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CHAPTER III

ON LEAST HARMONIC MAJORANTS IN HALF-SPACES

In this chapter, we will discuss on the existence of

+
harmonic mejorant of a subharmonic function s oann+l .

3.1 The Poisson Kernel

Let n be a positive integer and Bn +1 be the euclidean

space of dimension n+l; an arbitrary point in mn*-l is represented

by

=
]

(st) = (xl’xe"”’xn’Y)

we put
‘ 2 |X|2

X

i~ 2
xl* x2+-.0+ xn’ dx - dxldxzo.. dxno
For each real number a, let Da be the open half-space

D » {Mean+l:y>a} N06628

a

A -
where a = 0, Da is simply replaced by Rn 4 "

+
In Pﬁﬁl » the Poisson kernel P is given by

P(X,y) = = v -
c (Ix| 2,y2)2(0+1)
J2“-(n'l-l)
where c = I
= F[5(n+1)]

1 A2 G0 A A
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This function has following three basic properties
3.1.1 P(X,y) =0

3.1.2) / P(X,y)dX =1 for all y > 0.
R
n

This property is obtained immediately as we can show that

%(nﬂ)
é ;. i 8 o = cn ” 1Tl
n(|x|2+y2)§(n+l) P[§(n+1)]

And this equality can be shown as follows (see Helms [L]

for all notation used).
2 2 2 2 2
Let r = xl+ x2+ APEAN - x, = IXl

2 = (01,02, cevy On) and

-
ei = TR TR .2,...,0
then le] = 1
n (lxlz+y2)§(n+1) ’ ( )-(n+1)
P rn-l
= y/ | do(e)dr
0 (r yo )2(n+1) 3B(0,1)
n—l n-1
o * f /y dr/y
0 (:2/42,1y5(n%1)
» sn—l
= On g ds ; s = r/y .

0 (4241)3(0*1)



et & = x/(1-x), the last quantity equals to
o 1 (B1)  (31)
-é-n I = (1-x) ax
0
oynedl
% r(z)r(z)
2 rlHn)]

1.
21r2
Since on = surface area of n-dimensional unit sphere = T-‘—E
('é-)
o T(E)r(3)
¢ B o
we get -é- R .= cn 4
l‘[é-(m-l)]
This means S P(X,y)ax = 1 , p e ) R
R
n
3.1.3) If r > 0, thenh LVVPIX,y)dX + 0 as y+0.
|X|>r
To show this, it suffices to prove that
Lim S - atl = o,
y+0 ‘XI>I' (|Xl2 —(n+l)
Since [ M dX = l.(
IXI37 (15 2452)300%0) He y"*l(J—-'- +1)2 w)
y
= 1 dx

-
Let T = (tl t2,o.o, tn); ti = y—'
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s "l ax = s o 1 - ar
[X|3r ('x|2+y2)§(n+1) ITIZ; (|T|2+l)§(n+l)
1
w1 X (|T})ar ,

i & r
Ry (ja| 2B ()

where Xa being the characteristic function on A.

; & 4
Let m be the greatest integer less than or equal to y then

thus, {Fm} is a decreasing sequence of nonnegative measurable
1

1
(ITI 2_‘_1)-2-(!11’1)

functions. And Fl(T) < which is integrable on

Rn’ i.e., {Fm} is a decreesing sequence of nonnegative integrable

functions, and 0 < %im F € %im = 0,
; [ jiig el n > x[m’m)

By Monotone Convergence Theorem,we get

0 < %m S Y dX < 2im S . Xm “)(ITI)dT
o b (1B 2e) T me g (g2, dan) T

= e

Rn( 'TI +1)§(n+1)

1 2im 'X[m ,,)( |7])ar

n
o
.

Thus Lim S P(X,y)ax
¥y |X|3r
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3.2 The existence of the least harmonic majorant.

Let f be a function defined at least on the hyperplane of

equation y = a, such that the function

1
X —  (x241)" Zntl) £(X,a)

is Lebesque integrable in &®". The Poisson integral I; in Da of
the restriction of f to the hyperplane is given by
I; (Xy) = é P(X-2, y-a)f(Z,a)dz
n

for all (X,y) belonging to D . We note that Ig is harmonic in D_
(Nualtaranee [6]). The following theorem is proved by Nualtaranee [6].
It guarantees that the least harmonic majorant of s exists if
K(|s|, ) is bounded.

We then construct the classes S® of subharmonic functions
in half-spaces. For p 2 1, the subharmonic function s : R;*-l > B
is said to belong to sP if the function

= F(n+1)
K(|s|Py) = f ((P+(1+9)%) |s(x,y)|® ax
R

n
is bounded in the cpen inteval (0,+=),

In fact, by Holder's inequality and the fact that

- &(n41)
e - &
é (x°+ (149)%) X = . (y+1)

n
we have, for any p > q > 1, that

q p .\ Yp 1 l-%
K(]s]%,y) < {&(]|s|®,y)} {W} .
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This means that if p > q > 1, then

s ¢ 8% ¢ gt .

Theorem 3.2,1 Suppose that s ¢ Sl and ¢ > 0 such that
Klsleow) s o (y >0).

Then the least harmonic majorant hs of s in B;ﬂ exists and

is given by
o+
h (X,¥) = ky + J P(X-2,y)av(z) ((X,y)e R ,.)
R
n
X
where k = T im K(s,y) , end
n y>+eo
V 1is a signed Radon measure in ERn such that
2 "%."(n*l)
S (2°41) dlvl (2) ¢ e .
R
n

If further s 2 0 (s < 0) in R;+l then v is a positive
(respectively negative) Radon measure in Rn.

The following theorem will guarantee the existence of a
least harmonic majorant of s if K(|s|®, 5) is bounded. The proof

of the theorem will be given in §.3.3.

Theorem 3.2.2 Suppose that s ¢ sP where p>1l,a>0 and

K(Isl®, ) ¢ e (0<y<a).

+
Then the least harmonic majorant hS of 8 in IRn +1 exists and is

given by



2l

h_(X,y) = J P(x-2,y)f(z)az
" R
n
+
= If(X,y), say ((x.y)e Rn-'-l] 3

where f is a measurable function in Rn such that

-%(ml)

I (2%41) le(z)|Paz ¢ o
R

n
and almost everywhere in Rn

£(X) = §3+ b_(X,y) (Xean)-

If further s > 0 (s < 0) in a neighbourhood V in R;_'_ then

1

f can be taken to be non-negative (resp. non-positive) in R .

Also Stien and Weiss [1] proved a similar following

theorenm.

Theorem 3.2.3 Let s(X,y) > 0 be a subharmonic function

defined in the region R; +1 satisfying

;o [s(x,y)1Pax s ¢ <
R

n
where 1 £ p < ® and ¢ is independent of Yy > 0. Then s has a

[ +
harmonic majorant hs in ‘Rn +1 and

a) if p> 1, b (X,y) = J P(X-2,y)£(2)az ((X,y)e R,,)

R
n

1

where £ ¢ LP(R ) such that £(X) = %im h (X,y) a.e.
n y»0 -}

and "f“p Lec



+
b) if p=1, b (X,y) =/ P(X-L,y)au(z) ((X,y)e R )
s R n
n
where u is a signed Radon measure such that / d|u|(2Z) € c.
R

n

303 Proof of theorem ;.2.20

Before we prove the theorem 3.2.2, we give the properties
of some spaces in duality and some lemmas which will be needed
to prove the theorenm.

Let v be & measure defined by

2
2 2
av(x) = (x%+1) © ax (x e Rn).
(Note that v is a positive Radon measure in Rn). For each p such
that 1 € p < @ we denote by LP(v) the space of measurable
function f such that |f|p is v~integrable in Bn.
The space LF(v) is a Banach space, i.e., in the metric

arising from the norm ""p defined by

hell, = ¢ 260 PP (e e L®(v)),
Rn
Lp(v) is a complete metric space, where we agree that f = g
means f = g a.e, in Rn.

Further the Banach space LP(v) and L%v) are in duality
when p > 1 and g is the Holder's conjugate of P, i.6., 0 = -(g_-f)'
If £ & IP(v) end g € LYV) the bilineer form <f,g>

is defined by

<f,g> = [ f£(X)e(X)av(x) .

R
n

22



It is well-known that for 1 < p < +=, the space LP(v)

is seperable,

Lemma 3.3.1 Suppose that 1 < p < +® , 0 < g <o and
A = {f:feLPv), "fups al ,

then every sequence {fm} in A has a subsequence {fm } converging
- 3
weakly to a function f in A, i.e.,

Lim < f » 8 > = <f,g> (gELq(V))
oo %

where q = p(p-1)"%

Proof Let V= {g : g e LYv), Ushq 3 %'}

Let {fm} be any sequence in A.

l< £, 2| < 7 |z (x)]|a(x)]|av(x)
R
n

< ol ey < 2-3=1, geV.

Hence, by Rudin [9], theorem 3.17, there is a subsequence

{fm} of {fh} and there is a function f in A, such that

Lim < f , g > = <f,g> (& e LYWV)).
T
Theorem 3.3.2. Let s be subharmonic in.m;+l. Suppose that for
each Yo > 0, there exists a positive constant c(s,yo) such that
s
+
K(s*,y) = s {X2+(y+l)2} . s+(X,Y) ax < c(s.yo)
R
n

for all y 2 yb, then

23



i) K(s,y) has a finite limit as y + 4o,
ii) for each a > 0, the least harmonic majorant T of s
b

in Da exists and is given by
a
hs’a(x,y) = ki(y-a)+ I (X,y) ((X,y) € D)

where k is a constant indepent of a and given by

e %- 2im K(s,y) .
n yrte

If, further, K(s+, o) is bounded in (0,+), then the

least harmonic majorant hs of s in R;ﬂ_ exists and is given by
(X,y) = ky +gim_I%(X,y) ((X,y) eR",.)
h, (X,y = ky 2_:& I X,y y) eER ).

(The proof of the theorem 3.3.2 is shown in Nualtaranee

[6], theorem 2).

Lemma 3.3.3. Suppose that 1 ¢ p < + and s € sP,
Then

Aim, 1% (X,5+8) = Lim I® (X.v)
= y
a.+0+ s b a*0+ s ’

= H(X,y) say ,

for all (X,y) belonging to m;ﬂ.
To prove this, we first note that, by theorem 3.3.2
H exists and is harmonic in IR;_l. So it is enough to show that

for any null-sequence {ai}, i=1,2,... and for any
+
oot SR

-
2 &
iil:co IS (xo’yo+ ai) T H(XO’YO) ¢
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In fact, by the first part of theorem 3.3.2 and the

fact that for 0 < a < b, hs > hs,a > hs,b in Db’ we get

b a
(M) - |kp < I (m)

~

A

H(M) + |k|b

for all M in D, . (3.3.4)

Now, we put

= \ 1
B = {Me canﬂ : MOM < 3 yo} s Where MMO is

the usual distance from M to M. By using (3.3.4) with
a,
0 < a; < %-yo =b , we get that the functionsISi are uniformly
a,
bounded in B, hence Isl > H uniformly in B as i + + =,

i.e., for any € > 0, there exists a positive number §_< %'yo

1
such that whenever 0 < a; < 61 .
%
[T 7)) - B(M)| < e/, (M e B).
And hence, in particular,
!
|17 (X, o+ e, )- B(X,sy * a;)| < e/, (0 < a;< §.),
On the other hand, by the continuity of H, there exists
a 62 > 0 such that
|u(M ) - m()| < A (M < 5,)
and hence in particular

IH(Xo,y°+ e)- B(X .y )| < ¢/, (0<a; <8,).

Collecting the results and putting 6 = min(61,62), we have



a,
£
|Is (xo,yo+ a,i) & H(xo,yo)l & (o0 < a; < )

this completes the proof of Lemma 3.3.3.

To prove theorem 3.2.2, we note that

1
~=(n+1)
PPt T @ g o)™ ek @
&

n

which can be easily deduced from the inequality

+ 2
1Al < aeyP.
P G e |

For any € > 0 , we put

Lins1) &
A ={f: £ e1y), ﬂf"p s (1+4¢)P cP}

(3.3.5)

and take a decreasing null-sequence {ai}, 1 #3205 .00 195.5:5),

we have that, from some i onwards (ai < £), the functions

X —— s(X, ai)

belong to Ae . Hence, by using Lemma 3.3.1, with A = Ae’ there

exist f ¢ Ae and a subsequence {bj} k3 = X.8,:::) of {a.i}

such that

Lim f s(Z,bJ)g(Z)d\J(Z) = [ £(2)g(z)av(z) (3.3.6)
R

o+ R
n n

for all g € LY(v) whence in particular for

-3"2-( n+l)

2
I -

Z —> g(2)
Cn (X-Z)2+ y2

1 5 2 : +
with (X,y) ¢ R (since, for each (X,y) fixed in Rn-*l 5



the function g is continuous and bounded in Bn and

s 1e(2)|%av(2) ¢ sup |a(z)|2 7 av(z) < + =).
R

n ZEan ,Rn
Hence
L o %{n+l)
vin 13(x,e0,) = Ly ezt ly av(z)
o J n R (X-2)%+y
i 1
~=(n+1)
= lyf f(Z){(X-Z)2+y2} . az
C
n Rn
= 1 B(X-2,y)f(2)az ((X,y) e B, )
R
n

This together with Lemma 3.3.3 gives

27

L(%y) = JRX-Zy)e(2)at = 2im, 10(x,3)  ((Xy) € Ry,

a»0
n

and hence, by theorem 3.3.2, the fact that SPc s! and

Lim K(|s|,y) = 0 (see Nualtarsnee [6], theorem 7), we obtain
Yt

the first equality of theorem 3.2.2. To prove the inequality of

theorem 3.2.2, we note that, since f ¢ At

s 2z Pav(z) ¢ (14e)® (e > 0).
R
n

Hence

k122 Pav(z) < o
n

and the result follows.
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To prove the last equality of theorem 3.2.2, we note that

R L e |£(X)]ax < + =,
R

n
since, by using the inequality (a+b)™ < 2™(a"+ v™®) (a >0, b2>0)

and Holder inequelity, we get

L(n+l) -':l-'-(n+l)
s (|x|n+l+1)’1|f(x)ldx s oF s (xPe1) © | £(x)]ax
'Rn mn
o) , % “{n+1)
< 2° A [% 12 5 (xP41) 2 i | £(x)Pax
n R
n
< * o

+
Hence by the limit property of Poisson integral in an +1
(see, Horvath [3], proposition 2.1), we have almost everywhere
in IRn
gim, I(X,y) = £(X) (XeRr)
¥+0
and the result follows,
We prove the last part of Theorem 3.2.2. in the case where
8 3.0 4n.Y, The p”réo'f of the case where s ¢ 0 in V is similar.
Suppose that 820 ih V and that by the contradiction the

n-dimensional Lebesque measure of the set
E = {XeRn:f(X)<0}

is positive. Hence there is a compact subset F of E with positive

Lebesque measure. Since F is compact, there exists a > 0 such that



F x (0,a) € V and consequencetly from some j onwards (b.< a and)

J

S s(Z,bJ)xF(Z)dv(Z) 3D

R

since Yp € Lq(v), we have, by (3.3.6)

2im S s(Z,bJ)xF(Z)dv(Z)

S £(2)x.(Z)av(z)
Jre R R &

n

o -%(n+l)
I £(2)(25+1) az
F

20 .

This contradicts the supposition that f < O on F and F has positive

‘Lebesque measure,

3.4 Futher properties of Poisson integral

Let KP(Rn), P 2 1 denote the class of all real valued
measurable functions defined on Rn such that
-

)
! {5540 2% € e <.

n

ie, KPR ) =1P(v) 2 L"(.nn).

For any function f in Kp(Rn), P 2 1, we define , for
&
each (X,y) in Rn+l’ the Poisson integral of f to be

I(X,y) = J £(2)P(X-2,y)az = / £(X-2)P(Z,y)dz.
R

n 'Rn



And, if p is a signed Radon measure in Bn such that

-%(n+l)

ro(Z%41) dlpl(z) < =,
R

n
we define, for each (X,y) in B;+1 s the Poisson integral of H
to be

I (X,y) = [ pP(X-2Z,y)ap(2z) .
B R_

The Poisson integral has the following properties.
3.4.1 I,(X,y); the Poisson integral of a function f in KP(Rn).

and ;p(x,y); the Poisson integral of a Radon measure such that

d|p|(2) < » , are harmonic in R .

2
é (z+1) 5

n

3.4.2 2im, I (X,y) = £(X) a.e. X in R .
+ °f n
y>0

: B(X,r) S
3.4.3 If we define Du(X) = fim 2——147—- vhenever the limit
AP £

exists, where

B(X,r) = the ball in R with center at X, radius r.

v (r) = the volume of the ball with radius r, in R ,
and define Dy(X) arbitrarily at point X where the limit does not
exist. It fs knows that S ’%%‘-;—‘%)— exists for almost all X

r-+0 n

in R and Dy e L'(Rn) (see, Rudin [8], theorem 8.6).

With this definition, we get the following proposition.

30



Proposition 3.k4.k. Let IP(X,y) be the Poisson integral of a

8
Radon measure satisfying J/ (2°+1) 2-(1'”]')<1|}1|(Z) <« inR ,
R
n

then Lim, Ip(x,y) existsfor almost all X in R and is equal to
y=0

Du(Xx).
To prove this we first show that we can assume Du(X) = 0,
If Du(X) = a # 0, we will consider the signed measure

H=av where v is the measure on an defined by

f az .
E

v(E)

Now D(p-av)(X) Du(X)-aDv(X) .

az = vn(r).

Since v(B(X,r)) J
B(X,r)

Then D(p-av)(X) 0 and

1 P(X-Z,yid(y-av)(Z) f P(X-Z,y)ap(2)-a S p(X-2,y)av(Z)
R R R
n n n

h(X,y) B e

(since v(E) = s a2, f p(X-Z,y)av(Z) = f P(X-Z,y)dZ and the

E Rn Rn

right side equals to 1).

If we can show that 2im (I (X,y)-a) = 0, then we have
y»o ¥
Lim I‘u(x,y) = a. Therefore by replacing y by pu-av we can
y-»0
assume a = 0, and we will show that 2im, I (X,y) = O.
ys0" ¥
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Since Lim £BAX r) . 0, given € >0, 38 > 0 such
v iy 2
>0 n
that for all r with r < 26 we have |uB(X,r)| < ¢ v (r).
By Lebesque's dominated convergence theorem we get
Lim, S P(x-Z,y)an(z) = 0.
y"o Rn"B(Xgﬁ)
It remains to prove [ P(X-Z,y)du(2)— 0 as y » o
B(X,$)
Let Jy) = g —— au(z) ,
B(X’d) 2 2 §(n+l)
(| x-2|“4y")
and F(r) = S au(z),
B(X,r)
e y
Then Jiy) = s s dF(r).
0 4 5 3(n#) '
(r+y%)
By integrating by parts
F(r) g 5 _r F(x)
Jy) = T +(n+l)y f % ar
n+l 0 =n+1)
(r2+y2)2 (r2+y2)2
r=0
[ é
y 4 i -y iﬁ)) +(n+l)y /== F(r)l ar
N R 0 2 23(m)
(6%+y°) (r+y°)
since |F(r)| = | B(X,r)| < e wis) -, (3.4.5)
Therefore y F((S])- — 0 ags y *> 0,
22 3{n*)
(67+y7)

And since F(0) = uB(X,0) = n({x}) = o, y—Fﬁ-S-% = 0.
y



Then by (3.4.5) we get

|ney sOLE F(i) ar | < e(w1) 03T vnir) ar = I(y)
0 (r2+y2)§(n+1) 0 (r2+y2)§-(n+1)

By integrating by parts

- v (r) $ vV, n
I(y) = ey +eyl| s P dr
2 2 %‘nﬂ) 0 o ,3i{nHl)
(r“+y°) (r+y°)
r=
where v =y (1) = & vir), ([%1)
n n o B
= Il+ 12 say,
We see that Il(y) +0 asy = 0,
) AY
Consider I,(y) = ey / nl ar®
0 5= §(n+l)
(r“+y°)
8 n-1
= enyv F ¢ 2 1 ap.
ORN_UN E(n*-l)
(r“+y°)
s n-1 & n-1
Since [ 1 I dr < ' f -3 oy dr
0 =Hn+l) 0 n+l)
= 2
(rP4y?)? (rPey )5(

(see 3.1.2)

c
n
and O < 12(y) < enyvn on .

3



We can clearly see that Ie(y) -0 as y-——>0, that is

I(y)>>0 as y—0 and so we get
IJ(y)]—->0 as y—0,

And, then the proof is complete,

Theorem 3.k4.6. If s > 0 and s € S? where p » 1, then the

limit of K(sp,y) as y-<,0+ exists and is given by

: 1)
fin k(sP,y) = [ (z%41) l£(2) 1P az
R

+
y-0 "

where f is the non-negative measurable function of theorem 3,2.2.

(See in Nualtaranee, [6] for the proof.)

3k
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