CHAPTER II

PRELIMINARIES

The purpose of this chapter is to summarize necessary

background on probability thcory needed in this work.

2«71 Definitions and Well=Known Resultg_

By a probability space we mean a measure space ({\, P, P)

in which P(¥% ) = 1 . Here £} 1is a set known as a sanmple sphgg i

Cﬂ is a Borel field of subsets of £ \ y Sets in ip will be refered

to as events and the measure P is call a probability measure .

By an m-dimensional random vector we mean a measurable

function X from J L into Rm « A l-dimensional random vector is algo

called a random variable . If X is an m-dimensional random vector ’

then for any w € S , we have X(w) = (Xl(w),...,xm(w)) , where
xi,...,xm are the components of X . For any Borel measurable
function g : w1 y the composition goX of g with an m=dimensional
random vector X is always a random variable . If the integral
J}IQOXdP exists , we call it the expectation of goX , and will be
denoted by E|g(X)] . Let g (xi,..,,xm) = Xj « If the expectation

J
E [{gj(x) - E:[gj(}{)]} {gk{X) - E(gl(c}()lﬂ exists , it will be called

the covariance of X’ and Xk sy written cov(xj,xk) o In general,

r
if E [‘ﬁ (gj(X)) j] exists , we call it a product moment of X of
=1

/

order L *eestr , and will be denoted by /hfrl’..-,rmtx) .



Theorem 2«11 Let X be a random vector, and put

/ /

= X o o6 x) L]

Ax Mk,O,...,O(X)+M0,k,O,...,O( )+ *‘"‘o,...,o,x(
o0 ?rdc

Then, if the series EE: ok is divergent, the distribution P of
k=1

X is uniquely determined by its moments.

A proof of this theorem can be found in [1] -

fr]
Por any random variable X , let X} “= X(X=1)e oo(X-r+1)

m o

and X[O]= 1. If E {TT-(g.(X)) 3 J exists, it will be called a
j=t A

product factor;al moment of X of order L teeetl o and will be

denoted by,fft v
1

](X). It is well known that we can express
b3

e
(2'1'1)Mr1,...,rmcm = }{1 L, B s /({Elﬂ---['i 10

i=1 m

m

where ail---im depend only on PR

The characteristic function of a random vector X is defined
it.X
as W(ti,—o-,tm) = E(e

it.xl

), where t€ Rm, teX = t1X1+..a+thm-

Since | e = 1 for all t&.Rm, it follows that the characteristic

function can be defined for every random vector. The generating
function G(ti"°"tm)’ if it exists, is defined by

logt 1ogt

G(t ,...,t )(p (—= m ). It can be shown that, if

/

/({ [r,l:] & .{rm]

1’0..’

(X) exists, then for any non-negative integers

rl’ao.,rm



/ L. +oest+l
01 m
(2.1.2) /‘Z [r'l]"‘{rm](m = 1im_5rm :(:(i(ti""'tm” R
tj-ai t ...at,l

j=1, soeoyll

2.2 Convergence of Distributions of Random Vectors

A sequence EPn} is said to converge to the distribution P ,
and write Pn———-vP y 1f _(n fdPn—;S.ﬁ fdP for every bounded ,
continuous real function f onf{l . Let {Xn} be a sequence of

random vectors , we say that {xn} converges in distribution to the

random vector X , and write x545—ax y if the distribution Pn of xn
converges to the distribution P of X .

Theorem 2.2.1 Let {J&J be a sequence of random vectors such that

for any non-negative integers rl,...,rm

(xn) y exist for all n ;

- i o
yesmy m

(a) ,&{
r
1

‘
‘ -
(b)I/L(ri,...’rm(Xn) 3 K(ri,...,rm) for all n;

’

(x ) = A exists 3
n Eyseeesr

,
(¢) lim A¢

r r
n=xco 12°°* " n

(d)there exists a random vector X with distribution P such

/

e
that’A{rd,...,rm(X) - /L(ri,'..’rm and P is uniquely determined

/
by,i{'r .

1’...,rm



Then {an converges to X .

A proof of this theorem can be found in [5] .

23 Multivariate Poisson Distribution

In this section we give a definition of multivariate Poisson
distributions and some results about them .
First we introduce some notations . For any positive integer

m , let

(2.3.1) P = {s JFH s {1,2,...,:1-.}} .

Throughout our discussion , we shall use Pm as the index set of our

parameters .

Definition 2.3.1 If a random vector X has the characteristic

function
(2.3.2) (P (t geeey® ) =""eXp [ } (a(s) |1 z.,) = 2 , afls) ’
1 m s ¢
.st P ies s¢€P
m m
where a(s) are non-negative real numbers and Zg = exp(itj) s We say

that it has a multivariate Poisson with parameters a(s) .

This definition is the same as that used by Carol E. Fuchs

and H.T. David [2] « From (2.3.2) , we have

(2.3.3) G(t1"“'tm) = exp [l_, (a(s) TT t,) - Zﬂ, a(s)] "

st P i€s i sé¢€ P
m m

from which the joint probability functions of xl,...,xm can be

derived . We have
Sh—

. An ! 11- (a(s)?“s)
—~ X(sIT~ *

Lok (s)=k . for all j @¢P
Je€s ] m

1
(203.4) P(X =k1,...,xm=km)



—t—

where A = 2h4 a(s)
s€ Pm

It can be shown that the distribution of a multivariate
'd

Poisson is uniquely determined by its moments AL r = A
’0.0'
m
proof of this fact-can be found in [2] .
The following theorem is an immediate consequence of

Theorem 2.2.1 «

Theorem 2.3.,1 Let X be a multivariate Poisson random vector . Let

&xn} be a sequence of random vectors such that for any non-negative

integers Lysesesl

/
' 3 -
(a*) /A{r -~ (Xn) s exist for all n ;
1 m
4
(b*) JA{r P (Xn} £ K(ri,...,rm) for all n ;
1 m
7’ /
L -
teta iinmﬂrl’..-’rm(xn) - Hris---:rm(X) :

Then xn converges to X .

By applying (2.1.1) , we obtain a sufficient condition for
convergence to a Poisson random vector in terms of factorial
moments .

Theorem 2+.3.2 Let X be a multivariate Poisson random vector .

Let {xn} be a sequence of random vectors such that for any

non=negative integers L geeesl
/
(am) )LQr (X ) , exist for all n
,l].-.[rm] n ! "

,
" < H
(p") }{Efl]---[rm] (xn) < K(r1,...,rm) for all n ;



!

/
( ") 1im (X ) == /‘( X) ®
e n_’ao/‘.{[ri]...[rm] n {ri]... Irm](
Then Xn converges to X .

In order to apply the Theorem 2.3.2 , we need to know the
factorial moments of Poisson random vectors . These are given in
the following theorem .

Theorem 2.3.,3 Let X be an m=dimensional Poisson random vector

with parameters a(s) , s€ Pm « /Then the factorial moments of X are
given by

) TR (A(s))d¢s)
{2-305)/'([]:1] ...[rnj)() = L.‘ l I (r.!) [-{ W! y

dED j=1 J sep
m

.

where T aeee,X are any non-negative integers, and

D = {d/d: Pm___;{o,i,...] =y d(s) = rj} ’ A(s) = 2_.. a(s') .

.
3 j€s sGsY¢ Pm
Proof Observe that
. k|
. S
(2.3-6) G(t ,.o.,t ) = exp L (a(S) ‘,‘t.) - L 3(5)
1 m i
SEP ie s s€ P
L m m
T P
= exp { L at IT ¢ -1)] g
5€Pm i€ s

We shall show that for any s é§ Pm

—ﬂ e
(2-3-7} TI t. - 1 = L ‘\ (t.- 1) e
le¢ s + (f)i‘s‘&s i€ s* T

We prove this by induction on the cardinality of s€ Pm « For
|s| = 1, it is clear that (2.3.7) holds . Assume that (2.3.7)

holds for all s¢ Pm such that |s§{ = k 2 1 . Let s'¢ Pm be such that

‘S'I = k+1 . We assume that s' = iji""'jk+1} and let s"={j1,...,jk‘.



Observe that

T 23at =t IF 3 l® &5 T eosd

je sv J jesrd jesm je sm

=(|:[ e = e (I e n
j SJ Jk+f|. jisnj

(T et = v=tt, = De(TT £)-10(t, = 9
jes" J Jk+1 jk+1 jes" J Jk+1

66, = W #0060 W 2 atyele. =9
k+1 jes" J jes J Ix+1

-l T, -1)} IR L] (£,-1)

jk+1 ¢;£s'§s"3gs' 4%5‘55"3«5‘

£(£///='1)
jlc+1

= E r (t ""1) -
é#s‘ss'j(s‘ J

Hence (2.3.7) holds for all ser.

By using (2.3.7) it follows from (2.3.6) that

-

G(t,l'o..,tm) = eXp E a(s)( : ﬂ (ti-j.))l

*Cc =i "
| S€ Prn fnés €sies

= exp ;C L a(s) TT (¢, -1)]

P As*Es iés*

= exp[z L ats) 11 (ti—‘l)}
ies*

S*€P s"C sep
m m

| o
= exp[L, ( }__, ats)) 1 (ti-‘l)]

s‘me s*gséPm iés*
= O Also IT (e, -1}}
sS*% Pm ies*

.o I R n
n=0 S"(Pm ies®
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o e W x(s*) | [/ __
=3, L ﬂ (A(s*) “ (ti-‘l)) n!} ! (d(s")!l n!
n=0| }_ K(s*)=ngs* P ies* S*¢P
s‘éPm " m
ci(s*)20
K(s*) L &(s*)
=, it & m je s*
5 1 Qe ™ &
n=0 |  ®&(s*)=n, s*p X's%)! j=1 J
sS* P m
m
*($H20
) oo ﬂ x(s®*) m
R (Als*)) Tict, -1)j
‘ll_c: L_"P_ A(s*) —k sfor all j S*eP <(s*)T jl |1
1 ﬁ j€s

K(s*)20

Hence

'brl-l-...-r-r
(G(t ,...,t )

2 ™
tm .00 at

=2 e %(s) m (r,] ker,
%V, seede 2, 1Ty Tik, 3 (e,-1)3 3
kir,l kf:ﬂrm_]ge;((S):kj for all j, sCPm xX(s)! j=1 J J
A(s)20
,tJ'<1 ’ jﬂ‘l,ou-,m .
Therefore
OL +esetl
lim bt e (G(t, yeeeyt )
P | “m ! 1 rn
] bt oos OF;
J 19..1,1‘“ 1
Tl — A(s) m (r,g
o s I Qs e’
Ld\(s)—rj for all j, sep &(s)! j=1

j€s
x(s)20
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s m o A(s)
- 2. (e, ) (Xs))
Z:dis)=rj for all j, j=1 J stPanESS!
jes
o (5)20
Toom - d(s)
=>__, e 11 Qacs)) :
a€D j=1 J seP d(s)!

By (2.1«') y We have (2.3.5) .

2.4 Factorial Moments of Zero-One Random Vectors

Our main theorem of chapter III , deals with random vectors
whose components Xi can take only the values 0 or 1 . For such

random variables we always have Xi(xi—l} = 0 identically . This

M

identity gives us a useful identity which will be needed in the

computation of factorial moments of such random vectors .
Lemma 2.4.1 If x-iT = 0 or 1 for all i = 1yee0yn j = 1yeee,m , then
for any non-negative integers r

""’rm such that g 4‘..¢+rm 21,

1 1
we have
nora ale)
(2.4.1) T} Lin] j
j:‘l =1
n n n n
= sso e a - e N X ...X. a8 el .ncx -
:LL'ﬂ_ ilr'-"l iz‘ji i1 1Ty, le Yor
1 1r1 m1 mr 1 ’ m

ijl are distinct,j=1,¢<.,m

Proof Pirst we prove that , if r 2 1 , then

j
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no o) n n . .
(2.4.2) {E: Pl Taoeddlad
=1 131 ~1 1 jr .
At hEe B I
ijl are distinct
cn <[1] -
Since 15::Xij = ) Xi » hence (2.4.2) holds for rj=1 .

Assume that (2.4.2) holds for rj=k51 =

Observe that

1\
l"'x‘-—'
Waiirirrel
—
=~
+
N
i}
'-'-"'\
"Fjb
pu
gy’
—
oy
T~
et
-
P
|
-
[

1= =1
n Y “n 5
j j ##- j }
= sea EX ensX LX,—k
=itk ! Rt
1.. are distinct
jl
n n - . y
= son ’{(xi .‘.le?. )( \ xi +Xi +...+Xj -k)}
iJi ij§1 e jk j?k+1a(k+1) jj jk
ijl are distinct lj(k+1)* iji""’ijk

— LS j =5 j
= 1 eee LX) eeex] D0 TUX] (X eD) e intxd -1)}

 — — O i, L_a - X
ljil iJE1 j1 jk JT% 13(k+1) 5 jk
ljl are distinct lj{k+1)#lj1’°'°’ijk
R j o T d e caysd )
- i[=:1-"iL xiji...xij(k”)«»iz:l...i)*:ixi;}'clij-{i)xijé..xij
i1 jTR+1) i1 ik
i,. are distinct i.. are distinct
jl jl
=
+ a L] e + EXJ ..uxJ (xJ— -
iﬁ'l 17 54 Yk 5k

i,, are distinct
jl
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n ;
- e e
- aoe v i. 8 o0 i.{k 1) L]
11t H08h 1 AL
i. ., are distinct
jl
The last equality follows from the fact that Xiixi-i) =0 .
Hence (2.4.2) holds for any positive integer rj P

Observe that for any non=negative integers rl"°"rm such that

r +eoett 2 1
1 m

j=1'iT1 S e NN T R P .
i., are distinct
jl
n n n n
= \ so 0 a8 0 X e X X -.-X
L_' )—’ }—’... i o e e 0 i i
1131 11§1 lmii im;i 11 1r1 ml me
1 m
ijl are distinct j=1,ee.,m

Theorem 2.4.1 Let Xi = (X;,...,XT) y i=1,e¢es,n be m=dimensional

random vectors where the components can take only the values O or 1.

Let Sn = x1+...+xn « Then for any non-negative integers T yeee,r

such that E *eeadr » 1, we have

/

(2.4.3)/*( (s)
rﬁl o-a[rmT

n n __n_‘ n 1 1
= E s 80 E.a- LJ oo ’P(Xi =...=Ki -——oc-XI; n...x;‘ “1}
11?1 11§1 imii im?% 11 1r1 ml mr

ij are distinct j=1,cee,m
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Proof For any non-negative integers r,,e.s,r

1 m
’ noon ]
(2.4.4) A/ (s = E(] [E::xil %3
[rij...[rmj j=1i=1

Applying the Lemma 2.4.1 to (2.4.4) , we have

/
(2.4.5) /M (s_)
[ri]...[rm] n

n n n n 1 o
= E( Eiﬂ. ‘.B’. Eﬂ.n Exi lI.xi o..x;{j ..-Xi )
1§1 iiﬁ; Jmﬁi lm?; 11 1r1 ml mr
ijl are/distinct j=1ys0e4m

/ . i i
1 i mfi i 5 1r1 ml mrm

i

Tl e O e S SR I,
- o e a L-n. DGQZE(X --.X LR i L i )
17 17

jl
= , 90 Loo- E-a- P(Xi =...Xi =...Xr.n =...Xr:n 21)
121 1i=1_4=1 1=z1 ~T11 1, m1  mr
11 '1r1 ml o 1 m

1,. are distinct j=1,eee,m
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