CHAPTER TIT
CONVOLUTIONS

The materials of this chapter are drawn from references

(s (2], 3] -

3e1 Definition. Let f and 5 be real valued measurable functions

on R%. The convolution “k-= fxg A& defined by

R0 2 ) = [ (neGeyIay

where J- is a lehesgue Antegral and integrate over whole space.

Convolution is & kind of multiplication, 1V is not closed
under pointwise multiplicationy —Tor instance,

S 0 ¢ x <1

R 1KY

£(x) = glr—ed d

0 otherwise .
It shows that f,g belongs to 1V but £ does not. However, L' is
closed under the " convolution procduct '". To show this claim, we

have a theorem as fallows :

3,2 Lemma. Let ¥, Y, % be topological spaces, and let @ : X—> Y
be continuous function. If g : Y—3Z is Lorel measurable, then

Fr

so is go @ : X — %,
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Proof : Since # is a continuous function, If E is open, then ﬂ-q(E)
is open., Let @ be the collection of all E C Y, for which G-q(E) is
a Borel set. UYe claim that B is ¢ -plgebra in Y.

=} —1
) Y& , since X = @ (Y) is a Borel set.

=1

ii) If A €49, i,e. P (4) is a Forel sect, and ﬁ—1(ﬁc) = 19-1(ﬂ)]c

is a Borel sct,

then A%e¢ B -
A g N =1
iii) If Aii B v i B T2y naaioiete ot

-
1

and @ (

(Ai) are Borel set for all i,
Ja,) = 'Llﬁf1(ﬂ.) is.a DBorel set,
g1 74 i

then UJ Ai eH .
i

Hence ' is a {<alzebra in Y, and contains all Borel sets in Y.
=1 5 A ¢ - % B R
Then ¢ (E) is a Borel set/ in &, £or anv Borel set I in Y.
o

1 . _1 r . .
Now let V be amy onen-set in Z, then ; (V) is a Borel set in Y,

A =T, =1,.. : 3
and so is @ (g (V)X Accordingly g9 ¢ is a Rorel measurable.
P A o n - . .
5.5 Theoreme If f,ap € LHR™), then h = faxg is finite a.e. and bhelongs
£6 LY, Also,

Whit, < WEN g, .

Proof : Ye shall first prove that the function ¥ defined by
Flx,y) = £(v) o(x=y)

. - : n_ .n

is a Borel function on R "™ R,

; X n_.n = . .
Consider a function @ : R x R —— i is defined by

B : (xyy)t=—= x - y, Tt is easily seen that @ is continuous.
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since glx-y) = & o @(¢,y) , and g is a Borel function.
By Lemma(3.2) (x,y)+—> g(x=y) is a Borel function. Similary
(x,y)k——af(y) is a Borel function. 3ince the product of two Borel

fuactions is a Borel function, our assertion concerning F is proved.

Mext, we observe that

jdy [ | F(x,y)) dax %dy { 1£(y) | Helx=y)lax

n

ilf(y}lﬁy ( | z(x=y)1dx

"

HEh, BElg @

where J;g(x-y)tdx = ipgn1.fpr'every y € R™ which devied from the
translation invarance of /lebesgue ‘measure. Thus h = g is finite

a.e. and h € LA(r"). Conscguently, oy virtue of Tubini's Theorem,

il h “'I

W

jf]h_(-x)g&x < idx i |7 (x,¥) dy

Eap——

= { .

Hfﬂq.lglq
Convolution is commutative, that is f=«g = g+f.
3ince (£xg)(x) = Jf(q) g(x-y)dye.

If we change the variable by writing x-y = z, then

n

Lf x-z) glz)dz

(£2g)(x)

]g(z)f(x—z)dz

(exf)(x)s



Convolution is associative in L)

f, 8y h e 1Y, since

[(£25)+n](x)

{
= i
1
J

, that is (f«g)*h =

52

T+(z+h) where

jkf*r)(y) h(x=y)dy

fJf(z) gly=-2)dz | hix-y)dy

= ) Ll (z)g(y-2)h{x-y)daz | dy.
| !

Substituting y o= z+t

(

[(fap +h](x\ = J

3ince f(z)g(t)h(x=z=t)

Y

[[[lf(z)g(t)h(x-z-tﬁ{dt}&z

"

by Fubini's

I[[f(z)g(t)h(x-z—i}dz]dt

Theoremn,

I

i

3,4 (H.Hs COng)s

Theorern.

Let 1 ¢ pgmy « IT

we obtain
[jf(z)g(t)h(x-z—t)dz] at,

45 measurahle and

Jijl@(t}h(x—z-t)‘dt]| £(z)]dz

£ - %

[Jf(z),a(t)h(x z-t) dat]dz

(p*h)(x=z)dz

f
J [[ e(t)h(x-z-t)at ] £(z)dz
fet
[

f*(r4kﬁ](Y).

f ¢l and g € L,

then h = f+¢ is finite a.e., belongs to LP, and satisfies the

inequality

& ulﬂp

er
“UI‘I .
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a5

Proof : The case p = 1 was proved in Theorem 3.3. To prove the case

that p equal to @ , let ¥ = V£,

so 1 then for almost every x,

[h(x)} < Jlf(y)l!g(x-}-‘}ldy < M J | lx=-y))dy = ﬂfi‘\m e, '

which implies the cenclusion,

Let

inequality v

1< p<m® and g be such that

+
Kol B

= 1. Using Holder's

el Eog

ve have

1/ 4

|h(x)! < J(lf(b')li::(x-bf)!ﬁy'; _fv],f(y)l\g(x-y)l :J‘L*.(x-y)[ 1 ay

T : 1/
< Eflf(x)|p|g£x-y)ldyE P ) ﬁg(x—y)\dy 1 < "

? Y a P
Hence, |h(x)| < lel, { jlf(y)! lg(x-y)\dy).

Integrating

we obtain

with respect’ tO /X and interchanging the order of integration,

! P Pfq
J|h(x)! dx < .Hglq Jjﬁx( 1f())l 1u(x-v)[dy)

p/
mgn1“=4 J’dy( o P | g(x-y)| ax)

g o P it

v/,
T ¥ B a Py o
Therefore, ﬁhﬂr < el ufn;u il
= -“.l} E) 5 > l: e = l ’I i
= &l Hflp , Since 5 ‘1 = r(q+; = Pe

™

; th. >
Taking p roots the conclusion follows,

Hore generally, we have the following result.
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Consider a function H& which depending on the parameter
£ > O and satisfies conditions
'8

a) J{W&(x)1dx { Ay, for 211 £ (A is non-negative constant and

—

independent of & )

g

b) j; TE&(X)'I}‘: =1, for all £

¢) TFer any fixed > O, LI (xddy ———2 0 a8 £ =0,
&
lx| »d
Here ﬂc is czlled a Kernel.,
When Adoes f* E—as | 302

£

Before we illustrate/the meaning of these conditions we shall

show that such kerntls H_.

a.argleasily manufactured,

3¢5 Lenmma. Suppose that' BaAe LY (™) is normalized so that

J‘H(x)dx = 1. Let, H Ax)= l_-H(E). Then 1. satisfies
£ 0 =2
conditions a), b))y 8.
Proof : [|H () Jax’ b= l-l FHEY ox.
2, £ n g
&
) X% dx
Let ¥y = = , so0o dy = — and
£ n
T
J| IT:E () ax = [ H(y)ldy = A for all ¢ .
Likewise, J H € (x)ax - )H(y)dy = 1.
S0 a) and b) hold.
For any fixed J > 0,
1 % {
[ | () dx = ( = | ()| ax = | lii(y)| dy —0
11y { (%12 & 171 3%
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as & —> 0, since %é-—Aa e and integrating outside a&n expanding

sphere. S50 ¢) also holds.

e, n P 28,2
3.6 Theorem. If f& L (R") and H,_ satisfies conditions a), b) and
c). Then fsil (x) —f(x), as € —»0, at every point of continuity
of f and the convergence is uniform for x belonging to any compact

set of points of continuity of f,

Proof : Tet x be a point of continuity of f, It can be given that
1 > O and there exists 4> 0 sueh +that

(1) | f(x=-y)-£L)A /& ¥ whenever |yl < i

By condition b),

I

f;HE(x)—f(x}

/[f(x~y)HE (y)dy- [f(x)ﬁp (y)dy

-

] [Tlx=y)=f(x)'] & . (y)dy .

i

Hence

/

| 2417, (0= ()] 4f‘lfcx-y)-nx)una('y>ldy: { 4 { I+ T
BARE MES!

By (1) and condition (a),

I, ¢ 1( ]H;(y)ldy < nIlHF(y)Idy £ A%,
lyl1<d = }
If m={fil_ <o , then by condition (e¢) ,
I2 < 2nm }, iII;(y)iﬂy —>0 as &£ —— 0.
Iyl ye

Therefore,

|£2, (A)=£G € I+ I, € ¥ +0(1) < 247
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if € is sufficiently small. Since A i3 a positive constant and ¥

is arbitrary, f=i, (x) —= f(x), as € —> 0O,

Let X be any compact set of points of continuity of f. DBy Theorem
(2.6) £ is uniform continuous on K; i.e. for any giver ¥ » O there
exists o (¥) > 0 such that [f(x=y)=f(x)] < ¥ whenever |yl < o
for all x € K. Hence (f+H_)(x) is uniform convergence to f(x), as

£ —— 0,

; ) J oo
3,7 Theorem. Let x € R, if F/&/T (rR™), H_ satisfies conditions b)

&
and ¢) above, and H, > O —then
{4) lim sup (f:Hﬁ)(x;) < lim sup f(x) ;
¢ —20 3 X=X,
and
(2) lim inf (ftua)(xﬂ) > 1im inf f(x) .
£ =0 ; x-—axo

The Theorem is False, 3f H(x)*%0 for some x; as the following

example shows.

3.8 ELxample.* Consider the function H : R =3 R defined
as follows —
( 2 if x e (-1,0)

-

if x € [0,1] {

H{x) = =1
—_— - - - r P, O —
0] otherwise : .
?—n——'—'
& if 2 < X 1
-1 (=1,0) if 0 < X €2
Since H (( X,xR)) = is open,

L (=ow,0)u(1,0@) if =1 <X £ 0O

R if & £ =1



i—I—1((°(,m)) is

measurable, H is measurable function,
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So H € L(R),

since It HIl , = 2 < +w0,
= 0 1 +00
f A(x)dx = I H(x)dx+ j. H(x)dx+{ H(x)dx+ [ H(x)dx = 0+2=1+0 = 1,
R - o0 -1 0 1
; 1 X
Letting Hf(x) = ¥ H(?) y we have
2 .
E if x € (-QE'O)
H (x) = = if x € {0,¢]
£ K- r s ’

o

otherwise

In accordance with Lemma (3.6), I (x) satisfies conditions a), b)

and ¢)a

Consider the function f :

R ———>R which is defined by

o1 At EN) :
f(x) = { 1 E
0 otherwise =N
then f € L (R). :
Let xo = 0, We want to show that :
lim sup (£4H,)(0) > 1lim sup f(x).
£E—0 \ x —»0
Since

(£41,)(0) = [ £(0-pii (y)ay =

Let oLE be a collection of all

given T > 0, there exists 4¢€

0
(£+1;)(0) = ( H(y)dy =

-

i

0
H_ (3 A
( <(7)dy
=1
J\()
neighborhoecds of 0, For all V € w

V, 0 « <€ 1, such that

4 =22 -7,

O o
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then sup (f«H . )(0) = 2 ; for all V &.lf ,
£ o
eeV

and hence inf [ sup(£+,)(0)] = 2,

ve f geV

Q

isc. 1im sup(£f*H.)(0) = 2.

E —0 :

For all V & if% , fiven $> 0, there exists y € V such that

fly) = 1>1 -8,
=]
then sup f£lx) =W)/J for all V € AJO '
xeV
and hence inf [sup£€e) J{ =0

VF_L; v €V

i.c. lim sup/f%) RN RS
x —0

Therefore lim sup f*Ha)(O) » lim sup f(x) .
£ - O X0

e
3.9 Lemma. Let X (4 Rn, if el (Rn), I{&satisfios conditions

b) and ¢) above, Hg 90y and if theré is constant k such that
f € k 2.e. in a neighiborhecd of X then

N5 2 saps CE»H1 ) (e ) ) ek
E [e]
£ —0

Proof*: Choose 4 » 0 such that f(x) ¢ k¥ a.e. for x ¢ B, o
o'

Then

[‘ f(xo-y)Hg(y)dy + f f(xo-y)ﬂfﬁy)dy

(f*Hé)(an
‘ ' R S Wi &

I1(x0)+ Ia(xn).



Since, §x =(x -¥)I = 4T7¥4<d = f(x -y) < Kk ,

I,.(x.) ¢ k I H.(x)dy ¢ k ffi a5
1" 7o & ¢ < .
(1yi< 4
R

gmfiiﬂ(y}dy_,}(),as T
fV|» ¢
vhere m = fl_< @ .

Therefore 1lim sup (£*H )(x>) & lim sup T, (x)+lim sup I (%) ke
3 o 2
€ -0 =50 £—0

Proof of Theorem (3.7). g /can assume that the right side of (1)

is not + @ , for otherwise¢ /there 'is nothing to prove. If k is any

number greater than the' right member of (1). i.e. lim sup f(x) ¢ k.
X%
We claim that there existsyd > O such that f(x) < k for all x e B, g
o' .

Let fo be a collecfion of all neighborhood of X e Therefore
o

1im sup f(x) = infi [sup £(x)] ¢ k .
X—a X Ve fxo x eV

e ’
Suppose, for all V & "‘J}c s there exists x €V such that f(x) > k,

0
then
Sup £f(x) » k,
x eV
and  inf [ sup £f(x)} » k , which is a contradiction.
ved, " x eV
(9]

Hence there exists ‘u"o = on such that f(x) < k for all x e\r'o.
- 3

Since x (‘-;,‘-.-’O, there exists 9 > O such that x € Bx SC Vo‘ leeay
O‘I
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there exists o > O such that f(x) < k for all x € B, ¢+ By
1]
(8]

Lemma (3.9),

lim  sup (f-ﬁé)(xo) £ %,
£ —

and k is any number jreater than lim sup f£(x).%e claim that
X =%

lim sup (£x4 )(xq) £ lim sup f(x) .
g —0 = B

Suppose lim sup (fnﬁt)(xo} > 13w/, sup f{x) , there exists k_ such

< -

e — 0 X yE
that 1lim sup (f*ﬂé)(x Y > k> 1im sup f(x)Since k > lim sup f(x)

£E—0 >/ Sy X —s X
o o
from above we replace ly'by/ k| follows that lim sup (f*HE)(xO) €k,
4 E—'O
which is a contradictitne/ Hence ,lim “sup (fsH 3(xq)$ lim sup f(x).
£ —0 & ) X %

—(f*HC) ywe also have

Since (-fmﬂi)

lim sup f-(f¢H£)(xe)} £-24nm sup [-£(x)}

e—0 R —> X
-lim inf (f;HL)(xﬂ) ¢ -lim inf f(x)
£E—0 3 X =%
Lim inf (F¥7 ) (x ) > 1lim inf £(x)
E — x-.,xn

310 Corollaryd The hypothesis as in Theorem (3.7).
1) If £ is urper semicontinucus at a point X_s then
lim sup (f*ﬁc)(x“) £ f(x ).
£—0 s N
2) If f is lower semicontinuous at a point X s then

lim inf (f+H J(x ) >  f(x ).
£ —-0 - ¢ =



=

61

Let £(x) be a measurable function of x € R'. Then , for any
vector u € R, the function f(x+u) is a " tramslation " of f(x) by
the vector -u. The following lemma shows that this operation of

. 4 ; § ; 5 : )
'ranslating function is continuous in the metric of the spaces Ll,

1 ¢ B LA .
3,11 Lemma., If feL'(R"), 1& p <@ then
1/

() "f(x+u)-f(x)|U = (Jlf(x+u3-fCX);P&x) P50 as juy — O,

Proof : We will prove the Lemna in series of steps as

1) If f = g+h where g satdsfies (a) and h has arbitrary small norm,
then f satisfies (a). “Since/ for any e » 0, by, < £ . Then
X

£ Crena) = f(x)lip = [g(x+u)~g(x)+h(x+u)—h(x)ﬂ“

< 'g(x+uj-g(xﬂlp+ ﬂh(x+u)ﬂp+ Hh(x)“P
< Refrew)-gGall_+ 287¢ 3¢
for any sufficiently smalli ju|s
2) The Lemma holds, if f is continuous function with compact support.

Since f is 2 centinuous function with compact support, by Theerem (2.5),

f must be uniformly continuous. If S is the support of f then

||f(;p»u)--f'(}{)]I'n < C max |f{x+u)=f(x)}] — 0 as lu|—>0 .
= Xe S

3) Since Gc(Rn) is densc in LY(R™) 13, P68} , any f € LP(R™)

is the limit of function in 2). So using 1) the conclusion holds.
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2
Moreover, by Theorem (3.4), if f ElV, 1&pscD
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, then f+H

I

E

is also in 1¥ for all g . The next Theorem we will shows that £xH

. A J
converges to £ in the metric of 1P,

%.12 Thecrem. If f € Lp, 1¢p<o , and Hé.satisfies conditions

a), b) and c¢), then

lf*HE - £ T]——) 0 as & —0,

b

1
Proof : Case I : 1 < p<ay’y ‘1ét g be such that = % = 1., By

H&lder's inequality with properties-a) and b),

|£+H (x)=-£(x)b

i}

N

Hence

g{f(x—y)—f{x)]l :
(lf(x-y)—f(x}|| B (y) |  Flu

1/
(f[f(xmy)-f(x)lp|Hc(y)|dy) Py leE(y)]dy) 9,
1/ i

A

(y)| dy

1/ 1/
(¥) | 1 ay

=
=

=

1/

ot 1/
U J'f(x-y)-f(x)lp i (D lay) P

v/ i
Jlf*ng(x)—f(x)lpdx <7 o4 Cl[dx( f{f(x-y)-f(x)}“[ﬂiiy)ldy)

and, interchanging the order of integration, we have

. p/ 5
fowmt, - f1|3 < 4 9 [dy( Jlf(x-y)—f(x)l“{ﬂi(y)[dx)

1f we set g(y)

n

p/
p 2 { ( [|f(x-y)-f(x)[pdx)lﬁs(3)]dy.

f|f(x-y)-f(x>|Fax,

then g is everywhere defined and bounded by 2i|fﬂz 3 moreover,by

Lemma (3.11), g(y) —=» 0 as y —» 0. Therefore, by the same argument

as in Theorem (3.6) we conclude that
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ﬁf*nt— il § A | g(y) | ﬁ&(y)lﬂy —3 0 as & — 0.

Case 1T : P = 1,
lf*EIF_(x}—f(x)l £ I]z"(x-y)—f(x) ||.=1§(y) | 4y -

Since f(x y)——(x-y) is mecasurable function. Integrating with

respect to x and interchanging the order of integration.
( "
J|f¢H£(x)—f(x)[dx < dx( (]f(x-y?-f{x) F1:(y) | ay)

= ( ( rif(th)—f(x)|Hx)lﬂe(y3|dy

If we set .g(y) E llfCXAy}«f(dex s then g is everywhere defined
and bounded by 2 || fl, . Moreg)yer; by Demma 3.11, g(y) —> 0 as y — 0,

Therefore, by the same arfument as)/in Theorem 3.6 we conclude that

WE=H, - Th, ¢ Jg(y)we(yﬁldy —> 0 as ¢ —> 0.

Suprose that f_ is a Tocally integrable function, and let
B(#%56) = {y 2 |y-xi<=§§ « By Lebesguets’ Theorem on the
differentiability of integrals [13 p157] we have that, as £ —> 0,

Caf
|E(X‘£)| b f(y)dy-—*¢ fix)

at almost all points » € 4, where |B(x,z)| denote the measure of
B(x,2). Lemma (3.74) below is a strengthening of the result.
2.173 Definitione. Let f he a locally integrable function. x is

Lebesgue point of f,if

1 r -~
m‘y—:&—)—r [ |f(y\—.£'\x)i Ay —» 0, as £ —3 0O,
B(xt,€ )
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Note that |f(x))| must be finite, otherwise the integral is divergent,

Clearly, uny point of continuity of f is alsc a Lebesgue point of f.

%14 Lemma. Juppose f is a locally integrable function. Then almost

; i ol - ; ;
every peoint ian % is a Lebesguc point of f.

Proof : Let r be a rational number., Then by Lebesgue's Theorem, with
B = B(x,£), as € — 0

w ¥ ;
{4 TET J 1 el =Yg | £(x) - r]|
- q .

except possibly for x~velepging to-a sct Er of measure zero. Let Z bhe
the union of sets Zr’ for /A1l rational numbers r j; then 7 has also

measure zero. 'Ye shot that if (x/¢ 7, then x iz a2 lehesgue point of f

Let 4> 0 then,/ for semel rational number r, lf(x)—r]< J/?

Now,

—Hi(y)-r|dy + —%— L lr—f(x)ldy
n

(2) | £(y)sEGtayT< TL'

i
18]

Go~——

2;_}"'-—-—*'\

but tihe second member of the-right-side-of (2) is less than J?Z 5

and the first member tends to |f(x)-r}|< ‘{/2 , a5 £ —> 0, by virtue
of (1), Hence the left-side of (2) is less than d , for all
sufficiently small € since d was an arbitrary positive number, it

follows that x is a Lebesoue point of f.

3.15 Theorem. Suppose that i is bounded measurable function and
; ey o (x41) . Y i
i(x) = C()x| ) for |x| 31, (hence i is integrable). Suvppose

alse that ff(x)ﬂx = 1, and HE(x) = £

al

; = + P
)Je Then for any f ¢ L7,

1T$pPp<®@
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(£eH )(x) —5f(x) QeCa, as £ —> O,
=

Proof : By Lemmaz (3.14), it suffices to prove conver;ence at eveiy

Lebesgue point of f, ‘e claim that there exists a positive constant A
gauch that
(2) | (x| ¢ b for all x e R'.
n+1
T+ x|
. L - - w-(n+1)
Since H is bounded and H(x) =. Q (}x] ) for .lx43» 1,

there exists ¥ 2> 0, N > 0y R > 0 such that

(n+1)

[H(x)] ¢ ¥ and |EGA¥) £ N for all

Therefore feGa| + ]u(x)|;x|(n+1}g B+ N

Mo ¥

" +Jx!n+1

lH(x)] <

For all |x | < R,

. —
1 +|xln+l S Rn+l
L RIS
1 +]x}n+l I
. n+l
Therefore [H(x)l € M g LﬂJ;JLli?;:i "
i # 4x}
Then there exists . = max [H+N,H(1+Rn+1)]
. -1, -n i
Hence () = [eTPHED | < e —— .
d: +Lxl
B

Let x Dbe a Lebesgue point of f, and let

B(u) = [ | £(x=y) = f(x)|dy.
[ ¥1<u

n+l n+1

|]x] » R respectively.

for all |x} > R.

such that (a) holds.

Ag

+| v
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Since x is a Lebesgue point of f,

B oy 1
:(-;‘?- - l‘r-n-fl—-)- = _{n“r; f |£(x-y) = £(x)|dy
u Vnu Vour|y|<u
v
T {f(z) = f(x)|dz —>0 4, as u —> 0

where 2z = X=y, and Vn is the volume of unit ball. Hence, given
an arbitrary d> C, there exists a (small) w > O such that

B(u) < du” where O < u g w. Since

f.qacy)ay - JH(y)dy 1,

|(faHB)(x)-f(x)‘ - [If(x—y)HB(y)dy - f(x)]
= |[f(x—y)H8<y)dy- f(x)HB(y)dy‘
= iy[f(x—y) = £(x)JH_(y)dy|
< hf(x-y} = £0x) || H () }ay = I + [

|7l <& |yl 28
- Il + 12, vhere 0 < g < We
NOW|
I, = [ {£(x=y) = £(x)I1E {y)|ay
5
tyi <s

Ag

If(x=y) - f(x)i-;;:r-—*—n+l
e+ ¥

=B

dy

N\
S

A}

< fif(x-—y) - f(x)l-;;}“-_fi—ldy = iln {[f(x-—y) - f(x)ldy —=0
yi<e ¢ “ ke

as & —» 0y Since x is a Lebesgue point.

On the other hand,
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3 4.I.8 e "
IR < f |f(x=y) = f(x)lh+1 n+1d}
MBS e+l
I - -y d
£  he hf(x—y) £(x)| '*%hh_ -
7| >e |y |
; E
Let 5 [ | £(x=y) —f(x)l"—(‘i:l = & + ¢ g o
| #e N4 e |V | ¥y 2w
Ve elaim that the last term tends to zero as &-—0 »
It is enought to show that S is finite.
vyl 2w

j lf(x-y) _ f(x);mﬁzn*I P I]f(x-y)}"%xn+l + {f(x)\I’—EI;+l.
bt 2w B (7> 171 PETAA

Since x is a lebesgue point of f, we have that ]f(x)‘ is finite,

and a0
(3.16) [ ﬁsjihi_ ¥ s ;n+1( [ ds)@ﬁ
|7] 2v I w'ﬁ BB(f’yﬂ)
+(D
S = 3] ‘e do
— A+l n 7
wﬁA /’ Fa
+0
51 SO
& sn( “yge= 5,5 <+
W Fy

wvhere Sn is the surface area of unit ball, so the last integral

is finitece.

. dy 1 ol
If p = 1, then { if(x—y)l*:h;41 £ “TA g.|L\x-y)\dy
|y} 2w ¥ |yl P
1
< wn+1“"“'1 <+ s

If1 < p< O 4y let q be such that % + = 1, then by Holder

a -

inequality,



68

-]u-u Q '];
Ji(_}:.'ﬂf}_!. r I o p—1-- p [ .——l-—--.-\' h h q
f = dy € [ ] 1£G=yp)} ayd°L ] ( v]n+1’ ar]
iyizw 1V Iyl v (yioul?
L L
< it [ —=l=1% 2.y [s Hlctro0 .
P ot p nw
lzri‘;;\-fl" '
Then the last term tends te zero as & —0 o
Since Bu) = [ |f{x=y) = f(x)]dy, we claim that
| ¥|<u
( W
i 1 s
| eGey) = 2GS T [ e anu) .
o< || < 1 =
Since .- is unifermly /continuous on Le,w] for n = 1,2,c..

n+1
11

iege for ahy given 64 > /0 there exists Jo > 0 such that

1 B w a 4
| o= ol g = for all ‘uyz ele,wl for which [u=z | < 4 o
n n n ]
u z W

b T = an =} i o XL . @ 5S4 =
Let & g uo < ul S ha % um_ wy and Iet ul_lé El < ul Since

w

1 . & 1
= _di(u) e o Llim S s L E(u,)=-B(u, )]
& IJln+1 é"‘-}_ it 'n+l 1, -l L]

where ui«-l“{ ?i < u, . The existence of Riemann-Sticltjes Intcegral

is suppertedby [12:P.108]. Then we rust show that

m :
lin E[-%—EJEE(ui)-E(ui_l)] = )’ iflx-y) - £lx) |~

{ n+1
AUl ~—0 i=l }.
ml——;m El e |y| S R4
We choose N > QO such that éui = ]ui-l- ui1 < JD, iz Ly@yceegny

for all m > N

For n > N,
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ZL'”"“ ][44(11 )--L.(u )J - (If(x-—y)-—ffﬂf"%l|

“al E B |7 |<w ¥
n 1 :
e [ fx-y)-f(x)|dy - [ = | f(x~y)=f(x)]|ady

iz \?n+l I E I}’ln".l, * |

1Sy Iy ui_léjy|4ui ;
n {
1 1 .
< 2 ot e f(x-y)=Ff(x)|dy
iy J IF;H-:L |.Y|n+lI |

Sy Sy

g m
o “% Z: J | £(e=y)=F(x) ]| dy

dw i=1

U S |y|§u

€5 L 8, ¢
g = [ [f(x-y)=2lx) |dy < —-'-r-{ B(w) < --?d\ =8 .
JW - - J\*I g%
BS |V | sV

Hence

(3.17) = {pf(x—v) £ (5) | === e GE) s

1
o
—

}n-t-l un+l
o< || v ¥ :
Integrating by parts
W - W
i E(u)1 £(u) 3 }
& { dE(u) " c&[ ot (n+1) —3p u
" u e u 4
8
W
B(w) E(u)
£ e = i a(n+1)[ = du «
W u
As B8—0, aE(w)w-(n+l) tends to zero, because w is fixed. Finally,
W v
{
s(n+l)JE(2;du < (n+1)J ~5du < e d(n+1) —bdu S(n+1),
u n
& &

whencey as & —0, 1lim sup I? < A(n+l)J.for any arbitrarily small d »
Therefore, at any Lebesgue point of f,

faH (x)=f(x)] € I, + I.—>0 as e —3 0,
& 1 2
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