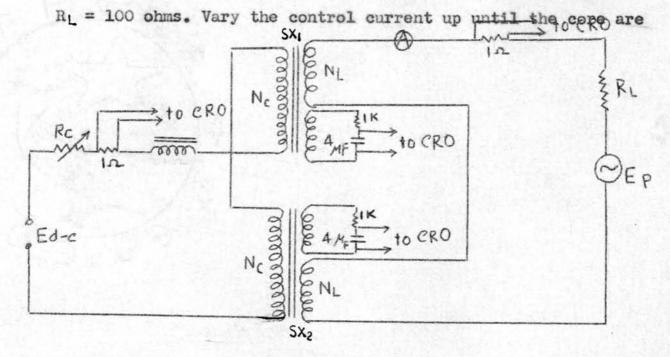
CHAPTER 5

Laboratory Experiments

EXPERIMENT NO.1

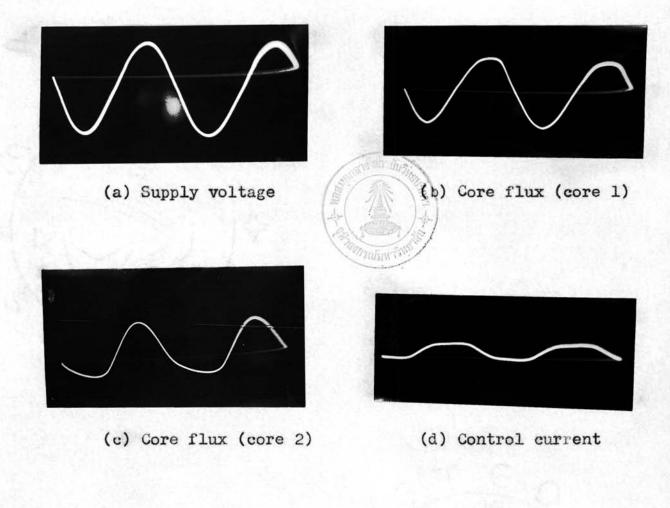

The Study of Saturation-core Reactors

Purpose

The purpose of this experiment is to observe the waveshape of core flux, supply voltage, control current and load current under forced and natural magnetization.

Procedure

(1) Forced magnetization of the saturable reactor.
Connect the circuit as shown. Set Ep = 60 volts


saturated (i.e., no change in load current) by means of the resistor Rc. Observe the waveforms of a-c supply voltage, control current, load current, magnetic flux in core(1) and (2). Copy down all the wavefroms.

(2) Natural magnetization of saturable reactor.

Repeat the procedure by using the same circuit as in (1) except the choke is removed.

Report

Discuss the waveforms obtained from the test.

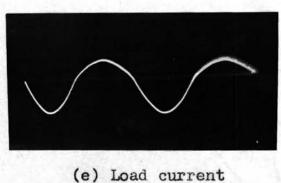


Fig. 20 Waveforms of forced magnetization of the saturable reactor.

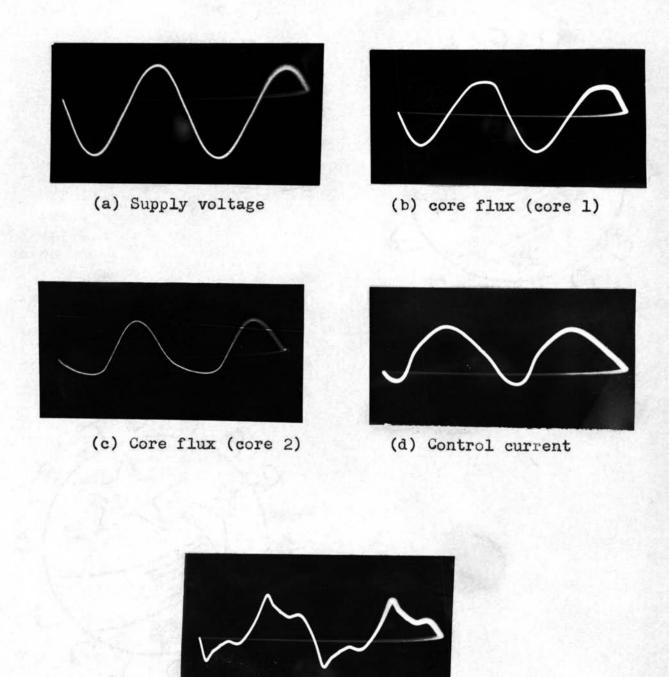


Fig. 21 Waveforms of natural magnetization of the saturable reactor.

(e) Load current

Discussion

Forced magnetization

For Fig. 20 (b), assume that the control current is sufficient to move both cores into positive saturation. During the half-cycle, the a-c current flowing in the load coil of core 1 can produce no change in magnetization, since the core is presently saturated. Because the flux cannot, change, the flat-topped magnetization state, which is shown in Fig. 20 (b), and which indicates core saturation exists for core 1.

During this same half-cycle, the load current produces a field of direction opposite to that produced by the control current in core 2. The a-c field is such as to bring core 2 out of its positive saturated state, and move it over the linear section of the B-H curve toward negative saturation. Thus the core 2 magnetization state varies during this half-cycle as shown in Fig. 20 (c)

On the nex half-cycle, similar circuit conditions exist. However core 2 now is saturated while the stage of core 1 varies sinusoidally.

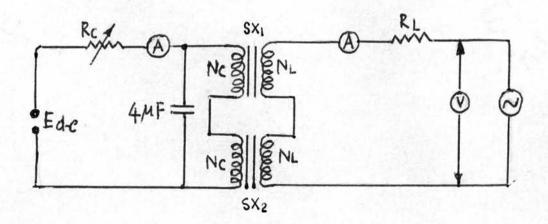
The even harmonics is suppressed by a high impedance of the series choke. The control current passed freely through the control circuit, the waveform is nearly smooth (which depends on the impedance of the choke coil, i.e., of the control circuit).

Natural magnetization

The d-c control circuit is now without the series choke, and the double-frequency component currents induced into the control winding by the changing flux in the core is not at saturation. These result in the pulsation of the d-c control current, as shown in Fig. 21 (d). In order for the load current to maintain the required sinusoidal change in flux, it must take on the sharp-pulsed appearance as shown in Fig. 21 (e).

EXPERIMENT NO.2

Static Characteristics of a Saturable Reactor
With Resistive Load and Free Even-harmonics Current.


Purpose.

The purpose of this experiment is to determine the relations of the supply voltage, loadcurrent, load resistance and the actual impedance of the saturable reactor when the control current is supplied to the control circuit.

Procedure

(1) To determine the load current as a function of the power supply voltage with the control current as a parameter.

Connect the circuit as shown. Set R_L = 600 ohms and I_C = 0. Vary the supply voltage from 10 to 60 volts, about 8 readings for

by means of a variable a-c transformer. Take readings of the

corresponding load currents.

Repeat the procedure with the control current setting at 100 mA, 200 mA, 300 mA and 400 mA respectively.

Report

- (1) Plot graphs of load current as a function of power supply voltages with the control current as a parameter.
- (2) Calculate the value of an impedance of the load circuit when $I_{\rm C}=0$ and plot graphs for impedances and load currents against supply voltages.
- (2) To determine the load current as a function of the control current with the load resistance as a parameter.

Using the same circuit as in (1). Set the supply voltage at 50 volts and $R_{\rm L}$ = 100 ohms, then vary the control current from 0 to 500 milliamps by means of the resistor $R_{\rm C}$ about 9 steps. Take readings of the corresponding load currents.

Repeat the procedure with R_L setting at 200, 500 and 800 ohms respectively.

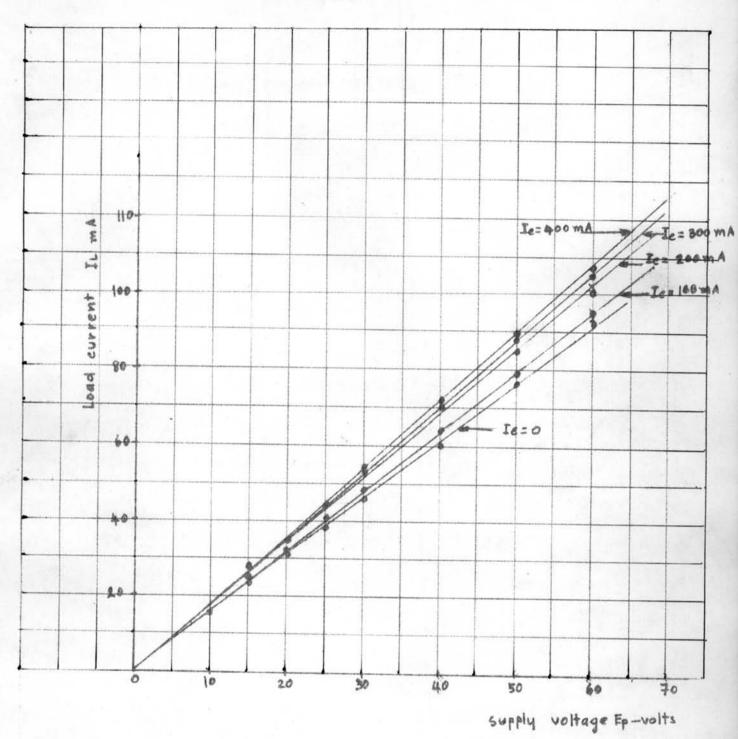
Report

Plot graphs of control currents against load currents using the load resistance as a parameter.

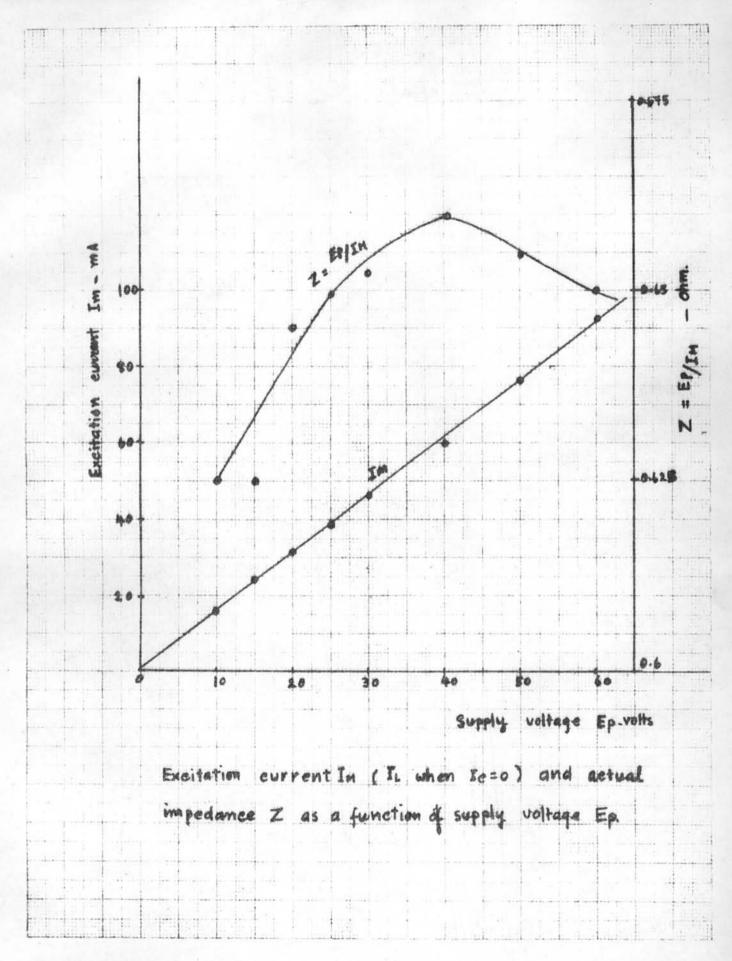
Test Data The data is obtained from the measurements carried out on the ferrite core with

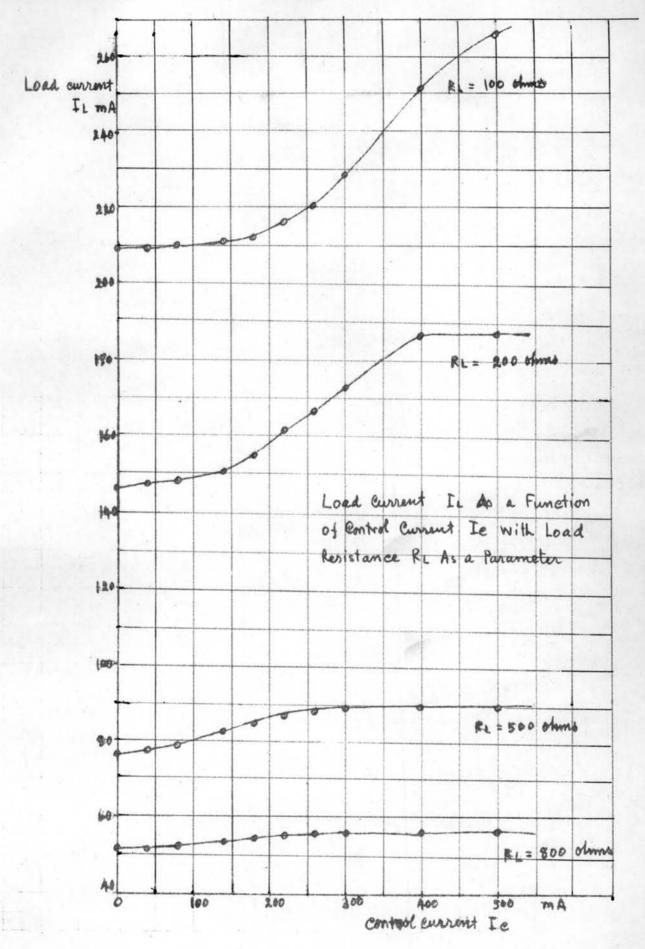
- 1) a-c load windings of 1000 turns each of Nº 25 wire (Standard Wire gauge)
- 2) d-c control windings of 1000 turns each of No 25 wire (Standard Wire gauge)

The magnetic circuit of each core has an effective area of 0.785 cm² and a means length of 15 cms.


(1)

Control current	Supply voltage	Load current	Impedance
Ic, mA	Ep, Volts	IL, mA	Z = Ep/IL
0	10	16.0	0.625
	15	24.0	0.625
	20	31.0	0.645
	25	38.5	0.649
	30	46.0	0.652
	40	60.0	0.666
	50	76.5	0.654
	60	92.5	0.65
100	10	16	
	15	25	
	20	32	
	25	41	
	30	48	
	40	64	
	50	79	
	60	95	


Control current Ic, mA	Supply voltage Ep, Volts	Load current IL, mA	Impedance Z = Ep/I
200	10	16	
	15	28	
	20	35	
	25	1+1+	
	30	53	
	40	70	
	50	85	
a nedanika d	60	101	
300	10	16	
	15	28	
	20	35	
	25	1414	
	30	53	
	40	70.5	
	50	88	Yes
	60	105	
400	10	16.0	6-60
	15	28.0	
	20	35.0	
	25	45.0	
	30	54.5	
	40	71.5	
	50	88.5	
	60	105.5	


oad resistance ohms	Control current	Load current
100	0	204
	40	209
	80	210
	140	211
	180	212
	220	216
	260	220
	3300	228
	400	251
	500	266
200	0	146.0
	40	147.0
	80	148.0
	140	150.5
	180	154.5
	220	161.0
	260	166.0
	300	172.0
	400	186.0
	500	186.0

Load resistance	Control current	Load current
500	0	76.0
	40	77.0
	80	78.5
	140	82.0
	180	84.0
	220	86.0
	260	87.0
	300	88.0
	400	88.5
	500	88.5
800	0	51.5
	40	51.6
	80	52.0
	140	53.25
	180	54.0
	220	55.0
	260	55.5
	300	55.7
	400	55.9
	500	56.0

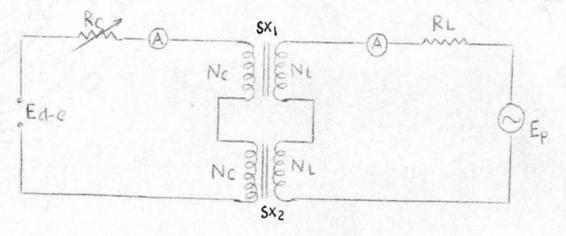
Load current It as a function of supply voltage Ep with control current De as a parameter

Discussion

From graphs obtained from the test it can be seen the that the actual impedance of the load circuit, when Ic = 0, is increasing as the supply voltage increases up to 40 volts. Beyond this point the actual impedance decreases because the load current changes rapidly in magnitude. For magnetizing current, the curve seems to be a straight line which means that there is no saturation effect of the core. In fact, this effect occurs beyond 40 volts of the supply voltage. This effect shows clearly on the actual impedance curve.

EXPERIMENT NO.3

Nonpolarized, Polarized Types of Nonfeedback Magnetic Amplifiers


Purpose

The purpose of this experiment is to study the transfer characteristics of nonpolarized and polarized types of nonfeedback magnetic amplifier.

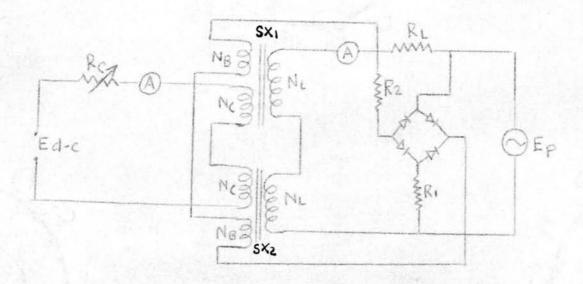
Procedure

(1) Nonpolarized magnetic amplifier

Arrange the circuit as shown. Set Ep = 10 volt and $R_{\rm L}$ = 17 ohms. Vary the control current from 0 to 500 mA

by means of the resistor Rc. Take the readings of load currents. Reverse the polarity of the control current and repeat the procedure.

Repeat the procedure with Ep setting at 12 volts and 15 volts respectively by using $R_{\rm L}$ of both cases at the same value.

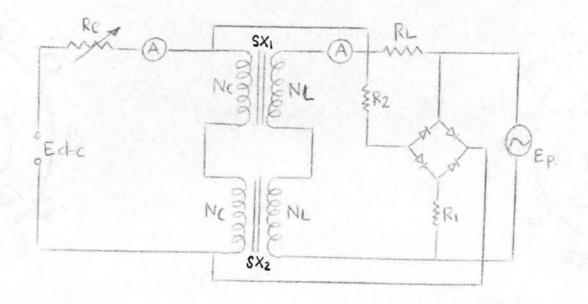

Report

Plot graphs of control current against load current.

(2) Polarized magnetic amplifier

(a) Separate bias windings

Connect the circuit as shown. Set Ep = 16.5 volts, $\rm R_L$ = 60 ohms and the bias current = 300 mA. Vary the


control current from 0 to 600 mA by means of the resistor R_{c} . Take the readings of load current for every step of current changing in the control circuit. Reverse the polarity of the d-c supply and then repeat the procedure.

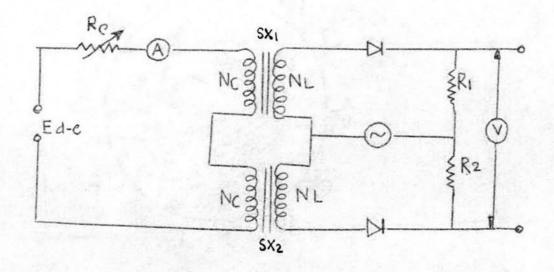
Repeat this experiment with bias current = 300 mA.

(b) Control windings acting as bias windings.

Connect the circuit as shown. Set Ep = 16.5

volts, R = 60 ohms and bias current = 200 mA. Vary the control current from 0 to 600 mA by means of the resistor Rc. Take the

readings of load currents for every step of current changing in the control circuit. Reverse the polarity of the d-c supply and then repeat the procedure.


Repeat this experiment with bias current = 300 mA.

Report

Plot graphs of control currents against load currents for both cases.

(3) Push-pull type magnetic amplifier

Connect the circuit as shown. Set Ep = 19 volts. With no current in the control circuit, adjust the resistor $\rm R_1$

and R₂ until the zero output voltage is obtained, vary the control current from 0 to 100 mA. Take the readings of output voltage. Reverse the polarity of the d-c supply and then repeat the procedure.

Report

Plot graph of output voltages ngainst control currents.

Test Data The test data is obtained from the measurements carried out on the ferrite come with

- 1) a-c load windings of 1000 turns each of No 25 wire (Standard Wire gauge)
- 2) d-c control windings of 1000 turns each of No 25 wire (Standard Wire gauge).

The magnetic circuit of each core has an effective area of 0.785 cm² and a mean length of 15 cms.

(1) Nonpolarized Magnetic Amplifier

Supply voltage = 10 volts
Load resistance = 17 ohms

Positive control current mA	Load current mA	Negative control current mA	Load current
0	108	0	108
40	109	40	109
80	114	80	114
1200	122	120	122
160	130	160	130
200	134	200	134
240	140	240	140
280	144	280	144
320	147	320	147
360	150	360	150
400	152	400	152
			1921

Supply voltage = 12 volts Load resistance = 17 ohms

Positive control current mA	Load current	Negative control current mA	Load current
0	130	0	130
40	132	40	132
80	138	80	138
120	147	120	147
160	155	160	155
200	164	200	164
240	170	240	170
280	176	280	176
320	180	320	180
360	182	360	182
400	184	400	184

Supply voltage = 15 volts
Load resistance = 17 ohms

Positive control current mA	Load current	Negative control current mA	Load current
0	161	0	161
40	163	40	163
80	171	80	171
120	182	120	182
160	194	160	194
200	203	200	203
240	210	240	210
280	216	280	216
320	221	320	221
360	224	360	224
400	228	400	228

(2) Polarized Magnetic Amplifier

(a) The test data is obtained from the measurements carried out on the ferrite core as in the nonpolarized circuit but with the additional bias windings of 300 turns each of No 25 wire (Standard Wire gauge).

Supply voltage = 16.5 volts

Load resistance = 60 ohms

Bias current = 300 mA

Positive control current mA	Load current	Negative control current mA	Load curren
0	104.5	0	104.5
40	106.5	40	102.5
80	108.5	80	101.5
120	110.5	120	100.0
160	113.0	160	100.5
200	115.0	200	101.5
300	118.0	300	105.0
400	120.0	400	110.5
500	121.5	500	114.0
600	123.0	600	117.0

Supply voltage = 16.5 volts.

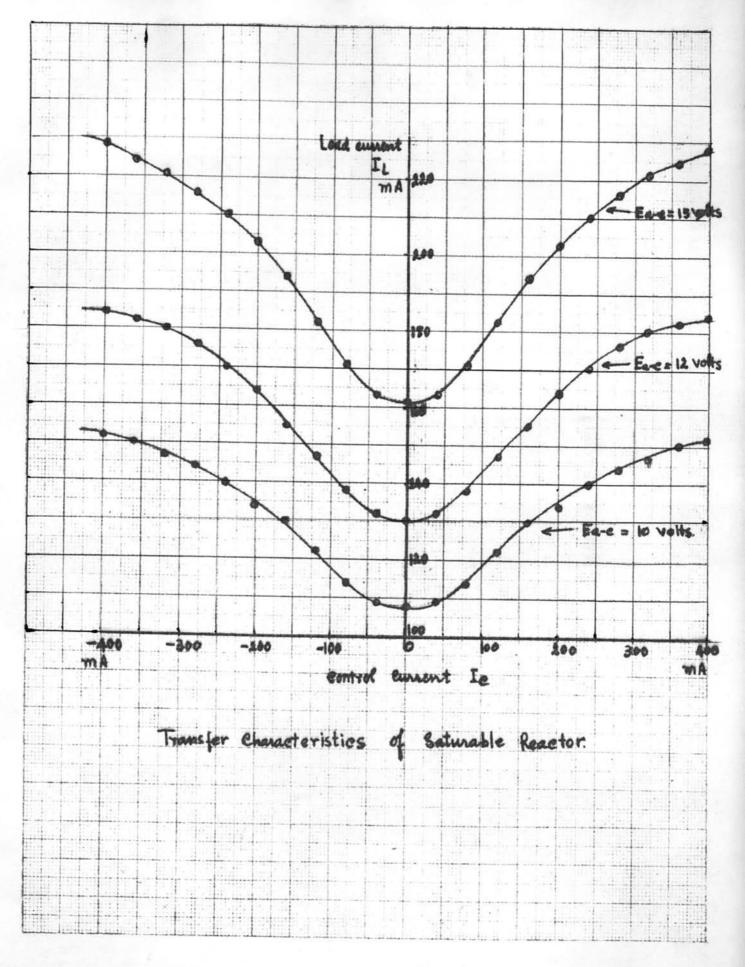
Load resitance = 60.0 ohms.

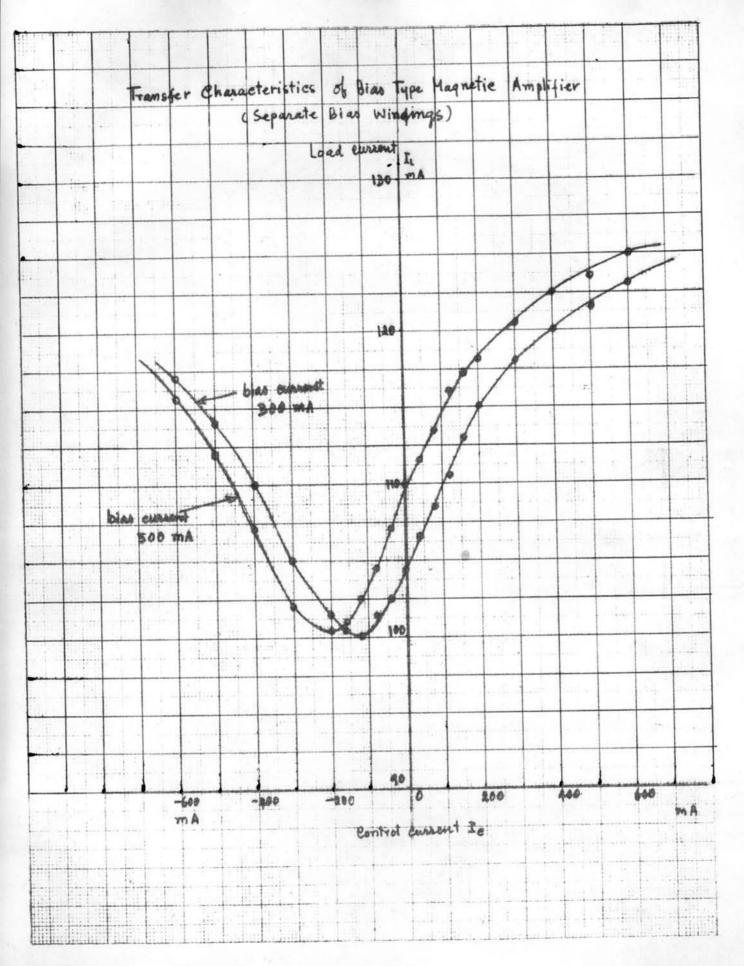
Bias current = 500 mA.

Positive control current mA	Load current	Negative control current mA	Load current
0	110.0	0	110.0
40	111.5	40	107.0
80	113.5	80	104.5
120	116.0	120	102.0
200	118.0	200	100.2
300	120.5	300	102.0
400	122.5	400	107.0
500	123.0	500	112.0
600	125.0	600	115.5

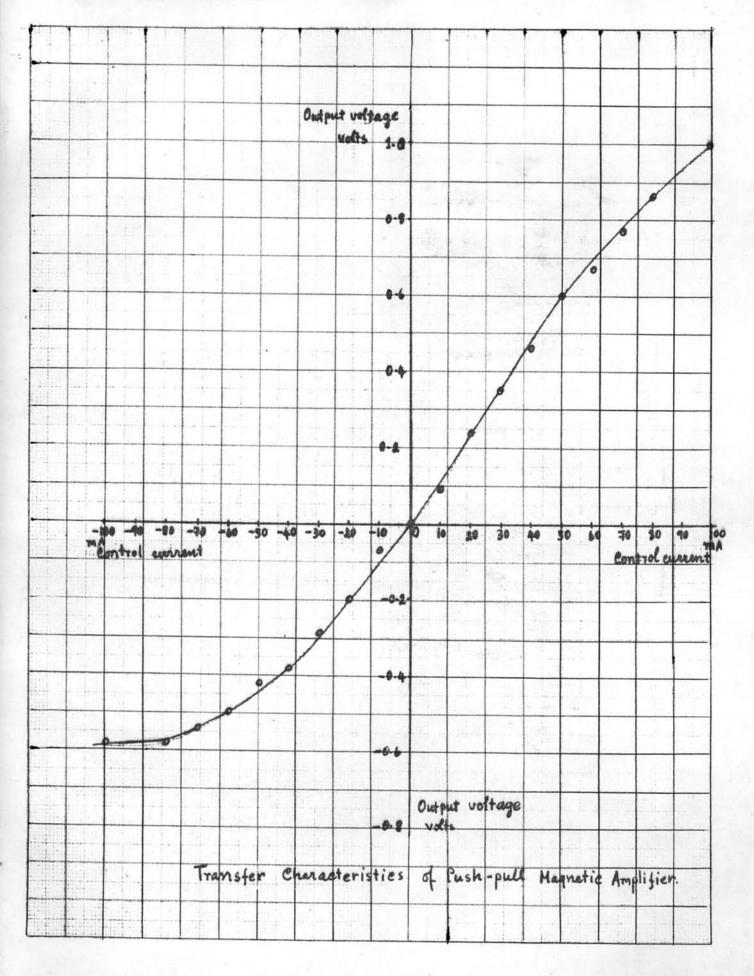
(b) Supply voltage = 16.5 volts.

Load resistance = 60.0 ohms.


Positive	Load current		Load current
control current	mA	control current	mA
0	105.0	0	105.0
40	107.0	40	104.0
80	109.5	80	102.0
120	111.0	120	100.0
160	112.0	160	99.0
200	113.5	200	98.0
240	115.0	240	98.5
300	115.5	300	99.0
1400	117.5	400	104.0
500	119.0	500	108.5
600	119.5	600	112.5


Bias current = 300 mA.

Positive control current mA	Load current mA	Negative control current mA	Load current
0	111.0	0	111.0
40	113.5	40	110.5
80	114.5	80	110.0
120	116.0	120	108.0
160	117.0	160	106.0
200	118.0	200	103.0
240	118.5	240	101.5
300	119.5	300	100.5
400	120.5	400	101.0
500	121.5	500	105.5
600	122.0	600	110.0


(3) Push-pull Type Magnetic Amplifier

Positive control current mA	Positive output voltage volts	Negative control current mA	Negative output voltage volts
0	0.00	0	0.00
10	0.09	10	0.07
20	0.24	20	0.20
30	0.35	30	0.29
40	0.46	40	0.38
50	0.60	50	0.42
60	0.67	60	0.50
70	0.77	70	0.54
80	0.86	80	0.58

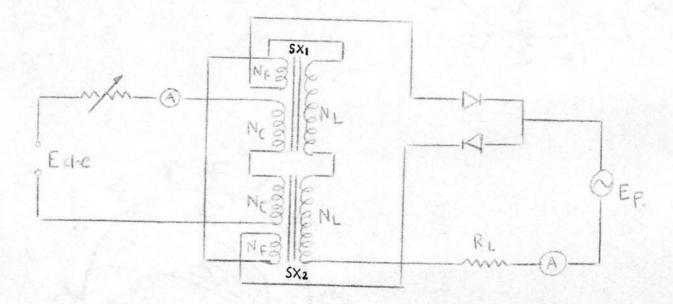
		T	rans	er (Char	ecteri	sties	of	Bias	upe	Haar	وناء	Amo	ilion		
1	- 1012			(The (Contro	Wiv	ding	\$ Ac	tina	Ac D	- M	المان			
La			THE S					1	110	7	79 10	24	main	45)		
						-		130	Loa	t tu	and			-		+
			-	-					WA					-		
		-														
1			nia													
								4 4						-		
								120						-	-	-
										1	~	-				-
									1	8	1			1-		
		7		_ bie	16 eun	wet	ln i		9		6					1 10
			1		300	mA		9)	/		771					
			71					1	110 9							
	bia	con	wet \	1			. /	/	1							-
	1	.00 m	A	1			/	1	4							
				1		1		1				Time				
				-	1	1	1	100							100	
					1		9									18
					4											
													-			
			46	-				90								
	707					-24	10	4	,	26	0	4	80	6	90 Y	mA
							Cont	vol e	urran	i Ic						
				++	-	++		4				1 11				
										11						

Discussion

The bias current produces the magnetomotive force in the reactor core and drives the flux in the positive direction. The impedance of the load circuit decreases as the control current increases in positive direction and causes increasing in the load current. Now, for applying the negative control current into the control circuit the flux produced by the control current is opposed to that of the bias current. For this fact, the impedance of the load circuit is increased and the output current decreases. It can be pointed out that a positive control signal causes an increased output while a negative control signal reduces the output.

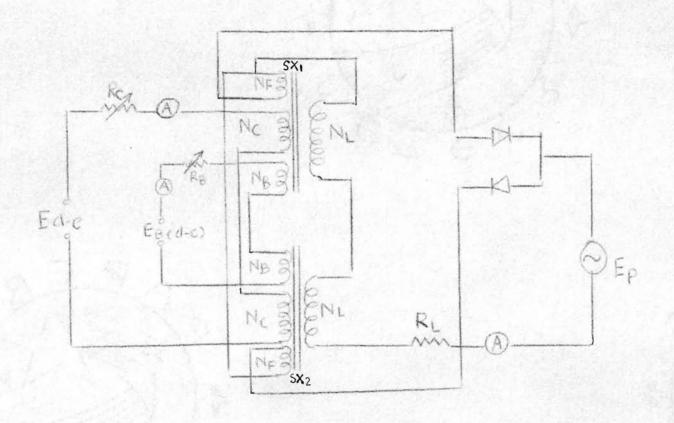
For the graph page 68, the positive and negative portions of the composite characteristic are not symmetry. This is because of the two reactors have not identical characteristics.

EXPERIMENT NO.4


External Feedback Magnetic Amplifier

Purpose

The purpose of this experiment is to study the control characteristics of the feedback magnetic amplifier.


Procedure

(a) Connect the circuit as shown. Set Ep = 20 volts, $R_{\rm L}$ = 40 ohms. Vary the control current from 0 to 600 milliamps

by means of the resistor Rc about 8 steps. Take the readings of the load currents. Reverse the d-c power supply and themrepeat the procedure.

(b) Connect the circuit as shown. Set Ep = 20 volts, R = 40 ohms and the bias current = 160 milliamps. Repeat the procedure as in (a)

Set the bias current = 300 milliamps and repeat the proce dure

Report

Plot graps of control currents against load currents for (a) and (b).

Test Data The test data is obtained from the measurements carried out on the ferrite core with

NL = 1000 turns

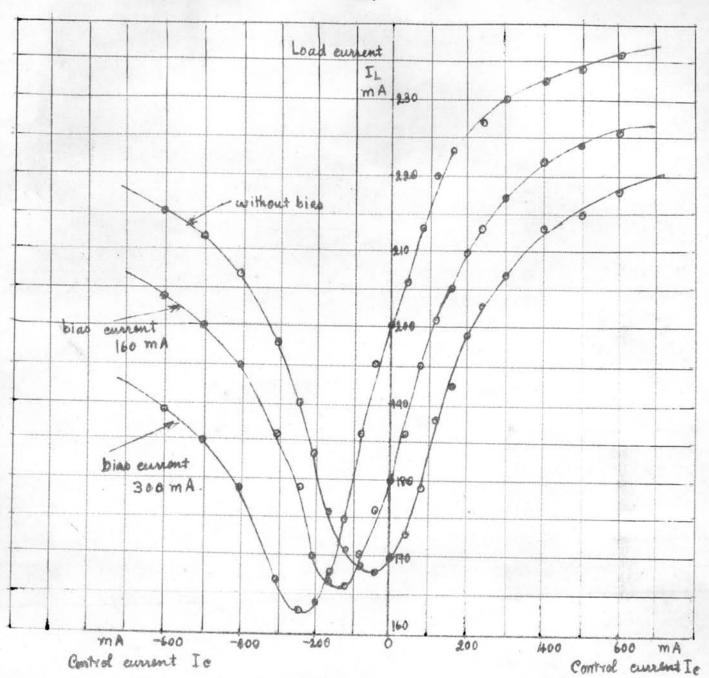
NC = 1000 turns

NF = 300 turns

NC = 300 turns

The magnetic circuit has an effective area of $0.785~\rm{cm}^2$ and a means length of 15 cms.

Without bias


Positive control current mA	Load current mA	Negative control current mA	Load current mA
0	170	0	170
40	173	40	168
80	179	80	169
120	188	120	171
160	192	160	176
200	199	200	183
240	203	240	198
300	207	300	207
400	213	400	207
500	215	500	212
600	218	600	215

Bias current = 160 mA

Positive control current mA	Load current mA	Negative control current mA	Load current mA
0	180	0	180
40	186	40	176
80	195	80	170
120	201	120	166
160	205	160	167
200	210	200	170
240	213	240	179
300	217	300	186
400	222	1+00	195
500	224	500	200
600	226	600	204

Bias current = 340 mA

Positive control Load current mA	9	
40 206 80 213 120 220 160 223 200 226	40 80 120	195 186 175
80 213 120 220 160 223 200 226	80 120	186 175
120 220 160 223 200 226	120	175
160 223 200 226		
200 226	160	168
		204
240 227	200	164
	240	163
300 230	300	167
400 232	400	179
500 234 600 236	500	185 189

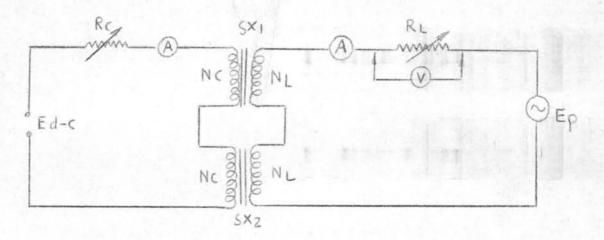
Characteristics of External Feedback Magnetic Amplifier

Discussion

From graphsobtained from the test it can be seen the that the transfer characteristics of the external feedback circuit are similar to those of bias circuit. In the bias circuit the bias current produces the fixed magnetomotive force to the reactor core whereas in the feedback circuit the magnetomotive force produced by the feedback windings depends on the load current.

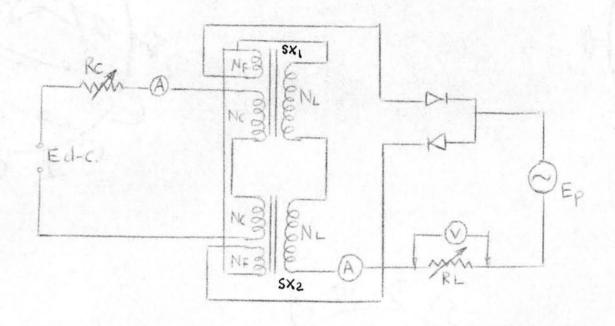
EXPERIMENT NO.5

Single Stage and Multi Stage Magnetic Power Amplifiers


Purpose

The purpose of this experiment is to study the power gain and load characteristics of magnetic amplifiers.

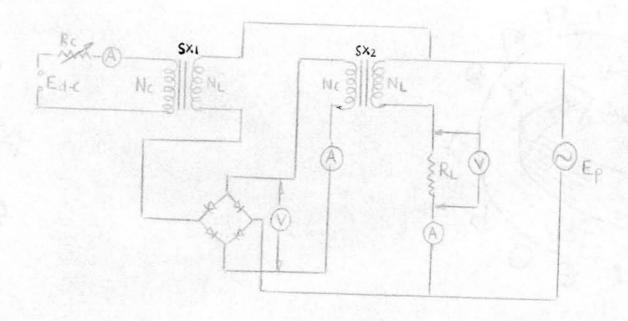
Procedure


Single stage magnetic amplifier

(a) Connect the circuit as shown. Set E_p = 18 volts, I_C = 200 milliamps. Vary the load resistance R_L about 8 steps

from its minimum to its maximum value (80 ohms). Take the readings of load currents and load voltages, and also measure the d-c supply voltage.

(b) Connect the circuit as shown. Repeat the procedure


as in (a)

Report

- (1) Calculate the power gain and the load resistance
- (2) Plot graphs of the power gain against the load resistance

Multistage magnetic amplifiers

Connect the circuit as shown. Set Ep = 7.5 volts, $R_{\rm L}$ = 40 ohms. Vary the control current from 20 to 200 milliamps-about 8 steps. Measure the voltages and the

currents in the control windings of the second stage and also measure the load currents and the load voltages.

Set the dc control voltage at 10 volts and then repeat the procedure

Report

Compute the power gain of the first, the second stage and the overall power gain.

Test Data The test data is obtained from the measurements carried out on the ferrite core with

 N_L = 1000 turns, each of No 25 wire (Standard Wire gauge)

 N_C = 1000 turns, each of N_Q 25 wire (Standard Wire gauge)

 $N_{\rm F}$ = 300 turns, each of $N_{\rm P}$ 25 wire (Standard Wire gauge)

The magnetic circuit has an effective cross-sectional area of 0.785 cm^2 and a means length of 15 cms.

Single stage magnetic amplifier

(1) No feedback

Control current = 0.2 amp. Control voltage = 1.12 volts.

Power input = 0.224 watt.

		Load resistance		Gain = Power output
amp.	volts	ohms	watts	Power input
0.50	5.8	11.6	2.90	13.0
0.45	7.0	15.6	3.15	14.1
0.40	8.2	20.5	3.28	14.6
0.35	10.0	28.6	3.50	15.6
0.30	11.2	37•4	3.36	15.0
0.25	12.7	51.0	3.17	14.2
0.20	14.1	70.5	2.82	12.6

(2) With external regenerative feedback

Control current = 0.2 amp. Control voltage = 1.12 volts

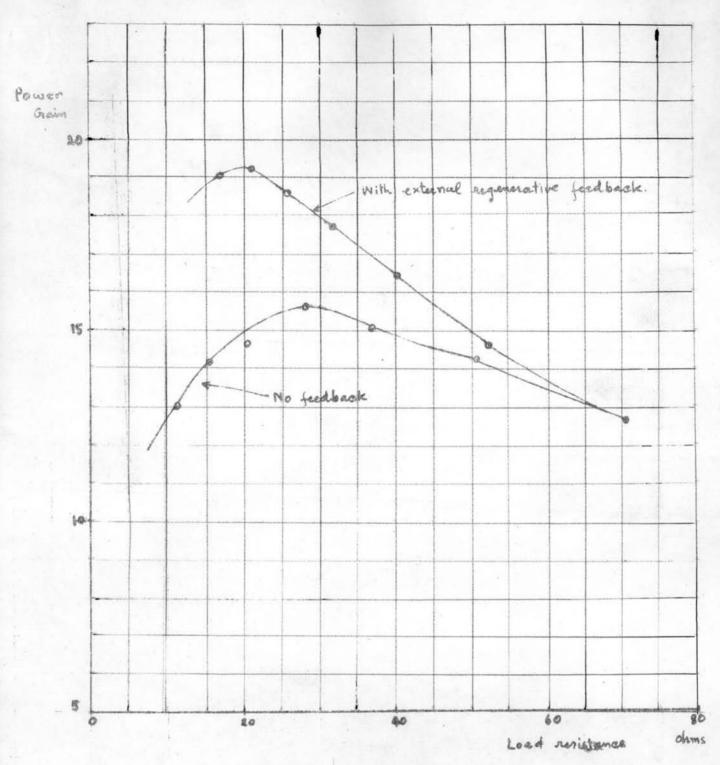
Power input = 0.224 watts

Load current amp.		Load voltage volts	Load resis- tance ohms	Power output watts	Gain = Power output Power input	
	0.50	8.5	17.0	4.25	19.0	
	0.45	9.5	21.2	4.28	19.2	
	0.40	10.4	26.0	4.16	18.6	
	0.35	11.3	32•3	3.96	17.7	
	0.30	12.2	40.7	3.66	16.4	
	0.25	13.1	52.5	3.27	14.6	
	0.20	14.1	70.5	2.82	12.6	

Multistage magnetic amplifier

Supply voltage = 7.5 volts
Load resistance = 40.0 ohms

Control current amp	Control	Power input watt	First Stage					
	voltage volt		Load current amp	Load voltage volts	Power output watts	Power gain		
0.02	0.10	0.0020	0.175	1.000	0.175	87.5		
0.04	0.16	0.0064	0.180	1.015	0.1825	28.5		
0.06	0.333	0.0198	0.185	1.030	0.190	9.6		
0.08	0.40	0.0320	0.190	1.090	0.27	8.18		
0.12	0.64	0.0768	0.198	1.160	0.25	3.26		
0.16	0.92	0.1470	0.215	1.240	0.266	1.81		
0.20	1.12	0.3550	0.225	1.300	0.292	1.30		


current mA	Control	Power input - watt	Second Stage					
	voltage		Load current amp	Load voltage volts	Power output watts	Power gain	Overall gain	
0.02	0.10	0.0020	0.0800	3.65	0.292	1.67	146.00	
0.04	0.16	0.0064	0.0815	3.67	0.296	1.62	46.00	
0.06	0.33	0.0198	0.0810	3.69	0.298	1.57	15.01	
0.08	0.40	0.0320	0.0815	3.70	0.302	1.46	9.45	
0.12	0.64	0.0768	0.0825	3.73	0.308	1.25	4.00	
0.16	0.92	0.1470	0.0835	3.75	0.314	1.18	2.14	
0.20	1.12	0.2240	0.0845	3.80	0.320	1.10	1.43	

Supply voltage = 10 volts

Load resistance = 40 ohms

Control current amp	Control	Power input watt	First Stage					
	voltage volt		Load current amp	Load voltage volts	Power output watts	Power gain		
0.02	0.10	0.0020	0.239	1.38	0.330	165.00		
0.04	0.21	0.0084	0.248	1.42	0.352	42.00		
0.06	0.32	0.0192	0.255	1.48	0.377	19.60		
0.08	0.42	0.0336	0.260	1.52	0.395	11.50		
0.12	0.63	0.0756	0.275	1.60	0.440	5.82		
0.16	0.92	0.1470	0.290	1.70	0.493	3.36		
0.20	1.14	0.2280	0.300	1.78	0.535	2.34		

Control Control current voltage mA volt	Power input Watt	Second Stage						
		Load current amp	Load voltage volts	Power output watts	Power gain	Overall gain		
0.02	0.10	0.0020	0.1090	5.00	0.545	1.65	272.5	
0.04	0.21	0.0084	0.1100	5.09	0.560	1.59	66.7	
0.06	0.32	0.0192	0.1105	5.10	0.563	1.50	29.3	
0.08	0.42	0.0336	0.1110	5.11	0.568	1.44	16.9	
0.12	0.63	0.0756	0.1120	5.14	0.575	1.31	7.60	
0.16	0.92	0.1470	0.1125	5.17	0.582	1.18	3.96	
0.20	1.14	0.2280	0.1130	5.20	0.588	1.10	2.58	

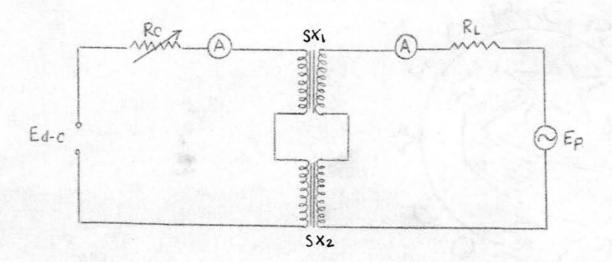
Load characteristies of magnetic amplifier.

Discussion

The maximum power gain is obtained when the load resistance is 28.6 ohms. Beyond this point the power gain tends to decrease. Adding the feedback windings causes an increase in power gain but cause no change in load characteristics.

In the multistage circuit, from the data it can be seen that the power gain of the second stage is very low.

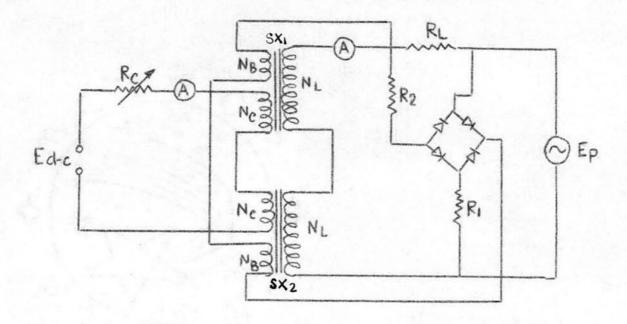
This is because of the saturation of magnetic core.


The Proposed Experiment on Magnetic Amplifier for UndergraduateStudents in Electrical Engineering

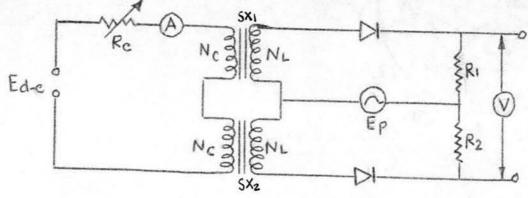
Purpose

The purpose of this experiment is to study the characteristics of the magnetic amplifier.

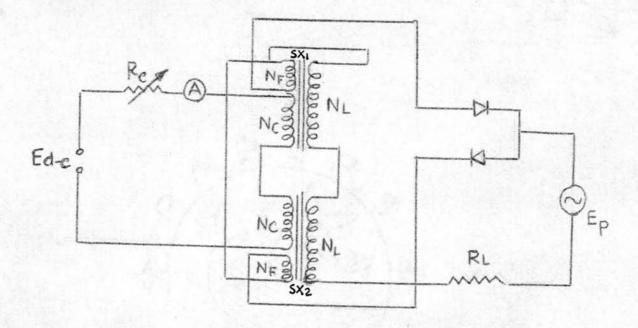
Procedure


(1) Connect the circuit as shown. Set Ep = 10 volts and $R_{\rm L}$ = 17 ohms. Vary the control current from 0 to 500 mA

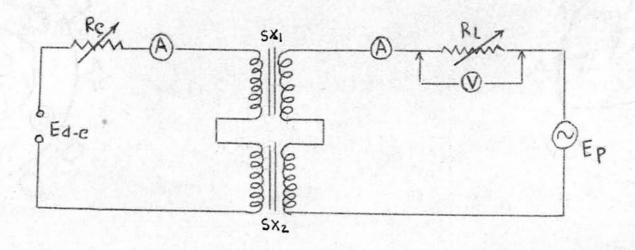
by means of the resistor Rc. Take the readings of load current.
Reverse the polarity of control current and repeat the
procedure


(2) Arrange the circuit as shown. Set Ep = 10 volts, $R_{\rm L}$ = 17 ohms and the bias current = 300 mA. Vary the control

current from 0 to 600 mA by means of the resistor Rc. Take


the readings of load current for every step of current changing in the control circuit. Reverse the polarity of the d-c supply and then repeat the procedure.

(3) Connect the circuit as shown. Set Ep=19 volts. With no current in the control circuit, adjust the resistor R_1


and R₂ until the zero output voltage is obtained. Vary the control current from 0 to 100 mA. Take the readings of output voltage. Reverse the polarity of the d-c supply and then repeat the procedure.

(4) Connect the circuit as shown. Set Ep = 20 volts, $R_{\rm L}$ = 40 ohms. Vary the control current from 0 to 600

milliamps by means of the resistor Rc about 8 steps. Take the readings of the load currents. Reverse the d-c power supply and then repeat the procedure.

(5) Arrange the circuit as shown. Set Ep = 18 volts,

Ic = 200 milliamp. Vary the load resistance $R_{\rm L}$ about 8 steps from its minimum to its maximum value (80 ohms). Take the readings of load currents and load voltages, also measure the d-c supply voltage.

Report

- (1) Plot graphs of control currents against load currents for test (1) and (2)
- (2) Plot graph of output voltages against control currents for test (3)
- (3) Plot graph of control currents against load currents for test (4)
 - (4) Calculate the power gain for test (5)
- (5) Plot graph of the power gain against the load resistance.

CONCLUSION

Most results of all experiments are closed to the theory. Only some of them differ from the typical characteristics of the magnetic amplifiers. This is due to the core material of the saturable reactor has considerably different characteristics from the standard material used in magnetic amplifier circuits. The core structure is not a solid unit. It consists of two separate parts. This causes an air gap to exist between them. This results in producing large leakage flux and lowering the power gain of the amplifier. Furthermore, the core material has a low saturation flux density which in turn causes a low inductance in the load circuit. This results in a narrow controlling range of the output. Besides, the measuring instruments used in performing the experiments have low quality and the measuring range is not low enough to carry out the lower portions of the characteristic curves. However, the author has tried his best to cover as many experiments as the equipments are available.

Whenever the magnetic amplifier laboratory is complete, it can be extended to cover the experiments on the magnetic measurement, the frequency response and the internal feedback circuits with some more equipment needed. If this could be done the course in magnetic amplifier is expected to be more complete than it used to be.