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CHAPTER I

INTRODUCTION

In the recent software technology development, most object-oriented software systems are

developed under evolutionary process models. Most software that is related to a real-world prob-

lem domain, must continuously evolve to cope with the problem domain changes — requirement

and environment changes (Bravo, 2003). Object-oriented software design principles and heuristics

(Gamma et al., 1995; Riel, 1996) are proposed to promote the good quality software. However,

even when maintainers are familiar with those techniques, violation of these design rules may lead

to poor solutions by deadline pressure, excessive focusing on pure functionality, or inexperience

programming. Such solutions to recurring design and implementation problems hinder software

evolution. They — low-level or local problems — are called design flaws (Marinescu, 2004).

Design flaws are potential errors of the internal organization of an object-oriented software

system that have a negative impact on important quality factors eg., maintainability, understand-

ability, ease of evolution, etc. (Fowler, 1999; Mens and Tourwé, 2004). They denote both source

code and design artifacts. This can be concluded that, in a particular context, design flaws are in-

between design and implementation. They may concern the design of a class, but they concretely

manifest themselves in the source code as a class with specific implementation. In the recent liter-

ature, design flaws are referred as Bad Smells (Fowler, 1999; Riel, 1996) and AntiPatterns (Brown

et al., 1998). Many authors denote design flaws normally by using metaphors.

One example of a design flaw is God Class (Brown et al., 1998), which is a characteristic

of a procedural thinking in object-oriented programming. The classes of design (the God Class)

is responsible for all (or most of the) behavior of an application while the rest of the classes (the

Data Classes) are only responsible for encapsulating data. This type of designs shows a wrong

distribution of responsibilities. The components of the god class are also not cohesive. This flaw

does not exploit object-oriented mechanisms, such as encapsulation and modularity (Johnson and

Foote, 1988).

The detection of flaws can substantially reduced the cost of subsequent activities in the

development and maintenance phases (Pressman, 2001). Several approaches have been proposed

to specify and detect flaws. Firstly, a manual detection of design flaws by software inspections

(Travassos et al., 1999) is presented to detect flaws problems. It however leads to some dif-

ferent issues as time-expensive, non-repeatable and non-scalable (Langelier et al., 2005). Even

more issues concerning the manual detection of design flaws are identified by Mäntylä et. al.



2

(Mäntylä et al., 2004; Mäntylä et al., 2003). They show that as the experience developer has with

a certain software system increases, his ability to perform an objective evaluation of the system as

well as his ability to detect design flaws decreases.

To avoid some drawbacks with a purely manual detection approach, metric-based heuristics

for identifying design flaws in software systems are proposed (Marinescu, 2004). The strategies

capture deviations from good design principles and consist of combining metrics with set opera-

tors and compare their values against threshold values. Therefore, effective identifying depends

on proper metrics and thresholds which are used to detect such flaws.

Several approaches are proposed to detect design flaws. However, they have three limita-

tions that challenging researcher to discover and find out. First, the formal representation that joins

systematically and clearly an analysis process leading to a specification for detection. Second, de-

tection always depends on threshold values that being coarse-grained characteristics. These char-

acteristics affect directly to the accuracy of detection. Finally, results of detection from research

works did not compared among approaches.

This dissertation proposes a different approach to detect design flaws in object-oriented

software by using the Meta-Programming approach with machine learning. The proposed ap-

proach is a novelty technique that applies Declarative Meta-programming and Machine Learning

to detect design flaws. In the approach, Declarative Meta-Programming is used to represent spe-

cific relations of elements in form of logic rules for describing design flaws. Machine learning

is used for extrapolating pattern for some characteristics of design flaws that are difficult to un-

derstand. With this approach, design flaws of an object-oriented system can be detected at the

meta-level in the Declarative Meta-Programming. With this declarative, paradigm design flaws

can be detected in a simple way and the reliable detection results are obtained. The case studies

are also presented to visualize the proposed approach concretely.

1.1 Motivation

Many research work emphasizes on identification and wildly discussion of anomalous prob-

lems in various research fields eg., software testing (Van Rompaey et al., 2007), networking

(Patcha and Park, 2007) and databases (Bruno et al., 2007; Jorwekar et al., 2007). Moreover

in software development and maintenance cycles, identification of design flaw problems is per-

formed in requirement analysis, design and implementation phases.

Although detection techniques and methodologies are proposed in the literature, there are

some points to consider in research works. First, the detection still depends on a metric value
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(or a group of metric values) to designate the risk area in the systems. Because of coarse-grain

judgement, the problem in these situations is that the detection may miss many real flaws or it will

introduce probably large number of under-fitting feature detection such as false positives in which

negative flaws from the particular set are viewed as positive flaws. Next in software inspection,

performance and accuracy rate of detection depend directly on the experience of practitioners.

Figure 1.1: Class BillItem

Table 1.1: Data Class metrics

Name Description

WOC (Weight of Class)
Number of non-accessor methods in a class divided by
the total number of members of the interface.

NOPA (Number of Public Attributes)
The number of non-inherited attributes that belong to the
interface of a class.

NOAM (Number of Accessor Methods)
The number of non-inherited accessor methods declared
in the interface of a class.

Figure1.1 shows a motivating example of class BillItem of HotelSystem application

in JAVA source code. This class is a Data Class Flaw by manual investigation. Table 1.1 shows

three metrics and their description for metric-based detection of Data Class flaw (Marinescu,

2001). The existence with Data Class flaw in such class occurs when one of the threshold value

excess the determined value. One interesting result is the false identification of the BillItem

class as a flaw of Data Class by metric-based detection. From the details in Table 1.2, The

calculation of WOC for class BillItem yields a value of 0.5. This value fails to trigger a metric
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Table 1.2: Measured values of Class BillItem

Metrics Measured values of Class BillItem Threshold value
WOC 0.5 ≥0.66
NOPA 0 ≥3
NOAM 2 ≥3

threshold value of Data Class which the value should be equal or more than 0.66. Moreover NOPA

and NOAM measured values also show in a negative result because both NOPA and NOAM are

not more than the Data Class threshold value which can indicate that class BillItem is a Data

Class. When class BillItem is identified as a Data Class by manual inspection, it is not picked

up by any of the threshold values of metric-based detection. Therefore in this context, the value of

the metric for flaw detection is quite incorrect result, and trying to obtain an accurate calculation

is also difficult.

By these reasons, it inspires motivations to our work. It is possible or not that we can ignore

these threshold values. Can the existence of flaws be explained by some giving reasonings? If we

can give reasoning for happened flaws by good design and heuristic, we believe that these reason-

ings could support our detection technique. And in code inspection, can we describe specification

of design flaws in formalization? If it is possible, time-consuming and error-proneness can be

reduced or eliminated in the detection process.

1.2 Objectives of Study

The objectives of study are as follows:

• To propose a new approach for design flaws detection in object-oriented software using

Declarative Meta-Programming technique and Machine Learning technique that can detect

design flaws and extrapolate rules in order to enhance flaw detection coverage.

• Both patterned design flaws and quantitative design flaws are to be detected.

1.3 Scopes of Study

The scopes of this study are as follows:

• The research considers the problem of design flaws.
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• The research is to apply the approach by using Declarative meta-programming technique

and Machine learning technique to find five design flaw categories in Folwer’s literature

(Fowler, 1999).

• The approach performs flaw detection of java source code.

1.4 Contributions

This research will make the following contributions:

• A novel detection approach can detect design flaws for object-oriented software which

may increase accuracy rate of design flaw detection as well as disregard the threshold value

needed.

• A new tool can automatically detect design flaws in object-oriented software.

1.5 Research Methodology

The research methodology is the following step:

• Survey related researches in the fields of design flaws detection in object-oriented systems,

Declarative meta-programming and Machine learning technique.

• Propose a novel approach that using Declarative meta-programming and Machine learning

technique to detect design flaws.

• Apply the declarative meta-programming to detect some patterned design flaws without

learning in learning systems.

• Develop a system with the proposed approach to detect patterned design flaws (including

learning systems).

• Develop system with the proposed approach to detect quantitative design flaws.

• Compare results of proposed detection method with a metric-based design flaws detection

method.

• Publish at least one journal article relating to the work.

• Conclude and prepare the dissertation
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1.6 Organization

Chapter 2 defines some theoretical backgrounds that will be used further on in this disserta-

tion. The background covers the fundamental concepts used in the object-oriented paradigm and

learning mechanism used to extrapolate patterns. A state of the art in the fields of design flaw

detection related to object-oriented design is also proposed in this chapter.

Chapter 3 proposes the detection methodology for design flaws detection. The methodology

is described mainly in eight steps. The representation is shown in input/output scheme for more

understanding.

Chapter 4. For the proposed methodology, we introduce a methodology for detecting flaws

related to design of software. The evaluation of the methodology and discussion of the results are

presented.

Finally, Chapter 5 concludes research work and some directions for the future are discussed.



CHAPTER II

OBJECT ORIENTED DESIGN FLAWS AND ITS

DETECTION

As pointed out in the first chapter that this work is going to tackle the issue of using relation

in order to assess and control the quality of object-oriented design. By moving toward this point,

this dissertation is therefore related to three major fields: Object-Oriented Design, Declarative

Paradigm in Meta-Programming and Machine Learning. The goal of this chapter is to present the

foundations of these domains. Research works of design flaw detection is presented in the last

section. The rest of this work mainly refers to the concepts which are presented in this chapter.

This chapter is structured into two parts. The first part describes related theoretical back-

grounds of this detection work. In the first, we concentrate on answering the question of what is

good object-oriented design and on the criteria for obtaining and assessing it. After discussing the

object-oriented design, we detail the foundations of Meta-Programming on how it supports the

proposed detection performs efficiently. Declarative Programming is discussed the issue of its ap-

propriate properties to implement meta language in meta level. Machine Learning also supports

to generate pattern logic rules of complex flaws in the meta program. In the second part, state

of the art researches in design flaw detection is described. All of information – methodologies,

techniques and tools, are discussed in the latter part.

Part I : Theoretical Background

2.1 Object-Oriented Paradigm and Design Flaws

This foundation concept of object-oriented paradigm is introduced in this section. We ex-

plain first ideas of object-oriented programming and its novel mechanisms to deal with the com-

plex software development. Good object-oriented design principles are discussed later. Although

there are many good mechanisms and principles deal with complex software system in object-

oriented paradigm, design flaws still emerge in software. We discuss the characteristics of design

flaws and their effect on software quality.

2.1.1 Object-Oriented Programming

The essential factor that influenced the evolution of programming paradigms is the ne-

cessity to deal with the increasing complexity of software programs (Coad and Yourdon, 1991).
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Object-oriented programming provides us with a set of proper mechanisms for the management

of this complexity, namely: data abstraction, encapsulation, modularity, inheritance, and poly-

morphism. In this heading we will discuss these mechanisms. Booch defined object-oriented

programming as follows (Booch, 2004):

Definition 2.1 Object-oriented programming is an implementation method in which programs

are organized in object collections that cooperate among themselves, each object representing an

instance of a class; each class is part of a class hierarchy and all classes are related through their

inheritance relationships.

Analyzing the definition above, we find three important elements of object orientation:

• objects and not algorithms are the fundamental logical blocks;

• each object is an instance of a class;

• classes are linked among themselves through inheritance relationships.

In the context of the previous definition, we can now introduce Sommervilles definition

(Sommerville, 1995) of object-oriented design:

Definition 2.2 Object-oriented design is a design strategy where system designers think in terms

of things instead of operations or functions. The executing system is made up of interacting objects

that maintain their own local state and provide operations on that state information.

2.1.1.1 Data Abstraction

One of the fundamental ways used by all people in order to understand and comprehend a

complex issue is by using abstractions. A good abstraction is one that underlines all the aspects

that are relevance to the perspective from which the object is being analyzed while at the same

time suppressing or diminishing all the other characteristics of the object. In the context of object-

oriented programming Booch offers us the following definition of an abstraction (Booch, 2004):

Definition 2.3 An abstraction expresses all the essential characteristics that make an object dif-

ferent from some other object; abstractions offer a precise definition of the objects conceptual

borders from an outsiders point of view.
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In conclusion in the process of creating an abstraction our attention is focused solely to-

wards the exterior aspect of the object and as such on the objects behavior while at the same time

ignoring the implementation of this very behavior. In other words abstractions help us distinguish

clearly between what an object does and how the object does it.

An objects behavior is characterized through a sum of services or resources the object offers

to some other fellow objects. Such a behavior in which an object (server) offers services for other

objects (clients) is described in the so called client-server model. The entirety of the services

offered by a server object constitutes the objects contract or responsibility towards other objects.

Responsibilities are fulfilled by means of certain operations (also called: methods or member

functions). Each objects operation is characterized by a unique signature composed from: a

name, a list of formal parameters and a return type. The sum of an objects operations and their

corresponding rules for calling constitute the objects protocol.

2.1.1.2 Encapsulation

Just as abstractions are used for identifying an objects protocol, encapsulation deals with

selecting an implementation and treating it as a secret of that particular abstraction. The encap-

sulation process will be viewed therefore as the action of hiding the implementation from most

client objects. In a more concise way we can define encapsulation as follows:

Definition 2.4 Encapsulation is the process of splitting the elements that form the structure and

behavior of an abstraction into individual compartments; encapsulation is used for separating

the contractual interface from its implementation.

The definition above makes clear that an object has two distinct parts: the objects interface

(protocol) and the implementation of this interface. Abstraction is the process that defines the

objects interface and encapsulation defines the objects representation (structure) together with the

interface implementation. The concealment of an objects structure and method implementation

make up the so-called information hiding notion. Encapsulation provides a set of advantages:

• By separating the object interface from the objects representation one can modify the rep-

resentation without affecting the various clients in any way because these depend on the

server objects interface and not its implementation.

• Encapsulation allows one to modify programs efficiently, with a limited and localized ef-

fort.
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2.1.1.3 Modularity

The purpose of splitting a program into modules is to reduce the costs associated with

redesign and verification issues by allowing one do this for every module independently (Britton

et al., 1981). The classes and objects obtained after the abstraction and encapsulation processes

must be grouped and then deposited in a physical form called a module. Modules can be viewed

as physical containers in which we declare the classes and objects that result after the logic level

design. These modules form therefore the programs physical architecture. A program can be split

into a number of modules that can be compiled separately but that are connected (coupled) among

themselves. The languages that support the module concept also make the distinction between the

modules interface and its implementation. We can say that encapsulation and modularization go

hand in hand.

2.1.1.4 Inheritance

Abstractions are a good thing but in most non-trivial applications we will find a greater

number of abstractions that we can simultaneously comprehend. Encapsulation manages com-

plexity by hiding the interior of its abstractions. Modularity helps by offering the means of

grouping abstractions that are logically linked among themselves. All these, although useful,

are not enough. A group of abstractions often forms a hierarchy and by identifying this hierar-

chy we can greatly simplify the problem understanding. The most important class hierarchies in

the object paradigm are: the class hierarchy (“is a”relationship) and the object hierarchy (“part

of”relationship). Class Hierarchy Inheritance defines a relation among classes in which a class

shares its structure and behavior with one or more other classes (we talk about simple and multiple

inheritance). The existence of an inheritance relationship is the difference between object-oriented

programming and object based programming.

From a semantic point of view inheritance indicates an “is a” relationship. For example a

bear “is a”mammal so there is an inheritance relationship between the bear and mammal classes.

Even as a programming issue this remains the best test for detecting the inheritance relationship

between two classes A and B: A inherits B only if we can say that “A is a kind of B”. If A

“is not a” B, then A should not inherit B. In conclusion inheritance implies a hierarchy of the

generalization/specialization type in which the class that derives specializes the more generalized

the structure and behavior of the class from which it was derived. Object Hierarchy Aggregation

is a relationship between two objects in which one of the objects is part of the other object. From

a semantic point of view, aggregation indicates a “part of” relationship. For example there is such

a relation between a wheel and a car because we can say that “a wheel is part of a car”.



11

2.1.1.5 Interfaces and Polymorphism

Interfaces

As we mentioned earlier, the sum of all function signatures for the functions that can be called

by clients of that particular object class form the classs interface. Interfaces are fundamental in

object-oriented systems. The objects are known inside the system only through their interfaces.

There is no other way of finding out something about the object or asking it to do something except

by using its interface. An objects interface says nothing about its implementation. Therefore

different objects can implement the same interface in different ways. This means that two objects

with identical interfaces can have wildly different implementations.

Binding

When a certain operation is requested, the way in which the operation will be fulfilled depends

not only on the operation itself but also on the object that will receive and execute the request by

calling one of its member functions. This happens because there can be more than one objects

that can respond to a particular request. In other words, the requested operation specifies the de-

sired service and the concrete object represents the individual implementation of that service. The

association between a requested operation and the object that will provide the concrete implemen-

tation of the operation through one of its member functions is called binding. Depending on the

moment when this binding takes place, we differentiate between two types of binding:

• Static binding (early binding) - the association is created at compilation time. This binding

is based on the types system known to the compiler through the various class declarations

and the corresponding fixed (and therefore rigid) association of a class for each object.

• Dynamic binding (late binding) - the association is not created when the program is com-

piled but rather it takes place when the program is running (at run-time).

Polymorphism

In this manner, when binding dynamically, the request for an operation does not lead to the auto-

matic correspondence between that operation and a certain implementation, the correspondence

takes place only when the program is running. The main advantage of dynamic binding is the

possibility of substituting objects that have identical interfaces at run-time. The option of us-

ing some object in another objects instead when both objects share the same interface is called

polymorphism. Polymorphism is therefore one of the fundamental concepts of object-oriented

programming.
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2.1.2 The Good Object-Oriented Design

In the previous section we introduce the key mechanism involved in object-oriented design.

But, as in chess, knowing the chess pieces and the moves does not make you a good chess player.

In this section we will therefore discuss what a good design is and what makes the difference

between a good and a bad design. The quality of a design has an essential impact on the whole

development process. Considering the life cycle of a software system, the design phase is respon-

sible for no more than 10% - 15% of the total effort; yet, up to 80% of the costs are invested in the

correction of erroneous design decisions that arise during this phase (Bell et al., 1987). So, what

is good design? Coad defines good design as follows (Coad and Yourdon, 1991) :

Definition 2.5 A good design is one that balances trade-offs to minimize the total cost of the

system over its entire lifetime.

Thus, a good design is reflected by the minimization of costs, i.e. the costs of creating

the design, transforming it into a proper implementation, testing, debugging and maintaining the

system. Coad also emphasizes the fact that from the formerly mentioned cost categories, the most

substantial one is related to maintenance, therefore he concludes: the most important characteristic

of a good design is that it leads to an easily maintained implementation. More recently, Pfleeger

also discusses the characteristics of a good software design in following terms (Pfleeger, 2001) :

Definition 2.6 High-quality designs should have characteristics that lead to quality products:

ease of understanding, ease of implementation, ease of testing, ease of modification, and correct

translation from requirements specification. Modifiability is especially important, since changes

to requirements or changes needed for fault correction sometimes result in design change.

All these statements above guide us to the following couple of conclusions:

• It is hard to comprehend and quantify the goodness of a design by itself; therefore we

have to apply the biblical principle: by their fruit you will recognize them, i.e. we can get

an understanding of the quality of the design only by regarding its fruits: testing efforts,

maintenance costs and the number of reusable fragments.

• We need criteria for evaluating a design not in order to build perfect software but to help

us avoid badness. Therefore, good design is a matter of avoiding those characteristics that

lead to bad consequences (Coad and Yourdon, 1991).
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It is impossible to establish an objective and general set rules that would lead automatically

to high-quality design if they would be applied. But on the other hand heuristic knowledge reflects

and preserves the experience and quality goals of the developers. They also help the beginners

to evaluate and improve their design. Therefore, we are going to discuss next the most relevant

characteristics to avoid poor object-oriented design and show the reflection of these characteristics

in terms of heuristics. According to those undesirable characteristics, a good object-oriented

design should have a manageable complexity, should provide a proper data abstraction and it

should reduce coupling while increasing cohesion.

2.1.3 Object-Oriented Design Flaws

The software industry is confronted with a large number of software systems in use, in the

size of millions of lines of code. By their inherent size, complexity and development times, they

have reached the suitable shape for object-orientation paradigm. Yet, most of these systems lack

all of the aforementioned quality design and principles (stated in section 2.1.2): they are instead

monolithic, inflexible and hard to extend. We can identify the following causes for this situation:

• Time Pressure. Often systems tend to start with a clear and rigorous design, but then the

developers are confronted with a lot of time constraints. This fight against the clock forces

them to choose the fastest design solution and not the one that keeps the integrity of the

design.

• Changing Requirements. Requirements change in ways that cannot be anticipated in the

initial design. These changes often require essential modifications on the architectural

level. In many cases those who implement the changes are not aware of the initial design

and because of this the design becomes blurred.

• Immature Object-Oriented Designers. Most legacy systems of the first generation were

written by programmers that had less understanding of the principles of object-oriented

design. The ignorance of those principles has led to a lot of poorly designed code.

As a conclusion, we may state that object-oriented programming is a basis technology, that

supports quality goals like maintainability and reusability but just knowing the syntax elements of

an object-oriented language or the concepts involved in the object-oriented technology is far from

being sufficient to produce good software. A good object-oriented design needs design rules and

practices that must be known and used.



14

One of the famous defect on quality attributes of software is design flaws. The design

structure of these flaws have a strong negative impact on quality attributes such as flexibility or

maintainability. Thus, the identification and detection of these design problems is essential for

the evaluation and improvement of software quality. Design flaws are hard to define, because

sometimes we encounter situations in which a code fragment might be considered as a flaw in

one case while in another case, a similar, mostly identical design fragment is justifiable and may

not be considered as a design flaw. In the context of this work we define design flaws based on

Marinescu’s definition (Marinescu, 2004) as follows:

Definition 2.7 (Design flaws) The structural characteristic of a design entity or design fragment

that expresses a deviation from a given set of criteria typifying the high-quality of a design is

called a design flaw.

A design flaw itself is not an error or problem but a strong indication of poor design of

source code structure. In the literatures, many researchers introduce flaws in different ways.

Fowler and Beck (Fowler and Beck, 2000) coin the term ”Bad Smell”. They present an informal

definition of twenty two of bad smells that provide a set of characteristics used as indicators for

design flaws. Anti-patterns, proposed by Brown et. al. (Brown et al., 1998), are a design level

literary form that describes a commonly occurring solution to a problem that generates decidedly

negative consequences. During the past years to now, the issue of identifying and correcting

design problems become an important concern for the object-oriented community (Demeyer et al.,

2002; Fowler, 1999; Riel, 1996).

2.1.3.1 Design Flaw Taxonomy

There are several ways in which design flaws can be classified; they could be classified

according to their abstraction level or to the good-design criteria they are deviating from. In this

work, we use the classification of design flaws belonged to Mäntylä (Mäntylä, 2010), which is

according to the granularity level of the design entity affected by each flaw. The taxonomy of

design flaws can be classified in seven categories as follows:

Bloaters Bloaters represent something in the code that has grown so large that it cannot

be effectively handled. The smells in the Bloater category are: Long Method,

Large Class, Primitive Obsession, Long Parameter List, and Data Clumps. In

general it is more difficult to understand or modify a single long method than
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several smaller methods. The same kind of argument holds also for Long Pa-

rameter List and Large Class. Primitive Obsession does not actually represent

a bloat, but is a symptom causing bloats, because it refers to situations in which

the logic handling the data appears in large classes and long methods. For

Data Clumps we could also argue that it should be in the Object-Orientation

Abusers, because in theory a class should be created from each Data Clump.

However, since Data Clumps often appear with the Long Parameter List smell

we have decided to include it in this category.

Object-

Orientation

Abusers

The smells in the Object-Orientation Abuser category are: Switch Statements,

Temporary Field, Refused Bequest, Alternative Classes with Different Inter-

faces, and Parallel Inheritance Hierarchies. This category of smells is related

to cases where the solution does not fully exploit the possibilities of OO de-

sign. In Switch Statements, smell type codes are used and detected using

switch statements. In OO software design the need for these type codes should,

however, be handled by creating subclasses. The Parallel Inheritance Hierar-

chies and Refused Bequest smells lack proper inheritance design, which is one

of the key elements in OO programming. The Alternative Classes with Dif-

ferent Interfaces smell lacks a common interface for closely related classes, so

it can also be considered a certain type of inheritance misuse. The Temporary

Field smell means a case where a variable is in the class scope, when it should

be in the method scope. This violates the information hiding principle.

Change

Preventers

The third category of smells refers to code structures that considerably hinder

the modification of the software. The smells in the Change Preventers cate-

gory are: Divergent Change and Shotgun Surgery. The key is that according

to (Fowler and Beck, 2000) the classes and the possible changes need to have

a one-to-one relationship, e.g., one class that is modified when a database is

changed, another class which is modified when new sorting algorithms are

added. The smells in this category violate this principle. The Divergent

Change smell means that we have a single class that is modified in many differ-

ent types of changes. The Shotgun Surgery smell is the opposite. Developers

need to modify many classes when performing one type of change.

Dispensables The smells in the Dispensables category are Lazy Class, Data Class, Duplicate

Code, and Speculative Generality. These smells represent something unneces-

sary that should be removed from the code. Classes that are not doing enough

need to be removed or their responsibility needs to be increased. Data Class
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and Lazy Class represent such smells. Also unused or redundant code needs

to be removed, which is the case with Duplicate Code and Speculative Gener-

ality. Interestingly, Fowler and Beck (Fowler and Beck, 2000) do not present

a smell for dead code. Developers find this quite surprising, since in their ex-

perience it is a quite common problem. Dead code is code that has been used

in the past, but is currently never executed. Dead code hinders code compre-

hension and makes the current program structure less obvious.

Encapsulators The Encapsulators deal with data communication mechanisms or encapsula-

tion. The smells in the Encapsulators category are Message Chains and Mid-

dle Man. The smells in this category are somewhat opposite, meaning that

decreasing one smell will cause the other to increase. Removing the Message

Chains smell does not always cause the Middle Man smell and vice versa,

since the best solution is often to restructure the class hierarchy by moving

methods or adding subclasses. Naturally, one could argue that the Message

Chains smell belongs in the Couplers group and that the Middle Man smell

belongs in the Object-Orientation Abusers. Developers believe that in order to

get a better understanding of these smells they should be introduced together.

Couplers There are two coupling related smells, which are Feature Envy and Inappro-

priate Intimacy. The Feature Envy smell means a case where one method is

too interested in other classes, and the Inappropriate Intimacy smell means

that two classes are coupled tightly to each other. Both of these smells rep-

resent high coupling, which is against the object-oriented design principles.

Of course, here developers could make an argument that these smells should

belong in the Object- Orientation Abusers group, but since they both focus

strictly on coupling, Developers think it is better if they are introduced in their

own group.

Others This class contains the two remaining smells Incomplete Library Class, and

Comments.

A Mäntylä’s taxonomy for design flaws is introduced. The purpose of this taxonomy is to

prevent the problems arising from the flat list of twenty two code smells. With this classification,

developers feel that it makes the flaws more understandable, recognizes the relationships between

flaws and puts each smell into a larger context. Next section, another concepts used in detection

of this work are discussed.
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2.2 Declarative Paradigm in Meta-Programming

In this section, the declarative paradigm is described in detail. By means of a declarative

programming language, PROLOG, and some examples, the basic concepts is explained of such a

language and use such concepts in building the proposed detection approach. After that, the topic

of Declarative Meta Programming is discussed. The reasons about the environment of Declarative

Meta Programming efficiently supported in the proposed detection is discussed.

2.2.1 Declarative Paradigm

Before descriptions which show how to write programs of a declarative programming lan-

guage in meta programs of Declarative Meta Programming environment are described, the declar-

ative programming paradigm is discussed. In order to do this, there is a comparison of it with

some other programming paradigms:

• Imperative programming The typical property of imperative languages is that programs

written in them have some sort of state. A program is written by specifying a number

of steps at time of execution and manipulating that state of the program. Programs in both

procedural as object-oriented languages are generally written in imperative style. Examples

of this paradigm are C++, C, Pascal and Java

• Declarative programming Declarative programming is a way of specifying what a pro-

gram should do, rather than specifying how to do it. Unlike most imperative programming

languages are based on the steps needed to solve a problem, declarative programming lan-

guages only indicate the essential characteristics of the problem and leave it to the computer

to determine the best way to solve the problem. Examples of such languages are PROLOG

and SOUL.

For descriptions of Declarative Programming, some advantages of Declarative Program-

ming can utilize to the proposed detection of this work. First consideration is that the programs

written in it are easy to understand. Learned logic rules can also be easy to understand and give

proper reasons with Explanation-based learning mechanism in the reasonable way. This issue is

discussed in detail in section 2.3. Second, programs written in a declarative programming lan-

guage specify what is needed to be computed instead of how it has to be computed. When flaw

identification in software systems is performed, points which consider is just what flaws want to

find. Therefore this paradigm is suitable for modeling the detection. In the following section the

basic concepts of a specific declarative language, Logic Programming language, that used in this
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dissertation is proposed. This language is used for implementing meta language of the proposed

detection. The detail of implementing is described in section 2.2.2.

2.2.2 Logic Programming

Logic programming is one of the declarative programming paradigm. It consists of logic

programs to identify knowledge of a specific problem. The definition of logic programming can

be defined as follows:

Definition 2.8 (Logic Programming) The Logic Programming paradigm is based on first-order

predicate logic. Programs in a logic language are written by specifying the base knowledge that

is available about a problem and the relationships between this knowledge is so-called facts. The

part of the program that will derive new information out of these facts consists of rules. These

rules are used to deduce new facts out of already existing ones.

PROLOG (Deransart et al., 1996) is probably the most famous (Flach, 1994) of the im-

plementation of logic languages. PROLOG is used for implementing meta language in meta-

programming in this dissertation..

The simple syntax of PROLOG by means of an example is shown following. There is a

consideration the following situation: some information about a set of people and know who is

the parent of who. A small program that shows the grandParent relationship between those

people is written. This program can be expressed as the following PROLOG program as follows.

(1) parent(jim,bob)

(2) parent(bob,julie)

(3) parent(bob,eric)

(4) grandParent(X,Y) :- parent(X,Z), parent(Z,Y)

The first three lines ((1)-(3)) of PROLOG examples above express some base knowledge

of the example (namely that jim is a parent of bob, that bob is a parent of julie,. . .).

This information is called facts . The last line (4) of the example form a rule that defines the

grandParent relationship. Variables in this rule are written with a capital letter. Notice that

this rule does not say how to compute the grandparent relationship. It gives a definition of it:

someone (X) is the grandparent of someone (Y) if there is another person (Z) such that person X

is the parent of Y and Z is the parent of Y. As the reader will remark, this logic program is a very
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intuitive definition of the problem which should be expressed. If grantParent is processed to

show who is a grandparent of who with PROLOG. A query is posed to the PROLOG interpreter.

In this case the query would look like:

grandParent(X,Y).

The logic language then processes the query and it output:

X → jim, Y → julie

X → jim, Y → eric

Above information shows the variable bindings that the logic language will return. Not

only a single solution is returned. Instead the query results in a set of variable bindings for every

possible solution. Every such binding exists out of a variable name and a value for that variable. If

we take a look at our example we see that if we take as value for X = jim and for Y = julie,

then this pair would be a correct result of the grandParent relationship. If consideration in the

example, julie is a grandchild of jim.

2.2.3 Declarative Meta Programming

Declarative Meta Programming (DMP) is defined as the use of a declarative programming

language for writing meta programs. Meta programs are programs that process programs; as

opposed to more plain programs that process data. Programmer and software engineer use meta

programs as compilers, program editors, integrated development environments, UML editors and

program verifiers. The definition can be described as follows:

Definition 2.9 (Declarative Meta Programming: DMP) The use of a Declarative Programming

Language at Meta level to reason about and manipulate programs built in some underlying base

language.

Declarative programming languages are very suitable for writing meta programs because

they allow the programmer to focus on what needs to be achieved rather than how to achieve it.

This is the very definition of declarative programming languages, which refers back to Kowalski’s

well-known equation ”Algorithm = logic + control” (Kowalski, 1979). His notion that the logic

or ”what” part of a program is easier to define when it is separated from the control or ”how”

part also holds for meta programs. A typical processing step in a meta program is doing a search
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on the program being processed; for example finding a function that calls three specific other

functions. This is made easier if one can define what one is searching for separately from how to,

for example, loop over all functions and all the calls in those functions. Another typical task is

transforming the processed program, for example, adding calls into certain functions. Again, this

is made easier if one does not have to focus on how to exactly apply the transformations to ensure

they are done in the correct order.

In this dissertation, logic programming is introduced for meta language. It means in this

context that logic programs is written that reasons about programs which written in an object

oriented language.

DMP has already been used for a lot of different applications in the context of creating

development support tools in software engineering field, but all of them can be put in one of the

following five categories:

1. Verification of source code (eg. conformance checking, coding conventions, design models,

architectural description.

2. Extraction of information out of source code (eg. code metrics).

3. Transformation of source code (eg. refactoring, translation and evolution).

4. Generation of source code.

5. Aspect Oriented Programming.

2.2.4 Logic Programming Theory

This section gives a short introduction to logic programming theory. An in-depth overview

of the subject is not considered but it limits a level to the concepts that are useful for explaining

Explanation-Based Learning and its algorithms. A more extensive treatment of the subject is

referred to (Flach, 1994) and (Lloyd, 1984). This section starts by introducing some terminology

which use in the Explanation-Based Learning section. Not only the syntax of the building blocks

of logic programs (Horn Clauses) is described, but also their semantic meaning of logic program

is briefed including model theory and proof theory.

2.2.4.1 Terminology

In the course of this chapter and later, the reader encounter a few terms related to logic

programming theory and predicate logic. The definition of a few relevant terms is given in this
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subsection. It is not the intention that the reader looks at these terms now, but that he/she refers to

this list whenever a term is encountered that is not all clear.

Definition 2.10 (Predicate) A predicate consists out of a predicate symbol (a constant) and a

number of arguments (the arity of the predicate). A predicate has a truth value true or false.

For example the predicate sum(1,2,3), the predicate symbol is sum and the arity is 3. if

considering interprets the predicate as ”the third argument of the predicate is the sum of the first

two arguments” then the truth value of the predicate is true.

Definition 2.11 (Truth value of a clause) A Horn clause can be true or false. This value is

dependent on the truth values of the predicates in the clause.

Definition 2.12 (And, Or and Implication) The ∧ is the and-operator. The clause A ∧ B is true

if and only if A and B are both true. The ∨ is called the or-operator. The clause A ∨ B is true if

either A or B are true. The clause A→ B is true if A and B have both the same truth value or if A

is false and B is true. The implication A→ B can be rewritten as the clause ¬A ∨ B.

Definition 2.13 (Soundness) A logic program is sound if everything is deduced from it is true.

Definition 2.14 (Completeness) A logic program is complete if it covers all positive examples.

Definition 2.15 (Consistency) A logic program is consistent if it does not cover any of the nega-

tive examples.

Definition 2.16 (Derivation or Deduction) Clause C2 is derivable from clause C1 (C1 ` C2) if

clause C1 is gotten from clause C2 by applying rewrite operators to C2.

Definition 2.17 (Logic consequence) Clause C2 is a logic consequence of C1 (C1 |= C2) if every

model of C1 is a model of C2.
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2.2.4.2 The syntax of logic programs

In the previous subsection, a practical viewpoint to how logic languages work by studying

the PROLOG language is given. Additional formal viewpoints of logic programs are described.

Programs in logic programming language is defined as a collection of Horn clauses. The following

grammar gives a formal definition of such a Horn clause.

clause := head [← body]

body := atom

body := [atom [∧ atom]*]

atom := predicate[(term [,term]*)]

term := variable | constant | list

variable := ?identifier

constant := identifier

identifier := ”a single word”

list := 〈 [term]*〉

The above conventions grammar is used to define the grammar: productions between [ and

] may be omitted. For example a[b] produces the string a or the string ab. A* means to repeat

the production zero or more times. The instance i* means that it can produce the strings like the

empty string or string { i,ii,iii, . . .}. The | symbol is equivalent with an ’or’. For example a|b,

this can produce two strings namely the string ’a’ or the string ’b’.

2.2.4.3 Properties of logic languages

The foundation of the basic syntactical concepts of a logic language is introduced in last

subsection. A few properties of these languages that are important for the further discussion of

this dissertation are discussed. Note that a clause or atom is grounded if it contains no variables

(eg. parent(mia, louise)).

Let Variables be the set of all the variables in a logic program P and let Literals be the set

of all the terms that occur in a clause C of a logic program P.

Definition 2.18 (Substitution) A substitution Cθ is a mapping Variables→ Literals in which we

change every occurrence of variable X in C into literal l. Note this as: θ = {X/l}.

For example: C = parent(jim,X), θ = {X/bob}, Cθ = parent(jim,bob). It
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can say that a substitution θ is a unifying substitution of clauses C1 and C2 if C1θ = Cθ. So θ =

{x/jim, y/bob} is a unifying substitution of father(X,bob) and father(jim,Y).

2.2.4.4 Model theory

The syntax of the logic language consisting of Horn clauses is discussed in the previous

subsection. The semantics of logic language is described now . In order to make it easier to

determine the truth value of a Horn clause, the clause is rewritten such that the implication is

removed. The following general Horn clause is considered.

H ← L1 ∧ L2 ∧ ... ∧ Ln

In order to know its meaning, an astonishment a truth value to this clause by assigning a

value to each of the literals is performed.

The rewriting this clause by replacing the implication with a disjunction is shown how this

is done. The new clause shows as following.

H ∨ ¬L1 ∨ ¬L2 ∨ ... ∨ ¬Ln.

This clause is true if the head is true or if the negation of one of the literals from the body

is true. The reader can verify that this is correct by comparing the truth values of the clause with

those of the implication. And now to know whether a Horn clause is true, every Li are associated

each truth value and check whether the entire clause is true or false.

Now a few concepts that should be considered in semantics are described.

Definition 2.19 The Herbrand Universe (UP) of a logic program P is the set of all the grounded

terms in the program P.

In case of the example from the previous subsection, UP = {jim, bob, louise,

mia}.

Definition 2.20 The Herbrand Base (BP) of a program P is the set of all the grounded atoms in

P. The elements of the Herbrand Base are all possible combinations of predicates and constants.
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The Herbrand Base of the example is:

BP = {grandparent(jim,jim), . . . , parent(jim,louise),

mother(louise,louise), . . .}.

It is easy to see that the Herbrand Base can be quite large. It can be made a mapping

between the elements of the Herbrand Base and the values {true, false}. This mapping is called

the Herbrand Interpretation (IP) of a program P. Since it have to specify for every element of a

very large set if it is true or false, the using the inverse relation in practice is considered.

This means that the readers only write down the elements of BP of which the readers say

that they are true (formally this is written down as I−1
P (true)). For the rest of the elements of the

Herbrand base it assumes that they are mapped to false. Finally, it says that:

Definition 2.21 (Model) M is a model for a program P if M is a subset of interpretation I and

that all the clauses of P are true with respect to M.

2.3 Machine Learning

Machine Learning is the study of methods for programming computers to learn. Computers

are applied to a wide range of tasks, and for most of these it is relatively easy for programmers

to design and implement the necessary software. However, there are many tasks for which it is

difficult or impossible to solve such as problems for which there exist no human experts or prob-

lems where human experts exist, but where they are unable to explain their expertise. Fortunately,

humans can provide machines with examples of the inputs and correct outputs for these tasks, so

machine learning algorithms can learn to map the inputs to the outputs.

A machine learning system is one that automatically improves with experience, adapts to

an external environment, or detects and extrapolates patterns. An appropriate machine learning

technology could relieve the current economically-dictated one-fits-all approach to application de-

sign. Machine learning addresses many of the same research questions as the fields of statistics,

data mining, and psychology, but with differences of emphasis. In contrast, machine learning is

primarily concerned with the accuracy and effectiveness of the result of computer systems. To il-

lustrate this, we consider the different questions that might be asked about speech data. A machine

learning approach focuses on building an accurate and efficient speech recognition system.



25

2.3.1 Analytical and Empirical Learning

Learning tasks can be classified along many different dimensions. One important dimen-

sion is the distinction between empirical and analytical learning. Empirical learning is learning

that relies on some form of external experience, while analytical learning requires no external

inputs.

Consider, for example, the problem of learning to play tic-tac-toe (noughts and crosses).

Suppose a programmer has provided an encoding of the rules for the game in the form of a func-

tion that indicates whether proposed moves are legal or illegal and another function that indicates

whether the game is won, lost, or tied. Given these two functions, it is easy to write a computer

program that repeatedly plays games of tic-tac-toe against itself. Suppose that this program re-

members every board position that it encounters. For every final board position (i.e., where the

game is won, lost, or tied), it remembers the outcome. As it plays many games, it can mark a board

position as a losing position if every move made from that position leads to a winning position for

the opponent. Similarly, it can mark a board position as a winning position if there exists a move

from that position that leads to a losing position for the opponent. If it plays enough games, it can

eventually determine all of the winning and losing positions and play perfect tic-tac-toe. This is a

form of analytical learning because no external input is needed. The program is able to improve

its performance just by analyzing the problem.

In contrast, consider a program that must learn the rules for tic-tac-toe. It generates possible

moves and a teacher indicates which of them are legal and which are illegal as well as which

positions are won, lost, or tied. The program can remember this experience. After it has visited

every possible position and tried every possible move, it will have complete knowledge of the

rules of the game (although it may guess them long before that point). This is empirical learning,

because the program could not infer the rules of the game analytically – it must interact with a

teacher to learn them.

2.3.2 Analytical Learning

We now turn our attention to analytical learning. Because analytical learning does not in-

volve interaction with an external source of data, analytical learning systems cannot learn knowl-

edge with new empirical content. Instead, analytical learning focuses on improving the speed and

reliability of the inferences and decisions that are performed by the computer. This is analogous

in many ways to the process of skill acquisition in people.

Considering a computation involves search. Examples include searching for good se-
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quences of moves in chess, searching for good routes in a city, and searching for the right steps

in a cooking recipe. The task of speedup learning is to remember and analyze past searches so

that future problems can be solved more quickly and with little or no search. The simplest form

of speedup learning is called caching – replacing computation with memory. When the system

performs a search, it stores the results of the search in memory. Later, it can retrieve information

from memory rather than repeating the computation.

For example, consider a person trying to bake a cake. There are many possible combina-

tions of ingredients and many possible processing steps (e.g., stirring, sifting, cooking at various

temperatures and for various amounts of time). A cook must search this space, trying various

combinations, until a good cake is made. The cook can learn from this search by storing good

combinations of ingredients and processing steps (e.g., in the form of a recipe written on a card).

Then, when he or she needs to bake another cake, the recipe can be retrieved and followed. Anal-

ogous methods have been applied to speed up computer game playing. Good sequences of moves

can be found by searching through possible game situations. These sequences can then be stored

and later retrieved to avoid repeating the search during future games. This search for good move

sequences can be performed without playing any real games against opponents.

A more interesting form of speedup learning is generalized caching – also known as

Explanation-Based Learning. Consider a cook who now wants to bake bread. Are there pro-

cessing steps that were found during the search for a good cake recipe that can be re-used for a

good bread recipe? The cook may have discovered that it is important to add the flour, sugar,

and cocoa powder slowly when mixing it with the water, eggs, and vanilla extract. If the cook

can identify an explanation for this part of the recipe, then it can be generalized. In this case,

the explanation is that when adding powdered ingredients (flour, sugar, cocoa) to a liquid batter

(water, eggs, and vanilla extract), adding them slowly while stirring avoids creating lumps. This

explanation supports the creation of a general rule: Add powdered ingredients slowly to a liquid

batter while stirring. When baking bread, the cook can retrieve this rule and apply it, but this

time the powdered ingredients are flour, salt, and dry yeast, and the liquid batter is water. Note

that the explanation provides the useful abstractions (powdered ingredients, liquid batter) and also

the justification for the rule. Explanation-based learning is a form of analytical learning, because

it relies on the availability of background knowledge that is able to explain why particular steps

succeed or fail. Retrieving a rule is usually more difficult than retrieving an entire recipe. To

retrieve an entire recipe, it just needs to look up the name (chocolate cake). But to retrieve a rule,

it must identify the relevant situation (adding powdered ingredients to liquid batter).

Sometimes, the cost of evaluating the rule conditions is greater than the time saved by
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Table 2.1: The explanation-based generalization problem

Given:
• Instance space X: Each instance describes a pair of objects.

• Hypothesis space H: Each hypothesis is a set of Horn clause rules. The head of
each Horn clause is a literal containing the target concept predicate. The body
of each Horn clause is a conjunction of literals based on the same predicates
used to describe the instances.

• Goal Concept: A concept definition describing the concept to be learned.

• Training Example D: An example of the goal concept.

• Domain Theory B: A set of rules and facts to be used in explain how the train-
ing example is an example of the goal concept.

Determine:

• A hypothesis from H is consistent with the training examples and domain the-
ory.

not searching. This is known as the utility problem. One solution to the utility problem is to

restrict the expressive power of rule conditions so that they are guaranteed to be cheap to eval-

uate. Another solution is to approximate the rule conditions with different conditions that are

easier to evaluate, even if this introduces some errors. This is known as knowledge compila-

tion. Explanation-based learning mechanisms incorporates into cognitive architectures such as

the SOAR architecture (Laird et al., 1987) and the various ACT architectures (Pavlik and Ander-

son, 2004).

2.3.3 Explanation-Based Theory

After concepts of machine learning and preliminary analytical learning in previous sub-

section are discussed, the detail of explanation-based learning is described in this section. This

learning algorithm constrains the search by relying on knowledge of the task domain and of the

concept under study. After analyzing a single training example in terms of this knowledge, these

methods are able to produce a valid generalization of the example along with a deductive justifi-

cation of the generalization in terms of the system’s knowledge. The explanation-based method

analyzes the training example by first constructing an explanation of how the example satisfies the

definition of the concept under study. The feature of the example identified by this explanation

are then used as the basis for formulating the general concept definition.The justification for this

concept definition follows from the explanation constructed for the training example. The generic

problem definition of Explanation-Based Learning shown in Table 2.1. It summarizes the class of

generalization problems considered in this dissertation.
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From Table 2.1, the learner is given a hypothesis space H from which it must select an

output hypothesis, and a set of training examples D ={〈x1,f(x1)〉, . . . , 〈xn,f(xn)〉} where f(xi) is

the target value for the instance xi. The desired output of the learner is a hypothesis h from H that

is consistent with these training examples.

In analytical learning, the input to the learner includes the same hypothesis space H and

training examples D as for inductive learning. In addition, the learner is provided an additional

input: A domain theory B consisting of background knowledge that can be used to explain ob-

served training examples. The desired output of the learner is a hypothesis h from H that is

consistent with both the training examples D and the domain theory B.

To illustrate more concretely, in example each instance xi would describe a particular char-

acteristic of inputs, and f(xi) would be True when xi is a characteristic for which approach to target

concept, and False otherwise.

In this dissertation, we consider explanation-based learning from domain theories that are

perfect, that is, domain theories that are correct and complete. A domain theory is said to be

correct if each of its assertions is a truthful statement about the world. A domain theory is said

to be complete with every positive example in the instance space, if the domain theory covers

every positive example in the instance space. For more detail, it is complete if every instance that

satisfies the target concept can be proven by the domain theory to satisfy it.

Explanation-Based Learning operates by learning a single horn clause rule by the algorithm

called Prolog-EBG (Mitchell et al., 1986; DeJong and Mooney, 1986). Prolog-EBG is a sequential

covering algorithm. For more detail, it learns one rule, removing the positive training examples

covered by this rule, then iterating this process on the remaining positive examples until no further

positive examples remain uncovered. When given a complete and correct domain theory, Prolog-

EBG is guaranteed to output hypothesis (set of rules) that is itself correct and that covers the

observed positive training examples. The Prolog-EBG algorithm is summarized in Table 2.2.

From learning algorithm in table 2.2, each new positive training example that is not yet

covered by a learned Horn clause forms a new Horn clause by step:

1. Explaining the new positive training example. Each training example is to construct an

explanation in term of the domain theory.
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Table 2.2: The explanation-based learning algorithm Prolog-EBG.

Data: TargetConcept, TrainingExamples, DomainTheory
Result: LearnedRules

LearnedRules← {};
Pos← the positive example from TrainingExamples;

Prolog-EBG(TargetConcept, TrainingExamples, DomainTheory);
forall the positive elements of example in Pos do

1. Explain:;
Explanation← an explanation (proof) in terms of the DomainTheory that
PositiveExample satisfies the TargetConcept;
2. Analyze:;
SufficientConditions← the most general set of features of PositiveExample
sufficient to satisfy theTargetConcept according to the Explanation;
3. Refine:;
LearnedRules← LearnedRules + NewHornClause,;
where NewHornClause is of the form TargerConcept←
SufficientConditions;
Return LearnedRules;

end

2. Analyzing this explanation to determine an appropriate generalization. The algorithm com-

putes the weakest preimage of the target concept with respect to the explanation, using a

general procedure called regression (Waldinger, 1977).

3. Refining the current hypothesis by adding a new Horn clause rule to cover this positive

example, as well as other similar instances. A new instance is classified as negative if the

current rules fail to predict that it is positive.

Thus, Explanation-Based Learning involves reformulating the domain theory to produce

general rules that classify examples in a single inference step. One interesting capability of

PROLOG-EBG is its ability to formulate new features that are not explicit in the description

of the training examples, but that are need to describe the general rule underlying the training

example. After all concepts which involved with this dissertation is described, in next section

the-state-of-the-art design flaw detections are introduced .

2.4 Related Works

The problems of design flaw detection are discussed from different groups in this section.

Typical approaches can be divided into two categories. On the one hand, there are approaches
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use usability aspect and user experience to exploit the static structure of flaws. Some of these use

Declarative Programming to describe the structures of the programs source code. On the other

hand, some approaches base the detection on metrics and their automated interpretation. Both

groups are important for efficient flaw detection and acceptance of automated approaches.

2.4.1 Smells, Design flaws and Anti-patterns

Firstly, Beck and Fowler coin design flaws as the term Smell in (Fowler and Beck, 2000)

for structures in code that possibly need a refactoring. They describe a set of twenty-two smells.

However, they explicitly do not give any precise criteria to identify those smells in code. Instead,

Fowler and Beck refer to the developers intuition and experience (Fowler and Beck, 2000) . These

twenty-two smell descriptions range from complex design problems (e.g. Parallel Inheritance

Hierarchies) and problems on class level (e.g. Large Class) to tiny problems like Method Has

Too Many Parameters (Van Emden and Moonen, 2002). These different levels are not stated

though implicitly given. They give only some hints on the relation of design patterns (Gamma

et al., 1995) and smells. They reason on the relation of feature envy and the strategy and visitor

pattern (Fowler, 1999). Gamma et al. give further hints, however no comprehensive catalog is

provided currently.

Marinescu gives a formal definition called Design Flaw (Marinescu, 2005). A design flaw

is a negative property of an entity in a software system. The design flaws are explicitly related to

not only implementation level, but also the level of design, i.e. package, class, method, etc. Such

entities with negative properties expose a deviation from criteria characterizing non-functional

high-quality designs (Marinescu, 2001). This deviation from a given set of criteria is expressed

in metrics and automated interpretation of measured values. The characterization of high-quality

designs is based upon a study of forty-five JAVA projects in (Lanza and Marinescu, 2010).

Tom Tourwé and Tom Mens refer to these structures also as refactoring opportunities

(Tourwé and Mens, 2003). They report on a framework using flaws to propose adequate refac-

torings. Brown et al. provide a pattern language to describe flaws so called AntiPatterns (Brown

et al., 1998). AntiPatterns are commonly occurred solutions that cause obvious negative conse-

quences. AntiPatterns can be the result of actions taken by the different participants of a software

project. AntiPatterns can occur, among others, in design, architecture and processes.

Mäntylä et al. propose a taxonomy for the initial set of smells provided by Beck and Fowler

(Mäntylä et al., 2003). The twenty-two smells of Beck and Fowler are grouped into six categories:

Bloaters, Object Orientation Abusers, Change Preventers, Dispensables, Encapsulators and Cou-
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plers. From their survey done in an industrial project, Mäntylä et al. compute correlations between

smells. Their taxonomy is applied to these correlations. They conclude that this taxonomy and the

empirical study of smell relations is only of initial nature. The study shows that relations between

smells exist, and are not only pure theory.

2.4.2 Analysis based on structural detection

One type of famous approach to flaw detection is the use of Structure Analysis. Several

approaches in research make use of such a structural detection to find design problems by their

typical structure in code.

The detection in early age is in manual approach, based on software inspection techniques

on text-based descriptions (Travassos et al., 1999; Fagan, 1986, 2002). Software inspection in-

volves carefully examining the code, the design and the documentation of software and checking

them for aspects that are known to be potentially problematic based on past experience. It is gen-

erally accepted that the cost of repairing a flaw is much lower when that flaw is found early in

the development cycle. Van Emden and Moonen (Van Emden and Moonen, 2002) present in their

early work on code inspection and smell flaw detection. Their approach is based on a generic

parser generation and term rewriting framework. Some flaws of them are detected and presented

as graphs (Slinger, 2005) by implementing as plug-in for the Eclipse Integrated Development En-

vironment (Eclipse IDE). They state that flaws are characterized by different flaw aspects. They

distinguish between primitive flaw aspects and derived flaws aspects to split flaw detection into

two steps. Derived flaw aspects are inferred from primitive flaw aspects. Primitive flaws and flaw

aspects are collected by visitors traversing the abstract syntax tree of the analyzed source code.

These facts are input to a calculator for relational algebra. This calculator is used to infer more

complex design problems from the collected facts.

However, manual inspection is time-consuming process and strongly depends on devel-

oper’s programming expertise. For lessening this problem, software visualization (Langelier

et al., 2005) is used to support flaw detection. This strategy reduces the search space – time-

and resource-consuming – which compensates for human intervention.

Bravo (Bravo, 2003) develops a framework based on the Declarative Programming. His

framework is applied to use logic to reason about source code and propose opportunities to pre-

form refactorings by Tourwe (Tourwé and Mens, 2003). The detectors are implemented as logic

predicates that reason about the structures presented in analyzed source code. Some detectors

make also use of metrics. All flaw instances have an attached weighting. This weighting is com-



32

puted from the badness of a flaw itself, weighting between flaw pairs and user given sorting. The

selection of logic programming is based on the fact that this paradigm enables fast execution and

easy description of complex queries on huge factbases. The work of Kniesel et al. do support this

selection (Kniesel et al., 2007). GenTL (Appeltauer and Kniesel, 2008) is presented, a generic

analysis and transformation language. GenTL uses snippets of the analyzed language, called code

patterns, to select elements during analysis. The patterns may contain variables as placeholders

for elements of the analyzed language. The use of code patterns and variables balances needed

expressiveness, ease of use and high abstractness with the power of Logic Meta Programming.

However, currently no implementation is available.

2.4.3 Analysis based on metrics

Another type of approach to flaw detection is the use of metric computations. Either com-

plex, specialized metrics are developed or several simpler metrics are combined into a strategy to

detect flaws.

Based on cohesion consideration, Simon et al. (Simon et al., 2001) report a detection

algorithm to find opportunities for four different refactorings. Those are the refactorings Move

Method, Move Field, Extract Class and Inline Class (Fowler, 1999). Simon et al also develop

the metric Distance Based Cohesion to measure the similarity between two entities (methods and

fields in the cited paper). This metric can be used to cluster entities. It provides opportunities for

refactorings that improve code towards the principle “Put together what belongs together ”. These

detected opportunities suggest to move a method or field and extract or inline a class.

Marinescu develops a whole framework to define flaw detectors from the composition of

metrics (Marinescu, 2004, 2005; Lanza and Marinescu, 2010). Marinescu uses metrics and fil-

terings, that are logically composed into so called Detection Strategies. To define new detection

strategies for a design heuristic, appropriate metrics have to be chosen first. The next step is to

select filterings for these metrics. These metric filters are logically composed with and, or and

not operators. The result is a single, encapsulated detection rule for a design flaw, that can be

effectively computed. Some heuristics explicitly state semantics that can be related to the selected

metrics. Those allow for a “semantical filtering ”. If absolute numbers are part of the heuristic, an

“absolute semantical filter ”is possible. Classes should not contain more objects than a developer

can fit in his or her short-term memory. A favorite value for this number is six (Riel, 1996).

Marinescu states that some heuristics do not allow for absolute semantical filters and he

calls these heuristics fuzzy and presents two further types of filters. A “relative semantical fil-
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ter”considers the highest or lowest values of a dataset. An example for this heuristic is Methods

of high complexity should be split. For heuristics mentioning extreme values , “statistical filter”is

proposed by Marinescu. Statistical filters catch extreme, abnormal values. An example for such a

heuristic is “Avoid packages with an excessively high number of classes”.

In the latest publication (Lanza and Marinescu, 2010) of Marinescu and Lanza, only abso-

lute semantical filters are used. For fuzzy heuristics, deviations from normal values are encoded

into the thresholds. These are based on a study about forty-five JAVA projects, measuring com-

plexity per line, lines of code per method and number of methods per class. Averages and standard

deviations as well as lower and higher margins are computed from this collected data. Assuming

normal distribution, 70% of the values will be in this interval between lower and higher margin.

Very high values are assumed to be 50% higher than the higher margin. This statistic is completed

by universally accepted thresholds like one, few (2-5), short memory cap (7-8) and fractions that

seem natural to humans like a quarter, a half and two thirds.

There are improvements to detection strategies using history information. Ratiu et al. (Ratiu

et al., 2004) improve the detection strategies of Marinescu (Marinescu, 2004), for the God Class

and Data Class design flaws, by applying them to a range of versions of a project. Whenever

a method is added or removed to a class, its version was taken into account. Changes within

methods are not considered. Ratiu et al. compute stability and persistence of a design flaw by

testing the class under inspection for the presence of design flaws for each version. Stability

is the ratio of versions having the tested design flaw, while the version before also exposed the

design flaw. Persistence is the ratio of versions having the design flaw in relation to all changed

versions. They conclude that persistent and stable design flaws are “harmless”. Such design

flaws are part of the system for a long time and are almost refactored. Thus they seem not to

do any harm to the development of the system, which aligns with the idea of irrelevant flaws.

Improving accuracy detection of metric-based techniques in design flaws detection are supported

by the Tuning Machine method (Mihancea and Marinescu, 2005), based on a Genetic Algorithm,

which tries to find automatically the proper threshold values. However, design flaws cannot be

directly measured by software metrics. Consequently metric-based techniques translate a flaw

into measurable code properties which are thought to be related to the flaw. This technique is

insufficient to precisely identify design flaws (Moha et al., 2006).

2.4.4 Usability and Efficient Flaw Detection

Murphy-Hill and Black distinguish between floss refactoring and root canal refactoring

(Murphy-Hill and Black, 2008a). Floss refactoring is characterized by frequent refactorings that
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are interleaved with other changes (e.g. adding a feature). Root canal refactoring are infrequent,

large blocks of refactoring, during which nearly no other changes are made. According to their

research, the majority of refactorings is carried out as floss refactorings. Murphy-Hill and Black

postulate seven habits in order to build usable, highly effective, flaw detectors (Murphy-Hill and

Black, 2008b). These guidelines are backed by an empirical study, an experiment with a ques-

tionnaire. They conclude that programmers value these guidelines and that the guidelines enable

programmers to understand more flaws with greater confidence. Among these guidelines are the

following (Murphy-Hill and Black, 2008b):

• Context-Sensitivity. A flaw detector should first and foremost point out flaws relevant to

the current programming context. Fixing flaws in a context-insensitive manner may be a

premature optimization.

• Availability. Rather than forcing the programmer to frequently go through a series of steps

in order to see if a tool finds any flaws, a flaw detector should make flaw information

available as soon as possible, with little effort on the part of the programmer.

• Scalability. A proliferation of flaws in code should not cause the tool to overload the

programmer with flaw information.

• Relationality. A flaw detection tool should be capable of showing relationships between

code fragments that give rise to flaws.

Mealy et al. conduct a usability study of software refactoring tools (Mealy et al., 2007).

They derive a set of usability guidelines from eleven collections of such guidelines. Further, guide-

lines on the required level of automation are added. Mealy et al. propose nearly full automation

(called level six out of eight levels) for the phases of acquiring and analysis during refactorings.

Within this automation level, the computer selects a way to do the task, executes it automatically

and then informs the human. Some flaws are too fuzzy to be computed. An example is the Specu-

lative Generality flaw that is found in classes that do more or are more flexible than is required by

the users of a system. It is not possible to reason about this “extra flexibility”(Mealy et al., 2007).

Thus they conclude that flaw detection should not be completely automated.

Mealy et al. use the derived set of guidelines to analyze four common refactoring tools.

From the results of this study they infer that work on the provided level of automation in current

tools is needed. Automation of flaw detection and refactoring proposal is required to improve the

usability of such tools (Mealy et al., 2007).
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2.4.5 Tools of detection

A wide range of tools exists that provide static analysis of software systems. Available tools

range from style and bug checks as well as maintainability indices and metric measuring used in

industrial projects to research prototypes to detect flaws..

Checkstyle 1 is a static analysis tool to validate source code conventions. The provided

rules can be configured and the tool can be extended with new, custom defined rules. Additionally

Checkstyle is capable of computing several metrics. All results are presented in a report. The

analysis and reporting are also integrated into Eclipse. The user interface of tool show in Fig. 2.1.

Figure 2.1: Checkstyle tool

The interpretation of violations and metric results is up to the user of Checkstyle. There

is no integration with a refactoring tool, like the refactorings that are part of the Eclipse Java

Development Tools.

FindBugs 2 uses static analysis to detect bugs in Java source code. The analysis is based

on patterns that are often errors. Tool does not detect any design problems nor is it integrated with

refactoring tools. FindBugs program show in Fig. 2.2.

XRadar is a meta-tool. It combines nine different tools to quantify several quality attributes

for design, architecture, maintenance and testing. XRadar is successfully used in an industrial

project to identify problem areas and measure the refactoring progress in a legacy system (Kvam

et al., 2005). The reported process of prioritized refactorings and architectural changes supports

1http://checkstyle.sourceforge.net/ accessed on 29.12.2009
2http://findbugs.sourceforge.net/ accesses on 29.12.2009



36

the conclusion that XRadar fits a root canal refactoring approach.

CodeNose is the prototype developed by Slinger and Moonen (Slinger, 2005). CodeNose

is a plug-in for Eclipse. It detects design problems by traversing abstract syntax trees. Design

problems are inferred with a relational algebra calculator using collected primitive and derived

flaw aspects. CodeNose does not provide any further integration with refactorings of Eclipse Java

Development Tools.

JDeodorant is the application to detect flaws and can automatically refactor selected flaw

instances (Fokaefs et al., 2007). The selection is provided by the user and it starts only upon the

command of the user. The tools is limited to only two flaws. The two flaws supported are Feature

Envy and Type Checks (Fokaefs et al., 2007; Tsantalis et al., 2008). Each flaw is presented in its

own view, listing all detected instances.

Summarizing the current state of tooling in static analysis and especially flaw detection,

all presented tools lack one or several important points. Checkstyle and FindBugs are examin-

ing no design problems. XRadar is a meta-tool and provides no analysis itself. CodeNose and

JDeodorant use Slice-based cohesion metrics to find design problems in each modules, not entire

program. The tool of Bravo et al. (Bravo, 2003) works with Smalltalk and is not available for the

currently more popular Java language. Currently nearly no tool is available to experiment with

Figure 2.2: FindBugs tool
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contexts and evaluate the usage of contexts in an industrial project. Thus for the development of

different contexts and their evaluation, the state of art in flaw detection has to be implemented in

the Cultivate Project. Cultivate provides a stable platform to implement metrics and flaw detectors

within the logic meta-programming paradigm.



CHAPTER III

THE PROPOSED FLAW DETECTION

METHODOLOGY

Based on the idea of “ the environment of design extraction that is able to retrieve not only

the structural information, but also information related to method implementation. The reasoning

of a particular design in that environment is chanced to open up” motivated from (Wuyts, 1998)

and (Mens et al., 2003), a problem of design flaw detection with learned pattern is introduced and

defined in this chapter. Before the proposed flaw detection methodology is proposed, the meta

architecture of detection is discussed firstly. By avoiding false positive problems by using learn-

one-rule algorithm, this approach might help the developers from the false specifying design flaws

and increasing precision of flaws detection.

3.1 An Overview of Detection Architecture

Although useful information can be extracted from reverse engineering modules for lan-

guage such as JAVA, the information extracted is limited to what can be obtained from a structural

analysis of the source code — package, classes, attributes, methods and inheritance relationships.

Such information narrows the scope of design flaw patterns of detection. Also the analysis of

information extracted is defined in language-dependent way. Actually, the required information

for detection contains certain elements and relations, not how they are represented in a particular

language. To step beyond these limitations, it was necessary to provide a design extraction mod-

ule that was able to retrieve not only the structural information, but also information related to

method implementation. This extraction is done according to the Meta Programming paradigm.

This meta programming has been investigated as a technique to support software development

(Mens and Kellens, 2006, 2005; Mens et al., 2003).

Declarative Meta programming (Tourwe and Mens, 2002) is defined as the use of a declar-

ative programming language for writing meta programs. Declarative programming languages are

suitable for writing meta programs because they allow the programmer to focus on what needs to

be achieved rather than how to achieve it. The concept of declarative meta programming is very

simple. A meta program must have access to a representation of its object program or base pro-

gram. More precisely, the language of the object program must be represented in the language of
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the meta program. The mediator interface is a mapping from the symbols of the base language to

the symbols of the meta-language, but this mapping is not simply a translation from one language

to another. The mapping must also enable the meta-language to make statements about structures

of the base language and must also be a quotation mechanism. In this dissertation, Logic Pro-

gramming is used for writing meta program because it is the most suited for meta programs that

perform searching on the program they process and it answers in term of boolean value of the

existence of design flaws.

Figure 3.1: The draft design of description detection

According to the previous concept of Declarative Meta programming, the draft design of

description detection is shown in Fig. 3.1. The draft design of description detection consists of

two levels: the base level and the meta level. In the base level, base program is represented. The

meta program in meta level describes the base program in the base level. This level constitutes a

number of facts and rules of design flaw. The transformation module analyzes and transforms the

syntactical and semantical information of the base program into the meta program between the

base level layer and the meta level layer. The meta-meta program defines constituents to represent

rules, set operators, relationships among rules and properties in meta program. The transformation

uses a general parse tree representation, which enables the use of fine-grained static information.

The transformation module allows both layers to be language-independent. A base program is

represented indirectly by means of a set of logic propositions. These logic propositions are stored

in a logic database and they link between the represented base program and its logic representation

in meta program.

After the draft design is proposed, the meta architecture of description detection is created

according to the detail of the previous draft design of description detection. The meta architecture
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Figure 3.2: The meta architecture of description detection

of description detection shows in Fig. 3.2. The details of the meta architecture consists of the

same as the draft design, two level. The Meta Mediator Interface module (MMI) analyzes and

transforms the syntactical and semantical information of the base program into the meta program

between the base level layer and the meta level layer. The MMI consists of the Domain Model

which determines the object program structures. The domain model possess a set of sixty-five

specific Meta Element Specifications. The Meta Element Specifications (MESs) representation of

a base program gives a concept how the logic-based representation works. The domain model of

meta program defines constituents of MESs to represent rules, set operators, relationships among

rules and properties in meta program (the MESs specification is in Appendix B). The MMI uses a

general parse tree representation for its analyzing process.

3.2 The Proposed Detection Methodology

Although previous works offer ways to specify and to detect design flaws, each work has a

particular benefits and points on a subset of all the steps necessary to define a detection technique

systematically. The processes use to specify and implement the flaw detection algorithms are not

obvious — they are always driven by the service of the underlying detection framework rather

than by systematic study of the flaw descriptions.

In this section, therefore, we describe the detail of detection methodology that subsume all

the steps necessary to define a detection technique. Fig. 3.3 shows the eight steps of the proposed



41

methodology. The following item summarizes its steps:

Figure 3.3: The Proposed Detection Methodology

• Step 1. Building Block Synthesis: Elements of core in domain model of meta program

from design flaw description are identified. Such descriptions form a unified elements of

design concepts of object-oriented.

• Step 2. Concretization: The relation in meta program, which constitutes derived elements,

are combined to specify relation systematically and consistently. They are represented in

meta model of meta program in the form of the formal representation.

• Step 3. Generalization: The learning mechanism extrapolates specific logic rules for flaws

detection. The learner performs the learning mechanism by deductive proof according to

Explanation-Based Learning algorithm.

• Step 4. Procedural Generation: All rules are optimized by reordering literals. The basic

idea is that also first order queries become more efficient to execute if selective literals are

placed first.

• Step 5. Code Analysis: Source code are parsed and formed in Abstract Syntax Tree (AST).

It represents syntactical and semantical information of source code.

• Step 6. Fact Specification: Syntax trees are specified in information facts. They are

defined according to the domain model from step 2.
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• Step 7. Detection: The detection of design flaw is performed on system using the oper-

ational rules from step 4. It returns the list of code constituents (eg. classed, methods)

suspected of having flaws.

• Step 8. Validation: The suspected code constituents are manually validated to verify that

they actually have flaws.

The first and second steps are generic and must be based on a representation set of elements

and relations of object-oriented concepts. Step 5 and 6 are also the same. Step 3 and 4 must be

followed when specifying a new flaw. Step 5-8 are repeatable and must apply on each source code

of system.

We believe the proposed methodology is original because the detection algorithm are not

an ad hoc method, but it is generated using formalization representation that obtained from an

analysis and specification of flaws. A formalization representation benefits the software engineer-

ing quality because they can specify and modify manually the detection rules by using high-level

pertaining to their domain, taking into account the context of the analyzed systems. The context

corresponds to all information related to the characteristics of the system including types (proto-

types, system in development or maintenance, etc.), design choices (related to design heuristics

and principles) and coding standards.

3.3 Detection Methodology in Details

The following subsections describe details of the eight steps of the proposed detection

methodology. Each step is explained by the clear presentation which based on common patterns:

input, output and description of each step.

3.3.1 Step 1: Building Block Synthesis

Input: Concepts of object-oriented principles (Coad and Yourdon, 1991) and descriptions of de-

sign flaws (Fowler, 1999) in the literature.

Output: Building blocks type of elements and basic relations which aggregate together to repre-

sent each design flaw. They are the key components used to build the domain model for object

program in the next step.

Description of the step: The first step deals mainly with identifying and defining sets of elements

and their preliminary relations of such design flaws which belong to object-oriented paradigm. We

call these elements and their relations the building blocks of design flaw (abbreviate - bbs) and

type of elements and their relations the building block types of design flaw (abbreviate - BBs)
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where each bbstype1 ∈ BBstype1.

By the identification of building blocks, we utilize the concept of Domain Analysis (Neigh-

bors, 1984). We do the process performs by analyzing related software systems in a domain to

find their common and variable parts. It is concerned with relations and objects in all systems in

an application area.

According to domain analysis activities, this step performs finding of needed building

blocks from the description of design flaws which fellows object-oriented paradigm. We can

give some definitions of building blocks as:

Definition 3.1 (Building Blocks Type(BBs)): A building block (bbs) is in the set of interesting

building blocks type (BBs) : (∀bb ∈ BBs). They have relations (RBBs) between them which are the

Cartesian Product written as RBBs = BBs1 × BBs2 × ...× BBsn . For example, when we consider

n = 2, the relation of BBs1 and BBs2 is defined as BBs1 × BBs2 = {(bb1,bb2) ∈ R|bb1 ∈ BBs1 ∧

bb2 ∈ BBs2}.

Definition 3.2 (The domain of building blocks type): The domain of building blocks type (BBs)

in this dissertation is considered as components which exist in design flaws (DF) in object-

oriented paradigm (BBs ⊆ design flaws ⊂ object-oriented paradigm).

Definition 3.3 Let σ be a building block (bbs) of design flaw. A building block of σ
′

is a subbuild-

ing block of σ iff:

1. The composition of σ
′

is a subset of the composition of σ.

2. The set of interaction in σ
′

is a subset of the interactions in σ.

Definition 3.4 A function L exists on the decomposition process of the building block, L : BBs→

BBs where σ, σ
′ ∈ BBs, such that L(σ) = σ

′
for every σ and σ

′
. L(σ) 6= σ iff σ is a non-terminal

building block, L(σ) = σ iff σ is a terminal building block.

For each input description of a flaw concept, we extract all building block types including

mainly basic relations of them. These elements and their relations refer to specific integrated

concepts of object-oriented design and implementation which used to describe design flaws. This
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domain analysis process performs in the iterative way. In each iteration, we compare them with

already-found building block type, and add them to the meta space for avoiding duplicated build-

ing block type and relations. Thus, we obtain a compilation of the building block type and rela-

tions that expresses a concise and unified natural entities of design flaw.

For more details, we explain some examples of flaws analysis to discover BBs. We choose

to analyze flaws in their two varying properties — Data Class (pattern-based flaw) and Long

Parameter List (quantitative-based flaw) from code smells (Fowler, 1999). We summarize the

text description of two flaws in Table 3.1.

Table 3.1: Text descriptions of Data Class and Long Parameter List flaws

Data Class : A class has the Data Class flaw if the class has data fields
and the only operations are the getting and setting operations. The exis-
tence of Data Class indicates low quality of data abstraction. It should
avoid classes that passively store data. Classes should contain data and
methods to operate on that data.

Long Parameter List: The more parameters a method has, the more
complex it is. Limit the number of parameters you need in a given
method, or use an object to combine the parameters.

Analysis of the Long Parameter List: In object-oriented paradigm (Coad and Yourdon, 1991),

most of the data which a method needs can be directly obtained from the objects themselves if

they are visible to the method, or they can be derived by making a request on another parameter.

Therefore, parameter lists should keep necessarily short in object-oriented programs. When con-

sidering in long parameter list flaws, these flaw make programs hard to read and difficult to use

and they change a lot when developers need more (or other) data. Making a change to a parameter

list means changing every reference to the method involved. So, avoiding or eliminated this flaws

is necessary. In the description of the Long Parameter List, we identify the bbs and relations of

their structure and behavior with:

• bbs: parameter, method and object.

• relation among bbs: own.

The bbs which involve with this flaw consist of three entities: parameter, method and ob-

ject. Such three bbs are no synonym in each other and type of them are PARAMETER, METHOD

and OBJECT. As the same analysis, a relation of Long Parameter List is own and its BBs is OWN.

We can define the set of BBS and relation:
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BBsLong Parameter List ={{
PARAMETER,METHOD,OBJECT

}
,
{
OWN

}}

Analysis of Data Class: In the data abstraction, all the data and the methods that are rational to

the objects of a class that is been designed need to be a part of the class (Coad and Yourdon, 1991;

Isner, 1982). All unnecessary details should not be considered. The Data Class flaw disobeys of

this rule. A Data Class is loosely defined as a data holder without behavior. Any corrections of this

flaw consists of adding behavior to the data class (Fowler, 1999). In the description of the Data

Class of Table 3.1, we identify the bbs and their relation. We obtain the following information

for the Data Class:

• bbs: class, data, operation, getting operation and setting operation

• relation among bbs: store, contain and operate

The bbs which involve with Data Class flaw consist of three entities: class, data, opera-

tion, getting operation and setting operation. Such three bbs are synonym – operation, getting

operation and setting operation – in each other and common type of them is method in object

oriented paradigm. As the same in relation, store and contain are the synonym in such type –

OWN. When analysis is deeply processed in object-oriented point, this operation relation of class

is performed by method and attribute in such class. ACCESSFIELD BBs is proposed to describe

this relation type. We can define the set of BBs and their relations of Data Class :

BBsData Class =
{{

CLASS,ATTRIBUTE,METHOD
}
,
{
ACCESSFIELD,OWN

}}

Related BBs: All design flaws are analyzed (we analyze twenty flaws from (Fowler, 1999) in this

work). For the strategy of proposed detection, we consider the detection domain in a set of eight

BBs of object program to define meta program. The set of all BBs are defined by a direct product

:
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ObjectProgramOfBBs

p : PPACKAGE

c : PCLASS

o : POBJECT

a : PATTRIBUTE

m : PMETHOD

s : PSTATEMENT

RBBs : RelationOfBuildingBlockType

RBBs = (p× c× o× a× m× s)

where the given relation types (RBBs) which describes the set of all BBs relations and its

values, is a set of :

[OWN,ISA,EXTEND,IMPLEMENT,INVOCATION,ACCESSFIELD,ASSIGN,

EXEC]

3.3.2 Step 2: Concretization

Input : Related BBs for specificizing details.

Output : Semantic domain model follow to object-oriented semantic. It is the proposed domain

model of problems used to describe design flaws in object program.

Description: In this step, the semantic base of subset of object-oriented paradigm is considered.

We consider sematic of derived BBs in previous step for creating the domain model of object

program structures. We formalize the specification of domain model which used to describe

design flaws of object program. The formal notation like Z (Spivey, 1992) is used to express

the semantic of object program structure. We choose this notation because of its maturity as a

formal specification notation and its mathematical concepts that are well-known and understood

(set theory and predicate calculus). Furthermore, the schema constructs of formal notation can be

directly linked to the concepts of object-oriented, especially classes and its structure, providing a

clear link between object-oriented constructs and their formally expressed interpretations.

3.3.2.1 A concretization of BBs

Abstract Model: The first step of formalizing the specification, we formalize the descrip-

tion of BBs and its abstract syntax. Firstly, a class is defined as a descriptor of a set of objects

with specific properties (according to each BBs of {CLASS, ATTRIBUTE, METHOD} and its
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relation of {OWN, ISA} which is analyzed in step 3.3.1). in terms of structure, behavior and

relationships.

Therefore a considered class in which a name, attributes and methods are stated. Attributes

have names and types. Methods have names, return types and parameters. Each parameter of an

operation has a name and a given type.

[ClassName, Name, Type, MethodStatements]

Modifier ::= PUBLIC | PROTECTED | PRIVATE

Char ::= CLASS | INTERFACE | ABSTRACT

ClassDecl

modifier = Modifier

char = Char

extend : ClassName

attribute : FName

method : FName

attrType : Name 7→ Type

attrModifier = Modifier

methBlock : Name 7→ MethodBlock

attribute = dom attrtype

method = dom methBlock
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MethodBlock

parameter : FName

return : FName

owner = ClassDecl

modifier = Modifier

paraType = Name 7→ Type

paraValue = Name 7→ ParaValue

returnType = Name 7→ Type

returnValue = Name 7→ ReturnValue

statement = FMethodStatements

parameter = dom paraType

parameter = dom paraValue

return = dom returnType

return = dom returnValue

Class names should be unique in the enclosing name space. Thus, the set of classes is

defined as a partial function from ClassName to ClassDecl.

Class

classes : ClassName 7→ ClassDecl

At any point in time, classes in the system contain a set of uniquely named classes.

ClassModel

classes : FClass

∀ c1, c2 : classes | c1 6= c2 •

c1.ClassName 6= c2.ClassName

The constraint of the schema states that each class must have a unique name.

Concrete Model: In order to give meaning to classes, value must be assigned. In object-

oriented concepts, a class is viewed as defining a set of possible object instances. This is the
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system model that we adapt for our formalization.

Like detail of class, the given type ObjectName, Name and Type describe the set of all

object identities and its values.

[ObjectName, Name, Type, ObjectValue]

ObjectDecl

owner : ClassName

. . .

attrvalue : Name 7→ ObjectValue

. . .

[Declarations on an object]

attributes = dom attrvalue

. . .

[Predicates on an object]

Object names instantiated from such a class should be unique in the enclosing name space.

Thus, the set of object is defined as a partial function from ObjectName to ObjectDecl.

Object

classes : ObjectName 7→ ObjectDecl

At any point in time, the meaning of object-oriented concepts is a finite set of unique object

instances.

ObjectModel

objects : FObject

∀ o1, o2 : objects | o1 6= o2 •

o1.ObjectName 6= c2.ObjectName
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3.3.2.2 Meaning functions of RBBs relations

The relation of BBs is described by the meaning of relation as mapping from one BBs

to another BBs. For example, the meaning of classes as a mapping from classes to its object

instances. It is assumed that there is a relationship between attribute and their values.

| value of : ObjectValue 7→ Nameattribute

The following function describes the meaning of a class. It maps a class to a set of possible

combinations of object instances (Objects), whose attribute values conform to that permitted by

the class. By conforming, it is meant that the values of each object’s attributes conform to those

permitted by the attribute of the owing class.

MCtoO : Class 7→ PObject

∀ c : Class •

MCtoO(c) ⊆ {o : Object |

o.owner = c.name∧

o.attributes =

{a : c.attributes; v : AttrLink |

value of (v) = a}}

The structure relations of BBs are relations among BBs. For example, the meaning of a

class invocates another class as the structure of invocation relation among BBs.
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AccessorMethod

ClassModel

mselector : MethodSelector

aselector : InstanceVariable

∀ c1 : classes∧

c1.method = mselector ∧

c1.attribute = aselector •

returnValue ◦ methBlock(c1.method) =

c1.attribute∧

accessField(c1.attribute) ⊆

methBlock(c1.method).statement

Figure 3.4: UML Model for the notation of the proposed domain model

The notation required for the rest of the BBs and RBBs of domain model is graphically

illustrated in the UML class diagram in Fig.3.4. The domain model represents the BBs and RBBs

which are necessary in order to identify design flaws for given source code programs.
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3.3.3 Step 3: Generalization

Input : Source code examples of a particular design flaw and design principles and heuristics in

form of logic program which follow to domain model.

Output : Logic rules derived from learning mechanism for detecting a particular design flaw

Description: The main processes of this step involve with the learning mechanism to extrapolate

specific logic rules for flaws detection. The deductive learning algorithm of Explanation-Based

Learning is used for learning mechanism in this step.

The generalization processes in this step for extrapolating design flaw rules shows in Fig.

3.5. We consider explanation-based learning from domain theories that are perfect, that is, do-

main theories that are correct and complete. To show how to learn inferenced rules and detect

design flaws by such rules, the proposed methodology performs the following step-by-step. The

generalization processes are based on PROLOG-EBG learning algorithm. A known design flaws,

Data Class, is chosen to concretely illustrate here for better understanding of all processes of

Generalization (the detailed rest of all design flaws is in Appendix A).

Step 3 : Generalization
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Figure 3.5: Generalization Process of Step 3: Generalization

3.3.3.1 Process 3.1: Arrangement

Input:

1. Domain theories which are derived from design principles and heuristics (Coad and Your-

don, 1991; Riel, 1996).

2. Examples of design flaw.

3. Target concepts of design flaw that are used to be learned.
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4. Semantic domain model from Step 3.3.2 .

All of information inputs are in the form of predicate calculus and Horn clause (declarative form).

Output: Related information of domain theories and a target concept which are sufficient to gen-

erate a detection rule from a specific training example in each learning cycle for generating a logic

detection rule.

Description of Process 3.1: The first step deals mainly with the arrangement of domain theories

and a target concept to be learned for a training example in each learning cycle for generating a

logic detection rule (Process 3.1-3.4). We begin with a training example of FilterMap class

which is a Data Class flaw – shown in JAVA source code — in Fig. 3.6. In this source code

example, we provide the single training object, FilterMap class which is taken from Tomcat’s

source code (org.apache.catalina.deploy.FilterMap class), which is a known pos-

itive example of a Data Class.

Figure 3.6: Class FilterMap

Then, domain theories related to a training example of FilterMap Data Class flaw are

defined. We define such information according to principles and heuristics of object-oriented

paradigm (Coad and Yourdon, 1991). For our purposes in flaw detection, domain theories are

any set of prior beliefs about the object-oriented design and implementation principles and an

inference mechanism is any procedure that suggests new beliefs by combining existing beliefs.

The elements and their relations of such domain theory are defined that based on syntax and

semantic of domain model. We consider learning concept descriptors for a simplified Data Class.

A suitable target concept and domain theories (formed in Horn clause) for this example of Data

Class are given in Table 3.2.
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3.3.3.2 Process 3.2: Explanation

Input: Domain theories and a target concept which are related to a training example in each

learning cycle for generating a detection logic rule.

Output: A explanation h in the hypothesis space which h (h ∈ H) is consistent with domain

theory B and B 0 ¬ h.

Description of Process 3.2: Given the information in the Process 3.1, this process is to determine

a generalization of the training example which is a sufficient concept definition for the target

concept. This process provides its justification: constructing an explanation (a proof tree) in terms

of the domain theory that proves how the training example satisfies the target concept definition.

Then a set of sufficient conditions under which the explanation structure holds is determined. This

determination is accomplished by regressing the target concept through the explanation structure.

To see more concretely how the Explanation-Based Learning approach works, consider learning

the concept of Data Class in Fig. 3.7.

Table 3.2: Domain theories and a target concept of the FilterMap Data Class

Target concepts and domain theory:
R1 : ∀x c l a s s ( x ) ∧ ¬not−d a t a c l a s s ( x ) ⇒ d a t a c l a s s ( x )
R2 : ∀x ∀y not−d a t a c l a s s ( y ) ∧ ¬ i s ( x ,y ) ⇒
¬not−d a t a c l a s s ( x )

R3 : ∀x ∀y hasMethod ( x,y ) ∧ method−o p e r a t i o n ( y ) ⇒
not−d a t a c l a s s ( x )

R4 : ∀x ¬muta to r−method ( x ) ∧ ¬ a c c e s s o r−method ( x ) ⇒
method−o p e r a t i o n ( x )

R5 : ∀x ∀y a c c e s s o r−method ( y ) ∧ ¬ i s ( x ,y ) ⇒
¬ a c c e s s o r−method ( x ) )

R6 : ∀x ∀y muta to r−method ( y ) ∧ ¬ i s ( x ,y ) ⇒
¬muta to r−method ( x ) )

R7 : ∀x ∀y ∀z has−a t t r i b u t e ( z,y ) ∧ has−method ( z,x ) ∧
method−r e t u r n t y p e ( x,[VOID,NULL] ) ∧
method−p a r a m e t e r ( x , [ { y , } ] ) ⇒ muta to r−method ( x )

R8 : ∀x ∀y ∀z has−a t t r i b u t e ( z , y ) ∧ has−method ( z , x ) ∧
method−r e t u r n t y p e ( x , [ y , ] ) ∧
method−p a r a m e t e r ( x , [ {NULL,NULL} ] ) ⇒
a c c e s s o r−method ( x )

.
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dataClass(x1)

⌐(notDataClass(FilterMap))

dataClass(FilterMap)

⌐(notDataClass(x1)) Class(x1)

Class(FilterMap)

has-Method(x2,y1) method-operation(y1)

method-operation(M1)has-Method(C1,M1)

⌐mutator-method(y1) ⌐accessor-method(y1)

notDataClass(C1)

notDataClass(x2)

⌐mutator-method(setFilterName)

mutator-method(y2)

mutator-method(setFilterName)

⌐accessor-method(getFilterName)

accessor-method(y3)

accessor-method(getFilterName)

has-method(x1,y2) has-attribute(x1,z1)

return-

type(y2,[VOID,NULL]) parameter(y2,[z1,_])

has-method(FilterMap,setFilterName) has-attribute(FilterMap,

filterName)

return-type(setFilterName,

[VOID,NULL])

parameter(setFilterName,

{[filterName,_]})

has-method(x1,y3) has-attribute(x1,z1)
return-type(y3,[z1,_]) parameter(y3,

[{NULL,NULL}])

has-method(FilterMap, 

getFilterName)

has-attribute(FilterMap 

,filterName)

return-type(getFilterName

,[filterName],_)
parameter(getFilterName,

[{NULL,NULL}])

⌐Is(y1,setFilterName)

⌐Is(y1,y2)  

⌐Is(FilterMap,x2)

⌐Is(x1,x2)  

⌐Is(y1,getFilterName)

⌐Is(y1,y3)  

Figure 3.7: A explanation of FilterMap class (a Data Class flaw)

Given FilterMap class as a positive example, EBL system attempts to construct an ex-

planation for why FilterMap class is indeed a Data Class flaw. From Fig. 3.7, arrows denote the

contribution of each domain theory rule to the explanation. They point from a rule’s antecedents

to its consequences. For example from a rule in table 3.2 which shows in Fig. 3.7, rule R8 allows

the consequence property accessMethod to be concluded from the antecedents hasMethod,

hasAttribute, returnType and parameter. Each pair of literals (nonitalic font) and

generalized literals (italic font) between each step (dashed lines) in the explanation show expres-

sions across rules that must match for the explanation to hold. These are enforced by unifying the

connected expression.

3.3.3.3 Process 3.3: Analyzing

Input: An explanation of a training example.

Output: A logic detection rule from an explanation.

Description of Process 3.3 : The explanation constructed by the previous process is generalized

with a rule that is the most general relevant to the target concept. EBL computes the most general

rule that can be justified by the explanation, by computing the weakest preimage of the expla-

nation. The weakest preimage of the target concept is computed by a general procedure called

regression (Waldinger, 1977). The regression procedure operates on a domain theory represented
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Table 3.3: An example for regressing a set of literals given by Frontier through
methodOperation Rule

REGRESS(Frontier, Rule, Literal,θhi) where
Frontier = Class(x1), ¬ Is(x1,x2), hasMethod(x2,y1), methodOperation(y1)
Rule = methodOperation(z)←¬ mutatorMethod (z) ∧ ¬ accessorMethod(z)
Literal = methodOpearation(y1)
σhi = [z/SetFilterName]
head← methodOperation(z)
body←¬ mutatorMethod (z) ∧ ¬ accessorMethod(z)
σhl ← [z/y1] ,where σli = [y1/SetFilterName]
Return Class(x1), ¬ Is(x1,x2), hasMethod(x2,y1),¬ mutatorMethod (y1),
¬ accessorMethod(y1)

Table 3.4: The final rule of FilterMap Data Class

da t aCLass (x1) ← C l a s s ( x1 ) ∧ ¬ I s ( x1, x2 ) ∧
hasMethod(x2, y1) ∧ ¬ I s ( y1, y2 ) ∧ hasMethod ( x1, y2 ) ∧
h a s A t t r i b u t e ( x1, z1 ) ∧ r e t u r n T y p e ( y2 , [ VOID ,NULL] ) ∧
p a r a m e t e r ( y2, [z1 , ] ) ∧ ¬ I s ( y1, y3 ) ∧
hasMethod ( x1, y3 ) ∧ h a s A t t r i b u t e ( x1, z1 ) ∧
r e t u r n T y p e ( y3, [z1 , ] ) ∧ p a r a m e t e r ( y3 , [{NULL,NULL} ] )

.

by an arbitrary set of Horn clause. It works iteratively backward through the explanation, first

computing the weakest preimage of the target concept with respect to the final proof step in the

explanation, then computing the weakest of the resulting expressions with respect to the preceding

step, and so on. The procedure terminates when it has iterated over all steps in the explanation.

The illustrated example of accessMethod rule is shown in Table 3.3. We use the negation-as-

failure approach to detect Data Class flaw. The final rule for the current example is illustrated in

Table 3.4.

3.3.3.4 Process 3.4: Refinement

Input: A logic rule from the proof tree.

Output: New formulated rules.

Description of Process 3.4: In this step, logic rules is refined by generalizing rules in accordance

with a logic rule from the proof tree. Rules are pruned some literals for making generalization. At
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each learning cycle for generating a logic detection rule (Process 3.1-3.4), the sequential covering

algorithm of EBL learning algorithm picks a new positive example that is not yet covered by the

current Horn clause rules, explains the new example, and formulates a new rule according to the

learning cycle. When we provide more examples learning, the rule of Data Class flaw is refined

to be more general that the attribute of mutator method and accessor method may not be the same

attribute.

3.3.4 Step 4: Procedure Generation

Input : Logic rules from EBL leaning mechanism

Output : Operational logic rules for detecting design flaws

Description: Derived explanation trees from the EBL learning in previous step gives many rules

in each design flaw. The query transformation is introduced in this step that optimizes first order

queries by reordering literals. The basic idea is that also first order queries become more efficient

to execute if selective literals are placed first.

We start by listing a number of requirements for a reordering transformation for first order

queries in the context of:

• R1 (Correctness) The reordering transformation should be correct, i.e. the transformed

query should succeed (fail) for the same examples as the original query succeeds (fails).

• R2 (Disagreement) The reordering transformation should minimize conflicts among liter-

als when conflicts exist. The literal that most clearly reflects to such design flaw will be

chosen in the initial order in query literals.

If all predicates are defined by sets of facts, then the order of the literals does not influence

the result of the query (cf. the switching lemma (Lloyd, 1993)) and the correctness requirement

(R1) is met. With disagreement requirement (R2), literals are inspected manually to classify level

of conflicts. For example, two rules of Data Class are derived from learning mechanism – (1):

Class with accessor and mutator method, (2): Class contains public fields. The rule (1) is chosen

in first order in query because it reflects to flaw more than rule(2) can.

3.3.5 Step 5: Code Analysis

Input : Object-oriented source code which is used detect design flaws.

Output : Syntactical and semantical information of source code.

Description: Source code are parsed and formed in Abstract Syntax Tree (AST). It represents
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syntactical and semantical information of source code. The representation of source code as a

tree of nodes representing constants or variables (leave node) and operators or statements (inner

nodes). For each AST node type, there is a separate MESs (Meta Element Specifications) type.

Fig. 3.8 (middle part) shows an example of parsing source code in AST.

Logic Facts in Meta LevelSource Code Abstract Syntax Tree

public class ClassName {

   int methodName(int){

      methodName(i);

   }

}

class

ClassName ‘public’method

name
modifier

methodName

own

block

parameter int

call

methodName ‘i’

int ‘i’

name
own

own
parameter type

member

name arg

type
name

class(1,’ClassName’)

   modifier(1,’public’)

method(2,1,’methodName’,[9],’void’)

   parameter(9,2,’int’,’i’)

   block(10,2,[12])

      call(12,10,this,’methodName’,[13],2)

         ident(13,12,’i’,9)

Step 5: Code Analysis Step 6: Fact Specification

Figure 3.8: Step 5: Code Analysis and Step 6: Fact Specification

3.3.6 Step 6: Fact Specification

Input : Abstract Syntax Tree that described syntactical and semantical information of source code

Output : Logic facts which belong to domain model

Description: In this step, Abstract Syntax Tree which nodes representing constants or variables

(leave nodes) and operators or statements (inner nodes) is transformed to logic facts. This trans-

formation accords to domain model that is specified in Step 2. The argument in predicate calculus

is represented by leave node and predicate part is represented by inner nodes of AST respectively.

Fig. 3.8 (right part) shows an example of parsing AST into logic facts. The number in each MESs

is used to represent relation among MESs.

3.3.7 Step 7: Detection

Input : Logic facts and optimized logic rules

Output : Results of the detection in each flaw

Description: The detection of design flaw happens in this step. The detection performs in declar-

ative programming by using a backward chaining search as performed by PROLOG. Prolog-EBG

approach halts once it finds the first valid proof.
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3.3.8 Step 8: Validation

Input : Results of the detection

Output : Accuracy rate of the detection of the proposed methodlogy

Description: The results of the proposed detection methodology by analyzing the suspicious

classes in the context of the complete model of the system and its environment. The validation

is inherently a manual task. Therefore, we apply the detection of a few design flaws in different

behavioral types.

We use the validation measure by using the measures of precision and recall, where preci-

sion assesses the number of true identified flaws, while recall assesses the number of true smells

missed by the detection. The computation of precision and recall is performed using independent

results obtained manually because only humans can assess whether a suspicious class is indeed

a flaw or false positive depends on the specifications and the context and characteristics of the

system.

In the next chapter, the experiment to validate the proposed detection methodology is con-

ducted. A few case study is used to validate the proposed detection methodology. The discussion

is also described in a few ways.



CHAPTER IV

EVALUATION AND DISCUSSION

In the previous chapter we describe a proposed detection methodology for detecting design

flaws. We also introduce an example by showing that one of the major flaws, Data Class, for

the potential detection process of the meta level of declarative meta programming, Although the

specification of the proposed methodology is specified from high-level text description of each

design flaw, detection rules are low level detection enough to capture the design aspects that are

relevant for evaluating and improving the quality of object-oriented design. We introduce the

detection methodology which consists of eight main steps as a mechanism for detecting design

flaws systematically. At first, we define the assembly of building block types to describe design

flaws in object-oriented scheme. The next step is to define proper relations of such building block

types for creating the domain model. This model is domain-specific model used to describe the

detection domain of the proposed detection methodology. For this purpose we define a logic rule

suite of detection methodology that informally addresses a set of well-known design problems

by proof learning of Explanation-Based Learning. The rules from learning mechanism help us

to bridge the gap between pattern-based and quantitative-based design flaws concerning object-

oriented design.

In this chapter we evaluate the practical applicability of the entire approach. For this pur-

pose we design a real-world experiment, implement an adequate prototype and apply the previ-

ously described methods and techniques.

The chapter begins with the validation process with a presentation of the entire case study

setup (Section 4.1). In this context, we validate our approach over three case studies with dif-

ferent characteristics. CommonCLI v1.0, JUNIT v1.3.6 and GANTTPROJECT v1.10.2

are the applications used for reasoning about code. The experiments consist of detecting the

design flaw on the cases, analyzing the most interesting results and checking whether the pro-

posed detection are successful or not (Section 4.2). These results also led to discussions proposed

methodology on advantages and disadvantages of the proposed detection methodology (Section

4.3). The treat of validity is also discussed in this section.
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4.1 The validation of the proposed methodology

The prototype model is implemented for the proposed design flaws detection. We use

Eclipse v3.6 HERIOS, Prolog Development Tools v0.2.3 and SWI-prolog

v5.8.3 for implementing this prototype. To perform experiments, we select three different

applications on which we detect design flaws using the prototype.

CommonCLI: CommonCLI v1.0 is the Apache Commons CLI library provides an API for

parsing command line options passed to programs. It contains 18 classes with 4132 lines

of code.

JUNIT: JUNIT v1.3.6 , the open source system, is a testing framework for JAVA which

performs automated testing. It contains 111 classes with over 5000 lines of code. JUNIT is

chosen as a control system on our experiment that, as it is respected in the field of software

development and it has a large user base, it is likely to be well-designed. The role of the

control system is to primarily check for the presence of false-positives.

GANTTPROJECT: GANTTPROJECT v1.10.2 is a project management tool used to plan

projects with Gantt charts. It contains 21,267 lines of code, 188 classes and 41 interfaces.

We seek in the following to obtain a precision which may close to 100% because we aim

that the proposed methodology is a new approach which can detect flaws and correct them in

automated manner. All candidates can be corrected automatically without formal technical review

with low false positive rates. It means that enormous time and cost are saved. Moreover, we can

ignore the uncertain experiences of experts that perform reviewing process.

4.1.1 Validation Process

First, we build models of the analyzed software systems. These models – a set of logic

rules – of each flaw are obtained by the learning algorithm. Then, we apply the generated detection

algorithms on the fact model of the software system and obtain all suspicious code that potentially

have flaws. The detail of suspicious components and their positions are return in a document file.

We validate the results of detection approach by analyzing the derived suspicious components in

the context of the complete view of such software system and its environment. The validation is

inherently a manual task. Therefore, we choose to apply the detection of the twenty design flaws

on three case studies.
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We recast the validation in the domain of classification context and use the measures of

three criterions – Precision, Recall and Specificity (Olson and Delen, 2008).

We use the validation measure which are the precision rate to assess the number of true

identified flaws, and use the recall rate to assess the number of true flaws missed by the detection.

Two such measures are shown in the equations (4.1) and (4.2).

Precision =
true positive

true positive + false positive
(4.1)

Recall =
true positive

true positive + false negative
(4.2)

Additionally, the proposed detection methodology aims to derive the high precision. There-

fore specificity rate is also proposed to use for validation in the methodology. This rate is shown

in equation (4.3).

Specificity =
true positive

true nagative + false positive
(4.3)

The computation of three criterions is performed using independent results obtained manu-

ally because only the review process can assess whether a suspicious component is indeed a flaw

or a false positive. It depends on the specifications and the context and characteristics of such

software system. We show the result according to software validated by the prototype model.

Next section, results from three experiments are shown.

4.2 Case Studies

The manual analysis of three software case studies is performed by two independent grad-

uate SE students with a known expertise in object-oriented design and coding and design flaws.

Each time a doubt on a candidate component arises, two students consult books as references in

deciding by consensus whether or not this class is actually a flaw.

Three case studies are set up in different types of software system. The detail of each case

study can be described as the following.
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• Case I : CommonCLI. CommonCLI is an small application which contains 18 classes.

The detection of all design flaws is shown in this case study.

• Case II : JUNIT : JUNIT is a medium size of software which contains 111 classes. The

detection of all design flaws is considered with this case study. We want to know the

difference of results detection between the medium case study and the a small cast study

(Case I). With this case study, the evaluation of true negative detection is also performed.

• Case III : GANTTPROJECT : The study of the design flaws detection between the proposed

approach and another approach in GANTTPROJECT is proposed in this case study.

4.2.1 Case I : CommonCLI

In this case study, all flaws are examined by the proposed detection approach. The evalua-

tion of precision detection of CommonCLI is considered.

We report results of design flaws detection of CommonCLI in three aspects. First, we report

the number of flaws which are detected by the proposed detection methodology. Second, the

numbers of detected flaws which are actual flaws. The last is a precision rate of each design flaw

detection. The results are reported in groups which follow the Mäntylä’s taxonomy (Mäntylä et al.,

2003) as shown in Table 4.1, 4.2, 4.3, 4.4 and 4.5.

One Large Class, one Primitive Obsession and one Data Clump design flaws are detected

as the results shown in the Table 4.1. The result shown in 100% precision with these three flaws

detections. There are no Large Class and Long Parameter flaw detected in the Bloaters group.

One Switch Statements, one Temporary Field and one Refused Bequest design flaw are

detected as the results shown in Table 4.2. The result is 100% precision with these three flaws

detections. There are no Alternative Classes with Different Interfaces flaw detected in The Object-

Orientation Abusers group.

One Divergent Change design flaw is detected as the results shown in Table 4.3. The result

is 100% precision with this flaw detection. There are no Shotgun Surgery and Parallel Inheritance

Hierarchies flaw detected in The Change Preventers group.

Five Lazy Class flaws and two Dead Code are detected as the results shown in Table 4.4.

The result is 100% precision with these flaw detections. There are no Data Class and Duplicate

Code flaw detected in The Dispensables group.
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Table 4.1: The result of Bloaters flaw detection in CommonCLI v1.0

Design flaw Number flaws of
detection

Number flaws of
true detection

Precision of
detection (%)

Long Method 0 0 N/A
Large Class 1 1 100.00
Primitive Obsession 1 1 100.00
Long Parameter List 0 0 N/A
Data Clump 1 1 100.00

Table 4.2: The result of The Object-Orientation Abusers flaw detection in CommonCLI
v1.0

Design flaw Number flaws of
detection

Number flaws of
true detection

Precision of
detection (%)

Switch Statements 1 1 100.00
Temporary Field 1 1 100.00
Refused Bequest 1 1 100.00
Alternative Classes with
Different Interfaces 00 00 N/A

One Message Chains flaw is detected as the results shown in Table 4.5. The result is 100%

precision with this flaw detection. There are no Feature Envy, Inappropriate Intimacy and Middle

flaw detected in The Couplers group.

Table 4.3: The result of The Change Preventers flaw detection in CommonCLI v1.0

Design flaw Number flaws of
detection

Number flaws of
true detection

Precision of
detection (%)

Divergent Change 1 1 100.00
Shotgun Surgery 0 0 N/A
Parallel Inheritance Hi-
erarchies 0 0 N/A

4.2.2 Case II : JUNIT

In this case study, all flaws detection study of the proposed detection approach with JUNIT

is proposed. the evaluation of precision detection of JUNIT is considered.

We report results of design flaws detection of JUNIT in three aspects as the same as result

reports in Case I. The results show in Table 4.6, 4.7, 4.8, 4.9 and 4.10.

Three Long Method, ten Large Class, eight Primitive Obsession, five Long Parameter List
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Table 4.4: The result of The Dispensables flaw detection in CommonCLI v1.0

Design flaw Number flaws of
detection

Number flaws of
true detection

Precision of
detection (%)

Lazy Class 5 5 100.00
Data Class 0 0 N/A
Duplicate Code 0 0 N/A
Dead Code 2 2 100.00

Table 4.5: The result of The Couplers detection in CommonCLI v1.0

Design flaw Number flaws of
detection

Number flaws of
true detection

Precision of
detection (%)

Feature Envy 0 0 N/A
Inappropriate Intimacy 0 0 N/A
Message Chains 1 1 100.00
Middle Man 0 0 N/A

and two Data Clump design flaw are detected as the results shown in Table 4.6. The result is

100% precision with Long Method and Primitive Obsession, 83.33% precision with Large Class

and estimated 60% precision with Long Parameter List and Data Clump flaw.

One Switch Statements, fourteen Refused Bequest and forty-five Alternative Classes with

Different Interfaces flaw design are detected as the results shown in Table 4.7. The result is 100%

precision with these three flaws detections. There are no Temporary Field flaw detected in The

Object-Orientation Abusers group.

Twenty-seven Divergent Change and twenty-two Shotgun Surgery design flaw are detected

as the results shown in Table 4.8. The result is 100% precision with both flaw detection. There

are no Parallel Inheritance Hierarchies flaw detected in The Change Preventers group.

Seven Lazy Class , forty-five Duplicated Code and forty-five Dead Code are detected as the

results shown in Table 4.9. The result is 100% precision with Duplicated Code and Dead Code

detections and 87.50% precision with Lazy Class detection.

Thirty-eight Feature Envy, one Message Chains and one Middle Man flaw are detected as

the results shown in Table 4.9. The result is 100% precision with Message Chains and Middle Man

flaw detection and 77.50% precision with Feature Envy flaw detection. There is no Inappropriate

Intimacy flaw detected in The Couplers group.
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Table 4.6: The result of Bloaters flaw detection in JUNIT v1.3.6

Design flaw Number flaws of
detection

Number flaws of
true detection

Precision of
detection (%)

Long Method 3 3 100.00
Large Class 10 12 83.33
Primitive Obsession 8 8 100.00
Long Parameter List 5 8 62.50
Data Clump 2 3 66.66

Table 4.7: The result of The Object-Orientation Abusers flaw detection in JUNIT
v1.3.6

Design flaw Number flaws of
detection

Number flaws of
true detection

Precision of
detection (%)

Switch Statements 1 1 100.00
Temporary Field 0 0 N/A
Refused Bequest 14 14 100.00
Alternative Classes with
Different Interfaces 45 45 100.00

Because the high precision is desired for the proposed approach, the true negative rate (also

called Specificity) has to be validated in this case study. The true negative rate shows the ability of

classification algorithm can classify the examples which are not the target of such classification.

The evaluation of true negative and false positive rate are performed as shown in Table 4.11.

The specificity rate is proposed to detect sixty-three true negatives in JUNIT. The result shows

100% of precision rate to detect true negative flaws. While compared with three metrics-based

approaches, the proposed approach presents the highest precision rate – 100% of the proposed

approach, 98.41% with the metric approach III and 96.82% with the metric approach I and II.

4.2.3 Case III : GANTTPROJECT

The evaluation of precision rate and recall rate of the detection are considered in this case

study. The source code of GANTTPROJECTV1.10.2 application is chosen. Large Class, Lazy

Class, Long Method, Long Parameter List and Refused Parent Bequest design flaws are explored

to indicate precision and recall rate with this application.

Table 4.12 reports detection results of the proposed approach in GANTTPROJECT. It re-

ports numbers of true positive flaws, numbers of suspicious flaws, precisions and recalls. We

compare our detection methodology with the novel literature (Moha and Guéhéneuc, 2007). The

precision of our results range from 78.37% to 100% and recalls range from 44.44% to 95.12%.
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Table 4.8: The result of The Change Preventers detection in JUNIT v1.3.6

Design flaw Number flaws of
detection

Number flaws of
true detection

Precision of
detection (%)

Divergent Change 27 27 100.00
Shotgun Surgery 22 22 100.00
Parallel Inheritance Hi-
erarchies 0 0 N/A

Table 4.9: The result of The Dispensables flaw detection in JUNIT v1.3.6

Design flaw Number flaws of
detection

Number flaws of
true detection

Precision of
detection (%)

Lazy Class 7 8 87.50
Data Class 0 0 N/A
Duplicate Code 45 45 100.00
Dead Code 45 45 100.00

Fig. 4.1 and Fig. 4.2 show graphical representations of precision rate and recall rate (Compare

with Metric-Based Approach) of design flaws in GANTTPROJECTV1.10.2 respectively.

Figure 4.1: The precision rate of design flaws detection in GANTTPROJECTV1.10.2
(Compare with Metric-Based Approach).

4.3 Result discussion

In this section, the discussion of three case studies is detailed. The interesting issues from

the results of the proposed detection are also indicated.
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Table 4.10: The result of The Couplers flaw detection in JUNIT v1.3.6

Design flaw Number flaws of
detection

Number flaws of
true detection

Precision of
detection (%)

Feature Envy 38 49 77.50
Inappropriate Intimacy 0 0 N/A
Message Chains 1 1 100.00
Middle Man 10 10 100.00

Figure 4.2: The recall rate of design flaws detection in GANTTPROJECTV1.10.2
(Compare with Metric-Based Approach).

4.3.1 Result discussion of Case I

The summary of precision rate of CommonCLI is shown in Fig. 4.3. The overall result

reaches the excellent detection level with CommonCLI source code. All groups of flaw (Flaws

of Bloaters, Object-oriented Abusers,Change Preventers, The Dispensable and The Couplers) can

be detected. Although, for example, it has only one Switch Statement flaw that has parameter

numberOfArgs in class Option, the proposed approach can detect it correctly. As well as class

HelpFormatter which contains Primitive Obsession flaw is detected with the proposed approach.

4.3.2 Result discussion of Case II

The summary of precision rate of JUNIT is shown in Fig. 4.4. The overall result still

indicates a good detection level in JUNIT source code except flaws of Bloaters group and the

Feature Envy flaw. The precision of the proposed methodology ranges between 87.5% and 100%

(not including flaws of Bloaters group and the Feature Envy flaw). At this point, we find that
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Table 4.11: Specificity and its false positive rate of Data Class detection with other detection techniques in JUNIT v1.3.6

Properties A metric approach I A metric approach II A metric approach III The proposed methodology
(WOC, NOPA and NOAM) (WOC and NOPA) (NOPA and NOAM)

Number of known true negatives 63 63 63 63
Numbers of detected as true negatives 61 61 62 63
Specificity rate(%) 96.82 96.82 98.41 100.00
False positive rate(%) 3.17 3.17 1.58 0.00
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Table 4.12: Precision and recall of design flaws in GANTTPROJECTV1.10.2 (Compare with Metric-Based Approach)

Design Flaw Numbers of known true positives Number of detected flaw Precision Recall
Large Class
Metric approach 9(4.79%) 13(6.91%) 69.23 100.00
Our Approach 4(2.12)% 100 44.44
Lazy Class
Metric approach 41(21.81%) 104(55.32%) 34.61 87.80
Our Approach 39(20.74)% 84.61 95.12
Long Method
Metric approach 45(23.94%) 22(11.70)% 46.66 95.45
Our Approach 37(19.68)% 78.37 82.22
Long Parameter List
Metric approach 54(28.72%) 43(22.87)% 79.63 100.00
Our Approach 33(17.55)% 81.81 61.11
Refused parent Bequest
Metric approach 18(9.57)% 20(10.64)% 40.00 44.45
Our Approach 8(4.25)% 100 44.44

isd
Typewritten Text
70



71

the quantitative-based design flaws affect the precision rate of the proposed methodology which

is suffered from The subjective refection of design flaws, especially Long Parameter List flaw.

The decision of the existence of such flaws involves with mental of emotion of developers who

perform review process. The logic rules cannot cut through these flaws to classify them. And, of

course, this is a drawback of the proposed detection methodology.

Figure 4.3: The average precision rate of proposed detection in CommonCLI

Figure 4.4: The average precision rate of proposed detection in JUNIT
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The true negative (also called specificity) rate indicates the ability of the classifier in the in-

verse direction of precision rate. The detection approach not only can detect real flaws efficiently,

but it also can classify all non-flaws as true negatives. From the results of this case, the proposed

detection approach can classify all true negatives at the excellent level. This reason can confirm

to support in this context that the proposed detection has quite high precision rate with the true

positive and the true negative.

4.3.3 Result discussion of Case III

According to the detection results of Case III, five detected design flaws with precision and

recall rate are proposed (one pattern-based design flaw and four quantitative-based design flaws).

The precision rate is 100%, 84.61%, 78.37%, 81.81% and 100% with flaw detections of Large

Class, Lazy Class, Long Method, Long Parameter List and Refuse Bequest respectively. The

recall rate is 44.44%, 95.12%, 82.22%, 61.11% and 44.44% with flaw detections of Large Class,

Lazy Class, Long Method, Long Parameter List and Refuse Bequest respectively.

For the Lazy Class, we find 39 suspicious flaws. We gain the optimum recall rates because

the proposed methodology matches to the structure of this flaw perfectly. It means that the level

of subjective reflection of design flaws is the least of other detected flaws. For the same pattern-

based, the Refused Parent Bequest flaw is different. This flaw illustrates the inverse problem: it

is very difficult for software engineers to identify all its occurrences because they must appreciate

if a class uses proper public and protected methods/fields of any of its superclasses. Moreover,

software engineers always consider bequests provided by library classes whereas we apply our

detection on the chosen software system only, not considered libraries.

For the Large Class, we obtain optimum precision because the proposed methodology uses

many feature rules to detect this flaw. It seems clear to detect this flaw with expected precision.

However, automatic finding this flaw takes a lot of time because of vast of space in searching to

find the answer.

4.3.4 Overall discussions of the proposed detection approach

After all result data is analyzed, two important points have to discussed:

Result data from proposed methodology: The validation shows that the proposed detection

methodology can detect design flaws, especially with the domain model of design flaw lead to

generate detection rules, with expected recall and good precisions. Therefore it confirms with the

results that:
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1. The specification of domain model allows describing two types of design flaws,

quantitative-based design flaw and pattern-based design flaw.

2. The results from the prototype have, mainly, an average precision rate in detection of 80%

with quantitative-based flaw detection and 100% pattern-based flaw detection.

3. When considering precision and recall rate at the same time, good average precision rate is

presented with greater than 88.95%. And an expected of recall rate that also acquired with

an average recall rate at 76.55%. The detection methodology reports 2/3 of known design

flaws can be discovered.

4. The good specificity rate, also called true negative rate, of the proposed detection method-

ology is obtained. The implemented prototype from the proposed methodology can detect

true negative flaws efficiently when compared with specificity rate of other approaches.

Threats to the validity: Threats of the proposed detection methodology to validity can be indi-

cated as the following.

• The internal validity: The validity of the results depends on directly on the pattern of

flaws specifications. The experiments on a representative set of flaws are used to lessen to

this threat of the validation. The logic rule detection always suffer from the sharpness of

deduction. It means that logic rules from proof trees have the high level of specialization.

Thus obtaining the most general rules to detect in such context is a difficult task. The

proposed detection deals this major problem with the tree pruning technique. Rules of the

proposed detection are almost the most general rules in which the edge of the classification

between the positive example and the negative example.

• The external validity: This threat in this context relates to exclusive use of open-source

systems to validate the proposed methodology. The free available system is always used

to perform experiments to allow their verification and replication. However, these systems

may prevent the recent detection approaches to generalize to other system. The proposed

approach is the technique which based-on BBs and RBBs of Meta Programming. It consid-

ers only the skeletal relationship of BBs. Therefore the meta environment can deal with

this threat properly as long as the subject of detection is still the object-oriented software

system.

• The constructive validity: The subjective characteristics of interpreting, specifying and

identifying design flaws are the threat of constructive validity, especially for quantitative-
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based design flaw detection. The proposed detection lessens such threats by specifying

design flaws based-on real examples in literatures and manual assessment of the results.

In the next chapter, the conclusion is described. All of contribution work are summarized.

The further research is also presented.



CHAPTER V

CONCLUSION

This chapter concludes the research work of this dissertation. It also presents some direc-

tions for the future work.

5.1 Conclusion of dissertation

In the last decade software quality became more and more an important criterions for man-

aging cost and effort that spend in its evolution cycle. Existence of potential errors such as design

flaw lead to more cost in maintenance phase. Design flaws recur design problems in object-

oriented software systems have to be detected to avoid their possible negative consequences on

software development and maintenance. Consequently, design flaws detection methodologies and

techniques remain an active research field and several approaches in the recent literature have

been proposed to detect design flaws.

The contribution of this dissertation is to present an efficient design flaw detection approach

by ignorance limitations of specific thresholds in each environment of detection and promoting

the automatic detection for reducing time and cost consuming in the detection process. Toward

moving to that step, the novel methodology of design flaw detection is proposed by using Declar-

ative Meta Programming and Explanation-Based Learning technique. Two techniques are applied

to investigate design flaw detection of object-oriented software design. In the proposed approach,

Declarative Meta-Programming is used to represent specific object-oriented elements and their

relations in form of logic rules for describing design flaws. Explanation-Based Learning is used

for extrapolating pattern by deductive learning for some characteristics of design flaws that are

difficult to understand.

With this approach, design flaws of an object-oriented system are detected at the meta-level

in the Declarative Meta-Programming. The problem domain of design flaws in consideration is

narrowed down to what is the structure of design flaws rather than how is the structure of such

flaws. Therefore design flaws can be detected in a simple way and the suitable detection results

are obtained.

Case studies are conducted to validate the proposed detection approach. Several open-

source object-oriented software systems are used in experiments. The measure criterions such as

precision and recall are used to assess experiment results. Results of the measured rate show good
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and expected rates of detection.

5.2 Future research directions

A number of questions is encountered during the research that we believe that are worth

of further investigation in the future. We classify the possible continuations of this work in two

categories: refinement and integration.

Refinement

• The issue of learning classification. Although the work provides some answers on the

question of how to specify and detect the design flaws, some improvement techniques are

needed on refining for more general usage in widely environment.

• A rule suite of proposed detection for design flaw and recovery. Some flaws have relation

among them. To uncover these flaws, it is possible to use similar rules to detect. If we

can develop a suite of rules, possibly we can find the origin of such flaw. Moreover, we

plan to discover the rules for correcting these flaws in meta environment after the proposed

detection is performed. Because the flaw detection in meta environment is in the easy way,

we believe that the flaw correction in this environment might be in the same way.

• Migration to emerging programming paradigms of base program. The question here is:

How can the method and the strategies presented in this work be used beyond the limits

of object-orientation? Can we, for example, define detection strategies for adaptive (AP)

or aspect-oriented programming (AOP)? Which would be the invariants of the approach?

Which are the parts that are going to change?

Integration

• The whole approach presented in this thesis, rather than being theoretical is very close to

the world of practical software engineering. Therefore, we assume from the beginning

that the approach will become in the near future very interesting for CASE tool providers.

Some preliminary discussions with several important companies are justified our initial as-

sumptions. This raises the question of integration, i.e. how can the techniques and methods

developed during this dissertation be integrated in an existing development environment?

That is the big question that we have to find out.
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Moha, N. and Guéhéneuc, Y.-G. Decor: a tool for the detection of design defects. In

Proceedings of the twenty-second IEEE/ACM international conference on Automated

software engineering, ASE ’07, pp. 527–528, New York, NY, USA, 2007. ACM.

Moha, N., Gueheneuc, Y.-G., and Leduc, P. Automatic generation of detection algorithms for de-

sign defects. In ASE ’06: Proceedings of the 21st IEEE/ACM International Conference

on Automated Software Engineering, pp. 297–300, Washington, DC, USA, 2006. IEEE

Computer Society.

Murphy-Hill, E. and Black, A. Refactoring tools: Fitness for purpose. Software, IEEE, 2008a, 25

,5:38 –44.

Murphy-Hill, E. and Black, A. P. Seven habits of a highly effective smell detector. In

Proceedings of the 2008 international workshop on Recommendation systems for

software engineering, RSSE ’08, pp. 36–40, New York, NY, USA, 2008b. ACM.

Neighbors, J. M. The draco approach to constructing software from reusable components. IEEE

Trans. Software Eng., 1984, 10,5:564–574.

Olson, D. L. and Delen, D. Advanced Data Mining Techniques. Springer Publishing Company,

Incorporated, 1st edition, 2008.

Patcha, A. and Park, J.-M. An overview of anomaly detection techniques: Existing solutions and

latest technological trends. Comput. Netw., 2007, 51,12:3448–3470.



81

Pavlik, P. I. and Anderson, J. R. An act-r model of memory applied to finding the optimal schedule

of practice. In ICCM, pp. 376–377, 2004.

Pfleeger, S. L. Software Engineering: Theory and Practice. Upper Saddle River, NJ, USA,

Prentice Hall PTR, 2nd edition, 2001.

Pressman, R. S. Software Engineering: A Practitioner’s Approach. McGraw-Hill Higher Educa-

tion, 2001.

Ratiu, D., Ducasse, S., Gerba, T., and Marinescu, R. Using history information to improve design

flaws detection. Software Maintenance and Reengineering, European Conference on,

2004, 0:223.

Riel, A. J. Object-Oriented Design Heuristics. Reading, MA, Addison-Wesley, 1996.

Simon, F., Steinbrückner, F., and Lewerentz, C. Metrics based refactoring. In Proceedings of the

Fifth European Conference on Software Maintenance and Reengineering, CSMR ’01,

pp. 30–, Washington, DC, USA, 2001. IEEE Computer Society.

Slinger, S. Code Smell Detection in Eclipse. Master’s thesis, 2005.

Sommerville, I. Software engineering (5th ed.). Redwood City, CA, USA, Addison Wesley

Longman Publishing Co., Inc., 1995.

Spivey, J. M. The Z notation: a reference manual. Hertfordshire, UK, UK, Prentice Hall Interna-

tional (UK) Ltd., 1992.

Tourwe, T. and Mens, T. A declarative meta-programming approach to framework documenta-

tion. In In Proceedings of the Workshop on Declarative Meta Programming to Support

Software Development (ASE02), 2002.
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APPENDIX A

EXAMPLES AND DOMAIN THEORIES OF

RESEARCH

The training examples and their domain theories of learning mechanism for constructing

explanations (proof trees) are shown in this appendix. The Bloaters category flaws is presented

in section A.1. The Object-Oriented Abusers category, The Change Preventers category and The

Dispensables are presented in section A.2, A.3 and A.4 respectively. Finally, The Couplers cate-

gory is presented in section A.5.

A.1 The Bloaters Category

The Bloater flaws represent source code that has grown too large to effectively handled. It

seems likely that these flaws grow a little bit at a time. Design flaws in this category are Large

Class, Primitive Obsession, Long Parameter List and Data Clumps.

A.1.1 The Long Parameter List

The Long Parameter List is a design flaw which trys to unnecessarily increase coupling

between classes. Instead of the called class being aware of relationships between classes, the

program let the caller locate everything; then the method concentrates on what it is being asked

to do with the pieces.

Examples for defining domain theories : Four examples are used to define rules for

design flaw detection as followed. Ex.1 and Ex.2 show examples which are not Long Parameter

List design flaws. These example is used to determine domain theories. Ex.3 and Ex.4 are Long

Parameter List design flaws examples used for Explanation-based mechanism learning.

Ex.1: From java.swing.CellRendererPane

public void paintComponent(Graphics gr, Component renderer, Container parent, int

x, int y, int width, int height, Boolean shouldValidate)

Ex.2: From java.awt.Graphics

public Boolean drawImage(Image image, int x1Dest, int y1Dest, int x2Dest,
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int y2Dest, int x1Source, int y1Source, int x2Source, int y2Source, Color color,

ImageObserver obs)

Ex.3: From java.swing.DefaultBoundedRangeModel

public void setRangeProperties(int newValue, int newExtent, int newMin, int

newMax, boolean isAdjusting)

Ex.4: From java.swing.JOptionPane

public static int showConfirmDialog(String title, int optionType, int messageType)

longParameterList(x) is a target concept that uses for learning. Table A.1 shows a target

concept and domain theories which are used to construct a detection rule. Horn clause in R8

cannot be used here because it derives a inconsistent rule inconsistency. The sematic in Figure

A.1 shows the detection rule covering of Ex3. and Ex4. in domain theories after performing

learning algorithm. The detection rule for Long Parameter List flaw is constructed by covering

both Ex.3 and Ex.4.

Table A.1: Domain theories and a target concept of Ex.1- Ex.4 Long Parameter List

Target concepts and domain theory:
R1 : ∀x∀y method ( x ) ∧ hasLongPa rame te r ( x, y )
⇒ l o n g P a r a m e t e r L i s t ( x )

R2 : ∀x methodNoReturnType ( x ) ⇒ method ( x )
R3 : ∀x methodHasReturnType ( x ) ⇒ method ( x )
R4 : ∀x pub l i cMethod ( x ) ⇒ method ( x )
R5 : ∀x∀y p a r a m e t e r L i s t ( y ) ⇒ hasLongPa rame te r ( x, y )
R6 : ∀y∀yi ( ( ∀yi ∈ y ) e a c h P a r a m e t e r ( yi ) ) ⇒ p a r a m e t e r L i s t ( y )
R7 : ∀yi b a s i c T y p e P a r a m e t e r ( yi ) ⇒ e a c h P a r a m e t e r ( yi )
R8 : ∀yi c l a s s T y p e P a r a m e t e r ( yi ) ⇒ e a c h P a r a m e t e r ( yi )
R9 : ∀yi g e n e r i c T y p e P a r a m e t e r ( yi ) ⇒ e a c h P a r a m e t e r ( yi )

.

A rule for detecting Long Parameter List flaw can be constructed in form of MESs as:

%=============================================================================

% Rules Long Parameter List

longParameterList(MethodID,ClassID,MethodName) :-

classT(ClassID,_,_,_),
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Figure A.1: The sematic net shows covering of Ex3. and Ex4. in domain theories

methodT(MethodID,ClassID,MethodName,ParameterList,_,_,_),

[first,second,third,rest] = [ParameterList],

\+parameterbeObject(first),

\+parameterbeObject(second),

\+parameterbeObject(third).

parameterbeObject(parameterID) :-

atom(parameterID),

sub_atom(parameterID, _, _, _, class).}

A.1.2 Large Class

Large Class flaw grows big a little bit in each evolution time. The programmer keeps adding

more capabilities to a class until it eventually grows too big. Sometimes the problem is a lack of

insight into the parts that make up the whole class. In any case, the class represents too many

responsibilities folded together.

Examples for defining domain theories: An example of Java Servlet Front Strategy code

is used to define rules for design flaw detection as followed.
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public class EmployeeController extends HttpServlet {

// Initializes the servlet.

public void init(ServletConfig config) throws

ServletException {

super.init(config);

}

// Destroys the servlet.

public void destroy() {

}

/** Processes requests for both HTTP

* <code>GET</code> and <code>POST</code> methods.

* @param request servlet request

* @param response servlet response

*/

protected void processRequest(HttpServletRequest

request, HttpServletResponse response)

throws ServletException, java.io.IOException {

String page;

/**ApplicationResources provides a simple API

* for retrieving constants and other

* preconfigured values**/

ApplicationResources resource =

ApplicationResources.getInstance();

try {

// Use a helper object to gather parameter

// specific information.

RequestHelper helper = new

RequestHelper(request);

Command cmdHelper= helper.getCommand();

// Command helper perform custom operation

page = cmdHelper.execute(request, response);

}

catch (Exception e) {

LogManager.logMessage(

"EmployeeController:exception : " +

e.getMessage());

request.setAttribute(resource.getMessageAttr(),

"Exception occurred : " + e.getMessage());

page = resource.getErrorPage(e);

}
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// dispatch control to view

dispatch(request, response, page);

}

/** Handles the HTTP <code>GET</code> method.

* @param request servlet request

* @param response servlet response

*/

protected void doGet(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, java.io.IOException {

processRequest(request, response);

}

/** Handles the HTTP <code>POST</code> method.

* @param request servlet request

* @param response servlet response

*/

protected void doPost(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, java.io.IOException {

processRequest(request, response);

}

/** Returns a short description of the servlet */

public String getServletInfo() {

return "Front Controller Pattern" +

" Servlet Front Strategy Example";

}

protected void dispatch(HttpServletRequest request,

HttpServletResponse response,

String page)

throws javax.servlet.ServletException,

java.io.IOException {

RequestDispatcher dispatcher =

getServletContext().getRequestDispatcher(page);

dispatcher.forward(request, response);

}

}

largeClass(x) is a target concept that uses for learning. Table A.2 shows a target concept

and domain theories which are used to construct a detection rule.

All rules for detecting Large Class flaw can be constructed in form of MESs as:
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Table A.2: Domain theories and a target concept of Large Class design flaw

A target concepts and domain theories:
R1 : ∀c c l a s s ( c ) ∧ c o n t r o l l e r C l a s s ( c ) ⇒ l a r g e C l a s s ( c )
R2 : ∀c∀m∀a hasMethod ( c ,m ) ∧ method ( m ) ∧ h a s A t t r i b u t e ( c ,a )
∧ a t t r i b u t e ( a ) ⇒ c l a s s ( c )

R3 : ∀c∀m∀a execMethod ( m ) ∧ ¬ h a s A t t r i b u t e ( c ,a )
⇒ c o n t r o l l e r C l a s s ( c )

.

%=============================================================================

% Rules Large Class

LargeClass(ClassID) :- monopolizeClass(ClassID).

monopolizeClass(ClassID) :-

accessDataClass(ClassID, ClassID_DataClass),write(’Exist From 1. Access Data Class ’);

accessUnusedData(ClassID, ClassID_UnusedData),

write(’Exist From 2. Unused Data in Class ’);

controllerClass(ClassID),write(’Exist From 3. Controller Class ’);

unusedElementClass(ClassID),write(’Exist From 4. Unused Element in Class ’);

compositeClass(ClassID),write(’Exist From 5. CompositClass ’).

accessDataClass(ClassID, ClassID_DataClass) :-

classT(ClassID,_,_,_), classT(ClassID_DataClass,_,_,_),

ClassID \== ClassID_DataClass,

classAccess(ClassID,ClassID_DataClass),

dataClass(ClassID_DataClass).

classAccess(ClassID,ClassID_DataClass) :-

methodT(MethodID,ClassID,_,_,_,_,_),

blockT(BlockID,MethodID,_,_),

execT(ExecID,BlockID,_,_),

callT(_,_,MethodID,_,_,_,MethodID_dataclass),

classT(ClassID_DataClass,_,_,_),

methodT(MethodID_dataclass,ClassID_DataClass, _,_,_,_,_).

accessorMethod(AccessorMethodID) :-

classT(X,_,_,_),

fieldT(Y,X,_,_,_),

methodT(AccessorMethodID,X,_,[],_,_,_),

blockT(A,AccessorMethodID,_,_),

returnT(_,A,AccessorMethodID,_),

getFieldT(_,_,AccessorMethodID,_,_,Y).

mutatorMethod(MutatorMethodID) :-

classT(X,_,_,_),

fieldT(Y,X,_,A,_),

methodT(MutatorMethodID,X,_,[B],_,_,_),

paramT(B,MutatorMethodID,_,A),
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assignT(_,_,MutatorMethodID,C,_),

getFieldT(C,_,MutatorMethodID,_,A,Y).

notDataClass(NotDataClassID) :-

classT(NotDataClassID,_,_,_),

methodT(MethodInDataClass,NotDataClassID,_,_,_,_,_),

\+ mutatorMethod(MethodInDataClass),

\+ accessorMethod(MethodInDataClass).

dataClass(ClassID_DataClass) :-

classT(ClassID_DataClass,_,_,_),

\+ notDataClass(ClassID_DataClass).

accessUnusedData(ClassID, ClassID_UnusedData) :-

classT(ClassID,_,_,_),

classT(ClassID_UnusedData,_,_,_),

ClassID \== ClassID_UnusedData,

accessUnusedData(ClassID,ClassID_UnusedData,MethodID_UnusedData),

unusedDataClass(ClassID_UnusedData,MethodID_UnusedData).

accessUnusedData(ClassID,ClassID_UnusedData,MethodID_UnusedData) :-

methodT(MethodID,ClassID,_,_,_,_,_),

blockT(BlockID,MethodID,_,_),

execT(ExecID,BlockID,_,_),

callT(_,_,MethodID,_,_,_,MethodID_UnusedData),

methodT(MethodID_UnusedData,ClassID_UnusedData, _,_,_,_,_).

unusedDataClass(ClassID_UnusedData,MethodID_UnusedData) :-

\+ usedDataClass(ClassID_UnusedData,MethodID_UnusedData).

usedDataClass(ClassID_UnusedData,MethodID_UnusedData) :-

mutatorMethod(MethodID_UnusedData);

accessorMethod(MethodID_UnusedData),

methodT(MethodID_UnusedData,ClassID_UnusedData,_,_,_,_,_),

methodT(UseMethod,ClassID_UnusedData,_,_,_,_,_),

blockT(Temp,UseMethod),

execT(Temp2, Temp),

callT(_,Temp2,_,_,_,_,MethodID_UnusedData).

controllerClass(ClassID) :-

classT(ClassID,_,_,_),

\+ fieldT(FieldID,ClassID,_,_,_).

unusedElementClass(ClassID) :-

unusedElementField(ClassID),

unusedElementMethod(ClassID).

unusedElementField(ClassID) :-

classT(ClassID,_,_,_),

fieldT(FieldID,ClassID,_,_,_),
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methodT(MethodID,ClassID,_,_,_,_,_),

\+getFieldT(_,_,MethodID,_,_,FieldID).

unusedElementMethod(ClassID) :-

classT(ClassID,_,_,_),

methodT(MethodID,ClassID,_,_,_,_,_),

newClassT(NewClassID,_,_,_,_,ClassID,_,_),

\+ callT(CallID,_,_,_,_,_,MethodID),

identT(_,CallID,_,_,LocalID),

localT(LocalID,_,_,_,_,NewClassID).

connected(X,Y) :-

edge(X,Y) ; edge(Y,X).

path(A,B,Path) :-

travel(A,B,[A],Q),

reverse(Q,Path),!. % cut backtracking

travel(A,B,P,[B|P]) :-

connected(A,B).

travel(A,B,Visited,Path) :-

connected(A,C),

C \== B,

not(member(C,Visited)),

travel(C,B,[C|Visited],Path) ;

Path = [B].

element_of(X,[X|Tail]).

element_of(X,[_|Tail]) :- element_of(X,Tail).

add2end(X,[H|T],[X,H|T]):-add2end(X,T,[X|T]).

add2end(X,[],[X]).

addElement(X,[X]).

addElement(X,[X|Element]) :- addElement(X,Element).

checkPath(PathSourceSink,Source,Sink,A_Temp) :-

PathSourceSink = [Sink], nl,

add2end(Sink,A_Temp,A_Temp1), nl,

fail.

compositeClass(ClassID) :-

\+ noGodclass(ClassID).

noGodclass(ClassID) :-

classT(ClassID,_,_,ListElement),fieldT(FieldID,ClassID,_,_,_),

methodT(MethodID,ClassID,_,_,_,_,_),

edge(FieldID,MethodID),!,

methodT(MethodA,ClassID,_,_,_,_,_),
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methodT(MethodB,ClassID,_,_,_,_,_),

edge(MethodA,MethodB),!,

pathTraverse(FieldID,MethodID,ListElement).

edge(FieldID,MethodID) :-

getFieldT(_,_,MethodID,_,_,FieldID).

edge(MethodA,MethodB) :-

MethodA \== MethodB,

callT(_,_,MethodA,_,_,_,MethodB).

pathTraverse(FieldID,MethodID,ListElement) :-

[A,B|C] = ListElement,

A_Temp = [A],!,

element_of(Y,C),

path(B,Y,Path),

checkPath(Path,B,Y,A_Temp),nl.

A.1.3 Primitive Obsession

Primitive Obsession flaw is actually more of a symptom that causes bloats than a bloat

itself. When the Primitive Obsession occurs, there are no small classes for small entities (e.g.

phone numbers). Thus, the functionality is added to some other class which increase the class and

method size in the software.

Examples for defining domain theories: Two examples of Fowler’s workbook are used
to define rules for design flaw detection as followed.

public class Age {

private int age;

public Age(int age) {

this.age = age; }

public int toInt() {

return age; }

}

class Person {

public static final int O = 0;

public static final int A = 1;

public static final int B = 2;

public static final int AB = 3;

private int _bloodGroup;

public Person (int bloodGroup) {

_bloodGroup = bloodGroup;

}
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public void setBloodGroup(int arg) {

_bloodGroup = arg;

}

public int getBloodGroup() {

return _bloodGroup;

}

}

primitiveObsession(x) is a target concept that uses for learning. Table A.3 shows a target

concept and domain theories which are used to construct a detection rule.

Table A.3: Domain theories and a target concept of Primitive Obsession design flaw

A target concepts and domain theories:
R1 : ∀c c l a s s ( c ) ∧ ¬ o b j e c t O b s e s s i o n ( c ) ∧ ¬g e n e r i c O b s e s s i o n ( c )
⇒ p r i m i t i v e O b s e s s i o n ( c )

R2 : ∀c∀a h a s A t t r i b u t e ( c ,a ) ∧ a t t r i b u t e ( a ) ⇒ c l a s s ( c )
R3 : ∀c∀a a t t r i b u t e T y p e ( a , ’ Objec t ’ ) ⇒ o b j e c t O b s e s s i o n ( c )
R4 : ∀c∀a a t t r i b u t e T y p e ( a , ’ Gener ic ’ ) ⇒ g e n e r i c O b s e s s i o n ( c )

.

All rules for detecting Primitive Obsession flaw can be constructed in form of MESs as:

%=============================================================================

% Rules Primitive Obsession

primitiveObsession(ClassID,ClassName,Pathsource) :-

projectRequired(icice,Pathsource,ClassID,ClassName),

primitiveObsessionRules(ClassID).

primitiveObsessionRules(ClassID) :-

haveGenericType(ClassID).

simulatedAccessors(ClassID).

havePrimitiveType(ClassID) :- \+haveGenericType(ClassID).

haveGenericType(ClassID) :-

fieldT(_,ClassID,Type,_,_),

\+arg(1,Type,class),

\+arg(1,Type,generic).
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simulatedAccessors(ClassID) :-

methodT(MethodID,ClassID,_,_,_,_,_),

localT(DeclareArrayID,_,MethodID,_,_,_),

newArrayT(_,DeclareArrayID,MethodID,_,_,_),

% 1 element insert array

assignT(AssignID,_,_,_,_),

indexedT(IndexID,AssignID,_,_,_),

identT(_,IndexID,_,_,DeclareArrayID),

% 2 element insert array

assignT(AssignID2,_,_,_,_),

indexedT(IndexID2,AssignID2,_,_,_),

identT(_,IndexID2,_,_,DeclareArrayID),

AssignID \= AssignID2,!.

projectRequired(NameProject,Pathsource,ClassID,ClassName) :-

projectS(ProjectID,NameProject,_,_,_),

sourceFolderS(SourceID,ProjectID,_),

fileS(FileID,SourceID,Pathsource),

compilationUnitT(ClassCompilationID,_,FileID,_,_),

classT(ClassID,ClassCompilationID,ClassName,_).

A.1.4 Data Clump

With Data Clump flaws, there is a set of primitives that always appear together. Since these

data items are not encapsulated in a class. This increases the sizes of methods and classes.

Examples for defining domain theories: A example of Fowler’s Refactoring is used to

define rules for design flaw detection as followed. A pair of range values is considered in this

example.

public class Account{

double getFlowBetween (Date start, Date end){

double result = 0;

Enumeration e = _entries.elements();

while(e.hasMoreElements()){

Entry each = (Entry) e.nextElement();

if (each.getDate().equals(start)) ||

each.getDate().equals(end) ||

(each.getDate().after(start) && each.getDate.before(end)))

{

result += each.getValue(0;

}

}

return result;

}
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dataClump(x) is a target concept that uses for learning. Table A.4 shows a target concept

and domain theories which are used to construct a detection rule.

Table A.4: Domain theories and a target concept of Data Clump design flaw

A target concepts and domain theories:
R1 : ∀a1∀a2 c l a s s ( c ) ∧ c l u m p P a i r ( a1 ,a2 ) ∧ c l u m p F i r s t ( a1 ,a2 )
∧ clumpSecond ( a1 ,a2 )
⇒ dataClump ( c )

R2 : ∀a1∀a2 a t t r i b u t e ( a1 ) ∧ a t t r i b u t e ( a2 ) ∧ ( a1 6= a2 )
⇒ c l u m p P a i r ( a1 ,a2 )

R3 : hasMethod ( c ,m1 ) ∧ method ( m1 ) ⇒ ( c )
R4 : hasMethod ( c ,m2 ) ∧ method ( m2 ) ⇒ ( c )
R5 : h a s P a r a m e t e r ( m1 ,m1−para ) ∧ p a r a m e t e r ( m1−para ) ⇒ method ( m1 )
R6 : h a s P a r a m e t e r ( m2 ,m2−para ) ∧ p a r a m e t e r ( m2−para ) ⇒ method ( m2 )
R7 : p a r a m e t e r I n ( a1 ,m1−para ) ∧ p a r a m e t e r I n ( a2 ,m1−para )
⇒ c l u m p F i r s t ( a1 ,a2 )

R7 : p a r a m e t e r I n ( a1 ,m2−para ) ∧ p a r a m e t e r I n ( a2 ,m2−para )
⇒ clumpSecond ( a1 ,a2 )

.

All rules for detecting Data Clump can be constructed in form of MESs as:

%=============================================================================

% Rule DataClumps

dataClump(Pathsource,ClassID,ClassName) :-

projectRequired(SourceProgram,Pathsource,ClassID,ClassName),

dataClumps(ClassID).

dataClumps(ClassID) :-

dataClumps2Ele(ClassID),

dataClumps2Get(ClassID),

dataClumps3Get(ClassID).

dataClumps2Ele(ClassID) :-

fieldT(FieldID1,_,_,_,_),

fieldT(FieldID2,_,_,_,_),

FieldID1 \= FieldID2,

methodT(Method1ID,ClassID,_,Parameter1,_,_,_),

methodT(Method2ID,ClassID,_,Parameter2,_,_,_),

MethodID1 \= MethodID2,

paramT(Parameter1ID,Method1ID,_,_),
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member(Parameter1ID,Parameter1),

getFieldT(_,_,Method1ID,_,_,FieldID1),

identT(_,_,MethodID1ID,_,Parameter1ID),

paramT(Parameter2ID,Method1ID,_,_),

member(Parameter2ID,Parameter1),

getFieldT(_,_,Method1ID,_,_,FieldID2),

identT(_,_,MethodID1ID,_,Parameter2ID),

paramT(Parameter1ID,Method2ID,_,_),

member(Parameter1ID,Parameter1),

getFieldT(_,_,Method2ID,_,_,FieldID1),

identT(_,_,MethodID2ID,_,Parameter1ID),

paramT(Parameter2ID,Method2ID,_,_),

member(Parameter2ID,Parameter1),

getFieldT(_,_,Method2ID,_,_,FieldID2),

identT(_,_,MethodID2ID,_,Parameter2ID).

dataClumps2Get(ClassID) :-

fieldT(FieldID1,_,_,_,_),

fieldT(FieldID2,_,_,_,_),

FieldID1 \= FieldID2,

methodT(Method1ID,ClassID,_,_,_,_,_),

methodT(Method2ID,ClassID,_,_,_,_,_),

MethodID1 \= MethodID2,

accessAttributeFromMethod(Method1ID,AttributeID1),

accessAttributeFromMethod(Method1ID,AttributeID2),

accessAttributeFromMethod(Method2ID,AttributeID1),

accessAttributeFromMethod(Method2ID,AttributeID2).

dataClumps3Get(ClassID) :-

fieldT(FieldID1,ClassID,_,_,_),

fieldT(FieldID2,ClassID,_,_,_),

fieldT(FieldID3,ClassID,_,_,_),

FieldID1 \= FieldID2,

FieldID1 \= FieldID3,

FieldID2 \= FieldID3,

methodT(MethodID,ClassID,_,_,_,_,_),

accessAttributeFromMethod(MethodID,FieldID1),

accessAttributeFromMethod(MethodID,FieldID2),

accessAttributeFromMethod(MethodID,FieldID3),!.

accessAttributeFromMethod(Method_ID,Attribute_ID) :-

getFieldT(_,_,Method_ID,_,_,Attribute_ID);

callT(_,_,Method_ID,_,_,_,Method_Temp_ID),

getFieldT(_,_,Method_Temp_ID,_,_,Attribute_ID).
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projectRequired(NameProject,Pathsource,ClassID,ClassName) :-

projectS(ProjectID,NameProject,_,_,_),

sourceFolderS(SourceID,ProjectID,_),

fileS(FileID,SourceID,Pathsource),

compilationUnitT(ClassCompilationID,_,FileID,_,_),

classT(ClassID,ClassCompilationID,ClassName,_).

A.2 The Object-Oriented Abusers Category

The common denominator for the flaws in the Object-Orientation Abuser category is that

they represent cases where the solution does not fully exploit the possibilities of object-oriented

design. Design flaws in this category are Switch Statements, Temporary Field, Refused Bequest

and Alternative Classes with Different Interfaces.

A.2.1 Switch Statements

A Switch Statement might be considered acceptable or even good design in procedural

programming, but it is something that should be avoided in object-oriented programming. The

situation where switch statements or type codes are needed should be handled by creating sub-

classes.

Examples for defining domain theories: An example is used to define rules for design

flaw detection as followed.

public class SwitchDemo {

public static void main(String[] args) {

int month = 8;

String monthString;

switch (month) {

case 1: monthString = "January"; break;

case 2: monthString = "February"; break;

case 3: monthString = "March"; break;

case 4: monthString = "April"; break;

case 5: monthString = "May"; break;

case 6: monthString = "June"; break;

case 7: monthString = "July"; break;

case 8: monthString = "August"; break;

case 9: monthString = "September"; break;

case 10: monthString = "October"; break;

case 11: monthString = "November"; break;

case 12: monthString = "December"; break;

default: monthString = "Invalid month"; break;
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}

System.out.println(monthString);

}

}

switchStatement(x) is a target concept that uses for learning. Table A.5 shows a target

concept and domain theories which are used to construct a detection rule.

Table A.5: Domain theories and a target concept of Switch Statements design flaw

Target concepts and domain theory:
R1 : ∀x∀y method ( x ) ∧ s t a t e m e n t ( y ) ∧ h a s S w i t c h S t a t e m e n t s ( x, y )
⇒ s w i t c h S t a t e m e n t s ( x )

R2 : ∀y h a s S w i t c h O p e r a t i o n ( y ) ⇒ s t a t e m e n t ( y )

.

A rule for detecting Switch Statement flaw can be constructed in form of MESs as:

%=============================================================================

% Rule Switch Statement

switchStatement(PathProject,ClassID,ClassName) :-

projectRequired(’SourceProgram’,PathProject,ClassID,ClassName),

methodT(MethodID,ClassID,_,_,_,_,_),

switchT(_,_,MethodID,_,_),

write(’ ######## Switch Statement : Switch Exist’), nl.

projectRequired(NameProject,Pathsource,ClassID,ClassName) :-

projectS(ProjectID,NameProject,_,_,_),

sourceFolderS(SourceID,ProjectID,_),

fileS(FileID,SourceID,Pathsource),

compilationUnitT(ClassCompilationID,_,FileID,_,_),

classT(ClassID,ClassCompilationID,ClassName,_).

A.2.2 Temporary Field

This flaw can happen when one part of an object has an algorithm that passes around infor-

mation through the fields rather than through parameters – the fields are valid or used only when

the algorithm is active. These fields do not suggest which there may be a missing object whose

life cycle differs from the object holding it.
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Examples for defining domain theories: An example is used to define rules for design

flaw detection as followed.

public class Logo extends Canvas {

private Image fImage;

public int fWidth;

public int fHeight;

public Logo() {

fImage= loadImage("logo.gif");

MediaTracker tracker= new MediaTracker(this);

tracker.addImage(fImage, 0);

try {

tracker.waitForAll();

} catch (Exception e) {

}

if (fImage != null) {

fWidth= fImage.getWidth(this);

fHeight= fImage.getHeight(this);

} else {

fWidth= 20;

fHeight= 20;

}

setSize(fWidth, fHeight);

}

temporaryField(x) is a target concept that uses for learning. Table A.6 shows a target con-

cept and domain theories which are used to construct a detection rule.

Table A.6: Domain theories and a target concept of Temporary Field design flaw

A target concepts and domain theories:
R1 : ∀x∀y c l a s s ( y ) ∧ a t t r i b u t e ( x ) ∧ h a s A t t r i b u t e ( y, x )
⇒ t e m p o r a r y F i e l d ( x )

R2 : ∀x h a s A t t r M o d i f i e r P u b l i c ( x ) ⇒ a t t r i b u t e ( x )
R3 : ∀x h a s A t t r M o d i f i e r P r i v a t e ( x ) ⇒ a t t r i b u t e ( x )
R4 : ∀x h a s A t t r M o d i f i e r P r o t e c t e d ( x ) ⇒ a t t r i b u t e ( x )
R5 : ∀x i s S t a t i c ( x ) ⇒ a t t r i b u t e ( x )
R6 : ∀x ¬ i s S t a t i c ( x ) ⇒ a t t r i b u t e ( x )

.

All rules for detecting Temporary Field flaw can be constructed in form of MESs as:
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%=============================================================================

% Rule Temporary Field

temporalField(PathProject,ClassID,ClassName,FieldID) :-

projectRequired(’CommonCLI’,PathProject,ClassID,ClassName),

fieldT(FieldID,ClassID,_,_,_),

modifierT(FieldID,public),

write(’ ######## 1 Temporal Field : Private Attribute’),nl;

projectRequired(ieice,PathProject,ClassID,ClassName),

fieldT(FieldID,ClassID,_,_,_),

methodT(MethodID,ClassID,_,_,_,_,_),

assignT(AssignID,_,MethodID,_,_),

getFieldT(_,AssignID,_,_,_,FieldID),

identT(_,AssignID,_,_,null),

write(’ ######## 2 Temporal Field : Set Null Attribute & Object’),nl;

projectRequired(ieice,PathProject,ClassID,ClassName),

fieldT(FieldID,ClassID,_,_,_),

identT(_,FieldID,_,_,null),

write(’ ######## 3 Temporal Field : assign Attribute and null value’),nl.

projectRequired(NameProject,Pathsource,ClassID,ClassName) :-

projectS(ProjectID,NameProject,_,_,_),

sourceFolderS(SourceID,ProjectID,_),

fileS(FileID,SourceID,Pathsource),

compilationUnitT(ClassCompilationID,_,FileID,_,_),

classT(ClassID,ClassCompilationID,ClassName,_).

A.2.3 Refused Bequest

A class may inherit from another class just for implementation convenience without really

intending the class to be substitutable for the parent. Or, there may be a conscious decision to let

subclasses deny use of some features to prevent an explosion of types for all feature combinations.

This situation in such software systems is Refused Bequest flaw .

Examples for defining domain theories: An example is used to define rules for design

flaw detection as followed.

package junit.framework;

/**

* A Listener for test progress

*/

public interface TestListener {

/**

* An error occurred.
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*/

public void addError(Test test, Throwable t);

/**

* A failure occurred.

*/

public void addFailure(Test test, AssertionFailedError t);

/**

* A test ended.

*/

public void endTest(Test test);

/**

* A test started.

*/

public void startTest(Test test);

}

class TestSuitePanel extends JPanel implements TestListener {

private JTree fTree;

private JScrollPane fScrollTree;

private TestTreeModel fModel;

static class TestTreeCellRenderer extends DefaultTreeCellRenderer {

private Icon fErrorIcon;

private Icon fOkIcon;

private Icon fFailureIcon;

TestTreeCellRenderer() {

super();

loadIcons();

}

void loadIcons() {

fErrorIcon= TestRunner.getIconResource(getClass(), "icons/error.gif");

fOkIcon= TestRunner.getIconResource(getClass(), "icons/ok.gif");

fFailureIcon= TestRunner.getIconResource(getClass(), "icons/failure.gif");

}

String stripParenthesis(Object o) {

String text= o.toString ();

int pos= text.indexOf(’(’);

if (pos < 1)

return text;

return text.substring (0, pos);

}

public Component getTreeCellRendererComponent(JTree tree, Object value,

boolean sel, boolean expanded, boolean leaf, int row, boolean hasFocus) {

Component c = super.getTreeCellRendererComponent

(tree, value, sel, expanded, leaf, row, hasFocus);
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TreeModel model= tree.getModel();

if (model instanceof TestTreeModel) {

TestTreeModel testModel= (TestTreeModel)model;

Test t= (Test)value;

String s= "";

if (testModel.isFailure(t)) {

if (fFailureIcon != null)

setIcon(fFailureIcon);

s= " - Failed";

}

else if (testModel.isError(t)) {

if (fErrorIcon != null)

setIcon(fErrorIcon);

s= " - Error";

}

else if (testModel.wasRun(t)) {

if (fOkIcon != null)

setIcon(fOkIcon);

s= " - Passed";

}

if (c instanceof JComponent)

((JComponent)c).setToolTipText(getText()+s);

}

setText(stripParenthesis(value));

return c;

}

}

public TestSuitePanel() {

super(new BorderLayout());

setPreferredSize(new Dimension(300, 100));

fTree= new JTree();

fTree.setModel(null);

fTree.setRowHeight(20);

ToolTipManager.sharedInstance().registerComponent(fTree);

fTree.putClientProperty("JTree.lineStyle", "Angled");

fScrollTree= new JScrollPane(fTree);

add(fScrollTree, BorderLayout.CENTER);

}

public void addError(final Test test, final Throwable t) {

fModel.addError(test);

fireTestChanged(test, true);

}

public void addFailure(final Test test, final AssertionFailedError t) {

fModel.addFailure(test);

fireTestChanged(test, true);

}
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/**

* A test ended.

*/

public void endTest(Test test) {

fModel.addRunTest(test);

fireTestChanged(test, false);

}

/**

* A test started.

*/

public void startTest(Test test) {

}

/**

* Returns the selected test or null if multiple or none is selected

*/

public Test getSelectedTest() {

TreePath[] paths= fTree.getSelectionPaths();

if (paths != null && paths.length == 1)

return (Test)paths[0].getLastPathComponent();

return null;

}

/**

* Returns the Tree

*/

public JTree getTree() {

return fTree;

}

/**

* Shows the test hierarchy starting at the given test

*/

public void showTestTree(Test root) {

fModel= new TestTreeModel(root);

fTree.setModel(fModel);

fTree.setCellRenderer(new TestTreeCellRenderer());

}

private void fireTestChanged(final Test test, final boolean expand) {

SwingUtilities.invokeLater(

new Runnable() {

public void run() {

Vector vpath= new Vector();

int index= fModel.findTest(test, (Test)fModel.getRoot(), vpath);

if (index >= 0) {

Object[] path= new Object[vpath.size()];

vpath.copyInto(path);

TreePath treePath= new TreePath(path);
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fModel.fireNodeChanged(treePath, index);

if (expand) {

Object[] fullPath= new Object[vpath.size()+1];

vpath.copyInto(fullPath);

fullPath[vpath.size()] =

fModel.getChild(treePath.getLastPathComponent(), index);

TreePath fullTreePath= new TreePath(fullPath);

fTree.scrollPathToVisible(fullTreePath);

}

}

}

}

);

}

}

refusedBequest(x) is a target concept that uses for learning. Table A.7 shows a target con-

cept and domain theories which are used to construct a detection rule.

Table A.7: Domain theories and a target concept of Refused Bequest design flaw

A target concepts and domain theories:
R1 : ∀xi ( i∈1 , 2 )∀y∀z c l a s s ( xi ) ∧ a t t r i b u t e ( z ) ∧

h a s A t t r i b u t e ( xi , z ) ∧
method ( y ) ∧ hasMethod ( xi , y ) ∧
n o t I n h e r i t O p e r a t i o n ( x1 ,x2 ) ⇒ r e f u s e d B e q u e s t ( x2 )

R2 : ∀z h a s A t t r M o d i f i e r P u b l i c ( z ) ⇒ a t t r i b u t e ( z )
R3 : ∀z h a s A t t r M o d i f i e r P r i v a t e ( z ) ⇒ a t t r i b u t e ( z )
R4 : ∀z h a s A t t r M o d i f i e r P r o t e c t e d ( z ) ⇒ a t t r i b u t e ( z )
R5 : ∀z∀zname hasName ( z , zname ) ⇒ a t t r i b u t e ( z )
R6 : ∀y∀yname hasName ( y , yname ) ⇒ method ( z )
R7 : ∀y h a s M e t M o d i f i e r P u b l i c ( y ) ⇒ a t t r i b u t e ( y )
R8 : ∀y h a s M e t M o d i f i e r P r i v a t e ( y ) ⇒ a t t r i b u t e ( y )
R9 : ∀y h a s M e t M o d i f i e r P r o t e c t e d ( y ) ⇒ a t t r i b u t e ( y )
R10 : ∀xi ( i∈1 , 2 )∀yname1∀yname2 notTheSame ( yname1 ,yname1 ) ⇒

n o t I n h e r i t O p e r a t i o n ( x1 ,x2 )

.

All rules for detecting Refused Bequest flaw can be constructed in form of MESs as:

%=============================================================================

% Rule Refused Bequest
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refuseBequest(Pathsource,ClassID,ClassName) :-

projectRequired(’SourceProgram’,Pathsource,ClassID,ClassName),

refuseBequestAnyForm(ClassID).

refuseBequestAnyForm(ClassID) :-

refuseBequestClassForm(ClassID).

refuseBequestClassFormNotImplement(ClassID);

refuseBequestInterfaceFormImplementClassBlank(ClassID).

refuseBequestInterfaceFormImplementAbsBlank(ClassID).

% First Form (no inherit method)

refuseBequestClassForm(ClassID) :-

classT(ClassID,_,_,ElementInClass),

classT(ClassSuperID,_,_,EleInSuper),

extendsT(ClassID,ClassSuperID),

\+globalIds(’java.lang.Object’,ClassSuperID),

\+notRefuseBequestClassForm(ClassID,ClassSuperID).

notRefuseBequestClassForm(ClassID,ClassSuperID) :-

methodT(MethodSuperID,ClassSuperID,MethodSuperName,_,_,_,_),

methodT(MethodID,ClassID,MethodName,_,_,_,_),

MethodSuperName = MethodName,!.

% Second Form (class not implement)

refuseBequestClassFormNotImplement(ClassID) :-

classT(ClassID,_,_,ElementInClass),

classT(ClassSuperID,_,_,EleInSuper),

extendsT(ClassID,ClassSuperID),

\+globalIds(’java.lang.Object’,ClassSuperID),

refuseBequestCFNI(ClassID,ClassSuperID).

refuseBequestCFNI(ClassID,ClassSuperID) :-

methodT(MethodSuperID,ClassSuperID,MethodSuperName,_,_,_,_),

methodT(MethodID,ClassID,MethodName,_,_,_,_),

MethodSuperName = MethodName,

blockT(_,MethodID,_,[]),!.

% Third Form (implement interface blank)

refuseBequestInterfaceFormImplementClassBlank(ClassID) :-

classT(ClassID,_,_,ElementInClass),

implementsT(ClassID,ClassSuperID),

classT(ClassSuperID,_,_,_),

interfaceT(ClassSuperID),

\+globalIds(’java.lang.Object’,ClassSuperID),

refuseBequestIFICB(ClassID,ClassSuperID).

refuseBequestIFICB(ClassID,ClassSuperID) :-

methodT(MethodSuperID,ClassSuperID,MethodSuperName,_,_,_,_),

methodT(MethodID,ClassID,MethodName,_,_,_,_),

MethodSuperName = MethodName,
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blockT(_,MethodID,_,[]),!.

% Third Abstract Form (implement interface blank)

refuseBequestInterfaceFormImplementAbsBlank(ClassID):-

classT(ClassID,_,_,_),

implementsT(ClassID,ClassSuperID),

modifierT(ClassID,abstract),

classT(ClassSuperID,_,_,_),

interfaceT(ClassSuperID),

\+globalIds(’java.lang.Object’,ClassSuperID),

refuseBequestIFIAB(ClassID,ClassSuperID).

refuseBequestIFIAB(ClassID,ClassSuperID) :-

methodT(MethodSuperID,ClassSuperID,MethodSuperName,_,_,_,_),

methodT(MethodID,ClassID,MethodName,_,_,_,_),

MethodSuperName = MethodName,

blockT(_,MethodID,_,[]),!.

% Find Path

projectRequired(NameProject,Pathsource,ClassID,ClassName) :-

projectS(ProjectID,NameProject,_,_,_),

sourceFolderS(SourceID,ProjectID,_),

fileS(FileID,SourceID,Pathsource),

compilationUnitT(ClassCompilationID,_,FileID,_,_),

classT(ClassID,ClassCompilationID,ClassName,_).

A.2.4 Alternative Classes with Different Interfaces

The Alternative Classes with Different Interfaces flaw shows that two classes seem to be

doing the same thing but are using different class names.

Examples for defining domain theories: An example is used to define rules for design

flaw detection as followed.

public interface TestRunListener {

/* test status constants*/

public static final int STATUS_ERROR= 1;

public static final int STATUS_FAILURE= 2;

public void testRunStarted(String testSuiteName, int testCount);

public void testRunEnded(long elapsedTime);

public void testRunStopped(long elapsedTime);

public void testStarted(String testName);

public void testEnded(String testName);

public void testFailed(int status, String testName, String trace);

}
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public class TestRunner extends BaseTestRunner {

private ResultPrinter fPrinter;

public static final int SUCCESS_EXIT= 0;

public static final int FAILURE_EXIT= 1;

public static final int EXCEPTION_EXIT= 2;

/**

* Constructs a TestRunner.

*/

public TestRunner() {

this(System.out);

}

/**

* Constructs a TestRunner using the given stream for all the output

*/

public TestRunner(PrintStream writer) {

this(new ResultPrinter(writer));

}

/**

* Constructs a TestRunner using the given ResultPrinter all the output

*/

public TestRunner(ResultPrinter printer) {

fPrinter= printer;

}

/**

* Runs a suite extracted from a TestCase subclass.

*/

static public void run(Class testClass) {

run(new TestSuite(testClass));

}

/**

* Runs a single test and collects its results.

* This method can be used to start a test run

* from your program.

* <pre>

* public static void main (String[] args) {

* test.textui.TestRunner.run(suite());

* }

* </pre>

*/

static public TestResult run(Test test) {

TestRunner runner= new TestRunner();

return runner.doRun(test);
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}

/**

* Runs a single test and waits until the user

* types RETURN.

*/

static public void runAndWait(Test suite) {

TestRunner aTestRunner= new TestRunner();

aTestRunner.doRun(suite, true);

}

/**

* Always use the StandardTestSuiteLoader. Overridden from

* BaseTestRunner.

*/

public TestSuiteLoader getLoader() {

return new StandardTestSuiteLoader();

}

public void testFailed(int status, Test test, Throwable t) {

}

public void testStarted(String testName) {

}

public void testEnded(String testName) {

}

/**

* Creates the TestResult to be used for the test run.

*/

protected TestResult createTestResult() {

return new TestResult();

}

public TestResult doRun(Test test) {

return doRun(test, false);

}

public TestResult doRun(Test suite, boolean wait) {

TestResult result= createTestResult();

result.addListener(fPrinter);

long startTime= System.currentTimeMillis();

suite.run(result);

long endTime= System.currentTimeMillis();

long runTime= endTime-startTime;

fPrinter.print(result, runTime);

pause(wait);

return result;
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}

protected void pause(boolean wait) {

if (!wait) return;

fPrinter.printWaitPrompt();

try {

System.in.read();

}

catch(Exception e) {

}

}

public static void main(String args[]) {

TestRunner aTestRunner= new TestRunner();

try {

TestResult r= aTestRunner.start(args);

if (!r.wasSuccessful())

System.exit(FAILURE_EXIT);

System.exit(SUCCESS_EXIT);

} catch(Exception e) {

System.err.println(e.getMessage());

System.exit(EXCEPTION_EXIT);

}

}

/**

* Starts a test run. Analyzes the command line arguments

* and runs the given test suite.

*/

protected TestResult start(String args[]) throws Exception {

String testCase= "";

boolean wait= false;

for (int i= 0; i < args.length; i++) {

if (args[i].equals("-wait"))

wait= true;

else if (args[i].equals("-c"))

testCase= extractClassName(args[++i]);

else if (args[i].equals("-v"))

System.err.println("JUnit "+Version.id()+" by Kent Beck and Erich Gamma");

else

testCase= args[i];

}

if (testCase.equals(""))

throw new Exception("Usage: TestRunner [-wait] testCaseName,

where name is the name of the TestCase class");

try {

Test suite= getTest(testCase);
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return doRun(suite, wait);

}

catch(Exception e) {

throw new Exception("Could not create and run test suite: "+e);

}

}

protected void runFailed(String message) {

System.err.println(message);

System.exit(FAILURE_EXIT);

}

public void setPrinter(ResultPrinter printer) {

fPrinter= printer;

}

}

public void testFailed(int status, Test test, Throwable t) {

}

alternativeClasses(x) is a target concept that uses for learning. Table A.8 shows a target

concept and domain theories which are used to construct a detection rule.

Table A.8: Domain theories and a target concept of Alternative Classes with Different
Interfaces design flaw

A target concepts and domain theories:
R1 : ∀xi ( i∈1 , 2 ) c l a s s ( x1 ) ∧ c l a s s ( x2 ) ∧ doSame ( x1 ,x2 )
⇒ a l t e r n a t i v e C l a s s e s ( xi )

R2 : ∀x∀y hasMethod ( x ,y ) ∧ method ( y ) ⇒ c l a s s ( x )
R3 : ∀y∀ypara∀ytype∀yname h a s P a r a m e t e r ( y ,ypara ) ∧ hasRe tu rnType ( y ,ytype )

hasRe tu rnType ( y ,yname ) ⇒ method ( y )
R4 : ∀para∀ytype∀yname theSamePara ( yparax1 ,yparax2 ) ∧

theSameName ( ynamex1 ,ynamex2 ) ∧ theSameType ( ytypex1 ,ytypex2 )
⇒ doSame ( x1 ,x2 )

.

All rules for detecting Alternative Classes with Different Interfaces flaw can be constructed

in form of MESs as:

%=============================================================================
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% Rule Alternative Classes with Different Interfaces

alternativeClass(PathProject,ClassID,ClassName,MethodID,MethodName,

ClassID2,ClassID2Name,MethodID2,MethodName2) :-

projectRequired(SourceProgram,PathProject,ClassID,ClassName),

projectRequired(SourceProgram,_,ClassID2,_),

methodT(MethodID,ClassID,MethodName,ParameterID1,ReturnTypeID1,_,_),

methodT(MethodID2,ClassID2,MethodName2,ParameterID2,ReturnTypeID2,_,_),

classT(ClassID2,_,ClassID2Name,_),

MethodName == MethodName2,

ClassID \= ClassID2,

length(ParameterID1,LengthID1) = length(ParameterID1,LengthID2),

LengthID1 = LengthID2,

ClassName \= ClassID2Name,

arg(1,ReturnTypeID1,TypeMethod1),

arg(1,ReturnTypeID2,TypeMethod2),

TypeMethod1 = TypeMethod2.

subAtomEqu(ParameterID1,ParameterID2) :-

arg(1,ParameterID1,basic),

arg(1,ParameterID2,basic);

arg(1,ParameterID1,class),

arg(1,ParameterID2,class);

arg(1,ParameterID1,generic),

arg(1,ParameterID2,generic).

projectRequired(NameProject,Pathsource,ClassID,ClassName) :-

projectS(ProjectID,NameProject,_,_,_),

sourceFolderS(SourceID,ProjectID,_),

fileS(FileID,SourceID,Pathsource),

compilationUnitT(ClassCompilationID,_,FileID,_,_),

classT(ClassID,ClassCompilationID,ClassName,_).

A.3 The Change Preventers Category

The Change Preventers flaws are flaws that hinder changing or further developing the soft-

ware. These flaws violate rules – suggested by Fowler and Beck – which says that classes and

possible changes should have a one-to-one relationship. For example, changes to the database

only affect one class, while changes to calculation formulas only affect the other class. Design

flaws in this category are Divergent Change, Shotgun Surgery and Parallel Inheritance Hierar-

chies.

A.3.1 Divergent Change

This flaw shows that a class picks up more responsibilities as it evolves, with no one notic-

ing that two different types of decisions are involved.
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Examples for defining domain theories: An example is used to define rules for design

flaw detection as followed.

public class CsvWriter {

public CsvWriter() {}

public void write(String[][] lines) {

for (int i = 0; i < lines.length; i++)

writeLine(lines[i]);

}

private void writeLine(String[] fields) {

if (fields.length == 0)

System.out.println();

else {

writeField(fields[0]);

for (int i = 1; i < fields.length; i++) {

System.out.print(",");

writeField(fields[i]);

}

System.out.println();

}

}

private void writeField(String field) {

if (field.indexOf(’,’) != -1 || field.indexOf(’\"’) != -1)

writeQuoted(field);

else

System.out.print(field);

}

private void writeQuoted(String field) {

System.out.print(’\"’);

for (int i = 0; i < field.length(); i++) {

char c = field.charAt(i);

if (c == ’\"’)

System.out.print("\"\"");

else

System.out.print(c);

}

System.out.print(’\"’);

}

}

divergentChange(x) is a target concept that uses for learning. Table A.9 shows a target

concept and domain theories which are used to construct a detection rule.
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Table A.9: Domain theories and a target concept of Divergent Change design flaw

A target concepts and domain theories:
R1 : ∀x c l a s s ( x ) ∧ inUse ( x ) ⇒ d i v e r g e n t C h a n g e ( x )
R2 : ∀c1∀a1 a t t r i b u t e ( a1 ) ∧ h a s A t t r i b u t e ( c1 ,a1 ) ⇒ c l a s s ( c1 )
R3 : ∀c2∀m2 method ( m2 ) ∧ hasMethod ( c2 ,m2 ) ∧ hasName ( m2 ,m2−name )
⇒ c l a s s ( c2 )

R4 : ∀c3∀m3 method ( m3 ) ∧ hasMethod ( c3 ,m3 ) ∧ hasName ( m3 ,m3−name )
⇒ c l a s s ( c3 )

R5 : ∀c1∀m2∀m3∀a1 i n v o c a t i o n ( m2 ,a1 ) ∧ i n v o c a t i o n ( m3 ,a1 )
∧ ( m2−name 6= m3−name ) ⇒ inUse ( c1 )

.

All rules for detecting Divergent Change flaw can be constructed in form of MESs as:

%=============================================================================

% Rule Divergent Change

divergentChange(ClassID,ClassName,Pathsource) :-

projectRequired(SourceProgram,Pathsource,ClassID,ClassName),

divergentChangeRules(ClassID).

divergentChangeRules(ClassID) :-

divergentChangeInAttribute(ClassID),!;

divergentChangeInMethod(ClassID),!;

divergentChangeInAM(ClassID).

divergentChangeInAttribute(ClassID) :-

fieldT(FieldID,ClassID,_,_,_),

methodT(MethodID1,ClassID,_,_,_,_,_),

methodT(MethodID2,ClassID,_,_,_,_,_),

getFieldT(_,_,MethodID1,_,_,FieldID),

getFieldT(_,_,MethodID2,_,_,FieldID),

MethodID1 \= MethodID2.

divergentChangeInMethod(ClassID) :-

methodT(MethodID,ClassID,_,_,_,_,_),

methodT(MethodID1,ClassID,_,_,_,_,_),

methodT(MethodID2,ClassID,_,_,_,_,_),

callT(_,_,MethodID1,_,_,_,MethodID),

callT(_,_,MethodID2,_,_,_,MethodID),

MethodID1 \= MethodID2.

divergentChangeInAM(ClassID) :-

fieldT(FieldID,ClassID,_,_,_),
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methodT(MethodID,ClassID,_,_,_,_,_),

methodT(MethodID1,ClassID,_,_,_,_,_),

getFieldT(_,_,MethodID,_,_,FieldID),

callT(_,_,MethodID1,_,_,_,MethodID).

projectRequired(NameProject,Pathsource,ClassID,ClassName) :-

projectS(ProjectID,NameProject,_,_,_),

sourceFolderS(SourceID,ProjectID,_),

fileS(FileID,SourceID,Pathsource),

compilationUnitT(ClassCompilationID,_,FileID,_,_),

classT(ClassID,ClassCompilationID,ClassName,_).

A.3.2 Shotgun Surgery

Shotgun Surgery flaw occurs when making a simple change requires programmers to

change several classes. The cause of this flaw is that one responsibility is split among several

classes. There may be a missing class that would understand the whole responsibility (and which

would get a cluster of changes). Moreover this can happen through an overzealous attempts to

eliminate Divergent Change.

Examples for defining domain theories: An example is used to define rules for design

flaw detection as followed.

public class MsgLog {

protected static String defaultLogFile = "c:\\msglog.txt";

public static void write(String s) throws IOException {

write(defaultLogFile, s);

}

public static void write(String f, String s) throws IOException {

TimeZone tz = TimeZone.getTimeZone("EST"); // or PST, MID, etc ...

Date now = new Date();

DateFormat df = new SimpleDateFormat ("yyyy.mm.dd hh:mm:ss ");

df.setTimeZone(tz);

String currentTime = df.format(now);

FileWriter aWriter = new FileWriter(f, true);

aWriter.write(currentTime + " " + s + "\n");

aWriter.flush();

aWriter.close();

}

}
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shotgunSurgery(x) is a target concept that uses for learning. Table A.10 shows a target

concept and domain theories which are used to construct a detection rule.

Table A.10: Domain theories and a target concept of Shotgun Surgery design flaw

A target concepts and domain theories:
R1 : ∀c1 c l a s s ( c1 ) ∧ p a r a l l e l C a l l ( c1 ) ⇒ s h o t g u n S u r g e r y ( c1 )
R2 : ∀c1∀m1 method ( m1 ) ∧ hasMethod ( c1 ,m1 ) ∧ hasName ( c1 ,c1−name )
⇒ c l a s s ( c1 )

R3 : ∀c1∀c2∀c3 c a l l e d C l a s s ( c1 ,c2 ) ∧ c a l l i n g C l a s s ( c1 ,c3 )
⇒ p a r a l l e l C a l l ( c1 )

R4 : ∀c2∀m2 method ( m2 ) ∧ hasMethod ( c2 ,m2 ) ∧
hasName ( c2 ,c2−name ) ⇒ c l a s s ( c2 )

R5 : ∀c3∀m3 method ( m3 ) ∧ hasMethod ( c3 ,m3 ) ∧
hasName ( c3 ,c3−name ) ⇒ c l a s s ( c3 )

R6 : ∀c1∀c2∀m1∀m2 i n v o c a t i o n ( m2 ,m1 ) ∧ ( c2−name 6= c1−name )
⇒ c a l l e d C l a s s ( c1 ,c2 )

R7 : ∀c1∀c3∀m1∀m3 i n v o c a t i o n ( m1 ,m3 ) ∧ ( c1−name 6= c3−name )
⇒ c a l l e d C l a s s ( c1 ,c3 )

.

All rules for detecting Shotgun Surgery flaw can be constructed in form of MESs as:

%=============================================================================

%================ Shotgun Surgery Rules

shotGunSurgery(ClassID,ClassName,Pathsource) :-

projectRequired(SourceProgram,Pathsource,ClassID,ClassName),

shotGunSurgeryRules(ClassID).

shotGunSurgeryRules(ClassID) :-

shotGunSurgeryMMM(ClassID),write(’Cast MMM’),!;

shotGunSurgeryMM2(ClassID),write(’Cast MM2’),!;

shotGunSurgeryMmMA(ClassID),write(’Cast MmMA’),!;

shotGunSurgeryInline(ClassID),write(’Cast Inline’),!.

shotGunSurgeryMMM(ClassID) :-

methodT(MethodID,ClassID,_,_,_,_,_),

callT(_,_,MethodID,_,_,_,MethodCallingID),

methodT(MethodCallingID,ClassCallingID,_,_,_,_,_),

\+methodT(MethodCallingID,ClassID,_,_,_,_,_),

callT(_,_,MethodCallerID,_,_,_,MethodID),

methodT(MethodCallerID,ClassCallerID,_,_,_,_,_),

\+methodT(MethodCallerID,ClassID,_,_,_,_,_).
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shotGunSurgeryMM2(ClassID) :-

methodT(MethodID,ClassID,_,_,_,_,_),

callT(_,_,MethodID1,_,_,_,MethodID),

callT(_,_,MethodID2,_,_,_,MethodID),

MethodID1 \= MethodID2,

\+methodT(MethodID1,ClassID,_,_,_,_,_),

\+getFieldT(_,_,MethodID,_,_,FieldID),

fieldT(FieldID,ClassID,_,_,_).

shotGunSurgeryMmMA(ClassID) :-

methodT(MethodID,ClassID,_,_,_,_,_),

callT(_,_,MethodID1,_,_,_,MethodID),

callT(_,_,MethodID2,_,_,_,MethodID),

MethodID1 \= MethodID2,

\+methodT(MethodID1,ClassID,_,_,_,_,_),

getFieldT(_,_,MethodID,_,_,FieldID),

fieldT(FieldID,ClassID,_,_,_).

shotGunSurgeryInline(ClassID) :-

methodT(MethodID,ClassID,_,_,_,_,_),

blockT(BlockID,MethodID,_,[ReturnID]),

returnT(ReturnID,BlockID,_,ExpressID),

callT(ExpressID,ReturnID,MethodID,_,_,_,MethodCallingID),

MethodID \= MethodCallingID,

ClassCallingID \= ClassID,

methodT(MethodCallingID,ClassCallingID,_,_,_,_,_),

getFieldT(_,_,MethodCallingID,_,_,FieldCallingID),

fieldT(FieldCallingID,MethodCallingID,_,_,_).

projectRequired(NameProject,Pathsource,ClassID,ClassName) :-

projectS(ProjectID,NameProject,_,_,_),

sourceFolderS(SourceID,ProjectID,_),

fileS(FileID,SourceID,Pathsource),

compilationUnitT(ClassCompilationID,_,FileID,_,_),

classT(ClassID,ClassCompilationID,ClassName,_).

A.3.3 Parallel Inheritance Hierarchies

The hierarchies of structure programs probably grow in parallel. That is a class and its pair

being needed at the same time. As usual, it probably is not bad at first but after two or more pairs

get introduced. This becomes too complicated structure to change one thing. (Often both classes

embody different aspects of the same decision.) This situation introduces Parallel Inheritance

Hierarchies flaw in software system.

Examples for defining domain theories: An example is used to define rules for design

flaw detection as followed.
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class Memento {

private String state;

public Memento(String stateToSave) { state = stateToSave; }

public String getSavedState() { return state; }

}

class Originator {

private String state;

/* lots of memory consumptive private data that is not necessary to define the

* state and should thus not be saved. Hence the small memento object. */

public void set(String state) {

System.out.println("Originator: Setting state to "+state);

this.state = state;

}

public Memento saveToMemento() {

System.out.println("Originator: Saving to Memento.");

return new Memento(state);

}

public void restoreFromMemento(Memento m) {

state = m.getSavedState();

System.out.println("Originator: State after restoring from Memento: "+state);

}

}

class Caretaker {

private ArrayList<Memento> savedStates = new ArrayList<Memento>();

public void addMemento(Memento m) { savedStates.add(m); }

public Memento getMemento(int index) { return savedStates.get(index); }

}

class MementoExample {

public static void main(String[] args) {

Caretaker caretaker = new Caretaker();

Originator originator = new Originator();

originator.set("State1");

originator.set("State2");

caretaker.addMemento( originator.saveToMemento() );

originator.set("State3");

caretaker.addMemento( originator.saveToMemento() );

originator.set("State4");

originator.restoreFromMemento( caretaker.getMemento(1) );

}

}
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parallelInheritanceHierarchies(x) is a target concept that uses for learning. Table A.11

shows a target concept and domain theories which are used to construct a detection rule.

Table A.11: Domain theories and a target concept of Parallel Inheritance Hierarchies
design flaw

A target concepts and domain theories:
R1 : ∀c1∀c2 c l a s s ( c1 ) ∧ c l a s s ( c2 ) ∧ p a r a l l e l I n h e r i t ( c1 ,c2 )
⇒ p a r a l l e l I n h e r i t a n c e H i e r a r c h i e s ( c1 )

R2 : ∀c1∀c2 i n h e r i t O r i g i n a t e ( c1 ) ∧ i n h e r i t C a r e T a k e r ( c2 ) ∧
c h a i n g P a r a l l e l ( c1 ) ⇒ p a r a l l e l I n h e r i t ( c1 ,c2 )

R3 : ∀c1∀a1 a t t r i b u t e ( a1 ) ∧ h a s A t t r i b u t e ( c1 ,a1 ) ∧
hasName ( a1 ,a1−name ) ⇒ c l a s s ( c1 )

R4 : ∀c2∀a2 a t t r i b u t e ( a2 ) ∧ h a s A t t r i b u t e ( c2 ,a2 ) ∧
hasName ( a2 ,a2−name ) ⇒ c l a s s ( c2 )

R5 : ∀c11∀a11 a t t r i b u t e ( a11 ) ∧ h a s A t t r i b u t e ( c11 ,a11 ) ∧
hasName ( a11 ,a11−name ) ⇒ c l a s s ( c11 )

R6 : ∀c22∀a22 a t t r i b u t e ( a22 ) ∧ h a s A t t r i b u t e ( c22 ,a22 ) ∧
hasName ( a22 ,a22−name ) ⇒ c l a s s ( c22 )

R7 : ∀c1∀c11 i n h e r i t ( ( c1 ,c11 ) ) ∧ ( a1−name = a11−name )
⇒ i n h e r i t O r i g i n a t e ( c1 )

R8 : ∀c2∀c22 i n h e r i t ( ( c2 ,c22 ) ) ∧ ( a2−name = a22−name )
⇒ i n h e r i t C a r e T a k e r ( c2 )

R9 : ∀a2∀c2 muta t eVa lue ( a2 ) ⇒ c h a i n g P a r a l l e l ( c2 )
R10 : ∀a1∀a2 muta t eVa lue ( a1 ) ⇒ muta t eVa lue ( a2 )

.

All rules for detecting Parallel Inheritance Hierarchies flaw can be constructed in form of
MESs as:

%=============================================================================

%================ Rules Parallel Inheritance Hierachy

parallelIH(ClassID,ClassName,Pathsource) :-

projectRequired(SourceProgram,Pathsource,ClassID,ClassName),

parallelIHRules(ClassID,ClassName).

parallelIHRules(ClassHostID,ClassName) :-

classT(ClassHostID,_,ClassName,_),

methodT(MethodHostID,ClassHostID,_,_,_,_,_),

localT(ObjCareTakerID,_,MethodHostID,_,_,InitialCareTakerID),

newClassT(InitialCareTakerID,_,MethodHostID,_,_,CareTakerID,_,_),

localT(ObjOriginatorID,_,MethodHostID,_,_,InitialOriginatorID),

newClassT(InitialOriginatorID,_,MethodHostID,_,_,OriginatorID,_,_),

classT(MementoID,_,_,_),
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classT(OriginatorID,_,_,_),

classT(CareTakerID,_,_,_),

fieldT(_,MementoID,_,StateMementoID,_),

fieldT(StateOrgIDID,OriginatorID,_,StateOrgID,_),

StateMementoID = StateOrgID,

% originator Update State normal

callT(CallMethodOriginatorsetID,_,MethodHostID,_,_,_,MethodOriginatorSetID),

identT(_,CallMethodOriginatorsetID,_,_,ObjOriginatorID),

% and in site Set method in Ori

assignT(AssignID,_,MethodOriginatorSetID,_,_),

getFieldT(_,AssignID,MethodOriginatorSetID,_,_,StateOrgIDID),

% caretaker.addMemento [originator.saveToMemento()]

callT(CallAddMomento,_,MethodHostID,_,_,_,Method_care_addMementorID),

callT(_,CallAddMomento,MethodHostID,_,_,_,Method_Ori_saveToMementorID),

identT(_,CallAddMomento,MethodHostID,_,ObjCareTakerID),

% care taker.addMemento() update state backup

getFieldT(_,_,Method_care_addMementorID,_,_,FiledUpdateID),

fieldT(FiledUpdateID,CareTakerID,_,_,_),

% originator.saveToMemento()

newClassT(_,_,Method_Ori_saveToMementorID,_,_,MementoID,_,_),!.

projectRequired(NameProject,Pathsource,ClassID,ClassName) :-

projectS(ProjectID,NameProject,_,_,_),

sourceFolderS(SourceID,ProjectID,_),

fileS(FileID,SourceID,Pathsource),

compilationUnitT(ClassCompilationID,_,FileID,_,_),

classT(ClassID,ClassCompilationID,ClassName,_).

A.4 The Dispensables Category

The common thing for the Dispensables category is that they all represent something un-

necessary that should be removed from the software system. This group contains two types of

flaws (dispensable classes and dispensable code) but since they violate the same principle (pro-

grammers can look at them together). If a class does not do enough works, it needs to be removed

or its responsibility needs to be increased. This is the case with the Lazy class and the Data class

flaws. Code is not used or is redundant that needs to be removed. This is the case with Duplicate

Code and Dead Code flaws.
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A.4.1 Lazy Class

The Lazy Class is a flaw that a class does not do enough operations its parents, children,

or callers seem to be doing all the associated work. There is not enough behavior which left in the

class to justify its continued existence.

Examples for defining domain theories: An example is used to define rules for design

flaw detection as followed.

public class AssertionFailedError extends Error {

public AssertionFailedError () {

}

public AssertionFailedError (String message) {

super (message);

}

}

lazyClass(x) is a target concept that uses for learning. Table A.12 shows a target concept

and domain theories which are used to construct a detection rule.

Table A.12: Domain theories and a target concept of Lazy Class design flaw

A target concepts and domain theories:
R1 : ∀c1∀c2 c l a s s ( c1 ) ∧ c l a s s ( c2 ) ∧

d i r e c t I n h e r i t H i e r a r c h y ( c2 ,c1 ) ⇒ l a z y C l a s s ( c2 )
R2 : ∀c1∀m1 method ( m1 ) ∧ hasMethod ( c1 ,m1 ) ∧ a t t r i b u t e ( a1 ) ∧

h a s A t t r i b u t e ( c1 ,a1 ) ⇒ c l a s s ( c1 )
R3 : ∀c2∀m2 method ( m2 ) ∧ hasMethod ( c2 ,m2 ) ∧ a t t r i b u t e ( a2 ) ∧

h a s A t t r i b u t e ( c2 ,a2 ) ⇒ c l a s s ( c2 )
R4 : ∀c1∀c2∀a1∀a2∀m1∀m2 hasName ( m1 ,m1−name ) ∧ hasName ( m2 ,m2−name ) ∧

hasName ( a1 ,a1−name ) ∧ hasName ( a2 ,a2−name ) ∧
theSame ( m1−name ,m2−name ) ∧ theSame ( a1−name ,a2−name )
⇒ d i r e c t I n h e r i t H i e r a r c h y ( c2 ,c1 )

.

All rules for detecting Lazy Class flaw can be constructed in form of MESs as:

%=============================================================================
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%================ Rules Lazy Class

lazyClass(ClassID,Name,Pathsource,ClassID) :-

projectSource(SourceProgram,Name,Pathsource,ClassID),

extendsT(ClassID,ClassParentID),

constructorT(_,ClassID,_,_,_),

\+ fieldT(_,ClassID,_,_,_),

\+ methodT(_,ClassID,_,_,_,_,_),

write(’1 LazyClass : inherit pure’),nl;

projectWanted(’GanttProject’,Name,Pathsource,ClassID),

classT(ClassInnerID,ClassID,_,_),

write(’2 LazyClass : inner Class’),nl;

projectWanted(’GanttProject’,Name,Pathsource,ClassID),

methodT(MethodID,ClassID,_,_,_,_,_),

callT(CallID,_,MethodID,_,_,_,MethodInlineID),

getFieldT(_,CallID,_,_,_,AttriID),

fieldT(AttriID,MethodID,_,_,_),

returnT(_,_,MethodID,CallID),

methodT(MethodInlineID,ClassInlineID,_,_,_,_,_),

getFieldT(_,_,MethodInlineID,_,_,FieldInlineID),

fieldT(FieldInlineID,ClassInlineID,_,_,_),

returnT(_,_,MethodInlineID,_),

write(’3 LazyClass : inline class’),nl,!.

projectSource(NameProject,Name,Pathsource,ClassID) :-

projectS(ProjectID,NameProject,_,_,_),

sourceFolderS(SourceID,ProjectID,_),

fileS(FileID,SourceID,Pathsource),

compilationUnitT(ClassCompilationID,_,FileID,_,_),

classT(ClassID,ClassCompilationID,Name,_)

A.4.2 Data class

The Data class flaw is a flaw that a class consists only of public data members or of simple

getting and setting methods. This lets clients depend on the mutability and representation of the

class. This is common for classes to begin like this: programmers realize that some data is part

of an independent object, so programmers extract it. But objects are about the commonality of

behavior. These objects are not developed enough as yet to have much behavior.

Examples for defining domain theories: An example is used to define rules for design

flaw detection as followed.

public class FilterMap implements Serializable {
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...

private String filterName = null;

public String getFilterName() {

return (this.filterName);

}

public void setFilterName(String filterName) {

this.filterName = filterName;

}

private String servletName = null;

return (this.servletName);

}

public void setServletName(String servletName) {

this.servletName = servletName;

}

...

}

dataClass(x) is a target concept that uses for learning. Table A.13 shows a target concept

and domain theories which are used to construct a detection rule.

Table A.13: Domain theories and a target concept of Data Class design flaw

Target concepts and domain theory:
R1 : ∀x c l a s s ( x ) ∧ ¬not−d a t a c l a s s ( x ) ⇒ d a t a c l a s s ( x )
R2 : ∀x ∀y not−d a t a c l a s s ( y ) ∧ ¬ i s ( x ,y ) ⇒
¬not−d a t a c l a s s ( x )

R3 : ∀x ∀y hasMethod ( x,y ) ∧ method−o p e r a t i o n ( y ) ⇒
not−d a t a c l a s s ( x )

R4 : ∀x ¬muta to r−method ( x ) ∧ ¬ a c c e s s o r−method ( x ) ⇒
method−o p e r a t i o n ( x )

R5 : ∀x ∀y a c c e s s o r−method ( y ) ∧ ¬ i s ( x ,y ) ⇒
¬ a c c e s s o r−method ( x ) )

R6 : ∀x ∀y muta to r−method ( y ) ∧ ¬ i s ( x ,y ) ⇒
¬muta to r−method ( x ) )

R7 : ∀x ∀y ∀z has−a t t r i b u t e ( z,y ) ∧ has−method ( z,x ) ∧
method−r e t u r n t y p e ( x,[VOID,NULL] ) ∧
method−p a r a m e t e r ( x , [ { y , } ] ) ⇒ muta to r−method ( x )

R8 : ∀x ∀y ∀z has−a t t r i b u t e ( z , y ) ∧ has−method ( z , x ) ∧
method−r e t u r n t y p e ( x , [ y , ] ) ∧
method−p a r a m e t e r ( x , [ {NULL,NULL} ] ) ⇒
a c c e s s o r−method ( x )

.
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All rules for detecting Data Class flaw can be constructed in form of MESs as:

%=============================================================================

%================ Rules Data Class

dataClass(ClassID_DataClass,ClassName,PathProject) :-

projectRequired(SourceProgram,PathProject,ClassID_DataClass,ClassName),

methodT(_,ClassID_DataClass,_,_,_,_,_),

fieldT(_,ClassID_DataClass,_,_,_),

\+notDataClass(ClassID_DataClass),

write(’Data Class in case 1: Set-Get Method’);

dataClass1(ClassID_DataClass,ClassName,PathProject) :-

projectRequired(_,PathProject,ClassID_DataClass,ClassName),

noMethodBeing(ClassID_DataClass),

fieldT(_,ClassID_DataClass,_,_,_),

\+methodT(_,ClassID_DataClass,_,_,_,_,_),

write(’Data Class in case 2: No Method Exist’)

accessorMethod(AccessorMethodID) :-

classT(X,_,_,_),

fieldT(FieldID,ClassID,_,_,_),

methodT(AccessorMethodID,ClassID,_,_,_,_,_),

blockT(A,AccessorMethodID,_,_),

returnT(ReturnID,_,AccessorMethodID,_),

getFieldT(_,ReturnID,AccessorMethodID,_,_,FieldID).

mutatorMethod(MutatorMethodID) :-

classT(X,_,_,_),

fieldT(FieldID,ClassID,_,_,_),

methodT(MutatorMethodID,ClassID,_,ParameterList,_,_,_),

paramT(EachParameter,MutatorMethodID,_,_),

member(EachParameter,ParameterList),

assignT(_,_,MutatorMethodID,GetID,IdentID),

getFieldT(GetID,_,MutatorMethodID,_,_,FieldID),

identT(IdentID,_,ClassID,_,EachParameter).

notDataClass(NotDataClassID) :-

classT(NotDataClassID,_,_,_),

methodT(MethodInDataClass,NotDataClassID,_,_,_,_,_),

\+ mutatorMethod(MethodInDataClass),

\+ accessorMethod(MethodInDataClass).

projectRequired(NameProject,Pathsource,ClassID,ClassName) :-

projectS(ProjectID,NameProject,_,_,_),

sourceFolderS(SourceID,ProjectID,_),

fileS(FileID,SourceID,Pathsource),

compilationUnitT(ClassCompilationID,_,FileID,_,_),

classT(ClassID,ClassCompilationID,ClassName,_).
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A.4.3 Duplicate Code

Duplicate Code flaws is a code where the same code structure is presented in more than one

place. This duplication can be syntactic or semantic. In the manner of duplication, methods do the

same thing with a different algorithm. Forming template methods by using substitute algorithm

are required in detecting this flaw.

Examples for defining domain theories: An example is used to define rules for design

flaw detection as followed.

String foundPerson(String[] people){

for (int i = 0; i < people.length; i++){

if (people[i].equals ("Don")){ return "Don"; }

if (people[i].equals ("John")){ return "John"; }

.....

if (people[i].equals ("Kent")){ return "Kent"; }

}

return "";

}

void printOwing()

{

printBanner();

//print details

System.out.println (&quot;name: &quot; + _name);

System.out.println (&quot;amount &quot; + getOutstanding());

}

duplicateCode(x) is a target concept that uses for learning. Table A.14 shows a target

concept and domain theories which are used to construct a detection rule.

All rules for detecting Duplicate Code flaw can be constructed in form of MESs as:

%=============================================================================

% Divergent Change Rules

duplicateCode(ClassID,ClassName,Pathsource) :-

projectRequired(’CommonCLI’,Pathsource,ClassID,ClassName),

duplicateCodeRules(ClassID).
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duplicateCodeRules(ClassID) :-

duplicateCodeSwitch(ClassID),!;

duplicateCodePrintLN(ClassID),!;

duplicateCodeForIf(ClassID),!,

duplicateCodeWhileIf(ClassID),!;

duplicateCodeDoIf(ClassID).

duplicateCodeSwitch(ClassID) :-

methodT(MethodID,ClassID,_,_,_,_,_),

switchT(SwitchID,_,MethodID,_,_),

caseT(CaseID_one,SwitchID,_,_),

ExecNumberID1 is CaseID_one +1,

ExecNumberID2 is CaseID_one +2,

execT(ExecNumberID1,SwitchID,_,_),

execT(ExecNumberID2,SwitchID,_,_),

CaseID_two \= CaseID_one,

caseT(CaseID_two,SwitchID,_,_),

ExecNumberID1_two is CaseID_two +1,

ExecNumberID2_two is CaseID_two +2,

execT(ExecNumberID1_two,SwitchID,_,_),

execT(ExecNumberID2_two,SwitchID,_,_).

duplicateCodePrintLN(ClassID) :-

methodT(MethodID,ClassID,_,_,_,_,_),

execT(ExecID1,_,MethodID,_),

callT(CallID1,ExecID1,MethodID,_,_,_,PrintLNID),

getFieldT(_,CallID1,MethodID,_,out,_),

methodT(PrintLNID,_,println,_,_,_,_),

ExecID1 \= ExecID2,

execT(ExecID2,_,MethodID,_),

callT(CallID2,ExecID2,MethodID,_,_,_,PrintLNID),

getFieldT(_,CallID2,MethodID,_,out,_),

methodT(PrintLNID,_,println,_,_,_,_).

duplicateCodeForIf(ClassID) :-

methodT(MethodID,ClassID,_,_,_,_,_),

forT(ForLoopID,_,MethodID_,_,_,_,ForBodyID),

blockT(ForBodyID,ForLoopID,_,_),

Table A.14: Domain theories and a target concept of Duplicate Code design flaw

Target concepts and domain theory:
R1 : ∀c c l a s s ( c ) ∧ d u p l i c a t e P r i n t L N ( c ) ⇒ d u p l i c a t e C o d e ( c )
R2 : ∀c∀m hasMethod ( c,m ) ∧ method ( m ) ⇒ c l a s s ( c )
R3 : ∀c∀m∀s1∀s2 hasS ta t emen tPN ( s1 ,m ) ∧ hasS ta t emen tPN ( s2 ,m )
⇒ d u p l i c a t e P r i n t L N ( c )

.
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ifT(IFID_one,ForBodyID,_,_,_,_),

ifT(IFID_two,ForBodyID,_,_,_,_),

IFID_one \= IFID_two.

duplicateCodeWhileIf(ClassID) :-

methodT(MethodID,ClassID,_,_,_,_,_),

whileT(WhileLoopID,_,MethodID,_,BlockWhileID),

blockT(BlockWhileID,WhileLoopID,_,_),

ifT(IfID_one,BlockWhileID,_,_,_,_),

ifT(IfID_two,BlockWhileID,_,_,_,_),

IfID_one \= IfID_two.

duplicateCodeDoIf(ClassID) :-

methodT(MethodID,ClassID,_,_,_,_,_),

doWhileT(DoWhileID,_,MethodID,_,BlockDoID),

blockT(BlockDoID,DoWhileID,_,_),

ifT(IfID_one,BlockDoID,_,_,_,_),

ifT(IfID_two,BlockDoID,_,_,_,_),

IfID_one \= IfID_two.

projectRequired(NameProject,Pathsource,ClassID,ClassName) :-

projectS(ProjectID,NameProject,_,_,_),

sourceFolderS(SourceID,ProjectID,_),

fileS(FileID,SourceID,Pathsource),

compilationUnitT(ClassCompilationID,_,FileID,_,_),

classT(ClassID,ClassCompilationID,ClassName,_).

A.4.4 Dead Code

In software evolution, software requirements are changed or new approaches are introduced

without adequate cleanup. Complicated logic results in some combinations of conditions that

cannot actually happen. A variable, parameter, field, code fragment, method, or class is not used

anywhere. These situations lead to Dead Code flaws in software systems.

Examples for defining domain theories: An example is used to define rules for design

flaw detection as followed.

public class DeadCode{

public void g(){

System.out.println("Hello");

return;

System.out.println("World!");

}

public int f (int x, int y){

int z=x+y;
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return x*y;

}

}

deadCode(x) is a target concept that uses for learning. Table A.15 shows a target concept

and domain theories which are used to construct a detection rule.

Table A.15: Domain theories and a target concept of Dead Code design flaw

A target concepts and domain theories:
R1 : ∀a∀c a t t r i b u t e ( a ) ∧ unUsed ( a ,c ) ⇒ deadCode ( a )
R2 : ∀c∀m method ( m ) ∧ hasMethod ( c ,m ) ∧ ⇒ c l a s s ( c )
R3 : ∀c∀a c l a s s ( c ) ∧ h a s A t t r i b u t e ( c ,a ) ⇒ a t t r i b u t e ( a )
R4 : ∀c∀a∀m c a l l A t t r i b u t e ( m ,a ) ⇒ unUsed ( a ,c )

.

All rules for detecting Dead Code flaw can be constructed in form of MESs as:

%=============================================================================

% Rules Dead Code

deadCode(ClassID,ClassName,Pathsource) :-

projectRequired(’CommonCLI’,Pathsource,ClassID,ClassName),

deadCodeRules(ClassID).

deadCodeRules(ClassID) :-

deadCodeBlankImplement(ClassID),!;

deadCodeRulesMethod(ClassID),!;

deadCodeRulesAttribute(ClassID).

deadCodeRulesAttribute(ClassID) :-

fieldT(FieldID,ClassID,_,_,_),

\+getFieldT(AnyCallID,_,_,_,_,FieldID),!.

deadCodeRulesMethod(ClassID) :-

methodT(MethodID,ClassID,_,_,_,_,_),

\+callT(AnyClassID,_,_,_,_,_,ClassID),

\+callT(_,_,ClassID,_,_,_,AnyClassID),

\+getFieldT(_,_,ClassID,_,_,AnyFieldID),!.

deadCodeBlankImplement(ClassID) :-

methodT(MethodID,ClassID,_,_,_,_,_),

blockT(_,ClassID,_,[]),

extendsT(ClassID,AnyClassExtendID),
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\+classT(AnyClassExtendID,_,’Object’,_),!;

methodT(MethodID,ClassID,_,_,_,_,_),

\+blockT(AnyBlockID,ClassID,_,_),

\+interfaceT(ClassID).

projectRequired(NameProject,Pathsource,ClassID,ClassName) :-

projectS(ProjectID,NameProject,_,_,_),

sourceFolderS(SourceID,ProjectID,_),

fileS(FileID,SourceID,Pathsource),

compilationUnitT(ClassCompilationID,_,FileID,_,_),

classT(ClassID,ClassCompilationID,ClassName,_).

A.5 The Couplers Category

This group has four coupling-related flaws – Feature Envy, Inappropriate Intimacy, Mes-

sage Chains and Middle Man. One design principle that has been around for decades is low

coupling. This group has 3 flaws that represent high coupling. Middle Man flaw, on the other

hand, represents a problem that might be created when it tries to avoid high coupling with con-

stant delegation. Middle Man is a class that is doing too much simple delegation instead of really

contributing to the application.

A.5.1 Feature Envy

Feature Envy flaws is a method of such classes that seems to be focused on manipulating

the data of other classes rather than its own.

Examples for defining domain theories: An example (org.apache.catalina.
core.ApplicationFilterFactory class) is used to define rules for design flaw detec-
tion as followed.

public final class ApplicationFilterFactory {

private boolean matchFiltersServlet(FilterMap filterMap, String servletName) {

if (servletName == null) {

return false;

} else {

if (servletName.equals(

filterMap.getServletName())){

return true;

} else {

return false;

}

}

}

}
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featureEnvy(x) is a target concept that uses for learning. Table A.16 shows a target concept

and domain theories which are used to construct a detection rule.

Table A.16: Domain theories and a target concept of Feature Envy design flaw

A target concepts and domain theories:
R1 : ∀c c l a s s ( c ) ∧ m a n i p u l a t i n g C l a s s ( c ) ⇒ f e a t u r e E n v y ( c )
R2 : ∀c∀ma method ( m ) ∧ hasMethod ( c ,m ) ∧
a t t r i b u t e ( a ) ∧ i n v o c a t e ( m ,a ) ⇒ c l a s s ( c )
R3 : ∀m∀a h a s G e t F i e l d ( m ,a ) ∧ r e t u r n P a r a m e t e r ( m ,a )
⇒ method ( m )

.

All rules for detecting Feature Envy flaw can be constructed in form of MESs as:

%=============================================================================

% Rules Feature Envy

fetureEnvy(ClassID,ClassName,Pathsource) :-

projectRequired(’CommonCLI’,Pathsource,ClassID,ClassName),

fetureEnvyRules(ClassID,ClassName).

fetureEnvyRules(ClassID,ClassName) :-

returnParameterData(ClassID,ClassName);

returnDataDefineobject(ClassID,ClassName).

returnParameterData(ClassID,ClassName) :-

classT(ClassID,_,ClassName,_),

methodT(MethodID,ClassID,_,_,_,_,_),

paramT(_,MethodID,ParameterList,FieldDataName),

fieldT(FieldDataID,_,_,FieldDataName,_),

callT(_,_,MethodID,_,_,_,MethodDataID),

methodT(MethodDataID,ClassDataID,_,_,_,_,_),

getFieldT(_,_,MethodDataID,_,_,FieldDataID),

fieldT(FieldDataID,ClassDataID,_,_,_),

ClassID \= ClassDataID,

checkIsClass(ParameterList),!.

returnDataDefineobject(ClassID,ClassName) :-

classT(ClassID,_,ClassName,_),

methodT(MethodID,ClassID,_,_,_,_,_),

localT(LocalID,_,MethodID,_,_,_),

newClassT(_,LocalID,MethodID,_,_,_,_,_),

returnT(_,_,MethodID,ExpressID),

callT(CallID,_,MethodID,_,_,_,MethodDataID),
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identT(_,CallID,MethodID,_,LocalID),

methodT(MethodDataID,ClassDataID,_,_,_,_,_),

fieldT(FieldDataID,ClassDataID,_,_,_),

getFieldT(_,_,MethodDataID,_,_,FieldDataID),!.

checkIsClass(ParameterList) :-

atom(ParameterList),

sub_atom(ParameterList, _, _, _,class).

projectRequired(NameProject,Pathsource,ClassID,ClassName) :-

projectS(ProjectID,NameProject,_,_,_),

sourceFolderS(SourceID,ProjectID,_),

fileS(FileID,SourceID,Pathsource),

compilationUnitT(ClassCompilationID,_,FileID,_,_),

classT(ClassID,ClassCompilationID,ClassName,_).

A.5.2 Inappropriate Intimacy

Inappropriate Intimacy flaw means that two classes are coupled tightly to each other. It

shows that two classes probably became intertwined a little at a time. One class accesses internal

(should-be-private) parts of another class (There also is a related form of Inappropriate Intimacy

between a subclass and its parents).

Examples for defining domain theories: An example is used to define rules for design

flaw detection as followed.

class Point2d {

/* The X and Y coordinates of the point--instance variables */

private double x;

private double y;

public boolean debug; // A trick to help with debugging

public Point2d (double px, double py) { // Constructor

x = px;

y = py;

debug = false; // turn off debugging

}

public Point2d () { // Default constructor

this (0.0, 0.0); // Invokes 2 parameter Point2D constructor

}

// Note that a this() invocation must be the BEGINNING of

// statement body of constructor

public Point2d (Point2d pt) { // Another consructor
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x = pt.getX();

y = pt.getY();

// a better method would be to replace the above code with

// this (pt.getX(), pt.getY());

// especially since the above code does not initialize the

// variable debug. This way we are reusing code that is already

// working.

}

public void dprint (String s) {

// print the debugging string only if the "debug"

// data member is true

if (debug)

System.out.println("Debug: " + s);

}

public void setDebug (boolean b) {

debug = b;

}

public void setX(double px) {

dprint ("setX(): Changing value of X from " + x + " to " + px );

x = px;

}

public double getX() {

return x;

}

......

}

public class Point2dTest {

public static void main(String[] args) {

Point2d r1 = new Point2d(1, 1);

Point2d r2 = new Point2d(2, 3);

int u = r1.getX(); // Invoke Rect methods

r1.debug = false;

if (r1.getX() > 5)) // Use fields and invoke a method

System.out.println("(" + r1.getX() + "," + r2.getX()+ ") is inside the union");

}

......

}

inappropriateIntimacy(x) is a target concept that uses for learning. Table A.17 shows a

target concept and domain theories which are used to construct a detection rule.
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Table A.17: Domain theories and a target concept of Inappropriate Intimacy design flaw

A target concepts and domain theories:
R1 : ∀c1∀c2 c l a s s ( c1 ) ∧ c l a s s ( c2 ) ∧ ¬ l i k e w i s e ( c1 ,c2 )
∧ i n a p p r o p r i a t e C a l l ( c1 ,c2 ) ⇒ i n a p p r o p r i a t e I n t i m a c y ( c1 ,c2 )

R2 : ∀c1∀m1 method ( m1 ) ∧ hasMethod ( c1 ,m1 ) ⇒ c l a s s ( c1 )
R3 : ∀c2∀a2 a t t r i b u t e ( a2 ) ∧ h a s A t t r i b u t e ( c2 ,a2 ) ⇒ c l a s s ( c2 )
R4 : ∀c1∀c2∀m1∀a2 g e t F i e l d ( m1 ,a2 ) ⇒ i n a p p r o p r i a t e C a l l ( c1 ,c2 )

.

All rules for detecting Inappropriate Intimacy flaw can be constructed in form of MESs as:

%=============================================================================

% Rules Inappropriate Intimacy

inApproIntimacy(Pathsource,ClassID,ClassName) :-

projectRequired(SourceProgram,Pathsource,ClassID,ClassName),

inappropriateInimacy(ClassID).

inappropriateInimacy(ClassID) :-

inAppropriateGen(ClassID);

inAppropriateInher(ClassID).

inAppropriateGen(ClassID) :-

methodT(MethodID,ClassID,_,_,_,_,_),

fieldT(FieldID,Class2ID,_,_,_),

ClassID \= Class2ID,

getFieldT(_,_,ClassID,_,_,FieldID).

inAppropriateInher(ClassID) :-

extendsT(ClassID,ClassExtendID),

methodT(MethodID,ClassID,_,_,_,_,_),

fieldT(FieldID,ClassExtendID,_,_,_),

getFieldT(_,_,ClassID,_,_,FieldID).

projectRequired(NameProject,Pathsource,ClassID,ClassName) :-

projectS(ProjectID,NameProject,_,_,_),

sourceFolderS(SourceID,ProjectID,_),

fileS(FileID,SourceID,Pathsource),

compilationUnitT(ClassCompilationID,_,FileID,_,_),

classT(ClassID,ClassCompilationID,ClassName,_).
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A.5.3 Message Chains

Message Chains flaw is a flaw that an object must cooperate with other objects to get things

done. So that is a good operation. The problem is that this couples both the objects and the path

to get to them. This sort of coupling goes against two maxims of object-oriented programming:

Tell, Don’t Ask and the Law of Demeter. Tell, Don’t Ask shows that instead of asking for objects

so that programmers can manipulate them, programmers simply tell them to do the manipulation

for him/her. It is phrased even more clearly in the Law of Demeter: A method should not talk to

strangers. It is inferred that it should talk only to itself, its arguments, its own fields, or the objects

it creates.

Examples for defining domain theories: An example is used to define rules for design

flaw detection as followed.

public class TestRunner extends BaseTestRunner implements TestRunContext {

private static final int GAP= 4;

private static final int HISTORY_LENGTH= 5;

protected JFrame fFrame;

private Thread fRunner;

private TestResult fTestResult;

private JComboBox fSuiteCombo;

private ProgressBar fProgressIndicator;

private DefaultListModel fFailures;

private JLabel fLogo;

private CounterPanel fCounterPanel;

private JButton fRun;

private JButton fQuitButton;

private JButton fRerunButton;

private StatusLine fStatusLine;

private FailureDetailView fFailureView;

private JTabbedPane fTestViewTab;

private JCheckBox fUseLoadingRunner;

private Vector fTestRunViews= new Vector();

//view associated with tab in tabbed pane

private static final String TESTCOLLECTOR_KEY= "TestCollectorClass";

private static final String FAILUREDETAILVIEW_KEY= "FailureViewClass";

public TestRunner() {

}

public static void main(String[] args) {

new TestRunner().start(args);
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}

public static void run(Class test) {

String args[]= { test.getName() };

main(args);

}

protected JComboBox createSuiteCombo() {

JComboBox combo= new JComboBox();

combo.setEditable(true);

combo.setLightWeightPopupEnabled(false);

combo.getEditor().getEditorComponent().addKeyListener(

new KeyAdapter() {

public void keyTyped(KeyEvent e) {

textChanged();

if (e.getKeyChar() == KeyEvent.VK_ENTER)

runSuite();

}

}

);

try {

loadHistory(combo);

} catch (IOException e) {

// fails the first time

}

combo.addItemListener(

new ItemListener() {

public void itemStateChanged(ItemEvent event) {

if (event.getStateChange() == ItemEvent.SELECTED) {

textChanged();

}

}

}

);

return combo;

}

......

}

messageChains(x) is a target concept that uses for learning. Table A.18 shows a target

concept and domain theories which are used to construct a detection rule.

All rules for detecting Message Chains flaw can be constructed in form of MESs as:

%=============================================================================
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Table A.18: Domain theories and a target concept of Message Chains design flaw

A target concepts and domain theories:
R1 : ∀c1∀c2∀c3 c l a s s ( c1 ) ∧ c l a s s ( c2 ) ∧ c l a s s ( c3 )
∧ f i r s t C a l l ( c1 ,c2 ) ∧ s e c o n d C a l l ( c2 ,c3 ) ⇒ messageCha ins ( c1 )

R2 : ∀c1∀m1 method ( m1 ) ∧ hasMethod ( c1 ,m1 ) ⇒ c l a s s ( c1 )
R3 : ∀c2∀m2 method ( m2 ) ∧ hasMethod ( c2 ,m2 ) ⇒ c l a s s ( c2 )
R4 : ∀c3∀a3 a t t r i b u t e ( a3 ) ∧ h a s A t t r i b u t e ( c3 ,a3 )
∧ method ( m3 ) ∧ hasMethod ( c3 ,m3 ) ⇒ c l a s s ( c3 )

R5 : ∀c1∀c2 i n v o c a t i o n ( c1 ,c2 ) ∧ ¬ l i k e w i s e ( c1 ,c2 )
⇒ f i r s t C a l l ( c1 ,c2 )

R6 : ∀c2∀c3 i n v o c a t i o n ( m2 ,m3 ) ∧ ¬ l i k e w i s e ( c2 ,c3 )
⇒ s e c o n d C a l l ( c2 ,c3 )

R7 : ∀c2∀c3 g e t F i e l d ( m2 ,a3 ) ∧ ¬ l i k e w i s e ( c2 ,c3 )
⇒ s e c o n d C a l l ( c2 ,c3 )

.

% Rules Message Chains

classMessageChain(ClassID,ClassName,PathProject,CallID1,CallID2) :-

projectRequired(SourceProgram,PathProject,ClassID,ClassName),

methodT(MethodID,ClassID,_,_,_,_,_),

localT(LocalCallID,_,MethodID,_,_,_),

callT(CallID1,_,MethodID,CallID2,_,_,_),

callT(CallID2,_,_,IdentID,_,_,_),

identT(IdentID,_,_,_,LocalCallID).

projectRequired(NameProject,Pathsource,ClassID,ClassName) :-

projectS(ProjectID,NameProject,_,_,_),

sourceFolderS(SourceID,ProjectID,_),

fileS(FileID,SourceID,Pathsource),

compilationUnitT(ClassCompilationID,_,FileID,_,_),

classT(ClassID,ClassCompilationID,ClassName,_).

A.5.4 Middle Man

Middle Man flaw represents a problem that might be created when trying to avoid high

coupling with constant delegation. Middle Man is a class that is doing too much simple delegation

instead of really contributing to the application.

Examples for defining domain theories: An example is used to define rules for design

flaw detection as followed.

public class TestHierarchyRunView implements TestRunView {

TestSuitePanel fTreeBrowser;
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TestRunContext fTestContext;

public TestHierarchyRunView(TestRunContext context) {

fTestContext= context;

fTreeBrowser= new TestSuitePanel();

fTreeBrowser.getTree().addTreeSelectionListener(

new TreeSelectionListener() {

public void valueChanged(TreeSelectionEvent e) {

testSelected();

}

}

);

}

public void addTab(JTabbedPane pane) {

Icon treeIcon= TestRunner.getIconResource(getClass(), "icons/hierarchy.gif");

pane.addTab("Test Hierarchy", treeIcon, fTreeBrowser, "The test hierarchy");

}

public Test getSelectedTest() {

return fTreeBrowser.getSelectedTest();

}

public void activate() {

testSelected();

}

public void revealFailure(Test failure) {

JTree tree= fTreeBrowser.getTree();

TestTreeModel model= (TestTreeModel)tree.getModel();

Vector vpath= new Vector();

int index= model.findTest(failure, (Test)model.getRoot(), vpath);

if (index >= 0) {

Object[] path= new Object[vpath.size()+1];

vpath.copyInto(path);

Object last= path[vpath.size()-1];

path[vpath.size()]= model.getChild(last, index);

TreePath selectionPath= new TreePath(path);

tree.setSelectionPath(selectionPath);

tree.makeVisible(selectionPath);

}

}

public void aboutToStart(Test suite, TestResult result) {

fTreeBrowser.showTestTree(suite);

result.addListener(fTreeBrowser);

}

public void runFinished(Test suite, TestResult result) {

result.removeListener(fTreeBrowser);
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}

protected void testSelected() {

fTestContext.handleTestSelected(getSelectedTest());

}

}

middleMan(x) is a target concept that uses for learning. Table A.19 shows a target concept

and domain theories which are used to construct a detection rule.

Table A.19: Domain theories and a target concept of Middle Man design flaw

A target concepts and domain theories:
R1 : ∀c1∀c2∀c3 c l a s s ( c1 ) ∧ c l a s s ( c2 ) ∧ c l a s s ( c3 )
∧ f i r s t C a l l M M ( c1 ,c2 ) ∧ secondCallMM ( c2 ,c3 ) ⇒ middleMan ( c2 )

R2 : ∀c1∀m1 method ( m1 ) ∧ hasMethod ( c1 ,m1 ) ⇒ c l a s s ( c1 )
R3 : ∀c2∀m2 method ( m2 ) ∧ hasMethod ( c2 ,m2 ) ⇒ c l a s s ( c2 )
R4 : ∀c3∀a3 a t t r i b u t e ( a3 ) ∧ h a s A t t r i b u t e ( c3 ,a3 ) ∧ method ( m3 )
∧ hasMethod ( c3 ,m3 ) ⇒ c l a s s ( c3 )

R5 : ∀c1∀c2 i n v o c a t i o n ( c1 ,c2 ) ∧ ¬ l i k e w i s e ( c1 ,c2 )
⇒ f i r s t C a l l M M ( c1 ,c2 )

R6 : ∀c3∀m2∀m3∀a3 i n v o c a t i o n ( m2 ,m3 ) ∧ g e t F i e l d ( m2 ,a3 ) ∧
r e t u r n ( m2 ,a3 ) ∧ ¬ l i k e w i s e ( c2 ,c3 ) ⇒ secondCallMM ( c2 ,c3 )

.

All rules for detecting Middle Man flaw can be constructed in form of MESs as:

%=============================================================================

% Rules Middle Man

classMiddleMan(ClassID,ClassName,PathProject,MethodName) :-

projectRequired(SourceProgram,PathProject,ClassID,ClassName),

methodT(MethodID,ClassID,MethodName,_,_,_,_),

returnT(_,_,MethodID,ExpressID),

callT(ExpressID,_,MethodID,Express2ID,_,_,_),

getFieldT(Express2ID,ExpressID,MethodID,_,_,_).

projectRequired(NameProject,Pathsource,ClassID,ClassName) :-

ProjectS(ProjectID,NameProject,_,_,_),

sourceFolderS(SourceID,ProjectID,_),

fileS(FileID,SourceID,Pathsource),

compilationUnitT(ClassCompilationID,_,FileID,_,_),

classT(ClassID,ClassCompilationID,ClassName,_)
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APPENDIX B

META ELEMENT SPECIFICATIONS

In this appendix, all Meta Element Specifications (MESs) expressed for describing the meta

program in this dissertation are shown as followed. The structure and semantics of each MESs

type are described in details of their arguments.

B.1 Sourcefolders

Table B.1: packageT

packageT(#id, ‘fullname’)
arguments
#id: id the unique ID assigned to this fact.
‘fullname’: atom package name of this package declaration, as an atom.

Table B.2: compilationUnitT

compilationUnitT(#id, #package, #fileS, [#import1, ...], [#def1, ...] )
arguments
#id: id the unique ID assigned to this fact.
#package: packageT, ‘defaultPackage’ Id of the containing package or ‘defaultPackage’.

#file: fileS, ‘dummyFile’
Id of the file that contains this compilation unit or ‘dum-
myFile’for Bytecode classes.

[#import1, ...]: importT
List of IDs of import declarations contained in the compi-
lation unit. The order in the list corresponds to the textual
order in the file.

[#def1, ]: classT
List of IDs of type declarations contained in the compila-
tion unit. The order in the list corresponds to the textual
order in the file.

Table B.3: importT

importT(#id, #parent, #import)
arguments
#id: id the unique ID assigned to this fact.

#parent: compilationUnitT
ID of the compilation unit that contains this import dec-
laration.

#import: packageT, classT, methodT, fieldT ID of the import.
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B.2 Building-Blocks Level

Table B.4: classT

classT(#id, #parent, ’name’, [#def1,...])
Description : Represents the class or interface declaration. Every interface declaration is accom-
panied by the additional fact: interfaceT(#id). Every annotation declaration is accompanied by an
interfaceT(#id) and an annotationT(#id) fact. If it is an abstract class, there will be an additional
modifierT(Class, ‘abstract’) fact.
Arguments
#id: id the unique ID assigned to this fact.
#parent: execT, compilationUnitT, classT, new-
ClassT

ID of the element that contains this class declara-
tion.

‘name’: atom the class name, without a package. In the case
of anonymous classes, a globally unique name:
ANONYMOUS〈UN〉, where 〈UN〉 is a unique
number.

[#def1, ]: annotationMemberT, classT, fieldT,
methodT, constructorT, classInitializerT

list of IDs for other facts representing the methods
or fields, and inner classes. These fields and meth-
ods are the members (not necessarily public!) of
the class.

Table B.5: methodT

methodT(#id, #class, ‘name’, [#param1, ...], TYPE, [#exception1,...], #body)
Description : Represents the declaration of a method. Static methods have an additional fact “mod-
ifierT(ID, ‘static’)”, where ID is the #id value of the method. Note that constructors are represented
separately by constructorT facts and static initializers are represented by classInitializerT facts.
Arguments
#id: id the unique ID of this method.
#class: classT the ID of the class containing this method.
‘name’: atom the name of the declared method.
[#param1, . . . ]: paramT the list of IDs of the method parameters.
TYPE: a typeterm the return type of the method.
[#exception1, . . . ]: classT list of IDs of checked exceptions thrown by this

method.
#body: blockT or ‘null’ ID of the block containing the method body.

Table B.6: constructorT

constructorT(#id, #classT, [#param1, . . . ], [#exception1, . . . ], #body)
Description : Represents the constructor declaration.
Arguments
#id: id the unique ID assigned to this fact.
#class: classT ID of the parent/declaring class.
[#param1, . . . ]: paramT list of IDs of the method parameters.
[#exception1, . . . ]: classT list of IDs of the thrown exceptions.
#body: blockT, null ID of the block.
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Table B.7: classInitializerT

classInitializerT(#id, #classT, #body)
Description : Represents the initializer declaration.
Arguments
#id: id the unique ID assigned to this fact.
#class: classT ID of the parent/declaring class.
#body: blockT ID of the block.

Table B.8: enumConstantT

enumConstantT(#id, #parent, #encl, ‘name’, #args)
Description : Represents the field declaration in enumeration.
Arguments
#id: id the unique ID assigned to this fact.
#parent: enumT the id of the parent enumT.
#encl: id ID of the enclosing MES.
‘name’: atom the name of the field.
#args expression list of arguments for the enum constant.

Table B.9: fieldT

fieldT(#id, #class, TYPE, ‘name’, #init)
Description : Represents the field declaration.
Arguments
#id: id the unique ID assigned to this fact.
#class: classT ID of the enclosing/declaring class.
TYPE: type term the type of the field.
‘name’: atom the name of the field.
#init: expression, null ID of the initializer of this variable declaration.

Table B.10: paramT

paramT(#id, #parent, TYPE, ’name’)
Description : Represents the program element (method, catch clause, foreach loop) parametrized by
this parameter declaration.
Arguments
#id: id the unique ID assigned to this fact.
#parent: methodT , constructorT , catchT , fore-
achT

ID of the enclosing MES.

TYPE: type term the type of the parameter.
‘name’: atom the name of the parameter.
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Table B.11: typeParamT

typeParamT(#id, #parent, ‘name’, ‘kind’, [#bound1, . . . ])
Description : Represents a type parameter of a generic class. Type parameters are referenced from
the rest of the code via type(typevar, #id, arrayDim) terms, where #id is the ID of the referenced
typeParamT element.
Arguments
#id: id the unique ID assigned to this fact.
#parent: classT the declaring generic class or interface.
‘name’: atom the name of the type variable.
‘kind’: atom ‘super ’or ‘extends’.
[#bound1, ]: classT, typeParamT

Table B.12: annotationT

annotationT(#id, #parent, #encl, #annotationType, [#keyValue1, . . . ] )
Description : Represents an annotation (expression).
Arguments
#id: id the unique ID assigned to this fact.
#parent: id the ID of the fact that represents the parent of this

fact in the prolog AST. Either the ID of the an-
notated element or membervaluet fact in case of a
nested annotation. e.g. Ann2 in Ann(value = 1,
ann1 = Ann2(id=1)).

#encl: id the enclosing annotated declaration, expression or
statement.

annotationType: classT the referenced annotation type.
[#keyValue1, . . . ]:memberValueT list of IDs of the member value pairs.

Table B.13: memberValueT

memberValueT(#id, #parent, #annotationMember, #valueLiteral)
Description : Represents a member value pair in an annotationT expression. For example queries
see the annotationT description.
Arguments
#id: id the unique ID assigned to this fact.
#parent: annotationT the parent element. Either the ID of the annotated

element or memberValueT fact in case of a nested
annotation. e.g. @Ann2 in @Ann(value = 1, ann1
= @Ann2(id=1)).

#annotationMember : annotationMemberT, null the referenced annotation member.
#valueLiteral: AnnotationExpression, null
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Table B.14: annotationMemberT

annotationMemberT(#id, #parent, TYPE, ‘name’, #default)
Description : Represents an annotation member construct.
Arguments
#id: id the unique ID assigned to this fact.
#parent: classT the parent annotation class attributed with annota-

tionTypeT.
TYPE: type term the type of the member.
‘name’: atom the name of the construct.
#default: AnnotationExpression, null the default expression is optional.

Table B.15: annotatedT

annotatedT(#annotated, #annotation)
Description : Represents the annotation of a syntax element.
Arguments
#annotated: id the id of the syntax element.
#annotation: annotationT the annotation.

Table B.16: commentT

commentT(#id, #parent, ‘type’)
Description : Represents a comment.
Arguments
#id: id the unique ID assigned to this comment.
#parent: id the ID of the fact that represents the element this

comment is referring to. The parent element is
determined based on a set of Parent Identification
Heuristics.

#type: atom One of these atoms.
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B.3 Interface-Level Attributes

Table B.17: interfaceT

interfaceT(#class)
Description : Represents the interface declaration.
Arguments
#class:classT ID of the fact declared to be an interface (this is

NOT a unique ID, but a reference to another fact,
like a modifierT).

Table B.18: externT

externT(#id)
Description : It expresses that the class with identity #id is only available as byte-code.
Arguments
#id: classT ID of the byte-code class. This ID is NOT the ID

of the externT fact but just a reference to the fact
representing the byte-code class.

Table B.19: enumT

enumT(#class)
Description : Expresses that the class with identity #class is an enum declaration (Enumeration).
Arguments
#class: classT ID of the classT fact declared to be an enumeration

(this is NOT the own ID of the enumT fact, but a
reference to a classT fact).

Table B.20: annotationTypeT

annotationTypeT(#id)
Description : Attribute for classT facts. This attribute makes the class an annotation declaration.
The class is a subtype (extendsT) of java.lang.annotation.Annotation.
Arguments
#id: classT The ID of the class that is marked as an annotation

declaration
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Table B.21: markerAnnotationT

markerAnnotationT(#id)
Description : An attribute for annotationT facts. Just to maintain the original syntax of annotations
without arguments. Annotation is a marker annotation if the parenthesis’s are omitted. @marker
instead of the normal annotation @marker().
Arguments
#id: annotationT ID of the corresponding annotationT

Table B.22: modifierT

modifierT(#id, ‘modifier’)
Description : -
Arguments
#id: (classT, fieldT, methodT, constructorT,
classInitializerT)

ID form parent MES. Note: modifierT have no
own ID. They are referenced over the ID from the
corresponding parent

‘modifier’: atom one of serveral atoms: public, private, package,
protected, static, strictfp, synchronized, transient,
native, volatile, abstract and final.

Table B.23: implementsT

implementsT(#class, #interface)
Description : Represents the implementation of an interface by a class.
Arguments
#class: classT ID of the class.
#interface: classT ID of an interface implemented by the class.

Table B.24: extendsT

extendsT(#class, #extendedClass)
Description : Represents the immediate subtype/supertype relation. Transitive super-/subtyping is
expressed by the predicate subtype(#subClass, #superClass).
Arguments
#class: classT ID of an object type (class or interface).
#extendedClass: classT ID of the direct supertype (superclass or super-

interface). Note: Interfaces that have no explicit
super-interface in the source code have the class
java.lang.Object as direct supertype.



145

Table B.25: assertT

assertT(#id, #parent, #enclMethod, #condition, #msg)
Description : Represents the assert statement.
Arguments
#id: id the unique ID assigned to this fact.
#parent: id ID of the father node in the AST, typically a block.
#enclMethod: methodT, constructorT, classIni-
tializerT

ID of the enclosing method declaration.

#condition: expression boolean expression’s ID.
#msg: expression, null ID of the expression that is to be given to asser-

tionerror.

Table B.26: assignT

assignT(#id, #parent, #encl, #lhs, #expr)
Description : Represents the assignment expression.
Arguments
#id: id the unique ID assigned to this fact.
#parent: id the ID of the parent node.
#encl: methodT, constructorT, classInitializerT,
fieldT

the ID of the fact that represents the enclosing el-
ement.

#lhs: getFieldT, identT, indexedT ID of the left hand side of this assignment expres-
sion.

#exprt: expression ID of the right hand side expression

Table B.27: blockT

blockT(#id, #parent, #enclMethod, [#statement1, . . . ])
Description : Represents the block statement.
Arguments
#id: id the unique ID assigned to this fact.
#parent: id ID of the parent node.
#enclMethod: methodT, constructorT, classIni-
tializerT

the ID of the fact that represents the enclosing el-
ement.

[#statement1, . . . ]: statement List of the statements in this block.
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Table B.28: callT

callT(#id, #parent, #encl, #expr, ‘name’, [#arg1, . . . ], #method)
Description : Represents a method invocation.
Arguments
#id: id the unique ID assigned to this fact.
#parent: id the ID of the fact that represents the parent of this

fact in the prolog AST.
#encl: methodT, constructorT, classInitializerT,
fieldT

the ID of the fact that represents the enclosing el-
ement.

#expr:expression the ID of the fact representing the receiver expres-
sion on which the method is invoked. If the re-
ceiver is this the value of #expr is null. In case of
static method call #expr is a typeRefT.

‘name’: atom the simple (i.e. not fully qualified) name of the
called method set into simple quotes.

[#arg1, . . . ]: expression list of IDs of other facts representing the argu-
ments of this method invocation.

#method: methodT, constructorT ID of the methodT or constructorT fact that repre-
sents the declaration of the invoked method in the
static type of the receiver expression. Because of
dynamic binding the method actually invoked at
run-time might be another one.

Table B.29: caseT

caseT(#id, #parent, #encl, #label)
Description : Represents the case statement within the switch statement.
Arguments
#id: the unique ID assigned to this fact.
#parent: ID of the switch statement being used for the node.

(which incidentally is the parent within the AST).
#encl: methodT, constructorT, classInitializerT ID of the enclosing element.
#label: expression, null ID of the reference to a label. For the default case

(default:) this is ‘null’.

Table B.30: conditionalT

conditionalT (#id, #parent, #encl, #condition, #thenPart, #elsePart)
Description : Represents the conditional expression: (condition) ? then : else.
Arguments
#id: id the unique ID assigned to this fact.
#parent: id ID of the parent node.
#encl: methodT, constructorT, classInitializerT,
fieldT , classT, annotationMemberT

ID of the fact that represents the enclosing ele-
ment.

#condition: expression ID of the expression in this conditional expres-
sion.

#thenPart: expression ID of the “then”part of this conditional expression.
#elsePart: expression ID of the “else ”part of this conditional expres-

sion.
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Table B.31: doWhileT

doWhileT(#id, #parent, #enclMethod, #condition, #body)
Description : Represents the do statement.
Arguments
#id: id the unique ID assigned to this fact.
#parent: id ID of the parent node.
#encl: methodT, constructorT, classInitializerT ID of the enclosing element.
#condition: expression ID of the expression of the loop condition of this

do statement.
#body statement ID of the body of this do statement.

Table B.32: execT

execT(#id, #parent, #encl, #expr)
Description : Represents the execution of an expression in a block. Converts an expression to a
statement.
Arguments
#id: id the unique ID assigned to this fact.
#parent: id ID of the parent node.
#encl: methodT, constructorT, classInitializerT ID of the enclosing element.
#expr: expression, classT ID of the expression to be executed. In the case of

a local class the ID of that class.

Table B.33: forT

forT(#id, #parent, #encl, [#init1, . . . ], #condition, [#step1, . . . ], #body)
Description : Represents the for statement.
Arguments
#id: id the unique ID assigned to this fact.
#parent: id ID of the parent node.
#encl: methodT, constructorT, classInitializerT ID of the enclosing element.
[#init1, . . . ]: expression, localT list of IDs of the initializer expressions in this for

statement.
#condition: expression, null ID of the expression in this for statement.
[#step1, . . . ]: expression list of IDs of the update expressions in this for

statement.
#body: statement ID of the body of this for statement.
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Table B.34: foreachT

foreachT(#id, #parent, #encl, #param, #expression, #body)
Description : Represents the for each statement.
Arguments
#id: id the unique ID assigned to this fact.
#parent: id ID of the parent node.
#encl: methodT, constructorT, classInitializerT ID of the enclosing element.
#param, paramT ID of the local parameter of this for statement.
#expression expression ID of the expression (of type list or array) in this

for statement.
#body: statement ID of the body of this for statement.

Table B.35: getFieldT

getFieldT(#id, #parent, #encl, #receiver, ‘name’, #field)
Description : Represents a field access expression (read access and write access).
Arguments
#id: id the unique ID of this field access.
#parent: id ID of the parent node.
#encl: methodT, constructorT, classInitializerT,
fieldT, annotationMemberT

ID of the fact that represents the enclosing ele-
ment.

#receiver: expression, typeRefT, ‘null’ ID of the expression on which the field is accessed
or ‘null’for the implicit field access. In case of an
access to a static field #expr is a typeRefT.

‘name’: atom name of the accessed field.
#field: fieldT, null ID of the accessed field. null is only valid in case

of the “length”field of array types.

Table B.36: identT

identT(#id, #parent, #encl, ‘name’, #symbol)
Description : Represents an access to (1) a simple name (local variable or parameter) or (2) this or
(3) super or (4) null.
Arguments
#id: id the unique ID assigned to this fact.
#parent: id ID of the parent node.
#encl: methodT, constructorT, classInitializerT,
fieldT

ID of the fact that represents the method, construc-
tor, class initializer or field definition that contains
this (pseudo-)variable access.

‘name’: atom this, super, null or any other legal identifier name
#symbol: ’null’, localT, paramT, classT ‘null’or ID of the referenced local variable, pa-

rameter or class. The access to ‘super’references
as symbol the ID of the superclass, the access
to ‘this’references the ID of the class of which
‘this’is an instance. The access to the ‘null’literal
references the symbol ‘null’.
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Table B.37: indexedT

indexedT(#id, #parent, #encl, #index, #indexed)
Description : represents the array access expression.
Arguments
#id: id the unique id assigned to this fact.
#parent: id ID of the parent node.
#encl: methodT, constructorT, classInitializerT,
fieldT

ID of the fact that represents the enclosing ele-
ment.

#index: expression ID of the index expression of this array access ex-
pression.

#indexed: expression ID of the array expression of this array access ex-
pression.

Table B.38: labelT

labelT (#id, #parent, #encl, #body, ‘name’)
Description : Represents the labeled statement.
Arguments
#id: id the unique ID assigned to this fact.
#parent: id ID of the parent node.
#encl: methodT, constructorT, classInitializerT,
fieldT

ID of the enclosing element declaration.

#body: statement ID of the body of this labeled statement.
‘name’: atom the name of this label.

Table B.39: literalT

literalT(#id, #parent, #encl, TYPE, ‘value’)
Description : Represents the literal node (boolean literal, character literal, number literal, string
literal, type literal)
Arguments
#id: id the unique ID assigned to this fact.
#parent: id ID of the parent node.
#encl: methodT, constructorT, classInitializerT,
fieldT, classT, annotationMemberT

ID of the fact that represents the enclosing ele-
ment.

TYPE: typeterm type of the literal.
‘value’: atom the value of this literal.
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Table B.40: localT

localT(#id, #parent, #encl, TYPE, ‘name’, #init)
Description : Represents local variable declaration.
Arguments
#id: id the unique ID assigned to this fact.
#parent: id ID of the parent node.
#encl: methodT, constructorT, classInitializerT ID of the enclosing element.
TYPE: typeterm type of the variable.
‘name’: atom variable name.
#init: expression, null ID of the initializer of this variable declaration.

Table B.41: newArrayT

newArrayT(#id, #parent, #encl, [#dim1, . . . ], [#elem1, . . . ], TYPE)
Description : Represents the array creation expression.
Arguments
#id: id the unique ID assigned to this fact.
#parent: id ID of the parent node.
#encl:methodT, constructorT, classInitializerT,
fieldT, classT, annotationMemberT, annotationT

ID of the fact that represents the enclosing ele-
ment.

[#dim1, . . . ]: expression list of dimension expressions.
[#elem1, ldots]: expression, annotationExpres-
sionType

list of initial elements of this array.

TYPE: typeterm type of this array.

Table B.42: newClassT

newClassT (#id, #parent, #encl, #constructor, [#arg1, . . . ], #ref, #anonClDef, #encltype)
Description : Represents the class instance creation expression.
Arguments
#id: id the unique ID assigned to this fact.
#parent: id ID of the parent node.
#encl:methodT, constructorT, classInitializerT,
fieldT

ID of the fact that represents the enclosing ele-
ment.

#constructor: constructorT, null ID of the constructor invoked by this expression.
If the referenced constructor is a anonymous class
constructor #constructor is ‘null’.

[#arg1, . . . ]: expression list of argument expressions in this class instance
creation expression.

#ref: classT The class instantiated by this constructor call.
#anonClDef: classT, null the anonymous class declaration introduced by

this class instance creation expression, if it has
one.

#encltype: classT, newClassT, null ID of the inner or member class constructor or ID
of the anonymous class.
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Table B.43: nopT

nopT(#id, #parent, #encl)
Description : Represents the no operation node, signifying a lone semicolon.
Arguments
#id: id the unique ID assigned to this fact.
#parent: id ID of the parent node.
#encl: methodT, constructorT, classInitializerT ID of the enclosing element.

Table B.44: operationT

operationT(#id, #parent, #encl, [#arg1, . . . ], ‘operatorName’, pos)
Description : Represents the infix expression, postfix expression and prefix expression.
Arguments
#id: id the unique ID assigned to this fact.
#parent: id ID of the parent node.
#encl:methodT, constructorT, classInitializerT,
fieldT, classT

ID of the fact that represents the enclosing ele-
ment. (classT if used in a memberValueT).

[#arg1, . . . ]: expression list of the operands of this expression.
operatorName: atom the operator of this expression (!,+,-,/,*,?, . . . ).
pos: number postfix expression: 1, infix expression: 0, prefix

expression: -1.

Table B.45: precedenceT

precedenceT(#id, #parent, #encl, #expr)
Description : Represents an expression in parentheses () in the source code.
Arguments
#id: id the unique ID given to this node.
#parent: id ID if the parent node in the AST.
#encl: methodT, constructorT, classInitializerT,
fieldT

ID of the fact that represents the enclosing ele-
ment.

#expr: expression ID of the expression within the parenthesis.

Table B.46: returnT

returnT(#id, #parent, #encl, #expr)
Description : Represents the return statement.
Arguments
#id: id the unique ID assigned to this fact.
#parent: id ID of the parent node.
#encl: methodT, constructorT, classInitializerT ID of the enclosing method declaration.
#expr: expression, null ID of the expression of this return statement, or

null if there is none.
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Table B.47: selectT

selectT(#id, #parent, #encl, ‘name’, ENCLOSING TYPE, #selectedType)
Description : Represents the access to enclosing instances in inner and anonymous classes.
Arguments
#id: id the unique ID assigned to this fact.
#parent: id ID of the parent node.
#encl: methodT, constructorT, classInitializerT,
fieldT, annotationMemberT, annotationT

ID of the method declaration that contains this
statement or of the field declaration whose initial-
izer contains this statement.

‘name’: atom either this or super or class.
selected: typeterm the enclosing type.

Table B.48: switchT

switchT(#id, #parent, #enclMethod, #expr, [#statement1, . . . ])
Description : Represents the switch statement.
Arguments
#id: id the unique ID assigned to this fact.
#parent: id ID of the parent node.
#encl: methodT, constructorT, classInitializerT ID of the enclosing method declaration.
#expr: expression ID of the selection expression (the variable used

to switch).
[#statement1, . . . ]: statement list of the statements in the switch. Cases (caseT)

are a special kind of statement here, much like
labels. The default statement is a case statement
with the label ‘null’.

Table B.49: synchronizedT

synchronizedT(#id, #parent, #encl, #lock, #body)
Description : Represents the synchronized statement.
Arguments
#id: id the unique ID assigned to this fact.
#parent: id ID of the parent node.
#encl: methodT, constructorT, classInitializerT ID of the enclosing method declaration.
#lock: expression ID of the expression of this synchronized state-

ment.
#body: blockT ID of the body of this synchronized statement.
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Table B.50: throwT

throwT (#id, #parent, #encl, #expr)
Description : Represents the throw statement.
Arguments
#id: id the unique ID assigned to this fact.
#parent: id ID of the parent node.
#encl: methodT, constructorT, classInitializerT ID of the enclosing element.
#expr: expression ID of the exception.

Table B.51: tryT

tryT(#id, #parent, #encl, #body, [#catcher1, . . . ], #finalizer)
Description : Represents the try statement.
Arguments
#id: id the unique ID assigned to this fact.
#parent: id ID of the parent node.
#encl: methodT, constructorT, classInitializerT ID of the enclosing method declaration.
#body: blockT ID of the body, guarded by the try-catch statement.
[#catcher1, . . . ]: catchT list of the exception catchers.
#finalizer: blockT,null ID of the block containing the statements of the

finally part.

Table B.52: typeCastT

typeCastT(#id, #parent, #encl, TYPE, #expr)
Description : Represents the cast expression.
Arguments
#id: id the unique ID assigned to this fact.
#parent: id ID of the parent node.
#encl: methodT, constructorT, classInitializerT,
fieldT, annotationMemberT

ID of the fact that represents the enclosing ele-
ment.

TYPE: typeterm the target type
#expr: expression ID of the expression of this cast expression.
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Table B.53: typeTestT

typeTestT(#id, #parent, #encl, #condition, #expression)
Description : Represents the instance of expression.
Arguments
#id: id the unique ID assigned to this fact.
#parent: id ID of the parent node.
#encl: methodT, constructorT, classInitializerT ID of the fact that represents the enclosing

method.
#condition: typeTerm right operand of this instanceof expression
#expression: expression left operand of this instanceof expression

Table B.54: typeRefT

typeRefT(#id, #parent, #encl, #type)
Description : Represents a (qualified) class name in static method calls or static field access.
Arguments
#id: id the unique ID assigned to this fact.
#parent: callT, getFieldT ID of the static method call or field access per-

formed on this type.
#encl: methodT, constructorT, classInitializerT,
fieldT, classT, annotationMemberT

ID of the enclosing declaration.

#type: classT The type on which the static field access or
method invocation is performed.

Table B.55: whileT

whileT(#id, #parent, #encl, #condition, #body)
Description : Represents the while statement.
Arguments
#id: id the unique ID assigned to this fact.
#parent: id ID of the parent node.
#encl: methodT, constructorT, classInitializerT ID of the enclosing element.
#condition: expressionType ID of the expression of this while statement.
#body statementType ID of the body of this while statement.
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B.4 Body Level Attributes

Table B.56: omitArrayDeclarationT

omitArrayDeclarationT(#id)
Description :This fact is only used for preserving the original appearance of the source code after
transformations. It declares that an array initialization (represented by a newarrayt fact) omits the
explicit array instantiation in the original source code.
Arguments
#id: newArrayT ID of the newArrayT element.

Table B.57: inlineDeclarationT

inlineDeclarationT(#firstField, [#otherField1, . . . ])
Description : This fact is only used for preserving the original appearance of the source code after
transformations. It declares that multiple variables are declared in a single declaration.
Arguments
#firstField: fieldT, localT ID of the first variable.
[#otherField1, . . . ]: fieldT, localT list of IDs of other variables. These facts are

marked with an inlinedT fact.

Table B.58: inlinedT

inlinedT(#id, #reference)
Description : This fact is only used for preserving the original appearance of the source code after
transformations. It declares that the declaration of a variable belongs to an inline declaration.
Arguments
#id: fieldT, localT ID of the variable.
#reference: fieldT, localT Reference to the first variable in the inline decla-

ration.

Table B.59: variableArgumentT

variableArgumentT(#id)
Description : This fact marks a parameter in a method as a variable argument. The type of this
parameter is always an array.
#id: paramT ID of the parameter.
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