CHAPTER II

ON THE SUBHARMONICITY OF |F(z)|P
2.1 Notation

As in the case of two variables, we may characterize a
system of conjugate harmonic functions in term of differential
equations. The n~tuple F = (ul,uz,..., un) of harmonic functions
forms a system of conjugate harmonic functions if and only if

it satisfies the analogue of the Cauchy-Riemann equations
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We first find a result that will replace the two dimensional
result that |F(2)|P, p > 0 is subharmonic when F(Z) is analytic

Let F be a system of conjugate harmonic functions and
denote by |F| the norm (u.i+ ug-i-. ot ui)%. We thus begin by asking

the question : Is the function IFlp & subharmonic function of variables
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2.2 In this section we answer the above question by the following

theoren.
Theorem 2.2.1. lFlp is subharmonic if p > 2—:—% .
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Proof Let & = Tk TP ... ¥, is the Laplace operator.
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By theorem 1.3, it suffices to show that A(|F|P) 2 o.



And toward this end, we begin by calculating A(|F|P) and
expressing our result in vector notation.

Ifr G = (vl,ve,..., Vn) is another function, we let
F.G = u1v1+ u2v2+ sonist v be the inner product of F and G.
We note that F.G = G,F.

For k=1,2,...,n, we let
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Summing over k we get
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We see that, from the equation (2.2.2), A(|F|P) fails to
be defined only when F(X) = 0 (for p < 4). But, if F(X) = 0
at some point X,since |F|® 3 0, the mean value property of

subharmonic function must hold at X. Thus inorder to establish



the subharmonicity of |F|P it suffices to show A(|F|P) 3 0
whenever the latter is defined. Thus we may assume that F is
never be zero vector.

Note that A(|F|®) > 0 is obviously true if p > 2.

If 1 < p < 2, using Schwarz's inequality, (ka. F)2 < |F |2|F|2
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The result thet A(|F|P) » 0 for value of p less than

1 depends on the following lemma.

Lemma 2.2.4 Suppose that
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is a symmetric matrix with trace ( = & a;;) zero. Let ||77]]
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be the norm ofm which is defined by
m = sup}'mAI vhere the supremum is taken

over all vector A = (al,az,...,an)

such that |A| = (|91|2+|a2|2+...+|an|2)2§ 1
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nmil =/x |a, J|2, the Hilbert-Schmidt norm of 77L.
i,

men ||NNZ < 2L P

Proof of the lemma. By [5] pages 173-175, every symmetric
matrix can be reduced to a diagonal form by using a unitary
transformation. Thus we can reducem to a diagonal matrix.

Since ||777 || and || 771|ll are unitary invariant and M s

symmetric, we can assume that 7)1 is a diagonal matrix. Thus

we have
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That is {|772| > max {xf,xg,...,x } (2:2.5)
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Therefore | 77| § max {Af, Ag,..., Aﬁ} . (2.2.6)
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By (2.2.5) and (2.2.6) we have ”77?']2 = max {Ai,lg,...,ln

and hmn? = 5 2.
i=1

Since the trace of a matrix is also invariant under unitary

n
transformation, we have I Ai = 0 .
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We now show that for k = 1,2,3,...,0
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and the lemma is proved.



To apply lemma 2.2.4 to our

The trace of the matrix is now £ (7
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since F is a system of conjugate harmonic functions.

Mis & symmetric matrix by (2.1.1).
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We then see that |MF|Z = £ (F.F._ )
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The equation (2.2.2) can be reduced to

a(|F|P) = p(e-2) |[FIPHme| % plr P2 MIR,  (2.2.7)

If p =0, it is clear that A(|F|P) = o,

Assume p # 0, the inequality A(|F|P) > 0 is equivalent to

[eI®-2I0TUIR 5 (2-p)|#|®* 1ME|2

which can be reduced to
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Thus from lemma (2.2.4) we get

ImiF < S umiP

men MI°|F1* < Z-NTUPIEI2, (2.2.10) .



Then by (2.2.9) and (2.2.10) we get (2.2.8) and the theorem is
now proved.

Using the subharmonic character of |F|® we obtain the

extension of the basie theorem of the classical Hp spaces to
the n-dimensional Spaces, whenever p » -:;—-:12- .

Instead of considering the n-dimensional spaces, from

now on we will slightly change some notation about F(X). We will

consider F(X,y) = (u(X,y), V(X,y)) = (u(X,y), Vl(X,Y)s va(x,y),..
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Pt vn(x,y)) satisfying (1.2) and so in this case we have a result

D n+l)-2 n-l
that |F(X,y)|® is subharmonic whenever P2 {_—-g__n-*l ol
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