CHAPTER IV
TOURI.IR TRANSFORIIS

The nmaterials of this chapter are dvawn from references [ 51,

C &350 93 E 133,

ol ;lTheory

A
hol.l Definition: Tet f eL(R"). The function f given by

Flx) = 1 gf(y)ei(x°y)dy

(1) —_—
s/ 2

Rn

is called the Fourier transform of <.

We note that ? 18 ‘everywhere defined since the integral

(1) is absclutely convergent for every :{(Ifh Indecd,

€3 - ﬂf(y)ldy = (2ﬂ)'n/2ﬂful.
/2
™ o
~
so f is bounded.

hele2 Lemmae If  f£(x) = fl(xg...fn(xn) where each fi(xi) € L(R),

5 A 7
then f(x) = fl(xl).-.fn(xn).
Proof: F(x) = __1_ g f(y)ei(x'y)dy
(ZW)H/E RD
= _1. ( £1(yy)eetf (3 yol(Xqyyteeetx,y )o
(sMmn/2 .

Rn
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[ 0 ixqy ix y

1 n'n,
f S -6 e 2 i¥,eo0elf
- e 5 esan fl(yl)c fn(yn) u}l dyn
(sM™?)
-0 -2 "
ix.y ; ix y
= 1 f (yl)e 1 ldyl... 1 £ (y)e ™ May
B /ﬁ - /2 nn n
(2N 2
~ A
- L -] \'-
= fl(xl). fn(xn,
The Fourier transform is a linear transformation, since
for any scalar a and b
e i i(xay)
(af + bg)(x) = _ 1 S(af + bg)(yde dy
s/
ilxay) i(x.y)
= /1 J}af(y)e + bg(v)e )dy
(/2
i(xey) ilxey)
= \a jf(y)e dy + _b_ [?rv‘ dy
(2Thns2 (T2
e
= af(x) + bE(x) (x e2M).

Thus (;;iriga = af + bg .

4.1.3 Lomma. Let a€&R" and let fa(x) = flx + a)e Then,

?a(x) = e-i(x'a)f(x) .
Proof: %a(x) = 1 gf (y)e 1(x.y) dy
aMHn/2
i(xey)
= 1 gf(y + a)e dy .
(zMr/2

Letting y +a = 2y 80 ¥ = 2z ~-a and dy = dz, we obtain



—— ——

(2THn/2
~i(xa.a) i(x.z)

3 gf(z)e e dz
(21[)“/2

e"‘i(x- a)?(x)

ilxe(z = a)l
1 Yf(z)e dz

n

holeli Lemmae Lot a ex” and let g(x) g ol(x'a)f(x)n Then,

E(x) = Flx + a)e
Proof: B(x) z al fé(y)ei(x'y)dy

(2Th™/?

y 1 g;i(y.a)f(y)ei(x.y)dy
(ANHn/e

& 1 I%(y)Pi[(x - a);y]dy
(2]T)n/2

= ?(x 4+ 2)e

4o1.5 Lemmas Let ¢ %0 be a real-sgalar and let fc(x) = flcx)e

Then, ?c(x) a odop (e
lo|® ©
i(x.y)
Froof £ (x) = 1 £ (y)e ay
(™2
i(xey)
- 1 (f(oy)c dye
(22

Using the change of variable 2z = ¢y 4 s0 dz = 1c|ndy we have

202 . _i(-}—c-'z)
fc(x,= il f(z)e "¢ “'dz

lclr{?ﬂ)n/



73

1 ~x
- C f(c)-

We rccall that a function £ is said to be gven if
f(=x) = £(x), and is said to be odd if f(-x) = =-f(x). Moreover,

any f can be decomposed into its even and odd parts; nanely

£f(x) =

i — o ——

.f;(x) +-_-:[_:(:3C_)‘ f(X) - f(‘}() -
2 2

bele6 Lemmae The Tourier tramsform of an even function is even.

The Fourier transiorm of an odd funcfion is odd.

Proof: £(=x) 1 ff(y)ei(-x'y)dy.

“(EW)I'L/?_’
et vy = =z
Fal i(x.z)
flex) = 1 f(-z)c az .
(Y2
If f is even, then
R i{%e2)
fex) = 5L If(z)e dz = £(x) .
Emwe
If f is odd, then
A i(th)
fl=x) = 1 g[-f(z)]c dz = £x) .
(a2
hele7 BExamplce Let :&k be-the characteristic function of
the interval (~k,k). Then
A~ +k ) +lc
'Xk{x) = 1 Selxydy = 1 elxy~
‘ (ETDI/E =k (3“31/2 4% -k
- Vo eixk_e-ixk - S Bia
(21'{’)1/2 ix 1 x
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o~
Thus ;(k i3 a boundcd continuous function which is not integrable

on R, thouzh it belongs to LP(R) for all p > 1. Horeover
o~
xk(x) ~— 0 258 |%| — o0 .
4.1l.8 Ixample. Let ;(a,b be the characteristic function of

the interval (a,b)e Let ¢ =

: - g) e
that Xk(x c) = 'ﬁ

Consider =k £y <k, where //y, = X = ~——-, i.ce

a7 L/xIS(] b (T 78 }
therefore X (x) =/ Ndx=.e). R
ﬂ,b k

Ve obtain by DLxample (L441e2) and Temma (4.1.3), that

P

KapWoz P =0z 0™ X (x)

aeb
A~ J2 sinkx eicx_
- ﬂ x : -

Fa

We note ngain that X (x)=—=50 as |x|—>00. The next

ayh
Theorem shows that this is a gencral property of Fourier transforms

of intugrable functionse

% ”~
4e1.9 Theoreme (Riemann - Lobesgue) If £ €@L(R™) then f is
bounded and uniformly continuous : moreover,

(a) F(x)— 0 as |%| —> oge

Proof: As we saw earlier, |§(x)| < CETD_annl, g £ is

o boundeéd functione.
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n
Let ¢ > 0 and h (hl""’hn) e€R™ ;then, for any x€R ,

’(5“)"H/EJ}(y)[ei[(x + hleyl_ ci(x‘y)Tdyl

(22 2y APy 134y

!?(x 4+ h) - ?(x)l

]

< f‘|f(y)‘|ol(h'y)- 1| dy
- o = Il + Ieo
i< ¥ jyl> M
Now, I, < 2 f]f(y)l dy < e if M is large cenough

|l M
(but fixed), since fis intcgrable.

On the other hand, if |y} /€. M then [elch'y)- 1 — 0

'RS
|hl~+0, so by Lebesguce Domimatcid Convergence Theorem (2.35)
Il < s if |hl/ A8 small cnoughe

Thus T is uniformly continuousa.

Finally we mrove (a) in'a series of steps.
(1) If f = g + h, where g satisfice’ (a) and lhﬂl is arbitrarily
small, then f satisfies (a),. since. . f =% +1h, Blx)—0 as
|x!—— @, and |a(x)l < (énj—nlhul is small.
(2) Characteristic functions of l=cells (intervals) satisfy
(a)y as we noted in Example (4.1.8), above.
(3) Characteristic functions of n-cells A€ %€ by 1= 1yeensny
satisfy (a)e This follows directly from step (2) and Lemma(4.l.2)e
(4) Simple functions, iee. finite linear combinations of functions

in step (3) satisfy (a)e
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(5) Simple functions arc dense in L(R™) [ 13 :P.67], so by step(l),
we are donee

2H™2 14 the

In view of the presence of the factor (

definition of FYourier transform, it is convenient to normalize

accordingly to the definition of convolution. So if f,gEEL(Rn)
e B x) = (£xg)lix) = (Eﬂ)"n/aff(y)g(x - y)dy.
iy

We know thnt h&l also, hence h existsa..
The next theorem-illustrates further the relationship

between convolution and multiplication of functionse.
n ~ Vols
4.1.10 Theoreme Let foff @I{R )e If h = feg thenh = fg .

Proof: ?l(x) - (2]1)"n/p_)(h(y)ei(xgy)dy

= (2TH™V2 [('Eﬂ)—n/gﬁ‘(z)g(y - stV gy

exists for every x. Since

J[J}f(z)g(y - z)ei(x'y)ldy]dz = [I}f(z)l[g(y-z)ldydz
= IIf(z)ldz{]gCy-z)‘dy = nfﬂllgll < 4+ 00,

— el(x-y) - Olfxo(y-g)]ei(x‘z)

. We obtain by the Fubini's
theorem that

(2”)-n/2([(2r'l)-n/2(f(z)g(y-z)ei(x'y)dzjdy
@D ™™2( 2 2)g(y-z)et * P aylas

)

(2ﬂjﬁn/2{[(Zﬂdhn/:[g(y—a)ei[x'(y-z)jdy]f(z)ei(x'Z)dz

(Zm_n/aff(Z"*‘i(x'*")dz(aﬁ')"n/gfg(y-z)ei[x‘-<y—z>3ay

(x)e(x) (x&R™).
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heloll Ixamplee Let x€ 7R and O < k < he Consider the "trapczoidal

function® ‘X . defined as follows: )( is even, and
SRR hyl: h,k
e | if 0 g x € h=k
1( (x) = ¢ 0O if x » h+k 3
Nnk ?
h+k=x

S if x € (h=k , h+k)

e shall shows that this function is the convolution of the

charactoristic functions ;(h and ?(k.

(thlxk)(x) = {zlfhnl/afhxh(t)xkfx-t)dt

- (z'rl)'l/zs ‘{(x—t)&t.
-h

Since =~k  x=t  ky, x-k'€ t < '%+k. Therefore

h h
-1/2 -1/2
€l J_hxk(x-t)dt - b gfx-k,m‘ t)dte.

If 0 < x < h=k then! x+k § h, -k & X=k» Therefore
h x=k x+k h

(2T|')"1/2§1 (tya ‘Wit e g +( +§ ]

M=l g X4k
-h ~h  x=k x4+

= (éﬂ)‘l/z(x+k-x+k) - j% k = f% k ]%,RCX)’

since Tih k(x) = 1 whenever 0 ¢ =x < hek.
hek

If h+k € x then h € x%x-ke. Therefore
h

ﬁ—ﬂ_ _hxx_k,x+k(t)dt = 0 =j1-1 chh’k(x),

since ‘Xh k(x) = O wvhenever hi+k < xe
]

If h=k < x < h+k then h-2k < %=k < hy, h < x+k < h+2k.
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Since Ik £ hy therefore «h  h=2k.
h ¥=lkt h K+l
LR O PR -
=i s ‘ t)qt = ] o (h-}{-i-k)
‘féH -h T s /:ﬂ x=l¢ h ]
2 Hetlg=20 :
" - \I'jTr k 5k - jﬂ k Xh'k(X).
. —
Hence =i { X (x=t)dt = jz k X (x)e
L_r "']L - ﬁ n’k
s
o~
) K. %X//, - 1}?’. X .
B hyk T RKdZEon /e Xh,lc = X2 h ok
From Txample (4ele?), it follows that
5 442 sinhx sink
(b) v 1 (X)Pp ﬁ’l S . 0 <k < h.
g€

In particular, if

11,11(3:)

X

where £ (x)

so, from formula {hH);

N

X

We note that A

bolol2 Examples

ﬁ(x)

B sin’hx
Bl Sy g 8

¥ = 'hy we -have that "triangular function"
) triang

(1“,3{‘ )

-—
-

= mnax L£&)40) is the positive part of f(x),
wo have

h > 0.

(et

n h(x) is non-negative and integrable on R.
9
let Hlx) = o '®, -wf x <og. Then

= '"]i(-"rlydy+ljeexyd:;

VEIRT i

o]
Qo

.1 (e-yil—lx)d X 5 y(14ix) ag

/2T o / !
et st 7 F. L
= ftﬁ 1-ix l+ix |
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Moreover, if § > 0 and He(x) = H(ex) = e-ﬁlx‘, then by Lemma(4.1.5),

A
H&(x) = f%—h which is the Poisson Kernel in R.
£ +x

4,1.1% Theorem. Let f,g€ L(R™) then

j?fx)g(x)dx = ff(x)g(x)dx.

Proof: Since J[,f(y)g(x)ei(x'y)|dydx

(:Jl|f(y)l|g(x)|dydx £ J'S(X)'dXJlf(y)|dy

Sl 1Y P B < +0.

We have by the Fubini's theorem that

(2ﬂ3-n/2J[f(y)g(x)ei(x.y)dydx
(Zﬂ)_n/ajl f(y)g(x)ei(x'y)dxdy

[1?(3)[(2"']')'“/2 g(x)ei(x‘y)dx]dy

J?‘(x)g(x)dx

If(y)E(y)dy.

4,1,14 Definition: f is a radial function if f(x) = f({x1),(x & R™).

Equivalently, a radial function is invariant under all
a

Ix)

a
rotations about the origin. For example xi X} 4 X—>e

are all radial functions of R into R.

4.1.15 Definition: A linear transformation of vector space V over the
real numbers into itself is called an orthogonal transformation if

and only if {Tx| = |[x| for all x ¢ V.

4,1.16 Lemma., A function f is radial if and only if for any orthogonal

transformations T of R" into itself, we have f(Tx) = f(x) (x g R").
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Proof: Let T be any orthogonal transformation. Then

ITx) = |xit for all x.
Assume that f is radial; i.e. f(x) = f(Ix|) , and £(Tx) = £(}Tx1).
Then f£(Tx) = £f(ITx|) = £(|x|) = f(x). Conversely, assume that
f(Tx) = f(x) for all orthogonal transformation T. Since any rotation
R about the origin is a linear transformation such that |Rx| = | %]

Then R is an orthogonal transformation, and hence f is radial.
4.1.17 Theorem. The Fourier transform of a radial function is radial.

Proof: For any orthogonal transformation T, we have by Lemma(l4,1,16)

that
A n/2 i(xey)
f(tx) = (2 £(Ty) e Y ay
n/ -
= (2 2[ £(y) ot X ¥y
= ?(x) s
A
so f 4is also radial.

L,2 The Fourier Inversion Formula

~ _ .
If feL(R™) and f(y) = (2f) n/e[f(x)el(x'y)dx is it
Fourier transform, we seek a representation of f by means of

its Fourier transform
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/2 (A, g ) .
(a) 21 n"jf(y)e ilxey dy  (Inversion Fornula).

flowsver f nesd not be integrable (ixample hel.7) so the
integral (a) is not conversent in generals Tor this reason we
introduc now the concept of summaobility of integralse.

Let alu)y 0 u< o0, be a locally integrable function
so that the "partizl integrals®

Alw) = ('Eﬁﬂ)-n/?ja(-u)du <+ 00 .
: 0

2
But (2 n/eia(x)du = lim A(w) need not be finite;
0 W — 0

in other words, thé¢ integral necd not converge.

Consider o function 4(u), 0 ¢ u < o , satisfying the
following conditions;

1) % is' 0f bounded variation on [0,c0),

2) Z{u) = 0 as u— ag,

3) & is continuous at u = O and 2(0) = 1.

(90
bo?e1 Definition. The integral -i—'ja(u)du is said to be

I /21 %

summable=2 to o value I if the integrals

<0
I, = - a(u)Z(eu)du converge for nll & > O
/2 0
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~1 if 0K ugl
heRe.2 ixauples Lot wu) = ,l
0 if u>1

Clearly 4 sntisfies the previous three conditions: morcover
1/e
-'"‘D
T, = A a@i(ewan = o= g alu)du.
/210 /2Tl o

Thus, in this casc, sumuability corresponds to ordinary convergencee

he2.3 Theoreme. Let a be loeglly integrable function on [0,00).
(30
1 P X -jT] "1/2 2
If the integral (211) aln)du converges to a value I, then
£)
it is oummable=2 to the walue T.

o0
" s & A f}'r =1/2 7, . i
Proof: ‘e must show that /I = (2])) a(u)%(eu)du exists,
’ 0

and that ié———»l, as/fo /om0

u
By our assumption, thce functicn A(u) = n};°ga(v)dv < + 00
0

E_:\.i\

and  A(u) —I as u<ecc. lloreover,

/ =
ACn) = 2 l/za(u) almost everywherce.
1 W W

o

e
Then ~3=-§n¢n)3(su)du £ E—Z(au)ﬂiu)du o \Z(cu)dA(u).
C (6] 0

2
Al

Integrating by parts, we have that
i v

S-Z(Gu)dn(u) = Zlew)A(w) - gﬂ(u)dz(su)-

-y
L

We denote by V the totnl variation of %(u) on [0,0).

Let fACu)] < N,
W W W

]{A(u)ﬂz(au)! < S[A(u)”dz(au)l < Mﬁdz(auﬂ
. 0
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& MV < +@ ,
since qu) and %(eu) have the same total variation on LO,00),
Letting w-—w oo, we obtain
ci:.

1 (%
I, = ~¢:-(n(u34(nu)du - —IA(u)dZ(cu),
) 21 é 0

since “(ew)—0 snd Alw) -2 I. llance IP exists.

If we s2t A(u) = T+h(u), so h(u)=—0 as u- v, then

20 R
I, = -Ij_dﬁ(su) - 5 nlu)az(sn)
0 0]

o)
= ~IEG0)ea0)] - ntwanten)
8]

&)
a 1°- fh(u)dﬁfﬁu)
O.

and it remains to show that this.last integral tends to zero

as &40,
By our assumption |h(u)| = |Au) - I| g |A(w)| +]|I|z &

and for any given 1n > O, therc exists u. such that \h(u)] <n

0
whenever u » Uqe Lot

20 un N a's)
{h(u)dz(su) = [ - = I, + 1.
0 0 Uy
Now, ‘ID} < 7V is arbitrarily small, for all &.

On the other hand,
II1| € N(variation of Z(eu) on [O,uO])
= li(variation of %(u) on [0,su03) -~ 0 as -0,

since Z(u) is of bounded variantion and continuous at u = O,
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hence its variation is 2lce cortinuous.
We now extend. the concept of summability to multiple

1
integralese Let a(u) be a locally integrable function of ut&RT,
s i
ind J"(u)du - | DAy eyt AU, aesdu .
all( LA == 'I L - J c 1 ‘ n (e l - n

Here it is most natural to consider partial integrals taken over

spheres with center at the origing namely,

A
5 1
S(R) & ~= ) Hld)du.
(?ﬁ)n/§u;< 2
Then, we say that —L—<H/P§1(u)du converses spherically to a
27

value I if S(R) =1 a5/R =—s T

he2ok Ixamplee Let x R4 /Comedder tho function

1
& 2 lnx+1)/2
(L+x49) (n+1)/2
1 1
Then — ,3[f(x)dx-cenverges spherically to
(212 (2H/2 (2t

For details sce (541)e

h.2.5 Example. Censider the function f(x) = ¢ for all x eR™.

For fixed k, f f(x)ax = ¢ Y dx = cann is finite,
13l <k IxKk
where Vﬂ is the volume of unit ball. Then f is a loenlly

1

integrable function. 3But

o~
(2?2

gf(x)dx is not converges spherically.

The corresponding notion of spherical summability is defined

as follows: we consider integrals
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Jr 3
g"(u 4lelu))du
where 3 satisfies conditions 1), 2) and 3) listed earlier.

I I exists for cvery e > 0 and IG-——+I as & —> 0, then
8 5

-n/2| . ) _ :
we say that (2ﬂ3 1/"Jﬂ(u}du is summable=Z to the value I.

4e2.6 Theorcme Let  a be o locally integrable function on
R%. If the integral (2n)nn/2[é(u)du converges spherically to

a value I, fhen it is also sumMable~2 to the same value Ie

=
—
Prcof: By hypothesis;— 9(7) = (2T “/*J alu)du =—»TI as R—» O

il <R
W
.Eiﬁ)n/? g a (i) 3(eful Ydu = fZ(sQ)dS(R).
B lal < : 0
Integrating by parts,

‘t‘f W
f -
JZ(CR)dS(R) o= - z(sw)s(w)-fé(ﬁ)dz(agj
0 0

Letting w-—06, we have.that

. :
I = == aialu)Zlebul)in venc - [S(R)dﬁ(e}ﬁ.
I (2-”')11/;_ S 0

The rest of the proof is identical to the proof of Theorem(4.2+3).

1

‘v now roturn to the Fourier Inversion Fornula

(b) L |B(peitxey)y £ eL(RY).

We will show that, under some ndditional assumptions on the
functi.n Z(Ix}), the intogral in (b) is sumiuble=7 to £(x) for

almost every x.
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le recall that , with r = |zx|, Z(r) satisfies conditions
1) Z(r) is of bounded variation on [0, );
2) Z(r)—0 as r— 0,
3) %{r) is continvomws at r = 0 and %(0) = 1.
Assunme, in addition, that
L) z(Ix|) €L(RY).
If we denote H(x) the Tourier transform of %{ix\),
then H(x) is a bounded radial function . Ye have by Lemna(4ele3)

and Theoren(4.1.13), that

1 ey =1(Xoy) /) AN T (v4x)7
{aﬂ)nfE‘}("}a ey )dy = (2ﬂ)n/2§%(y+x)u(aly|)dy
- “Jjbnfg[f(y*X)EkclyI)dy
NS |y | )y

= (21’i,n/2f

But, by Lemma(4.1.5),

~ -n", -
dslyl) = & nZk‘%') - & nh(%) - Hs(y) ; hence,

—
>

(y)e—i(x°yjb(s y|)dy

-
M2 )

Recalling that H is bounded, we assume finally that

(x—y)HB(y)dy = (f*Hg(x).

5) H(x) = BGx1) = oClx)™ L) or x| » 1,
(hence * H(x) is interrable).
) Jl'i{x)dx = 1.

2 2
Note We can show that 2()x|) = e-(x1+...+ xn) satisfies

conditions 1) through 6).



87

In view of Theorem(3.12) and (3.15), we obtain the
following conclusion:

o~

4he2.8 Theorem. If f LIR™Y) and 4()x1) satisfies conditions 1)

through 6) above, then, ao s - 0,
o .
(2?2

5
almnost everywhere and in L normd

Ay =ilxey),
[f(‘v)e 35 Zlelyl )dy —e £(x)

Proof: From (4e2.7) we hove

1 'n' ,"i(X._Y?',, N : *T
}E?bn/ajf(y)e Ko Dy = (1))

Hence we must show that Ay ew0, (f*h's)(’x) -~ f(x) almost
everywhere and in Llnorm. This resnlt follows from Theorem(3.12)
and (3.15) where p = 1l.

Le2.9 Corollary.(lininuencss 6f the Fourier transform) If £ € L(R™)
and ’i:(:»:) 5 0, then 2{x) = 0 Aa.c..

4.2.10 Theorecme If the integral ";? P/US%(y}e—l(x'y)dy
(™"

converges(spherically). Then it converges a.c. to the value fx).

Proof: By hypothcsis, let g(x) be such that

sk : 5 ’i"(}')tr_i(x":"{)d:{ e KD ns R—oe,
& Lk °
TR

It is enough to show that g(x) = f(x) nec..
By Pheorem(Le2e6) with Z(|x|) satisfies conditions 1) though 6)

- R Y - -
above (21N n/“jf(y)e l(x'f)dy is sumnmable-Z to g(x), i.e.
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~i(xey),,
)e il .V)“(G !yl.):ly —— f_‘;(x)' i85 B—> O.

By Theorem(le2e8), o 58— O,

(’\ ‘-'E_I:"o ‘
~}h-n/j'f(y)o - y'A(n|y1)dy-—-9 flx) asese
(V2
Hence glx) = f{x) cece.

We neixt investigate the boehaviour of
?-'\I‘,'\ NG }
. -n/21 0, ~3lxey . . . n
(2Th~™ Jfky)c T 3T at a poarticular point x in R,

n

: " = 077
4e2.11 Thecrems If fe&E AR, thon for x.€ R

SEL 0

-n/2 FENG N
linm in® £(x) ¢ (2T n‘*y%(y)u W y)&y < lim sup f(x).
X —> X, X — Xy

. /3 |A i Giga
Proof: Supposz that g(xo) = @) /@ flyle 1(x, y)dy.

Consider the function IZUx|)Y 3 0 satisfies conditions 1)

through 6), then its Fouricr transferm H(x) > 0 nnd from(4e2¢7)
s - '2. --.. I ." v
(o) (248 ) (x,y) = (2 J'f‘(yJe R LETCITTPE

The intcgrands onthe right side of (e) are bounded by
(21'[)“"/2;{1?%)\ where \Z(alyl J] € 1, and since Z(g|y|) ——1
as &-—0; the right sidc of (¢) converges to g(xo), by the
dominated convergence theorem. We get

lim (f&Hs)(xO) = alxg)e
g=-0

On the othoer hand, we obtain by Theorem(3.7) that

lim sup (fRHB)(xO) € lim sup f(x)
g —> 0 X = X4

and
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lin inf (waS)(xh) > lim inf f(x).
g — 0 : X ——rX,

() lig ind £(x) € 1lim inf (£xH )(yo, < lim (I#H ) (%) g(xo),
= X, & -0 ge—0

(e) g(x.) = linm (f*H 1(x,) < lir sup (f*H )(x ) € 1lim sup f(x)

T g —-0 g ——0 X —— Xy
ilb.' ( )
> ~i(x. ey
lim inf £(x) >h n/?l?(“)u @ dy € lim sup f(x)e
-9xo X— Xq

4o2.12 Corollarye. Le€ /£ 4&/0LKRDD .

1) If £ is lowbr semicontinuous at a point X9

rey f g "'i(x ny)
(eTﬁ"n’d[Q(y)u N dy 32 f(xo).

o
e

If f dis upper somicontinuous at a point X then

-1 = "i(x}w}r)
2T ’“{f{y)e : dy £ f(xo).

3) If f is continuous at = point x. s then
-1 2 A -i{:{ -:f)
oMy gf(y)e {1 Ursves £lx ).
Proof: The proof of 1) and 2) follow from (d) and (e) respectively,

and 3) feollows from 1) and 2).
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¥
9

k.3 I Theory N

=2 ]
Yo recall that I° = LS(R™) is a Hilbert spaccy with inner
product (fq2) = j}(x)g x)dx  which is finite by Hider's

Inequality, and with norm

|1"“R - (f,f)l/a = (j&f(x)lgdx)l/a.
Ve denote by ﬁ) the class of 41l sinaple functions (i.c. finite
linear combinations of echarncterietic functions of n-cells)
and recall that‘f is n_dense ‘subspace of LE [13:p.6?] P

B s . . . §
If el then, by Behwarz's inecuelity, f is locally

integrablc and hence th¢ /following integrals exists:

?R(x) " (RTTjnq/RJ‘f(y)ﬁi(x.y)dy
R

bo3.1 Theoren. (Payseval=Plancherel) Let i‘GIFCRn), then the
Fourier transfornm

2(x) - (Zﬁ)-n/%Jf(y}ei<x°y)dy

exists as a linit in Lonorm of the ?R(x), R—oo. Also,
I£¥, = §fh, (Parseval Formula).

loreover the Inversion Formula
£(x) = (Qﬂj-n/a[?(y}e_i(x'y)dy

holds in the sense that

£(x) = 1limit in L2(2TH"/2 f?(y)e-i(x'y}dy.
H——w o) 17| <R
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Proof: We shnll first prove the theorem for simple functions

- —— 2

1

and then pass to the limit. Yo do 8o in the following series
of stepoe.

- e ; L
step. 1 Characteristic function on R7.

\

‘e rocall from Zxample(4.1.11) that the triangular function

() = (1-28* %50,

Ngii 2h
2 & . 1 . > D l 3 1 1 . L3
is continuous and integrable |gn R™y, and that the sane is true

of its Fourier transforn

£ _ 2
() o LlZsintix
hyh = W 5

Hence, by the Inversion Formula, we have that for every x
o

3

1 | sin“My/ =ixy

e J 2 g by, = Xh,h(X)"
-0

In particular, at .x =0

iH
[5]
H-
467 |- g
ot
.
(=7
1
l_l

«Q

sin x.2
(B Xy

wr
B

= T .

If ‘XH is the characteristic function of the interval (-h,h),

and letting h = 1, we obtain
/

then its Fourier transfornm

A i L)
’XI(X) _ 2 sinhx
1 Gl R

o
exists pointwise and also in the L sense, since with

f(x) = Xh(X)' the integrals
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- 1
£.(x ) R —— £f }y
= S Az
are all the same for R 2 h. lioreover,
co ;n 3
Loty 2
j X ) e 2 |sin"hx dix
h ,n' _‘2
Z00 3
2h ’“Jn v
= dy (y=hx)
‘lf yz
% rqap
= 2h = } Kﬂ(x)dx
-1\

whence, taking square roots, we see that Parseval's Formula holdse
If }( is the charactoristie  function of any interval

(agb) = (c~hyc+h), thén we lnow that

o~

/‘\ 3
X(}C) = 7(h<x)olcx

~
so \i(x)‘a - 1XJIC>C)|2 - Axi(x) and the conclusion
follows from the previous argument.
step. 2 Characterigtic function on B .

If X is the characteristic function of an n-cell
. € X L bi, =il g s smgnythen

X(x) = xl(xl)...—)f.n(xn)

where X . is the characteristic function of the l-cell

1

(interval) (ai,bi); nlso A(x) is defined in the usual way and
o~~~

. ~
X(X) = Xl(xl)u.xn(xn).

Then
Fa - <0 (e0)
le(x)lh\ix - J JIX (Xl)la‘.-.l«(x )l dxl‘ocdx
Rn e -Co

T B A 2
N 5|Xl(x )| dxl.u.j|xn(xn)| dx

-0 - o0



a0 o
. 2. 2.
- J:L?l(xl}‘ nxl...[(xn(xn)l Ix

- j-|Xﬁx)|¢ﬂx
n

R

e

whenecey taking squore roote, we sce the Parseval's Formula holdse
. _ z i
step. 3 Simple funetion on 27,
Suppose that f£(x) takes values Cyreseyc, ON M NON-

overlapping l-cclls(intervals) Il"°"IW with characteristic

functions 15)...,Xq, and  f(x) 2”0 elsewhere. So

f(x) = #ckxk(x)
and
» m:
(x) = ;«:kxk(x).
Then, @ ~
J( 1200120 J PO F ) ax
-0

3 Bt 3¢ }d
) . Lchk X x)J L%cﬂ ; x) ¢ dx
- i |e |2Jli (x)lgdy 4 c, ¢ \X (x)X.(x)dx = 4 + B
= ;;- k Y I i Ei% k3 Tk 3 ‘

™

We claim that B = O.

If )(]_ is the characteristic function of Ilz(xl-hl,xl+hl)

C .S th al*c L .S i i 1 = oo
and )(2 i e characteristic function of 1 (xa h2,x2+h2),

where Il and I, de not overlap (say x1+h1 £ X

2

h2 > 0), then

~ - -
X 2 sinh.x
5

"
=
i

i
o

Y
1]
.
2|
“
(v}
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Hence, ?? 0 i (o ot Vg
Jxl(x?x,,(x)rix e 3{-"‘-;--1115 Blib X s + B gp,
$res 2 f]ﬁan %

If we set 5 & o

flx) = $— 3~ﬂ£15~;%3h2£ then f is
| X X

an integrable function on R™ and is cqual (up to a constant

factor) to the fourier transform of the tropezoidal function

7{1 W (fznmplels1.11) which is continucus and intcegrable.
ll,.LP
Since the Inversion Formula holds cverywhere in this case, we

have that, for some constant ,c £ O,

S?L T H i(xluxﬂ)x ( )
v e o < a - M= X
X, (x) X, (s 2/l £(x)e dx = X i Mt
-9 -0y L2
= 0 becase |x1-xaj; h1+h2 and
thercefore ‘XT . Vanishgs @k -the point x,-x..

Hence the claim is provede “Finalldy by Step 1 and using the

fact that .Xp have non-overlapping supports, we obtain
00

’ h W N - @ /%0
ff Flx)|%ax = % [cklaﬂxkfx”a‘&:’c = ¥|0142J){§(x)dx
=00 LA - 00

f’|§E;ckX£(x)]2dx

1
Ty
—
"
~—
[=h
b

whencey taking squarce roots, we sev that Parseval's Formuln holdse
. ; n
step 4 Simple functions on R .
Suppose that f(x) takes values CqaseenC On M NONe

overlapping n-cells Il"°"Im’ with characteristic functions

xl""’xm' and f(x) = © clsewhere. So
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il
£(x) = f_; ck?g_{(x) s where
x o - e o H £
Ic(}“) - Xl (xl) 'Xn (}cn), nd
k %
A, m o~
£x) = Z1 cL)ﬂc( <)e
Then
n
|£(x)|“ax = F(x)f(x)dx
1 "
Foom . . 11 Fb— !
- ( T 2 as
= J;l;ck/k(x. } j ‘]'_' cjl‘_j(.{)} 1x
R
nl N A o
= T ol Rt T P R
L Rn ¥4 3 Rl
Ve claim that 3 07 f8r \k £ 3y
{ 2 e ——
| X 0¥ G % eaNL2 (xR (x)
kax) j)ax = ..3J 4 xl"'"'nk 2Ky Gxqdees
i Yoo/ WE . J
R"l oA I 3
(x )
.nxn. xn dxlo-cdxn
od —
PRI E (e dx +oe|X (x X (x )4
- lk =1 - )y e . Bglg SIGICR
o ot - J
~ ~ .
By step 3 [)’.],(x) Iji:{)dx = 0O, and hence the claim is proved.
11 2
R

Finally by step 2 and using the fact that X K have none-

overlapping supports, we obtain

f'?(x”aﬂx = ;1_ lckl2 flilr(:c)iac‘.x - i_‘ckfhx]’(x)ladx
n B2 : - ’ 20 )

R
)f ;;m X (x)12a J (x) 12
n} c.x I )l Tdx = |f X dx

n
R R

i

whencey taking square roots, we sce that Parseval's Formula holdse
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step 5 Lxtensicn by continuity.
= - n h ]
We have seen that the Fourier transform F(f) = f is
defined on the class ‘;f of sinple function, and satisfies
Parsevalis Formula
; b
(1) T = Wt for 21l f€ dJ .
8 [£5
: . . . , . ; ; 2
Hence T is o pounded (so, continuous) linear operrstor in L%
We claim that the operator F can be extended to the closure
e . : . .
= Ly with prescrvation @f norm, that is, in such a way
X i < ,. 2
that formula (1) will hLield for -all fel",
3 ¥
If fel , chbose a scoucnce £.& such that
"fn - f]lP—-a @/ asy - Sy

in particular { fnﬁir- a/educay sequence so

‘fn - fnu_’____, Qv as myn —s,thus, by continuity of F,

‘F(f ) - F(f )“:“"’—PO as m,n—;m, i.(l’.
n =
{F(fn)} is a Cauehy sequences Thénefore, by the completeness
2 . 2 - : 2
of L%, there is sone el such that }*(fn)~—+g in 1%, as

n—we Yo define R(f) by setting I'(f) = ge. Singe if

therv ia . if;(. in LS such that f;l---—-) £ in L2 and

s

oo 2 . 2 . /
1’(fn)—-—e~gz in L%, then the sequence fl'fl'fE'ga"’

)y

N~

/
converges to f, and hence the scquence F( fl),F( fl},F(fa),F(f

3~

2
eeo also converges in L™ therefore we must have that 8 = 8
Then T is well=l:fincle Minally, from the formula

.'t"(i‘m)ii2 = L, o mej and  f —» £y we obtain,

passing to the limit (since the norm is a continuous function),
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that & >
I, = ﬂF(f)i;_ = MfM, , for avery fel%,

80 the claim iz proveile

A 2
sten 6 T(f) = f dis the limit, in L% norm, of the Fourier
A
transform f._.

A

We first prove that if f‘&lﬁ with compact support then

F(f) is of the fornm

T (x)

R

B
=

Suppose that the support of f is contained in a sphere
Ix1 £ Re Choose n sgaquence of funetions ﬂ{é}f with support

in |x| £ R such thaty A k=2,

A L A 12,

" " 2
Then, by continuity o=y F(f ) —=F(f) in L and hence
'
there exists a gubsecuence of i.F(fk): which converges to

F(f) pointvise n.84. Horcover,

(21T)'n/zf 7
iy <R

= - N
F(£, (%)) (etlxT) gy

"

k

and

(y)ei(x.y)

F(x) = (2‘1?)"‘/2[ £

171 <R

dy

therefore,

|F(fk(x) )-'%R(x) | < (z’ﬂ)"“/gfgf
yI <R

k(y)-f(y)|dy

by Holder incquality

|FCe, ())=E ()] g czﬂ>"“/2{f:fk'y>-f<y>12a§}

ARG

oy

x
g'flp‘dyka
1<

| R

e,
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< CIf, (9)=f(y)liz—> 0, a5 k- ac,
- A
so the sequence { F(f )| converges pointwise to £ Thus
A ke
1'1(f) : f "...(3-.

% 2 . ;
lowy, for any f e€Ll”, wce consider the functions

£(x)  if |x| <R
f?(x) = { .
0 if x> R

-y

2 . . 2
A R 3 f'-D--—-a f din W74 /gao T( fR) — F(f) in LK « But,

A~

by the previous argument F(fq) = f., a.e., thorefore as R— o

R
fR — F(f) - f in L o

step 7 The Inversidn Formula.

Finally, we /must verify the Inversion Formula

. - 2 -1‘]./.-.‘1 n -1 Xe T
(b) £(x) = Jlimin-LtT™ f-f(y)u it b)dy.
R=—= L
Il <R
It shouldibe elear from our previous discussion that it
W

is enough to prove (b) for functions fe d . Morecover, by
linearity, it suffices to prove (b) for chrr-cteristic functioas
of n-cells, but this ease reduces casily to the case of

"
characteristic functions of intervals in R,

From the fornula

= [ (BIIXyeqar o 3
ps

Tr ~CAY -
we claim that
L | sinx |
= f = dx - Lw
=20
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. o5 4 &
Since T =
’ sinx . L (.1_:.0&3_2.3 e
% x o= 2 ) 2
- -l x

; —-CO0G2 sin2
= lin ‘1_ .‘1:.}.,.9{:"......1{. + J __o__l‘_Ec_'}C_ 1}-.&
N I I R
~Ad "
N J siny,

-
lloreovery for any real nunber »r

o
l{sin rx, )
= | BB o . P
T X )

where o r/pr| if r #F O
."-'H_’,I’?.I" - { -
0 if r= O
Now, if f = X1 ¥ is the characteristic function of
Ly
the interval (a,b) /& / (e=byc+h),; then
) gy \ .
P (%) - 2 sinhx diex , and
P — A
L 4, v =ixy. ilx-e)y sin hy
= if(¥)e Gy = B w———r ' (Y
Ve ~e0 y

‘coslx=¢)y sin hy ay

e
o

- o4

sin(x—c+h)y-sin(x-c—h)yd

1
IKLA ::LA N =

g - A
(Tein(xen) in(x-b)
ord {_;‘_3_11‘1 X=a. )Y - S1Nn\X—- N’:]dy
S 5 y

roji

sgn(x=n) = sgn(x=b)J]

0 if x ¢ [a,n]

1 if x & (a,b) "

1/2 if x = a or x = b
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Therefore o
A wd |
= [f(:ﬂe gy = £(x) aece. i,

/2T

-

/
PP/ 4
This completes the proof of Theoren (4e3el)e {fi :‘?%‘} |

e\ k
Remark: If we set S

~ - { -7 - )
Fely) = (2Th n/R};(y)o i(x T ayy
then the Inversion Formula (b) can be written in the form
f = F F(f) which shows that T = F"l. e conclude from

Theorem (4e3.1) that the Fourier TPransform F is a continuous
2
linear isomorphism of L7g
I.A, a0 ——
jftx)g(x)dx = | flxdg(x)axe.
Proof: Since (f ;“57 = % +J% then, by Parseval's Formula,
” % ' 2
kif + gladx - [|f + 717 dx%e

Now,
£ + g

"

s o o) - =
(f +g)(f +8) = 1fi2 + |g1° + £§ + I8

2

1£12 +1g1° + 2 Re(£R)

and likewise

2

12 +%12 2 1% +18)° + 2 Re(£R).

Hence, using Parseval's formula again, we obtain that

Re { Sx';édxi - Rei ff{gdxg .
Replacing £ by if, the above formula gives the corresponding
equality for the imaginary parts of our integrals, and hence

Plancherel's formula is proveds
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