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CHAPTER I
INTRODUCTION

Most first courses in number theory prove a theorem of Fermat which states

that for an odd prime p,
p=a+y* z,y €Z < p=1mod 4. (1.1)
Fermat also states that if p is an odd prime

p=2>+2% 2,y €Z<=p=1,3mod38 (1.2)

p=a>+3y 2,y €Z < p=3orp=1mod 3. (1.3)

B. Fine [8] gave a new proof of (1.1) by using the structure of the modular group
which is group theoretically a free product. Later G. Kern-Isberner and G. Rosen-
berger [10] extended Fine’s method to solve (1.2) and (1.3) by using the Hecke
groups. To this direction, many mathematicians can deal with primes of the form
2?2 + dy? for a positive integer d. Also, G. Kern-Isberner and G. Rosenberger [10]
extended these results for d = 5,6,7,8,9,10,12, 13, 16, 18, 22, 25, 28, 37, 58 and as
is well known, Cox [6] answered this problem completely by using class field theory.

It is significantly more difficult to study primes of the form z? + y? where z,y
are algebraic integers in a number field than that over Z. I. Niven [17] determined
which algebraic integers can be written as the sum of two integral squares in Q(7).
M. Elia and C. Monico [7] described completely which prime integers in Q(v/2)
can be represented as the sum of two squares. T. Nagell [14], [15] further studied
the question for the twenty two quadratic fields Q(y/m) where

m = 42,43, 45, 47, +11, £13, £19, £37, £43, £67, +163.

Q. Hourong [9] also studied the problem when an element in a quadratic field,
not necessary an algebraic integer can be represented as the sum of two squares

of elements in the field.



Let m and d be rational integers such that m is squarefree and d is positive.
The first objective of this thesis is determining all algebraic prime integers that
can be represented in the form z? + dy? where x and y are algebraic integers in a
quadratic field Q(y/m). The second objective of this thesis is studying the number
of representations of algebraic integers of the form x? 4 dy? where x and y are
algebraic integers in number fields.

In Chapter II, we begin by collecting those definitions and results about the
ring of integers, ideal class groups, unit groups, and the Hilbert class field, mainly
without proofs, to be used throughout the entire thesis. We describe the imag-
inary quadratic fields with class number 1,2 and 4 and describe the imaginary
biquadratic fields with class number 1 and 2.

In Chapter III, we give some conditions on n and d in order that the class
number of Q(y/m) and Q(y/m, v/—d) are 1 and we can determine the primes that
can be written in the form z?+dy* where x and y are algebraic integers in Q(y/m).
Moreover, we use Hilbert class field to determine which primes can be written in
the form 2% + dy? where x and y are algebraic integers in Q(y/m) for some m and
d.

In Chapter IV, we study the numbers of representations of integers of the form

2?2 + dy? where x and y are algebraic integers in number fields.



CHAPTER I1
PRELIMINARIES

In this chapter, we give notations, definitions and theorems used throughout the
thesis. Details and proofs can be found in [12], [13] and [19] unless otherwise

stated.

2.1 The Ring of Integers

Definition 2.1.1. A number field is a finite extension of Q (in C).

Definition 2.1.2. Let K be a number field. An o € K is an algebraic integer if

and only if there exist n € N and ag, aq,...,a, 1 € Z such that
A+ a, 1™+ aja+ag=0.
Remark 2.1.3. An a € Q is an algebraic integer if and only if a € Z.

Definition 2.1.4. All algebraic integers in a number field K form a ring, called
the ring of integers in K and denoted by Ok.

Definition 2.1.5. An embedding of L over K in C is a one to one homomorphism
o : L — C fixing K pointwise. An embedding of L in C is an embedding of L over
Qin C.

Let K and L be number fields with K C L and [L : K| = n. Then there exist

n embeddings of L over K in C denoted by o1 = idy, 09, ..., 0,.
Definition 2.1.6. For o € L, define the relative trace of o by

Trr i (@) = 01 () + 02 () + ... + 0, (@)
and the relative norm of a by

Ni/k (o) = o1 (a) o2 (@) ... 0y (@) .



If K = Q, then denote Try g by Try and Nz, by Nz and call the absolute

trace and absolute norm, respectively.

Definition 2.1.7. Let oy, ao,...,a, € L. The discriminant of oy, o, ..., a, in

L over K denoted by discr/x (o1, s, ..., ay) := det]o; (o).

Theorem 2.1.8. Let K be a number field of degree n over Q. Then Ok is a free
abelian group (or Z-module) of rank n, i.e., it is isomorphic to the direct sum of

n subgroups each of which is isomorphic to 7.
Definition 2.1.9. A Z-basis {«y,...,a,} of Ok is called an integral basis of K.
Note. An integral basis of K is also a basis of K over Q.

Proposition 2.1.10. Let {ay, ..., o} and {p,..., B} be any integral bases of
K. Then discg(ay, ..., ap) = disck (B - -, Bn)-

Definition 2.1.11. The discriminant of the field K = disck(aq, ..., a,) where

{ai,...,a,} is an integral basis of K over Q, we denote it by disc(K) or dx.

2.2 Factorization of Elements in the Ring of Integers

Definition 2.2.1. Let D be an integral domain.

(1) uw € D is a unit if and only if u | 1.

(2) x,y € D are associates or y is an associate of z, in notation = ~ y, if and
only if there exists a unit v € D such that x = yu.

(3) A nonzero nonunit x € D is prime if and only if for all m,n € D, if z | mn

then z | m or z | n.
Note. If z is prime, then y is prime for every associate y of x.

Proposition 2.2.2. Let D be an integral domain and x,y € D ~. {0}. Then
(i) x and y are associates if and only if (x) = (y).

(i) x is prime if and only if (x) is a prime ideal.



2.3 Decomposition of Ideals

This section will be used for theorems about quadratic and biquadratic fields in

the next chapter.

Theorem 2.3.1. FEvery nonzero proper ideal in Ok can be written uniquely as a

product of prime ideals.

Definition 2.3.2. The norm of a nonzero ideal A in O, denoted by N(A), is
defined to be | Ok /A |.

Theorem 2.3.3. For any a # 0 in Ok, N({a)) = [Ng(a)].

Remark 2.3.4. If P is a nonzero ideal such that N(P) = p a prime number, then

P is a prime ideal in Ok.

Let L O K be a finite extension of number fields. Let P be a nonzero prime
ideal in Og. Then POy is a nonzero ideal in Or. We will consider the prime
factorization of POy in Op. From now on, the term prime ideal means nonzero

prime ideal.

Theorem 2.3.5. Let P be a prime ideal in Ok and p be a prime ideal in O.
Then the following are equivalent.

(i) p|POL.

(ii) p O POy.

(iii) p O P.

(iv) pN O = P.

(v)pN K = P.

Definition 2.3.6. For P and p satisfying any of the above theorem, we say that

p lies over P or P lies under p.

g
Definition 2.3.7. Let PO, = pr’ be the prime factorization in Oy where P
i=1
is a prime ideal in Ok.
(1) g is called the decomposition number of P in L.

(2) For each i, ¢; is called the ramification index of p; over P in L over K,



denoted by e(p;/P).
P is ramified in Op, (in L) if there exists ¢ such that e; > 1.

Pisinertin Lif g=1 and e; =1, i.e., POy is a prime ideal.

The field Ok /P is embedded in the field O /p so it can be considered as a
subfield of O /P.

Definition 2.3.8. The degree of Op/p; over Ok /P is called the residue class
degree or inertial degree of p; over P, denoted by f(p;/P).

Remark 2.3.9. N(p;) =N(P)/ where f = f(p;/P).

Theorem 2.3.10. Let L O K be a number field extension of degree n and let

P1, ..., Py be primes in O lying above a prime P of Ok with ramification indices
g

ei,...,eq and residue class degrees fi,..., f,. Thenn = E e fi-

i=1
Definition 2.3.11. Let L O K be a number field extension of degree n and P
be a prime ideal in Ok such that POy, = p'p52. .. py° where p; are distinct prime
ideals of Oy.
(1) P is totally ramified in L if g =1 and ey = n, so f; = 1 and POy, = p7.
(2) P splits completely in L if g = n, soe; = 1, f = 1 for all i and PO, =
pip2.. . Pn.

Theorem 2.3.12. Let L O K be a Galois extension number field of degree n and
p;,p; be primes in Of, lying above a prime P of Ok. Then e(p;/P) = e(p;/P) and
f(pi/P) = f(p;/P), i.e., PO = (p1...p,)¢, hence n = efg where e = e(p;/P)
and f = f(pi/P).

2.4 Quadratic and Biquadratic Fields

We collect necessary results of quadratic and biquadratic fields here. These prop-

erties will be used in Chapter III.
Definition 2.4.1. A quadratic field is a number field of degree 2 over Q.

Note. A quadratic field is of the form Q(y/m) where m is a squarefree integer.



Theorem 2.4.2. Let K = Q(y/m) where m is a squarefree integer.
(i) If m = 1 mod 4, then {1, 1+\/E} is an integral basis of K, i.e.,

2
1
Ok =787 +2\/m.

(i1) If m = 2 or 3 mod 4, then {1,v/m} is an integral basis of K, i.e.,
Ok =ZD7Z-\/m.

Next, the decomposition of principal ideals generated by 2 in quadratic fields

can be determined in the following theorem [12].

Theorem 2.4.3. Let K = Q(y/m) where n is a squarefree integer.
(i) If m = 2,3 mod 4, then 20k = p* for some prime ideal p of Ok.
(i1) If m = 1 mod 8, then 20k = pp’, where p # p’ are prime in Ok.
(i5i) If m = 5 mod 8, then 20 is prime in Ok.

Definition 2.4.4. Let p be an odd prime, and let a be an integer such that
(a,p) = 1. The Legendre symbol (a/p) is defined by

(a) 1 if a is a quadratic residue modulo p
p —1 if a is a quadratic nonresidue modulo p.

Theorem 2.4.5. Let K = Q(y/m) where m is a squarefree integer, and let p be
an odd prime.

(i) If p | m, then pOg = p? for some prime ideal p of Ok.

(i) If pt m and (m/p) = 1, then pOy = pp’, where p #p' are prime in O.

(#i) If p+ m and (m/p) = —1, then pOg is prime in Ok.

Definition 2.4.6. A biquadratic field is an extension of degree four over Q of the
form Q(y/m, \/n) where m,n are distinct squarefree integers. A biquadratic field
Q(y/m, v/n) is called real if both m and n are positive and is called imaginary if

m or n are negative.

Theorem 2.4.7. Let L. = Q(y/m,+/n) where m and n are distinct squarefree

mn

integers and k = "z where d = (m,n).



(i) If m = 3,n = k = 2mod 4, then {1,\/%, v, @} is an integral basis of

L, i.e.,
v+ Vk
—

(i) If m = 1,n = k = 2 or 3mod 4, then {1, 1+ﬁ,ﬁ,@} is an integral

OL=2Z®Z - VmPZ -\/nDZ-

basis of L, i.e.,

OL=72Z&Z-

1
%W@Z.\/E@Z.M‘

i) Ifm =n =k = 1mod4, then {1,1ym 15V (Iivim) (14vE) L G0 g
(iii) 2 02 2 2

integral basis of L, i.e.,

OL=Z@Z-1+W@Z-#%@Z-(1+2\/E> (1“/%).

2 2

The study of the decomposition of principal ideals generated by an odd prime

in biquadratic fields can be found in [5].

Theorem 2.4.8. Let L = Q(y/m,/n) where m and n are distinct squarefree

mn
d2

integers and k = where d = (m,n), and let p be an odd prime.

(i) Ifp | m,p | n,ptk and (k/p) = 1, then pOr = pp2 where p; and py are
distinct primes in O,.

(i) If p | m,p | n,ptk and (k/p) = —1, then pOr, = p? where p; is prime in Of.
(#i) If p t mnk, (m/p) =1 and (n/p) = 1, then pOr = p1papsps where py, Pa, P3
and py are distinct primes in Op.

(v) If p  mnk, (m/p) = —1 and (n/p) = —1, then pOr = p1ps where p; and py

are distinct primes in Op,.

2.5 Ideal Class Groups and Unit Groups

Definition 2.5.1. Let D be an integral domain with the field of quotients K.
Let J be a D—submodule of K. J is a fractional ideal if there exists d € D~ {0}
such that dJ C D.

Let Jx be the set of all nonzero fractional ideals of K. Then Jg is a group

under multiplication of ideals. The most important subgroup of Jx is the subgroup



LVx of principal fractional ideals, i.e., those of the form aOgk for some nonzero
a € K. The quotient Jx /By is the ideal class group and is denoted by C(Ok).
The basic fact is that C'(Of) is a finite abelian group and the order of C(Ok) is
called the class number of K, denoted by hg.

The following theorem can be found in [1] and [19].

Theorem 2.5.2. Let K = Q(y/m) be an imaginary quadratic field where m is
negative squarefree integer. Then

(i) only for —m =1,2,3,7,11,19,43,67 and 163, we have hyx = 1.

(ii) only for —m = 5,6,10,13,15,22,35,37,51, 58,91, 115, 123, 187, 235, 267, 403
and 427, we have hyx = 2.

(iii) only for —m = 14,17,21,30,33, 34, 39,42, 46, 55,57, 70,73, 78,82, 85,93, 97,
102, 130,133,142, 155, 177,190,193, 195, 203, 219, 253, 259, 291, 323, 355, 435, 483,
555, 595, 627, 667, 715, 723, 763,795, 955, 1003, 1027, 1227, 1243, 1387, 1411, 1435,
1507 and 1555, we have hx = 4.

This theorem says that there are 9 imaginary quadratic fields of class number 1,
exactly 18 imaginary quadratic fields of class number 2 and exactly 54 imaginary
quadratic fields of class number 4.

The set of all units in O is denoted by Oj. It is a group under multiplication.

Theorem 2.5.3. Let K = Q(\/m,/n) be a biquadratic field and let ky, ko and
ks be the quadratic subfields of K. Let I' be a subgroup of OF generated by units
which are also in Oy, fori1=1,2,3. Then

%Qhklh;@hkg if K is real
hg =

%QhklthhkS if K is complex.
where Q) = [Of : I'] denotes the index of I' in Of.

We use Theorem 2.5.2 and Theorem 2.5.3 to determine all imaginary bi-

quadratic fields of class number 1 and 2 and the proofs can be found in [2] and

3].
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Theorem 2.5.4. (i) There are 47 imaginary biquadratic fields of class number 1.
(ii) There are 160 imaginary biquadratic fields of class number 2.

The examples of imaginary quadratic fields of class number 1 which we use in

this thesis are Q(v/=2,v/=7), Q(v/29, vV—=2), Q(v/2, v/—11) and Q(v/5, v/—2) and

the example of imaginary quadratic fields of class number 2 which we use in this

thesis is Q(v/17,v/—1).

Theorem 2.5.5. Let K = Q(v/—m) where m is a positive squarefree integer.
(i) If m =1, then O = {£1, £i}.
(ii) If m =3, then O = {1, Y5 /=5y

(i1i) If m # 1,3, then O = {£1}.

Theorem 2.5.6 (Dirichlet’s Unit Theorem). Let K be a number field of degree
n = r + 2s over Q where r 1s the number of real embeddings of K and s is the
number of nonconjugate complex embeddings of K. Then Of = Wy x V where

W is the cyclic group of even order of all roots of unity in K and V' is a free

abelian group of rank t = r + s — 1, i.e., there are units uy,...,u; such that for
allu € OF, u can be written uniquely in the form v = wui', ... u* where a; € Z
and w € Wg.

Let K = Q(y/m) be a real quadratic field where m is a positive squarefree
integer. Then K has two real embeddings, sor = 2and s =0,and t = r+s—1 = 1.
Since K C R, the only root of unity are £1, i.e., Wx = (—1). Hence Oy = Wi xV
where V' is a free abelian group of rank 1. It can be shown that there is a positive
element u; € OF such that for each u € Oy, u = +uf where k € Z. The element

uy is called the fundamental unit in K.

2.6 The Hilbert Class Field

In this section definitions, theorems and their proofs are found in [6].
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Definition 2.6.1. An extension K C L is abelian if it is Galois and Gal(L/K) is

an abelian group.

Definition 2.6.2. A real infinite prime is an embedding o : K — R and a complex
infinite prime is a pair of complex conjugate embeddings 0,6 : K — C,0 # 7.
Prime ideals of Ok are often called finite primes to distinguish them from the

infinite primes.

Definition 2.6.3. Given an extension K C L, an infinite prime o of K ramifies

in L provided that o is real but it has an extension to L which is complex.

Example 2.6.4. The infinite prime of @ is unramified in Q(+/2) but ramified in

Q(V-2).

Definition 2.6.5. An extension K C L is unramified if it is unramified at all

primes, finite or infinite.

Theorem 2.6.6. Given a number field K, there is a finite Galois extension L of
K such that:
(i) L is an unramified abelian extension of K.

(ii) Any unramified abelian extension of K lies in L.

Definition 2.6.7. The field L of Theorem 2.6.6 is called the Hilbert class field of
K.

The Hilbert class field is the maximal unramified abelian extension of K and

is clearly unique.

Theorem 2.6.8. If L is the Hilbert class field of K, then the Galois group of L

over K is isomophic to the ideal class group of K | i.e.,
Gal(L/K) ~ C(Ok).

Theorem 2.6.9. Let L be the Hilbert class field of a number field K, and let p
be a prime ideal of K. Then

p splits completely in L < p is a principal ideal.



CHAPTER III
PRIMES OF THE FORM z? + dy*> IN SOME
QUADRATIC FIELDS

M. Elia and C. Monico [7] described which prime integers in Q(v/2) can be rep-
resented as the sum of two integral squares. Their method depended on the fact
that the class numbers of Q(v/2,v/—1) and Q(v/2) are 1. We will generalize this
to determine the prime integers in Q(y/m) that can be represented in the form
2?2 + dy? where d is a positive integer under some conditions. In Section 3.1, we
work for the case that the class numbers of Q(y/m, v/—d) and Q(y/m) are 1. Then

we use Hilbert class fields for the case without the class numbers condition.

3.1 The Case of Class Number One

Let K = Q(y/m) and L = Q(y/m,/—d) where m,d are squarefree integers satis-
fying the following properties.

(1) d > 0.

(2) If m < 0, then —1 = 22 + dy?® has a solution in Ok and if m > 0, then
N(u) = —1 where u is the fundamental unit of Q(y/m).

(3) The units of Q(y/m, v —d) are u! where [ is an integer and u is the funda-
mental unit of Q(v/—md) if m < 0 and of Q(y/m) if m > 0.

(4) m =1mod 4 and —d = 2,3 mod 4 or m = 2,3 mod 4 and —d = 1 mod 4.

(5) The class number of both Q(y/m) and Q(y/m, v/—d) is 1.
(6) (m,d) = 1.

Lemma 3.1.1. (i) If m =1mod 4 and —d = 2,3 mod 4, then

t
O, = {#4_,/_61%]7@5,1%&6%7’55m0d2 anthumod2}.
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(i) If m = 2,3 mod 4 and —d =1 mod 4, then
t
OL—{T+S\/_ V- +u\/_|rstule:tmonands_umod2}

Proof. (i) Assume that m = 1 mod 4 and —d = 2,3 mod 4.
By Theorem 2.4.7, {1, %ﬁ, VvV —d, \/Td+ V=dm1 is an integral basis of L, i.e. Op =
Z1o+2- o7 V=do - 2 Then

LV ¢ /= w(

eeOpse=x+y( ) for some z,y, z,w € Z

2 v/
. (x+y y,—) (Z_HU %«/m) —d for some x,y, z,w € Z
t
%v%/—_d%\/'

S e = where r = s mod 2 and ¢ = v mod 2.

(ii) Assume that m = 2,3 mod 4 and —d = 1 mod 4.
By Theorem 2.4.7, {1, HT‘/jd, vm, \/ﬁ+_2_ V_dm1 is an integral basis of L, i.e. O =
21942 o7 /m@ L LI Then

1 \/ \/ v —d
eeOrse=x+y(———— i )—l— z2y/m 4+ w( m—i—2 m)forsomea:,y,z,wEZ
2 2
= ( x;—y+ Z;—w\/m)—k(g—kgvm)\/—dfor some z,y, z,w € Z

S e = where 7 = ¢t mod 2 and s = v mod 2.

t
¢+,/__d%

]

Lemma 3.1.2. Let K = Q(y/m) and k € Z. Let w be a prime integer in Ok such
that 1O lies over a prime number p where p 4 mk. Then there exists o € Ok

such that o* = k mod 7 if and only if (mk/p) = 1.

Proof. Case 1. m = 2,3 mod 4: Assume that a + b\/m € Ok such that (a +
bym)? = kmod P. Then (a — by/m)? = kmod 7’ where n’ is the nontriv-
ial conjugate of m, so [(a + by/m)* — k][(a — by/m)?> — k] = 0 mod m7’. Thus
(a* —mb* —k)* —4mkb® = 0 mod N (). Since p | N(n), (a® —mb* —k)? —4mkb* =
0 mod p. Hence (mk/p) = (4mkb?/p) = 1.

Convesely, assume that (mk/p) = 1. Then (m/p) = (k/p) = 1 or (m/p) =

(k/p) = -
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Case 1.1. (m/p) = (k/p) = 1: Since (k/p) = 1, there exists © € Z such that
2?2 = k mod p. Since 7 | p, % = k mod 7.
Case 1.2. (m/p) = (k/p) = —1: Since (m/p) = —1, we may let 7 = p. Since
(m,p) = 1, there exists m’ € Z such that mm’ = 1 mod p. Since (m/p) = —1,
(m//p) = —1 and so (km'/p) = 1. Thus there exists b € Z such that v* =
km/ mod p. Hence (by/m)? = b*m = k mod 7.
Case 2. m = 1 mod 4: Assume that % € Ok such that (%)2 = k mod .
Then (%)2 = kmod 7’ where 7' is the nontrivial conjugate of w. Thus
[(G/my2 g2 j] = 0 mod . Hence (Z=mY )2 — mkb? =
0 mod N(r). Since p | N(r), (£ — k)? — mkb® = 0 mod p and so (mk/p) =
(mkb?/p) = 1.

Convesely, Assume that (mk/p) = 1. Then (m/p) = (k/p) = 1 or (m/p) =
(k/p) = —1.
Case 2.1. (m/p) = (k/p) = 1: Since (k/p) = 1, there exists « € Z such that

2? = k mod p. Since 7 | p, * =k mod 7.

Case 2.2. (m/p) = (k/p) = —1: Since (m/p) = —1, we may let 7 = p. Since
(m,p) = 1, there exists m’ € Z such that mm’ = 1 mod p. Since (m/p) = —1,
(m//p) = —1 and so (km//p) = 1. Thus there exists b € Z such that v* =
km' mod p. Hence (by/m)? = b*m = k mod 7.

3.1.1 Imaginary Quadratic Fields

Let K = Q(y/m) where m < 0 so that —1 = 2+ dy? has a solution in Of. Hence
the identity

(2% + dy*) (2* + dw?) = (22 — dyw)* + d(yz + zw)?

implies that prime integers 7 and —m in Q(y/m) can or cannot simultaneously be

written in the form z? + dy?.
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Theorem 3.1.3. Let m be a prime integer in K = Q(y/m) such that 7Oy lies
over an odd prime p where p{md in 7.

(1) Form =1mod 4 and —d = 2,3 mod 4, we have
7 =2 +dy* for some x,y € Og < (m/p) = (—d/p) =1 or (m/p) = —1.

(2) For m = 2,3 mod 4 and —d = 1 mod 4, we have

(2.1) © cannot be written in the form z* + dy* where z,y € O, if (m/p) =1
and (—d/p) = —1

(2.2) 4w can be written in the form (r+ s\/m)*+d(t +u~/m)? wherer,s,t and
u are rational integers. Furthermore, if one of the numbers r,s,t and u is odd,

then P cannot be written in the form x* + dy* where x,y € Ok, if (m/p) =1 =
(=d/p) =1 or (m/p) = —1.

Proof. Let m be a prime integer in K = Q(y/m) such that 7Ok lies over a prime
p where p t md in Z. Assume that (m/p) = 1 and (—d/p) = —1. Suppose for
a contradiction that 7 = 2% + dy? for some z,y € Ok. Then 22 = —dy*® mod .
Since (y,7) = 1, there exists y' € O such that yy’ = 1 mod 7 and so (zy/)* =
—d mod 7. By Lemma 3.1.2, (—dm/p) = 1. This is a contradiction.

Next, suppose that (m/p) = (—d/p) = 1 or (m/p) = —1. By Lemma 2.4.5
and Lemma 2.4.8, 7Oy, splits completely in L, i.e. 7O = pipo. Since L is a
PID, we may let p; = (%ﬁ + \/—_dM) and py = (#ﬁ — \/—_d%)
Then 70;, = (/™) 4+ d(H%™)2) " Since a unit of Oy, is of the form +u!,
T = iul((%my + d(%)z) Since T, (%ﬁ)2 + d(%a)2 € Ok and u €
Q(v/—md), | must be zero and 7 = i(%)? + d(%)?

For m = 1 mod 4 and —d = 2,3 mod 4, %,% € Ok and so 7 can be
written in the form 2% + dy?.

For m = 2,3 mod 4 and —d = 1 mod 4, we have 47 is of the form (r + sy/m)? +
d(t + uy/m)?.

Next, assume that one of the r,s,¢ and v is odd. Suppose on the contrary
that 7 can be written in the form (z + y/m)* + d(z + wy/m)?. Then ((z +
yv/m)+V=d(z4wy/m)) = ((F500) +v/=d(H54")) which implies that (“5/™)+
\/—_d(%) = +u!((x + y/m) + vV—d(z + wy/m)). This is a contradiction. []
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Theorem 3.1.4. Let w be a prime integer in K = Q(v/—2) such that 1O lies
over a prime p in Z.

(1) If p =2, then 7 cannot be written in the form x* + Ty* where x,y € Ok.

(ii) If p =T, then m can be written in the form x* + Ty* where x,y € Ok.

(iii) If (—2/p) = 1 and (—7/p) = —1, then w cannot be written in the form x*+Ty?
where x,y € Ok.

() If (—=2/p) = (=7/p) =1 or (=2/p) = —1, then 47 can be written in the form
(r+svV=2)2+7(t +u\/—2)% where r,s,t and u are rational integers. Furthermore
if one of the numbers r,s,t and u is odd, then P cannot be written in the form
2% + Ty? where x,y € Ok.

Proof. First, note that —1 = (2v/—2)% + 7(1)2.

(i) For p = 2, p is ramified in K and so m = £1/—2. Suppose for a contradiction
that +1/—2 can be written in the form 22 + 7y* where z,y € Ok. Then +/—2 =
(r+sv/=2)2+7(t +uy/—2)? for some r, s,t,u € Z. Then 1 = 2(rs + Ttu), which
is a contradiction. Hence 7 cannot be written in the form z? + 712

(ii) For p = 7, p is inert in K and so # = 7. Since 7 = 02 + 7- 12, 7 can be
written in the form z? + 72

(iii) and (iv) follow immediately from Theorem 3.1.3. O

3.1.2 Real Quadratic Fields

Let K = Q(y/m) where m > 0 so that N(u) = —1 where u is the fundamental
unit of Q(y/m).

An element r+s+/m in K is called totally positive if both r+s/m and r—sy/m
are positive. It is clear that any prime integer in K which can be represented in
the form 2 4 dy? is necessarily totally positive, so we restrict our attention to

such primes in the following theorem.

Theorem 3.1.5. Let w be a totally positive prime integer in K = Q(y/m) such
that 1O lies over an odd prime p where p{ md in Z.

(1) For m =1 mod 4 and —d = 2,3 mod 4, we have

7 =2 +dy* for some x,y € Og < (m/p) = (—d/p) =1 or (m/p) = —1.
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(2) For m = 2,3 mod 4 and —d = 1 mod 4, we have

(2.1) If (m/p) = 1 and (—d/p) = —1, then w cannot be written in the form
2% + dy? where x,y € Ok

(2.2) If (m/p) = 1 = (—=d/p) = 1 or (m/p) = —1, then 47w can be written
in the form (r + sv/m)? + d(t + u\/m)? where r,s,t and u are rational integers.
Furthermore, if one of the numbers r,s,t and u is odd, then © cannot be written

in the form x® + dy?® where x,y € Ok.

Proof. Let m be a prime integer in K = Q(y/m) such that 7Ok lies over a prime
p where p { md in Z. Assume that (m/p) = 1 and (—d/p) = —1. Suppose for
a contradiction that 7 = 22 + dy? for some z,y € Ok. Then 22 = —dy? mod 7.
Since (y,7) = 1, there exists ¥’ € Ok such that yy’ = 1 mod 7 and so (zy/)? =
—d mod 7. By Lemma 3.1.2, (—=dm/p) = 1. This is a contradiction.

Suppose that (m/p) = (=d/p) = 1 or (m/p) = —1. By Lemma 2.4.5 and
Lemma 2.4.8, 7 splits completely in L. Thus 7Op = pips. Since L is a PID,
we may let p; = (%ﬁ + \/—_d%m) and ps = (%ﬁ - \/—_d%) Then
TOp = ((FE™)2 4 q(Hmy2) - Since a unit of O is of the form +u! and 7 is
positive, T = ul((%)2 + d(M)Q) Since 7 is totally positive, [ is even and
T = (%ulm)2 + d(MUZ/Z)Q.

For m = 1 mod 4 and —d = 2,3 mod 4, H‘Zmuw, H"Q*/mul/2 € Ok and so 7 can

be written in the form 2 + dy?.
For m = 2,3 mod 4 and —d = 1 mod 4, we have 4 is of the form (r + sy/m)? +
d(t + uy/m)?.

Next, assume that one of the r,s,t and u is odd. Suppose on the contrary
that m can be written in the form (x 4+ yv/m)?* + d(z + wy/m)?. Then ((z +
yv/m)+v/—d(z+wy/m)) = ((%)—i—\/—_d(%)) which implies that (%H—
\/—_d(%) = +u!((z + y/m) + vV —d(z + wy/m)). This is a contradiction. [

Example 3.1.6. Let 7 be a totally positive prime integer in K = Q(+/29) such
that 1Ok lies over a prime p in Z.
(i) If p = 2, then 7 cannot be written in the form z? + 2y* where z,y € Of.

(i) If p = 29, then 7 can be written in the form 22 + 2y* where z,y € Ok.
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(iii) If p # 2,29, then 7 can be written in the form z? + 2y? where z,y € Ok if
and only if (29/p) = (=2/p) =1 or (29/p) = —1.

ﬁ

5+v29

¥2)12. Since 7 is totally

Proof. (i) For p = 2, p is inert in K and so 7 = (

positve, [ is even. Thus 7 = 2% + 2y? by setting x = 0 and y = (@)”2.

(ii) For p = 29, p is ramified in K and so 7 = (5+5/@)l\/@. Suppose for a

contradiction that 7 = x? + 2y* for some x,y € Og. Then (%@)l\/w =

(%)2—{—2(%@)2 where r = s mod 2 and ¢t = u mod 2. Since 7 is totally posi-
tive, [ is odd. Thus (2Y2)/20 = (B892 4 o(THUV2 for some R, S, T, U € Z.
Hence R? 42952 4272 +58U? =58 and so R=S =T =0 and U = &1. This is

a contradiction.

(iii) The result follows immediately from Theorem 3.1.5. O

Theorem 3.1.7. Let 7 be a totally positive prime integer in K = Q(v/2) such
that 7Oy lies over a prime p in Z.

(1) If p =2, then 7 cannot be written in the form x* + 11y* where x,y € Of.
(ii) If p =11, then 7 can be written in the form z* + 11y* where z,y € Of.

(iii) If (2/p) = 1 and (—11/p) = —1, then 7 cannot be written in the form x*+11y?
where x,y € Ok

() If (2/p) = 1 and (—11/p) = 1 or (2/p) = —1, then 4w can be written in
the form (a + bv/2)? + 11(c + dv/2)? where a,b,c and d are rational integers.
Furthermore, if one of the numbers a,b,c and d is odd, then m cannot be written

in the form x? + 11y? where x,y € Ok.

Proof. (i) For p =2, = (1 ++/2)'v/2 where [ € Z. Since the coefficient of /2 in
7 is odd, 7 cannot be written in the form 2 + 11y2.

(ii) For p = 11, p is inert in K and so 7 = (1 4 v/2)'11 where [ € Z. Since 7 is
totally positive, [ is even. Therefore m can be written in the form z? 4+ 11y? by
setting = 0 and y = (1 +v/2)"/2.

(iii) Assume that (2/p) =1 and (—11/p) = —1. Suppose for a contradiction that
7w = 2% + 11y? for some z,y € Ok. Then 2*> = —11y* mod 7. Since (y,7) = 1,
there exists y' € Ok such that yy’ = 1 mod 7 and so (zy')? = —11 mod #. By
Lemma 3.1.2, (—22/p) = 1. This is a contradiction.
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(iv) Assume that (2/p) = (—=11/p) = 1 or (2/p) = —1. Let L = Q(+/2,/—11).
By Lemma 2.4.5 and Lemma 2.4.8, 7 splits completely in L. Thus 7O = p1ps.
Since Q(v/2,v/—11) is a PID, we may let p; = (# + \/—_11%5) and py =
(ABV2 [ TITCEDV2)  Then 710y, = ((AF2¥2)2 4 11(S4Dv2)?). Since a unit of
Oy is of the form 4(1++/2)!, 7 = :I:(l—l—\/?)l((#)%i-ll(%)z). Since 7 is
totally positive, [ is even and 7 = (#(1 +2)12)2 ¢ 11(%5(1 +V/2)%)2,
Hence 47 is of the form (a + bv/2)? + 11(c + dv/2)2.

Next, assume that one of the a,b,c and d is odd. Suppose on the contrary
that m can be written in the form (v + yv/2)? + 11(2 + wv/2)%2. Then ((z +
yV2)+V—11(z+wV2)) = ((#)%—\/-—11(#)) which implies that (#%L
VIT(H2) = +(14v/2) (2 +yv/2) +/—T1(2+w+/2)). This is a contradiction.

[
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3.2 General Case

In this section we will solve the same problem for more values of n and d without
condition on class numbers by using Hilbert class fields.

The Hilbert class field M of a number field L is defined to be the maximal
unramified abelian extension of L. The following properties of the Hilbert class

field will be used. First, for any prime ideal p of L,
p splits completely in M <= p is a principal ideal (3.1)

and secondly the Galois group of M over L is isomophic to the ideal class group

of L, i.e.,
Gal(M/L) ~ C(Op).

We use the first property in the main theorem and the second property to compute
the Hilbert class field.

Throughout this section, we let K = Q(y/m) and L = Q(y/m, v/—d) where m
and d are positive squarefree integers such that m = 1 mod 4 and N(uy) = —1
where ug is a fundamental unit of Q(y/m), —d = 2,3 mod 4 and (m,d) = 1. First,

we investigate the ring of integers Oy, and the unit group O; of L.

Lemma 3.2.1. O = Og[V—d|.

Proof. Sincem =1 mod 4, —d = 2,3 mod 4 and (m, d) = 1, {1, 1+§/Fn’ V—d, \/jd+2\/%}
is an integral basis of L, i.e. Op = Z-l@Z-%m @Z'v—d@z‘—\/jﬂﬁ-

Then

ceeOpse=a+y(

) for some z,y,z,w € Z

1 V—d+/—d
+2\/m)—|—zx/—_d—|—w( +2 m
2

x;y+%m)+( 5 —|—§\/ﬁ)\/—dforsomea:,y,z,w€Z

& e =a+ bv—d for some a,b € O.

224w w
Se=(

Therefore O, = Ok[V—d]. O
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Lemma 3.2.2. Let ug be the fundamental unit of K. Then

{Fub, +iv) | 1 €Z} | ifd=1

Of = :
{Ful |l € Z} ,ifd>1

Proof. Let u € OF. Then u = (Z/™) 4 /=q(Z%/™) where x = y mod 2
and z = wmod 2. Since u is a unit of O, Np/x(u) is a unit of Ok and so
(ZHLm)2 4 (Y2 — 4l for some [y € Z. Since the term in the left hand side
is totally positive, uéo is also totally positive and so [y is even. Thus [y = 2I for
some [ € Z. Let X,Y,Z and W be integers such that X“;‘/m = HyZmugl and
ZAWm _ sty Then (222 4 g(ZEWVmY2 — 4 and hence X2 +mY? +
dZ%* 4+ dmW? = 4. Since m >5,Y =W =0. If d =1, then X = £2, 7 = 0 or
X =0,Z =42 and so u = Fuly or u = +iul. If d > 1, then X = £2, 7 = 0 and

so u = +u). ]

The following lemma is an immediate consequence of Theorem 2.4.5 and The-

orem 2.4.8.

Lemma 3.2.3. Let E = Q(y/m) and F = Q(y/m,/n) where m and n are distinct

squarefree integers and k = "3 where d = (m,n). Let P be a prime in E such

that POg lies over an odd prime p in Z where pt mn. Then
(i) P is unramified in F, and
(ii) P splits completely in ' <= (n/p) = (m/p) =1 or (m/p) = —1.

Proposition 3.2.4. Let E C F be a Galois extension, where F' = E(«a) for some
a € Op. Let f(x) € Oglz] be the monic minimal polynomial of o over E. If p is

a prime in O and f(x) is separable modulo p, then
p splits completely in F <= f(x) = 0 mod p has a solution in Of.

These are the main results of this section

Lemma 3.2.5. Let M be the Hilbert class field of L and let T denote the complex

conjugation. Then 7(M) = M and consequently M is Galois over K.
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Proof. Since M is an unramified abelian extension of L, 7(M) is an unramified
abelian extension of 7(L) = L. Since M is the maximal such extension, we
have 7(M) C M and then 7(M) = M since they have the same degree over L.
Then 7 € Gal(M/K). To show M is Galois over K, it suffices to show that
Fix(Gal(M/K)) C K. Let u € Fix(Gal(M/K)). Then u € M and o(u) = u for
all 0 € Gal(M/K). Since K C L and M is Galois over L, Fix(Gal(M/K)) C
Fix(Gal(M/L)) = L. Therefore u € L. Let u = z + yv/—d where z,y € K. Since
7(u) = u,y = 0. Hence u € K. O

Theorem 3.2.6. Let M be the Hilbert class field of L. If w is a totally positive

prime in Ok such that 1Ok lies over an odd prime p where p {nd, then
7 = +dy* for some x,y € O <= m splits completely in M.

Proof. Let 7 be a totally positive prime in Ok such that 7O lies over an odd

prime p where p { nd. By Lemma 3.2.3, 7 is unramified in L. Next, claim that

7 =2 +dy* < 7O, =pp,p # p and p is principal in Oy,
< 7O0p = pp, p # p and p splits completely in M

& 7 splits completely in M.

To prove the first equivalence, suppose that 7 = 2% + dy? = (z + v/—dy) - (v —
V—dy). Setting p = (z4++v/—dy)Oy, then p = (x —/—dy)Or and 7O, = pp must
be the prime decomposition of 7O, in Op. Note that p # p since 7 is unramified
in L. Conversely, suppose that 7O = pp, where p # p and p is principal. We
can write p = (zo + v/—dyo)Or. This implies that p = (2o — v/ —dyo)Or and
7O = (23 + dy?)Op, by Lemma 3.2.2, it follows that 7 = u} (22 + dy2). Since

7 and x2 + dy? are totally positive, v is totally positive. Thus @) > 0. Since

N(ug) = —1, g < 0 and so [ is even. Therefore 7 = 2% + dy* where x = $0uf)/2

and y = youéﬂ.

The second equivalence follows from (3.1) and the third one follows immedi-
ately from Lemma 3.2.5 and the fact that it K C L C M, where M and L are
Galois over K, then a prime 7w of Ok splits completely in M if and only if it splits

completely in L and some prime of Oy, containing 7 splits completely in M. [
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The next step is to give a more elementary way of saying that m splits com-

pletely in M. We have the following criterion:

Theorem 3.2.7. Let M be the Hilbert class field of L. Then
(i) there is a real algebraic integer a such that M = L(«), and
(i1) if f(x) € Oklz] is its monic minimal polynomial and 7 is as in Theorem 3.2.6

which does not divide the discriminant of f(x), then

(m/p) = (=d/p) =1 or (m/p) = —1 and

f(x) =0mod 7 has a solution in Ok

7 splits completely in M <—

Proof. (i) Since K C M NR is finite separable extension, M NR = K («) for some
a€OyNnR. Then [M: K(a)] =[M: MNR] = [MR: R] =[C: R] =2. Since
K(a) C L(a) € M, L(a) = K(a) or M = L(«). Since « is real and K is a real
quadratic field, L(a) # K(«a). Therefore M = L(«).

(ii) Let f(z) € Ok|z] be the monic minimal polynomial of « over K. Since
[L(a) : K(a)] =[L: K] =2,[L(a) : L] = [K(«) : K|. Thus f(x) is also the monic
mimimal polynomial of v over L. Let m be a prime not dividing the discriminant

of f(z). This tells us that f(z) is separable modulo 7. By Lemma 3.2.3 we have

7O =pp,p #p < (m/p) = (=d/p) =1 or (m/p) = —1.

We may assume that 7 splits completely in L, so that Ok /7Ox ~ Op/p. Since
f(z) is separable over Ok /mOks, it is separable over O /p, and then Proposition

3.2.4 shows that

p splits completely in M <= f(x) = 0 mod p is solvable in O,

<= f(x) = 0 mod 7 is solvable in O.

The theorem now follows from the last equivalence in the proof of Theorem 3.2.6.

O

In order to use Theorem 3.2.6, we need to compute the Hilbert class field M
of L. We know from Theorem 2.6.8 that

[M : L] = |Gal(M/L)| = |C(OL)| = hr.
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Thus the degree of M over L is the class number of L. Cohn [5] gives the formula
to compute the class number of a biquadratic field. Thus we will use these facts

to find the Hilbert class field in the following theorems.

Theorem 3.2.8. Let m be a totally positive prime in K = Q(\/g) such that mOg
lies over a prime p in Z.

(i) If p =2, then m can be written in the form x* + 2y* where v,y € Ok.

(ii) If p =5, then m cannot be written in the form x® + 2y* where x,y € Of.
(1) If p # 2,5, then ™ can be written in the form x* + 2y* where v,y € Ok if
and only if (5/p) = (=2/p) =1 or (5/p) = —1.

(14519 where | € Z. Since 7 is

Proof. (i) For p =2, p is inert in K and so 7 =
totally positive, [ is even. Thus 7 can be written in the form x? + 2y? by setting

x=0and y= (1“[)1/2

\/‘F’)l\/g Suppose for a
contradiction that = = 22 4 2¢* for some a,y € Og. Then (H£5)L/5 =
(‘”b‘[) + 2(C+d‘[) where a = b mod 2 and ¢ = d mod 2. Since 7 is totally posi-
tive, I is odd. Thus (2058)y/5 = (4£BV5)2 4 o(CEDVEY2 fo1 some A, B,C, D € Z.
Hence A?2 +5B%+2C? +10D* =10 and so A= B=C =0 and D = +1. This is

(ii) For p = 5, p is ramified in K and so 7 = (&

a contradiction.

(iii) Let p # 2,5. Since the class number of L = Q(v/5,v/—2) is 1. Then the
Hilbert class field of L is the field L itself. By Theorem 3.2.6 and Theorem 3.2.7,
we have m = 2% + 2y? for some x,y € Ok if and only if (5/p) = (=2/p) =1 or
(5/p) = —1. s

Theorem 3.2.9. Let 7 be a totally positive prime in K = Q(v/17) such that TOg
lies over a prime p in 7.

(1) If p =2, then © cannot be written in the form x* + y* where x,y € Ok.

(ii) If p =17, then 7 can be written in the form z* + y* where x,y € Ok.

(iii) If p # 2,17, then 7 can be written in the form x* + y* where x,y € Ok if
and only if (17/p) = (=1/p) =1 or (17/p) = —1 and X* = %ﬁ mod 7 has a

solution in Of.
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Proof. (i) For p = 2, p splits completely in K and so 7 = (4+ \/ﬁ)l(5i;/ﬁ) where
[ € Z. Suppose for a contradiction that 7 = z? + y? for some z,y € Og. Then
= (%)2 + (%ﬁ)2 where a = bmod 2 and ¢ = d mod 2. Since 7 is totally
positive, [ is even and so 5i5/ﬁ = (AH;‘E)Q%- (C“;‘/ﬁ)2 for some A, B,C, D € Z.
Hence A% +17B% + C* 4+ 17D? = 10 and so B = D = (. This is a contradiction.

(ii) For p = 17, p is ramified in K and so m = (4 + v/17)'\/17 where | € Z. Since

7 is totally positive, [ is odd. Then

o <<4 n \/1—7)<l—1>/2(3+Tm)>2 . <(4 n \/ﬁ)a—nm(%ﬁ))%

(iii) Let p # 2,17. We know that the class number of L = Q(v/17,/—1) is 2
and the Hilbert class field of Q(y/—17) is Q(v/—17, %ﬁ) (see [6] p. 120).
Since Q(v—17) € L C LYY = Q(v—17,1/H7), L({/ A7) is also a

HT VIT over K is

Hilbert class field of L. Note that the minimal polynomial of
flz)=X?— %ﬁ By Theorem 3.2.6 and Theorem 3.2.7, we have m = z% + 2y?
if and only if (17/p) = (=1/p) =1 or (17/p) = —1 and X? = %ﬁ mod 7 has a

solution in O. O



CHAPTER IV
THE NUMBERS OF REPRESENTATIONS OF
INTEGERS OF THE FORM 22 + dy? IN NUMBER
FIELDS

4.1 Preliminaries

There are many papers [6], [14], [15] which give the criteria to determine whether
an algebraic integer can be represented in the form 2%+ dy? where x, y are algebraic
integers and d is a positive rational integer. Another interesting problem about
algebraic integers of the form 2?2 + dy? where x,y are algebraic integers and d is
positive rational integer is to study the number of these representations. T. Nagell
[16] study the problem of the number of the representation of an integer which
can be represented as the sums of two squares. We will generalize the result of T.
Nagell to the representations of an algebraic integer in a number field of the form
2% + dy? where x,y are algebraic integers and d is a positive rational integer.

Let w be an integer in a number field K and d a positive rational integer. We
say that w has a representation of the form x?+dy? if there are integers o and 3 in
K such that w = a? 4 d3?. The representation w = 22 + y? with z = +a,y = +.3
and x = £,y = £a and the representation w = 22 4 dy? for d > 1 with z = +a
and y = +73 are considered to be one and the same. The relation 1 = 12 + d - 02
is called the trivial representation of the number 1.

Let K be a number field of degree n = r + 2s over Q where r is the number of
real embeddings of K and s is the number of nonconjugate complex embeddings
of K. Then O = Wk x V where Wy is the cyclic group of even order of all roots
of unity in K and V is a free abelian group of rank t = r + s — 1, i.e., there are

units wuy, ..., u; such that for all u € 0%, u can be written uniquely in the form
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u=wui",...,u* where a; € Z and w € Wk.

4.2 The Numbers of Representations of Integers of the
Form 22 + dy? in Number Fields
Theorem 4.2.1. Let K be a number field. If 1 has more representations of the

form x4+ dy? than the trivial representation, then 1 has infinitely many represen-

tations.

Proof. Assume that
1=~ +do*

where v and ¢ are integers in K such that v # 1 and § # 0.

For positive integer n, we define

Yo+ 0V =d = (v + 6v/=d)",

where
=y —| e [0} artsta - 4 (4.1)
2 4
and
0p = ¥ Ay — ¥ AR — (4.2)
1 3
Then
S O N
and

(Yo + 3uV=d) (Y0 — 0uV=d) = (7 + 6V =d)"(y — 6V =d)" = (* + d6*)™.

Therefore

V4 do = 1.

Thus the Diophantine equation

P rdy =1 (4.3)



has the integral solutions
r="nY = 571
Next, we will prove that these solutions are all different.
Suppose for a contradiction that there are m,n € N such that m # n and
FYm = Tn, 5m = 5n

Then
(74 0v/—d)™ = (v + 6v/—=d)",

and so v + §v/—d is a root of unity. Suppose that
v+ 0vV—d=¢
is a primitive Nth root of unity. Since
y=o0V—d= (",

we get
= 1

N 2\/_—d(C - Cil)'

1 -
V= §(C +¢71),6
Thus
S~ 1) = vdes

is an algebraic integer.

If N is a power of 2 and N > 8, then the number
1 N 1, .
— —1)==(£i—-1
S 1) = S(i - 1)

must also be an algebraic integer. This is a contradiction.

If N is divisible by the odd prime p, then the number

S — 1)
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must also be an algebraic integer but %(CQN/Z’ — 1) is the root of the irreducible

polynomial

1
%[(236 +1)P =1 =212 4 plp— Dz +p
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which has integral coefficients. This is a contradiction.
Finally, if N = 1,2,4, then v = 0 or ¢ is not algebraic integer. This is a contra-
diction. O

Theorem 4.2.2. Let K be a number field.

(i) Let m be a prime or a unit in K such that © has a representation of the form
22+ dy?®. If 1 has only trivial representation, then m has exactly one representa-
tion. Otherwise ™ has infinitely many representations.

(11) Let w be an integer in K such that w has a representation of the form x?+dy?.
If 1 has only trivial representation, then w has a finite number of the representa-

tions. Otherwise, w has infinitely many representations.

Proof. (i) Assume that 1 has only trivial representation Let 7 be a prime in K

such that 7 has two representations of the form x? + dy?,
m=ai +df}

and

™= aj + df;

where oy, an, 81, (2 are integers in K. Then
2 2 2 92 2 92
m(8y — B1) = aiBy — axf3y.

Since 7 is a prime, either a;fs — asf; or a;f + asB; must be divisible by .

Without loss of generality, we may assume that
a1 = B mod 7.
Multiplying together the two representations of m, we get
= (ag + df152)* + d(a1 By — asfr)’.
Since aq 2 — ap B is divisible by 7, so is the number aqas + dp; 5. We put

ajog +df By = my and a8y — a3 = 0,
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where v, d are integers in K, we get
1 =~%+dé>.
Since 1 has only trivial representation, v = +1 and 6 = 0. Therefore

Q109 + dﬁlﬁg = 47 and Oélﬁg — 04251 =0.

Then
oy = &al and &af + dp1 s = £,
B B
and so
&W = @(a% +dpy) = &a% + dp1 S = £

Bl Bl E 51

Hence [y = +3; and as = +a4q and so 7 has exactly one representation.
Suppose next that the equation (4.3) has an infinitely of solutions z = ~,,,y = 4,
given by (4.1) and (4.2). Let 7 be a prime in K such that

T =a? 4 d3?

where o and [ are integers in K. For positive integer n, define

U + BaV/—d = (9 + 6,V —d) (o + BV —d)

where
an = ayn — dB5, and B, = ab, + B,
Thus
W = BV =d = (0 = 6,V =d)(a — BV —d)
and
(an + BV —=d) (0t — BoV—d) = (v* + d6*)(e® + dB®) = .
Hence

T =al+djs.

We will show that these are all different representations of .

Suppose for a contradiction that there are m,n € N such that m # n and

Ay, = amﬁm = ﬂn



Then we get

TYm = Tns 5m - 671
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But in the proof of Theorem 4.2.1, v,, = Y, 0m = 9,. where m # n leads to a

contradiction. Therefore 7 has infinitely many representations.

(ii) Assume that 1 has only trivial representation. Let w be an integer in K.

Suppose for a contradiction that w has infinitely many representations, i.e.,

w=a’+df,neN

where «,, and (,, are integers in K and for m # n, a,, # *a,, and B, # £06,,.

Since O /wOy is finite, there are m,n € N such that m # n and
A = o, mod w and 3, = £, mod w.
Multiplying the two represeentations
w= a2 +dp% and w = o2 +dp?,

we get

w? =ty + B fBr)* + (B — anfin)’.
It follows from (4.4) that the two numbers

Ay + d By B and oy, B, — o B

are divisible by w. Hence we may put

A Oy + d B B = wy and oy, B — B = WO
where v and § are integers in K. Then

1 =92+ do*

Since 1 has only trivial representation, v = +1 and § = 0. It follows that

Aty + dBy, By, = 1w and o, 5, — @B, = 0.

Then

o, = &am and &afn + dpB,,0, = Tw,

m m

(4.4)
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and so

B Bm Brn

Hence (3, = +4,, and a,, = +a,,. This is a contradiction and so the number of

representations must be finite. ]

Theorem 4.2.3. Let K be a number field and d a positive rational integer. The
following statements are equivalent.

(i) K = Q(v/—d) or K is totally real.

(i) 1 has only trivial representation in K.

Proof. Let K be a number field of degree n over QQ, r the number of real em-
beddings of K, s the number of nonconjugate complex embeddings of K and
t = r+ s — 1 the rank of the unit group of K. Assume that K = Q(v/—d) or K
is totally real.
Case 1: K = Q(v/—d): Let a and [ be integers in K such that
o +dp?=1.

Then

(v + BV —=d)(a = vV —=d) = 1.

Thus a + v/ —d and o — v/ —d are units in K. For d # 1,3, the units in K are

+1 so we have the following system
a+pfvV—d=1and a—pv—-d=1

or

a+BV—d=—-1and a — fV—d = —1

For d = 1,3, we have more cases to figure out. Nevertheless, in either cases we
have o = £1 and § = 0. Hence 1 has only trivial representation.

Case 2: K is totally real: Let o and 8 be integers in K such that
a?+dp? =1.
Then the conjugate equations

1= (on(@))* + d(ox(8))*
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where &k = 1,...,n also hold. Since the conjugates are all real, we get

<1

lok(B)] <

S

for k = 1,...,n and d > 1. Thus [N(8)| = |o1(B)|...|on(B)| < 1. Therefore
N(B)=0and so =0 and o« = £1. Hence 1 has only trivial representation.
For the converse, assume that K # Q(v/—d) and K is not totally real. We will
prove that 1 has a nontrivial representation.

Case 1: v/—d € K. Since K # Q(v/—d),n >4 and so t > 1. Thus there is a unit

€ in K such that € is not a root of unity. Then the equation
1 =a?+dp?

is satisfied by the following numbers:

1
o= 5(6’” +e ™) and 5 =

where m is the order of the group (O /2y —dOk)*. Note that § is an integer in
K because

€ =1mod 2v—d and e™ = 1 mod 2v —d

and « is an integer in K because a = /—df + e~ . Since € is not a root of unity;,

B # 0. Hence 1 has a nontrivial representation.
Case 2: \/—d ¢ K. Let L = K(v/—d). Then the field L has degree 2n over

Q. Let R be the number of real embeddings of L, S the number of nonconjugate
complex embeddings of L and 7" = R 4+ S — 1 the rank of the unit group of L.
Since vV—d ¢ R, R =0 and S = r + 2s and so

T=R+S—-1=r+2s—1=t+s.
Since K is not totally real, s > 1 and so
T>t.

Let us consider the ring consisting of the numbers in L of the form A + pv/ —d,
where A\ and p are integers in K. The unit group G of this ring has the rank
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T. The subgroup G consisting of the squares of the units in G clearly has the
same rank 7. The units in G; cannot all be equal to the product of a unit in
K and a root of unity since ¢t < T. Hence we conclude that there exists a unit
E = a+ by/—d in the ring, a and b integers in K such that @ # 1 and b # 0, and
such that £? is not equal to the product of a unit in K and a root of unity. Then
the number E; = a — bv/—d is also a unit in L. Hence a2 + db? is a unit in K.
Then the equation
1=a*+dp?

is satisfied by the following numbers:

E2m = E12m

a:mandﬁ

— E2m _ E12m
—2v/—=d(a? + db?)™

where m € N. Since a? + db? is a unit in K, a and 3 are integers in K. If 3 = 0,

then E?™ = E?™. Hence EE;' must be a root of unity and
E? = (a® + db*)(EEY)

is a product of units and a root of unity. This is a contradiction. Thus 5 # 0 and

so 1 has a nontrivial representation.
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