CHAPTER V

FRACTIONAL INTEGRAL
5.1 Definition

In this chapter we extend the classical theorem on
fractional integrals of functions in i to be n-dimensional case.
We define, for a function f in LP(Bn), its fractional

integral of order a to be
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It can be checked easily that the integral in (5.1.1)

converges for almost all X provided that 0 < ¢ < n/p .

5.2 On semigroup property of i

For the systems of conjugate harmonic function F in HP 5
we will show that iheir fractional integral satisfy the
"semigroup property" for appropriate values of p, i.e.,

To(0g(F)) = g (F).
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Lemma 5.2.1 Let s(Xx,y) 3 O be a subharmonic function defined

+
on 'Rn+1 satisfying

.{Q falnir) ) ax ¢ &P cw (5.2.2)
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where 1¢ p < » gapg ¢ is independent of Yy >0. Then
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s(X,¥) € oy P | (5.2.3)

Furthermore, if 0 < %‘ Y<Y ,Ye R, then s(X,y)» 0

uniformly in y as | X |+ i

Proof. Since sP » being a convex function of a subharmonic
function, is subharmonic (see Helms, [4]). Thus let:ting\)n."1 be

the volumn of the unit sphere in R s We have for (X,y) e B;_l

n+l
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where B((X,y),y) is the ball in R +1 With center at (X,y) and radius V.
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and (5.2.3) is established,



In order to prove the last part of the theorem we observe

that if
X
Ik = {(X,y) : k-1 < lxl R ey g ;-+ v}
k= 1,23,..., then
» Ly
Lo r0s(z,0)1% azat = Yr g s [s(2,0)1P az) at
2+l
< P2 < o .
Y
Hence 1 [8(2,t)1P a2 2t 0t Sy o E (5.2.4)
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Suppose that (X,y) is such that 0 < %-5 Y £ y then (x,y)
must belongs to I, for some k. We note that B((X,y), %0 is
contained in TV L v Ik+l (where I, is the null set). Thus
n+l D
[s(x,y)1? ¢ XAy [s(x+2,y+t)1® az at

oLl Ukl
£ & I/ [s(2,4)1Pz at _
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But by (5.2.4), the last term tends to zero as k + and then the
last conclusion follows,
Let k(X,y) be the Poisson integral of a function f in

Lp(an), L e,
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h(X,y) = s P(x-z,y)'}(z)dz , then
1/ 1/
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and by Fubini's Theorem we get

/(1 P(x-2,y)| 2(z) | Paz)ax = 1 [#(z)|P ; P(X~2,y)dXaz
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so we get / |n(X,y)|Pax S 1e(2)|P az (5.2.5)
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Similarly, if h(X,y) is the Poisson integral of a Radon measure

in Rn s then
S |a(X,y)|lax < s dful(x) . (5.2.6)
R R
n n

3
Lemme 5.2.7. Let h(X,y) be a harmonic function defined in Rn-t-

l’
satisfying

I Xy ]* ax g 0P < » (5.2.8)
R
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for all y > 0, and ¢ is independent of y > 0, then

n(X,y+s) = S h(Z,s)P(X-Z,y)daZ for all s > O.
R
n
Proof By (3.4.1), ws(X,y) = [ n(z,s)P(X-Z,y)dz is harmonic
B
s
inR ., » By (3.1.2) we have

ws(X,y)-h(X,s) ; [n(z,s)-n(X,s)]P(X-Z,y)dZ

R
n

{ 7 S\ )[n(z,s)-n{X,s) IP(X-Z,y)dZ
|X-2|<r |X-Z|3r

= Il+ I2 say.

Since h(X,y) is harmonic,| fX,y)!is subharmonic and by (5.2.8) it
satisfies the assumptions in lerma (5.2.1). Thus, by the last part
of the lemma, h(X,s) is uniformly continuous in R for each s > O.
From this it follows that, if r is small encugh, Il is uniformly
small.
And by using (5.2.3) and (5.2.8), we also have
|I,| < (|n(z,s)|+|n(x,s)|) P(x-2,y) 4z
| %~Z| >
-(®)
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By (3.1.3), the last integral tends to zero as y + O. This shows

that ws(x,y) + n(X,s) uniformly in X as y » 0, i.e., for any €,

Ly
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positive real number, given , there is a § > 0 such that for any

y less than ¢, lws(x,y)~h(x,s)| <e¢ forall XinR .

We see by (5.2.5) that |ws(x,y)i satisfies condition (5.2.2).
And by (3.k.1), ws(x,y) is harmonic and hence lws(x,y)| is subharmonic .
Thus both |ws(x,y)| and |h(X,y+s)| satisfies the assumptions of
lemme 5.2.1. Hence by (5.2.3), for y large enough say Yoo
lws(X,y)-h(X,y+s) <e forally>y,, XinR . Finally, the last
part of lemma (5.2.1) implies that if § < y < Y, there is a real

~

number r such that for all X with |X| 3 r, IwS(X,y)-h(X,y+s)| <€

We see that on the boundary of a region

D={(X,y) : |X| €2, 8 gy« Yo} the harmonic function
ws(X,y)-h(X,y+s) is small in absolute value, i.e., |ws(x,y)-h(x,y+s)|< €,
by maximum principle, st(x,y)-h(x,y+s)l < ¢ throughout D.

Then, summing up, lws(X,y)-h(X,yﬂ's)I <e throughout lR;_'_l.

Thus, we obtain wS(X,y) = h(X,y+s).

Theorem 5.2.9  Let f(X) be a function in LP(sRn), l1s<p<e,end

h(X,y) its Poisson integral. Then,

[0, () 1(x) = 2 T ay (5.2.10)
v
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where 0D € o -
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Furthermore, ha(X,y) =m£ h(X,y+s)sa ds (5.2.11)

is the Poisson integral of Ju(f) ;
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Proot’ The function ‘h(X,y)l satisfies the hypothesis of lemma
(5.2.1). Thus by (5.2.3)the integrand in (5.2.10) is absolutely
integrable.

By considering the negative and positive parts of f we can
reduce the proof of the theorem to the case f » 0O, With this

restriction on f, our various applications of Fubini's Theorem are

Justified.
Since n{x,y) == r@,ytx=2)az ,
Rn
= -1 © -1
we have [ nh(X,y)y* ay = f {J P(Z,y)y™ ay}f(X-z)dz .
0 R O
n
© o=-1 ) Ayﬂ
And I P(L,y)y “ay = -c—f T
0 n 0 (|Z|2+ 2)2(11+1)
=zl a=h — 3
= - .
n 0 (l+y2)72(n+l)

(The last equality follows from the change of variable s = y/lzl

and then replacing y for s).

Py o a > 'l-
Hence Ia(x,y)y* » gy = %'{f yl dy} S I(Anfz 9o
0 n 0 (1+y2)§(n+1) R |2

By letting y2 = x/(1-x),
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Since L5 = m >
2
Sk 2 (DT (B! (Hn-a))
then = J —d dy = .

O (1y?)B(ar1) PGne))r ()

By using "duplication formula" (see[7], page 57) for Gemma function

22x-l

I‘(2x)I’(%) = I'(x)l‘(x*—%-) we get

Faxy)y* ™ ay = T3 ()X
0

and then (5.2.10) is established ,

The equation (5.2.11) is, then, an irmediate consequence

of the "semigroup property" of the Poisson integral transform :

X-2,5)d%2 , for all y, s > O
in lemma (5.2.7) .
Theoren (5.2.9) wotivates the following definition :
+
If F(X,y) is a system of conjugate harmonic function in 1Rn+ we defined

1
its (real-valued) "fractional integral of ordera', a > 0, to be
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.2.12)

\1

FO‘(X’y) s [Ja(F)](X,y) o -I%E) éwF(x:y‘*'S)Sa-lds (

whenever this integral exists.

Theorem 5.2.,13

a) The integral in (5.2.12) converges absolutely for each (X,y)
g

(n-1) !

4 + s i o P n
v I =
in [Rn+l provided F is in I'*¥ and P < & -

b) If F is n £¥, a >0, 6> 0 ana Ed ¢ pe

o+
then CAOD e R W< - =
Proof st
a) Let q = £2_ . Then since IF(X,y)I N is subharmonic,
n-1
we have
n--1 d
SRy P ax = TP,y P ax ¢ % < =,
R R
n n
n-1

Let h(X,y) be the harronic majorant of |F(x,y)] 1 obtained

in theorem 3.2.3. And from{5.2.5}and(5.2.6} we have

s [n(x,y)19 ax € o2,
R
n
-n/
Thus, by (5.2.3) h(X,y) < ey ¢
n/ n/
and [ F(x,y)] PR i
© n/ -n/ =
Hence J |F(X,y+s)|s” + < B £ iyeay P o° 3 ds .
0

0
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Since p < n/a and o > 0 , the last integral is finite.

b) To show Ja(Jb(F)) JQ+B(F)’ we must show that

1 o__ at+f-1 > 7K o g~1. . g-1
F(;;ET— é F(X,y+s)s ds = TaIT () é {é F(X,y+s+t)t dtldr .,

On the orther hand, the last integral is equal to
t

f”r“'l{f'”F(x,wt)(t-r)B"ldt}dr = [ F(X,y+t){/S (t=r)®"1p2"arrat
0 r 0 0
Thus, we need only verify that
S
1 atpf~1 i 3 g=1 a=-1
Tasg) ® VIR eed T ar
I'(a)r(g) S 1 g -1 a-1 ;
or —%T£:§7_ g é (s-r) r - ay  (5.2.h)
Consider the right side of {5.2.1k4),
let t =1‘s'- we then get
1 y BE1 7 G<L 5 g a-1
Fs=r)B™ % = (1-)PT R e
a+B-1
s 0 0
I'(a)I(B)
T'(a+R

and we get (5.2.14), ©b) is now proved.

We can not extend this result to the class of GF. The
following example will justify that the conclusions of the theorem

do not hold for the case of Gp.



Example 5.16 Let F(x,y)

(ulx,y), vix,y))

(x9y) s x € R,
et o =-é— we see that F € G'- H'.

But the integral in (5.2.12) diverges.

y > 0.
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