CHAPTER V

FRACTIONAL INTEGRAL

5.1 Definition

In this chapter we extend the classical theorem on fractional integrals of functions in ${\tt H}^p$ to be n-dimensional case.

We define, for a function f in $L^p(\mathbb{R}_n)$, its <u>fractional</u> integral of order α to be

$$[J_{\alpha}(f)](X) = \frac{1}{\eta_{\alpha}} \int_{\mathbb{R}_{n}} \frac{f(X-Y)}{|Y|^{n-\alpha}} dY$$
 (5.1.1)

where

$$\eta_{\alpha} = \frac{\frac{1}{2}n}{\Gamma(\frac{1}{2}(n-\alpha))}, \quad 1 \leq p < \infty.$$

It can be checked easily that the integral in (5.1.1) converges for almost all X provided that 0 < α < n/p .

5.2 On semigroup property of HP

For the systems of conjugate harmonic function F in H^p , we will show that their fractional integral satisfy the "semigroup property" for appropriate values of p, i.e., $J_{\alpha}(J_{\beta}(F)) = J_{\alpha+\beta}(F).$

Lemma 5.2.1 Let $s(x,y) \ge 0$ be a subharmonic function defined on \mathbb{R}_{n+1}^+ satisfying

$$\int_{\mathbb{R}_{n}} [s(x,y)]^{p} dx \leq c^{p} < \infty$$
 (5.2.2)

where $1 \le p < \infty$ and c is independent of y >0. Then

$$s(x,y) \leqslant cy^{-\left(\frac{n}{p}\right)}. \tag{5.2.3}$$

Furthermore, if $0 < \frac{1}{\gamma} < y \leqslant \gamma$, $\gamma \in \mathbb{R}$, then $s(x,y) \to 0$ uniformly in y as $|X| \to \infty$.

<u>Proof.</u> Since s^p , being a convex function of a subharmonic function, is subharmonic (see Helms, [4]). Thus letting v_{n+1} be the volumn of the unit sphere in \mathbb{R}_{n+1} , we have for $(x,y) \in \mathbb{R}_{n+1}^+$

$$[s(x,y)]^p \le \frac{1}{v_{n+1}y^{n+1}} \int_{B((x,y),y)} [s(z,t)]^p dz dt$$
 ([4])

where B((X,y),y) is the ball in \mathbb{R}_{n+1} with center at (X,y) and radius y.

Hence
$$[s(x,y)]^p \le \frac{1}{v_{n+1}}y^{n+1} \int_{[x-z]^2 + (y-t)^2 y^2} [s(z,t)]^p dz dt$$

$$\le \frac{1}{v_{n+1}}y^{n+1} \int_{0 < t < 2y} [s(z,t)]^p dz dt$$

$$= \frac{1}{v_{n+1}}y^{n+1} \int_{0 < R_n} [s(z,t)]^p dz dt$$

$$\le \frac{2c^p y}{v_{n+2}}y^{n+1} < c^p y^{-n}$$

and (5.2.3) is established.

In order to prove the last part of the theorem we observe that if

$$I_k = \{(X,y) : k-1 \le |X| < k, 0 < y \le \frac{1}{\gamma} + \gamma\}$$

 $k = 1,2,3,..., \text{ then}$

$$\sum_{k=1}^{\infty} \int_{\mathbb{R}} [s(z,t)]^{p} dzdt = \frac{\frac{1}{\gamma}+\gamma}{\gamma} \{ \int_{\mathbb{R}} [s(z,t)]^{p} dz \} dt$$

$$\leq e^{p} (\frac{\gamma^{2}+1}{\gamma}) \qquad < \infty .$$

Hence
$$\int_{\mathbf{k}} [s(\mathbf{Z},t)]^{\mathbf{p}} d\mathbf{Z} dt \to 0$$
 as $k \to \infty$. (5.2.4)

Suppose that (X,y) is such that $0 < \frac{1}{\gamma} \leqslant y \leqslant \gamma$ then (X,y) must belongs to I_k for some k. We note that $B((X,y),\frac{1}{\gamma})$ is contained in $I_{k-1} \cup I_k \cup I_{k+1}$ (where I_0 is the null set). Thus

$$[s(x,y)]^{p} \leq \frac{\gamma^{n+1}}{\gamma^{n+1}} \int [s(x+z,y+t)]^{p} dz dt$$

$$|z|^{2} + t^{2} < (\frac{1}{\gamma})^{2}$$

$$\leq \frac{\gamma^{n+1}}{\nu} \qquad \sum_{n+1}^{k+1} \int_{j=k-1}^{j} [s(Z,t)]^{p} dZ dt$$

But by (5.2.4), the last term tends to zero as $k \to \infty$ and then the last conclusion follows.

Let h(X,y) be the Poisson integral of a function f in $L^p(\mathbb{R}_n)$, $p\geqslant 1$, i.e.,

Therefore $\int_{\mathbb{R}_n} |h(x,y)|^p dx \le \int_{\mathbb{R}_n} (\int_{\mathbb{R}_n} P(x,z,y)|f(z)|^p dz) dx$

and by Fubini's Theorem we get

Similarly, if h(X,y) is the Poisson integral of a Radon measure in \mathbb{R}_n , then

Lemma 5.2.7. Let h(X,y) be a harmonic function defined in \mathbb{R}_{n+1}^+ , satisfying

for all y > 0, and c is independent of y > 0, then

$$h(X,y+s) = \int h(Z,s)P(X-Z,y)dZ$$
 for all $s > 0$.

 $\frac{\text{Proof}}{\text{Proof}} \quad \text{By (3.4.1), w}_{\text{S}}(\text{X,y}) = \int\limits_{\mathbb{R}_{\text{n}}} h(\text{Z,s})P(\text{X-Z,y})d\text{Z} \quad \text{is harmonic}$ in $\mathbb{R}_{\text{n+1}}^+$, By (3.1.2) we have

$$w_{s}(X,y)-h(X,s) = \int_{\mathbb{R}_{n}} [h(Z,s)-h(X,s)]P(X-Z,y)dZ$$

$$= (\int_{|X-Z|

$$= I_{1}+I_{2} \quad \text{say.}$$$$

Since h(X,y) is harmonic, |h(X,y)| is subharmonic and by (5.2.8) it satisfies the assumptions in lemma (5.2.1). Thus, by the last part of the lemma, h(X,s) is uniformly continuous in \mathbb{R}_n , for each s > 0. From this it follows that, if r is small enough, I_1 is uniformly small.

And by using (5.2.3) and (5.2.8), we also have

$$|I_{2}| \leq \int_{|X-Z| \geq r} (|h(Z,s)| + |h(X,s)|) P(X-Z,y) dZ$$

$$\leq \frac{-(\frac{n}{p})}{2 \operatorname{cs}} \int_{|X-Z| \geq r} P(X-Z,y) dZ$$

By (3.1.3), the last integral tends to zero as $y \to 0$. This shows that $w_s(x,y) \to h(x,s)$ uniformly in X as $y \to 0$, i.e., for any ε ,

positive real number, given , there is a $\delta > 0$ such that for any y less than δ , $\left|w_{s}(X,y)-h(X,s)\right| < \epsilon$ for all X in R_{n} .

We see by (5.2.5) that $|\mathbf{w}_{\mathbf{s}}(\mathbf{X},\mathbf{y})|$ satisfies condition (5.2.2). And by (3.4.1), $\mathbf{w}_{\mathbf{s}}(\mathbf{X},\mathbf{y})$ is harmonic and hence $|\mathbf{w}_{\mathbf{s}}(\mathbf{X},\mathbf{y})|$ is subharmonic. Thus both $|\mathbf{w}_{\mathbf{s}}(\mathbf{X},\mathbf{y})|$ and $|\mathbf{h}(\mathbf{X},\mathbf{y}+\mathbf{s})|$ satisfies the assumptions of lemma 5.2.1. Hence by (5.2.3), for y large enough say $\mathbf{y}_{\mathbf{0}}$, $|\mathbf{w}_{\mathbf{s}}(\mathbf{X},\mathbf{y})-\mathbf{h}(\mathbf{X},\mathbf{y}+\mathbf{s})| < \varepsilon$ for all $\mathbf{y} > \mathbf{y}_{\mathbf{0}}$, \mathbf{X} in $\mathbf{R}_{\mathbf{n}}$. Finally, the last part of lemma (5.2.1) implies that if $\delta < \mathbf{y} < \mathbf{y}_{\mathbf{0}}$ there is a real number \mathbf{r} such that for all \mathbf{X} with $|\mathbf{X}| > \mathbf{r}$, $|\mathbf{w}_{\mathbf{s}}(\mathbf{X},\mathbf{y})-\mathbf{h}(\mathbf{X},\mathbf{y}+\mathbf{s})| < \varepsilon$

We see that on the boundary of a region

$$\begin{split} & D = \{(\textbf{X},\textbf{y}) : \ \big| \, \textbf{X} \big| \, \leqslant \, \textbf{r}, \, \, \delta \, \leqslant \, \textbf{y} \, \leqslant \, \textbf{y}_0 \} \quad \text{the harmonic function} \\ & \textbf{w}_{\textbf{S}}(\textbf{X},\textbf{y}) - \textbf{h}(\textbf{X},\textbf{y}+\textbf{s}) \text{ is small in absolute value, i.e., } \big| \textbf{w}_{\textbf{S}}(\textbf{X},\textbf{y}) - \textbf{h}(\textbf{X},\textbf{y}+\textbf{s}) \big| < \, \epsilon \, , \\ & \text{by maximum principle, } \big| \textbf{w}_{\textbf{S}}(\textbf{X},\textbf{y}) - \textbf{h}(\textbf{X},\textbf{y}+\textbf{s}) \big| \, < \, \epsilon \, \, \text{throughout D.} \end{split}$$

Then, summing up, $|w_s(X,y)-h(X,y+s)| < \varepsilon$ throughout \mathbb{R}_{n+1}^+ . Thus, we obtain $w_s(X,y) = h(X,y+s)$.

Theorem 5.2.9 Let f(X) be a function in $L^p(\mathbb{R}_n)$, $1 \le p < \infty$, and h(X,y) its Poisson integral. Then,

$$[J_{\alpha}(f)](X) = \frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} h(X,y)y^{\alpha-1} dy \qquad (5.2.10)$$

where $0 < \alpha < \frac{n}{p}$.

Furthermore,
$$h_{\alpha}(X,y) = \frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} h(X,y+s) s^{\alpha-1} ds$$
 (5.2.11)

is the Poisson integral of J (f).

<u>Proof</u> The function |h(X,y)| satisfies the hypothesis of lemma (5.2.1). Thus by (5.2.3)the integrand in (5.2.10) is absolutely integrable.

By considering the negative and positive parts of f we can reduce the proof of the theorem to the case $f \geqslant 0$. With this restriction on f, our various applications of Fubini's Theorem are justified.

Since
$$h(X,y) = \int_{\mathbb{R}_n} P(Z,y)f(X-Z)dZ,$$
we have
$$\int_{0}^{\infty} h(X,y)y^{\alpha-1}dy = \int_{\mathbb{R}_n} \{\int_{0}^{\infty} P(Z,y)y^{\alpha-1}dy\}f(X-Z)dZ.$$
And
$$\int_{0}^{\infty} P(Z,y)y^{\alpha-1}dy = \frac{1}{c_n} \int_{0}^{\infty} \frac{y^{\alpha}}{(|z|^2+y^2)^{\frac{1}{2}(n+1)}} dy$$

$$= \frac{|z|^{\alpha-n}}{c_n} \int_{0}^{\infty} \frac{y^{\alpha}}{(1+y^2)^{\frac{1}{2}(n+1)}} dy.$$

(The last equality follows from the change of variable s = y/|z| and then replacing y for s).

Hence
$$\int_{0}^{\infty} h(x,y)y^{\alpha-1} dy = \frac{1}{c_n} \left\{ \int_{0}^{\infty} \frac{y^{\alpha}}{(1+y^2)^{\frac{1}{2}(n+1)}} dy \right\} \int_{\mathbb{R}_n} \frac{f(x-z)}{|z|^{n-\alpha}} dz .$$

By letting $y^2 = x/(1-x)$,

$$\int_{0}^{\infty} \frac{y^{\alpha}}{(1+y^{2})^{\frac{1}{2}(n+1)}} dy = \int_{0}^{1} \frac{(\frac{x}{(1-x)})^{\frac{\alpha}{2}}}{(1+(\frac{x}{1-x}))^{\frac{1}{2}(n+1)}} \frac{1}{x^{\frac{1}{2}(1-x)^{\frac{1}{2}}}} dx$$

$$= \int_{0}^{1} \frac{(\frac{\alpha}{2}-1)}{x^{\frac{\alpha}{2}-1}} \frac{1}{(1-x)^{\frac{1}{2}(n-\alpha)-1}} dx$$

$$= \int_{0}^{1} \frac{(\frac{\alpha}{2}-1)}{x^{\frac{\alpha}{2}(n-\alpha)}} \frac{1}{(1-x)^{\frac{1}{2}(n-\alpha)-1}} dx$$

$$= \frac{\Gamma(\frac{\alpha}{2})\Gamma(\frac{1}{2}(n-\alpha))}{\Gamma(\frac{n}{2})} .$$
since
$$c_{n} = \frac{\pi^{\frac{n}{2}}\Gamma(\frac{1}{2})}{\Gamma(\frac{n+1}{2})} ,$$

then $\frac{1}{c_n} \int_0^{\infty} \frac{y^{\alpha}}{(1+y^2)^{\frac{1}{2}(n+1)}} dy = \frac{\pi \frac{n}{2} \Gamma(\frac{1}{2}) \Gamma(\frac{\alpha}{2}) \Gamma(\frac{1}{2}(n-\alpha))}{\Gamma(\frac{1}{2}(n+1)) \Gamma(\frac{n}{2})}$.

By using "duplication formula" (see[7], page 57) for Gamma function $\Gamma(2x)\Gamma(\frac{1}{2}) = 2^{2x-1}\Gamma(x)\Gamma(x+\frac{1}{2})$ we get

$$\int_{0}^{\infty} h(X,y)y^{\alpha-1} dy = \Gamma(\alpha)[J_{\alpha}(f)](X)$$

and then (5.2.10) is established,

The equation (5.2.11) is, then, an immediate consequence of the "semigroup property" of the Poisson integral transform:

$$h(X,y+s) = f h(Z,s)P(X-Z,y)dZ$$
, for all y, s > 0 R_n

in lemma (5.2.7).

Theorem (5.2.9) motivates the following definition: If F(X,y) is a system of conjugate harmonic function in \mathbb{R}_{n+1}^+ we defined its (real-valued) "fractional integral of order α ", $\alpha > 0$, to be

$$F_{\alpha}(X,y) = [J_{\alpha}(F)](X,y) = \frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} F(X,y+s) s^{\alpha-1} ds \qquad (5.2.12)$$

whenever this integral exists.

Theorem 5.2.13

a) The integral in (5.2.12) converges absolutely for each (X,y) in \mathbb{R}_{n+1}^+ provided F is in \mathbb{R}^p and $\frac{(n-1)}{n} .$

b) If F is in H^P,
$$\alpha > 0$$
, $\beta > 0$ and $\frac{n-1}{n} \le p \le \frac{n}{\alpha + \beta}$,

Then
$$J_{\alpha}(J_{\beta}(F)) = J_{\alpha+\beta}(F)$$
.

Proof

a) Let
$$q = \frac{pn}{n-1}$$
. Then since $|F(X,y)|^{\frac{n-1}{n}}$ is subharmonic,

we have

$$\int_{\mathbb{R}_{n}} |F(x,y)|^{\left(\frac{n-1}{n}\right)q} dx = \int_{\mathbb{R}_{n}} |F(x,y)|^{p} dx \leq c^{q} < \infty.$$

Let h(X,y) be the harmonic majorant of $|F(X,y)|^{\frac{n-1}{n}}$ obtained in theorem 3.2.3. And from (5.2.5) and (5.2.6), we have

$$\int_{\mathbb{R}_n} [h(X,y)]^q dX \leq c^q.$$

Thus, by (5.2.3)
$$h(X,y) \leq \frac{-n}{cy}q$$

and
$$|F(X,y)| \leq c^{n/n-1} y^{n/p}$$
.

Hence
$$\int_{0}^{\infty} |F(x,y+s)| s^{\alpha-1} ds \le c^{n/n-1} \int_{0}^{\infty} (y+s)^{-n/p} s^{\alpha-1} ds$$
.

Since $p < n/\alpha$ and $\alpha > 0$, the last integral is finite.

b) To show
$$J_{\alpha}(J_{\beta}(F)) = J_{\alpha+\beta}(F)$$
, we must show that

$$\frac{1}{\Gamma(\alpha+\beta)} \int_0^\infty F(X,y+s) s^{\alpha+\beta-1} ds = \frac{1}{\Gamma(\alpha)\Gamma(\beta)} \int_0^\infty r^{\alpha-1} \{ \int_0^\infty F(X,y+s+t) t^{\beta-1} dt \} dr.$$

On the orther hand, the last integral is equal to

$$\int_{0}^{\infty} r^{\alpha-1} \{ \int_{r}^{\infty} F(X,y+t) (t-r)^{\beta-1} dt \} dr = \int_{0}^{\infty} F(X,y+t) \{ \int_{0}^{t} (t-r)^{\beta-1} r^{\alpha-1} dr \} dt$$

Thus, we need only verify that

$$\frac{1}{\Gamma(\alpha+\beta)} s^{\alpha+\beta-1} = \frac{1}{\Gamma(\alpha)\Gamma(\beta)} \int_{0}^{s} (s-r)^{\beta-1} r^{\alpha-1} dr$$
or
$$\frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)} = \frac{1}{s^{\alpha+\beta-1}} \int_{0}^{s} (s-r)^{\beta-1} r^{\alpha-1} dr . \quad (5.2.14)$$

Consider the right side of (5.2.14),

let $t = \frac{r}{s}$ we then get

$$\frac{1}{s^{\alpha+\beta-1}} \int_{0}^{s} (s-r)^{\beta-1} r^{\alpha-1} dr = \int_{0}^{1} (1-t)^{\beta-1} t^{\alpha-1} dt$$
$$= \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$$

and we get (5.2.14), b) is now proved.

We can not extend this result to the class of G^p . The following example will justify that the conclusions of the theorem do not hold for the case of G^p .

Example 5.16 Let F(x,y) = (u(x,y), v(x,y))= (x,y), $x \in \mathbb{R}$, y > 0.

Let $\alpha = \frac{1}{2}$ we see that $F \in G' - H'$.

But the integral in (5.2.12) diverges.