aa Ay A o o
Qﬁﬂq?LquIﬂ?LLﬂ?N LL@zﬂqﬁ'Lﬂ‘ﬁlugTﬂ\ﬁLﬂﬁ‘@\?@'\ﬂﬁ“ﬂ

N19MIIRILARLNNTDIVRITONAUITTIIRY

AULINENINYINS
ARIAIN TN TN

31/1ﬂWﬁwuﬁﬁiﬂumuuﬁwmmiﬁm:mmwzﬁ“ﬂ@]mﬁagﬂ;ﬁmm‘a‘ummmqwﬁﬁmeﬁm
ANUNITIIAINIINARNAIARS NIATTIIAINIINABNNILADS
ANLEAAINIINANANT AWNAINTRINUINENAE
tinsAnwsn 2553

L

AUANDVBINIAINTUNYNINENAE

A META-PROGRAM AND MACHINE LEARNING APPROACH FOR DETECTING

OBJECT-ORIENTED SOFTWARE DESIGN FLAWS

ﬂ‘LlEJ’WIEWITW BINT
ﬂW’]ﬁﬂﬂ‘imNWVJVImﬁlH

A Dissertation Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy Program in Computer Engineering
Department of Computer Engineering
Faculty of Engineering
Chulalongkorn University
Academic Year 2010

Copyright of Chulalongkorn University

Thesis Title A META-PROGRAM AND MACHINE LEARNING APPROACH
FOR DETECTING OBJECT-ORIENTED SOFTWARE DESIGN

FLAWS
By Mr. Sakorn Mekruksavanich
Field of Study Computer Engineering
Thesis Advisor Associate Professor Pornsiri Muenchaisri, Ph.D.

Accepted by the Faculty of Engir vlalongkorn University in Partial Fulfillment of

the Requirements for the Doctor:

! of the Faculty of Engineering -
®wong, Dr.Ing.) :

THESIS COMMITTEE

i K picoon, Ph.D.)

JUETH LNt i)
AR NEAANIAE

............................ Examiner

42”/4(% External Examiner

(Assistant Professor Songsak Rongviriyapanich, Ph.D.)

a1A? WNFnwale %'mmlm'iﬂmnmua:mst‘:r’ﬂuf'nﬂqm'%md’m?ums
nraadudaunnsasrastansiuafideing. (A META-PROGRAM AND MACHINE
LEARNING APPROACH FOR DETECTING OBJECT-ORIENTED SOFTWARE
DESIGN FLAWS) . ffnwiineninusudn: se.as. weds willaued, 156

¥
Nun.

daunniesresniseanty Aan1slunisszyaiinreslguilussuy

[o J (g [3
AW FITednG Tedangl puafanas liuANAINITaluNNg

° o : ! - o J J
U1einm nszasly et iifegnAsaaduIananIaLe

uansenylunieaul Muugansiuaf atnalsinn lu

o a e A]
Jaquinluny Jusmy g mngaanansaudioyualfiies

-

v .
yegdauiniulno® : e 0N luN1TATIA4Y INANANT

ATIARAUTANAUL Waanisaanuuy atnalsinna
v
-] : o o
wmailatiinlgua.d Hinasinmsdngensiuafun
a & % « a d’d o 1
Widunatianasnsac g s Y WsraanatiailAan1sntiaduAn
J 5 o '. u -— U 1 o z -
paussiunvdnn e =3 glfANAauLa Aadulszansninlu

o & : K4 o -‘ 1 -‘ A'
N1IAIAALAIURE TUNTUSETR L 2 anngataiuanunengs

Wanenin % iy Javiunfideinquuuimilag
a - o= a as _ d
Minalanistsun i uneE AU gihsGuuiuuueiune Wisnih
° d‘l - a J o [#
waueil imallanislggunsumuuungggung qn'l'ﬁmmﬂumuwumnﬂsvnﬂuv‘m

s SR RERTWBAAGom dotein

iﬂunwmwﬂm'\smnuun wnnugmmﬂuftmummﬂqn'l-iim'a Jmuuuugmlnﬂms
G‘eﬁl \a\ﬂ?ﬁj F.a 131ANd e
')ﬁn”ﬂwu'\muﬂua'\u'\mmfmqu aunnsaql ‘BH’NN'IJ nsnmlaanisliindednin
s8R GuFuansluuAazan N adenNafiansun lun1sasaduua sdaLaiunig
o o/ v A 4 1 o a
proadulugtuuudnluiAiieanAnldatuazioalunszusunisnsaady netAN®

=l o o a aa o a e
waransaigninan Minelsziliunadsnisasaduiniiaue

@1, AANITHARNRART mmm%ﬂ 8 f i nw e dnugudn Grone yas A

InsAnen...2010 e,

iv

4871878221: MAJOR COMPUTER ENGINEERING

KEYWORDS: DESIGN FLAW / OBJECT-ORIENTED DESIGN / RULE-BASED DETECTION

/ EXPLANATION-BASED LEARNING / PROLOG-EBG
SAKORN MEKRUKSAVANICH : A META-PROGRAM AND MACHINE LEARNING
APPROACH FOR DETECTING OBJECT-ORIENTED SOFTWARE DESIGN FLAWS.
ADVISOR : ASSOC. PROF. PORNSIRI MUENCHAISRI, Ph.D., 156 pp.

Design flaws are used as a roblematic classes in object-oriented soft-

Ach as maintainability. Therefore such
d

ware systems which directly
design flaws must be identir." ¥c consequences on development and
maintenance of software s 2 ‘ce, techniques and methodologies of
design flaw detection car performance and efficiency of the
detection. The software i- . Lo deal with design flaw problems.
It, however, leads to sfiie ption. An additional proposed
echnique capture deviations from
good design principles an(#fc gt 1_ ‘ / us effective identifying depends on
optimized threshold which is#Pdi ."_Hﬁ I
=L,

This dissertati oz 0 object-oriented software sys-

tem by using Declaris & Y Jed Learning technique. In the

proposed approach, De .E rative [Vicramossmmmsene-ls used ” epresent specific object-oriented
elements and their relatiofigglg form of logic gules in meta level for describing design flaws.

Explanation- Bﬂduaﬂn’} mdﬂrﬁ%{w&t&]ﬂﬂ ﬁductive learning for some

characteristics dﬂ design flaws that arggdifficult to ungfstand The pro osed methodology can
QRN HRAF AR -
ment otllietectlon and promoting the automatic detection for reducing cost and time consumption

in the detection process. Case studies are conducted to evaluate the proposed detection approach.

.....................
..............................

Acknowledgements

First and foremost, I consider myself fortunate and privileged to have Assoc. Prof. Pornsiri
Muenchaisri as my dissertation advisors. I am deeply indebted to her for shaping my full path
to research by guiding me with her extensive knowledge and with her insightful discussions and

questions. I would have never reached the point where I stand today without her fully supports.

I am honored and especially grateful to have Assoc. Prof. Wanchai Rivepiboon, Prof.

Prabhas Chongstitvattana and Assoc. Prof i fvat Vatanawood as the chairman and examiners

respectively, including Asst. Prof. .S /7. nanich as an external examiner to be my
thesis committee. I also wish tgs

criticizing the manuscript.

cisively influencing the ng ' e Wicli @ n my research visit at Colorado

S%or all of my early achievements,

o did not let me forget that life is

more than writing a Ph.D. thes ##1 ,.-: _ ; ' | {88 The three musketeers”— Jiradej Pon-
= 11 their brotherhood supports. Moreover

irgfiinent in the CESELab at Chu-

sawat, Narit Hnoohom and Anuchit =1 =
LTH T

this work would not ha7¥be

lalongkorn University. £ BY' Jiends at this laboratory.

I would like to warf“y thank my parents for all their 10V7 ,['or all their mental and financial
support and for balgegng 4 ‘nﬁ dﬂ{w 1 am very thankful to my
mother for the “ lﬁiﬁﬂw ﬂﬁylo | H:lﬁrejons of my childhood and
to my father for teaqclhing me to approach 1l things systematically. Qs

AN AR NN QY

My gost special thanks are for Apinya Karnteezllorthe unique way in which they
loves and understands me day by day. I am so grateful to her, Apinya, for the many times she
put aside her wishes and plans, and encouraged me to finish writing this thesis. Thank you for
teaching me daily the “unconditional equations of love”. I am so proud and grateful to have them

by my side.

Thank you again, I could not have done this without all of you.

Contents

Page

Abstract (Thai) e iv

Abstract (English) v

Acknowledgements vi

Contents vii

Listof Tables xi

Listof Figures L B R e e e e e e e XV
Chapter

I Introduction.) P e 1

1.1 Motivation . . . =& - il R . 2

1.2 Objectives of St 1) = 4

1.3 Scopes of Study*¥. f _ IV 4

1.4 Contributions .4 4 : e 5

1.5 Research Method: 42, 3 N 5

1.6 Organization . .) - y: A YA 6

II Object Oriented Design F awste— == .. 7

2.1 Object-Oriented Paradé o 4 D 7

2.1.1 Object Pt {. 7

2.1.1.1 yﬂ; £ 8

2.1.1.2 bipsulation .+« oL L 9

ﬁzgj 10

FUEINENINENT .

5 Interfaces and Pfymorphism g g# - - - 11

PMAMRTUNRINGNAY

283 Object-Oriented Design Flaws 13

2.1.3.1 Design Flaw Taxonomy 14

2.2 Declarative Paradigm in Meta-Programming 17

2.2.1 Declarative Paradigm 17

2.2.2 LogicProgramming 18

2.2.3 Declarative Meta Programming 19

2.2.4 Logic Programming Theory 20

2241 Terminology i 20

viii

Chapter Page
2.2.4.2 The syntax of logic programs 22

2.2.4.3 Properties of logic languages. 22

2244 Modeltheory 23

2.3 Machine Learning 24
2.3.1 Analytical and Empirical Learning 25
2.3.2 Analytical Learning -« o8 S RIEF# oo 25
2.3.3 Explanation-Basge SRR ™ 27

2.4 Related Works — N e— L 29
24.1 , DT 7 | N 30
242 i R SO N 31
243 Analysis | - 32
2.4.4 Usability - sCURR TR B 33
2.4.5 Tools of det #fo g .o N 35

IIT The Proposed Flaw Det et 73 2 N 38
3.1 An Overview of Detec#onds . 38
3.2 The Proposed Detection hafi—ibe T S 40
3.3 Detection Mefimmm e 42
33.1 Step 1" y_i_. - E 42
3.3.2 Step 2: Cs | retization o 46
3321 A C(flﬁlzatlon of BBs@JL. 46
AULANSNINEINS “

333 Ste$|3 Generalization . € e 52
qwqﬁ ?Eﬁnﬁmﬁ']'}ﬂﬂ’]a&l 52

q 3 rocess 3 xplanation o Lo L oL 54
3333 Process 3.3: Analyzing o 55

3.3.3.4 Process 3.4: Refinement 56

3.3.4 Step 4: Procedure Generation 57
3.3.5 Step5: Code Analysis 57
3.3.6 Step 6: Fact Specification, 58
337 Step7:Detection 58

33.8 Step8: Validation 59

X

Chapter Page
IV Evaluation and Discussion 60
4.1 The validation of the proposed methodology 61
4.1.1 Validation Process. 61

42 CaseStudies L 62
42.1 Casel:CommonCLI | 3 P 63

422 Casell: JUNI T« AN ™ o . 64

423 Caselll : GauSSS— | g === L 66

4.3 Result discussion = A 67
4.3.1 Result dis /B ™ 68

432 Result dic . N 68

433 Result disogodl £ 4 ' N 7

4.3.4 Overall disc NS oproach 72

V Conclusion ¥ & 7 , A\) T 75
5.1 Conclusion of disserta #n #Zzz =) B P 75
5.2 Future research directions: FORA N - - 76
References) ad + T 77
Appendices G0 L L 84

q‘ﬁfiaﬁmmumwmaEJ:::::::: .

1 1.4 DataClump 94
1.2 The Object-Oriented Abusers Category 97
1.2.1 Switch Statements. 97
1.2.2 Temporary Field 98
1.2.3 Refused Bequest 100
1.2.4 Alternative Classes with Different Interfaces. 106
1.3 The Change Preventers Category, 111

1.3.1 DivergentChange 111

Chapter
1.3.2 Shotgun Surgery
1.3.3 Parallel Inheritance Hierarchies
1.4 The Dispensables Category
141 Lazy Classo i i i e e
142 Dataclass MR e
1.4.3 Duplicate Code e e e e e
1.4.4 Dead Code ! - P .
1.5 The Couplers C - . 5 L e
1.5.1 Feature Cx L
1.5.2 InappfCpr g 4FFFF B R e - - - o e e e
1.53 Messl®FC ' N B R AR VAL ™.
1.54 Middlogfardf FF. =—=s DR % -
Appendix B Meta E : & v .
2.1 Sourcefolders 4.
2.2 Building-Blocks Liel flasiis. - sdcly ™
2.3 Interface-Level Attrikadias o 7 4
24 BodyLevé&ew_————— -
Biography : ’

ﬂ‘LlEJ’WIEWITW BINT
ﬂW’]ﬁﬂﬂ‘imNWVJVImﬁlH

X1

List of Tables

Table Page
1.1 DataClass MetriCs o v ittt e e e e 3
1.2 Measured values of Class BI11Ttem. o v vt v it i ittt e e e 4
2.1 The explanation-based generalization problem 27
2.2 The explanation-based learning algorithm Prolog-EBG.. 29
3.1 Text descriptions of Data Class and Long Parameter List flaws 44

3.2 Domain theories and a target concer) P jijterMapDataClass 54

3.3 An example for regressing a " “rontier through methodOper-

3.4 The final rule of Filtc 1. T e 56
4.1 The result of Bloaters_ AN - 64
4.2 The result of The Obi- 451 % % in CommonCLI v1.0 .. 64
4.3 The result of The Chan gl ff # 5= guoonCLI v1.0 64
4.4 The result of The Didfen 451 48 By d (7 L\ T v1.0 ... 65
4.5 The result of The Coudfr: b % T 65
4.6 The result of Bloaters fl g i e s b T 66

4.7 The result of The Objeci-(4 n r‘: _,: ction in JUNIT v1.3.6 66
4.8 The result of The Change Prey ' 7 LJUNIT v1.3.6 67
4.9 The result of The ey 3.6 67
4.10 The result of The ¢ 7 4 68

4.11 Specificity and its faJ, i P . T with other detection
techniques in JUNIT vl 3 B e e e 69
4.12 Precision an W (Compare with
Metric-Bas @ﬁaﬁl L sﬂ(ﬂ'ﬁp W]E'l-”i ﬁi 70
A.1 Domain theories and a target concep® of Ex.1- Ex.4&ng Parameter Rt 85
C oA RAANASHMARHEIRY
A3 Domaﬂ1 theories and a target concept of Primitive Obsession design flaw 93
A.4 Domain theories and a target concept of Data Clump designflaw 95
A.5 Domain theories and a target concept of Switch Statements design flaw 98
A.6 Domain theories and a target concept of Temporary Field design flaw 99
A.7 Domain theories and a target concept of Refused Bequest designflaw 104

A.8 Domain theories and a target concept of Alternative Classes with Different Inter-
facesdesignflaw 110

A.9 Domain theories and a target concept of Divergent Change design flaw 113

Xii

Table Page
A.10Domain theories and a target concept of Shotgun Surgery designflaw 115

A.11Domain theories and a target concept of Parallel Inheritance Hierarchies design flaw . 118

A.12Domain theories and a target concept of Lazy Class designflaw 120
A.13Domain theories and a target concept of Data Class design flaw 122
A.14Domain theories and a target concept of Duplicate Code design flaw 125
A.15Domain theories and a target concept of Dead Code designflaw 127
A.16Domain theories and a target concept of Feature Envy designflaw 129

B.1 packageT: . 138
B.2 compilationUnitT . ’ . L 138

B.3 importT ’ .- 4 N 138
B.4 classT /s \ N e 139
B.5 methodT " TP R ANNN" 139
B.6 constructorT # f - ‘. 139
B.7 classinitializerT 4 . . 3 < 5 140
B.8 enumConstantT ' T ; W 140
B9 fieldT GO 140
B.10paramT 5 L + T 140
B.11typeParamT . . . & 4% X)L 141
B.12annotationT , 141
B.13memberValueT & L e 141
B. 14annotat10nl\ﬁbﬂ EJ ’J 1‘] Ej ﬂ s w Ej’l ﬂi 142
B.15annotatedT .@J. o 142
B.locompmenilng mm om. o oo s om 1.8 TAB A OB BT B - - - - - - - 142
B.mm?@"ﬁ'].ﬁiﬂﬂ JUNRINGINY
B.18externT 143
B.19enumT 143
B.20annotationTypeT 143
B.21markerAnnotationT 144
B.22modifierT 144
B.23implementsT e e 144

B.2dextendsT e 144

xiil

Table Page
B.25assertT 145
B.26assignT e 145
B.27blockT 145
B.28callT 146
B.29caseT e 146
B.30conditionalT
B31doWhileT
B.32execT

B.33forT

B.34foreachT

B.35getFieldT:

B.36identT

B.37indexedT

B.38labelT

B.39literalT

B.40localT ” 4

B.41newArrayT
B.42newClassT
BA43nopT. 3
B.44operationT . . .
B.45precedenceT . . |

B.46returnT 1}

B.47selectT

B 48switchT . ﬂ“ﬂ’;ﬂﬂﬂsw El"lﬂ‘j‘ 152
B.49synchronized®J. 152
BSOthropel et /s 7 B ™ £ &1 B 1AD A O DI~ O - - - - - - 153
Bsuryﬂﬁ'].ﬁiﬂﬂ‘iﬂmm?W‘J']ﬁl B s
B.52typeCastT e 153
B.53typeTestT e e 154
B.54typeRefT . . . o o 154
B.SSwhileT oo 154
B.5S6omitArrayDeclarationT 155
B.57inlineDeclarationT L e 155

B.S8inlinedT 155

Table Page
B.59variableArgumentT 155

AULINENTNEINS
ARIAATAUNNINGIAY

XV

List of Figures

Figure Page
1.1 Class BIILITEEM .« . vt v vttt et e e e e e e e e e e e e e e e 3
2.1 Checkstyletool e 35
2.2 FindBugstool 36
3.1 The draft design of description detection 39
3.2 The meta architecture of description detection 40
3.3 The Proposed Detection Methodc! e - 41
3.4 UML Model for the notation s SSSS A FFF @ @imodel 51
3.5 Generalization Process o1 “neraliz: i P 52
3.6 Class FilterMap | v 53
3.7 Aexplanation of F11: ™ il | AN s 55
3.8 Step 5: Code Analysic S 4F FF Fc=—RclBRN S T, 58
4.1 The precision rate of de £ £ g N RJECT v1.10.2 (Com-

pare with Metric-B f % s P 67
4.2 The recall rate of desi g . B _ TV1.10.2 (Compare

with Metric-Based App: - > 2 - . Y 68
4.3 The average precision rate #pr ,r.‘; = : N mmonCLT 71
4.4 The average precision rate of ‘ — = 0 JUNIT 71
Al ; :

The sematic net sh=si/s G4 & aGirgheories 86

Ll

AU INENTNEINS
PR TUAMINYAE

CHAPTER 1

INTRODUCTION

In the recent software technology development, most object-oriented software systems are
developed under evolutionary process models. Most software that is related to a real-world prob-
lem domain, must continuously evolve to cope with the problem domain changes — requirement
and environment changes (Bravo, 2003). Object-oriented software design principles and heuristics

(Gamma et al., 1995; Riel, 1996) ar=

ote the good quality software. However,

even when maintainers are familig L g'iolation of these design rules may lead
to poor solutions by deadlineg sve .‘p‘_”ure functionality, or inexperience

programming. Such solutic®™T el e oitlitation problems hinder software

evolution. They — low-le 20\ %o flaws (Marinescu, 2004).

Design flaws are pote: f [— Wy \ NN 'on of an object-oriented software

system that have a negati®C i . Y yrs °Z., maintainability, understand-
h N\

-wil 2004). They denote both source

icular context, design flaws are in-

between design and implement. #n :‘F = 3 W8 design of a class, but they concretely
manifest themselves in the source cog T necific implementation. In the recent liter-
ature, design flaws are 78113 . -1 f7096) and AntiPatterns (Brown

et al., 1998). Many aut | y.'. A J 1etaphors.

One example of a owlgn flaw is God Class (Brown et af% 1998) which is a characteristic
of a procedural tlﬁqﬁﬁﬁ g cl f design (the God Class)
is responsible forkll (ﬁﬂlﬁ ﬂgﬂ};] ﬁﬁ;e rest of the classes (the
Data Classes) are only responsible for ewapsulating dgsg, This type of dggigns shows a wrong
d1str1but1q oﬁ%ﬁ@ﬂ' lﬁcﬂdw&&% t{q gf(a %s&t}%cﬁ)t&eswe. This flaw

does not exsloit object-oriented mechanisms, such as encapsulation and modularity (Johnson and

Foote, 1988).

The detection of flaws can substantially reduced the cost of subsequent activities in the
development and maintenance phases (Pressman, 2001). Several approaches have been proposed
to specify and detect flaws. Firstly, a manual detection of design flaws by software inspections
(Travassos et al., 1999) is presented to detect flaws problems. It however leads to some dif-
ferent issues as time-expensive, non-repeatable and non-scalable (Langelier et al., 2005). Even

more issues concerning the manual detection of design flaws are identified by Mantyla et. al.

(Mantyla et al., 2004; Mintyli et al., 2003). They show that as the experience developer has with
a certain software system increases, his ability to perform an objective evaluation of the system as

well as his ability to detect design flaws decreases.

To avoid some drawbacks with a purely manual detection approach, metric-based heuristics
for identifying design flaws in software systems are proposed (Marinescu, 2004). The strategies
capture deviations from good design principles and consist of combining metrics with set opera-
tors and compare their values against threshold values. Therefore, effective identifying depends

on proper metrics and thresholds which_ 2} J detect such flaws.

Several approaches are p: S é - However, they have three limita-
tions that challenging researcin : . the formal representation that joins

systematically and clearly an - cification for detection. Second, de-

tection always depends on th- ained characteristics. These char-

\ _1Tosalts of detection from research

! h
.\"‘ "'-a \,
\\ L
h N

works did not compared ¢ hPe. AR

acteristics affect directly T th

This dissertation prépo g § iz (2 ecC. design flaws in object-oriented
software by using the Meta-

r —
proach is a novelty technique tk al

to detect design flaws. In the apprcsi-—ibd 4 -Programming is used to represent spe-

letc® programming and Machine Learning

cific relations of elemeza 439 gn flaws. Machine learning

. . ; A .
is used for extrapolatlnc A flaws that are difficult to un-

derstand. With this apprc ,‘I n, design Laws oran vvject-orierdlll system can be detected at the

meta-level in the Declarativaf\gta-Programmingg With this declarative, paradigm design flaws

can e gt BRI VI AT PR Grinc. o case s

are also presented Rvisualize the propose approach concretely

" Moﬂm’]aﬂﬂ‘imlliﬂﬂﬂﬁl’]ﬁﬂ

Many research work emphasizes on identification and wildly discussion of anomalous prob-
lems in various research fields eg., software testing (Van Rompaey et al., 2007), networking
(Patcha and Park, 2007) and databases (Bruno et al., 2007; Jorwekar et al., 2007). Moreover
in software development and maintenance cycles, identification of design flaw problems is per-

formed in requirement analysis, design and implementation phases.

Although detection techniques and methodologies are proposed in the literature, there are

some points to consider in research works. First, the detection still depends on a metric value

(or a group of metric values) to designate the risk area in the systems. Because of coarse-grain
judgement, the problem in these situations is that the detection may miss many real flaws or it will
introduce probably large number of under-fitting feature detection such as false positives in which
negative flaws from the particular set are viewed as positive flaws. Next in software inspection,

performance and accuracy rate of detection depend directly on the experience of practitioners.

final public class BillItem{
private String bDescription;
private double bCost;

public BillItend

Table 1.1: Data Class I

Name Descripigon

WOC (Weight 1 s in a class divided by
(el " he interface.

NOPA (Number aIPubhc Attributes) ’l;lltlzrrflglcrzt:;raoi non- 1nher1ted attnbutes that belong to the

«QRIRATAIIT TN G -

Figurel.1 shows a motivating example of class Bi11Item of HotelSystem application
in JAVA source code. This class is a Data Class Flaw by manual investigation. Table 1.1 shows
three metrics and their description for metric-based detection of Data Class flaw (Marinescu,
2001). The existence with Data Class flaw in such class occurs when one of the threshold value
excess the determined value. One interesting result is the false identification of the BillItem
class as a flaw of Data Class by metric-based detection. From the details in Table 1.2, The

calculation of WOC for class Bi1l1Item yields a value of 0.5. This value fails to trigger a metric

Table 1.2: Measured values of Class BillItem

Metrics Measured values of Class Billltem Threshold value

WOC 0.5 >0.66
NOPA 0 >3
NOAM 2 >3

threshold value of Data Class which the value should be equal or more than 0.66. Moreover NOPA

and NOAM measured values also show B ojive result because both NOPA and NOAM are

not more than the Data Class thres /‘indicate that class Bi11Item is a Data
Class. When class B1 11Tt ©rig éy manual inspection, it is not picked

up by any of the threshold val» . herefore in this context, the value of

the metric for flaw detectionr w2 to obtain an accurate calculation

1s also difficult.

By these reasons, it | ssible or not that we can ignore

these threshold values. Can * Wby some giving reasonings? If we

!
!

can give reasoning for happen A Nuristic, we believe that these reason-

ings could support our detect! ction, can we describe specification
of design flaws in formalizatiofl? K : e-consuming and error-proneness can be
reduced or eliminated in the detecss
1.2 Objectives of Stug £

i

The objectives of study are as follows:

AU NN NEN

e To propose gjnew approach for gejsign flaws detection 1n ol)ject—on'ented software using

A vy

e Both patterned design flaws and quantitative design flaws are to be detected.

1.3 Scopes of Study

The scopes of this study are as follows:

o The research considers the problem of design flaws.

o The research is to apply the approach by using Declarative meta-programming technique
and Machine learning technique to find five design flaw categories in Folwer’s literature

(Fowler, 1999).

e The approach performs flaw detection of java source code.

1.4 Contributions

This research will make the followin g | gtributions:

e A novel detection appr ‘ctect dcgfor object-oriented software which
may increase accuracv.: i “ wd well as disregard the threshold value

needed.

e A new tool can aut, riented software.

1.5 Research Methodolo-

The research methodo

e Survey related researches ind s detection in object-oriented systems,

Y Y |

e Propose a novel apj -';’ a-pifj ramming and Machine learning

technique to detect aesign flaws.

« oo v BRI VLIS IS it i

learning in lglrning systems.

ARIRIA I HBN T AN E s i

learrﬂng systems).

Declarative met i ue.

e Develop system with the proposed approach to detect quantitative design flaws.

o Compare results of proposed detection method with a metric-based design flaws detection

method.
e Publish at least one journal article relating to the work.

e Conclude and prepare the dissertation

1.6 Organization

Chapter 2 defines some theoretical backgrounds that will be used further on in this disserta-
tion. The background covers the fundamental concepts used in the object-oriented paradigm and
learning mechanism used to extrapolate patterns. A state of the art in the fields of design flaw

detection related to object-oriented design is also proposed in this chapter.

Chapter 3 proposes the detection methodology for design flaws detection. The methodology

is described mainly in eight steps. The rer tion is shown in input/output scheme for more

understanding.

Chapter 4. For the pro a methodology for detecting flaws

related to design of softwai® s i 108y and discussion of the results are

S

presented.

Finally, Chapter 5 cor "N g tions for the future are discussed.

AU INENTNEINS
PR TUAMINYAE

CHAPTER 11

OBJECT ORIENTED DESIGN FLAWS AND ITS
DETECTION

As pointed out in the first chapter that this work is going to tackle the issue of using relation

in order to assess and control the quality of object-oriented design. By moving toward this point,

elds: Object-Oriented Design, Declarative

[} ﬂqe goal of this chapter is to present the

— Woiks 041W detection is presented in the last
—

Paradigm in Meta-Programming 2%
foundations of these domains.

section. The rest of this wor! & h are presented in this chapter.

"

This chapter is structr escribes related theoretical back-

grounds of this detection"wor’ hy \"x,_ aiswering the question of what is

Man®lssessing it. After discussing the

B!

good object-oriented desi
“Aramming on how it supports the
proposed detection performs < g e & 20 Wning is discussed the issue of its ap-
propriate properties to impleme' = net. Wvel. Machine Learning also supports
to generate pattern logic rules of cd% ' *C meta program. In the second part, state

of the art researches in design€

3
-

All of information — methodologies,

techniques and tools, al§

Part I : Theoretical Bac ;‘I ound 1

2.1 Object-oriﬂ:uaﬁ’}:gj'ﬂ Efﬂlﬁfw EJ ’] ﬂ ﬁ

This foundation concept of object-8riented paradigan is introduced @/this section. We ex-
plain ﬁrsaemffo])ﬁ—haeﬂdiwadaqd'qs’rgvmnﬂz;]gatc&l:al with the com-
plex softwage de;Iel(;pmént. -G_oc;d object—orieﬂted aesién pﬁl;ciplzs aré disc;u;sed later. Although
there are many good mechanisms and principles deal with complex software system in object-
oriented paradigm, design flaws still emerge in software. We discuss the characteristics of design

flaws and their effect on software quality.
2.1.1 Object-Oriented Programming

The essential factor that influenced the evolution of programming paradigms is the ne-

cessity to deal with the increasing complexity of software programs (Coad and Yourdon, 1991).

Object-oriented programming provides us with a set of proper mechanisms for the management
of this complexity, namely: data abstraction, encapsulation, modularity, inheritance, and poly-
morphism. In this heading we will discuss these mechanisms. Booch defined object-oriented

programming as follows (Booch, 2004):

Definition 2.1 Object-oriented programming is an implementation method in which programs
are organized in object collections that cooperate among themselves, each object representing an

instance of a class; each class is part of a clg<g hierarchy and all classes are related through their

é".-

T

inheritance relationships.

Analyzing the definitior ﬁn. thrf elements of object orientation:

e objects and not algor;
e cach object is an in¢

e classes are linked an elationships.

In the context of the pre, Pu W v introduce Sommervilles definition

(Sommerville, 1995) of object- orlenfﬂ . :',_ ,-i- TN

i

Te— -
Definition 2.2 Object- s ds X J stem designers think in terms
of things instead of operat ‘ i S OF fURCL O INNNENEETT g syste ‘; s made up of interacting objects

that maintain their own localgs tgle and provide owtlons on that state information.

ﬂ‘NEJ'J'ﬂEWIﬁWEJ’]ﬂi

2.1.1.1 Data Abs“'actlon

o@mmmm VDDA o

complex issue is by using abstractions. A good abstraction is one that underlines all the aspects
that are relevance to the perspective from which the object is being analyzed while at the same
time suppressing or diminishing all the other characteristics of the object. In the context of object-

oriented programming Booch offers us the following definition of an abstraction (Booch, 2004):

Definition 2.3 An abstraction expresses all the essential characteristics that make an object dif-
ferent from some other object; abstractions offer a precise definition of the objects conceptual

borders from an outsiders point of view.

In conclusion in the process of creating an abstraction our attention is focused solely to-
wards the exterior aspect of the object and as such on the objects behavior while at the same time
ignoring the implementation of this very behavior. In other words abstractions help us distinguish

clearly between what an object does and how the object does it.

An objects behavior is characterized through a sum of services or resources the object offers
to some other fellow objects. Such a behavior in which an object (server) offers services for other
objects (clients) is described in the so called client-server model. The entirety of the services

offered by a server object constitutes t

atract or responsibility towards other objects.

Responsibilities are fulfilled by n iions (also called: methods or member

s nique signature composed from: a
S

of an objects operations and their

functions). Each objects ope
name, a list of formal parar-

corresponding rules for cal':
2.1.1.2 Encapsulation

wrotocol, encapsulation deals with

Just as abstractions ar C
t articular abstraction. The encap-

selecting an implementati

sulation process will be vievs hi® ng the implementation from most

client objects. In a more concis apstlation as follows:

Definition 2.4 Encapss ;— - 945 that form the structure and
L

behavior of an abstraa s Mtllation is used for separating

the contractual interface j=u

The deﬁmﬁ'] U&LQ NUNIIEID T et e

(protocol) and the 1mplementatlon of thig interface. Aﬂraotlon is the ngoFess that defines the

oo QFARIAT HRIFAD Y G Bl

interface ifffplementation. The concealment of an objects structure and method implementation

n its implementarion.

make up the so-called information hiding notion. Encapsulation provides a set of advantages:

e By separating the object interface from the objects representation one can modify the rep-
resentation without affecting the various clients in any way because these depend on the

server objects interface and not its implementation.

e Encapsulation allows one to modify programs efficiently, with a limited and localized ef-

fort.

10

2.1.1.3 Modularity

The purpose of splitting a program into modules is to reduce the costs associated with
redesign and verification issues by allowing one do this for every module independently (Britton
et al., 1981). The classes and objects obtained after the abstraction and encapsulation processes
must be grouped and then deposited in a physical form called a module. Modules can be viewed
as physical containers in which we declare the classes and objects that result after the logic level

design. These modules form therefore the programs physical architecture. A program can be split

into a number of modules that can be ¢ atately but that are connected (coupled) among
themselves. The languages that suise" Wi pt also make the distinction between the
modules interface and its impi —. éncapsulatlon and modularization go

hand in hand.
2.1.1.4 Inheritance

N, h . . .
Ml " lications we will find a greater
\'l

“‘a,x d. Encapsulation manages com-

Abstractions are a °
number of abstractions that
plexity by hiding the int Lv rrede ity nelps by offering the means of
grouping abstractions that a cally __7 nitclves. All these, although useful,

L T e
are not enough. A group of abfrac _@

chy we can greatly simplify the profi-Ziss 4 The most important class hierarchies in

hi®archy and by identifying this hierar-

the object paradigm anj-af 1 the object hierarchy (“part
of”’relationship). Class V:'. ! iong classes in which a class
shares its structure and be] ,‘I ior with onc CINLCIEnier classes '4= talk about simple and multiple

inheritance). The existence offapsinheritance relatigpship is the difference between object-oriented

e oA REN I HE IS
o ﬁmﬁﬂ FA 2 b A LoL (L A VS L

Even as a programmlng issue this remains the best test for detecting the inheritance relationship

between two classes A and B: A inherits B only if we can say that “A is a kind of B”. If A
“is not a” B, then A should not inherit B. In conclusion inheritance implies a hierarchy of the
generalization/specialization type in which the class that derives specializes the more generalized
the structure and behavior of the class from which it was derived. Object Hierarchy Aggregation
is a relationship between two objects in which one of the objects is part of the other object. From
a semantic point of view, aggregation indicates a “part of’ relationship. For example there is such

a relation between a wheel and a car because we can say that “a wheel is part of a car”.

11

2.1.1.5 Interfaces and Polymorphism

Interfaces

As we mentioned earlier, the sum of all function signatures for the functions that can be called
by clients of that particular object class form the classs interface. Interfaces are fundamental in
object-oriented systems. The objects are known inside the system only through their interfaces.
There is no other way of finding out something about the object or asking it to do something except
by using its interface. An objects interface says nothing about its implementation. Therefore

different objects can implement the same§

with identical interfaces can have °

Binding
When a certain operation is r2 peration will be fulfilled depends
not only on the operation 1tse, v 11 \ ' ecelve and execute the request by
calling one of its membeTiur 470 4 § Joa S8 L\ N\ ., civ can be more than one objects
that can respond to a part; ! ; A Y ; sted operation specifies the de-

: 1\ nlementation of that service. The
association between a request \ vill provide the concrete implemen-
tation of the operation throug

T
moment when this binding takes pla ® between two types of binding:
ZETRIA T

: is called binding. Depending on the

2

e Static binding (e} ,;, E" ‘mpilation time. This binding

is based on the type] ! ySee T h the various class declarations

and the correspondlug ﬁxed (and therefore r1g1d) associal 10n of a class for each object.

+ e LRI HIVS W RIAR G r rormscom

piled but ratfdr it takes place when ‘;he program is runnmg (at run- tlme)

ARIAINTUURIINYIAY

Polymorpl§sm

In this manner, when binding dynamically, the request for an operation does not lead to the auto-
matic correspondence between that operation and a certain implementation, the correspondence
takes place only when the program is running. The main advantage of dynamic binding is the
possibility of substituting objects that have identical interfaces at run-time. The option of us-
ing some object in another objects instead when both objects share the same interface is called
polymorphism. Polymorphism is therefore one of the fundamental concepts of object-oriented

programming.

12

2.1.2 The Good Object-Oriented Design

In the previous section we introduce the key mechanism involved in object-oriented design.
But, as in chess, knowing the chess pieces and the moves does not make you a good chess player.
In this section we will therefore discuss what a good design is and what makes the difference
between a good and a bad design. The quality of a design has an essential impact on the whole
development process. Considering the life cycle of a software system, the design phase is respon-
sible for no more than 10% - 15% of the total effort; yet, up to 80% of the costs are invested in the

correction of erroneous design decisions §

during this phase (Bell et al., 1987). So, what
ad and Yourdon, 1991) :

is good design? Coad defines gooc

Definition 2.5 A good des== ‘0o minimize the total cost of the

system over its entire lifeti

Wosts, i.e. the costs of creating

%

N2, debugging and maintaining the

- mentioned cost categories, the most

Thus, a good desig
the design, transforming it ir
system. Coad also emphasizes
substantial one is related to n#

of a good design is that it leads%o a

also discusses the characteristics oz _..z'_';‘:_ LA 2y

1a5: the most important characteristic

imlementation. More recently, Pfleeger

oA gn in following terms (Pfleeger, 2001) :

iy J

s — e
-

)

)

Definition 2.6 High-qum = that lead to quality products:

ease of understanding, ea™ of implementation, ease of testing; =ise of modification, and correct
translation from reguireme Pecification.. Mo lity i egially important, since changes
to requirements oﬁ:ﬂ e | ﬂt ofregii zjtﬁﬂsj in design change.
U
¢ o .
ORI EAEANBRN TR S ST RA R IR

e It is hard to comprehend and quantify the goodness of a design by itself; therefore we
have to apply the biblical principle: by their fruit you will recognize them, i.e. we can get
an understanding of the quality of the design only by regarding its fruits: testing efforts,

maintenance costs and the number of reusable fragments.

e We need criteria for evaluating a design not in order to build perfect software but to help
us avoid badness. Therefore, good design is a matter of avoiding those characteristics that

lead to bad consequences (Coad and Yourdon, 1991).

13

It is impossible to establish an objective and general set rules that would lead automatically
to high-quality design if they would be applied. But on the other hand heuristic knowledge reflects
and preserves the experience and quality goals of the developers. They also help the beginners
to evaluate and improve their design. Therefore, we are going to discuss next the most relevant
characteristics to avoid poor object-oriented design and show the reflection of these characteristics
in terms of heuristics. According to those undesirable characteristics, a good object-oriented
design should have a manageable complexity, should provide a proper data abstraction and it

should reduce coupling while increasing cohesion.

2.1.3 Object-Oriented Design I - /_
-
qf of software systems in use, in the

exity and development times, they

The software industry 1+
size of millions of lines of coZ
have reached the suitable sh- ; ! \ ' ‘\“Q Yet, most of these systems lack

all of the aforementione¢®qua’ %l Tiisection 2.1.2): they are instead

,

monolithic, inflexible and owing causes for this situation:

o Time Pressure. Often #% I s ' and rigorous design, but then the

3 ts. This fight against the clock forces

developers are confronte /if :

them to choose the fastest deg not the one that keeps the integrity of the

O

design.

i -
e e -
ol

. L
e Changing Requirc®=" " cannot be anticipated in the

v

initial design. The changes often require essential seddifications on the architectural

and becau

level. In manr cases tfogmwho imjlemenﬂe changes are not aware of the initial design

A HEANENINGINT
QL LaF XA FVKTL ok (FfaVY e

q

design. The ignorance of those principles has led to a lot of poorly designed code.

As a conclusion, we may state that object-oriented programming is a basis technology, that
supports quality goals like maintainability and reusability but just knowing the syntax elements of
an object-oriented language or the concepts involved in the object-oriented technology is far from
being sufficient to produce good software. A good object-oriented design needs design rules and

practices that must be known and used.

14

One of the famous defect on quality attributes of software is design flaws. The design
structure of these flaws have a strong negative impact on quality attributes such as flexibility or
maintainability. Thus, the identification and detection of these design problems is essential for
the evaluation and improvement of software quality. Design flaws are hard to define, because
sometimes we encounter situations in which a code fragment might be considered as a flaw in
one case while in another case, a similar, mostly identical design fragment is justifiable and may
not be considered as a design flaw. In the context of this work we define design flaws based on

Marinescu’s definition (Marinescu, 2004) as follows:

Definition 2.7 (Design flaws) of a design entity or design fragment
that expresses a deviation fr& \ g ‘fdying the high-quality of a design is

called a design flaw.

A design flaw itself i ong indication of poor design of

source code structure. I+ 7 \ NN inaduce flaws in different ways.
Fowler and Beck (Fowler : 4 L0 (i e te l. mell”. They present an informal
)

definition of twenty two of b aracteristics used as indicators for

design flaws. Anti-patterns, pr . s — . W8 own et al., 1998), are a design level

literary form that describes a commoses 7 9 = 1tion to a problem that generates decidedly
..-"" el '\'

negative consequences P uz g sugmof identifying and correcting

design problems becom} .;f ' = Ix:" | community (Demeyer et al.,

2002; Fowler, 1999; Riel, ! 96).

= |y

2.1.3.1 DeSlgnFﬁ ﬁﬂﬁw ﬂﬂﬁw Ejflﬂﬁ

There are sétbral ways in which ci;mgn flaws can be classified; they could be classified

accordin mﬁl aﬁtﬂ? ‘gﬁl \m j\ﬁ ing from. In this
work, we yse thi sSifica onged to" , 2010), which is

according to the granularity level of the design entity affected by each flaw. The taxonomy of

design flaws can be classified in seven categories as follows:

Bloaters Bloaters represent something in the code that has grown so large that it cannot
be effectively handled. The smells in the Bloater category are: Long Method,
Large Class, Primitive Obsession, Long Parameter List, and Data Clumps. In

general it is more difficult to understand or modify a single long method than

Object-
Orientation

Abusers

Change

Preventers

15

several smaller methods. The same kind of argument holds also for Long Pa-
rameter List and Large Class. Primitive Obsession does not actually represent
a bloat, but is a symptom causing bloats, because it refers to situations in which
the logic handling the data appears in large classes and long methods. For
Data Clumps we could also argue that it should be in the Object-Orientation
Abusers, because in theory a class should be created from each Data Clump.
However, since Data Clumps often appear with the Long Parameter List smell

we have decided to include it in this category.

_ /Abuser category are: Switch Statements,
' / i“ native Classes with Different Inter-

~. This category of smells is related

The smells in th

to cases wt X S wexploit the possibilities of OO de-

des are used and detected using

N hented for these type codes should,

howey ; he Parallel Inheritance Hierar-
chies an gfe ec Al "‘x inheritance design, which is one
of the key : 1.0 The Alternative Classes with Dif-

ferent Interf: s sn Lo

. | T
it can also be c01.,

N

terface for closely related classes, so

’/pe of inheritance misuse. The Temporary

Field smellg3

be 4=, ' ————= =~ tion hiding principle.

A A

kle is in the class scope, when it should

L

The thifj} catcg™ elode (fhictures that considerably hinder
|| J

the modigpation of the software. The smells in the Change Preventers cate-

L
d

=
ﬁvﬂmtﬂﬁﬁ ﬂ)ﬂmﬂ:ﬁﬁl‘ he key is that according
ql) owler and Beck, Z000) the classes and the possible changes need to have

STV Riab 12l b 110121

Dispensables

added. The smells in this category violate this principle. The Divergent
Change smell means that we have a single class that is modified in many differ-
ent types of changes. The Shotgun Surgery smell is the opposite. Developers

need to modify many classes when performing one type of change.

The smells in the Dispensables category are Lazy Class, Data Class, Duplicate
Code, and Speculative Generality. These smells represent something unneces-
sary that should be removed from the code. Classes that are not doing enough

need to be removed or their responsibility needs to be increased. Data Class

Encapsulators

Couplers

16

and Lazy Class represent such smells. Also unused or redundant code needs
to be removed, which is the case with Duplicate Code and Speculative Gener-
ality. Interestingly, Fowler and Beck (Fowler and Beck, 2000) do not present
a smell for dead code. Developers find this quite surprising, since in their ex-
perience it is a quite common problem. Dead code is code that has been used
in the past, but is currently never executed. Dead code hinders code compre-

hension and makes the current program structure less obvious.

The Encapsulators deal g § } data communication mechanisms or encapsula-

tion. The smel! / category are Message Chains and Mid-

/‘e‘“, somewhat opposite, meaning that

dle Man. .
, K et

o increase. Removing the Message
Chains s Middle Man smell and vice versa,
since the _ !‘_ the class hierarchy by moving
sy ouc could argue that the Message
ind that the Middle Man smell

“‘x_ 5\ Developers believe that in order to

get a bettc g b et B n ey should be introduced together.

There are tv§ I1s3®vhich are Feature Envy and Inappro-

priate Intimacy =7 ell means a case where one method is

too i) | i A opriate Intimacy smell means
that i 44 AL). Both of these smells rep-
resent ! th coupiitiss Moeiust the '} ject-oriented design principles.

Of coursgg ge developers co 1 make an argument that these smells should

ﬂ %E}'ﬂ%%‘ﬁ%ﬁﬂgﬂqm since they both focus

@Jrictly on coupling, Developers thlnk it is better if they are introduced in their

ama@ﬁ‘mmumwmaﬂ

Others

This class contains the two remaining smells Incomplete Library Class, and

Comments.

A Mintyld’s taxonomy for design flaws is introduced. The purpose of this taxonomy is to

prevent the problems arising from the flat list of twenty two code smells. With this classification,

developers feel that it makes the flaws more understandable, recognizes the relationships between

flaws and puts each smell into a larger context. Next section, another concepts used in detection

of this work are discussed.

17

2.2 Declarative Paradigm in Meta-Programming

In this section, the declarative paradigm is described in detail. By means of a declarative
programming language, PROLOG, and some examples, the basic concepts is explained of such a
language and use such concepts in building the proposed detection approach. After that, the topic
of Declarative Meta Programming is discussed. The reasons about the environment of Declarative

Meta Programming efficiently supported in the proposed detection is discussed.

2.2.1 Declarative Paradigm

Before descriptions whicl £ éms of a declarative programming lan-

guage in meta programs of Do Ogrdronment are described, the declar-

ative programming paradigits: A TN, there is a comparison of it with

procedural as object—one*' [l | o SRy e written in imperative style. Examples
Tt

of this paradigm are C++, C, T

e Declarative pro/si}n

gram should do, | V

w L vy of specifying what a pro-
Y 10st imperative programming
languages are base "‘I 1 the S«CP%] prob 1., declarative programming lan-
guages only indicate tly: essential characte tics of the problem and leave it to the computer

to determlﬂhuﬁa%Wﬂtﬂ)ﬁrWﬂﬁ ﬂs&%ﬁ languages are PROLOG

and SOU

AMANIWPIMNINYIAE

scriptions of Declarative Programming, some advantages of Declarative Program-
ming can utilize to the proposed detection of this work. First consideration is that the programs
written in it are easy to understand. Learned logic rules can also be easy to understand and give
proper reasons with Explanation-based learning mechanism in the reasonable way. This issue is
discussed in detail in section 2.3. Second, programs written in a declarative programming lan-
guage specify what is needed to be computed instead of how it has to be computed. When flaw
identification in software systems is performed, points which consider is just what flaws want to
find. Therefore this paradigm is suitable for modeling the detection. In the following section the

basic concepts of a specific declarative language, Logic Programming language, that used in this

18

dissertation is proposed. This language is used for implementing meta language of the proposed

detection. The detail of implementing is described in section 2.2.2.

2.2.2 Logic Programming

Logic programming is one of the declarative programming paradigm. It consists of logic
programs to identify knowledge of a specific problem. The definition of logic programming can

be defined as follows:

Definition 2.8 (Logic Programm.3 \ ing paradigm is based on first-order

B, specifying the base knowledge that
' #p fying &

‘onlipes . nowledge is so-called facts. The

predicate logic. Programs in (.

is available about a probler,
part of the program that » ge facts consists of rules. These

rules are used to deduce n

PROLOG (Deransart 4 ‘ famous (Flach, 1994) of the im-

plementation of logic languac ;\leulenting meta language in meta-

programming in this disserta

The simple syntax of PROL(‘ ™ example is shown following. There is a
consideration the folloy, Mo e 2ffct of people and know who is

the parent of who. A s) relationship between those

people is written. This prcfifam Cai® tlow i} PROLOG program as follows.

The first three lines ((1)-(3)) of PROLOG examples above express some base knowledge
of the example (namely that jim is a parent of bob, that bob is a parent of julie,...).
This information is called facts . The last line (4) of the example form a rule that defines the
grandParent relationship. Variables in this rule are written with a capital letter. Notice that
this rule does not say how to compute the grandparent relationship. It gives a definition of it:
someone (X) is the grandparent of someone (Y) if there is another person (Z) such that person X

is the parent of Y and Z is the parent of Y. As the reader will remark, this logic program is a very

19

intuitive definition of the problem which should be expressed. If grantParent is processed to
show who is a grandparent of who with PROLOG. A query is posed to the PROLOG interpreter.

In this case the query would look like:

grandParent (X,Y) .

The logic language then processes the query and it output:

Above information snovg ne logic language will return. Not

only a single solution is rewurr %osa sct of variable bindings for every
.y

e

possible solution. Every « and a value for that variable. If

we take a look at our exarr r —t e | " = jimandforY = julie,
then this pair would be a cor g %:lationship. If consideration in the

example, julie is a granach’
2.2.3 Declarative Meta Prog .

Declarative Meta=og A g ugof a declarative programming
language for writing .vl Y ‘I 1s that process programs; as

opposed to more plain prc i a um{Jfiand software engineer use meta

¥

programs as compilers, program editors, 1ntegrated development environments, UML editors and

WWWWW giie
Esf;;:;ajmﬂ"m"i i 11—

language.

Declarative programming languages are very suitable for writing meta programs because
they allow the programmer to focus on what needs to be achieved rather than how to achieve it.
This is the very definition of declarative programming languages, which refers back to Kowalski’s
well-known equation “Algorithm = logic + control” (Kowalski, 1979). His notion that the logic
or "what” part of a program is easier to define when it is separated from the control or "how”

part also holds for meta programs. A typical processing step in a meta program is doing a search

20

on the program being processed; for example finding a function that calls three specific other
functions. This is made easier if one can define what one is searching for separately from how to,
for example, loop over all functions and all the calls in those functions. Another typical task is
transforming the processed program, for example, adding calls into certain functions. Again, this
is made easier if one does not have to focus on how to exactly apply the transformations to ensure

they are done in the correct order.

In this dissertation, logic programming is introduced for meta language. It means in this

context that logic programs is written,t'} F J s,about programs which written in an object

oriented language.

DMP has already beeri ications in the context of creating

development support tools in = of them can be put in one of the

following five categories:

4. Generation of sorwge

5. Aspect Oriented ¥ Y

.!!
»

2.24 Logic Programmlngl' (bgory 'Y,

This sectlonqves aQ)rt 1ntmucgljon to loijgic rogrammlrgheory An in-depth overview
Explanati a‘ ﬁ ot of the subject is

referred to lach 1994) and (Lloyd, 1984). This section starts by introducing some terminology
which use in the Explanation-Based Learning section. Not only the syntax of the building blocks

of logic programs (Horn Clauses) is described, but also their semantic meaning of logic program

is briefed including model theory and proof theory.
2.2.4.1 Terminology

In the course of this chapter and later, the reader encounter a few terms related to logic

programming theory and predicate logic. The definition of a few relevant terms is given in this

21

subsection. It is not the intention that the reader looks at these terms now, but that he/she refers to

this list whenever a term is encountered that is not all clear.

Definition 2.10 (Predicate) A predicate consists out of a predicate symbol (a constant) and a

number of arguments (the arity of the predicate). A predicate has a truth value true or false.

For example the predicate sum (1, 2, 3), the predicate symbol is sum and the arity is 3. if

considering interprets the predicate as t B J oument of the predicate is the sum of the first

two arguments” then the truth valy

Definition 2.12 (And, O; y B 7 S rator. The clause A \ B is true
if and only if A and B are I g - e 20 N\ Wator. The clause AN B is true if
either A or B are true. The cl. B : / Woe both the same truth value or if A

is false and B is true. The impli o % en as the clause -A V B.

Definition 2.13 (SounMss . LT is deduced from it is true.

7 Y

Definition 2.14 (Comple. ,.! ess) A logic program ts complete #ld covers all positive examples.

¢ a v
Definition 2.15 @nueﬂ)gl(m ﬂgngcmsﬂtgmejot cover any of the nega-

tive examples. ¢

AMANTUNNINYAY

Definition 2.16 (Derivation or Deduction) Clause Cs is derivable from clause C1 (C1 & Co) if

clause C; is gotten from clause Co by applying rewrite operators to Ca.

Definition 2.17 (Logic consequence) Clause Cs is a logic consequence of C1 (C1 |= Ca) if every
model of C1 is a model of Cs.

22

2.2.4.2 The syntax of logic programs

In the previous subsection, a practical viewpoint to how logic languages work by studying
the PROLOG language is given. Additional formal viewpoints of logic programs are described.
Programs in logic programming language is defined as a collection of Horn clauses. The following

grammar gives a formal definition of such a Horn clause.

clause := head [+ body]

edig teéﬂ*ﬂ

The above conventions Mammar: productions between [and

~

] may be omitted. For example #Fbl. or the string ab. A* means to repeat

- -
‘%
the production zero or more times. ’11

!

- cans that it can produce the strings like the

empty string or string {=ii, iz nt gith an “or’. For example a|b,

this can produce two st - -

yl'

i
2.2.4.3 Properties of lo= languages

The foundﬁnwté)ﬁc%tﬂwgw H@ﬁ@age is introduced in last

subsection. A few&roperties of these larlguages that are 1mportant for the further discussion of
this diss ﬁ ﬂﬁqﬁm N“ Wﬂ)m a ﬂams no variables
(eg. pa:gt

Let Variables be the set of all the variables in a logic program P and let Literals be the set

of all the terms that occur in a clause C of a logic program P.

Definition 2.18 (Substitution) A substitution C6 is a mapping Variables — Literals in which we

change every occurrence of variable X in C into literal 1. Note this as: 0 = {X/1}.

For example: C = parent (jim, X),0 = {X/bob}, Cl = parent (jim, bob). It

23

can say that a substitution 6 is a unifying substitution of clauses C; and Cy if C16 = CH. So 0 =

{x/3jim, y/bob} is a unifying substitution of father (X, bob) and father (jim,Y).

2.2.4.4 Model theory

The syntax of the logic language consisting of Horn clauses is discussed in the previous
subsection. The semantics of logic language is described now . In order to make it easier to
determine the truth value of a Horn clause, the clause is rewritten such that the implication is

removed. The following general Horn clap: g k gonsidered.

In order to know itg 1e to this clause by assigning a

value to each of the literal

The rewriting this ¢ - disjunction is shown how this

is done. The new clause sh

This clause is tril2 2§ y j of the literals from the body

is true. The reader can & 44" AX ‘uth values of the clause with
those of the implication. / ! | now roT——t10rn cla#} | is true, every L; are associated

each truth value and check w@e er the entire ClalESIS true or false.

e UL ANENINEN Y. .
e ATDRSDINHIIANEIAL. ...

terms in the program P.

In case of the example from the previous subsection, Up = {jim, bob, louise,

mia}.

Definition 2.20 The Herbrand Base (Bp) of a program P is the set of all the grounded atoms in

P. The elements of the Herbrand Base are all possible combinations of predicates and constants.

24
The Herbrand Base of the example is:

Bp = {grandparent (jim, jim), ... , parent (jim,louise),

mother (louise, louise), ...}.

It is easy to see that the Herbrand Base can be quite large. It can be made a mapping
between the elements of the Herbrand Base and the values {true, false}. This mapping is called
the Herbrand Interpretation (Ip) of a program P. Since it have to specify for every element of a

very large set if it is true or false, the usin rse relation in practice is considered.

This means that the read¢e

éments of Bp of which the readers say

1 as=——— For the rest of the elements of the

e

W oy it says that:

that they are true (formally t:

Herbrand base it assumes tifae .

Definition 2.21 (Model) ivi i WIS d subset of interpretation I and

that all the clauses of P a,

2.3 Machine Learning

Machine Learning is the study ¢ gramming computers to learn. Computers

i

are applied to a wide ragge Q it is ralatively easy for programmers

to design and impleme 'v-_ . - ;"‘ e many tasks for which it is

difficult or impossible to ¢ ! e uerexist no human experts or prob-

1 ¥
lems where human experts Cxist, but where they are unable to eXplain their expertise. Fortunately,

‘ _
humans can provi rﬁ]ﬂﬁlﬂﬂ fi " El:ﬁ.[ﬁutputs for these tasks, so
machine learning &lgo arbledirl t n ﬂ] e ﬁt
¢ o/

e L RON L E LN

an external@environment, or detects and extrapolates patterns. An appropriate machine learning
technology could relieve the current economically-dictated one-fits-all approach to application de-
sign. Machine learning addresses many of the same research questions as the fields of statistics,
data mining, and psychology, but with differences of emphasis. In contrast, machine learning is
primarily concerned with the accuracy and effectiveness of the result of computer systems. To il-
lustrate this, we consider the different questions that might be asked about speech data. A machine

learning approach focuses on building an accurate and efficient speech recognition system.

25

2.3.1 Analytical and Empirical Learning

Learning tasks can be classified along many different dimensions. One important dimen-
sion is the distinction between empirical and analytical learning. Empirical learning is learning
that relies on some form of external experience, while analytical learning requires no external

inputs.

Consider, for example, the problem of learning to play tic-tac-toe (noughts and crosses).

Suppose a programmer has provided an e jo of the rules for the game in the form of a func-

tion that indicates whether propose dlegal and another function that indicates

whether the game is won, lost_z ctions, it is easy to write a computer
program that repeatedly plays i] - I Suppose that this program re-
members every board positioz final board position (i.e., where the
game is won, lost, or tied), 1t * ; A0 many games, it can mark a board
position as a losing positiTii 1f r J PR AR 4101 leads to a winning position for
N position if there exists a move
from that position that leads, 2 pC b N I it plays enough games, it can

eventually determine all of th: ’ R : 1. Wd play perfect tic-tac-toe. This is a

form of analytical learning bec; g noAfd=e = i ded. The program is able to improve

In contrast, cons o) tac-toe. It generates possible

Ir‘

positions are won, lost, o7 1‘! >d. The piogiantoan teinember tifffexperience. After it has visited

moves and a teacher V; ! are illegal as well as which

every possible position and #figd every possible gapve, it will have complete knowledge of the

rules of the gameﬁt%ﬁj n%r %sﬂ%cﬁ Wrﬂlﬁ}ﬁ)ﬁ‘his is empirical learning,

because the progra“ could not infer the rules of the game analytically — 1t must interact with a

“IRIAINTUNRINYIA Y

2.3.2 Anglytical Learning

We now turn our attention to analytical learning. Because analytical learning does not in-
volve interaction with an external source of data, analytical learning systems cannot learn knowl-
edge with new empirical content. Instead, analytical learning focuses on improving the speed and
reliability of the inferences and decisions that are performed by the computer. This is analogous

in many ways to the process of skill acquisition in people.

Considering a computation involves search. Examples include searching for good se-

26

quences of moves in chess, searching for good routes in a city, and searching for the right steps
in a cooking recipe. The task of speedup learning is to remember and analyze past searches so
that future problems can be solved more quickly and with little or no search. The simplest form
of speedup learning is called caching — replacing computation with memory. When the system
performs a search, it stores the results of the search in memory. Later, it can retrieve information

from memory rather than repeating the computation.

For example, consider a person trying to bake a cake. There are many possible combina-

tions of ingredients and many possible

| Jsteps (e.g., stirring, sifting, cooking at various

temperatures and for various am . must search this space, trying various

s 1 from this search by storing good
——————

combinations, until a good camm
combinations of ingredients orm of a recipe written on a card).
Then, when he or she need< e retrieved and followed. Anal-

f2ving. Good sequences of moves

can be found by searching th 4o 4 | — N\ hese sequences can then be stored
N W
and later retrieved to avo# i ; “f (% g™ es. This search for good move

s

sequences can be performe #fvi #F §Hlaydiis nst opponents.

A more interesting forrrF g f " —_ 2 is Wencralized caching — also known as
Explanation-Based Learning. Consem— = f.low wants to bake bread. Are there pro-
cessing steps that were found dugs = “' ake recipe that can be re-used for a
good bread recipe? TIS - = £ tant to add the flour, sugar,
and cocoa powder slo y . b 4 I and vanilla extract. If the cook
can identify an explanati Afor this part of the recipe, then it b “n be generalized. In this case,
the explanation i ﬁ owder cocoa) to a liquid batter
(water, eggs, anda?u ﬁ‘% ﬁﬁsﬁW&jﬁﬂTﬁ]gﬁlds creating lumps. This
explanation suppo the creation of a gegeral rule: Ad%)wdered 1ngred@ts slowly to a liquid
batter w@ qu M ﬂﬁ@,ﬂ%@ﬂeﬁﬂ\ﬁﬁaﬂ@ply it, but this
time the pdjvdered ingredients are flour, salt, and dry yeast, and the liquid batter is water. Note
that the explanation provides the useful abstractions (powdered ingredients, liquid batter) and also
the justification for the rule. Explanation-based learning is a form of analytical learning, because
it relies on the availability of background knowledge that is able to explain why particular steps
succeed or fail. Retrieving a rule is usually more difficult than retrieving an entire recipe. To

retrieve an entire recipe, it just needs to look up the name (chocolate cake). But to retrieve a rule,

it must identify the relevant situation (adding powdered ingredients to liquid batter).

Sometimes, the cost of evaluating the rule conditions is greater than the time saved by

27

Table 2.1: The explanation-based generalization problem

Given:
e Instance space X: Each instance describes a pair of objects.

e Hypothesis space H: Each hypothesis is a set of Horn clause rules. The head of
each Horn clause is a literal containing the target concept predicate. The body
of each Horn clause is a conjunction of literals based on the same predicates
used to describe the instances.

e Goal Concept: A concept definition describing the concept to be learned.

e Training Example D: An example of the goal concept.

e Domain Theory B: A set of rules an > nsed in explain how the train-
ing example is an example of t '
Determine: /
e A hypothesis from H is ¢ ‘th the traé)les and domain the-
ory. ‘#
not searching. This is kn: Wu%ion to the utility problem is to
restrict the expressive powe ic guaranteed to be cheap to eval-
uate. Another solution i#0 *.h different conditions that are
easier to evaluate, even if ##is A i is¥ known as knowledge compila-
tion. Explanation-based lear, BT A 8 to cognitive architectures such as
w e rett
the SOAR architecture (Laird e JfF., 2=+ @ou® CT architectures (Pavlik and Ander-
son, 2004).
2.3.3 Explanation-B% = : — =
7 A

After concepts of ;! “hine learning auu prenminary arditical learning in previous sub-

section are discussed, the deajlsgf explanation-bgged learning is described in this section. This

learning algorithrﬂp%a&j tﬁa s%ﬂ%@ w«%}gﬂfﬁe task domain and of the

concept under stud’l After analyzing a siggle training example in terms of this knowledge, these

=
methodsa ﬁ ?ﬁﬁ ﬂa\j ag“ﬂ?mﬂ‘g -tlﬁldeductive justifi-
cation of tl@ generalization in teérmis Of the system’s Knowledge. The explanation-based method

analyzes the training example by first constructing an explanation of how the example satisfies the
definition of the concept under study. The feature of the example identified by this explanation
are then used as the basis for formulating the general concept definition.The justification for this
concept definition follows from the explanation constructed for the training example. The generic
problem definition of Explanation-Based Learning shown in Table 2.1. It summarizes the class of

generalization problems considered in this dissertation.

28

From Table 2.1, the learner is given a hypothesis space H from which it must select an
output hypothesis, and a set of training examples D ={(x1,f(x1)), ..., (Xu.f(x,))} where f(x;) is
the target value for the instance x;. The desired output of the learner is a hypothesis /4 from H that

is consistent with these training examples.

In analytical learning, the input to the learner includes the same hypothesis space H and
training examples D as for inductive learning. In addition, the learner is provided an additional
input: A domain theory B consisting of background knowledge that can be used to explain ob-
served training examples. The desire]
consistent with both the training e /lain theory B.

—

x; would describe a particular char-

| the learner is a hypothesis # from H that is

To illustrate more concr
acteristic of inputs, and f(x;) v steristic for which approach to target

concept, and False otherwise

" %¢ from domain theories that are

perfect, that is, domain ther #: w . AN . A domain theory is said to be
correct if each of its asserfion AT 7'=- e \ \ the world. A domain theory is said
to be complete with every £ F cx3 *".: .cWpoace, if the domain theory covers

every positive example in the ir#an @
satisfies the target concept can be sl i 2 4]

det®l, it is complete if every instance that

heory to satisfy it.

Explanation-Bas ' V. ,r‘ 1 clause rule by the algorithm

called Prolog-EBG (Mitck ! etar., o peoney, j1186). Prolog-EBG is a sequential

covering algorithm. For morg detail, it learns one rule, removing the positive training examples

=3 L7
covered by this rlﬁtlﬁigjt'ﬁa mm?ng@rﬂtﬁ examples until no further
positive examples qnain uncovered. en given a complete and correct domain theory, Prolog-
EBG is I to output 's‘& t.0) ig itself co ‘ that covers the
observedﬁsﬁﬁi&&ﬁgmﬁﬂﬁﬁmysgﬁjﬂn Table 2.2.

q

From learning algorithm in table 2.2, each new positive training example that is not yet

covered by a learned Horn clause forms a new Horn clause by step:

1. Explaining the new positive training example. Each training example is to construct an

explanation in term of the domain theory.

29

Table 2.2: The explanation-based learning algorithm Prolog-EBG.

Data: TargetConcept, TrainingExamples, DomainTheory
Result: LearnedRules

LearnedRules < {};
Pos < the positive example from TrainingExamples;

Prolog-EBG(TargetConcept, TrainingExamples, DomainTheory);
forall the positive elements of example in Pos do
1. Explain:;

2. Analyze:; :
SufficientCondi™™ & gfﬂ features of PositiveExample
sufficient to s ' to the Explanation;

g TS

rie-e generalization. The algorithm com-

2. Analyzing this explanatid to -’%

putes the weakest preimagef= s/t =4 ith respect to the explanation, using a

general Procedu g — -
V. AX
3. Refining the curre ! 1lype rnflause rule to cover this positive

example, as well as other similar 1nstances A new 1nstance is classified as negative if the

“ﬁ“‘u’ E]“"’J ‘Wﬂ"ﬂ“ﬁ NE1N?
iﬁiﬁﬁﬁ“ﬁ“ﬁi AR A

PROLOG- BG is its ability to formulate new features that are not explicit in the description
of the training examples, but that are need to describe the general rule underlying the training
example. After all concepts which involved with this dissertation is described, in next section

the-state-of-the-art design flaw detections are introduced .
2.4 Related Works

The problems of design flaw detection are discussed from different groups in this section.

Typical approaches can be divided into two categories. On the one hand, there are approaches

30

use usability aspect and user experience to exploit the static structure of flaws. Some of these use
Declarative Programming to describe the structures of the programs source code. On the other
hand, some approaches base the detection on metrics and their automated interpretation. Both

groups are important for efficient flaw detection and acceptance of automated approaches.

2.4.1 Smells, Design flaws and Anti-patterns

Firstly, Beck and Fowler coin design flaws as the term Smell in (Fowler and Beck, 2000)

for structures in code that possibly need joring. They describe a set of twenty-two smells.

However, they explicitly do not giyal ‘ [o identify those smells in code. Instead,
Fowler and Beck refer to the dex: ™S (1t / Iiﬂ ce (Fowler and Beck, 2000) . These
twenty-two smell description? ! " oblems (e.g. Parallel Inheritance

e
Hierarchies) and problems or N o tiny problems like Method Has

Too Many Parameters (Van g j ' se different levels are not stated

N '.\»' auon of design patterns (Gamma

,

et al., 1995) and smells. | . - N vy and the strategy and visitor

W . .
d%ver no comprehensive catalog is
provided currently.

! T o
Marinescu gives a forma#ef: @

1 Foiw (Marinescu, 2005). A design flaw

is a negative property of an entity ik he design flaws are explicitly related to

3

not only implementati - slhoe, class, method, etc. Such

high-quality designs (Maj ,‘I scu, 2001, s aeviauon from $Hliven set of criteria is expressed

entities with negative V:'. e haracterizing non-functional

in metrics and automated intgtpsgtation of measuggg values. The characterization of high-quality

designs is based lﬂnuﬁ ﬂomﬁﬂlW\ﬁowsE\}q‘ﬁﬁMarinescu, 2010).
To _’q_la T e m ferhes,. a reliftQring opportunities
(Tourwé ﬁiW@ami nﬂiﬁﬁrﬁsﬂ 2131 ﬁ;gl adequate refac-

torings. Brown et al. provide a pattern language to describe flaws so called AntiPatterns (Brown
et al., 1998). AntiPatterns are commonly occurred solutions that cause obvious negative conse-

quences. AntiPatterns can be the result of actions taken by the different participants of a software

project. AntiPatterns can occur, among others, in design, architecture and processes.

Mintyli et al. propose a taxonomy for the initial set of smells provided by Beck and Fowler
(Mintyld et al., 2003). The twenty-two smells of Beck and Fowler are grouped into six categories:

Bloaters, Object Orientation Abusers, Change Preventers, Dispensables, Encapsulators and Cou-

31

plers. From their survey done in an industrial project, Méntyli et al. compute correlations between
smells. Their taxonomy is applied to these correlations. They conclude that this taxonomy and the
empirical study of smell relations is only of initial nature. The study shows that relations between

smells exist, and are not only pure theory.
2.4.2 Analysis based on structural detection

One type of famous approach to flaw detection is the use of Structure Analysis. Several

approaches in research make use of such qlg

typical structure in code. 208\11/

The detection in earlyw PP = On software inspection techniques

petyral detection to find design problems by their

on text-based descriptions Tarav 209, 2002). Software inspection in-

volves carefully examinir@%ie Siiation of software and checking
them for aspects that are d on past experience. It is gen-

i i % \,
erally accepted that the cc 4T = \'*-\ WewShen that flaw is found early in

,
r & P_: . o
parser generation and term ro# g frg / :

E“'x d Moonen, 2002) present in their
! =
as graphs (Slinger, 2005) by imfen Jm

vironment (Eclipse IDE). They st2; -l'_"_?:_ 4

the development cycle. Van ",

early work on code inspe pelr approach is based on a generic

=

v3f them are detected and presented

r ti¥ Eclipse Integrated Development En-

terized by different flaw aspects. They

distinguish between prj-d 4oc)s to split flaw detection into
X

i:e of the analyzed source code.

two steps. Derived flaw V:'. efocts. Primitive flaws and flaw
aspects are collected by v ,‘I [0T'S traversiiig wie austdCl Synta
These facts are input to a calfylgtor for relationafyglgebra. This calculator is used to infer more

complex design ﬂl% Ejn’tﬂewlﬂﬁﬁ w EJ ’] ﬂ ﬁ

U
However, i i ﬂio 'ﬂe— i ﬁ ﬁ/ﬁioﬁyﬁpends on devel-
oper’s pﬂrm fﬁps N | ﬁ nﬂrﬁﬁo ‘ﬁ Aftvark Qi§ulliFation (Langelier
et al., 2005) is used to support flaw detection. This strategy reduces the search space — time-

and resource-consuming — which compensates for human intervention.

Bravo (Bravo, 2003) develops a framework based on the Declarative Programming. His
framework is applied to use logic to reason about source code and propose opportunities to pre-
form refactorings by Tourwe (Tourwé and Mens, 2003). The detectors are implemented as logic
predicates that reason about the structures presented in analyzed source code. Some detectors

make also use of metrics. All flaw instances have an attached weighting. This weighting is com-

32

puted from the badness of a flaw itself, weighting between flaw pairs and user given sorting. The
selection of logic programming is based on the fact that this paradigm enables fast execution and
easy description of complex queries on huge factbases. The work of Kniesel et al. do support this
selection (Kniesel et al., 2007). GenTL (Appeltauer and Kniesel, 2008) is presented, a generic
analysis and transformation language. GenTL uses snippets of the analyzed language, called code
patterns, to select elements during analysis. The patterns may contain variables as placeholders
for elements of the analyzed language. The use of code patterns and variables balances needed
expressiveness, ease of use and high abstractness with the power of Logic Meta Programming.

However, currently no implementation &%

",

e £ metric computations. Either com-

plex, specialized metrics are _##i- € BN cs are combined into a strategy to

algorithm to find opportu 'y B _ : 2 %s. “Those are the refactorings Move
Method, Move Field, Extrac ang g ¥ 1999). Simon et al also develop
the metric Distance Based Coh " 101 fm
fields in the cited paper). This met:Z=2kg/\ 2 A1

ilafty between two entities (methods and

iter entities. It provides opportunities for

refactorings that impro ;;—, (4= hat belongs together . These

detected opportunities s V \
)]

Marinescu develops a evhole framework to define flaw detectors from the composition of

=3 L

metrics (Marinesﬂ ﬂ%a ﬂ ﬂ, ﬂﬁscu uses metrics and fil-
terings, that are loqfﬂcompos:ﬂto soﬂﬁDetecgggmtegies. To define new detection
strategies for sign heurist] rQpriat jcshal -aLNe next step is to
select ﬁlﬂﬁ;nﬁz’iha ﬁﬂ%iﬁvﬂﬁtj ﬁﬁﬂﬁﬁ* with and, or and

not operators. The result is a single, encapsulated detection rule for a design flaw, that can be

or inline a class.

effectively computed. Some heuristics explicitly state semantics that can be related to the selected
metrics. Those allow for a “semantical filtering . If absolute numbers are part of the heuristic, an
“absolute semantical filter “’is possible. Classes should not contain more objects than a developer

can fit in his or her short-term memory. A favorite value for this number is six (Riel, 1996).

Marinescu states that some heuristics do not allow for absolute semantical filters and he

calls these heuristics fuzzy and presents two further types of filters. A “relative semantical fil-

33

ter’considers the highest or lowest values of a dataset. An example for this heuristic is Methods
of high complexity should be split. For heuristics mentioning extreme values , “statistical filter”is
proposed by Marinescu. Statistical filters catch extreme, abnormal values. An example for such a

heuristic is “Avoid packages with an excessively high number of classes”.

In the latest publication (Lanza and Marinescu, 2010) of Marinescu and Lanza, only abso-
lute semantical filters are used. For fuzzy heuristics, deviations from normal values are encoded
into the thresholds. These are based on a study about forty-five JAVA projects, measuring com-

plexity per line, lines of code per method

| Jez of methods per class. Averages and standard
/._Jted from this collected data. Assuming
¥ | between lower and higher margin.
e ——

deviations as well as lower and hidgss"

normal distribution, 70% of th

Very high values are assume~ margin. This statistic is completed

by universally accepted thr; ory cap (7-8) and fractions that

seem natural to humans lik

There are improver £ (- ? \ N W N information. Ratiu et al. (Ratiu
et al., 2004) improve the de #Fti ¥ b @ H\ rinescu, 2004), for the God Class

and Data Class design flaws versions of a project. Whenever

a method is added or removed' taken into account. Changes within

. . aas B, . .

methods are not considered. Ratiu & #oility and persistence of a design flaw by

testing the class under inspectiags
b

is the ratio of versionsSsw = =4;ion before also exposed the
L

gion flaws for each version. Stability
. . . i g . .
design flaw. Persistence T Csm 1 Hlaw in relation to all changed

versions. They conclude Lat persistent and stable design fla=#; are “harmless”. Such design

flaws are part of t ste * factored. Thus they seem not to
do any harm to tﬁ uﬁnﬁ ﬁﬂﬁ%ﬂmm 1dea of irrelevant flaws.
Improving accurac detectlon of metric-hgtsed technlque&n design flaws @ectlon are supported
20 QAT F R HAAQ TBFR e
which tries§o find automatically the proper threshold values. However, design flaws cannot be
directly measured by software metrics. Consequently metric-based techniques translate a flaw

into measurable code properties which are thought to be related to the flaw. This technique is

insufficient to precisely identify design flaws (Moha et al., 2006).
2.4.4 Usability and Efficient Flaw Detection

Murphy-Hill and Black distinguish between floss refactoring and root canal refactoring

(Murphy-Hill and Black, 2008a). Floss refactoring is characterized by frequent refactorings that

34

are interleaved with other changes (e.g. adding a feature). Root canal refactoring are infrequent,
large blocks of refactoring, during which nearly no other changes are made. According to their
research, the majority of refactorings is carried out as floss refactorings. Murphy-Hill and Black
postulate seven habits in order to build usable, highly effective, flaw detectors (Murphy-Hill and
Black, 2008b). These guidelines are backed by an empirical study, an experiment with a ques-
tionnaire. They conclude that programmers value these guidelines and that the guidelines enable
programmers to understand more flaws with greater confidence. Among these guidelines are the

following (Murphy-Hill and Black, 2008b):

o Context-Sensitivity. A fla SRS é,“ foremost point out flaws relevant to

the current programm{® Fixtig . cx {_insensitive manner may be a

tly go through a series of steps

. . Fpe - NN R . .
in order to see if a * . \‘ ALY should make flaw information
A RS N
available as soon d5 L S Nt O the programmer.
b il \

e Scalability. A prolifer not cause the tool to overload the

e ;
programmer with flaw m; naﬁé-

e Relationality. A flaw detectige=s

TN gapable of showing relationships between

code fragments 1% od

7 4

Mealy et al. cond iI a usability study o1 software refads ring tools (Mealy et al., 2007).

They derive a set of usability §uiglglines from eleva@ollections of such guidelines. Further, guide-

lines on the requiﬂ Mlﬁa@%ﬂ%@.ﬂ&%ﬂo@se nearly full automation

(called level six ou‘l)f eight levels) for tlae phases of acgiring and analys‘i} during refactorings.

Within tﬁmﬁﬂ Dmm ﬁwﬂr? wm aCET it automatically

and then ingorms the human. are too fuzzy to be computed. An example is the Specu-
lative Generality flaw that is found in classes that do more or are more flexible than is required by
the users of a system. It is not possible to reason about this “extra flexibility”(Mealy et al., 2007).

Thus they conclude that flaw detection should not be completely automated.

Mealy et al. use the derived set of guidelines to analyze four common refactoring tools.
From the results of this study they infer that work on the provided level of automation in current
tools is needed. Automation of flaw detection and refactoring proposal is required to improve the

usability of such tools (Mealy et al., 2007).

35

2.4.5 Tools of detection

A wide range of tools exists that provide static analysis of software systems. Available tools
range from style and bug checks as well as maintainability indices and metric measuring used in

industrial projects to research prototypes to detect flaws..

Checkstyle ! is a static analysis tool to validate source code conventions. The provided
rules can be configured and the tool can be extended with new, custom defined rules. Additionally

Checkstyle is capable of computing sevar: tics. All results are presented in a report. The

analysis and reporting are also inteaz The user interface of tool show in Fig. 2.1.

& Checkstyle : SessionfwaraT EM
Tree - — Text
] ROOT0] O1ROOT
o= [package[1x0] = B [package
o= [impor[3x0] i \ uimpornt
¢ [CLASS_DEF(540] 0CLASS_DEF
o= [MODIFIERS! L MODIFIERS
B classEeT] J { lass
SessionfwareCr 4] " 13 SessionfwareCacheStore
o= [implements[& 1 NG implements
% [0BJBLOCK il Eh L W OEJBLOCK
[(rsxae) - J

1VARIABLE_DEF
1 CTOR_DEF
1METHOD_DEF
1METHOD_DEF
1METHOD_DEF
1METHOD_DEF
o}

o [VARISELE LY

o [CTOR_DE]

o~ [METHOD, 7

o I METHOD_ DEF|*

o= I METHOD_DEF.

o [METHOD_DE
[sa0e0)

B

The interpretation of wlqlgtions and metriggegsults is up to the user of Checkstyle. There

o P 'gngqmg VD ARG v of e s sove

Development Tool§

bl LV AURIINLIN s

on patterns that are often errors. Tool does not detect any design problems nor is it integrated with

refactoring tools. FindBugs program show in Fig. 2.2.

XRadar is a meta-tool. It combines nine different tools to quantify several quality attributes
for design, architecture, maintenance and testing. XRadar is successfully used in an industrial
project to identify problem areas and measure the refactoring progress in a legacy system (Kvam

et al., 2005). The reported process of prioritized refactorings and architectural changes supports

Thttp://checkstyle.sourceforge.net/ accessed on 29.12.2009
Zhttp://findbugs.sourceforge.net/ accesses on 29.12.2009

36

the conclusion that XRadar fits a root canal refactoring approach.

CodeNose is the prototype developed by Slinger and Moonen (Slinger, 2005). CodeNose
is a plug-in for Eclipse. It detects design problems by traversing abstract syntax trees. Design
problems are inferred with a relational algebra calculator using collected primitive and derived
flaw aspects. CodeNose does not provide any further integration with refactorings of Eclipse Java

Development Tools.

JDeodorant is the application to dg
instances (Fokaefs et al., 2007). Thes A\

lad by the user and it starts only upon the
command of the user. The toolc< -y

Envy and Type Checks (Fokac

he two flaws supported are Feature

2008). Each flaw is presented in its

own view, listing all detected -

Summarizing the g and especially flaw detection,

all presented tools lack or etyle and FindBugs are examin-
ing no design problems. XF4 y = NGNoo analysis itself. CodeNose and
JDeodorant use Slice-base& co R (- i \ oulems in each modules, not entire

program. The tool of Bravo ¢a! #3ray# '- 7 nalltalk and is not available for the

currently more popular Java la#uz %

L¥ tool is available to experiment with

o
o 3% DE Il ped or 1o
o 3 D & W ious method used (JU;
o~ 3 El: wewod returning array may expose internal representation (26)
o~ 3 ES: Checking String equality using == ar 1= (4)
°'i Fl: \ncor tﬁfﬂnallzers il 4)

ilNN Maked nonfy i method]
o~ 3 MP: Mull pointer dareferance 1"

q aked

=

tify in metho

& call to notify () of notifyall () was made withowt any (apparent) accompanying
modification to mutable object state. [n general, calling a notify method on a monitor is done
hecause somme condition another thread 15 watting for has become true. Howewer, for the
condition to be meaningful, it must involve a heap object that is wisible to both threads

This bug does not necessarily indicate an error, since the change to mutable object state may
have taken place in a method which then called the method contaming the notification.

FindBugs - httpifindbugs.sourceforge.net’ @ %%

Figure 2.2: FindBugs tool

37

contexts and evaluate the usage of contexts in an industrial project. Thus for the development of
different contexts and their evaluation, the state of art in flaw detection has to be implemented in
the Cultivate Project. Cultivate provides a stable platform to implement metrics and flaw detectors

within the logic meta-programming paradigm.

AULINENINYINg
ARIANTAUIM TN

CHAPTER III

THE PROPOSED FLAW DETECTION
METHODOLOGY

Based on the idea of ““ the environmy< W b B /zsign extraction that is able to retrieve not only

the structural information, but alsqil J / method implementation. The reasoning

' éz up” motivated from (Wuyts, 1998)

and (Mens et al., 2003), a pron on ith learned pattern is introduced and

defined in this chapter. Befox N ethodology is proposed, the meta

"

architecture of detection is o' 5 : ' : \ ositive problems by using learn-

one-rule algorithm, this appre = \ H"-H_H-,L: n1 ule false specifying design flaws

)
M Ny,
% L

o1/ everse engineering modules for lan-

Although useful informe #%n
guage such as JAVA, the informatior, = ._ 4

d to what can be obtained from a structural

analysis of the source ¢H%

o5 pnd inheritance relationships.

Such information narrd§ 4 BY Jection. Also the analysis of

sway. ” -ually, the required information

information extracted is df{fned 188
W
for detection contains certain‘;:lements and relati% not how they are represented in a particular

=
language. To steﬂ)ﬂ ﬁﬂnﬁlﬂ,%ﬁﬁ (o]pﬂ'lﬁ a design extraction mod-
the structural ta

ule that was able tqretrieve not only information, but also information related to

method igapl {i ﬁlﬂt ti ‘;ﬂ.ﬁﬁﬁﬂ% ﬁg ming paradigm.
This metirmah_ I im il &la tdchBighel tha f)i _oﬂ;re development

(Mens and Kellens, 2006, 2005; Mens et al., 2003).

Declarative Meta programming (Tourwe and Mens, 2002) is defined as the use of a declar-
ative programming language for writing meta programs. Declarative programming languages are
suitable for writing meta programs because they allow the programmer to focus on what needs to
be achieved rather than how to achieve it. The concept of declarative meta programming is very
simple. A meta program must have access to a representation of its object program or base pro-

gram. More precisely, the language of the object program must be represented in the language of

39

the meta program. The mediator interface is a mapping from the symbols of the base language to
the symbols of the meta-language, but this mapping is not simply a translation from one language
to another. The mapping must also enable the meta-language to make statements about structures
of the base language and must also be a quotation mechanism. In this dissertation, Logic Pro-
gramming is used for writing meta program because it is the most suited for meta programs that
perform searching on the program they process and it answers in term of boolean value of the

existence of design flaws.

<
a Meta-Meta
©
g program
=
T
>
g
()
©
o
Figure 3.1, AEE MM iption detection

According to thet ;-
g 7

description detection is s , m

E" amming, the draft design of
1
%L omescription detection consists of

Rl

two levels: the base level aud the meta level. In the base level, Sase program is represented. The

meta program in ﬂaﬂﬁ l? Hﬁgﬂ Hﬁaﬂeﬁ This level constitutes a
number of facts ahdiru esén alyzes and transforms the
syntactical and semantlcal information of the base progegm into the metggrogram between the

e QAN TS T AT D A G e

rules, set o;‘arators, relationships among rules and properties in meta program. The transformation

uses a general parse tree representation, which enables the use of fine-grained static information.
The transformation module allows both layers to be language-independent. A base program is
represented indirectly by means of a set of logic propositions. These logic propositions are stored
in a logic database and they link between the represented base program and its logic representation

in meta program.

After the draft design is proposed, the meta architecture of description detection is created

according to the detail of the previous draft design of description detection. The meta architecture

40

Meta Level

Meta Program

o » Basic Rules [
Pattern MESs
detection i

i Domain Model
. |

Parse Tree
Crossing

[> MMI

Base Level

Parse Tree

MMI

Base Program

Figure 3.2: ' siption detection

of description detection sh: eta architecture consists of the

same as the draft design, twc ace module (MMI) analyzes and

transforms the syntactical and s nt e '; base program into the meta program
between the base level layer and tht, > The MMI consists of the Domain Model
which determines the ohiect s == g gain madel possess a set of sixty-five

specific Meta Element § = ~ 4 bns (MESs) representation of

a base program gives a COm =0 works. The domain model of

It

meta program defines con®.wents of MESSs to represent rules, 3. operators, relationships among

lfii?iiiiil@‘ﬂﬂﬁimﬁfﬁﬂﬁ i R
» Thammmmwmmaa

Although previous works offer ways to specify and to detect design flaws, each work has a
particular benefits and points on a subset of all the steps necessary to define a detection technique
systematically. The processes use to specify and implement the flaw detection algorithms are not
obvious — they are always driven by the service of the underlying detection framework rather

than by systematic study of the flaw descriptions.

In this section, therefore, we describe the detail of detection methodology that subsume all

the steps necessary to define a detection technique. Fig. 3.3 shows the eight steps of the proposed

41

methodology. The following item summarizes its steps:

— Representation Phase
Examples of
o 1 2 3 4
Object- G c design flaw c
oriented (5] () (=] -
design S w» F=] J B S o
principles [aa] m » S) E = =] ,
and o BBsand their o Domain model = Rules o] E Operational
Text-based £ . relations o (Metasyntax © 8 ac) Rules
descriptions 3 % E of meta program) g e)
of design S o 7] a o
flaw 2] (@ (U]
— Detection Phase
5 8
1]
g c
Source] o
code of g Suspect flaws "‘; Code
the) g constituents
system S g having design
o flaws
(@)
e Step 1. Building Block #yn, @ f (e in domain model of meta program

from design flaw description =5 e sh descriptions form a unified elements of
et i

e /4
design concepts) ¥phe

e -
ol
L
I

e Step 2. Concretiz : v <11 constitutes derived elements,

are combined to sps.fy relation systematically and co ~ itently. They are represented in

meta modeﬁ meta 5T in the form ofd#fe formal representation.

e Step 3. Genql'zya 101: Klargln]ecgmﬂn ;Jr;l)lﬂsgeciﬁc logic rules for flaws
detgcti ;Tm rf t‘ lﬁ i eﬁ i ﬂtﬁuﬁ(_proof according to
AR AN LA RTIVIETNEY

q

e Step 4. Procedural Generation: All rules are optimized by reordering literals. The basic
idea is that also first order queries become more efficient to execute if selective literals are

placed first.

e Step 5. Code Analysis: Source code are parsed and formed in Abstract Syntax Tree (AST).

It represents syntactical and semantical information of source code.

e Step 6. Fact Specification: Syntax trees are specified in information facts. They are

defined according to the domain model from step 2.

42

e Step 7. Detection: The detection of design flaw is performed on system using the oper-
ational rules from step 4. It returns the list of code constituents (eg. classed, methods)

suspected of having flaws.

e Step 8. Validation: The suspected code constituents are manually validated to verify that

they actually have flaws.

The first and second steps are generic and must be based on a representation set of elements

and relations of object-oriented concen:

‘Jprd 6 are also the same. Step 3 and 4 must be

followed when specifying a new fl:

f system. /
of system .d

1ble and must apply on each source code

We believe the proposes ause the detection algorithm are not
an ad hoc method, but it 1s - 3 . \ esentation that obtained from an
analysis and specificatiot! ‘ W10 benefits the software engineer-

S-ction rules by using high-level

ing quality because they ¢ ;
\."‘x e analyzed systems. The context

pertaining to their domain,
corresponds to all informatior L the system including types (proto-

types, system in development ¢ Jfiainid=s a2 cnoices (related to design heuristics

' s

and principles) and coding stanaard
LTRIA

3.3 Detection Meth a i
07 Y

The following sub ! fions "&e = eigh I teps of the proposed detection

methodology. Each step is e)ﬁplalned by the clear &rﬁesentatlon wh1ch based on common patterns:

o s a“dﬁ‘ﬁ FINUNINYING

3.3.1 Stepl: Bu1ld1ng Block Synthesié’

Input: Comggepts of ob@ct orgt ?prlnmples (Hd andqlourdon 1’!1) angescnptlons of de-

sign flaws (Fowler, 1999) in the literature.

Output: Building blocks type of elements and basic relations which aggregate together to repre-
sent each design flaw. They are the key components used to build the domain model for object
program in the next step.

Description of the step: The first step deals mainly with identifying and defining sets of elements
and their preliminary relations of such design flaws which belong to object-oriented paradigm. We
call these elements and their relations the building blocks of design flaw (abbreviate - bbs) and

type of elements and their relations the building block types of design flaw (abbreviate - BBs)

43

where each bbsy,e1 € BBSypet-

By the identification of building blocks, we utilize the concept of Domain Analysis (Neigh-
bors, 1984). We do the process performs by analyzing related software systems in a domain to
find their common and variable parts. It is concerned with relations and objects in all systems in

an application area.

According to domain analysis activities, this step performs finding of needed building

blocks from the description of design flavjg g fhich fellows object-oriented paradigm. We can

give some definitions of building b

Definition 3.1 (Building P,
building blocks type (BBs)

(bbs) is in the set of interesting
R-p.) between them which are the
N For example, when we consider

N = {(bbl,bbg) S R|bb1 € BBs1 N

Cartesian Product written

n = 2, the relation of BBs 4

bby € BBSQ}.
Definition 3.2 (The domain®y _ : v ‘tr? : nain of building blocks type (BBs)
in this dissertation is conside®d L vh &ist in design flaws (DF) in object-
oriented paradigm (BBs C design. "f.:f: A4 d paradigm).

Vi Y ,
Definition 3.3 Let o be a i 1 Y A= ulding block of o is a subbuild-
ing block of o iff: . -

e SHEANEN NN
’ T’ﬂﬂ”’iﬂﬁﬂ‘i”mmﬂ”’l‘mﬁﬂ Ay

Definition 3.4 A function L exists on the decomposition process of the building block, L : BBs —
BBs where o, o € BBs, such that L(c) = o' for every o and o'. L(c) # o iff o is a non-terminal

building block, L(c) = o iff o is a terminal building block.

For each input description of a flaw concept, we extract all building block types including
mainly basic relations of them. These elements and their relations refer to specific integrated

concepts of object-oriented design and implementation which used to describe design flaws. This

44

domain analysis process performs in the iterative way. In each iteration, we compare them with
already-found building block type, and add them to the meta space for avoiding duplicated build-
ing block type and relations. Thus, we obtain a compilation of the building block type and rela-

tions that expresses a concise and unified natural entities of design flaw.

For more details, we explain some examples of flaws analysis to discover BBs. We choose
to analyze flaws in their two varying properties — Data Class (pattern-based flaw) and Long

Parameter List (quantitative-based flaw) from code smells (Fowler, 1999). We summarize the

text description of two flaws in Table 2.1

lass al,é’fameter List flaws
- o ———
Data Class : A &) e class has data fields
and the only oper_g s, operations. The exis-
tence of Data Ciac Jo "\\ aostraction. It should
avoid classes f’ % 1d contain data and
methods to oper?,

Table 3.1: Text descriptions 2

Long Parame¢®Tr J#s ' g ’ \ N W thod has, the more
complex it is. ' . Ny you need in a given
method, or use an -

Analysis of the Long Parameter Li== . = “nted paradigm (Coad and Yourdon, 1991),

47

most of the data which-gmeth ined £rom the objects themselves if

they are visible to the rw-.

Therefore, parameter lists ! ou

.;‘ equest on another parameter.
ouj-oriented programs. When con-
sidering in long parameter ust flaws, these flaw make program nard to read and difficult to use
and they change ageg ‘vi f . #g a change to a parameter
list means chang;@ﬁﬂr mﬁnﬂo rﬂiﬁj’gj ﬁﬁz or eliminated this flaws
is necessary. In the description of the Lofig Parameter Igsf, we identify th@bbs and relations of

e RN 0 N TN Y

e bbs: parameter, method and object.

e relation among bbs: own.

The bbs which involve with this flaw consist of three entities: parameter, method and ob-
ject. Such three blbs are no synonym in each other and type of them are PARAMETER, METHOD
and OBJECT. As the same analysis, a relation of Long Parameter List is own and its BBs is OWN.

We can define the set of BBS and relation:

45

BB S Long Parameter List =

{{PARAMETER, METHOD, OBJECT},{OWN}}

Analysis of Data Class: In the data abstraction, all the data and the methods that are rational to
the objects of a class that is been designed need to be a part of the class (Coad and Yourdon, 1991;
Isner, 1982). All unnecessary details should not be considered. The Data Class flaw disobeys of

this rule. A Data Class is loosely define Jolder without behavior. Any corrections of this

flaw consists of adding behavior t /,r 1999). In the description of the Data
Class of Table 3.1, we identif nd fehé\’e obtain the following information
for the Data Class: ‘ :

e bbs: class, data, > 4 _ Ner- o neration

e relation among bk

The bbs which involyj W2 Tely W three entities: class, data, opera-

tion, getting operation and sett ## Os are synonym — operation, getting

operation and setting operation — iz AT mon type of them is method in object
oriented paradigm. Ag r'§ : ¢jthe synonym in such type —

OWN. When analysis is & 4 A Jis operation relation of class

is performed by method a "l attribut CSSE |LD BBs is proposed to describe

this relation type. We can deﬁme the set of BBs a helr relatlons of Data Class :

Bl th:JAYJRme&J{ln‘Lw -
PIANTUAMINYAE

Related BBs: All design flaws are analyzed (we analyze twenty flaws from (Fowler, 1999) in this
work). For the strategy of proposed detection, we consider the detection domain in a set of eight

BBs of object program to define meta program. The set of all BBs are defined by a direct product

46

—_ ObjectProgramOfBBs
p : PPACKAGE

¢ : PCLASS

o : POBJECT

a : PATTRIBUTE

m : PMETHOD

s : PSTATEMENT
Rpps : RelationOfBuildingBlockType

Rpps = (p X ¢ X 0 X a Xg

where the given rela e set of all BBs relations and its

values, is a set of :

[OWN, ISA, EXTE] M- SSFTELD, ASSTGN,

EXEC]

3.3.2 Step 2: Concretizati '

Input : Related BBs for specificizings " ,1.5! ;

Output : Semantic doy ¥ Tic. It is the proposed domain

model of problems used§ ,r‘
Description: In this step, ! > Sellices oD jec riented paradigm is considered.

We consider sematic of derlﬁed BBs in prev1ous step for creatlng the domain model of object

program structur which used to describe
design flaws of (ﬂct program. mM1ﬂlmplvey, 1992) is used to express
the sem its maturity as a
formal s a ﬁﬁ@irﬁtﬂaﬂ% mﬁ ﬁc’j 3 ﬁﬁ{i ﬁﬂ? and understood

(set theory and predicate calculus). Furthermore, the schema constructs of formal notation can be

directly linked to the concepts of object-oriented, especially classes and its structure, providing a

clear link between object-oriented constructs and their formally expressed interpretations.
3.3.2.1 A concretization of BBs

Abstract Model: The first step of formalizing the specification, we formalize the descrip-
tion of BBs and its abstract syntax. Firstly, a class is defined as a descriptor of a set of objects

with specific properties (according to each BBs of {CLASS, ATTRIBUTE, METHOD} and its

47

relation of {OWN, ISA} which is analyzed in step 3.3.1). in terms of structure, behavior and

relationships.

Therefore a considered class in which a name, attributes and methods are stated. Attributes
have names and types. Methods have names, return types and parameters. Each parameter of an
operation has a name and a given type.

[ClassName, Name, Type, MethodStatements]

Modifier ::= PUBLIC | PROTECTED | PRIVATE

Char ::=CLASS | INTERFACE,/

_ClassDecl
modifier = Modifiex g
char = Char

extend : ClassNar
attribute : FName
method : FNam
attrType : Name -
attrModifier = Moc¢

methBlock : Name —+ |

attribute = dom attrtype -2k ko J'
method = do oA
v

=

ﬂ‘LlEJ’WIEWITW BINT
ﬂW’]ﬁﬂﬂ‘imNWVJVImﬁlH

defined as a partial function fro

48

_ MethodBlock

parameter : FName

return : FName

owner = ClassDecl

modifier = Modifier

paraType = Name —+ Type
paraValue = Name —+ ParaValue

returnType = Name + Type

returnValue = Name -+ Re

statement = FMethod

parameter = dompc
parameter = dom.»
return = dom retu”:

return = dom reiurr

il PPy ¥ LR\
Class names should b R el N\ Wspace. Thus, the set of classes is

Class

1 : ClasTe
licasses as

Ll

At any p01ﬁ1 uﬂﬂa‘a ﬂmw mﬂqﬁly named classes.

_C lassModel

ﬂﬁﬁcﬁﬂﬂimﬂﬁﬁﬁﬂﬂﬂaﬂ

Vcl,CQ :classes | c1 # ¢y ®

c1.ClassName # co.ClassName

The constraint of the schema states that each class must have a unique name.

Concrete Model: In order to give meaning to classes, value must be assigned. In object-

oriented concepts, a class is viewed as defining a set of possible object instances. This is the

49

system model that we adapt for our formalization.

Like detail of class, the given type Ob jectName, Name and Type describe the set of all
object identities and its values.

[ObjectName, Name, Type, ObjectValue]

__ObjectDecl

owner : ClassName

attrvalue : Name

Object names instantiated fre) d be unique in the enclosing name space.

Thus, the set of object i3 :
v

1l
classes : ObjectName —+ ObjectDecl
‘a

b~ f CName to ObjectDecl.

Object

instan(:ﬂym aﬁﬂ?ﬁﬂﬂﬂﬁcﬂéﬂﬁ a%ﬁ of unique object

__ObjectModel

objects : F Object

Yoi,09 : objects | 01 # 02 ®

01.0bjectName # co.0ObjectName

50

3.3.2.2 Meaning functions of Rpp; relations

The relation of BBs is described by the meaning of relation as mapping from one BBs
to another BBs. For example, the meaning of classes as a mapping from classes to its object

instances. It is assumed that there is a relationship between attribute and their values.

| value_of : ObjectValue -+ Name uyipuse

The following function descri! a class. It maps a class to a set of possible

combinations of object instance: p ée values conform to that permitted by

the class. By conforming, it s " s bjcct’s attributes conform to those

Mo : Class

Vc: Class e

-

X
- .
Js of BBs are 1ctauolls among BB .4

The structure relati. AFor example, the meaning of a

class invocates another class isgle structure of inggeation relation among BBs.

AUEIENIWEANS
ARIANTAUIM TN

51

__AccessorMethod

ClassModel

Myelector - MethodSelector

selector - InstanceVariable

V1 : classes N
c1.method = Mgejecior N\
ci.attribute = Agelecror ®

returnValue o methBlock”.

c1.attribute

accessField(cy

methBlock(c+ ont
<<enumeration="
Modifier sMo —
ari o - type
+ abstract
e
E— s = L —
+ synchronized il JAN
r sshiodi
- implemented,interfa ! r
i -
1 Lo a aration NonPrimitiveType e
2 - 217 'S 4|V" BasicType
rClass| - L |
- = VariableDeclarat A =
cal\ariableDeclaration ot
wi +byte
L +short
+ |- method +char
Method : - ClassType +long
o ? +float
- hame : String - 4 1 [1 +hoolean
- +woid
. Methodinvocation + | - statsments
Statement - expression | Expression
- methglinvo, 1 1

A UEARHNAI LN
PRIRITININTINGIRY

The notation required for the rest of the BBs and Rpgp; of domain model is graphically
illustrated in the UML class diagram in Fig.3.4. The domain model represents the BBs and Rpp;

which are necessary in order to identify design flaws for given source code programs.

52

3.3.3 Step 3: Generalization

Input : Source code examples of a particular design flaw and design principles and heuristics in
form of logic program which follow to domain model.

Output : Logic rules derived from learning mechanism for detecting a particular design flaw
Description: The main processes of this step involve with the learning mechanism to extrapolate
specific logic rules for flaws detection. The deductive learning algorithm of Explanation-Based

Learning is used for learning mechanism in this step.

The generalization processes, /olating design flaw rules shows in Fig.

3.5. We consider explanation;}: y . / ?heories that are perfect, that is, do-

main theories that are correci” —0 learn inferenced rules and detect

design flaws by such rules, th= sens the following step-by-step. The

generalization processes are " 1 S Msalgorithm. A known design flaws,

Examples of
design flaw
> -
Domain %
theories Formulated
> g rules
Target [>
Concepts U=
> (&)
o
Domain
model
> 34
‘ - 'Y, Step 3 : Generalization
Fi SkserierdlitadniProdesd ot Be€p 3: IGenbralization

ARVAINTU UM INYE Y

3.3.3.1 Phocess 3.1: Arrangement

Input:
1. Domain theories which are derived from design principles and heuristics (Coad and Your-
don, 1991; Riel, 1996).
2. Examples of design flaw.

3. Target concepts of design flaw that are used to be learned.

53

4. Semantic domain model from Step 3.3.2 .

All of information inputs are in the form of predicate calculus and Horn clause (declarative form).
Output: Related information of domain theories and a target concept which are sufficient to gen-
erate a detection rule from a specific training example in each learning cycle for generating a logic
detection rule.

Description of Process 3.1: The first step deals mainly with the arrangement of domain theories

and a target concept to be learned for a training example in each learning cycle for generating a

logic detection rule (Process 3.1-3.4 ga training example of FilterMap class
which is a Data Class flaw — st : é — in Fig. 3.6. In this source code
example, we provide the sing - , tlass which is taken from Tomcat’s

source code (org.apache. > PO 1 ap class), which is a known pos-

private String .

public Strinag: f}_i_f: T
Sture N

} S

publ | wg
'V;

|
AU 4 39 ﬁﬁﬁ%ﬁﬁﬂ P!
ARAIAIRUANIANG N L v

defined. We define such information according to principles and heuristics of object-oriented

I-.T'" rletName) {

paradigm (Coad and Yourdon, 1991). For our purposes in flaw detection, domain theories are
any set of prior beliefs about the object-oriented design and implementation principles and an
inference mechanism is any procedure that suggests new beliefs by combining existing beliefs.
The elements and their relations of such domain theory are defined that based on syntax and
semantic of domain model. We consider learning concept descriptors for a simplified Data Class.
A suitable target concept and domain theories (formed in Horn clause) for this example of Data

Class are given in Table 3.2.

54

3.3.3.2 Process 3.2: Explanation

Input: Domain theories and a target concept which are related to a training example in each
learning cycle for generating a detection logic rule.

Output: A explanation / in the hypothesis space which i (h € H) is consistent with domain
theory B and BV — h.

Description of Process 3.2: Given the info Jg j §on in the Process 3.1, this process is to determine

a generalization of the training ev3 ficient concept definition for the target
concept. This process provides i on: .c é?ﬁn explanation (a proof tree) in terms
of the domain theory that prov _ tra=ing: m—fies the target concept definition.
Then a set of sufficient condit< sestructure holds is determined. This
determination is accomplishe N hrough the explanation structure.
To see more concretely hG ayl'oach works, consider learning

the concept of Data Class

Table 3.2: Domain theories &fd I’%

TR T

th&FilterMap Data Class

Target conceplisdul y
R1: Vx cla y, fY')] dataclass (x)
R2: Vx Vy noml G X)) =
—not—datac= ss(x) 1

R3: Vx Vy hasMgethod(xy) A thod operation(y) =

Rif’?fﬂiﬂiﬁ mwmmthodm -

method*%operation (

%;masmﬁféﬁwﬂ fiERE

Vx Vy mutator—method(y) A —is(x,y) =
ﬂmutator —method (x))
R7: Vx Vy Vz has—attribute (z,y) A has—method(zx) A
method—returntype (x,/VOID,NULL]) A
method—parameter (x,[{y,-}]) = mutator—method (x)
R8: Vx Vy Vz has—attribute (z,y) A has—method(z,x) A
method—returntype (x,[y,-]) A
method—parameter (x,[{NULL,NULL}]) =
accessor —method (x)

55

dataClass(x;)

T

~(notDataClass(x;)) Class(x;)

~(notDataClass(FilterMap)) Class(FilterMap)
notDataClass(xp) rIS(X1.Xp)

notDataClass(C1) ~Is(FilterMap,x,)

SN

has-Method(x2.y;) method-operation(y;)

has-Method(C1,M1) method-operation(M1)

raccessor-method(y;)

~mutator-method(sor-method(getFilterName)

/ \
cls(yiy2) mu: . =3 sor-method(ys) CIs(y1ys)

ietFilterName) ~ls(y,getFilterName)

[z 1)

)

has-method(x,.y;) NULL,NULL}]

has-method(FilterMap,setFilterName) has-attri <rMar K ! B I i has™ ‘(FilterMap - return-type(getFi e i
iiterName) " JfilterName) J[fiterName],
filterName) I " filterName) [filterName],) [{NULL,NULLY])

Given FilterMap clas ##5s ¥ _ E®8. system attempts to construct an ex-
planation for why FilterMap clzg_s %) wlass flaw. From Fig. 3.7, arrows denote the
} e fOvint from a rule’s antecedents

."-i“[vs in Fig. 3.7, rule R8 allows

contribution of each dq ™

to its consequences. Fol &

Ged frghl the antecedents hasMethod,

¥

the consequence property || ce s>t

hasAttribute, returg,Tgoe and paramefc‘}er. Each pair of literals (nonitalic font) and

generalized literaﬂiﬂ ﬁﬁtﬂﬁcﬁﬁ(ﬂﬂﬂ;ﬂﬁexphﬂaﬁon show expres-
st match for the explanation to hold.

sions across rules th't mu ese are enforced by unifying the

RN TN UM AINYN Y

3.3.3.3 Plcess 3.3: Analyzing

Input: An explanation of a training example.

Output: A logic detection rule from an explanation.

Description of Process 3.3 : The explanation constructed by the previous process is generalized
with a rule that is the most general relevant to the target concept. EBL computes the most general
rule that can be justified by the explanation, by computing the weakest preimage of the expla-
nation. The weakest preimage of the target concept is computed by a general procedure called

regression (Waldinger, 1977). The regression procedure operates on a domain theory represented

56

Table 3.3: An example for regressing a set of literals given by Frontier through
methodOperation Rule

REGRESS(Frontier, Rule, Literal,0,;) where

Frontier = Class(xy), — Is(x1,x2), hasMethod(xs,y), methodOperation(y,)
Rule = methodOperation(z) <— — mutatorMethod (z) N\ — accessorMethod(z)
Literal = methodOpearation(y,)

on = [7/SetFilterName]

head < methodOperation(z)
body < — mutatorMethod (z) /%
O <= [Z/y1] ,where o) = [
Return Class(xq), — Is(;
— accessorMethod(y-

BegsorMethod(z)

-) A
hasMethod (i3, Y iy 08 E Vi Mcthod (xq,y2) A
0l %)V VOID,NULL]) A

, 1) A
oW s, [{NULL,NULL }])

hasMethod (xl,;';)
returnType (ys, [

by an arbitrary set of | ,‘;— < =darough the explanation, first

-

i 1
computing the weakest Pr=y — "<t to the final proof step in the
explanation, then computi' « the weakest of the resulting expres®#ns with respect to the preceding
step, and so on. roced@re@@erminates when @has iterated over all steps in the explanation.

The illustrated ex fEJ gs %t&l)mlg vaJ l}aﬂ i We use the negation-as-

failure approach toﬂetect Data Class ﬂav*- The final rul for the current eunple is illustrated in

Tab“‘ﬂﬁ'mﬁﬂ‘imlllm'mil’]a&l

3.3.3.4 Process 3.4: Refinement

Input: A logic rule from the proof tree.
Output: New formulated rules.
Description of Process 3.4: In this step, logic rules is refined by generalizing rules in accordance

with a logic rule from the proof tree. Rules are pruned some literals for making generalization. At

57

each learning cycle for generating a logic detection rule (Process 3.1-3.4), the sequential covering
algorithm of EBL learning algorithm picks a new positive example that is not yet covered by the
current Horn clause rules, explains the new example, and formulates a new rule according to the
learning cycle. When we provide more examples learning, the rule of Data Class flaw is refined
to be more general that the attribute of mutator method and accessor method may not be the same

attribute.

3.3.4 Step 4: Procedure Generation

Input : Logic rules from EBL leani;
Output : Operational logic rule: é,

Description: Derived explana 7 in previous step gives many rules
in each design flaw. The quer= this step that optimizes first order
queries by reordering literal< . \\;- er queries become more efficient

to execute if selective litel

We start by listing a n' 4 - 5 pring transformation for first order

queries in the context of:

i I 1 #
o RI (Correctness) The rdord @

query should succeed (fail) b as the original query succeeds (fails).

1 should be correct, i.e. the transformed

o R2 (Disagreeme' 7 ' Ix"" nimize conflicts among liter-

als when conflicts ¢ ! St. e r(fcts to such design flaw will be

¥

chosen in the initial or er in query hterals

If all predlc;qs are ge!n’ea by seﬂ)futs thﬂhe orderffl jlterals does not influence
the result ﬁ my i ﬁﬂ‘ ﬁ 03)))j ﬁ‘ ess requirement
(R1)is m ﬁ ﬁ ﬂ 121 te uﬁ\[‘ to classify level

of conﬂlcts For example, two rules of Data Class are derived from learning mechanism — (1):

Class with accessor and mutator method, (2): Class contains public fields. The rule (1) is chosen

in first order in query because it reflects to flaw more than rule(2) can.
3.3.5 Step 5: Code Analysis

Input : Object-oriented source code which is used detect design flaws.
Output : Syntactical and semantical information of source code.

Description: Source code are parsed and formed in Abstract Syntax Tree (AST). It represents

58

syntactical and semantical information of source code. The representation of source code as a
tree of nodes representing constants or variables (leave node) and operators or statements (inner
nodes). For each AST node type, there is a separate MESs (Meta Element Specifications) type.

Fig. 3.8 (middle part) shows an example of parsing source code in AST.

Source Code Abstract Syntax Tree Logic Facts in Meta Level

public class ClassName {
class(1,'ClassName’)
own. modifier modifier(1, public’)

method(2,1,'methodName’,[9],’void’)

parameter(9,2,’int’,’i")

block(10,2,[12])

call(12,10,this,’'methodName’,[13],2)
ident(13,12,'",9)

int methodName(int){

methodName(i);

Step 6: Fact Specification

Figure 3.8: ct Specification

3.3.6 Step 6: Fact Specificati

Input : Abstract Syntax Tree that d =i\ = /5 nd semantical information of source code

Output : Logic facts vizd 4
Description: In this st Y _)enting constants or variables
(leave nodes) and operato j OI StateImICiie ey oucs) 1S tran ,,, rmed to logic facts. This trans-
formation accords to domainghgdel that is specifigglin Step 2. The argument in predicate calculus

is represented by ﬁv%ﬁnﬁ} %ﬁ?ﬂ %pWIHq .ﬁﬁodes of AST respectively.

Fig. 3.8 (right partfifhows an example of parsmg AST into loglc facts. The number in each MESs

R TATHN A INIA Y

3.3.7 Steg 7: Detection

Input : Logic facts and optimized logic rules

Output : Results of the detection in each flaw

Description: The detection of design flaw happens in this step. The detection performs in declar-
ative programming by using a backward chaining search as performed by PROLOG. Prolog-EBG

approach halts once it finds the first valid proof.

59

3.3.8 Step 8: Validation

Input : Results of the detection

Output : Accuracy rate of the detection of the proposed methodlogy

Description: The results of the proposed detection methodology by analyzing the suspicious
classes in the context of the complete model of the system and its environment. The validation
is inherently a manual task. Therefore, we apply the detection of a few design flaws in different

behavioral types.

We use the validation measuz /‘»res of precision and recall, where preci-

sion assesses the number of true ' /il assesses the number of true smells

missed by the detection. The all is performed using independent

[
i

results obtained manually becz mozhether a suspicious class is indeed

a flaw or false positive depe: scontext and characteristics of the

system.

In the next chapter, th- _ ed detection methodology is con-

ducted. A few case study i us %ction methodology. The discussion

is also described in a few wa .

AUEINENINYINS
ARAN TN

CHAPTER IV

EVALUATION AND DISCUSSION

In the previous chapter we describe a proposed detection methodology for detecting design

flaws. We also introduce an example by showing that one of the major flaws, Data Class, for

the potential detection process of the 1 ' jeclarative meta programming, Although the
specification of the proposed met! rom high-level text description of each
design flaw, detection rules art capture the design aspects that are
relevant for evaluating and g "ented design. We introduce the
detection methodology wke echanism for detecting design
block types to describe design
flaws in object-oriented sche 4. 4 £ - . \ \ N s relations of such building block
types for creating the doluin #Fo 5 AN -.. cific model used to describe the
: ‘ "Wis purpose we define a logic rule
suite of detection methodolcgl < g 1n : 7 Jol) Ircs 't of well-known design problems
by proof learning of Explanéti v TR s from learning mechanism help us
to bridge the gap between pattern- 'Ve—Based design flaws concerning object-
oriented design. 1
..)
In this chapter we ! T I=mc entire approach. For this pur-

pose we design a real-woit experiment, implement an adequi¥e prototype and apply the previ-

e NI NYNT

The chapter ‘l:gms with the vahdat.;on process Wlth a presentation of the entire case study

setup (S GW q !@ ﬂﬁ ﬂmi gj‘ﬂ]’ﬁﬁ studies with dif-
ferent charq:terlstlcs ommon v1.0 v1.3.6an JECT v1.10.2

are the applications used for reasoning about code. The experiments consist of detecting the

design flaw on the cases, analyzing the most interesting results and checking whether the pro-
posed detection are successful or not (Section 4.2). These results also led to discussions proposed
methodology on advantages and disadvantages of the proposed detection methodology (Section

4.3). The treat of validity is also discussed in this section.

61

4.1 The validation of the proposed methodology

The prototype model is implemented for the proposed design flaws detection. We use
Eclipse v3.6 HERIOS, Prolog Development Tools v0.2.3 and SWI-prolog
v5. 8.3 for implementing this prototype. To perform experiments, we select three different

applications on which we detect design flaws using the prototype.

CommonCLI: CommonCLI v1.0 is the Apache Commons CLI library provides an API for

parsing command line optionsy s. It contains 18 classes with 4132 lines

of code.

JUNIT: JUNIT v1.3.6 . Y ‘asting framework for JAVA which
performs automated *< /8 aver 5000 lines of code. JUNIT is
chosen as a control s (e \ \ wsespected in the field of software
development and 1t ho g1 4 45 \ W be well-designed. The role of the

e-positives.

l'.g‘ .'l,"
GANTTPROJECT: GAN ‘ jeC. management tool used to plan

projects with Gantt ch#s de, 188 classes and 41 interfaces.

We seek in the following ay close to 100% because we aim

- - — 924t flaws and correct them in
v, A

automated manner. All Caim = without formal technical review

that the proposed meti’

with low false positive rat®. It means that enormous time and*®¥st are saved. Moreover, we can

TSN

4.1.1 Validationu'ocess

ARARNATUURIINGINY ..o

rules — of each flaw are obtained by the learning algorithm. Then, we apply the generated detection
algorithms on the fact model of the software system and obtain all suspicious code that potentially
have flaws. The detail of suspicious components and their positions are return in a document file.
We validate the results of detection approach by analyzing the derived suspicious components in
the context of the complete view of such software system and its environment. The validation is
inherently a manual task. Therefore, we choose to apply the detection of the twenty design flaws

on three case studies.

62

We recast the validation in the domain of classification context and use the measures of

three criterions — Precision, Recall and Specificity (Olson and Delen, 2008).

We use the validation measure which are the precision rate to assess the number of true
identified flaws, and use the recall rate to assess the number of true flaws missed by the detection.

Two such measures are shown in the equations (4.1) and (4.2).

4.1

4.2)

Additionally, the pror { s 180, derive the high precision. There-
fore specificity rate is alsC ethodology. This rate is shown

in equation (4.3).

S (4.3)
alse positive

e -
—

The computation| 7 It.""l ndent results obtained manu-

ally because only the revic "; proc suspijous component is indeed a flaw

¥

or a false positive. It depen on the spemﬁcatlons and the context and characteristics of such

i?i?ilfﬁfﬁﬂﬁmmﬂﬁﬂ A A
2 bR AINTUNRIINYINY

The manual analysis of three software case studies is performed by two independent grad-
uate SE students with a known expertise in object-oriented design and coding and design flaws.
Each time a doubt on a candidate component arises, two students consult books as references in

deciding by consensus whether or not this class is actually a flaw.

Three case studies are set up in different types of software system. The detail of each case

study can be described as the following.

63

e Case I : CommonCLI. CommonCLTI is an small application which contains 18 classes.

The detection of all design flaws is shown in this case study.

e Case Il : JUNIT : JUNIT is a medium size of software which contains 111 classes. The
detection of all design flaws is considered with this case study. We want to know the
difference of results detection between the medium case study and the a small cast study

(Case I). With this case study, the evaluation of true negative detection is also performed.

e CaseIIl : GANTTPROJECT : The study of the design flaws detection between the proposed

approach and another approach JECT is proposed in this case study.

4.2.1 Casel: CommonCL

In this case study, 2 etection approach. The evalua-

tion of precision detection

We report results o#% ™ three aspects. First, we report

the number of flaws whic! W tion methodology. Second, the
numbers of detected flaws wl = - e precision rate of each design flaw

detection. The results are report ghin 2 — > Méntyld’s taxonomy (Mintylé et al.,

One Large Classs '— ' ==4np design flaws are detected

-
L}
1

as the results shown in G247 = viecision with these three flaws

detections. There are no [%#ze Class and Long Parameter flaw ®#ected in the Bloaters group.

one swﬂt%é@aﬁﬁqq N RH Y e sz o e

detected as the res@lts shown in Table 4. 2 The result i 1s 100% precision with these three flaws
'ﬁ ANTI ‘TW?I‘VT R [Fa 12
Orientatio usSers'g

One Divergent Change design flaw is detected as the results shown in Table 4.3. The result
is 100% precision with this flaw detection. There are no Shotgun Surgery and Parallel Inheritance

Hierarchies flaw detected in The Change Preventers group.

Five Lazy Class flaws and two Dead Code are detected as the results shown in Table 4.4.
The result is 100% precision with these flaw detections. There are no Data Class and Duplicate

Code flaw detected in The Dispensables group.

64

Table 4.1: The result of Bloaters flaw detection in CommonCLI v1.0

Design flaw Number flaws of Number flaws of Precision of
detection true detection detection (%)
Long Method 0 0 N/A
Large Class 1 1 100.00
Primitive Obsession 1 1 100.00
Long Parameter List 0 0 N/A
Data Clump 1 1 100.00
Table 4.2: The result of The Obi - # .sers flaw detection in CommonCLT
v1.0 /
Design flaw - vs of Precision of
moction detection (%)
Switch Statements 100.00
Temporary Field 100.00
Refused Bequest 100.00
Alternative Classes v
Different Interfaces N/A
One Message Chains {4 1 P esuli ™ 1 in Table 4.5. The result is 100%
precision with this flaw detectic#f. Tiyas - Ei™y, Inappropriate Intimacy and Middle

flaw detected in The Couplers grou—‘"

,"-'j[in CommonCLI v1.0

Table 4.3: The result | 7

A
Number flaws of Number flaws of Precision of
@/ true detection detection (%)

Divergent (GhMRec] @ [7 w | ‘j 100.00
Shotgun Suérgery i , ‘ 0 N/A
0 o/ N/A

NETA

Design flaw

erarchies

T

o

4.2.2 Casell : JUNIT

In this case study, all flaws detection study of the proposed detection approach with JUNIT

is proposed. the evaluation of precision detection of JUNIT is considered.

We report results of design flaws detection of JUNIT in three aspects as the same as result

reports in Case I. The results show in Table 4.6, 4.7, 4.8, 4.9 and 4.10.

Three Long Method, ten Large Class, eight Primitive Obsession, five Long Parameter List

65

Table 4.4: The result of The Dispensables flaw detection in CommonCLI v1.0

Design flaw Number flaws of Number flaws of Precision of
detection true detection detection (%)
Lazy Class 5 5 100.00
Data Class 0 0 N/A
Duplicate Code 0 0 N/A
Dead Code 2 2 100.00

in CommonCLI v1.0

Haws ot/é flaws of Precision of

ctio® , m—C(ion detection (%)

Table 4.5: The result of The Couplex

Design flaw

Feature Envy N/A
Inappropriate Intimacyv N/A
Message Chains 100.00
Middle Man N/A

and two Data Clump desigr N &%hown in Table 4.6. The result is

AN
100% precision with Lon, ‘ “\\ 85.33% precision with Large Class

and estimated 60% precision ' % ta Clump flaw.

One Switch Statements, fourt ‘7 t and forty-five Alternative Classes with

Different Interfaces flay, ™ TTable 4.7. The result is 100%

precision with these thi{ "8 .r‘ y Field flaw detected in The

Object-Orientation Abuse |{fzroup?

P
Twenty-se\ﬂ]ﬁgtﬁm Elﬁ m ﬂﬁ design flaw are detected
as the results sho qIIi 4. Wik 1 réedsioll wilh Both flaw detection. There
are no Parallel Inheritance Hierarchies fla detected in B¢ Change Prevegigrs group.

SeSq Lazyaag ﬁtﬂvg)upiicag Code ah(gorz]ﬁ% D::]d@)délre detected as the

results shown in Table 4.9. The result is 100% precision with Duplicated Code and Dead Code

detections and 87.50% precision with Lazy Class detection.

Thirty-eight Feature Envy, one Message Chains and one Middle Man flaw are detected as
the results shown in Table 4.9. The result is 100% precision with Message Chains and Middle Man
flaw detection and 77.50% precision with Feature Envy flaw detection. There is no Inappropriate

Intimacy flaw detected in The Couplers group.

66

Table 4.6: The result of Bloaters flaw detection in JUNIT v1.3.6

Design flaw Number flaws of Number flaws of Precision of
detection true detection detection (%)
Long Method 3 3 100.00
Large Class 10 12 83.33
Primitive Obsession 8 8 100.00
Long Parameter List 5 8 62.50
Data Clump 2 3 66.66

Table 4.7: The result of The Obi

4 sers flaw detection in JUNIT
v1.3.6 ’/J

Design flaw ; ol vs of Precision of

detection (%)
Switch Statements 100.00
Temporary Field N/A
Refused Bequest 100.00
Alternative Classes - 100.00

Different Interfaces

Because the high preci#or
called Specificity) has to be vali#ate %

classification algorithm can classif=giissi§ = /5

¥ proach, the true negative rate (also

TH®true negative rate shows the ability of

g are not the target of such classification.

"

The evaluation of truej;z-4s sped as shown in Table 4.11.

The specificity rate is v _ A in JUNIT. The result shows
100% of precision rate to J tect true licgacreewo. While ciff pared with three metrics-based

approaches, the proposed apgrgach presents the i gighest precision rate — 100% of the proposed

approach, 98, 4wﬁ[1 u%je{r'g ﬁﬁmﬂaﬁ %z&lﬂ}ﬂ ?trlc approach T and TI.
“ TAFIS o Aings

The Bvaluation of precision rate and recall rate of the detection are considered in this case
study. The source code of GANTTPROJECTV1.10.2 application is chosen. Large Class, Lazy
Class, Long Method, Long Parameter List and Refused Parent Bequest design flaws are explored

to indicate precision and recall rate with this application.

Table 4.12 reports detection results of the proposed approach in GANTTPROJECT. It re-
ports numbers of true positive flaws, numbers of suspicious flaws, precisions and recalls. We
compare our detection methodology with the novel literature (Moha and Guéhéneuc, 2007). The

precision of our results range from 78.37% to 100% and recalls range from 44.44% to 95.12%.

Table 4.8: The result of The Change Preventers detection in JUNT

67

T v1.3.6

Design flaw Number flaws of Number flaws of Precision of

detection true detection detection (%)
Divergent Change 27 27 100.00
Shotgun Surgery 22 22 100.00
Paralle.l Inheritance Hi- 0 0 N/A
erarchies

Table 4.9: The result of The Dispen

daws ot/é flaws of

Design flaw Precision of
ctio ction detection (%)
Lazy Class - 87.50
Data Class N/A
Duplicate Code 100.00
Dead Code 100.00

Fig. 4.1 and Fig. 4.2 show
with Metric-Based Approal

100

\%ion rate and recall rate (Compare

CTV1.10. 2 respectively.

90

80

70

60

50

40

30

20

10

0

Lazy'CIass Long Method Long Parameter

List

La“ Class

Refuse Parent
Bequest

q RANINTUNNIINHANE

Figure 4. 1 The precision rate of design flaws detection in GANTTPROJECTV1.10.2

(Compare with Metric-Based Approach).

4.3 Result discussion

In this section, the discussion of three case studies is detailed. The interesting issues from

the results of the proposed detection are also indicated.

68

Table 4.10: The result of The Couplers flaw detection in JUNIT v1.3.6

Design flaw Number flaws of Number flaws of Precision of
detection true detection detection (%)
Feature Envy 38 49 77.50
Inappropriate Intimacy 0 0 N/A
Message Chains 1 1 100.00
Middle Man 10 10 100.00
100
90
80 \

: j A
50 | — | - b

40
30 -
20 -
10 -

grerameter Refuse Parent

A\ W List Bequest
"'|

—The mctric %! decectionapproach

kY
. in GANTTPROJECTV1.10.2
ed Approach).

Figure 4.2: The recall rate_
(Co

.- -:F
-"‘r"

4.3.1 Result discussi :

¥
|
i’

L}

The summary of prec'@igrate of CommoagLI is shown in Fig. 4.3. The overall result

reaches the excelﬂ %ﬂ@v%ﬂ:ﬁnﬁw Eﬂl}ﬁﬁ 11 groups of flaw (Flaws

of Bloaters, Object§friented Abusers,Change Preventers, The Dispensable and The Couplers) can
be detec {0 o (ﬁ t - at has parameter
nmber&mammﬂnmmmﬁzzj As well as class
HelpFormatter which contains Primitive Obsession flaw is detected with the proposed approach.

4.3.2 Result discussion of Case I1

The summary of precision rate of JUNIT is shown in Fig. 4.4. The overall result still
indicates a good detection level in JUNIT source code except flaws of Bloaters group and the
Feature Envy flaw. The precision of the proposed methodology ranges between 87.5% and 100%

(not including flaws of Bloaters group and the Feature Envy flaw). At this point, we find that

69

Table 4.11: Specificity and its false positive rate of Data Cl») techniques in JUNIT v1.3.6

Properties A metric apprc#Ct : s- TN ci®lI A metric approach III The proposed methodology

(WOC, NOPA and N 5,- A) (NOPA and NOAM)
Number of known true negatives 63 p _, ' 63 63
Numbers of detected as true negatives 6 SV, : 62 63
Specificity rate(%) 9 oA — - 98.41 100.00

False positive rate(%) 3.0 Y) 1.58 0.00

i

AULINENTNEINS
AN TUAMINYAE

69

isd
Typewritten Text
69

Table 4.12: Precision and recall of design flaws in GANT T

70

Metric-Based Approach)

Design Flaw Numbers

r@hctected flaw Precision Recall

Large Class

Metric approach \ 1%) 69.23 100.00
Our Approach W.12)% 100 44.44

Lazy Class

Metric approach \ W (55.32%) 34.61 87.80

Our Approach 839(20.74)% 84.61 95.12

Long Method :

Metric approach 45(23.943 A 8mi A 2, 22(11.70)% 46.66 95.45

Our Approach : 5 f08)% 7837 82.22

Long Parameter List ;. : I:_:' .{ ‘

Metric approach _'_'; 20 7)% 79.63 100.00
Our Approach J 55)% 81.81 61.11

Refused parent Bequest

Metric approach 40.00 44.45

Our Approach ﬂ w Eig“lﬁ% 100 44.44

QW’]E\I\‘IﬂifMNWl’JVIB']&B

0L

isd
Typewritten Text
70

71

the quantitative-based design flaws affect the precision rate of the proposed methodology which
is suffered from The subjective refection of design flaws, especially Long Parameter List flaw.
The decision of the existence of such flaws involves with mental of emotion of developers who
perform review process. The logic rules cannot cut through these flaws to classify them. And, of

course, this is a drawback of the proposed detection methodology.

Precision rate

100

M Precision rate

. AP ‘ ..
Figure 4.3: The averagC u‘ﬂ poscd detection in CommonCLT

recisionrate
0

X 0\9 ¥ Q}‘) & Q}“) so\z“) Q}‘j

3 N & P R
N N QN 9
o) \s S e C
& Q <R <
\.’5\'\ Q% Q,Q\ &\0
QO O
N Q’C& o

X N

C B\
¢

Figure 4.4: The average precision rate of proposed detection in JUNIT

72

The true negative (also called specificity) rate indicates the ability of the classifier in the in-
verse direction of precision rate. The detection approach not only can detect real flaws efficiently,
but it also can classify all non-flaws as true negatives. From the results of this case, the proposed
detection approach can classify all true negatives at the excellent level. This reason can confirm
to support in this context that the proposed detection has quite high precision rate with the true

positive and the true negative.

4.3.3 Result discussion of Case III

According to the detection ra _ /ﬂetected design flaws with precision and
recall rate are proposed (one pat - desig! /_"f»ur quantitative-based design flaws).
3708 o | —

-~

The precision rate is 100%, 0% with flaw detections of Large
Class, Lazy Class, Long Me*!

recall rate is 44.44%, 95.12¢

L. Refuse Bequest respectively. The

h flaw detections of Large Class,

Lazy Class, Long Metho&; N "”‘*-.,.__: ost respectively.

M W

For the Lazy Class, w \"""-\,x the optimum recall rates because

the proposed methodology“inz w perfectly. It means that the level
of subjective reflection of d :

based, the Refused Parent Beq#st @
is very difficult for software engineiabz/s

a®ected flaws. For the same pattern-

is Maw illustrates the inverse problem: it

ccurrences because they must appreciate

3

if a class uses proper [y) its superclasses. Moreover,
. \7 Y]
software engineers alw st lasses whereas we apply our

detection on the chosen sc vare SySICLLL Uiy, moe cousidered 1' aries.
‘a Q/

For the L Cﬁa«j Jlaﬂﬂmlwﬂfj ?posed methodology uses
many feature rulesgp detect this tlaw. It seems clear to detect this law with expected precision.
However, uﬁgﬁﬁ in tﬁ S ﬁ tj egl t e in searching to
mae BN 1NN T TN Y

q

4.3.4 Opverall discussions of the proposed detection approach
After all result data is analyzed, two important points have to discussed:

Result data from proposed methodology: The validation shows that the proposed detection
methodology can detect design flaws, especially with the domain model of design flaw lead to
generate detection rules, with expected recall and good precisions. Therefore it confirms with the

results that:

73

1. The specification of domain model allows describing two types of design flaws,

quantitative-based design flaw and pattern-based design flaw.

2. The results from the prototype have, mainly, an average precision rate in detection of 80%

with quantitative-based flaw detection and 100% pattern-based flaw detection.

3. When considering precision and recall rate at the same time, good average precision rate is
presented with greater than 88.95%. And an expected of recall rate that also acquired with

an average recall rate at 76.55%. The detection methodology reports 2/3 of known design

flaws can be discovered.

4. The good specificity ratg ‘ éi‘ , of the proposed detection method-
ology is obtained. The." .= proposed methodology can detect

true negative flaws effi sificity rate of other approaches.

Threats to the validity: Th sthodology to validity can be indi-

cated as the following.

e The internal validity % 7 %ends on directly on the pattern of
flaws specifications. The®xp @ send tive set of flaws are used to lessen to

this threat of the validation_ =2k ion always suffer from the sharpness of

.-\‘.

deduction. It m-'- 4] high level of specialization.
Thus obtaining V.) Jtext is a difficult task. The
proposed detection | 1‘! als this Inayor procrent witn the trdfforuning technique. Rules of the

proposed detection arqgalgost the most gengral rules in which rhe edge of the classification

B Y EIRERTREANT

e The external validity: This threafin this contexgsgelates to exclusiig# use of open-source
SRR VEA BN BIEB R B v
to pe Sorm experiments to allow their verification and replication. However, these systems
may prevent the recent detection approaches to generalize to other system. The proposed
approach is the technique which based-on BBs and Rgp, of Meta Programming. It consid-
ers only the skeletal relationship of BBs. Therefore the meta environment can deal with
this threat properly as long as the subject of detection is still the object-oriented software

system.

e The constructive validity: The subjective characteristics of interpreting, specifying and

identifying design flaws are the threat of constructive validity, especially for quantitative-

74

based design flaw detection. The proposed detection lessens such threats by specifying

design flaws based-on real examples in literatures and manual assessment of the results.

In the next chapter, the conclusion is described. All of contribution work are summarized.

The further research is also presented.

AULINENINYINg
ARIANTAUIM TN

CHAPTER V

CONCLUSION

This chapter concludes the research work of this dissertation. It also presents some direc-

tions for the future work.

5.1 Conclusion of dissertation

In the last decade software ¢; a d more an important criterions for man-
aging cost and effort that spenqe i pce of potential errors such as design
flaw lead to more cost in m2 recur design problems in object-
oriented software systems h~: 20ssible negative consequences on
software development and ‘\i.. ws detection methodologies and
techniques remain an acuve. ‘\,,_ acnes in the recent literature have

been proposed to detect d

."g‘ ! %

The contribution of tnis c ient design flaw detection approach

by ignorance limitations of o

the automatic detection for redfcin %

moving to that step, the novel metk b

ircament of detection and promoting

suriiing in the detection process. Toward

: detection is proposed by using Declar-

ative Meta Programmi1 L D— /. Two techniques are applied

=3

\
)

to investigate design fla® ¥2n. In the proposed approach,
Declarative Meta-Prograr ;! ing is used L0 represent specific @dzct-oriented elements and their
relations in form of logic ruls&ay describing design flaws. Explanation-Based Learnlng is used

e YN g NS5 WHADS o esien s e

difficult to underst

WA, 1NN IUNBIINLIAL. ..

in the Declaratlve Meta-Programming. The problem domain of design flaws in consideration is
narrowed down to what is the structure of design flaws rather than how is the structure of such
flaws. Therefore design flaws can be detected in a simple way and the suitable detection results

are obtained.

Case studies are conducted to validate the proposed detection approach. Several open-
source object-oriented software systems are used in experiments. The measure criterions such as

precision and recall are used to assess experiment results. Results of the measured rate show good

76

and expected rates of detection.

5.2 Future research directions

A number of questions is encountered during the research that we believe that are worth
of further investigation in the future. We classify the possible continuations of this work in two

categories: refinement and integration.

Refinement

éﬂlork provides some answers on the

question of how to spcd ect=ie d : , some improvement techniques are

e The issue of learning cl=

needed on refining for vironment.

e A rule suite of pror very. Some flaws have relation

among them. To un< g yse similar rules to detect. If we
can develop a suitC of | Norigin of such flaw. Moreover, we
plan to discover the 1 environment after the proposed
detection is performec, *ta environment is in the easy way,

we believe that the flaw ¢ | e % t might be in the same way.

.-F"!-.“_ ."":

e Migration to emerging psa - ase program. The question here is:

How can the m e =>4 k be used beyond the limits

-

\
)

of object-orienta n, —on strategies for adaptive (AP)

or aspect-oriented g gramming (AOP)? Which would %# the invariants of the approach?

Which are tFi parts thft& om to chan

HYYT NN
‘“ﬁrﬁﬁaﬂnimumfmmau

o The Whole approach presented in this thesis, rather than being theoretical is very close to
the world of practical software engineering. Therefore, we assume from the beginning
that the approach will become in the near future very interesting for CASE tool providers.
Some preliminary discussions with several important companies are justified our initial as-
sumptions. This raises the question of integration, i.e. how can the techniques and methods
developed during this dissertation be integrated in an existing development environment?

That is the big question that we have to find out.

References

Appeltauer, M. and Kniesel, G. Towards concrete syntax patterns for logic-based transformation

rules. Electron. Notes Theor. Comput. Sci., November 2008, 219:113-132.

Bell, D., Morrey, 1., and Pugh, J. Software engineering: a programming approach. Hertfordshire,

UK, UK, Prentice Hall Internatio g § A'K) Ltd., 1987.

Booch, G. Object-Oriented Analz .
CA, USA, Addison }

Zlications (3rd Edition). Redwood City,

gy Pudd-,, , Inc., 2004.

Bravo, F. M. A logic meta-pr2 ‘ A_ ' seacting the refactoring process. Mas-

ter’s thesis, Vrije |

Britton, K. H., Parker, R. A gfn‘ ’ designing abstract interfaces for

device interface mo

W‘"\.‘ -ay, T. J. Anti-Patterns: Refactoring
is. . ®=w York, Wiley, 1998.

Brown, W. H., Malveau, R. C"

Software, Architectur:

Bruno, G., Garza, P., Quintarelli.. -" Anomaly detection in xml databases
by means of N4 e
Conference o Vl‘ -r‘[s, pp. 387-391, Washington,
DC, USA, 2007 { | EE C3i%

Coad, P. a?;?uﬂnﬁ er é]dgli, ﬁeﬁJ\U USA, Yourdon Press,
¢ e tepadiiger view. Machine
 ARTR SN T -

Demeyer, S., Ducasse, S., and Nierstrasz, O. Object Oriented Reengineering Patterns. San Fran-

cisco, CA, USA, Morgan Kaufmann Publishers Inc., 2002.

e i‘pgs of the 18th International

Deransart, P., Cervoni, L., and Ed-Dbali, A. Prolog: the Standard: Reference Manual. London,
UK, Springer-Verlag, 1996.

Fagan, M. Design and code inspections to reduce errors in program development. 2002, pp.

575-607.

78

Fagan, M. E. Advances in software inspections. IEEE Trans. Software Eng., 1986, 12,7:744-751.

Flach, P. Simply Logical: intelligent reasoning by example. New York, NY, USA, John Wiley &
Sons, Inc., 1994.

Fokaefs, M., Tsantalis, N., and Chatzigeorgiou, A. Jdeodorant: Identification and removal of fea-
ture envy bad smells. In Software Maintenance, 2007. ICSM 2007. IEEE International
Conference on, pp. 519 =520, 2007.

Fowler, M. Refactoring: Improving the Dl

Wesley, 1999.

Existing Code. Boston, MA, USA, Addison-

A

Fowler, M. and Beck, K. Bad : ~odlpp. i 150n-Wesley, 2000.

Gamma, E., Helm, R., Johr= : a. Patterns. Boston, MA, Addison-
Wesley, 1995.

Isner, J. A programming 1 / 2. Journal of Geodesy, 1982, 56:

149-164.
Johnson, R. E. y o ;, " \‘ esigning reusable classes.

Journal of Object-Oric 4 A== ne Wly 1988, 1,2:22-35.

Jorwekar, S., Fekete, A., Ramamz: f;-:f: TS

grshan, S. Automating the detection of
snapshot isolf ’ yiygs of the 33rd international

-r‘[B Endowment, 2007.

conference oris 4

Kniesel, G., Hannemann, <%, and Rho, T. A comparison of loc—based infrastructures for con-
technol@ ﬂ uti ’EJ
U WTANTT iWW“?"ﬂﬁﬂ%ﬁ@Fﬁ']

Kvam, K.9Lie, R, and Bakkelund, D. Legacy system exorcism by pareto’s principle.

In Companion to the 20th annual ACM SIGPLAN conference on Object-oriented

programming, systems, languages, and applications, OOPSLA ’05, pp. 250-256, New
York, NY, USA, 2005. ACM.

Laird, J. E., Newell, A., and Rosenbloom, P. S. Soar: an architecture for general intelligence.

Artif. Intell., September 1987, 33:1-64.

79

Langelier, G., Sahraoui, H., and Poulin, P. Visualization-based analysis of quality for large-

scale software systems. In ASE ’05: Proceedings of the 20th IEEE/ACM international

Conference on Automated software engineering, pp. 214-223, New York, NY, USA,
2005. ACM.

Lanza, M. and Marinescu, R. Object-Oriented Metrics in Practice. Using Software Metrics to

Characterize, Evaluate, and Improve the Design of Object-oriented Systems. Springer

Verlag, 2010.

JNew York, NY, USA, Springer-Verlag New

f{r_ai rn_in, NJ, USA, Springer-Verlag New

Lloyd, J. W. Foundations of logic nr
York, Inc., 1984. .

Lloyd, J. W. Foundations o
York, Inc., 2nd editi2

Mintyld, M. Empirical sc Jkuman evaluations. In Software

Maintenance, IEF 4 —6, 2010.

Mintyld, M., Vanhanen, ["'\ 2O\ and an initial empirical study

of bad smells in co

national Conference on Software
Maintenance, ICSM >, USA, 2003. IEEE Computer Soci-

ety.

Mintyld, M. V., Vanhaji3§ T L h fiians as code critics. In ICSM

"04: Proceedi & .‘_“ e on Software Maintenance,

pp- 399408, Wil JingtOis Wrc Coglputer Society.

. Technology of

Marinescu, R. Measurement and quality in object-oriented design. In Proceedings of the 21st

IEEE International Conference on Software Maintenance, pp. 701-704, Washington,
DC, USA, 2005. IEEE Computer Society.

Mealy, E., Carrington, D., Strooper, P., and Wyeth, P. Improving usability of software refactoring

tools. Software Engineering Conference, Australian, 2007, 0:307-318.

Mens, K. and Kellens, A. Towards a framework for testing structural source-code regularities.

Software Maintenance, IEEE International Conference on, 2005, 0:679-682.

80

Mens, K. and Kellens, A. Intensive, a toolsuite for documenting and checking structural source-
code regularities. Software Maintenance and Reengineering, European Conference on,

2006, 0:239-248.

Mens, T. and Tourwé, T. A survey of software refactoring. IEEE Trans. Softw. Eng., 2004, 30,2:
126-139.

Mens, T., Wuyts, R., Volder, K. D., and Mens, K. Declarative meta programming to support

software development: Workshop report. ACM SIGSOFT Software Engineering Notes,
2003, 28,2:1. '

Mihancea, P. and Marinescu, R automatic detection of design flaws
tenance and Reengineering, 2005.

005, pp. 92-101.

in object-oriented sC

CSMR 2005. Ninth "

Mitchell, T. M., Keller, F ation-based generalization: A

unifying view. M4

Moha, N. and Guéhéneuc A\ WNetection of design defects. In

Proceedings of the '1 ational conference on Automated

- Wl
software engineering, fFE *GH&SE "W York, NY, USA, 2007. ACM.

Moha, N., Gueheneuc, Y.-G., and Le# ,:.- ,-i-!-'f
sign defects. [i§ FfS"M International Conference

R Jicton, DC, USA, 2006. IEEE

oeneration of detection algorithms for de-

on Automatecy &

Computer Socie |||
»

¥

Murphy-Hill, E anﬁBlack A hfactorltj tools: @iness for ;Tpose Software, IEEE, 2008a, 25

AU YA EHSNEAH
”Mﬁa\miﬁ;ﬂﬁmﬁmﬁ’E:ZLZizz -

software engineering, RSSE *08, pp. 36-40, New York, NY, USA, 2008b. ACM.

Neighbors, J. M. The draco approach to constructing software from reusable components. IEEE

Trans. Software Eng., 1984, 10,5:564-574.

Olson, D. L. and Delen, D. Advanced Data Mining Techniques. Springer Publishing Company,

Incorporated, 1st edition, 2008.

Patcha, A. and Park, J.-M. An overview of anomaly detection techniques: Existing solutions and

latest technological trends. Comput. Netw., 2007, 51,12:3448-3470.

81

Pavlik, P. I. and Anderson, J. R. An act-r model of memory applied to finding the optimal schedule
of practice. In ICCM, pp. 376-377, 2004.

Pfleeger, S. L. Software Engineering: Theory and Practice. Upper Saddle River, NJ, USA,
Prentice Hall PTR, 2nd edition, 2001.

Pressman, R. S. Software Engineering: A Practitioner’s Approach. McGraw-Hill Higher Educa-
tion, 2001.

Ratiu, D., Ducasse, S., Gerba, T., and Maringg R. Using history information to improve design

flaws detection. Software

2004, 0:223.

Riel, A. J. Object-Oriente L ddison-Wesley, 1996.

Simon, F., Steinbriickner, %%, - ciactoring. In Proceedings of the

Fifth European f ORI N Whad Reengineering, CSMR 01,
pp- 30—, Washin- ' -

ociety.

Slinger, S. Code Smell Det

Sommerville, I. Software c#i

Longman Publishing %
. . LA . .
Spivey, J. M. The Z notation: et - shire, LIK, UK, Prentice Hall Interna-
tional (UK) I'§ = =
VO LY Y]

ing ap 1l Joach to framework documenta-

o® City, CA, USA, Addison Wesley

Tourwe, T. and Mens, T. j declarat®

T -

tion. In In Proceed?}' gs of the Worksho&c';n Declarative Meta Programming to Support

@englneermg pp. 91— Washlngton DC, USA, 2003. IEEE Computer Society.

Travassos, G., Shull, F., Fredericks, M., and Basili, V. R. Detecting defects in object-oriented
designs: using reading techniques to increase software quality. SIGPLAN Not., 1999,
34,10:47-56.

Tsantalis, N., Chaikalis, T., and Chatzigeorgiou, A. Jdeodorant: Identification and removal of

type-checking bad smells. In Proceedings of the 2008 12th European Conference on

Software Maintenance and Reengineering, pp. 329-331, Washington, DC, USA, 2008.

IEEE Computer Society.

82

Van Emden, E. and Moonen, L. Java quality assurance by detecting code smells. In Proceedings
of the Ninth Working Conference on Reverse Engineering (WCRE’02), pp. 97—, Wash-
ington, DC, USA, 2002. IEEE Computer Society.

Van Rompaey, B., Du Bois, B., Demeyer, S., and Rieger, M. On the detection of test smells: A
metrics-based approach for general fixture and eager test. IEEE Trans. Softw. Eng., 33

,12:800-817, 2007.

Waldinger, R. Achieving several goals simultaneously. In Elcock, E. W. and Michie, D., editors,
4o, Wiley, 1977.

Machine Intelligence, volu

Wuyts, R. Declarative reasonis

pp. 112-124, 1998

AULINENINYINg
ARIANTAUIM TN

AULINENTNEINS
ARIAATAUNNINGIAY

84

APPENDIX A

EXAMPLES AND DOMAIN THEORIES OF
RESEARCH

The training examples and their dot g § fhcories of learning mechanism for constructing

explanations (proof trees) are shoyzals ' /‘ he Bloaters category flaws is presented

in section A.1. The Object-Orig — /i’?hange Preventers category and The

Dispensables are presented in ! -ctively. Finally, The Couplers cate-

gory is presented in section A5
A.1 The Bloaters Cate

The Bloater flaws iepr g too large to effectively handled. It

seems likely that these fla; flaws in this category are Large

Class, Primitive Obsession, I #i
A.1l.1 The Long Parameter List

The Long Paraniere =" -ecessarily increase coupling
between classes. Instea ' ; " Taonships between classes, the
program let the caller locs everything; then the method concs#trates on what it is being asked

¢ a | o
UEINENINEINT

Examples f@§ defining domain theories : Four examples are used to define rules for
design fl 7 fm_ ¢ — e Long Parameter
List desigaqﬂﬁulﬁ example mmjgzﬂﬂﬂﬁﬂd Ex.4 are Long

Parameter List design flaws examples used for Explanation-based mechanism learning.

to do with the pieﬁ.

Ex.1: From java.swing.CellRendererPane
public void paintComponent (Graphics gr, Component renderer, Container parent, int

X, int y, int width, int height, Boolean shouldvValidate)

Ex.2: From java.awt.Graphics

public Boolean drawImage (Image image, int x1Dest, int ylDest, int x2Dest,

85

int y2Dest, int x1lSource, int ylSource, int x2Source, int y2Source, Color color,

ImageObserver obs)

Ex.3: From java.swing.DefaultBoundedRangeModel
public void setRangeProperties (int newValue, int newExtent, int newMin, int

newMax, boolean isAdjusting)

Ex.4: From java.swing.JOptionPane

~ing title, int optionType, int messageType)

ér learning. Table A.1 shows a target
d

sss ctection rule. Horn clause in R8

public static int showConfirmDia

longParameterList(x) is a
concept and domain theorie

icousistency. The sematic in Figure

e

cannot be used here becauS®
A.1 shows the detection #&C Cmain theories after performing
learning algorithm. The

both Ex.3 and Ex 4.

Jaw is constructed by covering

Table A.1: Domain theories ¢ A LN of \ 1- Ex.4 Long Parameter List

Target concepts and donas M ,
R1: VaVy me (i L))
= longPari{j Y]
R2: Vx method s RY 16 (X)
R3: Vx methods- 1sReturn'lype (X) = metidd (x)

R4: Vx pubthe‘! d(x) = m d(x)

R6. Xiiilﬂv%mﬂ’mﬁﬂﬂﬂiﬁ%f&st<y>

R7: Vy; 1cTypeParame}er(y,) = eachParameter(y,)

SRS T

A rule for detecting Long Parameter List flaw can be constructed in form of MESs as:

>3
g

% Rules Long Parameter List
longParameterList (MethodID,ClassID,MethodName) :-

classT(ClassID, _,_,_),

86

longParameterList(x)

X3, Exd 4\ £x3, Ex4

Ex3, Exd
method{x) parameterList(y) publicMethod (x)
/\ Ex3
Ex3 Exd
[\ | y
methadMoReturn methodHasRetur B, Exd
X, EX
Type(x) nType(x)

eachParameter(y4) eachParameter(ys) | | eachParameter(ys)

fEﬂ, Exd . £ eh
basicTypePara : \asi e cic TypePara basicTypePara
meter(y;) meter(ys)
Inconsistency with Ex1 Ex2, =i % ‘ancy with Ex1 nconsistency with Ex1
classTypePara ‘_/ ; " b TypePara classTypePara
meter(y) ; { L A My i meter(ys)

Mot use in examplas Mot use in examplas

genericTypeP i /3 ,' f genericTypeP genericTypeP
arameter(y,)] N, N arameter(ys)
Figure A.1: The semat: nd Ex4. in domain theories

By
\+parameterbeObject @ ird) .

¢ a Q

e AW INYNINYINT
atom (paramet@ridD) |

sub_atom(paraxﬂterID, o claes).}

=

ARIAINTUURIINGIAY

A.1.2 Lafige Class

Large Class flaw grows big a little bit in each evolution time. The programmer keeps adding
more capabilities to a class until it eventually grows too big. Sometimes the problem is a lack of
insight into the parts that make up the whole class. In any case, the class represents too many

responsibilities folded together.

Examples for defining domain theories: An example of Java Servlet Front Strategy code

is used to define rules for design flaw detection as followed.

public class EmployeeController extends HttpServlet {
// Initializes the servlet.
public void init (ServletConfig config) throws
ServletException {

super.init (config);

// Destroys the servlet.

public void destroy () {
}

/%% Processes requests fon
*x <code>GET</code> and <o
* (@param request servlet =
* @param response sei ’
*/

protected void proces

request, HttpServlet".
throws ServletExceprior

String page;

/+xApplicationResource
« for retrieving constar
+ preconfigured valuesxx/

ApplicationResources resou

ApplicationResoj r

try {

// Use a helper olBlf:t to gatilel Poromeccer

// specific informati n

== UHINYNITNYINT

Command cdeelper— helper getCo

AMANTAIN N8 Y

page = cmdHelper.execute (request, response);

}
catch (Exception e) {

LogManager.logMessage (
"EmployeeController:exception : " +
e.getMessage ());

request.setAttribute (resource.getMessagelAttr (),
"Exception occurred : " + e.getMessage());

page = resource.getErrorPage (e);

88

// dispatch control to view

dispatch (request, response, page);

/+* Handles the HTTP <code>GET</code> method.
* @param request servlet request
* @param response servlet response
*/
protected void doGet (HttpServletRequest request,
HttpServletResponse response)

throws ServletException, java.io.IOFxae

ation {

processRequest (request, respo

/+% Handles the HTTP <cog
* @param request servlg
* @param response servle
*/

protected void doPost /

HttpServletResponse ref
throws ServletExcep! /

processRequest (rea

/** Returns a short desciip
public String getServletInf
return "Front Controller Pattex

" Servlet Front Strateg

-
protected void dispatrl;{t s

HttpServletResponse f‘ponse,

String page)

AU INENINGINS

RequestDlspat r dispatcher =

dmpﬁmmﬁ’imwﬁ NYIRY

largeClass(x) is a target concept that uses for learning. Table A.2 shows a target concept

and domain theories which are used to construct a detection rule.

All rules for detecting Large Class flaw can be constructed in form of MESs as:

89

Table A.2: Domain theories and a target concept of Large Class design flaw

A target concepts and domain theories:

R1: Vc class(c) A controllerClass(c) = largeClass(c)

R2: VcVmVa hasMethod (c,m) A method(m) A hasAttribute (c, a)
A attribute (a) = class (c¢)

R3: VcVmVa execMethod(m) A —hasAttribute (c,a)

= controllerClass (¢)

3
g
o

% Rules Large Class

LargeClass (ClassID)

accessDataClass (ClassID 2ist From 1. Access Data Class ’);
accessUnusedData (C1d \ -
write ('Exist Fro
controllerClass (ClassIl -] y Wl er Class ');
unusedElementClass (C) 4 = \ b Slement in Class ') ;

compositeClass (ClassID) i i MWW lass 7).

accessDataClass (ClassID, Cl

classT(ClassID, _,_,_), . (Cl
ClassID \== ClassID_DataC' s f-r.r'
classAccess (ClassID,ClassID_Dat

ﬁi e
dataClass (ClassID_DataClasca e
-
classAccess (ClassID, C| y
methodT (MethodID, Cla _’_w' s,
blockT (BlockID, MethodID, S),

execT (ExecID, BlockID,_, ,

Z?iiii?élassﬁdﬁﬁﬂ NYNIN g7

methodT(MethouD_dataclass ClassID DataClass, ey

B 0 i ANTUNRIINYINY

fieldT (Y, X, _,_,_),

methodT (AccessorMethodID, X, , [1,_,_,_),
blockT (A, AccessorMethodID, _,_),
returnT (_,A,AccessorMethodID,_),

getFieldT(_,_,AccessorMethodID,_,_,Y).

mutatorMethod (MutatorMethodID) -
classT(X,_,_,_),
fieldT(Y,X,_,A,_),
methodT (MutatorMethodID, X, _, [B],_,_,_),

paramT (B, MutatorMethodID,_,A),

90

assignT(_,_,MutatorMethodID,C,_),

getFieldT (C,_,MutatorMethodID,_,A,Y).

notDataClass (NotDataClassID) .
classT (NotDataClassID, _,_,_),
methodT (MethodInDataClass,NotDataClassID,_,_,_,_,_),
\+ mutatorMethod (MethodInDataClass),

\+ accessorMethod (MethodInDataClass) .

dataClass (ClassID_DataClass) :-

classT (ClassID_DataClass,_,_,_),

\+ notDataClass (ClassID_DataClass) .

accessUnusedData (ClassID, Cl-
classT(ClassID,_,_,_),
classT (ClassID_Unusedi
ClassID \== ClassID_Un:

accessUnusedData (Class [T / S ¥ u“ernusedData),

blockT (BlockID,MethodID,

execT (ExecID,BlockID,_,_), |

unusedDataClass (ClassID _Unu

\+ usedDataClass (

usedDataClass (ClassID_| Un..,d
mutatorMethod (Methocs# UnusedData) ;

accessorMethod(MethodIQFU sedData),

- iiﬁiii:ﬂﬂiﬂi‘i NYNTNHINT

blockT (Temp, U ethod),

- AW ANIUNNIININY

controllerClass(ClassID) -
classT(ClassID,_,_,_),

\+ fieldT (FieldID,ClassID,_,_,_).

unusedElementClass (ClassID) :-
unusedElementField (ClassID),

unusedElementMethod (ClassID) .

unusedElementField (ClassID) :-—
classT(ClassID,_,_,_),

fieldT (FieldID,ClassID,_,_,_),

91

methodT (MethodID,ClassID,_,_,_,_,_),
\+getFieldT(_,_,MethodID,_,_,FieldID).

unusedElementMethod (ClassID) :-—
classT(ClassID,_,_,_),
methodT (MethodID,ClassID, _,_,_,_,_),
newClassT (NewClassID,_,_,_,_,ClassID,_,_),
\+ callT(CalliD,_,_,_,_,_,MethodID),
identT(_,CalliD,_,_,LocallD),

localT (LocallID,_,_,_,_,NewClassID).

connected (X,Y) :-—

edge (X,Y) ; edge(Y,X).

path(A,B,Path) :-
travel (A, B, [A],Q),

reverse (Q,Path),

travel (A,B,P, [B|P]) :-—

connected (A, B) .

travel (A,B,Visited, Path)
connected(A,C),
C \== B,
not (member (C,Visited)),
travel (C,B, [C|Visited], Pe

Path = [B].

element_of (X, [X|Tail]

element_of (X, [_|Tail]

add2end (X, [H|T], [X,H|T] f-ddZend(X T, [X|T]) .

add2end (X,

addElement (X, mﬂ uﬂq m Elﬂiw E.l’]nli

addElement (X, [XIE ent]) :- addElement,(X,Element) .

crcies A} a»&nmumq NYINY
PathSo ceSink = [Sink], nl,

add2end(Slnk,A_Temp,A_Templ), nl,
fail.

compositeClass (ClassID) :-—

\+ noGodclass (ClassID).

noGodclass (ClassID) :-—
classT (ClassID,_,_,ListElement), fieldT (FieldID,ClassID,_,_,_),
methodT (MethodID,ClassID, _,_,_,_,_),
edge (FieldID,MethodID), !,
methodT (MethodA, ClassID, _,_,_,_,_),

92

methodT (MethodB,ClassID, _,_,_,_,_),
edge (MethodA,MethodB), !,

pathTraverse (FieldID,MethodID, ListElement) .

edge (FieldID,MethodID) :-—
getFieldT(_,_,MethodID,_,_,FieldID).

edge (MethodA, MethodB) :-—
MethodA \== MethodB,

callT (MethodA, _,_,_,MethodB) .

i —}

pathTraverse (FieldID,MethodID, ListE
[A,B|C] = ListElement,
A_Temp = [A],!,
element_of (Y,C),
path(B,Y,Path),

checkPath (Path,B,Y,A_T«

A.1.3 Primitive Obsessior

Primitive Obsession that causes bloats than a bloat

itself. When the Primitive O Wnall classes for small entities (e.g.
phone numbers). Thus, the func er class which increase the class and

method size in the software.

Examples for d(in i o5 7T Fowler’s workbook are used
to define rules for desi e —— o

=

public class Age {

private int age;

leJEJ’J ¥ EWITW ARl

this.age age,

"“Mammﬂimum'mmaa

class Person {
public static final int O = 0;

public static final int A =

|
-
~

public static final int B

Il
N
~

public static final int AB = 3;

private int _bloodGroup;

public Person (int bloodGroup) {

_bloodGroup = bloodGroup;

93

public void setBloodGroup (int arg) {

_bloodGroup = arg;

public int getBloodGroup () {

return _bloodGroup;

primitiveObsession(x) is a targe uses for learning. Table A.3 shows a target

éﬂetection rule.

concept and domain theories wh;

Table A.3: Domain theorie , x Mive Obsession design flaw

R1: Ve class(c) A
= primitiveObsg hC)t

R2: VcVa hasAttrib 8 o= —'= N "W(a) = class(c)

R3: VcVa attribute®y e \ bjectObsession (¢)
R4: VcVa attributeT, o,‘“ﬁ,,‘ﬂ genericObsession (¢)

—genericObsession (c)

[S Cl

All rules for detchdd "" ’ ucted in form of MESs as:

]

)

>3
g

ij;iiiviéiiiiiiﬂcﬁﬁlﬂ NYNINYINT

prOJectRequlr (icice,Pathsource, C ssID, ClassName

pm“mﬁﬁﬁﬂ‘ﬁwm’mﬁl’]aﬂ

prlmltlveObS€SSlonRules(ClassID) H

haveGenericType (ClassID) .

simulatedAccessors (ClassID) .

havePrimitiveType (ClassID) :- \+haveGenericType (ClassID) .

haveGenericType (ClassID) :-—
fieldT(_,ClassID,Type,_,_),
\+arg (1, Type, class),

\+arg(l, Type,generic) .

94

simulatedAccessors (ClassID) :—
methodT (MethodID,ClassID, ,_,_,_,_),
localT (DeclareArrayID,_,MethodID,_,_,_),
newArrayT(_,DeclareArrayID,MethodID,_,_,_),
% 1 element insert array
assignT (AssignID, _,_,_,_),
indexedT (IndexID,AssignID,_,_,_),
identT(_, IndexID,_,_,DeclareArrayID),
% 2 element insert array

assignT (AssignID2, _,_,_,_),

indexedT (IndexID2,AssignID2, _,
identT(_, IndexID2,_,_,Decla

AssignID \= AssignID2, !

A.14 Data Clump

F = ‘
With Data Clump flaws, tierede=—=— : s that always appear together. Since these

he sizes of methods and classes.

data items are not encapsulated ins

Examples for d¢ V; AX wler’s Refactoring is used to

define rules for design ﬂa [detecTiOn —C of

ﬂ‘LlEJ’JVIEWITW ARl

public class Acco

““Wﬁmﬁﬁ‘ruajﬁﬂwmaa

1ge values is considered in this

example.

eration e = _entries.elements
whlle(e.hasMoreElements()){
Entry each = (Entry) e.nextElement ();

if (each.getDate() .equals(start)) ||
each.getDate () .equals(end) ||

(each.getDate () .after (start) && each.getDate.before(end)))

result += each.getValue (0;

}

return result;

95

dataClump(x) is a target concept that uses for learning. Table A.4 shows a target concept

and domain theories which are used to construct a detection rule.

Table A.4: Domain theories and a target concept of Data Clump design flaw

A target concepts and domain theories:

R1: Va1Va, class(c) A clumpPair(a;,a2) A clumpFirst(a;,az)
A clumpSecond (a; ,az) ’

= dataClump (¢)
R2: Va;Va, attribute p /) A (a1 # as)
= clumpPair (a4 ,a . é

R3: hasMethod (¢,
R4: hasMethod (c,r 4
R5: hasParametet~ M—para) = method (my)
R6: hasParamete 2 paa) = method (my)
R7: parameterln (4. 4 ' Wl (az ,mi_parg)

= clumpFirst(,
R7: parameterln/ A, e\ | N n (s Mo para)
= clumpSecond (4 . §

All rules for detecting Data C, ey ted in form of MESs as:

-
s |
° [

o

% Rule DataClumps ¥
|

#[D,ClassName) :-—

dataClump (Pathsource, Cle

prOJectRequlred(Sourceif am, Pathsource, ssID,ClassName),

ﬁﬂEJ’J‘i’lEWI?WElI’]ﬂ‘i

dataClumps(ClassI =

CARIAINIUNRINYIAE

dataCl ps3Get(ClassID)

dataClumps2Ele (ClassID) :—
fieldT (FieldID1, _,_,_,_),
fieldT (FieldID2, _,_,_,_),

FieldID1 \= FieldID2,
methodT (Methodl1ID,ClassID,_,Parameterl,_,_,_),
methodT (Method2ID,ClassID,_,Parameter2,_,_,_),

MethodIDl \= MethodID2,

paramT (Parameter1ID,MethodlID,_,_),

member (ParameterlID,Parameterl),
getFieldT(_,_,MethodlID,_,_,FieldID1l),

identT(_,_,MethodID1ID,_,ParameterlID),

paramT (Parameter2ID,MethodlID,_,_),
member (Parameter2ID, Parameterl),
getFieldT(_,_,MethodlID,_,_,FieldID2),

identT(_,_,MethodID1ID,_,Parameter21D),

paramT (ParameterlID,Method2ID,_,_),

member (ParameterlID, Parameterl),

getFieldT(_,_,Method2ID,_,_,Fiel
identT(_,_,MethodID2ID, _

paramT (Parameter2ID, Me
member (Parameter2ID, P
getFieldT (_,_,Method21n

identT (,MethodIDzT

J—

dataClumps2Get (ClassID)
fieldT(FieldIDl,_,;,_,
fieldT (FieldID2,_,_,
FieldIDl \= FieldID2,

methodT (Methodl1ID,ClassIL
methodT (Method2ID,ClassID, _
MethodID1l \= MethodID2,

accessAttributeFr
accessAttributeFromVEtio

accessAttributeFromds# 10d (Method2ID,AttributeIDl),

accessAttrlbuteFromMethP ethod2ID,Attri ID2)

wssere S U Y INYNINYINT

fieldT (FieldI ,ClassID,_,_,_),

SRR NN INYAY

FleldI \= FieldID2,

FieldIDl \= FieldID3,

FieldID2 \= FieldID3,

methodT (MethodID,ClassID, _,_,_,_,_),
accessAttributeFromMethod (MethodID,FieldID1),
accessAttributeFromMethod (MethodID,FieldID2),

accessAttributeFromMethod (MethodID,FieldID3), !

accessAttributeFromMethod (Method_1ID,Attribute_ID) :-—
getFieldT (_,_,Method_ID,_,_,Attribute_1ID);

callT(Method_ID,_,_,_,Method_Temp_1ID),

iy —

getFieldT(_,_,Method_Temp_ID,_,_,Attribute_ID).

97

projectRequired (NameProject,Pathsource,ClassID,ClassName) :—
projectS (ProjectID,NameProject, _,_,_),
sourceFolderS (SourcelD,ProjectID,_),
fileS(FileID, SourcelID,Pathsource),
compilationUnitT (ClassCompilationID,_,FileID,_,_),

classT (ClassID,ClassCompilationID,ClassName,_) .

A.2 The Object-Oriented Abusers Category

The common denominator foy Pbject-Orientation Abuser category is that

they represent cases where the s (éoit the possibilities of object-oriented
design. Design flaws in this . e cmporary Field, Refused Bequest

and Alternative Classes wili
A.2.1 Switch Statemen’

A Switch Stateme en good design in procedural

programming, but it is son, ‘ect-oriented programming. The

situation where switch stater ould be handled by creating sub-

classes.

Examples for defining mle is used to define rules for design

flaw detection as folloviim -
L7

public class SwitchDemo =

public static void maliﬂ ing[] args)

mﬂuEJ’J‘i’IEWI‘i‘WEJ’Iﬂ‘E

String monl Strlng,

ﬂma@ﬂmumwmaﬂ

case monthString = "February"; break;
case 3 monthString = "March"; break;
case 4 monthString = "April"; break;
case 5 monthString = "May"; break;
case 6: monthString = "June"; break;
case 7 monthString = "July"; break;
case 8 monthString = "August"; break;
case 9 monthString = "September"; break;
case 10: monthString = "October"; break;
case 11: monthString = "November"; break;
case 12: monthString = "December"; break;

default: monthString = "Invalid month"; break;

98

}
System.out.println (monthString);

switchStatement(x) is a target concept that uses for learning. Table A.5 shows a target

concept and domain theories which are used to construct a detection rule.

Table A.5: Domain theories ajz gitch Statements design flaw

Target concepts and d -
R1: VxVy method(v X saSwitchStatements (x, y)

A rule for detecting’ .W‘. : Nir cted in form of MESs as:

3
S

% Rule Switch Statement
switchStatement (PathP ieCct 4
projectRequired (/R g — me) ,
‘ f"
methodT (MethodID, (i A i
)y

switchT (_,_,MethodIL}
il

L

write (! #######4 Swid ,n Statement

.

-l
), nl

o AU ANINTNYINS

sourceFoldersS (SourcelD, PrOJectID_‘p

CARIAINIUURIINYNA Y

classT"ClassID, ClassCompilationID,ClassName,_) .

: Switch Exist’

A.2.2 Temporary Field

This flaw can happen when one part of an object has an algorithm that passes around infor-
mation through the fields rather than through parameters — the fields are valid or used only when
the algorithm is active. These fields do not suggest which there may be a missing object whose

life cycle differs from the object holding it.

99

Examples for defining domain theories: An example is used to define rules for design

flaw detection as followed.

public class Logo extends Canvas {
private Image fImage;
public int fWidth;

public int fHeight;

public Logo () {

fImage= loadImage ("logo.gif");

MediaTracker tracker= new Media

tracker.addImage (fImage,
try {

tracker.waitFo

} catch (Exceptigq

}

if (fImage != n:
fWidth= fImage
fHeight= fIr

} else {
fWwidth= 20; M
fHeight= 20;

} |

setSize (fWidth, fHeight);

temporaryField(§ § B Jable A.6 shows a target con-

. . id- . ™
cept and domain theories |{}ich arc™288 wactectigfff ule.
v d

AUYANINTNYINT

Table A.6: Doma%l tbeories and a targgt concept ofgmporary Fi iel@esign flaw
WIAIAIUUBIINIA L

R1: VaxVy class(y) A attribute(x) A hasAttribute (y, x)
= temporaryField (x)

R2: Vx hasAttrModifierPublic(x) = attribute (x)

R3: Vx hasAttrModifierPrivate (x) = attribute (x)
R4: Vx hasAttrModifierProtected (x) = attribute (x)
R5: Vx isStatic(x) = attribute (x)

R6: Vx —isStatic(x) = attribute (x)

All rules for detecting Temporary Field flaw can be constructed in form of MESs as:

100

o
S

% Rule Temporary Field

temporalField (PathProject,ClassID,ClassName,FieldID) :-—
projectRequired (’ CommonCLI’, PathProject,ClassID,ClassName),
fieldT (FieldID,ClassID, _,_,_),
modifierT (FieldID,public),

write (! ######## 1 Temporal Field : Private Attribute’),nl;

projectRequired(ieice,PathProject,ClassID,ClassName),
fieldT (FieldID,ClassID,_,_,_),

methodT (MethodID,ClassID, _,_,_,_,_),

assignT (AssignID,_,MethodID,_,
getFieldT(_,AssignID,_,_,_,F1
identT(_,AssignID,_,_,null)
write (! ######## 2 Temp & Object’),nl;
projectRequired (ieice.n™
fieldT (FieldID,Classiu,
identT (_,FieldID, _,.

write (' #4#b#EEE 3 Tem =% WM null value’),nl.

A class may inherit "om another class just for impleme vition convenience without really
intending the clas ‘iﬁ f beag, conscious decision to let
subclasses deny uFt a ﬁﬂﬁa)ﬂsgj:ft'n 5 all feature combinations.
This situation in such software systems is#Refused Bequesf flaw .

Exaqples for ﬁimngfr]omam Léeorles. n examlye] is used tgenye rules for design

flaw detection as followed.

package junit.framework;

/ **
* A Listener for test progress
*/
public interface TestListener {
/ *x

* An error occurred.

*/
public void addError (Test test, Throwable t);
/ *
x A failure occurred.
*/
public void addFailure (Test test, AssertionFailedError t);
/%%
* A test ended.

*/
public void endTest (Test test);
/ * %
* A test started.
*/

public void startTest (Test te

class TestSuitePanel extend
private JTree fTree;
private JScrollPane fScr
private TestTreeModel fMod.
static class TestTreeCellR enderer {
private Icon fErrorIcon;
private Icon fOkIcon;

private Icon fFailurelIcon;
TestTreeCellRenderer () {
super () ;

loadIcons();

void loadIcons () { o

fErrorIcon= TestRunner. get?o&esource(getcla), "icons/error.gif");

AU nﬁmwmm@

}

- AR TUNRINYIA Y

String tex o.toString ();
int pos= text.indexOf (' (");
if (pos < 1)
return text;

return text.substring (0, pos);
public Component getTreeCellRendererComponent (JTree tree, Object wvalue,
boolean sel, boolean expanded, boolean leaf, int row, boolean hasFocus) {

Component c¢ = super.getTreeCellRendererComponent

(tree, value, sel, expanded, leaf, row, hasFocus);

101

TreeModel model= tree.getModel () ;
if (model instanceof TestTreeModel) ({
TestTreeModel testModel= (TestTreeModel)model;
Test t= (Test)value;
String s= "";
if (testModel.isFailure(t)) {
if (fFailurelIcon != null)

setIcon (fFailurelcon);

s= " - Failed";

}

else if (testModel.isError(t)) {
if (fErrorIcon != null)

setIcon (fErrorIcon);
s= " - Error";

}

else if (testModel.wg
if (fOkIcon != null)
setIcon (fOkIcon);
s= " - Passed";

}

if (c instanceof JC

((JComponent)c) .

setText (stripParenthesis
return c;
}
}

public TestSuitePanel
super (new BorderLayou
setPreferredSize (new Di ;;;1.
fTree= new JTree(); il

fTree.setModel (null) ;

iiiii;;:i:ZZifELuEl’J NENINYINT

fTree. putCllentPr rty ("JTree. llneSty ", "Angled"

R AINTAUM TN

public void addError (final Test test, final Throwable t) {
fModel.addError (test) ;

fireTestChanged (test, true);

}

public void addFailure(final Test test, final AssertionFailedError t)

fModel.addFailure (test);
fireTestChanged (test, true);
}

102

103

/%%
* A test ended.
*/
public void endTest (Test test) {
fModel.addRunTest (test) ;
fireTestChanged (test, false);

}

/ *
* A test started.
*/
public void startTest (Test test)
}

/ *
* Returns the selected tg
*/

public Test getSelectedles

selected

TreePath[] paths= fTree
if (paths != null && paths.
return (Test)paths[0].g
return null;

}

/ * %
* Returns the Tree
*/
public JTree getTree()
return fTree;

}

/ *x v

* Shows the test hlerarch‘rs rting at the g test

showﬂtuﬁl’J NET INYINT

fModel= n TestTreeModel(root

Wﬁmﬂmw%nma d

private void fireTestChanged(final Test test, final boolean expand) {
SwingUtilities.invokeLater (
new Runnable () {
public void run() {
Vector vpath= new Vector();
int index= fModel.findTest (test, (Test)fModel.getRoot (), vpath);
if (index >= 0) {
Object[] path= new Object [vpath.size()];
vpath.copyInto (path);

TreePath treePath= new TreePath (path);

104

fModel.fireNodeChanged (treePath, index);
if (expand) {
Object[] fullPath= new Object[vpath.size()+1];
vpath.copyInto (fullPath);
fullPath[vpath.size ()] =
fModel.getChild (treePath.getLastPathComponent (), index);
TreePath fullTreePath= new TreePath (fullPath);

fTree.scrollPathToVisible (fullTreePath) ;

Table A.7: Domain theori¢ ‘,\ . Bequest design flaw

A target concepts and d —
R1: Vx (ig], = ibute (z) A
hasAttri —]

method (y S AY |
notlnheritJp s uffidBequest (x;)
R2: Vz hasA®rModifierPublic(z) = ™ttribute (z)
R3: Vz hasAttwhpdifierPrivgte (z) = attribute (2)

s AREAMININEAT "

hasName(yfyname) = ethod(z)

ﬁﬁmmmmwmwmm

RA Vy hasMetModifierProtected (y) = attribute (y)
R10: vxl (lelaz)vynamelvyname2 nOtThesame(ynamel ’ynamel) =
notlnheritOperation (x;,x3)

All rules for detecting Refused Bequest flaw can be constructed in form of MESs as:

3
S

% Rule Refused Bequest

refuseBequest (Pathsource,ClassID,ClassName) :-—
projectRequired(’ SourceProgram’,Pathsource,ClassID,ClassName),

refuseBequestAnyForm (ClassID) .

refuseBequestAnyForm(ClassID) :-
refuseBequestClassForm(ClassID) .
refuseBequestClassFormNot Implement (ClassID);
refuseBequestInterfaceFormImplementClassBlank (ClassID) .

refuseBequestInterfaceFormImplementAbsBlank (ClassID) .

% First Form (no inherit method)

refuseBequestClassForm(ClassID)
classT (ClassID,_,_,ElementIr
classT (ClassSuperlD, _,_,
extendsT (ClassID,Classfh
\+globallds (’ java.lang

\+notRefuseBequestClas-

notRefuseBequestClassFor
methodT (MethodSuperID, 5 - \)
methodT (MethodID,Cl: v
MethodSuperName = Meth
% Second Form (class not in
refuseBequestClassFormNot Ii
classT (ClassID,_,_,Elemer #n ;: ;;
classT (ClassSuperID,_,_,EleInSs
extendsT (ClassID,ClassSung
\+tgloballds (’ java -
refuseBequestCENI (Clail f
.

Ff':lassSuperID) =

refuseBequestCEFNI (Classk

methodT (MethodSuperID, qFa SuperID,Method rName,_,_,_,_),
methodT (Meth

MethodSuperN ﬂ ﬁ&q Wﬂﬂﬁ w 81‘ ﬂ ﬁ
blockT (_ Meth D,_,[1),!.

- ARIAINIUNIINYIAE

refuseBequ tInterfaceFormImplementClassBlank (ClassID) :—
classT (ClassID,_,_,ElementInClass),
implementsT (ClassID,ClassSuperlD),

classT (ClassSuperID, ,_,_),

interfaceT (ClassSuperID),

\+globallds (' java.lang.Object’,ClassSuperID),

refuseBequestIFICB (ClassID,ClassSuperID) .

refuseBequestIFICB(ClassID,ClassSuperID) :-—
methodT (MethodSuperID, ClassSuperID,MethodSuperName,_,_,_,_),
methodT (MethodID,ClassID,MethodName,_,_,_,_),

MethodSuperName = MethodName,

105

106

blockT(_,MethodID,_, []1),!.

% Third Abstract Form (implement interface blank)
refuseBequestInterfaceFormImplementAbsBlank (ClassID) :—
classT (ClassID,_,_,_),
implementsT (ClassID,ClassSuperiD),
modifierT (ClassID, abstract),

classT (ClassSuperID, ,_,_),

interfaceT (ClassSuperID),

\+globallds (’ java.lang.Object’,ClassSuperlD),

refuseBequestIFIAB (ClassID,ClassSuperlD)

refuseBequestIFIAB (ClassID,Clas¢
methodT (MethodSuperID, Cla r—r—r)

methodT (MethodID,Classk

MethodSuperName = Metl

blockT(_,MethodID,_, [1

% Find Path

projectRequired (NameProjec!

The Alternative Ct - that two classes seem to be

doing the same thing but y using different class names.

- %ﬁ; | E}%sﬁwﬂqﬂﬁo Sefine ruls for desen

flaw detection as féowed.

AN I AINYIAE

unListener
/* test status constantsx*/
public static final int STATUS_ERROR= 1;
public static final int STATUS_FAILURE= 2;

public void testRunStarted(String testSuiteName, int testCount);
public void testRunEnded(long elapsedTime);

public void testRunStopped(long elapsedTime);

public void testStarted(String testName);

public void testEnded(String testName) ;

public void testFailed(int status, String testName, String trace);

public class TestRunner extends BaseTestRunner {

private ResultPrinter fPrinter;

public static final int SUCCESS_EXIT= 0;
public static final int FAILURE_EXIT= 1;

public static final int EXCEPTION_EXIT= 2;

/ *
* Constructs a TestRunner.
*/

public TestRunner () {

this (System.out) ;
}

/ *
* Constructs a TestRunricr
*/

public TestRunner (PrintStr

W%, Llle output

this (new ResultPrinter (s

/ * %
* Constructs a TestRunner i’rr all the output
*/
public TestRunner (ResultPrinter PLa —
fPrinter= printer; e W
}
o
/ * % 1|

*+ Runs a suite extractessfirom a TestCase subclass.

*/

I 1487 ?TEI NINYINT

}

Qﬁﬂﬁ\iﬂimuﬁﬂﬂmﬁﬂ

* Runs a ngle test and collects its results.
* This method can be used to start a test run
* from your program.

* <pre>

* public static void main (String[] args) {

* test.textui.TestRunner.run(suite());
*)

* </pre>

*/

static public TestResult run(Test test) {
TestRunner runner= new TestRunner ();

return runner.doRun (test);

107

/ *
* Runs a single test and waits until the user
* types RETURN.
*/
static public void runAndWait (Test suite) {
TestRunner aTestRunner= new TestRunner();
aTestRunner.doRun (suite, true);

}

/ * %

* Always use the StandardTestSuy \ 1 from

* BaseTestRunner.
x/
public TestSuitelLoader gel

return new StandardTestSuit

}

public void testFailed(int

}

/ * %
* Creates the TestRel "
*/ i

protected TestResult cremd=TestResult ()

-

return new TestResult ();

| ﬂ‘HEW’WIEWIﬁWEI"Iﬂ‘ﬁ

public TestResult“oRun (Test test)

dﬁmmﬂmum'sﬂmaa

public TestResult doRun (Test suite, boolean wait) {
TestResult result= createTestResult ();
result.addListener (fPrinter);

long startTime= System.currentTimeMillis();
suite.run (result);

long endTime= System.currentTimeMillis () ;

long runTime= endTime-startTime;

fPrinter.print (result, runTime);

pause (wait);

return result;

108

protected void pause (boolean wait) {
if (!wait) return;
fPrinter.printWaitPrompt () ;
try {

System.in.read();

}

catch (Exception e) {

}

}

public static void main(String
TestRunner aTestRunner= new Tao =8
try f

TestResult r= aTestRunner
if (!r.wasSuccessful())
System.exit (FAILURE_EXI1),
System.exit (SUCCESS_EXIT
} catch (Exception e) {
System.err.println(e.get

System.exit (EXCEPTION_EXIT

/ *x

* Starts a test run. Analyzes the —— guments
e

* and runs the given test 3 o

*/

protected TestResult & 8
String testCase= "";]

boolean wait= false;

oo 2 UHINYNTNYINT

wait= true;

o) Wiﬁﬂ mzu UN1INYIAY

else 1if (a s[i] .equals ("-v")

System.err.prlntln("JUnlt "+Version.id () +" by Kent Beck and Erich Gamma");

else
testCase= args[i];

}

if (testCase.equals(""))

throw new Exception ("Usage: TestRunner [-wait] testCaseName,

where name is the name of the TestCase class");

try {

Test suite= getTest (testCase);

109

110

return doRun (suite, wait);

}

catch (Exception e) {

throw new Exception("Could not create and run test suite: "+e);
}

}

protected void runFailed(String message) {
System.err.println (message);
System.exit (FAILURE_EXIT) ;

}

public void setPrinter (ResultPri
fPrinter= printer;

}

}
public void testFailed(:

}

alternativeClasses(:# c@ning. Table A.8 shows a target

concept and domain theories sction rule.

Table A.8: Domain tie . Classes with Different
Interfaces design flawsdt ~

Ll

A target concepts and dgipain theories:

SR VLt ()T} 0] e

R2: VxVy has ethod (x,y) A ethod(y) = class(x

QAN AN

R4: vpa Vytypevyname theSamePara (yparuxl ayparax2) A
theSameName (ynamexl ’ynamex2) A thesameType (ytypexl ’ytypexZ)
= doSame (x; ,x3)

All rules for detecting Alternative Classes with Different Interfaces flaw can be constructed

in form of MESs as:

111

o

% Rule Alternative Classes with Different Interfaces

alternativeClass (PathProject,ClassID,ClassName,MethodID, MethodName,
ClassID2,ClassID2Name, MethodID2,MethodName2) :-

projectRequired (SourceProgram, PathProject,ClassID,ClassName),
projectRequired (SourceProgram,_,ClassID2,_),

methodT (MethodID,ClassID, MethodName, ParameterIDl, ReturnTypeIDl,_,_),
methodT (MethodID2,ClassID2,MethodName2,ParameterID2,ReturnTypelID2,_,_),
classT (ClassID2,_,ClassID2Name,_),

MethodName == MethodName2,

ClassID \= ClassID2,

length (ParameterIDl, LengthIDl) = lergth (ParameterIDl,LengthID2),

LengthIDl = LengthID2,

ClassName \= ClassID2Name,
arg(l,ReturnTypelIDl, TypeMa
arg(l,ReturnTypelID2, Ty
TypeMethodl = TypeMet]

arg(l,ParameterID2, gene

projectRequired (NameProject, Ej hsjEJ; , .

projectS (ProjectID,NameProject
- =4
sourceFolderS (SourcelD, P =

fileS(FilelD, Sour s
compilationUnitT (] y

classT (ClassID,ClassTnpL
|

. ¥

A3 The Chanﬁ%é@ﬁﬂ 7] %Jw E.“ ’I ﬂ ‘i

The Change Preventers flaws are fiffws that hindeshanging or furti®sf developing the soft-
ware. T@ | Qlaﬁjﬂimeu%ﬂrgdﬁg%a sm that classes and
possible ch!nges should have a one-to-one relationship. For example, changes to the database
only affect one class, while changes to calculation formulas only affect the other class. Design
flaws in this category are Divergent Change, Shotgun Surgery and Parallel Inheritance Hierar-

chies.
A.3.1 Divergent Change

This flaw shows that a class picks up more responsibilities as it evolves, with no one notic-

ing that two different types of decisions are involved.

112

Examples for defining domain theories: An example is used to define rules for design

flaw detection as followed.

public class CsvWriter ({

public CsvWriter() {}

public void write(String[][] lines) {
for (int i = 0; 1 < lines.length; i++)

writeLine(lines[i]);

private void writelLine (Stzis
if (fields.length ==
System.out .prii’®

—

else {

writeField (f*

private void wrlteFleld(Strlr
if (field.indem@f ("

writeQuotlew

else .’ﬂ.

System.out.%lflt(-

"

! ﬂ:mﬁﬁmw N3

System
for (int 1 = 0; i < field. leng‘h); i++)
System.out.print ("\"\"");
else

System.out.print (c);

}
System.out.print ("\"’)

divergentChange(x) is a target concept that uses for learning. Table A.9 shows a target

concept and domain theories which are used to construct a detection rule.

113

Table A.9: Domain theories and a target concept of Divergent Change design flaw

A target concepts and domain theories:

R1: Vx class(x) A inUse(x) = divergentChange (x)

R2: Vc¢iVa; attribute (a;) A hasAttribute (¢;,a1) = class(c¢y)
R3: VcoVmy method(msy) A hasMethod (cy,my) A hasName (my ,mo_ume)
= class (¢3) .
R4: Vc3Vms method(msz) A h od(c3,m3) A hasName (ms ,m3_,ame)
= class (c¢3) :

R5: Ve,VmoVmsVa; invoc / invocation (ms,a;)
A (mQ—name 7é M3 _pame 7 }

All rules for detecti: ucted in form of MESs as:

o
S

% Rule Divergent Change
divergentChange (ClassID,Cla
projectRequired (Sourcel , | a®sName) ,

divergentChangeRules (Clas

divergentChangeRules (ClassID)
divergentChangeIf A
-

divergentChangeIl v

divergentChangeInArl;L@

Ll

dlvergentChangeInAttrlbuti(ClassID .

ii?ifii?&iﬁxﬁﬁlﬂ NV INYINT

methodT(Meth D2,ClassID, _,_,_,_,_
getFieldT(_ , ,MethodID1, ,

- @ﬂﬁam‘lmwmaa
Metho = th dIbD2

divergentChangeInMethod (ClassID) :—

methodT (MethodID,ClassID, _,_,_,_,_),
methodT (MethodID1,ClassID, _,_,_,_,_),
methodT (MethodID2,ClassID, _,_,_,_,_),
callT(_,_,MethodIDl,_,_,_,MethodID),
callT(_,_,MethodID2,_,_,_,MethodID),
MethodIDl \= MethodID2.

divergentChangeInAM (ClassID) :—
fieldT (FieldID,ClassID,_,_,_),

114

methodT (MethodID,ClassID, _,_,_,_,_),
methodT (MethodID1,ClassID, _,_,_,_,_),
getFieldT (_,_,MethodID,_,_,FieldID),
callT(_,_,MethodIDl,_,_,_,MethodID).

projectRequired (NameProject,Pathsource,ClassID,ClassName) :-—
projectS (ProjectID,NameProject,_,_,_),
sourceFolderS (SourcelD,ProjectID,_),
fileS(FileID, SourcelD,Pathsource),
compilationUnitT (ClassCompilationID,_,FileID,_,_),

classT (ClassID,ClassCompilationID,ClassName,_).

A.3.2 Shotgun Surgery

Shotgun Surgery fla c_change requires programmers to

change several classes. L - \ - onsibility is split among several
classes. There may be a ™ hole responsibility (and which
would get a cluster of che gh an overzealous attempts to

eliminate Divergent Change
Examples for definin is used to define rules for design

flaw detection as followed.

public class MsgLog

-

protected static y

]

public static A1 write (String s) throws IOExce#a#on {

write (defaultLogF*e

| ﬂUEJ’J‘VIEWI‘iWEJ"Iﬂ‘i

public s ic void wrlte(Strl f, String s) throws IOException {

ﬁﬁ’Tﬁﬁ?WNWﬁ [HAGE]

eFormat df = new SimpleDateFormat ("yyyy.mm.dd hh:mm:ss ");

df.setTlmeZone(tz),

String currentTime df.format (now) ;
FileWriter aWriter = new FileWriter (f, true);
aWriter.write (currentTime + " " + s + "\n");
aWriter.flush();

aWriter.close();

115

shotgunSurgery(x) is a target concept that uses for learning. Table A.10 shows a target

concept and domain theories which are used to construct a detection rule.

Table A.10: Domain theories and a target concept of Shotgun Surgery design flaw

A target concepts and domain theories:
R1: Ve; class(c;) A parallelC
R2: Vc¢iVm; method(my) A
= class (c¢y)

R3: Ve VeyVes called / ingClass (c¢y,c3)
= parallelCall(. A

R4: VeoVms method L
hasName (¢o , Co_pame
RS5: VesVms methd@~

I11(c1) = shotgunSurgery (cy)
31 C1 aml) A haSName(cl ’Cl—name)

R6: VchQVmNmz 1r ' / N N ame 7£ Cl—name)

R7: VC1VC3Vm1Vm3 1r . ; o néme 7é C3—name)

All rules for detecting Shotgrz

ol A

-

S ‘y:

% Shotgug>urs
|

shotGunSurgery (ClassID, I ssName,Pathsource) -

prOJectRequlred(Source# am, Pathsource, ssID,ClassName),

e H YN EJ NINYINT

shotGunSurgeryRulg(ClassID) -

wﬁmﬁmwwwmaa

shotG SurgermeMA(ClassID ,write (’Cast MmMA’),!;

shotGunSurgeryInline (ClassID),write(’Cast Inline’),!.

shotGunSurgeryMMM (ClassID) :—
methodT (MethodID,ClassID, _,_,_,_,_),
callT(_,_,MethodID,_,_,_,MethodCallingID),
methodT (MethodCallingID,ClassCallingID,_,_,_,_,_),
\+methodT (MethodCallingID,ClassID,_,_,_,_,_),
callT(_,_,MethodCallerID,_,_,_,MethodID),
methodT (MethodCallerID,ClassCallerID, _,_,_,_,_),
\+methodT (MethodCallerID,ClassID,_,_,_,_,_).

116

shotGunSurgeryMM2 (ClassID) :—
methodT (MethodID,ClassID, _,_,_,_,_),
callT(_,_,MethodIDl,_,_,_,MethodID),
callT(_,_,MethodID2,_,_,_,MethodID),
MethodID1l \= MethodID2,
\+methodT (MethodID1,ClassID,_,_,_,_,_),
\+getFieldT (_,_,MethodID,_,_,FieldID),
fieldT (FieldID,ClassID,_,_,_).

shotGunSurgeryMmMA (ClassID) :-—

methodT (MethodID,ClassID, _,_,_,_,_),

callT(_,_,MethodIDl,_,_,_,Metho
callT(_,_,MethodID2,_,_,_
MethodID1l \= MethodID2,
\+methodT (MethodID1,C1l
getFieldT (_,_,MethodIl
fieldT (FieldID,ClassID

shotGunSurgeryInline (Cle
methodT (MethodID,Class’
blockT (BlockID,Methe
returnT (ReturnID,Block
callT (ExpressID,Retu:
MethodID \= MethodCalli
ClassCallingID \= ClasZiD
methodT(MethodCallingID,f
getFieldT (_,_ MethodCalllngI

' g

fieldT (FieldCallinalID, Me

-
projectRequired (NameP v
projectS (ProjectID, .,‘P

sourceFolderS(Sourcv ,ProjectID,_),

fileS(FilelID, SourcelD, aﬁt ource),

Ziii:iiiiZZZELﬁEIﬂ mmwﬂﬂm
ammﬂwumwmaa

The hierarchies of structure programs probably grow in parallel. That is a class and its pair
being needed at the same time. As usual, it probably is not bad at first but after two or more pairs
get introduced. This becomes too complicated structure to change one thing. (Often both classes
embody different aspects of the same decision.) This situation introduces Parallel Inheritance

Hierarchies flaw in software system.

Examples for defining domain theories: An example is used to define rules for design

flaw detection as followed.

117

class Memento {

private String state;

public Memento (String stateToSave) { state = stateToSave; }

public String getSavedState () { return state; }

class Originator {
private String state;
/% lots of memory consumptive private data that is not necessary to define the

* state and should thus not be saved ance the small memento object. x/

public void set (String state
System.out.println ("Ori "t+state);

this.state = state;

System.out.println (" — \ "Wing from Memento: "+state);

class Caretaker {

private ArrayList

.{9 to>();
X

public void addMementa;den 1)

{ return savedStaths#.get (index); }

public Memento getMe f;o(int index)

}

p— ¢ 39 El 1 INYINT

public static 1d main(String[] ar

w’imﬂi‘mmmmaa

nator originator = new Originator();
originator.set ("Statel");
originator.set ("State2");
caretaker.addMemento (originator.saveToMemento ());
originator.set ("State3");
caretaker.addMemento (originator.saveToMemento ());

originator.set ("Stated");

originator.restoreFromMemento (caretaker.getMemento (l));

118

parallellnheritanceHierarchies(x) is a target concept that uses for learning. Table A.11

shows a target concept and domain theories which are used to construct a detection rule.

Table A.11: Domain theories and a target concept of Parallel Inheritance Hierarchies
design flaw

A target concepts and domain theories:
R1: VeiVey class (cp) A ‘
= parallellnherit: s (cy)

R2: Ve1Vey, inherit(éeritCareTaker(@) A
chaingParallel/ ‘ it(cy,c9)

R3: Ve Va; attrilas / _ - e(cy,a1) N

R4: VeoVa, att™
hasName (as ,as -
R5: \V/CH\V/CIH ; / | NMIRute (C11 ,6111) A
hasName (ay; ,a

L (c2,a2) N

hasName (a2 ,as;
R7: Ve¢1Vey; inher
= inheritOrigi ,
R8: VesVeyy inherid (Y. = (22 pume)
= 1nher1tCareTaker =7
RO: VarVe, mutate Ml cdids
R10: Va,Va,

all—name)

Parallel (¢g)

- 4> (az)
X J

¥

All rules for detectingqjﬁllel Inheritance @erarchies flaw can be constructed in form of

MES s ﬂ‘lJEJ’J‘VIEWIiWEJ’]ﬂi

parallelIH lassID,ClassName, Pathsource) :-
projectRequired (SourceProgram, Pathsource,ClassID,ClassName),

parallelIHRules (ClassID,ClassName) .

parallelIHRules (ClassHostID,ClassName) :-—
classT(ClassHostID,_,ClassName,_),
methodT (MethodHostID,ClassHostID, _,_,_,_,_),
localT (ObjCareTakerID,_,MethodHostID,_,_,InitialCareTakerID),
newClassT (InitialCareTakerID,_,MethodHostID,_,_,CareTakerID,_,_),
localT (ObjOriginatorID,_,MethodHostID,_,_,InitialOriginatorID),
newClassT (InitialOriginatorID,_,MethodHostID,_,_,OriginatorID,_,_),

classT (MementolID,_,_,_),

119

classT (OriginatorID,_,_,_),

classT (CareTakerID,_,_,_),

fieldT (_,MementoID,_, StateMementolID,_),

fieldT (StateOrgIDID,OriginatorID,_, StateOrgID,_),
StateMementoID = StateOrglID,

% originator Update State normal

callT (CallMethodOriginatorsetID,_,MethodHostID,_,_,_,MethodOriginatorSetID),
identT(_,CallMethodOriginatorsetID,_,_,ObjOriginatorID),

% and in site Set method in Ori

assignT (AssignID,_,MethodOriginatorSetgn, ,),

getFieldT (_,AssignID,MethodOri StateOrgIDID),

% caretaker.addMemento
callT (CallAddMomento, _; _addMementorID),

callT (_,CallAddMoment paveToMementorID),

newClassT (_, _,Method_Or M- - . _ >R)t

projectRequired(NameProject,f h
projects(ProjectID,NameProjeg
sourceFolderS (SourcelID, Pxg -
fileS(FilelD, Sour s
compilationUnitT ((v
classT(ClassID,Class;;np¢

15
i

A4 The Dispeﬂﬁﬁﬁm El 7] %Jw E.“ ’I ﬂ i

The common thing for the Dispenghbles categorygis that they all rqggesent something un-

o ARAAATULNIINE AR oo

flaws (dispﬂnsable classes and dispensable code) but since they violate the same principle (pro-

grammers can look at them together). If a class does not do enough works, it needs to be removed
or its responsibility needs to be increased. This is the case with the Lazy class and the Data class
flaws. Code is not used or is redundant that needs to be removed. This is the case with Duplicate

Code and Dead Code flaws.

120

A4.1 Lazy Class

The Lazy Class is a flaw that a class does not do enough operations its parents, children,
or callers seem to be doing all the associated work. There is not enough behavior which left in the

class to justify its continued existence.

Examples for defining domain theories: An example is used to define rules for design

flaw detection as followed.

public class AssertionFailedErrq

public AssertionFailedF:

super (message);

lazyClass(x) is a targe“ o I, A\ %) able A.12 shows a target concept

and domain theories which are = aCctiyl rule.

Table A.12: Domain s

A vs design flaw

i 3¢ ¥

A target concepts and dg in theories:

“direetin hﬂ“ﬁﬂ'm HNINGANT,

R2 Ve Vmy thod(ml) A h Method(cl,ml) A attrlbute(al) A

S@«wmmmmmm A

asAﬂtrlbute(cz,ag) = class (¢g)
R4: Ve VeoVaVasVmiVmy hasName (my ,mi_ame) /A hasName (my ,mo_ume) /N
hasName (a; ,a1—pame) /A hasName (a3 ,do_ngme) /\
theSame (ml—name ’mZ—name) A theSame (al—name sa2—name)
= directInheritHierarchy (¢cy,c1)

All rules for detecting Lazy Class flaw can be constructed in form of MESs as:

121

% Rules Lazy Class

lazyClass (ClassID,Name, Pathsource,ClassID) :-—
projectSource (SourceProgram, Name, Pathsource, ClassID),
extendsT (ClassID,ClassParentID),
constructorT(_,ClassID,_,_,_),
\+ fieldT(_,ClassID,_,_,_),
\+ methodT(_,ClassID, _,_,_,_,_),

write(’1 LazyClass : inherit pure’),nl;

projectWanted ('’ GanttProject’,Name,Pathsource,ClassID),

classT (ClassInnerID,ClassID,_,_),

write(’2 LazyClass : inner Clas

projectWanted ('’ GanttProiea
methodT (MethodID,ClassID, _;
callT(CalllID,_,MethodID, _
getFieldT(_,CallID,_,_,_,
fieldT (AttriID,MethodID,_, .

returnT(_,_,MethodID,Ca!

methodT (MethodInlineID,(
getFieldT (_,_,MethodIn’
fieldT (FieldInlinelID,
returnT (_,_,MethodInlir

write ('3 LazyClass

projectSource (NameProject, Name, Patk
r f}]r—
projectS (ProjectID, NamePzagh e
sourceFoldersS (So -4
fileS(FileID, Sourd ‘y_
compilationUnitT (ClaP™ oy

il
. & opilationID, Name, _)

o e UHINENTNYINS

¢ o o/

"R ANT TR R TR Yy
getting an@e ting methods. This lets clients depend on the mutability and representation of the

class. This is common for classes to begin like this: programmers realize that some data is part

classT(ClassID,Clas

of an independent object, so programmers extract it. But objects are about the commonality of

behavior. These objects are not developed enough as yet to have much behavior.

Examples for defining domain theories: An example is used to define rules for design

flaw detection as followed.

public class FilterMap implements Serializable {

122

private String filterName = null;
public String getFilterName () {
return (this.filterName);
}
public void setFilterName (String filterName) {

this.filterName = filterName;

private String servletName = null;
return (this.servletName) ;
}

public void setServletName (¢

this.servletName

dataClass(x) is a tare Sable A.13 shows a target concept

and domain theories whicii ar

Table A.13: Domain theories and : L of Data Class design flaw

!

Target concepf o ~ ‘[
R1: Vx clast€ '
R2: Vx Vy nolfdata
—not—datac ass(x)

R3: Vx —ope n(y) =
o A ﬂéj WH ﬁ‘ﬁ’
R4: Vx utator —metho (x) —accessor method(x) =

method operation (x

YRR Inend

R6: Vx Vy mutator—method(y) A —is(x,y) =

—~mutator —method (x))

R7: Vx Vy Vz has—attribute (zy) A has—method(zx) A
method—returntype (x,/VOID,NULL]) A

method—parameter (x,[{y,-}]) = mutator—method (x)
R8: Vx Vy Vz has—attribute (z,y) A has—method(z,x) A
method—returntype (x,[y,_]) A
method—parameter (x,[{ NULL,NULL}]) =

accessor —method (x)

dataclass (x)
) =

123

All rules for detecting Data Class flaw can be constructed in form of MESs as:

o

% Rules Data Class
dataClass (ClassID_DataClass,ClassName,PathProject) :—
projectRequired (SourceProgram,PathProject,ClassID_DataClass,ClassName),
methodT (_,ClassID_DataClass,_,_,_,_,_),
fieldT (_,ClassID_DataClass,_,_,_),
\+notDataClass (ClassID_DataClass),

write (’Data Class in case 1: Set-Get Method’);

dataClassl (ClassID_DataClass,Cle
projectRequired(_,PathPro ‘assName) ,
noMethodBeing (ClassID_DataCl
fieldT(_,ClassID_DataCls
\+methodT (_,ClassID_Dataly

write (’Data Class i

accessorMethod (Accessorrieth
classT(X,_,_,_),
fieldT (FieldID,ClassID.
methodT (AccessorMetha
blockT (A, AccessorMethod

returnT (ReturnID, _, Accy

getFieldT (_, ReturnID, Acce o riss r.r“ —
4 B - Egg E

N i m p v
mutatorMethod (MutatorMethodID) f-"‘::s ;-
classT(X,_,_,_),
fieldT (FieldID,Cl

methodT (MutatorMetiic S -

paramT (EachParameterfifitatorMetil

“r—r—7r

member (EachParameter, Pa ameterList),

) mrwm L)

identT (Identlu ClassID,_,EachParameter

SRR TNMINYAY

r—r—r

methodT (MethodInDataClass,NotDataClassID,_,_,_,_,_),
\+ mutatorMethod (MethodInDataClass),

\+ accessorMethod (MethodInDataClass) .

projectRequired (NameProject,Pathsource,ClassID,ClassName) :—
projectS (ProjectID,NameProject,_,_,_),
sourceFolderS (SourcelID,ProjectID,_),
fileS(FileID, SourcelID,Pathsource),
compilationUnitT (ClassCompilationID,_,FileID,_,_),

classT (ClassID,ClassCompilationID,ClassName,_) .

124
A.4.3 Duplicate Code

Duplicate Code flaws is a code where the same code structure is presented in more than one
place. This duplication can be syntactic or semantic. In the manner of duplication, methods do the
same thing with a different algorithm. Forming template methods by using substitute algorithm

are required in detecting this flaw.

Examples for defining domain theories: An example is used to define rules for design

flaw detection as followed.

String foundPerson (Stringl]
for (int i = 0; i1 < pel

if (people[i].equ

if (people[i].eqgn

if (peopleli].e

}

return "";

void printOwing ()
{

printBanner () ;

//print details
System.out.print 1%a e
System.out.printl ‘ v: 3
} il

10
"

-
ree

‘h’ y
duplicateCo, (ysEaJta’g Ill)ncepx]agses orE!::r.Ininﬂg ‘;able A.14 shows a target
concept in theori ichareuded t S cti Pl
oV aNpf bV igeh U BT

All rules for detecting Duplicate Code flaw can be constructed in form of MESs as:

% Divergent Change Rules
duplicateCode (ClassID,ClassName,Pathsource) :-
projectRequired (' CommonCLI’,Pathsource,ClassID,ClassName),

duplicateCodeRules (ClassID) .

125

duplicateCodeRules (ClassID) :—
duplicateCodeSwitch(ClassID), !
duplicateCodePrintLN(ClassID), !;
duplicateCodeForIf (ClassID), !
duplicateCodeWhileIf (ClassID), !

duplicateCodeDoIf (ClassID).

duplicateCodeSwitch(ClassID) :-—
methodT (MethodID,ClassID,_,_,_,_,_),
switchT (SwitchID,_,MethodID,_,_),

caseT (CaselID_one, SwitchID,_,_),

ExecNumberIDl is CaseID_one +1,
ExecNumberID2 is CaseID_one
execT (ExecNumberIDl, Switch
execT (ExecNumberID2, Swy

CaseID_two \= CaselD_g

duplicateCodePrintILN(Cla
methodT (MethodID,ClassT
execT (ExecIDl,_,MethodD,
callT(CallIDl,ExecIDl,Met‘:dI
getFieldT (_,CallID1, MethodID
methodT (PrintLNID, ,pri
ExecIDl \= ExecIDj-

e

execT(ExecIDZ,_,Meth;;[D,_

callT (CallID2,ExecIl=# ethodID,_,_,_,PrintLNID),

getFieldT(_,CallID2, Me‘ilo D,_,out,_

Y ANENTNYINT

dupllcateCodeForImjlassID) e

CARTANAIUNR NN Y

blockT orBodyID ForLoopID,_,_),

Table A.14: Domain theories and a target concept of Duplicate Code design flaw

Target concepts and domain theory:

R1: Ve class(c) A duplicatePrintLN (¢) = duplicateCode (¢)
R2: VevVm hasMethod (¢,m) A method(m) = class (c¢) .
R3: VcVmVsVsy hasStatementPN (s;,m) A hasStatementPN (s5,m)
= duplicatePrintLN (¢)

126

ifT(IFID_one,ForBodyID,_,_,_,_),
ifT(IFID_two,ForBodyID,_,_,_,_),

IFID_one \= IFID_two.

duplicateCodeWhileIf (ClassID) :-
methodT (MethodID,ClassID, _,_,_,_,_),
whileT (WhileLoopID,_,MethodID,_,BlockWhileID),
blockT (BlockWhileID, WhileLoopID,_,_),
ifT(IfID_one,BlockWhileID,_,_,_,_),
ifT(IfID_two,BlockWhilelID,_,_,_,_),

IfID_one \= IfID_two.

duplicateCodeDoIf (ClassID) :-—
methodT (MethodID,ClassID
doWhileT (DoWhileID,_,M

blockT (BlockDoID, DoWh,

IfID_one \= IfID_twc

compilationUnitT (ClassCOm

classT (ClassID,ClassCompi, ,ti;f

A.4.4 Dead Code ’
!FE A

In software evoluticj|jsoftwe nange)
4

-l

I new approaches are introduced

.

without adequate cleanup. gomplicated logic results in some combinations of conditions that
r-4

cannot actually hﬂ . i 0y ' thod, or class is not used
anywhere. These "'a 10N eﬁm\m‘ﬂiﬁﬂjﬂj&
, ¢ o [
QA RIATUHAITRRAGE v e o

flaw detectﬂ)n as followed.

public class DeadCode({
public void g () {
System.out.println ("Hello");
return;

System.out.println ("World!");

public int £ (int x, int y){

int z=x+y;

127

return xx*y;

deadCode(x) is a target concept that uses for learning. Table A.15 shows a target concept

and domain theories which are used to construct a detection rule.

Table A.15: Domain theories and f Dead Code design flaw

Z“Z
deadCode (a)

R2: VcVm methe [wos A = class (c)
R3: VcVa class ‘ w:) = attribute (a)
R4: VcVavm ¢ “a=d (a,c)

All rules for detectiif ited, in form of MESs as:

% Rules Dead Code

deadCode (ClassID,ClassName, P
projectRequired (' gums

deadCodeRules (Cla y

.

deadCodeRules (ClassID) .I y

deadCodeBlankImplement‘ sID),!;

ZZZZZZZZiiiZﬂtﬂEi‘Z 8 EJ NINYNT
Tl ﬁﬂﬁ‘ﬁﬂﬁm UN1INYIAY

\+getF 1dT (AnyCalliD,_,_,_,_,FieldID),!.

deadCodeRulesMethod (ClassID) :-
methodT (MethodID,ClassID, _,_,_,_,_),
\+callT (AnyClassID,_,_,_,_,_,ClassID),
\+callT(_,_,ClassID,_,_,_,AnyClassID),

\+getFieldT(_,_,ClassID,_,_,AnyFieldID), !

deadCodeBlankImplement (ClassID) :-—
methodT (MethodID,ClassID, _,_,_,_,_),
blockT(_,ClassID,_,I[1),

extendsT (ClassID,AnyClassExtendID),

128

\+classT (AnyClassExtendID,_,’Object’,_),!;
methodT (MethodID,ClassID, , _,_,_,_),
\+blockT (AnyBlockID,ClassID,_,_),

\+interfaceT (ClassID) .

projectRequired (NameProject,Pathsource,ClassID,ClassName) :-—
projectS (ProjectID,NameProject,_,_,_),
sourceFolderS (SourcelD,ProjectID,_),
fileS(FilelID, SourcelID,Pathsource),
compilationUnitT (ClassCompilationID,_,FileID,_,_),

classT (ClassID,ClassCompilationID,ClassName,_).

A.5 The Couplers Category

This group has four
sage Chains and Middle

¥y, Inappropriate Intimacy, Mes-
®¥cen around for decades is low

coupling. This group h Middle Man flaw, on the other

hand, represents a probler avoid high coupling with con-

stant delegation. Middle Ma- \simple delegation instead of really

contributing to the applicad
A.5.1 Feature Envy

Feature Envy flawg is 3 gems Lo be focused on manipulating

the data of other classe ; : 7

— .
Examples for defifihg dound W exampff (org.apache.catalina.
core. AppllcatlonFliterFactory class) is used to denne rules for design flaw detec-

tion as followed. ﬂuﬂqﬂﬂﬂsw Ej’lﬂi

public final class AppllcatlonFllterFq‘tory {

TRWIANTIITH NN INY

return false;
} else {
if (servletName.equals (
filterMap.getServletName ())) {
return true;
} else {

return false;

129

featureEnvy(x) is a target concept that uses for learning. Table A.16 shows a target concept

and domain theories which are used to construct a detection rule.

Table A.16: Domain theories and a target concept of Feature Envy design flaw

A target concepts and domain theories:

R1: Ve class(c) A manipulatingClass(c) = featureEnvy (c)
R2: VcVma method (m) A
attribute (a) A invo
R3: VmVa hasGetFi
= method (m)

lass (¢)
Parameter (m,a)

All rules for detect: 1 in form of MESs as:

3
g

o

% Rules Feature Envy
fetureEnvy (ClassID,ClassNam

projectRequired (’ Commo#L"

fetureEnvyRules (ClassID, (#¥ss f%

AT, ____.f'

fetureEnvyRules (ClassID,Class) -i"""‘
returnParameterDa -
returnDataDefineoll v

oy
returnParameterData (Clas, ;:),ClassName) :—

classT (ClassID,_, Classl?me,_) ,

Ziiii?ffiiﬁxﬁil’iﬂﬂmﬁ WBIN3

fleldT(FleldD ,_,_,FleldDataName,_ ,

callT thodID,_, odDatalD)
SRS NN Y
getFie TT _,_,MethodDataID,_,_,FleldData

fieldT (FieldDatalID,ClassDatalD,_,_,_),

ClassID \= ClassDatalD,

checkIsClass (ParameterList), !

returnDataDefineobject (ClassID,ClassName) :—
classT(ClassID,_,ClassName,_),
methodT (MethodID,ClassID, _,_,_,_,_),
localT (LocallD,_,MethodID,_,_,_),
newClassT(_,LocallD,MethodID, _,_,_,_,_),
returnT (_,_,MethodID, ExpressID),

callT(CallID,_,MethodID,_,_,_,MethodDatalID),

130

identT(_,CallID,MethodID,_,LocallID),

methodT (MethodDatalID,ClassDatalID, _,_,_,_,_),
fieldT (FieldDatalID,ClassDataID,_,_,_),
getFieldT(_,_,MethodDatalD,_,_,FieldDatalID),!.

checkIsClass (ParameterList) :-—
atom (ParameterList),

sub_atom(ParameterList, _, _, _,class).

projectRequired (NameProject,Pathsource,ClassID,ClassName) :-—

projectS (ProjectID, NameProject, _,_,._

sourceFolderS (SourcelD,ProjectI]
fileS(FileID, SourcelD, Paths
compilationUnitT (ClassComn

classT(ClassID,ClassCo

A.5.2 Inappropriate IS

Inappropriate Intima- #¥1- " \ AR ycoupled tightly to each other. It

shows that two classes pruba’ L= %a tine. One class accesses internal

(should-be-private) parts form of Inappropriate Intimacy

between a subclass and its p¢

Examples for defining dom : cxample is used to define rules for design

flaw detection as followsag.

-
class Point2d { T

B . .
/* The X and Y coorc@fates of the point-—instance varfs#les «*/

private double x;

U Ingningans
IRMANTNNAINYAY

debug = false; // turn off debugging
}

public Point2d () { // Default constructor

this (0.0, 0.0); // Invokes 2 parameter Point2D constructor

}
// Note that a this() invocation must be the BEGINNING of

// statement body of constructor

public Point2d (Point2d pt) { // Another consructor

131

x = pt.getX();
= pt.getY();

<
I

// a better method would be to replace the above code with
// this (pt.getX(), pt.getY());
// especially since the above code does not initialize the
// variable debug. This way we are reusing code that is already
// working.
}

public void dprint (String s) {

// print the debugging string only

// data member is true

if (debug)
System.out.println ("Del
}

public void setDebug
debug = b;

}

public void setX (doubl

dprint ("setX(): Changindg 1 \ bx) ;
X = px;

}

public double getX()

return x;

...... !{

} -

"

public class Point2dTest {‘

L ANEANYNINYINT

Point2d r2 = Point2d (2, 3);

B wﬁmnimwﬁﬁmaﬂ

if (rl.getX() > 5)) // Use fields and invoke a method

System.out.println (" (" + rl.getX() + "," + r2.getX()+ ") is inside the union");

inappropriatelntimacy(x) is a target concept that uses for learning. Table A.17 shows a

target concept and domain theories which are used to construct a detection rule.

132

Table A.17: Domain theories and a target concept of Inappropriate Intimacy design flaw

A target concepts and domain theories:

R1: V¢ Vey class(cy) A class(ca) A —likewise (¢1,c9)

A inappropriateCall (c;,co) = inappropriatelntimacy (c;,c2)
R2: Vc¢iVm; method(m;) A hasMethod(c¢y,m;) = class(c¢y)

R3: VeoVay attribute (as) A hasAttribute (¢y,a2) = class (¢3)
R4: Ve VeoVmiVas, getField (m) = inappropriateCall (cy,c2)

All rules for detecting ®¥0e constructed in form of MESs as:

3
S

o

% Rules Inappropriate Ir
inApprolIntimacy (Pathsource
projectRequired (Sou: F y - \ \ N e),

inappropriateInimacy (C

inappropriateInimacy (Class]
inAppropriateGen (ClassiD)

inAppropriatelInher (Class]

inAppropriateGen(ClasslID) :=
methodT (MethodID, g
fieldT (FieldID, C14%
ClassID \= ClassZID,-J

getFieldT (_,_ Class‘ "_J ,FieldID) .

Wﬁﬁiﬂﬁﬂ?%ﬂﬂﬁWﬂqﬂﬁ

methodT(Metho ,ClassID,

Zifiﬁﬁﬁﬁﬁﬂimumﬁﬂmaﬂ

projectRequlred(NamePrOJect,Pathsource,ClassID,ClassName) e
projectS (ProjectID,NameProject, _,_,_),
sourceFolderS (SourcelD,ProjectID,_),
fileS(FileID, SourcelID,Pathsource),
compilationUnitT (ClassCompilationID,_,FileID,_,_),

classT (ClassID,ClassCompilationID,ClassName,_) .

133

A.5.3 Message Chains

Message Chains flaw is a flaw that an object must cooperate with other objects to get things
done. So that is a good operation. The problem is that this couples both the objects and the path
to get to them. This sort of coupling goes against two maxims of object-oriented programming:
Tell, Don’t Ask and the Law of Demeter. Tell, Don’t Ask shows that instead of asking for objects
so that programmers can manipulate them, programmers simply tell them to do the manipulation
for him/her. It is phrased even more clearly in the Law of Demeter: A method should not talk to

strangers. It is inferred that it should ta! elf, its arguments, its own fields, or the objects

=

it creates.

Examples for defining™ —— ¢ is used to define rules for design

flaw detection as followed.

public class TestRunner ext TestRunContext {
private static final

private static final ir

protected JFrame fFréme
private Thread fRunner

private TestResult fTestE

private JComboBox fSuiteCqomie
private ProgressBlL X}

-
private DefaultLijl v

private JLabel fLogo; J;
private CounterPanel fCc J;erPanel;
private JButton fRun;

private JButton i ‘,ﬁ u f

e e ALEINUNTNYINT
private StatusLinmetatusLine;

private FailureDetailView fFailureView‘ i u
oo QY YNATEUNWRTINYIREY
private JClmeckBox fUselLoadingRunner;

private Vector fTestRunViews= new Vector();

//view associated with tab in tabbed pane

private static final String TESTCOLLECTOR_KEY= "TestCollectorClass";

private static final String FAILUREDETAILVIEW_KEY= "FailureViewClass";

public TestRunner () {
}

public static void main(String[] args) {

new TestRunner () .start (args);

134

public static void run(Class test) {
String args[]= { test.getName() };

main (args);

protected JComboBox createSuiteCombo () {
JComboBox combo= new JComboBox () ;
combo.setEditable (true);

combo.setLightWeightPopupEnabled(false) ;

combo.getEditor () . /Listener (

new KeyAdapter ()

W NTER)

try |

} catch (IOExceptic
// fails the £
}
combo.addItemListener (
new ItemListene
publ i -

18 ,"‘-"7 LECTED) {

} L AP

ﬂ‘HEll’JVIEWITW BN

return co

----ﬂﬁﬂﬁ\iﬂimﬂﬁﬂﬂmaﬂ

messageChains(x) is a target concept that uses for learning. Table A.18 shows a target

concept and domain theories which are used to construct a detection rule.

All rules for detecting Message Chains flaw can be constructed in form of MESs as:

o

135

Table A.18: Domain theories and a target concept of Message Chains design flaw

A target concepts and domain theories:

R1:

VeiVeoVes class (¢p) A class(cy) A class (c¢3)

A firstCall (c;,c2) A secondCall(cy,c3) = messageChains (cy)

R2:
R3:
R4:

Ve1Vmy method (my;) A hasMethod (c¢;,m;) = class (c¢p)
VeoVmy method (my) A hasMethod (cy,my) = class (¢3)
VesVas attribute (az) A hasAttribute (c¢3,a3)

A method (m3) A hasMethod (c3,m3) = class (c3)

R5:
=
R6:
=
R7:
=

Vc1Vea invocation (¢p,cq)
firstCall (¢ ,c2) , gy
VeoVes invocation /\‘/ise(CQ,c:;)
secondCall (¢ ,¢ é

VeoVes getFiel ™ ™15 .. c3)
secondCall (¢

Jlikewise (¢p,c2)

o

% Rules Message Chains

classMessageChain (Class? i A I B D2) :-

projectRequired (NameP§ -

projectS(ProjectI“f_

sourceFolderS (Sources® T

fileS(FileID, Sourcela#’athsource),

compllatlonUnltT(Classirm ilationID, ,F , 1)

UG INENING NS

“ﬁ“‘ﬁ"‘fmmmummmaa

M1d e Man flaw represents a problem that might be created when trying to avoid high

coupling with constant delegation. Middle Man is a class that is doing too much simple delegation

instead of really contributing to the application.

Examples for defining domain theories: An example is used to define rules for design

flaw detection as followed.

public class TestHierarchyRunView implements TestRunView {

TestSuitePanel fTreeBrowser;

TestRunContext fTestContext;

public TestHierarchyRunView (TestRunContext context) {
fTestContext= context;
fTreeBrowser= new TestSuitePanel();
fTreeBrowser.getTree () .addTreeSelectionListener (
new TreeSelectionListener () {
public void valueChanged (TreeSelectionEvent e)

testSelected();

public void addTab (JTal

Icon treelcon= Teg

pane.addTab ("Test ! f NN ser, "The test hierarchy");

public Test getSelecte:

return fTreeBror

public void activate()

testSelected();

public void revealFailurg
JTree tree= f
TestTreeModel

Vector vpath= nePTy’e

int index= model f‘ndTest(failure,

if (index >= 0) { ‘

) UYAINHNINYINT

Objec last— path[vpath. 51 ()-11;

ARTASASA NN AN 8 Y

tree setSelectionPath (selectionPath);

tree.makeVLSlble(selectlonPath);

public void aboutToStart (Test suite, TestResult result) {
fTreeBrowser.showTestTree (suite);

result.addListener (fTreeBrowser) ;

public void runFinished(Test suite, TestResult result) {

result.removelListener (fTreeBrowser) ;

(), "icons/hierarchy.gif");

(Test)model.getia®ot (),

136

137

protected void testSelected() {

fTestContext.handleTestSelected (getSelectedTest ());

middleMan(x) is a target concept that uses for learning. Table A.19 shows a target concept

and domain theories which are used to construct a detection rule.

Table A.19: Domain theori® tdle Man design flaw

A target concepts an
R1: VcVeoVes cle 2 (c3)

M. c3) = middleMan (c2)
= class (c¢y)

W = class (c¢)

23,03) AN nletllD(l(Ing)

R2: Vc1Vm; methe
R3: VeyVms method
R4: VesVas attribd
A hasMethod (¢35 ,m
R5: VcVey invocatio = ke Wse (¢1,c9)
= firstCallMM (¢, :
R6: VesVmaVmsVas 1nvoc A getField (msy,a3) A

return (my,as) = /\ CFdCallMM(cz,c3)

‘vj, ' X

11
it

All rules for detectlng Mlddle Man flaw can be constructcd in form of MESs as:

A g l‘ﬂﬂlﬂiﬂﬂjﬂj ____________

% Rules Middle Man

) ANTUANITNLAY

method (MethodID,ClassID,MethodName,_,_,_,_),
returnT (_,_,MethodID,ExpressID),
callT (ExpressID,_,MethodID,Express2ID,_,_,_),

getFieldT (Express2ID, ExpressID,MethodID,_,_,_).

projectRequired (NameProject,Pathsource,ClassID,ClassName) :—
ProjectS (ProjectID,NameProject,_,_,_),
sourceFolderS (SourcelD,ProjectID,_),
fileS(FilelID, SourcelD,Pathsource),
compilationUnitT (ClassCompilationID,_,FileID,_,_),

classT (ClassID,ClassCompilationID,ClassName,_)

138

APPENDIX B

META ELEMENT SPECIFICATIONS

In this appendix, all Meta Element Specifications (MESs) expressed for describing the meta

program in this dissertation are shown as followed. The structure and semantics of each MESs

type are described in details of their arzy

B.1 Sourcefolders

Table B.1: packageT

packageT (#id, ‘fu
arguments

#id: id
‘fullname’: atom

ge acclaration, as an atom.

Table B.2: compilationUnitT,

compilationUnitT (#id, #packz R tdef], wl)
arguments ' :
#id: id T—— ::-‘ s fact.
#package: packageT, v ' ! or ‘defaultPackage’.
Il conta ji this compilation unit or ‘dum-
. ‘ |
#ile: fileS, “dummyFile{j myFile’for Bytecode clisfes.

P o Listof I f import declarations contained in the compi-
[#import], ...]: j j 0 i thealisteprresponds to the textual
A8 ANSYI NS
QU ’ ist of IIJs of typc declarations Contained in the compila-
[#def1,]: classT ‘ion unit. The orgder in the list correﬁgpnds to the textual
AR IIRTINY R
9
Table B.3: importT

importT(#id, #parent, #import)

arguments

#id: id the unique ID assigned to this fact.

#parent: compilationUnitT ID of the compilation unit that contains this import dec-
laration.

#import: packageT, classT, methodT, fieldT ID of the import.

139

B.2 Building-Blocks Level

Table B.4: classT

classT(#id, #parent, 'name’, [#defl,...])

Description : Represents the class or interface declaration. Every interface declaration is accom-
panied by the additional fact: interfaceT(#id). Every annotation declaration is accompanied by an
interfaceT(#id) and an annotationT(#id) fact. If it is an abstract class, there will be an additional
modifierT(Class, ‘abstract’) fact.
Arguments

#id: id

#parent: execT, compilationUnitT, cla
ClassT
‘name’: atom

the unique ID assigned to this fact.
of the element that contains this class declara-

élame, without a package. In the case

Aus classes, a globally unique name:
PUS(UN), where (UN) is a unique

[#defl,]: annotationMemkh=
methodT, constructorT, cl&Tin ",

\.._ her facts representing the methods
naor classes. These fields and meth-
% bers (not necessarily public!) of

Table B.5: methodT

i
methodT(#id, #class, ‘name’, [firae 77 : xcilionl,...], #body)
Description : Represents the deciarat [¢ methods have an additional fact “mod-

ifierT(ID, ‘static’)”, where ID is the % f-:‘.,‘] gd. Note that constructors are represented
separately by constructosl facig : gated B classInitializerT facts.
Arguments - -

#id: id . Y |5 method.

#class: classT ~ (= > containing this method.
‘name’: atom , fldme of ttfffeclared method.

[#paraml, ...]: paramT the list of IDs o1 the method parameters.

TYPE: a typeterm @h# return type of the method.

[#exceptionl, . ﬂ ﬂ EJ ’J V'I Ell 7] ﬁ‘ﬂlsjd"lﬂﬁxceptlons thrown by this
#body: blockT or i’ ID of the block contalmng the method body.

Table B.6.qconstmctorT

constructorT(#id, #classT, [#paraml, ...], [#exceptionl, ...], #body)
Description : Represents the constructor declaration.

Arguments

#id: id the unique ID assigned to this fact.
#class: classT ID of the parent/declaring class.
[#paraml, ...]: paramT list of IDs of the method parameters.
[#exceptionl, ...]: classT list of IDs of the thrown exceptions.

#body: blockT, null ID of the block.

140

Table B.7: classlnitializerT

classInitializerT (#id, #classT, #body)
Description : Represents the initializer declaration.

Arguments

#id: id the unique ID assigned to this fact.
#class: classT ID of the parent/declaring class.
#body: blockT ID of the block.

Table B.8: enumConstantT

enumConstantT(#id, #pare=‘__=
Description : Represents the 1iel<

Arguments

#id: id Massigned to this fact.
e S18

#parent: enumT Wt enumT.

#encl: id sing MES.

wcld.
knts ror the enum constant.

‘name’: atom
#args expression

Table B.9: fieldT

field T(#id, #class, TY], £y nd

Description : Represen P : -
Arguments Y. E
#id: id

#class: classT
TYPE: type term

‘name’: atom
#init: expression gyl
LI |

L ATANN TN INYIAE

para

EC LD jihigned to this fact.
ID of the enclésg/declaring class.

of this variable declaration.

paramT(#id, #parent, TYPE, *name’)
Description : Represents the program element (method, catch clause, foreach loop) parametrized by
this parameter declaration.

Arguments

#id: id the unique ID assigned to this fact.
#parent: methodT , constructorT , catchT , fore- ID of the enclosing MES.

achT

TYPE: type term the type of the parameter.

‘name’: atom the name of the parameter.

141

Table B.11: typeParamT

typeParamT(#id, #parent, ‘name’, ‘kind’, [#boundl,...])

Description : Represents a type parameter of a generic class. Type parameters are referenced from
the rest of the code via type(typevar, #id, arrayDim) terms, where #id is the ID of the referenced
typeParamT element.

Arguments
#id: id the unique ID assigned to this fact.
#parent: classT the declaring generic class or interface.

‘name’: atom
‘kind’: atom
[#boundl,]: classT, typeParamT

the name of the type variable.
oer ‘or ‘extends’.

Table B.12: annotationT

annotationT(#id, #paren
Description : Represents an a-
Arguments
#id: id “ W) assigned to this fact.
#parent: id) “ {19 act that represents the parent of this
e i prolog AST. Either the ID of the an-
ment or membervaluet fact in case of a
~d annotation. e.g. Ann2 in Ann(value = 1,
Ann2(id=1)).
urted declaration, expression or

-1)

#encl: id
annotationType: classT S A [ation type.

[#keyValuel, ...]:member --i’ uer of tTimember value pairs.

- i¥

ﬂ‘LlEJ’J‘VIEWI?WEJ’mﬁ

Table B.13: memberValueT

RIANIUNAIINYINY

member\alueT(#ld, #parent, #annotationMember, #valueLiteral)
Description : Represents a member value pair in an annotationT expression. For example queries
see the annotationT description.

Arguments
#id: id the unique ID assigned to this fact.
#parent: annotationT the parent element. Either the ID of the annotated

element or memberValueT fact in case of a nested
annotation. e.g. @Ann2 in @ Ann(value = 1, annl
= @Ann2(id=1)).

#annotationMember : annotationMemberT, null the referenced annotation member.

#valueLiteral: AnnotationExpression, null

142

Table B.14: annotationMemberT

annotationMemberT(#id, #parent, TYPE, ‘name’, #default)
Description : Represents an annotation member construct.

Arguments
#id: id the unique ID assigned to this fact.
#parent: classT the parent annotation class attributed with annota-

tionTypeT.
~j type of the member.

TYPE: type term
‘name’: atom
#default: AnnotationExpression, expression is optional.

Table B.15: annotatedT _

annotated T (#annotated, #a
Description : Represents the anr #¥tice== '

Arguments Lt
#annotated: id 2 of the syntax element.
#annotation: annotation L 2

L

-

wd

il
15
i

AuEINENINEINS
RN I URIINYIAY

commenti(#id, #parent, ‘type’)
Description : Represents a comment.

Arguments
#id: id the unique ID assigned to this comment.
#parent: id the ID of the fact that represents the element this

comment is referring to. The parent element is
determined based on a set of Parent Identification
Heuristics.

#type: atom One of these atoms.

143

B.3 Interface-Level Attributes

Table B.17: interfaceT

interfaceT (#class)

Description : Represents the interface declaration.

Arguments

#class:classT ID of the fact declared to be an interface (this is
NOT a unique ID, but a reference to another fact,
like a modifierT).

Table B.18: externT

externT(#id) -

Description : It expresses th2 Sssilable as byte-code.

Arguments T,

#id: classT b ySde class. This ID is NOT the ID

il 1aCt but just a reference to the fact
W %.byte-code class.

Table B.19: enumT

enumT (#class)
Description : Expresses that the class
Arguments

#class: classT

an enum declaration (Enumeration).

=3/ declared to be an enumeration

-

R l[n ID of the enumT fact, but a
d = sST fact).

|
! ¥ ¥

Table B.20: anﬂtWﬁ NYY %" NYINS
AR AT AR

Arguments

#id: classT The ID of the class that is marked as an annotation
declaration

144

Table B.21: markerAnnotationT

markerAnnotationT (#id)

Description : An attribute for annotationT facts. Just to maintain the original syntax of annotations
without arguments. Annotation is a marker annotation if the parenthesis’s are omitted. @marker
instead of the normal annotation @marker().

Arguments
#id: annotationT ID of the corresponding annotationT

Table B.22: modifierT

modifier T(#id, ‘modifier’)

Description : -

Arguments

#id: (classT, fieldT, nr ES. Note: modifierT have no
classlInitializerT) are referenced over the ID from the

Serent

al e.oms: public, private, package,
W%, strictfp, synchronized, transient,
ilc;"bstract and final.

‘modifier’: atom

Table B.23: implementsT
implementsT(#class, # 1
Description : Represents t}} n mplenics
Arguments
#class: classT @D of the class.

#interface: class’ﬁﬂ_ﬂ%%m% & cghy@iymented by the class.
ng@ﬁniﬂium"’j N7 é“' 8

extendsT (#class, #extendedClass)
Description : Represents the immediate subtype/supertype relation. Transitive super-/subtyping is
expressed by the predicate subtype(#subClass, #superClass).

yac‘

Arguments
#class: classT ID of an object type (class or interface).
#extendedClass: classT ID of the direct supertype (superclass or super-

interface). Note: Interfaces that have no explicit
super-interface in the source code have the class
java.lang.Object as direct supertype.

145

Table B.25: assertT

assertT(#id, #parent, #enclMethod, #condition, #msg)
Description : Represents the assert statement.

Arguments
#id: id the unique ID assigned to this fact.
#parent: id ID of the father node in the AST, typically a block.

#enclMethod: methodT, constructorT, classIni- ID of the enclosing method declaration.
tializerT
#condition: expression lean expression’s ID.

#msg: expression, null e expression that is to be given to asser-

Table B.26: assignT

assignT (#id, #parent, Fend ,#
Description : Represents the :

Arguments - \

#id: id [Y ; iqUI D assigned to this fact.

#parent: id } = _ D) of the parent node.

#encl: methodT, constructorT, cleii= % g . the fact that represents the enclosing el-
fieldT o

#lhs: getFieldT, ident T s s —— : de of this assignment expres-
#exprt: expression 1 T nd side expression

AUEINENINYINS
e MARIA T UM TN

blockT (#id, #parent, #enclMethod, [#statementl,...])
Description : Represents the block statement.

Arguments

#id: id the unique ID assigned to this fact.

#parent: id ID of the parent node.

#enclMethod: methodT, constructorT, classlni- the ID of the fact that represents the enclosing el-
tializerT ement.

[#statementl, ...]: statement List of the statements in this block.

146

Table B.28: callT

callT(#id, #parent, #encl, #expr, ‘name’, [#argl, ...], #method)
Description : Represents a method invocation.

Arguments

#id: id the unique ID assigned to this fact.

#parent: id the ID of the fact that represents the parent of this
fact in the prolog AST.

#encl: methodT, constructorT, classlnitializerT, the ID of the fact that represents the enclosing el-

fieldT ement.

the ID of the fact representing the receiver expres-
ign on which the method is invoked. If the re-

_ is this the value of #expr is null. In case of
- / zhod call #expr is a typeRefT.

‘name’: atom Ai.e. not fully qualified) name of the
- — set into simple quotes.
other facts representing the argu-
ethod invocation.
T or constructorT fact that repre-
Jiation of the invoked method in the
W cceiver expression. Because of
no the method actually invoked at
% another one.

#expr:expression

[#argl, ...]: expression

#method: methodT, constx

Table B.29: caseT

caseT (#id, #parent, #encl, #label) 7

Description : Represents the case & ‘ ¥ L statement.

Arguments ! i 8

#id: — =~ cd to this fact.

#parent: V;‘ A ement being used for the node.
; CiderT ly is the parent within the AST).

#encl: methodT, construct=#, classInitializer1 1D of the encladdg element.

#label: expression, null ¢~ ID of the reference to a label. For the default case

AU INGNTNEAS
AN I URIINYIAY

conditionng (#id, #parent, #encl, #condition, #thenPart, #elsePart)
Description : Represents the conditional expression: (condition) ? then : else.

Arguments

#id: id the unique ID assigned to this fact.

#parent: id ID of the parent node.

#encl: methodT, constructorT, classlnitializerT, ID of the fact that represents the enclosing ele-

fieldT , classT, annotationMemberT ment.

#condition: expression ID of the expression in this conditional expres-
sion.

#thenPart: expression ID of the “then”part of this conditional expression.

#elsePart: expression ID of the “else "part of this conditional expres-

sion.

147

Table B.31: doWhileT

doWhileT(#id, #parent, #enclMethod, #condition, #body)
Description : Represents the do statement.

Arguments

#id: id the unique ID assigned to this fact.
#parent: id ID of the parent node.

#encl: methodT, constructorT, classInitializerT ID of the enclosing element.

#condition: expression ID of the expression of the loop condition of this
ngstatement.

#body statement e body of this do statement.

Table B.32: execT

execT(#id, #parent, #encl, #,
Description : Represents t! y % WO Converts an expression to a

statement.

Arguments \

#id: id ni¢ WID assigned to this fact.

#parent: id [fits , ‘heTFarent node.

#encl: methodT, constructorT, classInit - _ the enclosing element.

#expr: expression, classT fj.:": A e expression to be executed. In the case of

Y J pf that class.
Y

!

e o] HEANENTNEINS

the unique ID assigned to this fact.

#parent: id ID of the parent node.

#encl: methodT, constructorT, classInitializerT ID of the enclosing element.

[#initl, ...]: expression, localT list of IDs of the initializer expressions in this for
statement.

#condition: expression, null ID of the expression in this for statement.

[#stepl, ...]: expression list of IDs of the update expressions in this for
statement.

#body: statement ID of the body of this for statement.

Table B.34: foreachT

148

foreachT(#id, #parent, #encl, #param, #expression, #body)

Description : Represents the for each statement.

Arguments

#id: id

#parent: id

#encl: methodT, constructorT, classInitializerT
#param, paramT

#expression expression

#body: statement

Table B.35: getFieldT

getField T (#id, #parent, #
Description : Represents a 11el
Arguments
#id: id

#parent: id
#encl: methodT, constru
fieldT, annotationMemberT
#receiver: expression, typeR

‘name’: atom
#field: fieldT, null

Table B.36: identT

ﬂu}ﬂ‘i’lﬂﬂﬁﬂﬂ'fi

the unique ID assigned to this fact.

ID of the parent node.

ID of the enclosing element.

ID of the local parameter of this for statement.

ID of the expression (of type list or array) in this

gl wiite access).

his field access.

\ - node.

Nt hat represents the enclosing ele-
\

xpr2ssion on which the field is accessed

the implicit field access. In case of an

to a static field #expr is a typeRefT.

of the accessed field.

essed.field. null is only valid in case
L4 DT array types.

Ir‘

identT(#id, #parefj§, #encl, ‘name’, #symbol)

Description : Represents an access to (1) aflmple name (lgggl variable or parafigéter) or (2) this or

(3) sup
Argume
#id: id il
#parent: id
#encl:
fieldT

‘name’: atom
#symbol: 'null’, localT, paramT, classT

methodT, constructorT, classInitializerT,

(=

[""laﬂl

the unlque ID assigned to this fact.

ID of the parent node.

ID of the fact that represents the method, construc-
tor, class initializer or field definition that contains
this (pseudo-)variable access.

this, super, null or any other legal identifier name
‘null’or ID of the referenced local variable, pa-
rameter or class. The access to ‘super’references
as symbol the ID of the superclass, the access
to ‘this’references the ID of the class of which
‘this’is an instance. The access to the ‘null’literal
references the symbol ‘null’.

149

Table B.37: indexedT

indexed T (#id, #parent, #encl, #index, #indexed)
Description : represents the array access expression.

Arguments

#id: id the unique id assigned to this fact.

#parent: id ID of the parent node.

#encl: methodT, constructorT, classlnitializerT, ID of the fact that represents the enclosing ele-
fieldT ment.

#index: expression N, of the index expression of this array access ex-

#indexed: expression ay expression of this array access ex-

Table B.38: labelT

labelT (#id, #parent, #enci, #!
Description : Represents the |

Arguments - \

#id: id [Y ; iqUI D assigned to this fact.
#parent: id] —

#encl: methodT, constructorT, cleii= % g . enclosing element declaration.
fieldT "'

#body: statement — =ls labeled statement.

‘name’: atom

AUEINENINYINS
AN IUURIINYIAY

literalT(#ﬁl, #parent, #encl, TYPE, ‘value’)
Description : Represents the literal node (boolean literal, character literal, number literal, string
literal, type literal)

Arguments

#id: id the unique ID assigned to this fact.

#parent: id ID of the parent node.

#encl: methodT, constructorT, classlnitializerT, ID of the fact that represents the enclosing ele-
fieldT, classT, annotationMemberT ment.

TYPE: typeterm type of the literal.

‘value’: atom the value of this literal.

Table B.40: localT

150

local T(#id, #parent, #encl, TYPE, ‘name’, #init)

Description : Represents local variable declaration.

Arguments
#id: id
#parent: id
#encl: methodT, constructorT, classInitializerT
TYPE: typeterm
‘name’: atom

#init: expression, null

Table B.41: newArrayT

Description : Represents ;

Arguments

#id: id

#parent: id

#encl:methodT, constructe
fieldT, classT, annotationMemk
[#diml, ...]: expression i
[#eleml, ldots]: expression, a
sionType i

TYPE: typeterm

Table B.42: newClassT §|

the unique ID assigned to this fact.

ID of the parent node.

ID of the enclosing element.

type of the variable.

variable name.

D of the initializer of this variable declaration.

igned to this fact.
t node.
that represents the enclosing ele-

on expressions.
1 elements of this array.

of this array.

[1
newClassT (#id, e
Description : Reﬂz (s
Arguments
#id: id

Def, #encltype)

the unigye 1D assigned to @iy fact.

o) ﬁ?ﬁﬂrﬂﬁ%ﬂ VT T E DB oo e

#constructor constructorT, null

[#argl, ...]: expression

#ref: classT
#anonClDef: classT, null

#encltype: classT, newClassT, null

ment.
ID of the constructor invoked by this expression.
If the referenced constructor is a anonymous class
constructor #constructor is ‘null’.

list of argument expressions in this class instance
creation expression.

The class instantiated by this constructor call.

the anonymous class declaration introduced by
this class instance creation expression, if it has
one.

ID of the inner or member class constructor or ID
of the anonymous class.

151

Table B.43: nopT

nopT(#id, #parent, #encl)
Description : Represents the no operation node, signifying a lone semicolon.

Arguments

#id: id the unique ID assigned to this fact.
#parent: id ID of the parent node.

#encl: methodT, constructorT, classInitializerT ID of the enclosing element.

Table B.44: operationT

operationT (#id, #parent, #ex

Description : Represents the in‘_ ad prefix expression.

Arguments O —

#id: id ‘ ‘ o Wssigned to this fact.

#parent: id t node.

#encl:methodT, construc Wt represents the enclosing ele-

fieldT, classT

[#argl, ...]: expression
operatorName: atom
pos: number

f used in a memberValueT).

s of this expression.

us expression (!,+,-,/,%,2, ...).
jon: 1, infix expression: 0, prefix

Table B.45: precedenceT

(7 Y]

precedenceT(#id, #pa

Description : Represents aj , Xpress: sou code.

Arguments ’

#id: id umque ID given to this node.

#parent: id he AST.

#encl: method'fﬂ; ucgl' ,a ﬂl Elz% %];?I ﬂi@ sents the enclosing ele-
fieldT

#expr: expresswn ID of t&expresswn w1th1ve parenthesis.

ﬂmaﬂﬂimumwmaa

Table B.46. returnT

returnT(#id, #parent, #encl, #expr)
Description : Represents the return statement.

Arguments

#id: id the unique ID assigned to this fact.

#parent: id ID of the parent node.

#encl: methodT, constructorT, classInitializerT ID of the enclosing method declaration.

#expr: expression, null ID of the expression of this return statement, or

null if there is none.

152

Table B.47: selectT

selectT (#id, #parent, #encl, ‘name’, ENCLOSING TYPE, #selectedType)
Description : Represents the access to enclosing instances in inner and anonymous classes.

Arguments

#id: id the unique ID assigned to this fact.

#parent: id ID of the parent node.

#encl: methodT, constructorT, classlnitializerT, ID of the method declaration that contains this
fieldT, annotationMemberT, annotationT statement or of the field declaration whose initial-

izer contains this statement.
‘name’: atom this or super or class.

selected: typeterm ﬁing type.

Table B.48: switchT

switchT(#id, #parent, #enc'
Description : Represents th

Arguments 1
#id: id : W assigned to this fact.
#parent: id ' th&#rent node.

&

the enclosing method declaration.
e selection expression (the variable used

#encl: methodT, constructorT, classl
#expr: expression

#=4 in the switch. Cases (caseT)
l--." " f statement here, much like

S ot 4 statement is a case statement
LIC label | 1.

[#statementl, ...]: statg=

!

AU INENTNEINS
e HARIN TUNMINYAE

synchronizedT (#id, #parent, #encl, #lock, #body)
Description : Represents the synchronized statement.

Arguments

#id: id the unique ID assigned to this fact.

#parent: id ID of the parent node.

#encl: methodT, constructorT, classInitializerT ID of the enclosing method declaration.

#lock: expression ID of the expression of this synchronized state-

ment.
#body: blockT ID of the body of this synchronized statement.

153

Table B.50: throwT

throwT (#id, #parent, #encl, #expr)
Description : Represents the throw statement.

Arguments

#id: id the unique ID assigned to this fact.
#parent: id ID of the parent node.

#encl: methodT, constructorT, classInitializerT ID of the enclosing element.
#expr: expression D of the exception.

Table B.51: tryT

tryT(#id, #parent, #encl, #be |
Description : Represents th,

Arguments
#id: id . assigned to this fact.
#parent: id 2 L = R arent node.

#encl: methodT, constructorT, cl#sln ,@ 1closing method declaration.

#body: blockT } : "~ the body, guarded by the try-catch statement.
[#catcherl, ...]: catchT f;’:': he = exception catchers.

#finalizer: blockT,null o itaining the statements of the

-
-
L}

1

! i¥

AUEINENINYINS
PRI IUNAINA Y

typeCastT(#id, #parent, #encl, TYPE, #expr)
Description : Represents the cast expression.

Arguments

#id: id the unique ID assigned to this fact.

#parent: id ID of the parent node.

#encl: methodT, constructorT, classlnitializerT, ID of the fact that represents the enclosing ele-
fieldT, annotationMemberT ment.

TYPE: typeterm the target type

#expr: expression ID of the expression of this cast expression.

154

Table B.53: typeTestT

typeTestT(#id, #parent, #encl, #condition, #expression)
Description : Represents the instance of expression.

Arguments

#id: id the unique ID assigned to this fact.

#parent: id ID of the parent node.

#encl: methodT, constructorT, classInitializerT ID of the fact that represents the enclosing
method.

#condition: typeTerm right operand of this instanceof expression

#expression: expression left operand of this instanceof expression

Table B.54: typeRefT

typeRefT(#id, #parent, #enc'
Description : Represents o
Arguments

#id: id

#parent: callT, getFieldT

™5 or static field access.

- gned to this fact.

W%, method call or field access per-
e.

#encl: methodT, constructo Mpsing declaration.

fieldT, classT, annotationM 4

#type: classT ’ 4 oh .:7 ‘ £ . which the static field access or

Table B.55: whileT

-

iy
whileT (#id, #parent, #el = ¢

—
Description : Represents t §ifvhile stciS
Arguments

#id: id @h# unique ID assigned to this fact.

#parent: id

e AU El?ﬂ ST

#condition: expresﬂ)nType ID of the expression of this while statement.

#body statementType ID of rhbody of this Whllﬁatement

155

B.4 Body Level Attributes

Table B.56: omitArrayDeclarationT

omitArrayDeclarationT (#id)

Description :This fact is only used for preserving the original appearance of the source code after
transformations. It declares that an array initialization (represented by a newarrayt fact) omits the
explicit array instantiation in the original source code.

Arguments

#id: newArrayT ID of the newArrayT element.

Table B.57: inlineDeclaration

inlineDeclarationT (#firstF?
Description : This fact is o7
transformations. It declares th-
Arguments
#firstField: fieldT, localT . . W%, variable.

[#otherFieldl, ...]: fieldT.’ “wther variables. These facts are
nitlinedT fact.

arance of the source code after
w2 single declaration.

Table B.58: inlinedT

inlinedT(#id, #reference)

Description : This fact / g peagmce of the source code after
transformations. It dechfw——————————— = =41 inline declaration.
Arguments wd A

#id: fieldT, local T — it

reterence to (4Ll first variable in the inline decla-
ratlon

ﬂ‘lJEJ’J‘i’IEWIﬁWElI’]ﬂ‘i

Table B.59: VarlaﬂeArgumentT

#reference: fieldT, localT . J

S

variableAggumentT (#id)

Description : This fact marks a parameter in a method as a variable argument. The type of this
parameter is always an array.

#id: paramT ID of the parameter.

156

Biography

Name : Sakorn Mekruksavanich
Sex : Male

Date of Birth : April 14,1977
Place of Birth : Lampang

AULINENTNEINS
ARIAATAUNNINGIAY

	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	Chapter I Introduction
	1.1 Motivation
	1.2 Objectives of Study
	1.3 Scopes of Study
	1.4 Contributions
	1.5 Research Methodology
	1.6 Organization

	Chapter II Object Oriented Design Flaws and Its Detection
	2.1 Object-Oriented Paradigm and Design Flaws
	2.2 Declarative Paradigm in Meta-Programming
	2.3 Machine Learning
	2.4 Related Works

	Chapter III The Proposed Flaw Detection Methodology
	3.1 An Overview of Detection Architecture
	3.2 The Proposed Detection Methodology
	3.3 Detection Methodology in Details

	Chapter IV Evaluation and Discussion
	4.1 The validation of the proposed methodology
	4.2 Case Studies
	4.3 Result discussion

	Chapter V Conclusion
	5.1 Conclusion of dissertation
	5.2 Future research directions

	References
	Appendix
	Vita

