CHAPTER IV

BOUNDARY LIMIT OF F(X,y)

4.1 Introduction

We recall that, for each p > 0, we define the class of G^p to consists of all those systems of conjugate harmonic functions $F(X,y) = (u(X,y), v_1(X,y), \dots, v_n(X,y)) \text{ defined on } \mathbb{R}_{n+1}^+ \text{ satisfying }$ $\int_{\mathbb{R}_n} \{X^2 + (y+1)^2\}^{\frac{1}{2}(n+1)} |F(X,y)|^p dX \leq A < \infty \qquad (4.1.1)$

for y > 0.

We shall exploit (4.1.1) and theorem 2.2.1, to obtain boundary values of F(X,y).

4.2 Boundary limit theorem

Lemma 4.2.1 Suppose μ is a positive measure on X, $1 \leq p < \infty$, $f \in L^p(\mu)$, $f_n \in L^p(\mu)$, $f_n(X) \to f(X)$ a.e., and $\|f_n\|_p \to \|f\|_p$ as $n \to \infty$, then $\|f - f_n\|_p \to 0$ as $n \to \infty$.

Proof By the inequality $|a-b|^p \le \gamma_p(|a|^p + |b|^p)$, $a \ge 0$, $b \ge 0$, $0 , where <math>\gamma_p = \max(1, 2^{p-1})$, we get

Since $|f|^p$, $|f_n|^p$ and $|f-f_n|^p$ are all integrable, h_n is μ -integrable.

By Fatou's lemma we get

$$\begin{split} & 2\gamma_p(\|\mathbf{f}\|_p)^p = \int\limits_{X} \lim\limits_{n \to \infty} \inf \left[\gamma_p(|\mathbf{f}|^p + |\mathbf{f}_n|^p) - |\mathbf{f} - \mathbf{f}_n|^p \right] \mathrm{d}\mu \\ & \leq \lim\limits_{n \to \infty} \inf \int\limits_{X} \left[\gamma_p(|\mathbf{f}|^p + |\mathbf{f}_n|^p) - |\mathbf{f} - \mathbf{f}_n|^p \right] \mathrm{d}\mu \\ & = \lim\limits_{n \to \infty} \int\limits_{X} \gamma_p(|\mathbf{f}|^p + |\mathbf{f}_n|^p) \mathrm{d}\mu - \lim\limits_{n \to \infty} \sup \int\limits_{X} |\mathbf{f} - \mathbf{f}_n|^p \mathrm{d}\mu \\ & = 2\gamma_p(\|\mathbf{f}\|_p)^p - \lim\limits_{n \to \infty} \sup \int\limits_{X} |\mathbf{f} - \mathbf{f}_n|^p \mathrm{d}\mu \ . \end{split}$$

Since $2\gamma_p(\|f\|_p)^p$ is finite, we may substract it and obtain

$$\lim_{n\to\infty} \sup_{X} |f-f_n|^p d\mu \leq 0 . \qquad (4.2.2)$$

But, if a sequence of nonnegative real numbers fails to converges to 0, then it upper limit is positive. Thus (4.2.2) implies that

$$\lim_{n\to\infty} \int_X |f-f_n|^p d\mu = 0,$$
i.e.,
$$\lim_{n\to\infty} (\|f-f_n\|_p)^p = 0 \text{ or }$$

$$\lim_{n\to\infty} (\|f-f_n\|_p) = 0$$

Theorem 4.2.3. Suppose F(X,y) forms a system of conjugate harmonic functions and satisfies

$$\frac{\int_{\mathbb{R}_{n}} \frac{|F(X,y)|^{p} dX}{(\chi^{2}+(1+y)^{2})^{\frac{1}{2}(n+1)}} \leq c < \infty \qquad (4.2.4)$$

for $1 \le p \le \infty$, then $\lim_{y \to 0} F(X,y) = F(X,0)$ exists for almost all X in \mathbb{R}_n and for p > 1, $\lim_{y \to 0} \int_{\mathbb{R}_n} \frac{|F(X,y)-F(X,0)|^p}{(x^2+(1+y)^2)^{\frac{n+1}{2}}} dX = 0$.

<u>Proof</u> Let w(X,y) be one of the components u(X,y), $v_1(X,y)$,...
..., $v_n(X,y)$ of F(X,y). The inequality (4.2.4) implies that

$$\int_{\mathbb{R}_{n}} \frac{|w(x,y)|^{p}}{(\chi^{2}+(1+y)^{2})^{\frac{1}{n}(n+1)}} dx \leq c \leq \infty.$$

If p = 1, by theorem 3.2.1, there is a harmonic majorant h_w of w such that

$$h_{W}(X,y) = ky + I_{V}(X,y)$$
 where v is a Radon

measure on \mathbb{R}_n such that

$$\int_{\mathbb{R}_{n}} (z^{2}+1)^{\frac{1}{2}(n+1)} d|\nu|(z) \leq c \quad \text{and k is the constant}$$

given in the theorem 3.2.1.

Since w is also a harmonic function in \mathbb{R}_{n+1}^+ , then

$$w(X,y) = h_w(X,y) = ky + I_v(X,y)$$
 $((X,y) \in \mathbb{R}_{n+1}^+)$.

By the proposition 3.4.4, we have

 $\lim_{y\to 0^+} w(X,y) = w(X,0)$ exists for almost all X in \mathbb{R}_n and is equal to Dv(X). This proves that

$$\lim_{y\to 0^+} F(X,y) = F(X,0)$$
 exists for almost all X in \mathbb{R}_n .

For the case p > 1, by theorem 3.2.2, there exists a harmonic majorant $h_{\overline{W}}$ of w such that

$$h_{\mathbf{w}}(\mathbf{X},\mathbf{y}) = I_{\mathbf{f}_{\mathbf{w}}}(\mathbf{X},\mathbf{y}) \qquad ((\mathbf{X},\mathbf{y}) \in \mathbb{R}_{n+1}^{+})$$

where $f_{w} \in K^{p}(R_{n})$ and for almost all X in R_{n} we have

$$\lim_{y\to 0} h_{W}(X,y) = f_{W}(X).$$

Again, since w is a harmonic function, $\lim_{y\to 0} w(x,y) = w(x,0)$ exists $\lim_{x\to 0} x = \lim_{x\to 0}$

This means

 $\lim_{y\to 0} F(X,y) = F(X,0)$ exists for almost every point X in \mathbb{R}_n .

To show the last part of theorem we note that, by theorem 3.4.6,

$$\lim_{y\to 0} \int_{\mathbb{R}_n} \frac{|w(x,y)|^p}{(x^2+(1+y)^2)^{\frac{1}{2}}(n+1)} dx = \int_{\mathbb{R}_n} \frac{|f_w(x)|^p}{(1+x^2)^{\frac{1}{2}}(n+1)} dx.$$

By lemma 4.2.1, we get

$$\lim_{y\to 0} \int_{\mathbb{R}_n} \left| \frac{w(x,y)}{(x^2+(1+y)^2)^{\frac{1}{2p}(n+1)}} - \frac{f_w(x)}{(1+x^2)^{\frac{1}{2p}(n+1)}} \right|^p dx = 0.$$

Since
$$\lim_{y\to 0} (x^2 + (1+y)^2)^{\frac{1}{2p}(n+1)} = (x^2 + 1)^{\frac{1}{2p}(n+1)}$$
, we get

$$\lim_{y \to 0} \int_{\mathbb{R}_{n}} \frac{|w(x,y)-f_{w}(x)|^{p}}{(x^{2}+(1+y)^{2})^{\frac{1}{2}(n+1)}} dx = 0.$$
 (4.2.5)

By the inequality $(a+b)^m \le 2^m (a^m, b^m)$ $(a \ge 0, b \ge 0)$, together with (4.2.5) we get

$$\lim_{y\to 0} \int_{\mathbb{R}_n} \frac{|F(x,y)-F(x,0)|^p}{(x^2+(1+y)^2)^{\frac{1}{2}(n+1)}} dx = 0,$$

the theorem is now completely proved.