CHAPTER 1l

THEORETICAL CONSIDERATIONS

3.1 Basic Equations and General Solutions

Consider a poroelastic medium with a conventional cylindrical polar
coordinate system (r, 0, z) defined such that the z-axis is perpendicular to the free
surface as shown in Figure 1. Let », and w, denote the average displacement of
the solid matrix and the fluid displacement relative to the displacement of the solid
matrix, in the i direction (i=r,z), respectively. Then, the constitutive relations for
a homogeneous poroelastic material (Biot,1941) can be expressed as the

following:
g = Zpaaur’ + Ae - ap (3.1)
c, = 2;12;’ + le — ap (8:2)
o, - 4{2h20) 69
p = —aMe + M¢ (3.4)
where
§ = —(a;’+%+%) (3.6)

In the above equations o,,, o

2z

o, denote the total stress component of the bulk
material; e is the dilatation of the solid matrix; u is the shear modulus and A1 is a
constant of the bulk material, respectively; p is the excess pore fluid pressure
(suction is considered negative) and ¢ is the variation of fluid content per unit
reference volume. In addition, @ and M are Biot 's parameters accounting for
compressibility of the two-phased material (Biot, 1941). It is noted that 0<a <1
and 0< M <o for all poroelastic materials. For a completely dry material M =0,
whereas for a material with incompressible constituents M —> o and o =1.



The equations of motion for a poroelastic medium undergoing axisymmetric
deformations, in the absence of body forces (solid and fluid) and a fluid source,
can be expressed according to Biot (1962) as
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uVu, +(/1+a2M+,u);—,ur—2—aM5;— =pii +p,W, (3.7)
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1V, +( ﬂ)azaazpu,pfz (3.8)
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In equations (3.7)-(3.10), an overdot denotes the derivative with respect to the time
parameter f; p and p, are the mass densities of the bulk material and the pore
fluid, respectively, and m=p, /B (p=porosity), is a density-like parameter. In
addition, b is a parameter accounting for the internal friction due to the relative
motion between the solid matrix and the pore fluid. The parameter b is defined as
the ratio between the fluid viscosity and the intrinsic permeability of the porous
medium.

The axisymmetric motion under consideration is assumed to be time-
harmonic with the factor of €', where @ is the frequency of the motion and i is
the imaginary number. The term e is henceforth suppressed from all expressions
for brevity. The radius of the circular plate denoted by a is selected to non-
dimentionalize all space dimensions including the co-ordinate frame. Stresses and
pore pressure are non-dimentionalized with respect to the shear modulus u of the
bulk material. All variables are replaced by the non-dimentional ones, but the

previous notations are used for convenience.

The governing partial differential equations, equations (3.7) to (3.10), can
be solved by introducing the displacement decomposition based on Helmholtz
representation for an axisymmetric vector field and the zeroth-order Hankel integral



transform with respect to the radial coordinate. The displacement decompositions
are as follows (Philippacopoulos, 1989):

Giria) » 008 T - (3.12)
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w,(r,z) = 6¢2;:’Z) - alpza(z”z) (3.14)
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where @, (i=1, 2) and ¥,(i=1, 2) are functions of scalar and vector fields,
respectively. In addition, the mnth-order Hankel integral transform of a function
f(r,z) is defined as (Sneddon, 1970)

F&2) = [ofer.29,&ar (3.16)
and the inverse relationship is given by

12 = [ & F(&2)J,&nde (3.17)

where J, is the Bessel function of the first kind of the nth order (Watson, 1944)
and & is the Hankel transform parameter.

By applying Helmholtz representation for an axisymmetric vector field
together with the zeroth-order Hankel integral transform to the governing partial
differential equations as described above, it can be shown that the general
solutions for the zeroth-order Hankel transforms of u,, w,, o, and p, and the
first-order Hankel transform of u,, w, and o,,, respectively, can be expressed as

7, =~¢(A4e™ + Be " +Ce™* + De* )~y (Ee™ — Fe™*) (3.18)
u, =y, (Ae"" - Be"")+ 7, (Ce’z" - De"’z)+ f(Ee”’ + Fe"”) (3.19)
W =12 (Ae"’ - Be"'z)+ V20 (Ce’z" —De""‘)—‘f,z'3 (Ee”’ + Fe™* ) (3.20)

O = —25(}/l (Ae"" —Be"")+;/2 (Ce”" — De 7 ))-—S, (Ee”’ + Fe""') {3.2%)



G.. = B(4e™ +Be " )+ B, (Ce™ + De ) +2&y, (Be™ - Fev) (3.22)

P=n (Ae"’ +Be""’)+772 (Ce”’ +De"”) (3.23)

where A(§,6), B(£,6), ..., F(&,0) are the arbitrary functions to be determined by
using appropriate boundary and/or continuity conditions relevant to a given
problem. The superposed bar denotes the Hankel transform of quantities with
respect to the r-coordinate. In addition, the parameters y,, %,, etc., appearing in
the above equations and the details for derivation of the general solutions are
given in Appendix A.

3.2 Influence Functions

The formulation presented in an ensuring section for vertical vibrations of an
‘elastic plate embedded in a homogeneous poroelastic half-space (Figure 1a) and
a multi-layered poroelastic half-space (Figure 1b) require the influence functions
for axisymmetric ring loads and fluid sources applied in the interior of a poroelastic
half-space and a multi-layered poroelastic half-space, respectively. The loads are
applied at a depth z' below the free surface of the half-space as shown in Figure
2.

3.2.1 Influence Functions of Homogeneous Poroelastic Half-Space

The required influence functions of a poroelastic half-space are obtained by
solving the boundary-value problems related to the internally loaded half-space.
Solutions can be derived by defining a fictitious plane at z=2z' and treating the
half-space as a two-domain boundary-value problem. The general solutions for
each domain are given by equations (3.18) to (3.23) together with arbitrary
functions 4,(£,0) to F(&,8), where i (i=1,2) is used to identify the domain
number. The domain "1" is bounded by 0<z<z' and the domain "2"by z’'<z<w.
Note that for the domain "2", arbitrary functions 4;(£,8) = C,(&,6) = E,(£,6) =0
in order to satisfy the condition that the solutions vanish as z— «. The boundary
conditions corresponding to a fully permeable top surface (z=0, 0<r <) can
be expressed as

O'S,)(r,O) =0, n=r,z (3.24)

p(r, 0)=0 (3.25)



where a superscript (1) is used to denote the domain number.

The continuity conditions at the fictitious plane (z=2', 0<r <w)
corresponding to a homogeneous poroelastic half-space subjected to a buried
vertical load are given by

U (r,2)-uP(r,2')=0, n=r,z. (3.26)
pV(r,2)-p?(r,2)=0 (3.27)
oQ(r,z)-cP(r,z") = L0 (3.28)
o(r,z)-0P(r,2")=0 (3.29)
wh(r,z)-w2(r,z)=0 (3.30)

where T (r) denotes the intensity of the buried load in the z—direction.

The continuity conditions at the fictitious plane (z=2z, 0<r <0)
corresponding to a homogeneous poroelastic half-space subjected to applied pore
fluid pressure can be written as

uO(r,2")-uP(r,z")=0, n=rz (3.31)
r.2)-pVr,2) = % (3.32)
o0(r,2)=0@(r,2) =a L) (3.39
0 (r,z) -0 (r,2')=0 (3.34)
w(r,z) = w?(r,2') = 0 ’ (3.35)

where P(r) denotes the intensity of fluid pressure discontinuity at the depth
z=Z'. Note that according to equations (3.31) to (3.35), a discontinuity does not
exist in the solid skeleton stress at z=2z".

Substitution of general solutions for displacements, stresses and
pore pressure defined by equations (3.18) - (3.23) in the boundary conditions,
equations (2.24) and (2.25), and the appropriate continuity conditions, i.e.,
equations (2.26) to (2.30) or equations (2.31) to (2.35), results in a set of linear
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simultaneous equations to determine arbitrary functions corresponding to the two
domains. The explicit solutions for non-zero arbitrary functions corresponding to
applied vertical loading and fluid pressure were presented by Zeng and Rajapakse
(1999). These solutions are shown in Appendix B.

Solutions corresponding to equations (3.24) to (3.30) are the required
influence functions of a poroelastic half-space when the excitation is represented
by an axisymmetric vertical load. In addition, the solutions corresponding to
equations (3.24), (3.25) and (3.31) to (3.35) are required to simulate pore pressure
jumps that could exist under an impermeable plate.

3.2.2 Influence Functions of Multi-layered Poroelastic Half-Space

3.2.2.1 Stiffness Matrices

The required influence functions of a multi-layered poroelastic half-
space can be obtained by using an exact stiffness matrix method, which was
successfully developed to study the dynamic response of a multi-layered
poroelastic half-plane (Rajapakse & Senjuntichai, 1995).

Consider a multi-layered system consisting of N poroelastic layers
overlying a poroelastic half-space. Layers and interfaces are numbered as shown
in Figure 1b. Following Section 3.2.1, the general solutions for solid and fluid
displacements, pore pressure and stresses in the Hankel transform space of a
homogeneous poroelastic medium, equations (3.18)-(3.23), can be expressed in
the following matrix form.

u(s,z,0) = R({,z,0) C(¢,w) (3.36)
f(S,z,@) = 8(¢,z,0) C(§,w) (3.37)
where
1 u(é,z,e) =@, u, pl (3.38)
i zw) =& & #) (3.39)

C(,w) =[4 B C D E FT (3.40)



1

and the superscript T denotes the transpose of a vector or a matrix. The arbitrary
functions A(¢,w),B({,w),..., F(&,w) appearing in C(&,w) can be determined by
employing appropriate boundary and/or continuity conditions. The matrices
R(¢,z,w) and S(&,z,) in equations (3.36) and (3.37) are given by

e Eel*  —geTF  _fet  _feT¥ —y,e 7€
Rzjne™ e 9™ -pag’™ ¥ 77 (3.41)
me’  me’"  me™  me’ 0 0

—_257 - Ure™ 2y T  Wre™ -S> . R
$ 51 B Be™ Be’™ B 2y 2Ly (3.42)
| A € e RO A & 7 Sne™

and
m=(a+x)ML, i=12 (3.43)
S, =p(& +73) (3.44)
B =2uyl-Al-an, , i=1,2 (3.45)

] (A+a®M +24) L - ps°

i P wz —'aML2 ' i= 192 (346)
f i
@
X = ibp—fma) (3.47)

In addition, u, 4, @, M, p, p,, m and b are the poroelastic material constants
defined in Section 3.1 and y,(i=1,2,3) and L}(i=1,2,3) are given in equations
(A.18) to (A.21) in the Appendix A with the following definitions of parameters W,
(=1.2) and §".

(ma)2 —ibw)(l +a’M +2,u)+pMa)2 -2aMp,&’

i (A+2u)M

(3.48)

(mco2 - iba)) pa’ - pio’
(A+2u)M

W, = (3.49)

2

£ =%(pf;(3+p) (3.50)
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Let the superscript n denote quantities associated with the nth layer
(n=1,2,...,N). Then, the following relationships can be established for the nth
layer of the system shown in Figure 1b by using equations (3.36) and (3.37).

P Sl i (3.51)

B9 e Lo ou e c™ (3.52)
$® (¢,2,,,0)

where
U® = [u(,z,,0) u(,2,,,0)] (%5%)
F® = 19 z,,@) 17(2,,,0)] (3.54)

In the above equations, U" denotes a column vector of generalized coordinates
for the nth layer whose elements are the Hankel transforms of displacements and
pore pressure of the top and bottom surfaces of the nth layer; F™ denotes a
column vector of generalized force whose elements are the Hankel transforms of
tractions and fluid displacements of the top and bottom surfaces of the nth layer.
The matrices R™ and S in equations (3.51) and (3.52) are identical to R and
S defined in equations (3.41) and (3.42), respectively, except that the material
properties of the nth layer are employed in the definition and z=z, or z=z,,.
The vector C™ is the arbitrary coefficient vector corresponding to the nth layer.

The equation (3.51) can be inverted to express C™ in terms of U™ and
then substituted in equation (3.52). This results in the following matrix equation.

F® = K™ y® n=12....N (3.55)

where K™ is an exact stiffness matrix in the Hankel transform space describing
the relationship between the generalized displacement vector U™ and the force
vector F™ for the nth layer.

The explicit derivation of K corresponding to poroelastodynamics is
extremely complicated since it involves the manipulation of fully populated 6 x 6
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unsymmetric complex matrices. The computer algebra package Mathematica
(Wolfram, 1988) is used to obtain K™ explicitly. Mathematica results in very
lengthy and complicated expressions for elements of K which have to be
manipulated and reduced extensively to obtain expressions which enhance the
computational efficiency of the solution scheme. After lengthy manipulations, it is
found that K™ is symmetric and its elements can be expressed as

1 Row:
k, =f";(s1 -2£7)[ (92, +1)4 - (92, -1)¢%, | (3.56)
k, = %573 (8, +2¢2)[ (83, +1)g, ~49,,8, |-£(9%, -1)[2r: +5¢,]  (357)
ks =—;-§(S, -2£%)[ 49,8, — (93, ~1)d, (92, +1)¢s | (3.58)
b %(S. -28)[(93,-1)¢%, 9,4, | (3.59)
ks =2—’fz3-(S, -28)[ 8.8, (82, +1)4, | (3.60)
b= ~22)[9 = (9% +1) + (55— 1) ] 361

where
8, =™, URUIAL ARN2LILN (3.62)
b =72 (8% =1)(9% 1) (m7, = m )’ ~4(8,, -8, WY | (3.63)
¢, =& (87, -1)(83, -1)(m-m)’ (3.64)
¢y = (m=m)[ (85 =1)(83, +1)m> =(83, +1)(83, 1)o7 | (3.65)
b= (1 =m)[ 920 (8, 1) 7, — 94, (93, 1) o7 | (3.66)

g = (m —m) [ (9%, -1)(92, +1)7, (9%, +1)(s2, -1)7 | (3.67)



P =7s [(Slzn —1)(9§n —1)(71 ‘72)(77172 "77271)'*'2(91" _92")2 (m +772)7172:|

¢, = (771 _772)(‘91,. T 92n)(91n92n "1)717273

@y = (77x _772)52 [82'1 (Slzn

0 =28 [(93,+1)4,

2" Row:

where

‘1)72 _Sln (Sgn _1)}’1]

45,4,]-(51 1)+ £

ks =%p’-3—(sl -28)[ (83, ~1) 78, (83, +1)8, ]

'SI~

=—[ (8% -1 1ty + (8%, -1) Bty |

_’7_;7;(%”2)[( 1), +(83, -1)£, +£, ]

k24 = _kIS

kzs =%(S1 _262)[93n¢2 —(Sgn “1)73¢4:|

k26 =%(S1 _252)[(9; +1)¢s _93n¢5 —(Sgn _1)¢7]

£, =|:(9§n _1)(9§n _1)(7227: +§4)+2Z2:|

l,= 527273 [432,.93"

—(93, +1)(82, +1)]

¢, =[(912n _1)(9§n _1)(722732 +§4)+2f4]

¢, = 627173 [491n93n

~(s5, +1)(82,+1)]
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(3.68)

(3.69)

(3.70)

(3.71)

(3.72)

(3.73)

(3.74)

(3.75)

(3.76)

(3.77)

(3.78)

(3.79)

(3.80)



= (9%, -1 (%% -1)(83, 1)<

w123 (95 ~1)[ (9% -1)(83,-1) +2(8, -8,,)’ ]

3 Row:

ks ="(1;(2'1 _ZZ)[(Slzn '*'1)77171[1 _(Sgn +1)”272£2]_$(9§n +1)£6

k34 = kw

kss w5 —kzs

2
kys = ;[(2’2 e Z])(92n77272Z3 =8,mnk, ) o 283n£6]

where
Ly=&, (Sl _252)[277172 {(slzn +1)(9§n + l)_491n32n}

~(9%, =1)(8%, ~1)(s? +73)]
4" Row:

ky =k, kys = ~k,, kis = ks
5" Row:

ks =ky . ksg = —ky,

6" Row:

ks& = k33
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(3.81)

(3.82)

(3.83)

(3.84)

(3.85)

(3.86)

(3.87)

(3.88)

(3.89)

The elements of the layer stiffness matrix K™ are functions of the layer

thickness, the layer material properties and the Hankel transform parameter &.

Only negative exponentials that decrease rapidly with increasing & are involved in

k

For the underlying half-space, due to the conditions that the solutions

vanish as z—> o0, the general solutions involve only three arbitrary coefficients in
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the vector C¥*V je. BN DW*D gng F™)  The stiffness matrix of the bottom

half-space can be written as
FV*D = gW+) gv+D

where
’
PR = afON e )]

PP = )]

i

(N+1) _ i

K symm.[k. ] s

The elements of the half-space stiffness matrix are given by
I;n =%(S1 "252)(77172 =1:71)

E]Z =%§[(771 ~1,) 8, +27, (7, ‘77271)]

E]3=£
19

(S, _262)(7’1 =¥s)
Ezz =%‘(S| _252)(771 =)

E23 =%[’7211 (7 _‘52)_7712'2(7273 _52)]

e
by =—[ 1001 =€) =1 =€)+ (n -1 €2
where

v=n, (}’2}’3 —52)“772(717’3_62)

(3.90)

(3.91)
(3.92)

(3.93)

(3.94)

(3.95)

(3.96)

(3.97)

(3.98)

(3.99)

(3.100)

It is noted that exponential terms of & are not involved in the expression of

K™ and its elements depend on the material properties of the underlying half-

space and the Hankel transform parameter g
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3.2.2.2 Global Stiffness Matrix

The global stiffness matrix of a multi-layered half-space is
assembled by using the layer and half-space stiffness matrices together with the
continuity conditions of tractions and fluid flow at the layer interfaces. For example,
the continuity conditions at the nth interface can be expressed as

£ %0 2,) - e 2) = B (3.101)

where £ is identical to f in equation (3.39) with a superscript n denoting the
layer number and

T = [T ™ g (3.102)

‘Where 7_",(") and 7_"2(") are the first-order Hankel transform of the axisymmetric radial
load and the zeroth-order Hankel transform of the vertical load, respectively,
applied at the nth interface. In addition, Q(") is the zeroth-order Hankel transform
of the fluid source applied at the nth interface.

The consideration of equation (3.101) at each layer interface together with
equations (3.55) and (3.90) results in the following global equation system.

B =) A ( \
K m U m T m
KO u@ | - | T
{ > { ? (3.103)
K (N) U (N) T (N)
K N+l1) \U (N+|)J kT (N+l))

The solutions of the above equation are the influence functions of a multi-
layered half-space required to establish the flexibility equation for the derivation of
the contact stresses and pore pressure jumps which are employed in the
formulation presented in the next section.
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3.3 Formulation of Interaction Problem

3.3.1 Strain and Kinetic Energy of Elastic Circular Plate

The deflection of a circular plate embedded in a homogeneous or a multi-
layered poroelastic half-space in the z-direction, wp(r), is proposed to be

N A )
w,(r) = Dar”, 0srsl (3.104)
n=0

In equation (3.104), «, (n=0,1,..., N ) denotes a set of generalized coordinates.

The strain and kinetic energies of the plate denoted by U, spd T,,
respectively, can be expressed as (Timoshenko and Woinowsky-Krieger,1959)

2
d* dw,) 2(1-v,)adw, d’
U, = %ﬂan [d”;’ 7 d") SR = d";" rdr (3.105)
r r ar ¥ /i r
1 1 &2
T, =5h, [ 270,00, ) rdr (3.106)
where
Eh)’
P

In addition, &, (n=0,1,..., N') denotes a set of generalized coordinates; h, is the
thickness of the plate; E,, v, and P, are Young 's modulus, Poisson 's ratio and
the mass density of the plate material, respectively

In view of equation (3.104), equations (3.105) and (3.106) can be
expressed as

U,=a"K’a (3.108)

T, = a" MPa (3.109)

The elements K7 and M of square matrices K” and M”, respectively,

of order N +1 are given by

K, =K:=0 (3.110)
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v - Ai=1)(j=1)zD
VT (2i+2j-6)

[4(i-1)(j-1)-2(1-v,)(2i-3)] : 2<i,j (N +1) (3.111)

wh p
MP= (4 '
Yoo2(i-1)+2(j-1)+2

1<i, j<(N+1) (3.112)

3.3.2 Representation for Contact Stresses and Pore Pressure Jumps

The contact stresses and pore pressure jumps, denoted by I_’Z(r) and
Y—L(r), respectively, acting on the plate-soil contact surface S (0<r <1) can be
expressed in terms of generalized co-ordinates «, as

T,(r)=‘2a,,f,,(r) (3.113)
n=0

T,(r) =ia"7_;,,(r) (3.114)
n=0

where Tm(r) and 7_:,p(r) denote the contact stress and pore pressure jump
corresponding to the plate displacement field e

In the present study, solutions for contact stresses and pore pressure
jumps are determined by discretizing the contact area S into a total of Ne ring
elements. It is assumed that 7, and 7_',, are constant within each ring element as
shown in Figure 3. The relationship between unknown contact stresses, pore
pressure jumps and the displacements on the contact surface can be expressed in
terms of the following flexibility equations.

% #2](T u
[Gm GWH"M}:{ m}' PSS Sl (3.115)
6* 67|t |u,

The element G,’, where k,/=1,2,..,N,, in G’ denotes the influence
function which is the vertical displacement (i=z) and relative fluid displacement
(i= p) at the center of the kth ring element due to a vertical ring load (j =z ) and
a pore pressure ringtoad (j = p) over the /th ring element. u_, is the vertical
displacement at a point on S and u,, is the relative fluid displacement normal to S.

Ty, U, and u,, of T

pni i 2

The elements T.

b T,. u, and u,, respectively, are

o pn’

given by

TRl ) (3.116)
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= T () . for an impermeable plate
T % (") (3417
0 , for a permeable plate
o = (3.118)
Note that
U, =0 , for an impermeable plate (3.119)

For a fully permeable plate, ]_;,,, =0, then the flexibility equation, equation (3.115),
is reduced to

G*T. =wu (3.120)

zn zn

3.3.3 Equations of Motion

The Lagrangian function L, of the plate is given by (Washizu, 1982)

L, =1,-U,# Pﬂ[%q(r)—f (r)]wp(r)rdr (3.121)

0
where
q(r)=T.(r)+aT,(r) (3.122)
In the above equations, g(r) is the total vertical stress over the surface S and

f(r) is the given externally applied load. In the present study, it is assumed that
the applied load f(r) acting on the plate can be written as

fr) = dw,r (3.123)

n=0

where

v,(n=0,1,2,..., ]V) are coefficients of the loading function.

The Lagrange 's equations of motion for the plate can be expressed as

oL, oL
= et =8, 12012, N (3.124)
dt\ oa, ) Oq,
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In view of equations (3.104), (3.108), (3.109), (3.113) and (3.114), equation
(3.121) can be expressed in terms of @ and & . Substitution of equation (3.121) in
equation (3.124) and subsequent differentiation together with the fact that motion is
time-harmonic results in the following equations of motion to determine «, .

Ka=X (3:125)
where

I?=-coz(M"+M"T)+K"+K”T+K’+K‘T (3.126)

The elements K,.j. and X, of K* and X, respectively, are given by

2i

N, (rp +4r, /2)21 —(rp — /2)

K;=> nq,, : (3.127)
p=1 21
Y oy
X =2r) —2— 3.128
: §n+2i ( )

The solution of a system of linear simultaneous equation system given by
equation (3.121) yields the numerical values of the generalized coordinates «,
(n=1,2,...,N) for a given plate-half-space system. Finally, the plate
displacements, contact stresses and pore pressure can then be obtained by back
substituting the generalized coordinates in equations (3.104), (3.113) and (3.114),
respectively.
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