CONSTRUCTION, CHARACTERIZATION AND VALIDATION OF A LITHIUM FERRITE ELECTRODE

Apinan Neawphanassawa

A Thesis Submitted in Partial Fulfilment of the Requirements

For the Degree of Master of Science

The Petroleum and Petrochemical College, Chulalongkorn University
in Academic Partnership with

The University of Michigan, The University of Oklahoma,

Case Western Reserve University and Insitut Français du Pétrole

2006

ISBN 974-9937-58-9

Thesis Title:

Construction, Characterization and Validation of Lithium

Ferrite Electrode

By:

Apinan Neawphanassawa

Program:

Petrochemical Technology

Thesis Advisors:

Assoc. Prof. Thirasak Rirksomboon

Asst. Prof. William G. Cook

Prof. Dr. Frank R. Steward

Accepted by the Petroleum and petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

Mantaya Yanumut College Director (Assoc. Prof. Nantaya Yanumet)

Thesis Committee:

Asses Brof Third Bild

(Assoc. Prof. Thirasak Rirksomboon)

(Asst. Prof. William G. Cook)

(Assoc. Prof. Pramoch Rangsunvigit)

(Prof. Frank R. Steward)

(Assoc. Prof. Anuvat Sirivat)

hurstlowed

Ramoch Ry Frank Rytens

ABSTRACT

4771003063 : Petrochemical Technology Program

Apinan Neawphanassawa: Construction, Characterization and

validation of a Lithium Ferrite electrode.

Thesis Advisors: Assoc. Prof. Thirasak Rirksomboon,

Asst. Prof. William G. Cook and Prof. Frank R. Steward, 62 pp.

ISBN 974-9937-58-9

Keywords : Lithium Ferrite electrode, reactor coolants, cyclic voltammetry, open

circuit potential

A lithium ferrite reference electrode was designed, constructed and validated to determine its suitability for use in nuclear reactor coolants. Lithium ferrite (LiFe₅O₈) was prepared by a solid state reaction method. An appropriate amount of lithium carbonate (Li₂CO₃) and hematite (Fe₂O₃) were homogeneously mixed, finely ground and then roasted in air at 900-1100°C. The lithium ferrite powder was coated onto a platinum wire and characterized for its phase and morphology by XRD, laser Raman and SEM. From the SEM images, the grain size was found to be evenly distributed with an average size of 100 micrometers. XRD peaks clearly showed the lithium ferrite was in the cubic phase. Laser Raman spectroscopy showed a phase transformation during the electrochemical potential experiment. Different potentiometric measurement techniques were applied for electrochemical analysis. Open circuit potential measurements were conducted to measure the lithium ferrite electrode potential in different lithium concentrations. Cyclic voltammetry was applied to determine and validate the proposed kinetics and thermodynamics of the lithium ferrite electrode.

บทคัดย่อ

อภินันท์ แนวพันธ์อัศว: การสร้าง วิเคราะห์กุณสมบัติ และรับรอง ความเป็นไปได้ ในการใช้งานของอิเลคโทรคมาตรฐานอ้างอิงลิเที่ยมเฟอร์ไรต์ (Construction, Characterization and validation of a Lithium Ferrite electrode) อ.ที่ปรึกษา: รองศาสตราจารย์ ค็อกเตอร์ ธีรศักดิ์ ฤกษ์สมบูรณ์, ผู้ช่วยศาสตราจารย์ ค็อกเตอร์ เเฟรงค์ อาร์ สจ๊วต 62 หน้า ISBN 974-9937-58-9

อิเลคโทรคมาตราฐานอ้างอิงชนิคลิเที่ยมเฟอร์ไรต์ได้ถูกออกแบบสร้างและตรวจสอบ ความเหมาะสมที่จะใช้ในโรงงานนิวเคลียร์ในบริเวณของน้ำหล่อเย็น ณ เตาปฏิกรณ์นิวเคลียร์ สารลิเที่ยมเฟอร์ไรต์ถูกเตรียมด้วยวิธีปฏิกิริยาสภาวะของแข็งปริมาณที่เหมาะสมของลิเที่ยมการ์-บอร์เนตและฮีมาไทต์ถูกนำมาผสมและบคจนเป็นเนื้อเดียวกันและนำไปเผาในเตาหลอมที่อุณหภูมิ 900-1100 องศาเซลเซียส ในเวลาต่อมาสารลิเทียมเฟอร์ไรต์ได้ถูกใช้เพื่อให้เคลือบอยู่บนผิวของ ลวดแพลตตินั่มและได้ถูกตรวจสอบพื้นผิวและโครงสร้างผลึก ด้วยวิธี SEM, Laser raman และ XRD ตามลำคับ สำหรับภาพที่ได้จาก SEM นั้น จะเห็นได้ว่าผลึกของสิเที่ยมเฟอร์ไรต์ที่ได้ นั้น จะมีขนาคโดยเฉลี่ยประมาณ 100 ในครอน และการกระจายของผลึกเป็นไปอย่างสม่ำเสมอ ผล แสดงให้เห็นอย่างชัดเจนว่าโครงสร้างของผลึกตัวอย่างที่เตรียมมานั้นเป็นของ โครงสร้างลิเที่ยมเฟอร์ไรต์ที่มีโครงสร้างผลึกแบบลูกบาศก์ ผลของ Laser Raman แสดงให้เห็น ถึงการเปลี่ยนรูปของโครงสร้างผลึกลิเที่ยมเฟอร์ไรต์ในขณะทำการทดลองวัดค่าความต่างศักย์ทาง วิธีเคมีไฟฟ้าในขณะเดียวกัน การวัดค่าความต่างศักย์ แบบวงจรเปิดถูกนำมาใช้ สำหรับวิเคราะห์ ทางเคมีไฟฟ้า วิธีนี้ทำโดยการวัดค่าความต่างศักย์ของอิเลกโทรคมาตรฐานอ้างอิง ลิเที่ยมเฟอร์ไรต์ ที่ความ เข้มข้นของถิเที่ยมที่แตกต่างกัน Cyclic voltammetry ถูกใช้ในการตรวจสอบและพิสูจน์ จลศาสตร์ของปฏิกิริยาและความสัมพันธ์ระหว่างความร้อนกับพลังงานกลของอิเลคโทรคมาตราฐาน-ล้างลิงลิเพี่ยบเฟอร์ไรต์ ที่ได้กล่าวบำมาในข้างต้น

TABLE OF CONTENTS

		PAGE
Titl	le Page	i
Ab	stract (in English)	iii
Ab	stract (in Thai)	iv
Acl	knowledgements	v
Tab	ole of Contents	vi
Lis	t of Tables	viii
Lis	t of Figures	ix
Abl	breviations	xi
Lis	t of Symbols	xii
СНАРТ	ER	
1	INTRODUCTION	1
п	BACKGROUND AND LITERATURE SURVEY	3
	2.1 Reference Electrode	- 3
	2.2 Nernst Equation	4
	2.3 Activity (a)	- 5
	2.4 Cyclic Voltammetry	. 7
	2.5 Mass Transfer	9
	2.6 Lithium Ferrite Preparation	14
Ш	EXPERIMENTAL	16
	3.1 Reagents	16
	3.2 Method	16
	3.2.1 Preparation of Lithium Ferrite (LiFe ₅ O ₈)	16
	by Solid State Reaction	
	3.2.2 LiFe ₅ O ₈ Coating Process	17
	3.3 Electrochemical Measurements	18

CI	HAPTE	R	PAGI
		3.3.1 Open Circuit Potential Measurement	19
		(Room Temperature)	
		3.3.2 Cyclic Voltammetry Measurement	20
		(Room Temperature)	
		3.3.3 Open Circuit Potential and Cyclic *	21
		Voltammetry Measurement (High Temperature)	
٠	IV	RESULTS AND DISCUSSION	23
		4.1 Lithium Ferrite Characterization	23
		4.1.1 Scanning Electron Microscopy (SEM)	23
		4.1.2 X-Ray Diffraction (XRD)	24
		4.1.3 Laser Raman Spectroscopy	28
		4.2 Determination of LiFe ₅ O ₈ Potential	32
		4.3 Reaction Hypothesis	34
		4.4 Mechanism Validation by Mean of The	38
		Gibbs Free Energy Calculation.	*
		4.5 Cyclic Voltammetry (CV)	41
		4.6 High Temperature Measurements	44
	v	CONCLUSIONS AND RECOMMENDATIONS	47
		5.1 Conclusions	47
		5.2 Recommendations	48
	R	EFERENCES	49
		APPENDICES	52
		Appendix A Calculations	52
		Appendix B Figures	56
	C	URRICULUM VITAE	62

LIST OF TABLES

TABI	LE	PAGE
2.1	Typical standard cell potentials at 25°C versus SHE	6
4.1	γ-Fe ₂ O ₃ Raman spectra from literature	31
4.2	Summary of LiFe ₅ O ₈ potential measurements in different	
	lithium solutions and concentrations	36
4.3	Tabulated value of the calculated Gibbs free energy of Fe ₅ O ₇	
	from high ratio LiFe ₅ O ₈ experimental standard potential in	
	lithium hydroxide solution at different concentrations	39
4.4	Tabulated value of the calculated Gibbs free energy of Fe ₅ O ₇	
	from equimolar ratio LiFe ₅ O ₈ experimental standard	
	potential in lithium hydroxide solution at different	
	concentrations	40

LIST OF FIGURES

FIGU	RE	PAGE
2.1	Components of typical reference electrode	3
2.2	Potential is applied in both negative and positive direction	
	alternately	8
2.3	Current characteristics change as the potential is being swept	8
2.4a	Current-potential curve for nernstian reaction with only oxidant present initially	13
2.4b	Log((i _l -i)/i) vs E for this system	13
3.1	Schematic diagram for lithium ferrite coating process	18
3.2	Schematic diagram for open circuit potential setup	19
3.3	Experimental setup for cyclic voltammetry measurement on	
	lithium ferrite coated onto platinum wire	21
3.4	Schematic diagram for LiFe ₅ O ₈ potential stability testing in	
	autoclave at high temperature and pressure	22
4.1	SEM image of LiFe ₅ O ₈ with the 100x magnification	23
4.2	XRD pattern for LiFe ₅ O ₈ compound prepared from LiFeO ₂	
	and Fe ₂ O ₃	24
4.3	XRD pattern shows LiFe ₅ O ₈ phase after it has been through	
	the coating process with LiBO ₂ in high ratio (2:1) at 1100°C	26
4.4	XRD pattern shows LiFe ₅ O ₈ phase after it has been through	
	the molten process with LiBO2 in equimolar ratio (1:1) at	
	1100°C	26
4.5	XRD peaks shows LiFe ₅ O ₈ phase after it has been through	
	the molten process with LiBO ₂ in low ratio (1:2) at 1100°C	27
4.6	Raman shift pattern for a pure LiFe ₅ O ₈	28
4.7	Raman shift pattern for unknown compound from LiFe ₅ O ₈	
	after several experimentations	29
4.8	LiFe ₅ O ₈ potential measurement against SCE in different Li	
	concentrations	32

FIGU	RE	PAGE
4.9	Potential vs pH at 10 ⁻³ M Li ₂ CO ₃ test solution at room	
	temperature	33
4.10	Potential vs pH at 10 ⁻³ M LiOH test solution at room	
	temperature	34
4.11	Potential versus lithium concentrations in buffer solution	•
	(LiOH) with an addition of LiCl	36
4.12	Potential stability versus time in LiOH solution with	
	different Li concentrations	37
4.13	The standard Gibbs free energy change of lithium transition	
	metal oxide	38
4.14	XRD pattern of the scrapped sample from LiFe ₅ O ₈ after	
	polarization experiments	40
4.15	Cyclic voltammetry curve in 10 ⁻³ M Li ₂ CO ₃	42
4.16	Cyclic voltammetry in 10 ⁻³ M LiOH solution	43
4.17	Cyclic voltammetry of LiFe ₅ O ₈ in buffer solution at 10 ⁻⁴ M	
	lithium solution with different scan rate	44
4.18	LiFe ₅ O ₈ potential measurement under high temperature and	
	pressure in the autoclave up to 200°C	46
419	Cyclic voltammetry of LiFe-On at 200°C in the autoclave	. 16

ABBREVIATIONS

Ag/AgCl Silver-silver chloride

CE Counter electrode

CV Cyclic voltammetry

EDX Energy dispersive X-ray

EPBRE External pressure balanced reference electrode

HCl Hydrochloric acid

HNO₃ Nitric acid

Li Lithium

LiBO₂ Lithium metaborate

Li₂CO₃ Lithium carbonate

LiFe₅O₈ Lithium ferrite

LiOH Lithium hydroxide

OCP Open-circuit potential

RE Reference electrode

SCE Saturated calomel electrode

SCC Stress cracking corrosion

SEM Scanning electron microscopy

SHE Standard hydrogen electrode

WE Working electrode

XRD X-Ray diffraction

LIST OF SYMBOLS

\boldsymbol{A}	Electrode surface area (m^2)
a_{i}	Activity of species i (mol/L)
\boldsymbol{c}	Concentration of testing solution (mol/L)
C_i^{\bullet}	Bulk concentration of species i (mol/L)
$C_i(x=0)$	Concentration at the electrode surface (mol/L)
D	Diffusion coefficient of i^{th} ion (cm^2/s)
\boldsymbol{E}	Electrochemical potential (V)
E_{SCE}	Potential measured against saturated calomel electrode
E_{SHE}	(V_{SCE}) Potential measured against standard hydrogen electrode (V_{SHE})
E^o	Standard electrochemical potential (V_{SHE})
ΔE	Potential difference between working electrode and reference electrode (V)
E_p^a	Anodic peak potential (V)
E_{p}^{c}	Cathodic peak potential (V)
F	Faraday constant (colomb/mol)
ΔG	Gibbs free energy (kJ/mol)
ΔG^o	Standard Gibbs free energy of formation (kJ/mol)
ΔG^{o}_{rxn}	Standard Gibbs free energy of reaction (kJ/mol)
$\sum \Delta G^o_{reactanI}$	Summation of Gibbs free energy of formation of reactants (kJ/mol)
$\sum \Delta G^o_{product}$	Summation of Gibbs free energy of formation of products (kJ/mol)
i	Current (A)
i_I	Limiting current (A)

- i_p^a Anodic peak current (A)
- i_p^c Cathodic peak current (A)
- i/A Current density (A/m^2)
- $J_i(x)$ Flux of species i at distance x from the surface $\binom{mol}{cm^2 \cdot s^1}$
 - m_i Mass transfer coefficient of species i $\binom{mol}{cm^2 \cdot s^1}$ Molarity of species i $\binom{mol/L}{L}$
 - n Number of electrons transfers in equilibrium reaction
- T Temperature (K)
- υ Stoichiometric coefficients
- v_{rxn} Net rate of electrode reaction $\binom{mol}{cm^2 \cdot s^1}$
- Net rate of electrode reaction by mass transfer $\binom{mol}{cm^2 \cdot s^1}$
- ν Scan rate (V/s)
- v(x) Velocity which elements move along the axis (cm/s)
 - z_i Charge of ith ion
- γ, Activity coefficient of species i
- $\frac{\partial C_i(x)}{\partial x}$ Concentration gradient at distance x (mol/cm^2)
- $\frac{\partial \phi_i(x)}{\partial x}$ Potential gradient (V/cm)