CHAPTER II
FUNDAMENTAL OF EVOLUTIONARY ALGORITHMS

2.1 Introduction

Evolutionary algorithm is a stochastic optimization method based on the principle of
natural evolution. The field of investigation that concerns all evolutionary algorithms is known as
evolutionary computation. The origin of the evolutionary computation was dated back to 1950s
and 1960s, when researchers proposed the use of evolution-inspired algorithms for machine
learning and numerical optimization purposes. However, it was not until the 1980s when these
methods started to gain increased popularity due to rapid development in computer technology.
Since then, the field of evolutionary computation has experienced tremendous growth, and has
drawn attention from scientists and researchers of many different disciplines.

Evolutionary algorithms search for the solution of an optimization problem via a
simplified model of the evolutionary process observed in nature, where population of organisms
evolves over a number of generations striving for survival in a dynamic and highly competitive
environment. According to the Darwinian principle of survival of the fittest, those organisms that
are better suited to cope with their environmental surroundings are more likely to survive. The
field of evolutionary computation finds it inspiration in this fundamental principle of the natural
evolution process.

Some of the most popular evolutionary computation techniques are genetic algorithms
(GA), evolutionary programming (EP), evolution strategies (ES), and differential evolution (DE).
Genetic algorithms (GA) were developed in the early 1960s by Holland [28] at the University of
Michigan in Ann Arbor. Holland’s primary intention was to study the phenomenon of adaptation
as it occurs in nature, and to develop ways in which the mechanisms of natural adaptation could
be imported into computer systems. Evolutionary programming (EP) was devised in the early
1960s by Fogel [29] at the University of California in San Diego. This technique was originally
intended to simulate intelligent behavior by means of finite-state machines, and was later
extended to numerical optimization problems. Evolution strategies (ES) were conceived in the
mid-1960s by Rechenberg [30] at the Technical University of Berlin. Rechenberg’s original

intention was to develop a procedure that would optimize parameters for aerotechnology devices.

Differential evolution (DE) was developed by Storn and Price [17] at the International Computer
Science Institute in Berkeley. Despite its simplicity, differential evolution has proven to be a very

robust and efficient method for global optimization over continuous spaces.

2.2 Basic Structure of Evolutionary Algorithms

In contrast to traditional optimization methods, evolutionary algorithms operate on a
population of individuals, each of which represents a search point in the space of possible
solutions of the optimization problems. The algorithmic procedure begins by creating an initial set
of contending individuals. Then, these parent solutions are subjected to random variation to create
offsprings, i.e. new candidate solutions. This random variation usually includes mutation, i.e. an
operation that allows for various attributes of the individuals to be occasionally changed, and
recombination, i.e. an operation by which the attributes of two or more existing individuals are
combined to create a new individual. Next, competing individuals are evaluated by means of a
fitness function whose basic task is to provide a measure of how well adapted each individual of
the population is to its environment. Finally, a selection operation determines which individuals
will be kept as parents for the following iteration or generation. This iterative process continues,
using the selected set of parent solutions, until a particular convergence criterion is satisfied.

For optimization to occur, the selection process must be biased toward those individuals
that are better suited to their environment, i.e. by giving them better chances to survive and
reproduce. By this means, each successive population will be made of individuals that are
collectively fitter than those from previous generations. Figure 2.1 shows the basic structure of a
typical evolutionary algorithm [31].

Despite sharing the same overall structure, evolutionary computation techniques differ
from a number of aspects. The most noticeable differences between them are related to the type of
representation used for candidate solutions (e.g., differential evolution uses a floating-point
representation, while classical genetic algorithms operate on binary strings), the type of genetic
operations used (e.g., genetic algorithms depend mainly on recombination, whereas evolutionary
programming uses mutation as the dominant operation), and the ways each operation is
implemented. More information regarding evolutionary computation techniques and their

differences can be found in [32-39]. The following section will describe the comprehensive detail

of typical differential evolution (DE) due to its relevance to the work presented in this

dissertation.

Initialize the population

v

Create offspring through

A

random variation

v

Evaluate the fitness of each

No

candidate solution

v

Apply selection —>

Converged?

Figure 2.1 Basic structure of a typical evolutionary algorithm.

2.3 Differential Evolution

Differential Evolution (DE) is a new evolutionary algorithm (EA) proposed by Price and
Storn [17-20] for real-valued numerical optimization problems. In its canonical form, differential
evolution considers unconstrained optimization problems only, except for feasible bounds on the
control variables. The general scheme of the DE method resembles that most of other
evolutionary algorithms. The advantages of DE are simple structure, easy of use, speed and
robustness. Experimental results have shown that DE has good convergence properties and
outperforms other well known evolutionary algorithms [17-22]. In this chapter, we will introduce
the differential evolution (DE) based on DE/rand/1/bin since this strategy is the most successful

and the most widely used strategy. Details of other strategies are described in Appendix A.

Like other evolutionary algorithms, the main design emphasis of DE is real continuous

parameters for an unconstraint minimization problem which can be expresses as follows:

Min 7(x) 2.1

subject to

X SX<Xy, 2.2

where X represents n-dimensional variables, and X, , and X, are the lower and upper bounds of
the variables. The basic algorithm of DE typically consists of four phases, i.e. 1) initialization, 2)
mutation, 3) crossover or recombination, and 4) evaluation and selection phases. The DE’s
algorithm can be described as below.
Phase 1: Initialization

At every generation G, DE maintains a population P“ ? of NP vectors of candidate

solutions as shown in (2.3)

P'Y SRESSN... XE\] (2.3)

The size of the population, NP, is held constant throughout the optimization process. The
dimension of each vector of candidate solutions corresponds to the number of decision

parameters, n, to be optimized. Therefore,

X(= [x(9 . xS JT, j= 1., NP)

£j v

In order to establish a starting point for the optimization process, the population must be
initialized. Typically, each decision parameter in every vector of the initial population is assigned

a randomly chosen value from within its corresponding feasible bounds:

(% =2 LU (=P -x™); i= 1.0)= 1., NP (2.5)

where U, denotes a uniformly distributed random number within the range [0,1] for each value of
i; x, and x;mare the upper and lower bounds of the ith decision parameter respectively. Once
every vector of the population has been initialized, its corresponding fitness value is calculated
and stored for future reference.

Phase 2: Mutation

10

@0 is created by successively applying

The population of the following generation, P
mutation, recombination, also known as crossover, and selection operations to the parameter
vectors of the current population P Once every generation, each parameter vector of the current
population becomes a target vector. For each target vector, the mutation operation produces a new
parameter vector, called a mutant vector, by adding the weighted difference between two
randomly chosen parameter vectors to a third parameter vector, also random chosen. The
crossover operation generates a trial vector, by mixing the parameters of the mutant vector with
those of the target vector. If the trial vector obtains a better fitness value than the target vector,
then the trial vector replaces the target vector in the following generation. This iterative procedure
continues until each parameter vector in the current population has served once as the target
vector. The overall optimization process is terminated until a specified convergence criterion is
met.

At every generation G, each vector in the population has to serve once as a target vector.

G)

G, y ([T .
For each target vector Xl.(), a mutant vector X, m‘)=[X, _J.(RS & ra)] is generated according to the

following expression:

X1 = x19 ¢ e =))\'j=1...NP (2.6)

where a, b, and ¢ are randomly chosen indices, such thata, b, ¢, j € {1,....NP} and a #b #c¢ #j.
It should be noted that new values for a, b, and ¢ have to be generated for each value of j, i.e. for
each individual in the population. F is a user defined constant (known as the mutation factor),
which is typically chosen from within the range 0 < F < 1.2 [17-19]. The task of this is to control
the amplification of the vector difference (X,,(G)- Xcm). In the event that mutation causes a
parameter to exceed its feasible bounds, the value of the parameter is set to the corresponding
violated bound.
Phase3: Crossover or Recombination

In order to increase the diversity among the mutant parameter vectors, crossover is

introduced. To this end, a trial vector .X;.“{G} =[x, J“@, — J.”(m]:r is created from the components
G, ; ; :
of each mutant vector X ’ and its corresponding target vector XJ.{GJ, based on a series of n-/

binomial experiments [20, 21] of the following form:

11

: X? if U <CR ori=
X,._j""=[o F T isl..n j=1..NP 2.7)

X,f) , otherwise

where U, denotes a uniformly distributed random number within the range of 0 < U, < 1 for each
value of i. CR is a user-supplied parameter (known as the crossover constant), which is usually
chosen from within the range of 0 < CR < 1. This constant controls the probability that a trial
vector parameter will come from the mutant vector, instead of from the target vector. Note that
when CR is equal to 1, the trial vector X @ is the same as the mutant vector X}TG". Thus, the
possibility of X, @ and XJ.(GJ from being exactly equal to each other is avoided. It should be noted
that a new random value for ¢ has to be generated for each value of i. Once the composition of
each trial vector is determined, its corresponding fitness value is calculated and stored for future
reference.
Phase4: Evaluation and Selection

In order to decide whether the trial vector should become a member of the next
generation, its fitness value is compared to that of its counterpart in the current population (i.e., its

correspondent target vector). The fitter of the two vectors is then allowed to advance into the next

generation. That is:

X WSS)sF(XP)

X}(Ga-.u ={ j=1..NP (2.8)

X J’:G", otherwise

Note that by using this selection criterion, all the individuals of the next generation are as good as
or better than their counterparts in the current generation. This optimization process continues
successively whenever convergence criteria e.g. maximum numbers of generation of the
population is met.

Generally, DE is easy to work with, since it uses only three control parameters, i.e. the
population size NP, the mutation factor F, and the crossover constant CR. In most cases, those
control parameters are obtained by a trial-and-error process before starting implementation of
optimization problems. Price & Storn [20-22] have given some simple rules for choosing key
parameters of DE for any given application. Normally, NP should be about 5 to 10 times the
dimension, i.e. number of control variables in optimization problem. As for F, it lies in the range

0.4 to 1.0. Initially F = 0.5 can be tried then F and/or NP is increased if the population converges

12

prematurely. A good first choice for CR is 0.1, but in general CR should be as large as possible

[17-19]. The general flowchart of the DE algorithm is shown in Figure 2.2.

Initialize parameters and the vectors of

candidate solutions of the parent population

v

Evaluate the fitness and assign the score to

each vector of the parent population

v

Apply mutation operation to each vector

of the parent population

v

Apply crossover or recombination operation

and obtain trial population

v

Evaluate the fitness and assign the score

to each vector of the trial population

v

Pick members of the parent population

for next generation via selection operation

Converged?
No

Figure 2.2 General flowchart for the DE algorithm.

13

From the previous discussion, we can summarize the difference between DE and GA as
follows [40-41]:

1) DE uses real number representation while conventional GA uses binary, although GA

sometimes uses integer or real number representation as well [41].

2) In GA, two parents are selected for crossover and the child is a recombination of the

parents. While in DE, three parents are selected for crossover and the child is

perturbation of one of them.

3) The new child in DE replaces a randomly selected vector from the population only if it

is better than their parent. In conventional GA, children replace their parents with some

probability regardless of their fitness.

In the next section, we will explain the procedure of the DE through a simple
optimization problem. The example will depict how the genetic operations of the DE method, i.e.
mutation, crossover, and selection operation, can be deployed to generate the member of the

population for each successive generation.

2.4 Differential Evolution - Example
The optimization problem to be considered in this example is shown below.

Min f(x)=x+x,+x; +x,

29
Subject to O0<sx,<lLk=1..4 G2

where the number of the decision parameter is D = 4. The main objective of this example is to
illustrate the procedure of the DE; i.e. the mutation, crossover and selection operation. To keep
the example manageable, a population size (VP) of 6 has been chosen. Each decision parameter in
every vector of the parent population is initialized within its corresponding feasible bounds,
according to (2.5). Once every vector of the parent population has been properly initialized, its

corresponding fitness value is calculated through its fitness function f{(x) as follows:

X, = [0.68, 0.89, 0.04, 0.06]", f(X,) = 1.67 (2.10)
X, =[0.92,0.92, 0.33, 0.58]", f(X,) =2.75 @.11)
X, =[0.22,0.14, 0.40, 0.34]", f(X,) = 1.10 2.12)
X, =[0.12, 0.09, 0.05, 0.66]", f(X,) = 0.92 (2.13)

X, = [0.40, 0.81, 0.83, 0.12]", f(X,) =2.16 (2.14)

14

X, =[0.94,0.63,0.13, 0.34]', f(X,) = 2.04 (2.15)
Mutation:

The mutation operation of DE involves two main steps. First, one of the members of the
parent population has to be chosen as a target vector. Then, three randomly selected vectors from
the parent population (different from each other and the target vector) are used to generate a
mutant vector according to (2.6). For this example, let us assume that the chosen target vector is
X, and the three randomly selected vectors are X,, X,, and X, respectively. Then, the mutant

vector associated with target vector X, is generated from:
X, =X, + F(X,-X,) (2.16)
Assuming the scaling mutation vector F = 0.80, thus the corresponding mutant vector is:
X, =[1.58,1.29,0.35,0.28]" @217

From the result, we find that the first and second parameters of the mutant vector exceeded their
upper bounds. Therefore, the parameters are changed to their corresponding upper bounds as

follows:

X, =[1.00, 1.00, 0.35, 0.28]" (2.18)

Crossover:

The crossover operation of DE involves the creation of a trial vector, which contains
decision parameters from both the target vector and the mutant vector. The trial vector is created
according to (2.7). Each parameter in the trial vector is determined by comparing a uniformly
distributed random number U to CR (Crossover Constant). If the random number is lower than
CR, the trial parameter comes from the trial vector; otherwise, the parameter comes from the
target vector. It should be noted that the trial vector always gets, at least, one parameter from the
mutant vector. In order to determine which decision parameter from the mutant vector is to be
transferred unconditionally to the trial vector, a random number q is chosen from within the set of
decision parameter indices. For this example, let us assume that CR and g are 0.50 and 1
respectively. Additionally, we assume that the uniformly distributed random numbers for the 9%
4" parameters are 0.45, 0.10 and 0.20 in turn. Since all of the generated values are lower than CR;

therefore, the trial vector with its fitness value is:

15

X, =1[1.00,0.89, 0.04,0.06]", (X,) =199 (2.19)
Selection:

The new member for the next generation is created by comparing the fitness value
between the target vector and the trial vector according to (2.25). The vector which obtains fitter
value (in this case lower value for minimization) is selected as a new parent in the next
generation. Therefore, the target vector X, = [0.68, 0.89, 0.04, 0.06]T is selected as a new parent
in the next generation.

The new population for the next generation is completed by successively applying the
mutation, crossover, and selection operations to the current population as already shown in the
preceding explanation. The overall optimization process is terminated according to predetermined
termination criterion is reached e.g. maximum numbers of generation of the population. Figure
2.3 illustrates the overall process of this example which finally the solution converges to [0, 0, 0,
0].

In the following section, methodology for handling constraints, i.e. the penalty function
methods, and the augmented lagrange multiplier method (ALM) will be presented. Since in real
world applications, optimization problems are coupled with complex nonlinear constraints. Then,
the proposed algorithm called a self-adaptive differential evolution with augmented lagrange

multiplier method (SADE_ALM) will be described later.

2.5 Constraints Handling

Generally, a nonlinear constrained minization problem can be expressed as follows:

Min £(X) (2.20)
subject to
h(X)=0k=1,.,1 (2.21)
g, (X)<0, j=1..m (2.22)
Xiow XX, (2.23)

where X represents n-dimensional variables, 4,(X) and g/(X) stand for /-equality and m-inequality

constraints, respectively, and X, , and X, are the lower and upper bounds of the variables.

1.Choose target 2 Randomly chaosé two 3. Third randomly chosen
veclor other vectors vector; subject of mutatiods
individual | individual? individual3 mdividial4 individial 5 individusl 6

v

ECTION:

Select target vector of trial
vector, the one with the lower

- difference [MOTATION:
<F velor | Add difference vector

0.80 - weighted with F to thisd

0.83 0.66 |randomly chosen vector

0.28 0.22 D

-0.08 -0.06

N 4 +
CROSSOVER:
Vil peobabily O sect T ANDLING CONSTRAINTS:
[param eter vahie from foigy ™ 100 “ i tha o S
vector, otberwise select value | 1.00 “MW“ diLi al
iﬁ‘m target vector 03
0.28

cost survive
individual | individoal 2 individunl 3 individuald individual 5 individial 6
cost value
p 1 0:68 POPULATION
parameter 2 0.:89 FOR NEXT
parameler3 0.04 GENERATION
parameterd | 0.0

Figure 2.3 Illustration of a simple example of DE where the objective function is min f(x) = x, +

X, + X, + X,, subject to 0 < x, <1, k=1,...,4.

16

Michalewicz et al. [42] surveyed and compared several constraint-handling techniques

used in evolutionary algorithms, and revealed that the penalty function method is the most

popular methods for handling constraints, due to its simple concept and convenience to

implementation. Such techniques convert the primal constrained problem into an unconstrained

problem by penalizing those solutions which are infeasible as follows:

L,=

£(x)+ zh ()+3" 8, fmax [¢, (x), o

J=1

(2.24)

17

where oy and Py are the positive [;enalty parameters for equality and inequality constraints
respectively, and L, is the pseudo-objective function or auxiliary function.

From (2.24), it can be seen that the penalty term associated with equality and inequality
constraints is added to the objective function. As a result, the penalty term reflects violation of the
constraints and assigns the high cost of the penalty function to a candidate individual that is far
from the feasible region. When we apply differential evolution (DE) or other evolutionary
algorithms (EAs) to solve the penalty problem, any candidate individuals that violate the
constraints will impose a high cost or inherit poorer fitness, and find it difficult to survive.

Although the penalty function methods are easy to implement, the main limitation of
such methods is the degree to which each constraint is penalized. The penalty function methods
do suffer from the complication that as the penalty parameters are increased toward infinity; the
structure of the unconstrained problem becomes increasing ill-conditioned. Therefore, each
unconstrained problem becomes more difficult to solve, which has the effect of slowing the
convergence rate of the overall optimization process. On the other hand, if the penalty parameters
are too small, the constraint violation will not impose a high cost on the penalty function. Thus
the optimal solution based on the penalty function method may not be feasible. Therefore,
choosing appropriate penalty parameters is not a convenient task [43-45].

In contrast to the penalty function methods, the augmented lagrange multiplier method
(ALM) can be employed to handle equality/inequality constraints without those difficulties.
Essentially, this approach is a penalty-like method, in which the auxiliary function or the
augmented lagrange function is obtained by combining the ordinary Lagrangian function with a
quadratic penalty functions. Therefore, each unconstrained problem is a minimization of an

augmented lagrange function, which has the following form [44-45]:

L, = f(X)w,,iMX)‘" +rgi{max [g ,(x), -%”2 #

k=1 Jj=1 g

> ah(1)+35) {m [g,- (®).- f—}}

(2.25)

J=1 g

18

where r, and r, are the positive penalty multipliers, and the corresponding lagrange multipliers Ao
B, are associated with equality and inequality constraints, respectively.

After solving unconstrained problem, the lagrange multipliers and the penalty parameter
are updated in order to improve the convergence of the algorithm. The lagrange multipliers are

typically updated as follows:
A =2l + 2nm (x°) (2.26)

B =i+ 2, {max [g (x) —%}} (227)

From (2.26) and (2.27), the multipliers are deterministically updated using the constraint
functions evaluated from the previous solution of the unconstrained minimization problem, e
Then, each of the penalty parameter is increased by a constant rate until it reaches the

predetermined maximum value as shown in (2.28) and (2.29).

I - I
cy Xh, if r, <n
! hXTh Y Ty S
n = N (2.28)
Vymar» Otherwise
I . i
c, xr,, ifr,<r
t+1 ? ax
rg AR/ g ‘8N (229)
Ve max» Otherwise

where ¢, and c, are positive constant increasing rate, and r, . and r, . are the maximum penalty
multiplier corresponded with equality and inequality constraints, respectively.

Under appropriate conditions, it can be shown that the ALM approach will converge
without having to increase the penalty parameters to a very large value. Therefore, this algorithm
is likely to overcome the ill-conditioning associated with classical penalty methods, and

consequently, it offers the possibility of faster convergence rates [44-45].

2.6 The Self-adaptive Differential Evolution with Augmented Lagrange Multiplier Method
The self-adaptive differential evolution with augmented lagrange multiplier method

(SADE_ALM) is an enhanced version of the traditional differential evolution by integrating two

strategic parameters of DE, i.e. the mutation factor (F) and the crossover constant (CR) as

additional control variables. As a result, the F and CR can be dynamically self-adaptive

19

throughout the evolutionary process to increase the capability of avoiding local optimality
trapped. Since tuning DE’s parameters, i.e. F, CR, and NP is not a easy task due to complex
relationship among parameters, even if extensive preliminary experiments were conduct before
hand, the optimal parameter settings may never be found and possibly converge to a local
optimum [42]. With the proposed method, the trial-and-error process to determine the optimal
parameters setting is also reduced. The augmented lagrange multiplier method (ALM) is applied
to handle inequality constraints instead of the traditional penalty function method in order to
avoid the ill-condition of the augmented lagrange function and the dependency of the penalty
parameters which impede the solution search capability. Additionally, the most feasible elitism is
also employed to increase the speed of convergence [1, 2].

The algorithm of SADE_ALM consists of two iterative loops, i.e. the inner loop and the
outer loop. The inner loop solves the unconstrained minimization problem through the augmented
lagrange function L, using self-adaptive differential evolution (SADE). Figure 2.4 shows the
chromosome structure of SADE. It can be seen that the mutation factor (¥) and the crossover
constant (CR) are embedded as additional control variables in the first and second positions of the
n-dimensional parent vector X, respectively. After the unconstrained minimization problem has
been solved, the outer loop will update the lagrange multipliers [s and the penalty parameter Ty
by the ALM method to create the new augmented lagrange function L, The algorithm is then
repeated until a termination criterion, i.e. maximum number of iterations or convergence of the

optimal solution, is reached. The flowchart of the SADE_ALM is shown in Figure 2.5.

1 2 3 4 n+2

i FJ CRJ Xyj ij xnj

Figure 2.4 Chromosome structure of SADE.

2.6.1 Inner loop iteration

The inner loop of SADE_ALM comprises 6 steps as described hereafter.

Step 1 (Initialization of SADE). Sét maximum iteration of inner loop (NV,), convergence
tolerance (€a,), and then create the initial population sized NP associated with their lower and

upper limits as follows:

Initialization of ALM

SADE
Converged ?

| i=i+l |
Yes |
v |
| : 2
Initialization of SADE | Most feasible Elitism
14 : - Yes
|
| Update the lagrange
: multipliers and the
| penalty parameters
Yes |
- ———
v I
| No
Mutation |
|
o [
No! Yes
i ALM
Handling boundary |
j=j+1 | constraints : Converged ?
J, |
: No
Crossover |
‘L |
|
Violated ?
No Evaluation & Selection o

20

Figure 2.5 Flow chart of SADE_ALM (N, : maximum number of iterations of outer loop, N, :

maximum number of iterations of inner loop).

Xij = Xijjow + Py X (xym‘ = le'Jow)

Fj =F_,-Jw+p”x(Fj

i _Fj.-‘mv)

CR; =CRyjpy + P2; X(CR, 1y ~CRy)

(2.30)
(2.31)
(2.32)

where F, and CR; are the mutation factor and the crossover constant for individual X, and

Py Py and p, are uniformly distributed random numbers within [0,1] for individual x, F, and

CR, respectively.

21

Step 2 (Mutation). For individual parent vector X, a mutant vector Aj/ is created

according to the following expression:

X, =x;, +Fx (Jc,.)f._],i ~ K) (2.33)
F; - F:h’; + F:‘ X (F;'i i 'F}»-"z) (2.34)
CR)=CR,, +F,x(CR,, -CR,,) (235)

where r,, 7, and r, are randomly chosen indices such that r, r,, and v, € (ILNP) and r, #r,#r, #
I

Step 3 (Handling boundary constraints). In the event that mutation causes control
variables, x':.), F » and CR’;, exceeded their boundary constraints, i.e. lower or upper limit, such
variables will be set to the nearest boundary.

Step 4 (Crossover). To increase the diversity of the mutant vectors, crossover is

introduced to create the trial vector Xf based on a series of n-1 binomial experiments [17] as

shown below:
X P SCR, or i=i,,
v j» V Py A d 2.36)
xg.orherwzse
FrNp SCR, or i, =1
r NIPYS I T ot 2.37)
4 F " otherwise
CR;,Vp,, SCR-G\1..; =2
ciL S-SR Bu 2T i (2.38)
£ 1CR |, Otherwise

where p,, p,, and p, are the uniformly distributed random number within [0,1] for individual x”y.

. € (1,n+2) is a generated random integer to ensure that the

ram

.F}”. and CJR;Qr respectively, and {
trial vector .X;’ "is different from its associated parent vector X

Step 5 (Evaluation and Selection). To create the new population in the next generation
G+1, the fitness value, i.e. the augmented objective function value in (2.25) of the trial
vector X /“/is compared with its parent vector X (“’in the same way as in the classical DE as

shown below:

x\" 2{"',7(6)' if () 9)< 1, (x©) (2.39)

X ﬁc). otherwise

Step 6 (SADE termination criteria). The inner loop will be terminated according to two

22

criteria, i.e. 1) the maximum iteration of the inner loop (V); and 2) the convergence of the optimal

solution as follows:

AX oy SEap (2.40)

where £4, is convergence tolerance of AX, which is determined by:

ax,, =|x5 - x5 (2.41)

where ||| is the infinity-norm, X7 and X, 57 are the optimal solution obtained at current

generation (G) and previous generation (G-1) respectively.

2.6.2 Outer loop iteration

After the inner loop has converged, the outer loop is started using the ALM algorithm to
update the lagrange multipliers and the penalty parameters. The detail of the outer loop is
described below.

Step 1 (Initialization of ALM). Set maximum iteration of the outer loop (NV,), the
constrain violation tolerance (gg,.), the lagrange multiplier s, and the penalty parameters Ty
including ¢) and g maxt

Step 2 (Verifying constrain violation). The optimal solution obtained from the inner loop
(X ;p,) is checked that it is the feasible or infeasible solution through the sum of the violated
constraints (SVC) index as follows:

SVC < eqp (2.42)

where

svC = fmax g, (x,) 0] (2.43)

J=l

If the optimal solution is violated go to step 4, else go to step 3.

Step 3 (Update the lagrange multiplier and the penalty parameters). The lagrange
multiplier and the penalty parameters of the new augmented lagrange function La are updated
according to (2.27) and (2.29) respectively before starting the next inner loop.

Step 4 (Applying the most feasible elitism). To improve the efficiency of the proposed
algorithm, the most feasible elitism (X,) is employed by replacing the worst individual X

which has the highest fitness value for the next inner loop iteration. The elitist member is

23

initialized by using the optimal solution obtained from the first inner loop iteration. Then, it is
updated according to the extent of the violated SVC value and the objective function value f{(-)

(e.g., the total generator fuel cost which will be described in the following chapter) as follows:

D If SVC(X%:D)> g4, then

X, i sve(x®)< sve(x &)

x2=l " and e () o

X éf,,;”, otherwise

2)1f SVC(x %)< £y, then

elite

XE;\;Z ={X;;£!K)' if f(X:,S"K))S f(XEf:;}}) (2.45)

X Eﬁ;”, otherwise

where X %) and X*-) are the elitist members of the current (K) and previous (K-1) iteration

elire elite

of the outer loop respectively, and X o 15 the optimal solution obtained from the current (K)
iteration of the inner loop.

The outer loop will be terminated according to the same criteria as defined for the inner
loop, i.e. 1) maximum iteration number of the outer loop (N,), and 2) convergence of the optimal
solution.

In the following chapter, we will introduce the problem of optimal economic operation of
electric power system. The mathematical formulation of the economic dispatch problem and
several variations on the representation of fuel-cost characteristics of thermal generating units are

described. In addition, numerical examples of SADE_ALM described in this chapter are also

provided in the next chapter.

	Chapter II Fundamental of Evolutionary Algorithms
	2.1 Introduction
	2.2 Basic Strucณre of Evolutionary Algorithms
	2.3 Differential Evolution
	2.4 Differential Evolution - Example
	2.5 Constraints Handling
	2.6 The Self-Adaptive Differential Evolution with Augmented Lagrange Multiplier Method

