister package
respectively, while the FDA approach gave a labeled shelf life for bottle container of
26 months.

Komka et al. (2010) used tolerance interval comparing with lower 95 %
confidence interval which is suggest by ICH guideline. The result found a much
wider interval from their new approach than that from ICH guideline, resulting in a
significant shorter expiration period. They also compared the interval width among
difference sources of variation, which was narrower when tablet-to-tablet variability

was lower comparing with analytical measurement error.

Moreover, Srimaneekarn et al. (2012) studied drug expiration period on
simulated drug strength data. They indicated that the suitable value of proportion of
lot variability in lower prediction interval model produced more effective than lower
confidence interval model or lower prediction interval model. The results present that
the different experimental designs and different total variability presented very similar

simulation results for expiration period estimation.



CHAPTER III

METHODOLOGY
Simulate Drug Strength Data

According to ICH guideline, the frequency of testing should be every 3
months over the first year, every 6 months over the second year, and annually
thereafter through the proposed period, so the time points (¢t;) are 0, 3, 6, 9, 12, 18, 24
and 36 months. As the strength of drug reduces when the time increases, given the
percentage of drug strength at manufacturing time is B, and B, + (it at timet,

where ; < 0. Simulate drug strength () at each time point (t;) from

Yijk = Bo + P1ti + aij + & - (3.1)

Random variable in equation (2.1), simple linear model, should be the lot
variability () which is the different among tablets or bottles in the same batch;
however, during measurement process the measurement error (¢2) also exists. Thus
the equation is changed to equation (3.1), which there are two random variables; «;;
is a random variable representing the difference between drug samples, and & is a
random error representing the error from measuring the drug sample j, where
iid

a;; iﬁi N(0,07) and & ~ N(0,07). Accordingly, the total error (0?) is the

combination of the lot variability (o/*) and the measurement error (;3),

0% = of + g3, (3.2)
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Studyvl : the proportion of lot variability determination and model development

Supposed that

By =100%, B, = =05, o2 =1, ay; "4 N(0,07), e "4 N(O,02),

and given
Case 1 o =0 7=0
2 2
Case 2 ot =a?m=% 7 =0.25
2
Case 3 of =02 = —62— 7 =0.50
2
Case 4 of =304 = 3% 7 =0.75
Case 5 of =a? =1

From equation (3.1), simulate drug strength (y;;,) 5 samples (j=1,2,3,4,5)
at each time point (t;), and repeat them 5 times per sample ( k=1, 2, 3, 4, 5 for each

j) for the measurement error evaluation. Then B, B; and 6% were estimated by

ordinary least square method. The 10,000 simulations were performed for each case.
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Estimate the proportion of lot variability (7)

2 2
a9 __9

T= (3.3)

02  of+oh

As the mixed-effects model from equation (3.1),
Yijk = Bo + b1ti + aij + ijic

the random effect variance (or lot variability, of) and the random error (or
measurement error, 02) can be estimated by ANOVA method for variance
components estimation of mixed-effects model. Thus the proportion of lot variability

() can be estimated by

/7 e =k (3.4)

Estimate Drug Expiration Period

Suppose the lower acceptance limit of drug strength is L, and drug expiration

period is T, probability that the drug strength is greater or equal to L at time T is

P(N(By + BiT,0)=L)=1—a. (3.5)

1. Calculate True Expiration Period

According to ICH guideline, from equation (3.5), the true expiration period

(Ttrue,a) can be calculated as

L—Bo+01Z1—q

Ttrue,a = T (3.6)
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And from equation (3.3), T=—t=——

L—ﬁ0+a'l Zl—a L—ﬁ0+0'\/?zl_a

Tiruea = B = 3 . (3.7)

hence

2. Estimate Predicted Expiration Period

2
From equation (3.3) T ==

(T,—1)?

hence Var(ﬁo + ﬁlt) +0f =0 ( + S0

) + o?t1.

2.1 Estimate by lower prediction interval method

From equation (2.4) lower prediction interval

(x.—%)2 2
Vs n p(\/ 2( Y (xi x)z) tor,

~ o= ta 20l (7T
Y* tE,n—p (\/O- (n Z(x x)Z) + O- T
The drug expiration period (T,,) is estimated by 100(1 — a)% lower

prediction interval,

2
N A ~ 1 Tpa—t
L= Po+piTpa — ta,n_za\/(;+ (Z(”t‘:—_t))z> +T, (3.8)

for each 7, 7 = 0,0.25,0.50,0.75,1 and 7, which was previously estimated.

Please note that, when 7 = 0,1 and 7, the predicted expiration periods are the
lower confidence interval, the lower prediction interval and the newly proposed model

(lower prediction interval with proper proportion of lot variability) respectively.
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2.2 Estimate by direct method

From (3.5), P(N(By + B:T,0f) = L) =1 — a, given @ = 0.05, L = 90.

Hence, the predicted drug expiration period (T,4) can be written as

90—Bo+8VT Zo,
Tpa = w, (3.9)

1

for each 7, 7 =0,0.25,0.50,0.75, 1 and £, which was previously estimated.
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Studyv?2 : the number of drug sample investigation

Supposed that

Bo =100%, By = =05, o*=1, a; ifl N(0,07), €jx lid

~

N(0,0%) and
7=050 or of =02 = %2

From equation (3.1), simulate drug strength (y;j,) m samples (j = 1,..., m ) at
each time point (t;), and repeat them p times per sample ( k= 1,..., p for each j ) for
the measurement error evaluation. The number of samples (m) and replication (p)
were in the table 3.1. Then f,, f; and 62 were estimated by ordinary least square
method, and the variance components, 7 and 67, were estimated by ANOVA
method for variance components estimation of mixed-effects model. The 10,000

simulations were performed.

Table 3.1: The number of samples (m) and replication (p)

m p n=mp
Casel 5 2 10
Case2 3 3 9
Case3 2 5 10

The Tyyye, o Was calculated from equation (3.7),

T _ L—Bot01Z1q _ L=Bot\/PTZ1q
true,a — B .
1 B1

The Tiryeq 18 17.6738, when L = 90 and a = 0.05 for above data set. The
Prediction expiration periods were calculated using the lower prediction interval
method as in study 1, but given only 7 = 0,1 and T these are the lower confidence
interval, the lower prediction interval and the newly proposed model (lower prediction

interval with proper proportion of lot variability) respectively.



CHAPTER IV

RESULTS

Studvl: Proportion of Lot Variability Determination and Model Development

The results of the proportion of lot variability estimated by the ANOVA
method of variance components estimation present a close estimation (%) to the given

the proportion of lot variability (7) as shown in Table 4.1 below.

Table 4.1: Proportion of lot variability estimation

T T 67 G

0 0+ 0.0507 0+ 0.0509 0.9990 + 0.1120
0.25 0.2453 £ 0.0755 0.2489 + 0.0926 0.7496 £ 0.0831
0.50 0.4912 £ 0.0770 0.4979 + 0.1370 0.4997 + 0.0554
0.75 0.7413 + 0.0534 0.7468 + 0.1822 0.2499 + 0.0277

1 1 0.9958 + 0.2278 0

The predicted expiration period simulation results with different cases using
lower prediction interval method and using direct method are shown in Table 4.2 and
table 4.3 respectively. The tables show the mean and standard deviation of the

predicted expiration period (7,4 ) with different cases.

The results show that the predicted period from the model with proportion of
lot variability close to the true proportion gave the predicted expiration period, which
is close to the true expiration period (Tg,.). That is the suitable predicted period for
case 1, case 2, case 3, case 4, and case 5 are the lower prediction interval model with
proportion of lot variability equal to 0, 0.25, 0.5, 0.75, and 1 respectively. Moreover,
the predicted expiration period of the newly proposed model (the lower prediction
interval with estimated proportion of lot variability) also produced the results close to

the true expiration period as shown in table 4.2 and 4.3.



Table 4.2: Results of expiration period prediction (Tyq) with different cases
using lower prediction interval
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T
=0 7=025 1t=05 1©=0.75 =1 =1 Tirue
casel mean 196857 18.0374 17.2415 16.6283 16.1106 19.4542 20.0000
SD 0.1592  0.1806 02029  0.2237 0.2432 0.3517 0
case2 mean 196862 18.0465 17.2548  16.6449 16.1299 18.0813 18.3551
SD 0.2263 02416  0.2608  0.2798 0.2984  0.4245 0
case3 mean 196876 18.0583 17.2716  16.6655 16.1538 17.2932 17.6738
SD 0.2772 02988 03241  0.3490 0.3730  0.4561 0
case4 mean 196896 18.0720 17.2908 16.6891 16.1810 16.7015 17.151
SD 0.3203 03540 03901  0.4246 0.4572  0.5019 0
caseS mean 197062 18.1010 17.3258 16.7286 16.2244 16.2244 16.7103
SD 0.3540  0.4020  0.4516  0.4981 0.5414 0.5414 0
Table 4.3: Results of expiration period prediction (T,4) with different cases
using direct method
Tpa
=0 =025 11=05 11=075 71=1 T=1 Tirye
casel mean 199988 19.1782  18.3575  17.5368 16.7162 19.9337 20.0000
SD 0.1622  0.1627  0.1739  0.1941 0.2207 0.1916 0
case2 mean 199977 19.1813 18.3650 17.5486 16.7323 19.1906 18.3551
SD 0.2310  0.2288  0.2365  0.2531 02771  0.3529 0
casel mean 199971 19.1859 18.3748 17.5636 16.7524 18.3908 17.6738
SD 0.2826  0.2809  0.2918  0.3140 0.3454  0.4342 0
case4d mean 199970 19.1916 18.3862  17.5808 16.7753 17.5959 17.1510
SD 0.3261 03262 03435  0.3758 0.4196  0.4813 0
case5S mean 200115 19.2122 18.4129 17.6136 16.8143 16.8143 16.7103
SD 0.3606  0.3619  0.3871  0.4320 0.4913  0.4913 0
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The predicted expiration period simulation results using lower prediction
interval method and using direct method for only case 3 are shown in table 4.4 and
table 4.5 respectively. The tables show the mean and standard deviation of the
predicted expiration period (Tpq) with different 7, mean of drug strength of all
simulations which were calculated by each Tp,4, the mean difference between T4 and
true expiration period(T;), proportion of T,,; which was less than T; (Tp4< T;) and the
mean of probability that drug strength was more than L at each T,4. The other cases

are presented in the Appendix A.

Using this simulation, 6% = 1,7 = 0.5, and the equation (3.6), Tiyeq =

L—PBo+01Z1—¢q
B1

suitable model for drug expiration estimation should be a model with proper

, the true expiration period can be calculated, which is 17.6738. The

proportion of lot variability that can be estimated as with the experiment. As shown in
Table 4.4, the results indicate that the predicted period of the lower prediction model
with proportion of lot variability was close to the true proportion (0.5 for this study)
and the given expiration period was close to the true expiration period (that is when
T = 0.5 and 7 ). On the other hand, when 7 = 0 and 1, the lower confidence interval
and the lower prediction interval, the prediction periods were longer and shorter

comparing with T; respectively.

Table 4.5 is similar table to table 4.4 for case 3, but the predicted period came
from the direct method. The results presented longer prediction period than the lower
prediction model, and also present less probability that drug strength was more than

lower acceptance level at predicted period than the lower prediction model.



21

Table 4.4: Results of expiration period prediction (T,4) with different 7 using
lower prediction interval method for case 3

Tpq

=0 7=025 1=05 71=0.75 =1 T=17

Mean 19.6876  18.0583 17.2716 16.6655 16.1538  17.2932
SD 0.2772  0.2988 03241 03490 03730  0.4561
Drug Strength 90,1562  90.9709  91.3642 91.6672 91.9231 91.3534
Difference 2.0137 03845  -0.4023 -1.0083 -1.5201  -0.3806
Tpa < Terue 0 0.0967  0.8939  0.9985 1 0.7929
P(Dst= 1) 0.5858  0.9104  0.9700  0.9890  0.9957  0.9657

Table 4.5: Results of expiration period prediction (Ty4) with different T using
direct method for case3

Tha
=0 =025 =05 1=0.75 =1 T=1
Mean 19.9971  19.1859 18.3748 17.5636 16.7524  18.3908
SD 0.2826  0.2809  0.2918 03140 03454  0.4342
Drug Strength 90.0014 90.4070 90.8126 91.2182 91.6238  90.8046
Difference 23233 1.5121 07009 -0.1103  -0.9215  0.7169
Tpa =Ttrue 0 0 0.0084 0.6376  0.9974  0.0508
P(Dst=>1) 0.5008  0.7138  0.8698  0.9537  0.9872  0.8617

Mean: mean of T4

SD : standard deviation of Tpq

Drug Strength: drug strength calculated by each T4

Difference: the difference between Tp,q and Ttyye o(Tt)

Tpa < Tirye: proportion of Tp,; which was less than or equal to Ty

P(Dst > L): probability that drug strength was more than or equal to L at Tp,q
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According to the ICH guideline, probability that the drug strength is greater or
equal to L at a predicted time is 1- a. That probability also acts as a criterion for
selection of the proper model. Table 4.6 is a table of that probability on different cases
from the lower prediction interval method with different 7. The results show that the
newly proposed model presents probability close to 0.95 in every case. The lower
confidence interval (when t = 0) is good only when there is no lot variability, and the
lower prediction interval (when T = 1) is good only when the measurement error are

not presented.

Table 4.6: Probability that drug strength was more than L at Tj,4 with different cases
using the lower prediction interval method

Tpa

=0 t=025 11=05 171=0.75 =1 T=1
Casel 0.9765 1 1 1 1 0.9872
Case2 0.6202 0.9712 0.9961 0.9994 0.9999 0.9611
Case3 0.5858 0.9104 0.9700 0.9890 0.9957 0.9657
Cased 0.5700 0.8623 0.9365 0.9683 0.9835 0.9663
Case5 0.5575 0.824 0.9039 0.9438 0.9658 0.9658

The results in table 4.7 show that is not suitable for adding the proportion of lot

variability in the direct model. However, it is better than direct method without the proportion

of lot variability.

Table 4.7: Probability that drug strength was more than L at Tj,4 with different cases
using the direct method

ey

=0 =025 =05 11=0.75 =1 T=1
Casel 0.5036 1 1 1 1 0.6250
Case2 0.5009 0.7876 0.9442 0.9913 0.9992 0.7773
Case3 0.5008 0.7138 0.8698 0.9537 0.9872 0.8617
Cased 0.5007 0.6768 0.8196 0.9139 0.9648 0.9094

Case5 0.4978 0.6509 0.7821 0.8783 0.9391 0.9391
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Moreover, the results also presented the difference between the lower
prediction interval method and the direct method. The predicted expiration periods
from the lower prediction interval method were shorter than the direct method, due to
their formulas. For example, table 4.8 shows the expiration period predictions from
the lower prediction interval method and the direct method with proportion of lot
variability from different cases, 02 = 1,7 = 0.5. All expiration periods from the
direct method are greater than the lower prediction interval method and mostly are

greater than a true expiration period.

Table 4.8: Results of expiration period prediction (T,4) from the lower prediction
interval method and the direct method with proportion of lot variability

from different cases

T,

Method pd
casel case2 case3 case4 case5
Lpy mean 194542 180813 17.2932  16.7015 16.2244
SD 0.3517  0.4245  0.4561  0.5019 0.5414
py  hean 199337 19.1906 18.3908 175959 16.8143
SD 0.1916  0.3529 04342  0.4813 0.4913
T, 20 183551 17.6738  17.1510 16.7103

LPI: Lower prediction interval method

DM: Direct method

T;: True expiration period
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Study?2 : Number of Samples Investigation

According to the ICH guideline, the number of samples in a stability study is
not more than ten (including replications), so there are three possible methods: 5
samples with 2 replications, 3 samples with 3 replications and 2 samples with 5

replications.

The predicted expiration period results with different numbers of samples and
replications are shown in table 4.9, table 4.10 and table 4.11, which were calculated
using the lower confidence mterval model, the lower prediction interval model and
the newly proposed model respectively. Each table includes the mean and standard
deviation of the predicted expiration period (T,4) with different numbers of samples,
the mean square of the difference between Ty, and T, Z’ivzl(Tpd — T.)?/N, mean of
drug strength of all simulations which were calculated by each T,;, the mean
difference between T,4 and T, proportion of Tp,; which was less than T; (Tpq< T;)

and the mean of probability that drug strength was more than L at each Tp4.

The results show that when the number of lots is increased, the standard
deviation decreases. In addition, as the number of lots is increased, the probability that
drug strength is greater than the lower acceptance level at the predicted period is also
increased as in table 4.10 and table 4.11 respectively. The mean square of the
difference between Tp,; and T; increased when using the lower confidence interval
model, reduced when using the lower prediction interval model and the least when

using the newly proposed model respectively.



Table4.9: Results of expiration period prediction ( T4, the confidence
interval model) with different numbers of samples and replications

T,q(confidence interval)

5:2 3:3 2:5
Mean 19.5148  19.4978 19.5285
SD 0.3118 0.3794 0.4438
MSDiff 3.4865 3.4709 3.6366
Drug St 90.2426 ~ 90.2511 90.2358
Difference 1.8410 1.8240 1.8546
Tpa <Tt 0 0 0
P(Dst>L) 0.6312 0.6343 0.625

MSDiff is mean square of the difference between T4 and T, Zﬁ‘;l(Tpd —T))?/N.

Table4.10: Results of expiration period prediction ( Tpq, the prediction
interval model) with different numbers of samples and replications

Tpq(prediction interval)

5:2 33 2:5
Mean 16.133 16.1733 16.2195
SD 0.4495 0.5292 0.5940
MSDiff 2.5761 2.5317 2.4679
Drug St 91.9335 91.9134  91.8903
Difference  -1.5408 -1.5006 -1.4543
Tpa <T: 0.9997 0.9979 0.9933
P(Dst>L) 0.9954 0.9944 0.9932

MSDiff is mean square of the difference between T, and Ty, Y21 (Tpa — Tt)?/N.
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Table4.11: Results of expiration period prediction ( T,q4, the newly
proposed model) with different numbers of samples and replications

T,q(prediction interval)

5:2 3:3 2:5
Mean 17.2860 17.3233  17.3601
SD 0.5880 0.6559 0.7278
MSDiff 0.4961 0.5531 0.6281

Drug St 91.3570 91.3384 91.3199
Difference -0.3878 -0.3506 -0.3137
Tpa <T; 0.7529 0.7073 0.6688

P(Dst>L) 0.9615 0.9568 0.9515

MSDiff is mean square of the difference between T4 and T, Zﬁ‘;l(Tpd —T))?/N.
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CHAPTER V

DISCUSSION AND CONCLUSION

As illustrated in Table 4.1, the results show that the predicted period of the
model with proportion of lot variability was close to the true proportion and also the
given expiration period was close to the true expiration period (T;). In contrast, the
lower confidence interval and the lower prediction interval offer the prediction period
these are considerably longer and shorter than the true expiration period, respectively.
In the former case, when put into use, the predicted expiration dates entrust a
significant portion of expired drugs to patients The expired drugs may be ineffective
or can cause adverse effect on the patients’ health. In the latter case, usable drugs are
wasted, causing unnecessary increase of the overall medical and social security cost.
Therefore, we recommend our newly proposed model over both the conventional

confidence interval model and the prediction interval model.

According to the proposed model, in equation (3.1), there are two random
variables: @;; is a random variable representing the drug sample’s deviated from the
population, and g;j is a random variable representing the deviation from repetition

iid

of the drug sample j, where a;; N(0,07) and &y iid N(0,02). Accordingly,

the total variance (02) is the combination of the lot variability (¢7) and the
measurement error (0,2). The expiration period prediction model should have an
additional term, the proportion of lot variability, which is estimated by ANOVA
method for variance components estimation. Table 4.6 shows that incorporating this
parameter into the prediction model improves the quality of the predicted expiration

date.

For the proposed model, keeping the total number of repetitions constant, the
standard deviation decreases as the number of lots increases, as shown in table 4.11.

In addition, as the number of lots is increased, the probability that drug strength is
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greater than the lower acceptance level at the predicted period is also increased. Both
effects of large number of lots are beneficial. Therefore, according to the data model
under study, with the constraint of 10 repetitions per time point required by the
regulator, we recommend the number of samples be 5 lots with 2 replications. As a
caveat, it should be noted that other selection criteria can lead to different

recommendations for the number of samples and replications.



REFERENCES

Faraway, J. J. (2006). Extending the Linear Model with R. Boca Raton: Chapman
& Hall/CRC.

Food and Drug Administration. (2004). ICH harmonised tripartite guideline,
evaluation for stability data Q1E. The Federal Register, 69, 110: 32010-
32011.

Food and Drug Administration. (2004). ICH harmonised tripartite guideline,
stability testing of new drug substances and products, Q1A (R2). The
Federal Register, 68, 225: 65717-65718.

Komka, K., Kemeny, S., and Banfai, B. (2010). Novel tolerance interval model
for the estimation of the shelf life of pharmaceutical products. Journal of
Chemometrics, 24, 131-139.

McCulloch, C. E., and Searle, S.R. (2001). Generalized, Linear, and Mixed
Models, New York: John Wiley and Sons.

Pinheiro, J.C., and Bates, D. M. (2000). Mixed-Effects Models in S and S-PLUS.
New York: Springer.

Searle, S.R., Casella, G., and McCulloch, C. E. (2006). Variance Components,
New Jersey: John Wiley and Sons.

Searle, S.R. (1971). Linear Models, New York: John Wiley and Sons.

Seber, G.A.F. (1977). Linear Regression Analysis. New York: John Wiley and
Sons.

Shao, J., and Chen, L. (1997). Prediction bounds for random shelf-life. Statistics
in Medicine, 16, 1167-1173.

Srimaneekarn, N., Kiatsupaibul, S., Hayter, A. J., and Liu, W. Estimating drug
shelf-life with unknown lot-to-lot variability. Working paper.



Appendices



Appendix A

31



A: Additional Results
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Table A1.1: Results of expiration period prediction (T,4) with different 7 using
lower prediction interval method case 1

Tpa
=0 7=025 1=05 1=0.75 T=1 T=1

Mean 19.6857 18.0374 17.2415 16.6283 16.1106  19.4542
SD 0.1592  0.1806 ~ 0.2029  0.2237  0.2432  0.3517
Drug Strength 90,1571  90.9813 913793  91.6858  91.9447  90.2729
Difference 03143 -1.9626  -2.7585  -3.3717 -3.8894  -0.5458
Tpa =Tt 0.9765 1 1 1 1 09872
P(Dst=>1) 0.9765 1 1 1 1 0.9872

Table A1.2: Results of expiration period prediction (T,,) with different 7 using
direct method case 1

Tpa
=0 =025 =05 1=0.75 =1 T=1

Mean 19.9988  19.1782  18.3575 17.5368 16.7162  19.9337
SD 0.1622  0.1627  0.1739  0.1941  0.2207  0.1916
Drug Strength 90,0006  90.4109 90.8212  91.2316 91.6419  90.0331
Difference -0.0012  -0.8218 -1.6425 -2.4632 -3.2838  -0.0663
Tpa =Tt 0.5036 1 1 1 1 0.6250
P(Dst> L) 0.5036 1 1 1 1 0.6250

Mean: mean of T4

SD: standard deviation of Tyq

Drug Strength: drug strength calculated by each T,4

Difference: the difference between Tp,q and Ttyye o(Tt)

Tyq < T;: proportion of Tpq which was less than or equal to T;

P(Dst > L): probability that drug strength was more than or equal to L at T4
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Table A2.1: Results of expiration period prediction (T,4) with different 7 using
lower prediction interval method case 2

Tpq

=0 7=025 1=05 71=0.75 =1 T=17

Mean 19.6862 18.0465 17.2548 16.6449 16.1299  18.0813
SD 0.2263  0.2416 02608 02798  0.2984  0.4245
Drug Strength 90,1569  90.9767 91.3726  91.6775 91.9350  90.9594
Difference 13310  -0.3086  -1.1003  -1.7102 -2.2252  -0.2739
Tpa =Tt 0  0.8972 1 1 1 0.7455
P(Dst= 1) 0.6202 09712  0.9961  0.9994  0.9999  0.9611

Table A2.2: Results of expiration period prediction (T,4) with different 7 using
direct method case 2

Tha
=0 =025 =05 1=0.75 =1 T=1
Mean 19.9977 19.1813  18.365 17.5486 16.7323  19.1906
SD 0.2310  0.2288  0.2365 02531 02771  0.3529
Drug Strength 90.0012 90.4093 90.8175 91.2257 91.6339  90.4047
Difference 1.6425  0.8262  0.0098  -0.8065 -1.6228  0.8354
Tpa =Tt 0  0.0002  0.4870  0.9996 1 00112
P(Dst=>1) 0.5009  0.7876  0.9442 09913  0.9992  0.7773

Mean: mean of T4

SD: standard deviation of Ty4

Drug Strength: drug strength calculated by each T,4
Difference: the difference between Tp,q and Ttyye o(Tt)

Tyq < T;: proportion of Tpq which was less than or equal to T;

P(Dst > L): probability that drug strength was more than or equal to L at Tp,q
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Table A3.1: Results of expiration period prediction (T,4) with different 7 using
lower prediction interval method case 3

Tpq

=0 7=025 1=05 71=0.75 =1 T=17

Mean 19.6876  18.0583 17.2716 16.6655 16.1538  17.2932
SD 0.2772  0.2988 03241 03490 03730  0.4561
Drug Strength 90,1562  90.9709  91.3642 91.6672 91.9231 91.3534
Difference 2.0137 03845  -0.4023 -1.0083 -1.5201  -0.3806
Tpa =Tt 0  0.0967  0.8939  0.9985 1 0.7929
P(Dst=>1) 0.5858  0.9104 0.97 0.989  0.9957  0.9657

Table A3.2: Results of expiration period prediction (T,4) with different 7 using
direct method case 3

Tha
=0 =025 =05 1=0.75 =1 T=1
Mean 19.9971  19.1859 18.3748 17.5636 16.7524  18.3908
SD 0.2826  0.2809  0.2918 03140 03454  0.4342
Drug Strength 90.0014 90.4070 90.8126 91.2182 91.6238  90.8046
Difference 23233 1.5121 07009 -0.1103  -0.9215  0.7169
Tpa =Tt 0 0 0.0084 0.6376  0.9974  0.0508
P(Dst=>1) 0.5008  0.7138  0.8698  0.9537  0.9872  0.8617

Mean: mean of T4

SD: standard deviation of Ty4

Drug Strength: drug strength calculated by each T4
Difference: the difference between Tp,q and Ttyye o(Tt)

Tyq < T;: proportion of Tpq which was less than or equal to T;

P(Dst > L): probability that drug strength was more than or equal to L at Tp,q
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Table A4.1: Results of expiration period prediction (T,4) with different 7 using
lower prediction interval method case 4

Tpq

=0 7=025 1=05 71=0.75 =1 T=17

Mean 19.6896  18.072 17.2908 16.6891 16.1810  16.7015
SD 0.3203 03540 03901 04246  0.4572  0.5019
Drug Strength 90,1552 90.964 91.3546 91.6555 91.9095 91.6493
Difference 2.5386 09209  0.1398 -0.4619  -0.9701  -0.4496
Tpa =Tt 0 0.0043 0.3624  0.8582  0.9858  0.8133
P(Dst=>1) 0.5700  0.8623  0.9365  0.9683  0.9835  0.9663

Table A4.2: Results of expiration period prediction (T,4) with different 7 using
direct method case 4

Tha
=0 =025 =05 1=0.75 =1 T=1

Mean 19.9970  19.1916  18.3862 17.5808 16.7753  17.5959
SD 03261 03262 03435 03758  0.4196  0.4813
Drug Strength 90.0015 90.4042 90.8069 91.2096 91.6123  91.2020
Difference 2.8460  2.0406  1.2351 04297 -0.3757  0.4449
Tpa =Tt 0 0 0.0004 0.1219 0.8128  0.1761
P(Dst=>1) 0.5007  0.6768  0.8196 09139  0.9648  0.9094

Mean: mean of T4

SD: standard deviation of Ty4

Drug Strength: drug strength calculated by each T4
Difference: the difference between Tp,q and Ttyye o(Tt)

Tyq < T;: proportion of Tpq which was less than or equal to T;

P(Dst > L): probability that drug strength was more than or equal to L at Tp,q
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Table AS.1: Results of expiration period prediction (T,4) with different 7 using
lower prediction interval method case 5

Tpq

=0 7=025 1=05 71=0.75 =1 T=17

Mean 19.7062  18.101 17.3258 16.7286 16.2244  16.2244
SD 0.3540  0.4020 04516  0.4981  0.5414  0.5414
Drug Strength 90,1469  90.9495 91.3371 91.6357 91.8878  91.8878
Difference 2.9959 13907  0.6155  0.0184 -0.4859  -0.4859
Tpa =Tt 0 0.0003 0.0832 0.4881  0.8137  0.8137
P(Dst= 1) 0.5575  0.8240  0.9039  0.9438  0.9658  0.9658

Table AS.2: Results of expiration period prediction (T,4) with different 7 using
direct method case 5

Tpq

7=0 T=0.25 7=0.5 7=0.75 T=1 T=1

Mean 20.0115 19.2122  18.4129 17.6136 16.8143  16.8143
SD 03606 03619 03871 04320 04913  0.4913
Drug Strength 89.9943  90.3939 90.7936  91.1932 91.5929  91.5929
Difference 33012 2.5019  1.7026  0.9033  0.1040  0.1040
Tpa =Tt 0 0 0 0.0180 0.4154  0.4154
P(Dst=>1) 0.4978  0.6509  0.7821  0.8783  0.9391  0.9391

Mean: mean of T4

SD: standard deviation of Ty4

Drug Strength: drug strength calculated by each T4
Difference: the difference between Tp,q and Ttyye o(Tt)

Tyq < T;: proportion of Tpq which was less than or equal to T;

P(Dst > L): probability that drug strength was more than or equal to L at Tp,q
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B : R Code

#************************************************#

#*** Simulation for Drug Expiration Period Prediction ***#
#************************************************#

set.seed(101)
nround<-10000

L<-90

beta0<-100

betal<- (-0.5)

sample<-2

repl<-5
tvec<-c(0,3,6,9,12,18,24,36)

time<-rep(rep(tvec,each=sample),each=repl)

alpha<-.05
talpha<-qt((1-alpha),length(tvec)-2)

sigma<-1
rhovec<-c(0,1/4,1/2,3/4,1)
rho<-1/2

gammavec<-c()

errorvec<-c()

strength<-c()

drug<-c()

Tt<-c()

Tp<-¢()

Tdi<-c()
outputmat<-matrix(0,nrow=nround,ncol=13)
outputmat2<-matrix(0,nrow=nround,ncol=7)

for (i in 1:nround){
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#Sigma=1
# Rhovec =0,1/4,2/4,3/4,1



#****************************#

#*** Simulate Drug Strength  ***#

#****************************#

# Lot variation
gammavec<-

rep(rnorm(length(tvec)*sample,0,sqrt(rho*(sigma”2))),each=repl)

# Variation of measurement

errorvec<-rnorm(length(time),0,sqrt((1-rho)*(sigma”*2)))

# Simulate drug strength
strength<-beta0 + betal*time + gammavec + errorvec
drug<-rep(1:(length(tvec)*sample),each=repl)
fdrug<-factor(drug)

drugdata<-data.frame(strength=strength,time=time,fdrug=fdrug)

# Estimate beta0, betal, sigma

model<-Im(strength~time)
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#***************************************#

#*** Calculate Predicted Expiration Period ***#
#***************************************#

# Lower prediction interval method

st<-sum((time-mean(time))*2) # St

for (k in 1:length(rhovec)){
fi<-function(T){
modelScoef[1]+modelScoef[2]*T-
talpha*summary(model)Ssigma*sqrt(rhovec[k]+
1/length(time)+(T-mean(time))”2/st)-L
}
Tp[k]<-uniroot(f1,c(0,100))Sroot

# Direct method
for (k in 1:length(rhovec)){

f2<-function(T){
(L-modelScoef[1]+
rhovec[k]*summary(model)$sigma*gnorm(.95))/
modelScoef[2]-T

}

Tdi[k]<-uniroot(f2,c(0,100))Sroot
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#***********************************#

#*** Calculate True Expiration Period ***#
#***********************************#

Tt<-(L-beta0-gnorm(0.05)*sqgrt(rho)*sigma)/betal

#**************************************#

#*** Fitted by Analysis of Variance Model ***#

#**************************************#

modav<-aov(strength~time+fdrug,drugdata)
sigmalsghat<-(anova(modav)SMean[2]-anova(modav)SMean[3])/repl
sigmamsqghat<-anova(modav)SMean[3]

rhohat<-sigmalsghat/(sigmalsghat+sigmamsqghat)

#************************************************#

#*** Calculate Prediction Expiration Period by rhohat ***#
R Rk sk sk sk ok ok sk sk sk ok ok ok sk sk ok sk sk sk ok ok sk sk ook ok sk sk sk ok ok sk sk skok ok sk ok ok g

# Lower prediction interval method

f3<-function(T){
modelScoef[1]+modelScoef[2]*T-talpha*summary(model)$sigma*
sqrt(max(rhohat,0)+1/length(time)+(T-mean(time))*2/st)-L

}

Th<-uniroot(f3,c(0,100))Sroot

# Direct method
f4<-function(T){
(L-modelScoef[1]+
max(rhohat,0)*summary(model)Ssigma*gnorm(.95))/modelScoef[2]
T
}
Tndi<-uniroot(f4,c(0,100))Sroot



#**************************#
#********** Output ********#

#**************************#

# Lower prediction interval method
outputmat[i,1:2]<-modelScoef[1:2]

outputmat[i,3]<-summary(model)Ssigma
outputmat[i,4:8]<-Tp[1:5]
outputmat[i,9]<-Tn

outputmat[i,10]<-Tt
outputmat[i,11]<-rhohat

outputmat[i,12:13]<-c(sigmalsghat,sigmamsqghat)

# Direct method
outputmat2]i,1:5]<-Tdi[1:5]
outputmat2][i,6]<-Tndi

outputmat2][i,7]<-Tt
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#*******************************#
#********** EVaanﬁOn ***********#

#*******************************#

beta<-matrix(0,nrow=2,ncol=3) # bata0 betal sigma
beta[1,1:3]<-apply(outputmat[,1:3],2,mean)
beta[2,1:3]<-apply(outputmat(,1:3],2,sd)

bl<-sum(outputmat[,2]>0) # n(betal>0)

#*****************************************#

frEFRRxR*IEEX Function for Evaluation ¥ ¥ ¥ *xx %% xxy
#*****************************************#

# function for Average drug strength at time x
dst<-function(x)mean(betaO+betal*x)

# function for average diff Tt & x
dif<-function(x)mean(x-Tt)

# function for Proportion < T(true,0.05)

por<-function(x)mean(x<=Tt)
# function for Average P( N(bO+b1*x,sigmal) > L)

exc<-function(x)mean(1-pnorm(L,betaO+betal*x,sqrt(rho*(sigma”2))))



#*************************************#

#********** EVaantiOn ReSU|tS ***********#
#*************************************#

result<-matrix(NA,nrow=6,ncol=10)
result[1,1:10]<-round(apply(outputmat[,4:13],2,mean),4)
result[2,1:10]<-round(apply(outputmat[,4:13],2,sd),4)
result[3,1:7]<-round(apply(outputmat[,4:10],2,dst),4)
result[4,1:7]<-round(apply(outputmat[,4:10],2,dif),4)
result[5,1:7]<-round(apply(outputmat[,4:10],2,por),4)
result[6,1:7]<-round(apply(outputmat[,4:10],2,exc),4)
colnames(result)<- ¢("Tp,r=0","Tp,r=1/4","Tp,r=2/4","Tp,r=3/4","Tp,r=1",
"Tn","Tt","rho","sigmal”2","sigmam~2")

rownames(result)<-c("Mean","SD","Drug St","Tp-Tt","%(Tp<=Tt)","P(DSt>=L)")

result2<-matrix(NA,nrow=6,ncol=7)
result2[1,1:7]<-round(apply(outputmat2[,1:7],2,mean),4)
result2[2,1:6]<-round(apply(outputmat2[,1:6],2,sd),4)
result2[3,1:6]<-round(apply(outputmat2[,1:6],2,dst),4)
result2[4,1:6]<-round(apply(outputmat2[,1:6],2,dif),4)
result2[5,1:6]<-round(apply(outputmat2[,1:6],2,por),4)
result2[6,1:6]<-round(apply(outputmat2[,1:6],2,exc),4)
colnames(result2)<-
c("Tdi,r=0","Tdi,r=1/4","Tdi,r=2/4","Tdi,r=3/4","Tdi,r=1","Tndi","Tt")
rownames(result2)<-c("Mean","SD","Drug St","Tp-Tt","%(Tp<=Tt)","P(DSt>=L)")
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a<-c("sigma","rho","sample","repl")
b<-c(sigma,rho,sample,repl)

rbind(a,b)

bl

result

result2
write.csv(result,file="result.csv")

write.csv(result2,file="result2.csv")
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# n(betal>0)

# Lower prediction interval method

# Direct method
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