CHAPTER III
OPTIMAL ECONOMIC OPERATION OF POWER SYSTEMS

3.1 Introduction

The optimal economic operation of power systems or the economic dispatch (ED)
problems is one of the most important optimization problems in power system operation. The
main objective of the ED problem is to find the real power contribution from each generating unit
of a system, so that the production costs are minimized for any specified load condition. The ED
problem assumes that available generating units have been specified by a unit commitment study.
In addition, it is assumed that the total system load has been estimated using a load-forecasting
algorithm. In this chapter, we will consider the optimal economic operation of thermal generating
units only.

The production cost for a generating unit consists of fixed and variable costs. Fixed cost,
for example, the capital costs of installing the unit, is not considered in the ED problem. The
unit’s variable production cost includes fuel, labor, supplies, and maintenance costs. Among
these, fuel cost constitutes the main component. The unit’s fuel costs are typically provided in the
form of a fuel-cost function which specifies the cost of the fuel used ($/hr.) as a function of the
unit’s real power output (MW). Labor, supplies, and maintenance costs can be taken into account
by assuming they are a fixed percentage of the fuel costs. However, for simplicity, it is often
assumed that fuel costs are the only variable production costs that needed to be considered.

Typically, the fuel cost function of generating unit has been approximately represented
by a single quadratic function where the valve-point effects [46], prohibited operating zones [47],
and multiple fuels [48] are usually ignored, which may introduce the dispatching results far from
the optimum solution. In some cases, the calculated dispatched power may not be practically
occurred since it falls within the prohibited operating zones. Therefore, it would be better if the
generator cost curve can reflect practical operating constraints. However, the increase of the
embedded constraints on generating unit’s cost function usually results in higher nonlinear, non-
smooth and non-convex function where the classical or gradient based methods [4] may be fail to
apply.

In economic dispatch (ED) problems considering each nonconvex characteristic, i.e.

valve-point effects, prohibited operating zones, and multiple-fuel options, several methods have
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been proposed. For instances, dynamic programming (DP) [4], genetic algorithm (GA) [46],
evolutionary programming (EP) [49], particle swarm optimization (PSO) technique with the SQP
method (PSO-SQP) [50], and the modified particle swarm optimization (MPSO) [51] are applied
to solve the ED problem with valve-point effects. In the ED problem with prohibited operating
zones, lambda iterative dispatch [52-53], deterministic crowding genetic algorithm (DCGA) [46],
improved fast evolutionary programming (IFEP) [54], and the integrating evolutionary
programming (EP), tabu search (TS) and quadratic programming (QP) called the ETQ methods
[55] are proposed, while others, such as a hierarchical method (HM) [48], Hopfield neural
network approach (HNN) [56], adaptive Hopfield neural network approach (AHNN) [57],
evolutionary programming (EP) [58], and improved evolutionary programming (IEP) [59] are
used to solve multiple-fuel problems. For more realistic situation in the ED problems, C. L.
Chiang [60] proposed the improved genetic algorithm with multiplier updating (IGA_MU) to
solve the ED problems in which multiple fuels with valve-point effects were considered
simultaneously. However, none of the works mentioned above takes account of all the nonconvex
fuel-cost characteristics into a single framework.

The following section will describe general variations of fuel cost characteristics of
thermal generating units. Then, the formulations of the ED problems based on different fuel cost
characteristics are proposed. Finally, to show the effectiveness of the proposed algorithm,
numerical results of five test cases of the proposed SADE_ALM in chapter 2 are presented and
compared with other approaches including conventional differential evolution (DE) approach

based on the same constraint handling techniques.

3.2 General Variations of Fuel-Cost Characteristics
Generally, the fuel-cost characteristic for thermal generating unit is simplified by using a

smooth and convex curve [4], e.g. second order polynomial as shown in (3.1)
£Ps)=aPZ +b,P; +e, (3.1)

Figure 3.1 shows the fuel cost curve of a typical thermal generating unit. However, there are
cases when utilities may find it more convenient to model their fuel-cost curves using functions
other than indicated in Figure 3.1 (e.g. linear, cubic, reduced-cubic [with quadratic term omitted],

piecewise linear, exponential or combinations of these). In addition, the presence of valve-points,
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prohibited operating zones, or multiple fuels makes it impossible or impractical to represent a

fuel-cost characteristic by a simplified quadratic polynomial.

Fuel Cost ($/hr)

v

Output, P (MW)
Figure 3.1 Fuel-cost curve of a thermal generating unit.

3.2.1 Valve-Point Effects

Usually, large thermal generating units have a number of steam admission valves, which
are opened sequentially in order to obtain higher power output. Valve-points are those output
levels at which a new admission valve is opened. Fig. 7 shows the fuel-cost curve for a thermal
generating unit with four steam admission valves. Point A, B, C and D are the operating point of
admission valves.

Whenever an admission valve starts to open, there is a sharp increase in throttling losses.
As the valve is gradually lifted, these losses decrease until the valve is completely opened. The
rippling effect seen in Figure 3.2 is the result of opening the steam admission valves. In [46] the
effect of valve-points was modeled by adding a recurring rectified sinusoidal to the conventional

quadratic cost curve resulting in the following fuel-cost function:
fi(Ps, ) =a,P; +bP; +c,+|d, xsin(e,x(Ps_ —F; ) (3.2)

where a, b, c, are fuel cost functions of the unit i, and d, and e, are fuel cost coefficients of the

unit with valve-point effects, and P, is the minimum generation of the unit in MW. Typically,

i,min
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valve-point effects are ignored in ED or OPF studies, due to the difficulty to handle by

conventional optimization methods.
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A, B, C, D: Operating points of admission valves
Figure 3.2 Fuel-cost curve of a thermal generating unit with four-steam admission valves.

3.2.2 Multiple Fuels
There are some thermal generating units which can be supplied by multiple fuel sources.
In those cases, as shown in Figure 3.3, it is more appropriate to represent the unit’s fuel-cost

characteristic as a piecewise quadratic function [1, 2, 48):

(a,,P2 +b,P; +c,,, fuel 1, BY™ SP <Py

a,-ng: +b,Fg +c;y, fuel 2, Fe, <Fg <Fg,

Ji(Fg, ) =1 (3.3)

PG +byPo, +cy, fuel k P, <P, <PI™

where a,,, b,,, and c, « are the cost coefficients of the unit at bus i for fuel type k.
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Figure 3.3 Fuel-cost curve of a thermal generating unit supplied with three fuels.

3.2.3 Prohibited Operating Zones

Generally, it is assumed that the output power of a thermal unit can be continuously
adjusted over the unit’s feasible operating region ( Py < P,, < PyT" ). In practice, however,
thermal units can have prohibited operating zones due to faults or physical operational limitations

on power plant components. A unit with prohibited operating zones does not have a continuous

fuel-cost curve, as shown in Figure 3.4.
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Figure 3.4 Fuel-cost curve of a thermal generating unit with two prohibited operating zones.
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If the unit at bus i has n, prohibited operating zones, then it has n+1 disjoint operating
regions. The operating range for a unit with prohibited operating zones can be represented as [1,

2, 471

min L

Py, | SPy<PL,, k=2..n

g gik» (3.4)
U max

where n, is the number of prohibited operating zones for the unit at bus i, ng;‘.k is the lower

u

bound of the k-th prohibited operating zone for the unit at bus i, and P, , is the upper-bound of

gt

the k-th prohibited operating zone for the unit at bus i.

3.3 Formulation of the ED Problems

In this section, we will describe the formulation of the ED problem based on different
fuel cost characteristics. To consider the ED problem in more realistic situation, additional
combined fuel cost characteristics are also considered in the ED problems, i.e. the fuel cost
function considering multiple fuels with valve-point effects, and the fuel cost function
considering multiple fuels, valve-point effects, and prohibited operating zones. The details of the

formulation can be described as in the following.

3.3.1 ED Problem Considering Prohibited Operating Zones
The ED problem with some units possessing prohibited operating zones (POZ) can be

mathematically stated as shown below [1, 2, 47].

MinY. £,(P)=Min ¥ (a,P? +5,P, +c,) (3.5)

iefl ief2

where i :index of dispatchable units,

J{) : input-output cost function of unit i in $/h,
: generated power of unit 7/ in MW,
a, b, c,: cost coefficients of unit 7,

€2 : a set of all dispatchable unit 7,
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subject to the following constraints.

1) Power Balance Constraints:

YR =P,+P, (3.6)

ief?

where P, is the total load demand in MW, and P, is the system power loss in MW.

2) System Spinning Reserve Constraints:

'S, 28, G.7)

ief2
S, 2 Min{P,,.. —P,). S, e } Vi € (2 - ) (3.8)
S, =0 View (3.9)

where S, : spinning reserve of unit i in MW,
S, : system spinning reserve requirement in MW,
: maximum generation of unit i in MW,
: maximum spinning reserve of unit 7 in MW, and
® : set of all dispatchable units with prohibited zones.

Since a unit with prohibited zones may operate into one of those zones while system load
is regulating, it is shown in (3.9) that this kind of units should not contribute any regulating
reserve to the system. In other words, system spinning reserve requirement must be satisfied by
the units without prohibited operating zones.

3) Generating Limits of Units without Prohibited Zones:

Poin SP <SP, Vie(Q-0) (3.10)

Jmin

where P, . and P

i,min i,max

are minimum and maximum generation of unit / in MW,
In order to manipulate the spinning reserve constraints, effective upper generation limit
P for each supplying unit i without prohibited zone is defined [52-53]. In this way, generating

i,max

limits of those units will result in the following inequality constraint

P,.<P<PT  Vie(Q-w) (3.11)

1 I, max !

where Pfﬂx is the effective upper generation limit of unit i in MW.
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4) Generating Limits of Units with Prohibited Zones:

P <P15P:;, or

imin =
PSP SP, =20, 0 (3.12)
P <P <P,, View

where P:" ;and Ri’: are the lower and the upper limits of the jth prohibited zones of unit i in MW,

and Z, is the number of prohibited zones of unit i.

3.3.2 ED Problem Considering Valve-Point Effects

A generator with multi-valve steam turbine has very different input-output cost function
compared to the simple quadratic cost function in (3.1). To consider the valve-point effects in the
cost model, the sinusoidal function is incorporated into the quadratic function as already shown in

(3.2).

3.3.3 ED Problem Considering Multiple Fuels

Some generating units can operate under different fuel types. The use of multiple fuel
types may result in multiple cost curves which are not necessarily parallel or continuous. The
lower contour of the resulting cost curve determines the more economical fuel types to burn. The

fuel cost function can be defined as already shown in (3.3).

3.3.4 ED Problem Considering Multiple Fuels with Valve-Point Effects
To obtain more practical ED problems, the fuel cost function should be incorporated both
multiple fuels and valve-point effects simultaneously [60]. Therefore, the cost function of (3.3)

should be combined with (3.2) to result in (3.13) and (3.14).

f..'(Pr) Suel 1, Ps,m <P < P;J

f:(P) fuel2, P, <P <P,

fi(R)= (.13)

Fu(B) fuelk, Py S PSP

S (P:)= ay P’ +b, P, +c, +|d:'k Si"(e.'k (Puc,mm = P;)] (3.14)
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where a,, b, and c, are cost coefficients of unit i for fuel type k, and P, is the minimum

generation of unit i using fuel type k.

3.3.5 ED Problem Considering Multiple Fuels with Valve-Point Effects, and Prohibited
Operating Zones

To increase the capability and accuracy of the ED problems, all the nonconvex
characteristics of generating unit should be incorporated into a single framework. Therefore, the
cost function of (3.13) and (3.14) should be combined with (3.12) for units possessing prohibited
operating zones (POZ).

In the next section, the effectiveness of the proposed algorithm will be tested and
compared with previous reports. To handle the power balance constraints in all the ED problems,

a slack generator is arbitrarily selected as a dependent generator (P,) and defined by:

N
P,=Py-P,~ )P (3.15)
i=li#d
where P, is constrained by its associated minimum and maximum generation limit,
Pyin S Py < Py oy Pp is the total system demand, P, is the system power loss which may be
found by B-matrix loss coefficients, etc. Therefore, in this case the power balance constraint is

transformed to two inequality constraints according to its boundary limits.

3.4 Numerical Results

The solution quality and the effectiveness of the proposed SADE_ALM are verified
using five test cases, i.e. 1) 40-generation system with valve-point effects [49], 2) 15-generation
system with prohibited operating zones [47], 3) 10-generation system with multiple fuels [48], 4)
10-generation system considering multiple fuels and valve-points effects [60], and 5) 10-
generation system considering multiple fuels, valve-points effects and prohibited operating zones.
The conventional DE using the same constraint handling, i.e. DE_ALM, is also developed. In
addition, both algorithms are implemented to solve the ED problems using the same DE’s
strategy (i.e., DE/rand/1/bin), and compared with previous reports [16, 46-60], e.g. evolutionary
programming [49], modified particle swarm optimization (MPSO) [51], improved genetic

algorithm with multiplier updating (IGA_MU) [60] etc. For each case, 100 independent runs were
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conducted. The population size NP is set at 5 for both DE_ALM and SADE_ALM. In addition, in
case study 1, the result of NP=20 is also reported. The convergence tolerance (g Ay) and the SVC
tolerance () are set at 10° and 10’ respectively, and the initial lagrange multiplier (B) of
inequality constraints are set to zeros for all cases. The rest of the parameters will be shown later
in each case. Both algorithms were implemented on free numerical software SCILAB 4.0 [61] on
a PC Intel Celeron 2.40 GHz 256 MB of RAM.

3.4.1 Case 3.1: Valve-Point Effects

The first case study consists of forty generating units supplying load demand 10,500
MW. Only valve-point effects are considered. The cost function of each unit can be formulated as
represented by (3.2). The system data and related constraints are available in Table B.1 [49]. The
parameters of DE_ALM and SADE _ALM are selected as follows, i.e. 1) DE_ALM: NP = 5 and
20 where F=0.7, CR = 0.7, r,=led, Co = 55 T'omar = 18, N, = 5000, N, =20, and 2) SADE_ALM:
NP =5 and 20 where F=[0.2, 1], CR = [0.1, 1], §, 7 led, c &5, Tema: = 1€8, N, = 5000, N, = 20.

The results from both methods are compared with three EP based methods [49], i.e. FEP:
fast EP, MFEP: FEP using the weighted mean of Gaussian and Cauchy mutations, IFEP:
improved fast EP, MPSO: modified particle swarm optimization [51], and DEC-SQP: combining
of differential evolution with sequential quadratic programming [16]. The comparisons are shown
in Table 3.1. It can be found that, if we consider only the dispatching cost, the proposed
SADE_ALM will provide the lowest cost. It demonstrates that the proposed algorithm is capable
of searching for better solutions than other methods, It is also found that DE_ ALM with NP = 20
can find a lower dispatching cost than FEP, MFEP, IFEP, MPSO, and DEC-SQP. Additionally,

the proposed SADE_ALM can provide better dispatching cost and lower mean computation time

than others.
Table 3.1 Result comparison for case 3.1
Methods NP Mean time | Best time Mean cost ($) Maximum Minimum
(s) (s) cost cost

FEP [49] 60 1039.16 1037.9 124119.37 127245.59 I22679.7_1_
MFEP [49] 60 2196.1 21947 123489.74 124356.47 122647.57
IFEP [49] 60 1167.35 1165.7 123382 125740.63 122624.35
MPSO [51] 20 N/A N/A N/A N/A 122252.27
DEC-SQP[16] | 30 N/A N/A 122242 84 12283929 121741.98
DE ALM 5 110.98 14.08 125366.84 138101.14 122299.910
= 20 345.49] 307.578 121614.91 122059.27 121463.12
5 207.428 19.203 22572.23 125299.72 121535.84
SADEALM | 1360835 1 145 766 T 13155755 121894.18 | 12143572

Note: Based on different computing hardware
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The best solution of DE_ALM and SADE_ALM are provided and compared with
MPSO, and DEC-SQP in Table 3.2, where TP, TC, and CT are the total power (MW), total cost
($), and computation time (s). It should be reminded that various CT of the referred works shown

in this paper may be obtained from different hardware specifications.

Table 3.2 The best result comparison for case 3.1

Methods
Unit (MW) NP=30 NP =20 NP = 5
DEC-SQP [16] | MPSO[51] | DE ALM | SADE ALM| DE ALM |SADE ALM|
Gl 111.7576 r 10.7998 | 1136992 | 114.0000 13.8886
G2 111.5584 4 10.7998 | 114.0000 | 114.0000 14.0000
G3 97.3999 20 973999 | 97.5100 | 120.0000_| 120.0000
G4 179.7331 182222 | 179.7331 | 179.7519 | 179.7331 79.7331
GS 91.6560 57 87.8000 | 889365 | 070000 | 93.0681
G6 40.0000 40 140.0000 | 140.0000 | 140.0000 | 140.0000
G 300.0000 300 300.0000_| 259.6802 | 300.0000_| 300.0000
G8 300.0000 299021 | 2845997 | 2845979 | 300.0000 | 284.5898
G9 284.5997 300 | 2845997 | 2847278 | 3000000 | 284.6004
G10 130.0000 30 130.0000 | 130.000 130.0000 | 130.0328 |
Gll 168.7998 94 54.0000 | 1688295 | 168.7998 | 168.7998
GI2 94.0000 04 54.0000_| 940000 | 94.0000 | 94.0000
G13 214.7598 125 2146496 | 2143887 | 1250000 | 125.0000
Gl 3942794 304485 | 3045196 | 304.5567 | 3045196 | 394.2802
G15 304.5196 394.607_| 3942794 | 3942784 | 3045196 | 394.2799
Gl6 304.519€ 305323 | 3942794 | 3942737 | 3045196 | 394.2793
G17 4892794 490272 | 4892794 | 489.2055 | 489.2794 | 489.4716
GI8 489.2794 500 4892794 | 4892790 | 500.0000 | 4925760
G19 511.2794 511404 | 5112794 | 511.3253 | 5112795 | 511.2097 |
G20 511.2794 512174 | 5112794 | 5113204 | 511.2794 | 511.2795
G2 5232794 550 | 5232794 | 5233047 | 5305111 | 5232838 |
G22 523.285 523655 | 5232794 | 523.3838 | 550.0000 | 523.279¢
G23 523.2847 534661 | 5232704 | 523.2052 | 550.0000 | 523.279
G24 5232794 550 5232704 | 5233464 | 5500000 | 524.4939
G25 523.2794 525.057 | 5232704 | 5232965 | 5232796 | 5232982
G26 523.2794 549.155 | 5232794 | 523.2905 | 550.0000 | 523.2794
G27 0.0000 10 0.0000 0.0065 0000 10.0000
G28 0.0000 0 0.0000 0.0017 0000 0.0000
G29 10.0000 0 0.0000 0.0000 10.0000 0.0000
G30 90.3329 97 06.4669 | 885979 | 07.0000 | 87.8004
G31 90.0000 %0 90,0000 | 190.0000 0.0000_| 1900000
G32 90.0000 90 90.0000_| 190.0000 50.0000_| 189.9998
G33 90.0000 90 90.0000 | 190.0000 50.0000 | 189.9999
G34 200.0000 200 200.0000 | 165.6929 | 200.0000 | 164.791
G35 200.0000 200 200.0000_|_200.0000_| 200.0000 | 164.8022
G3¢6 200.0000 200 200.0000 | 200.0000 | 200.0000 | 165.2330
G37 10.0000 110 110.0000 0.0000 10.0000 0.0000
G38 10.0000 110 10.0000 0.0000 | 110.0000 0.0000
G39 110.0000 110 10.0000 | 109.9903 | 110.0000 10.0000
G40 511.2794 512964 | 5112794 | 511.3420 | 511.2794 | 5112794
TP (MW) 10500 10500 10500 10500 0500.0000 | 10500.0000
TC(S) | 1217419793 | 12225227 | 121463.120 | 121435.720 | 122299.910 | 121535.840
CT (5) N/A N/A 309344 | 324547 | 225084 | 503531

Notes: 1) Based on different computing hardware

2) TP: total power (MW), TC: total cost ($), CT: computation time (s).

From Table 3.2, it can be seen that SADE_ALM requires more computation time than
DE_ALM for both five and twenty population sizes, since the control variables of SADE_ALM
are more than DE_ALM, due to F and CR are included into the chromosome. However, the total

cost of SADE_ALM from both population size (5 and 20) are lower than DE_ALM, MPSO, and
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DEC-SQP. It has been found that both SADE_ALM and DE_ALM methods can find the best
solution once out of 100 initiated trials for both NP = 5 and 20. Figure 3.5 shows the convergence
characteristic of SADE_ALM and DE_ALM for the case of NP=5. Figure 3.6 shows the
convergence characteristic of inner loop iteration for the first outer loop of DE_ALM and
SADE_ALM based on NP=5. The relative frequency of the solution convergence of SADE_ALM
and other methods are listed in Table 3.3 for each cost range. It reveals that the proposed

SADE_ALM can provide the global or quasi-global solution with a better probability than others.

Table 3.3 Relative frequency of the solution convergence for case 3.1

Range of cost (k$)
138.5 | 127.0] 126.5] 126.0 ] 125.5] 125.0] 124.5] 124.0| 123.5] 123.0] 122.5

Methods NP = - - - > = - - 5 = =
- 127.0 | 126.5| 126.0] 125.5 | 125.0] 124.5 | 124.0] 123.5 | 123.0] 122.5 | 120.0
CEP [49 60 | - 10 | 4 i T 7 Y 2 . -
FEP [49 60 | - 6 | - | 4| 2 10|20 |2 |2]¢6
MFEP[49] | 60 | - S z 1 e - | 14 [ 2 [ 50 | 10
IFEP [49] 60 | - - y 2 - 3 4 | 18 | 50 | 22 | -
MPSO[51] | 20 | - - ; - - - - = == 33| =47
DEC-SQP[16] | 30 | N/A | N/A | WA | N/A | NA | N/A | N/A | N/A | N/A | N/A | N/A
5 10 5 8 | 6 | 10 | 10 2] 271 9 2 1
DEALM 20 |- Z - : - : - = 2 - | _100
5 - - 1 2 ] 6 | 12 | 19| 56
SADE_ALM |—= - - - - - : —t
145,000
140,000 -
135,000 A
2 130,000 -
S 125,000 4
120,000
115,000 1
110,000 T T T . - T
1 2 3 4 5
Outer loop Iteration

—+—DE_ALM —=—SADE_ALM

Figure 3.5 Convergence characteristic of DE_ALM and SADE_ALM for NP = 5.
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Figure 3.6 Illustration of inner loop convergence characteristic for the first outer loop of

DE_ALM and SADE_ALM for NP = 5.

3.4.2 Case 3.2: Prohibited Operating Zones (POZ)

There are fifteen generating units considering only prohibited operating zone (POZ) in
this case. Four of the units, no. 2, 5, 6, 12, occupy up to three prohibited operating zones (POZ).
The total system demand is 2650 MW. The POZ constraints create 192 decision subspaces for the
dispatching problem. System spinning reserve, S, is defined at 200 MW. All the system data and
related constraints of this example are given in Table B. 2 and B. 3 [47]. The parameters for both
DE_ALM and SADE_ALM are given as follows: 1) DE_ALM: NP =5, F=0.7, CR=0.7,r, =
le5, ¢, = 5, 1, = 1€8, N, = 5000, N, = 20, and 2) SADE_ALM: NP =5, F = [0.2, 1], CR = [0.1,
1], 7, = 1€5, ¢, = 5,7,,,, = 18, N,= 5000, N, = 20.

Table 3.4 shows the results of the proposed SADE_ALM with respect to the lambda
iterative method, dynamic programming (DP), and deterministic crowding genetic algorithm
(DCGA) presented in [47], improved fast evolutionary programming (IFEP) [54], fast
evolutionary programming (FEP) [54], and the ETQ methods [55]. Both of the proposed
SADE_ALM and the DE_ALM can provide not only better solution quality, but also completely
satisfy the system constraints except for the DP which provides the same total cost. However, the

DP is generally suffered from its dimensionality problem, and therefore, may not be practical to

apply in real situation. Furthermore, it can be noticed from Table 3.4 that some solutions in the
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previous reports are infeasible. For instance, the lambda iterative method provides an infeasible
solution due to unit 5 operating in the second prohibited zone [260 MW, 335 MW], while both
IFEP [54] and FEP [54] also provide infeasible solutions due to the violation of the minimum
generation of unit 7 and the maximum generation of unit 15 as described at the footnote of Table
3.4. Again, the computation time of SADE_ALM is larger than DE_ALM as in case 3.1. In
addition, the number of the best solution found of SADE_ALM and DE_ALM are 2 and 6 out of

the 100 randomly initiated trials respectively. However, both methods provide the same

dispatching solution.

Table 3.4 The best results comparison for case 3.2

Unit Moo
lambda DCGA | IFEP ETQ

(MW) 47) DP[47] 7] (4] FEP [54] (55] DE_ALM |[SADE_ALM|
Gl 4550 | 455.0 | 406.1 | 455.000]449.787| 450 450 455
G2 | 4550 | 4550 | 453.8 |450.845]450.000| 450 450 455
G3 130.0 | 130.0| 1300 |130.000] 129.999| 130 130 130
G4 130.0 | 130.0| 130.0 |130.000] 130.000] 130 130 130
G5 |295.30" 260.0 | 355.0 |259.791|335.000| 335 335 260
G6 460.0 | 460.0 | 456.8 | 460.000)455.018| 455 455 460
G7 465.0 | 4650 | 459.8 | 15.002%| 1500”7 | 465 465 465
G8 600 | 60.0 | 60.0 | 60.014 | 60.000 | 60 60 60
G9 250 | 250 | 266 | 25008 | 25000 | 25 25 25
G10 | 200 | 200 | 216 | 20.045] 20000 | 20 20 20
Gll 434 | 600 | 362 | 62.109] 20.185| 20 20 60
Gl2 563 | 750 | 590 | 77.172 | 55.006 | 55 55 75
G13 250 | 250 | 250 | 25.000| 25000 | 25 25 25
Gl4 150 | 150 | 150 | 15.008 | 15000 | 15 15 15
Gl5 150 | 15.0 150 |465.00"]465.00"] 15 15 15

TP (MW)] 2650.012650.0] 2649.9 |2649.994]12649.995] 2650 | 2650 2650
TC (8) | 32503 | 32506 | 32515 |32507.46/32507.55]32507.5]32506.139] 32506.139
CT(s) | N/A | N/A | N/A | 3138 | 2769 | 158 5679 12.558
NP - . 200 60 60 30 5 5

Notes: 1) violate maximum generation limit (55 MW),
2) violate minimum generation limit (135 MW).
3) unit loading in the e prohibited zone [260 MW, 335 MW].

4) Computation time is based on different computing hardware

3.4.3 Case Study 3.3: Multiple Fuels

This case study concerns economic dispatch of generators with multi-fuel options. The
cost characteristic of the units is a piecewise quadratic cost function represented by (3.3). It is
assumed that the system consists of ten on-line generating units, each with two or three fuel
options, supplying 2700 MW demand. The system data and related constraints of this case are

given in Table B.4 [3]. The parameters for both DE_ALM and SADE_ALM are set as in the
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following, i.e. 1) DE_ALM: NP =5, F=0.7, CR = 0.7, r,=le4,c,=15,r,, = 1e8, N,= 5000,
N,=20,and 2) SADE_ALM: NP =5,F=[0.2,1], CR=[0.1, 1], 7, = led4,c,= 1.5, 1, = 1e8, N,
= 5000, N, = 20.

Results of the proposed SADE_ALM are compared with HM [48], HNN [56], AHNN
[57], EP [58], IEP [59], MPSO [51], CGA_MU [60], and IGA_MU [60]. The results are
compared in Table 3.5. It reveals that the SADE_ALM and the DE_ALM can provide lower
production cost than others, except MPSO [51], which reports very similar solution. However, the
population size of both SADE_ALM and DE_ALM are smaller than the MPSO. The computation
time of the SADE_ALM in this case is lower than the DE_ALM, whereas the number of the best
solution found are 15 and 35 out of the 100 randomly initiated trials respectively. Tables 3.6 and
3.7 show that the mean cost and relative frequency of the convergence of the SADE_ALM are a

little better than the DE_ALM, while the mean time is vice versa.

Table 3.5 The best results comparison for case 3.3

Methods
Unit (MW)] HM [48] HNN [56] AHNN [57] | EP[58] __IEP[59]
FT] Gen |FT Gen FT| Gen FT Gen FT Gen
Gl 21218412 224.5 2 228.2 2 225.2 2 219.5
G2 11211811 215.0 1 214.8 1 215.6 2114
G3 1]2810]3 291.8 1 291.7 1 291.8 279.7
G4 31239713 242.2 3 242.3 g 242.1 3 240.3
G5 1127901 1 293.3 1 2933 293.7 1 276.5
G6 31239713 242.2 3 242.2 3 241.9 239.9
G7 1]289.0] 1 303.1 1 302.3 1 301.6 289.0
G8 31239713 242.2 3 2423 3 242.8 3 241.3
G9 314292 335.7 1 354.2 1 356.6 3 425.1
Glo 1]2752 289.5 1] 2889 1] 2887 1] 2772
TP (MW) | 2702.2 2699.7 2700.0 2700.0 2700.0
TC ($) 625.18 626.12 626.24 626.26 623.851
CT (s) N/A N/A N/A N/A N/A
NP - - - N/A 30
Methods
Unit (MW)| MPSO [51]] CGA MU [60] | IGA_ MU [60] DE_ALM_ | SADE_ALM
FT] Gen |FT Gen |FT Gen FT Gen FT Gen
Gl 21218312 2184572 | 2| 218.1248 | 2 | 218.3006 | 2 | 218.3006
G2 12107 1) 2115140 | 1) 211.6826 | 1] 211.6603 | 1 | 211.6603
G3 1 1280.7] 1] 2808987 | 1 | 280.8630 | 1 | 280.7293 | 1 | 280.7293
G4 312396] 3 239.6241 | 3 | 239.6533 | 3 | 239.6217 | 3 | 239.6217
G5 112785] 1] 278.5036 | 1| 278.6304 | 1 | 278.4279 | 1 | 278.4279
G6 312396] 3] 239.6390 | 3 | 239.6140 | 3 | 239.7042 | 3 | 239.7042
G7 1]12886] 1] 2886201 | I J 2885725 | 1 | 288.5707 | 1 | 288.5707
G8 312396] 31 239.6211 | 3 | 239.7057 | 3 | 239.6390 | 3 | 239.6390
G9 314285] 3] 4285760 | 3 | 4284542 | 3 | 4284935 | 3 | 4284935
G10 112749] 1] 2745462 | 1] 274.6995 | 1 | 274.8528 | 1 | 274.8528
TP (MW) | 2700.0 2700.0000 2700.0000 2700.0000 2700.0000
TC (8) 623.809 623.8095 623.8093 623.8091 623.8091
CT (s) N/A 19.42 5.27 12.238 6.57
NP 30 30 5 5 5

Note: Based on different computing hardware
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Table 3.6 Results comparison for case 3.3

Methods | NP Mean time | Best time | Mean cost |Maximum cost | Minimum
(s) (s) ($) ($) cost ($) |

DE_ALM 5 13.91 6.21 625.4571 676.2156 623.8091

SADE_ALM| 5 14.33 2.05 624.1013 631.6015 623.8091

Table 3.7 Relative frequency of the solution convergence for case 3.3

Range of cost ($)
676.5]633.5]632.5]631.5]630.5]629.5]628.5]627.5[626.5]625.5]624.5

T N e ek it et lodil R e RS s ;
633.5]632.5]631.5]630.5]629.5]628.5|627.5|626.5625.5|624.5]623.5

DEAIM | | .| - | -]13]2]Jw]i1]os]lule

SADEALM | . | - o f - -] -1 1] 1] 1] e]o0

3.4.4 Case Study 3.4: Multiple Fuels with Valve-Point Effects

This test system consists of ten generating units considering both multiple-fuel options
and valve-point effects simultaneously. The demand is considered at 2700 MW. The system data
and related constraints are given in Table B.5 [60]. The parameters of DE_ALM and
SADE_ALM use the same setting as in case 3.3. The aim of this case is to demonstrate the
effectiveness of the proposed SADE_ALM for a more complicated ED problem, of which both
multiple fuels and valve-point effects are considered. Table 3.8 compares the best results of the
SADE_ALM with CGA_MU [60], IGA_MU [60], and DE_ALM. It has been found that the
proposed SADE_ALM provides the best total production cost, however with a little higher
computation time compared to IGA_MU, and DE_ALM. Moreover, the numbers of the best
solution found are found once out of the 100 randomly initiated trials for both algorithms. Table
3.9 shows the SADE_ALM can find the lowest mean cost compared to the others for 100
randomly initiated trials. The relative frequency of convergence for the proposed algorithm and
the other methods are listed in Table 3.10, which reveals that the proposed SADE_ALM can

provide the global or quasi-global solution with higher probability than the other methods.
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Table 3.8 The best results comparison for case 3.4

~Methods _
Unit (MW) [CGA MU [60] | IGA MU[60] | DE ALM | SADE ALM
FTI| Gen |FT| Gen |FT| Gen |FT| Gen
G 2 | 2220108 | 2 | 219.1261 | 2 | 218.5040 | 2 | 218.5940
G2 211.6352 | 1| 211.1645 211.2166 | | | 211.4642
G 283.9455 | 1| 2806572 278.6406 | 1 | 280.6571
G4 3 | 237.8052 | 3 | 2384770 | 3 | 237.6239 | 3 | 239.2363
Gs 1| 280.4480 | 1| 2764179 | 1 | 279.9345 | 1 | 279.9345
G6 3 | 2360330 | 3 | 2404672 | 3 | 239.6381 | 3 | 239.3707
G7 292.0499 | 1| 287.7399 | 1 | 290.0985 287.71275
G8 241.9708 | 3 | 240.7614 | 3 | 2404456 | 3 | 239.7738
G9 3 | 424.2011 | 3 | 429.3370 | 3 | 428.0649 | 3 | 427.6664
G10 1| 269.9005 | 1| 2758518 | 1 | 275.7432 | 1| 275.5755 |
TP (MW)__|_ 27000000 | 2700.0000 | 27000000 | 2700,0000
TC(3) 624.7193 6245178 6238716 623.8278
CI () 26.17 725 12.375 17.032
NP 30 5 5 5

Note: Based on different computing hardware

Table 3.9 Results comparison for case 3.4

Mean time | Best time | Mean cost | Maximum|Minimum
Vieods: | NP1 & (s) @ | cost(® | cost($)
ICGA MU [60] 5 26.64 25.65 627.6087 | 633.8652 | 624.7193
IGA MU [60]] 5 7.32 7.14 625.8692 | 630.8705 | 624.5178

DE ALM 5 6.856 2.046 | 626.1298 | 642.7812 ] 623.8716
| SADE ALM | § 10.884 2406 | 624.7864 | 634.8313 | 623.8278

Note: Based on different computing hardware

Table 3.10 Relative frequency of the solution convergence for case 3.4

_Iﬁngcofcosl ($)
Methods 676.51633.5]632.5/631.5]630.5]629.5]628.5]627.5]626.5]1625.5]624.5

633.5632.5{631.5630.5]629.5628.5/627.5626.5]625.5|624.5|623.5
CGA MU60]] 1 - 2 3 7 10 )21 31 1201 5 -

IGA MU [60] | - - = 1 - 2 2 11 | 45 | 39 -
DE_ALM 6 1 2 1 2 2 W 3 10] 2 | 6l
SADE ALM 1 - - 2 2 1 1 4 5 9 | 75

3.4.5 Case Study 3.5: Multiple Fuels Options with Valve-Point Effects and Prohibited
Operating Zones

All the nonconvex characteristics, i.e. multiple fuels, valve-point effects and prohibited
operating zones, are combined into one single framework for a very complicated ED problem in
this case. The test system consists of ten generating units supplying the demand of 2700 MW.
The system data and related constraints for multiple-fuels options with valve-point effect are the
same as in case 3.4 where the prohibited zones constraints of some selected units are proposed
and presented in Table 3.11. The concemed parameters defined for both DE_ALM and
SADE ALM are the same as in case study 3.3.

The purpose of this case is to demonstrate the effectiveness of the proposed SADE_ALM
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when all the nonconvex characteristics are considered simultaneously. Table 3.12 compares the
best results of the proposed SADE_ALM with the DE_ALM. It can be found that the
SADE_ALM provide not only better total production cost, but also lower computation time than
the DE_ALM. The number of the best solution found for both algorithms are 1 out of the 100
randomly initiated trials. The mean total production cost of the SADE_ALM is lower than the
DE_ALM; however, the mean computation time of the SADE_ALM is slightly higher than the
DE_ALM as shown in Table 3.13. The relative frequencies of solution convergence for both
methods are listed in Table 3.14 for each cost range obtained from 100 randomly initiated trials. It
reveals that the proposed SADE_ALM can provide the global or quasi-global solution with higher
probability than the DE_ALM. However, both methods are capable of solving the problems.

Table 3.11 Proposed prohibited operating zones for case 3.5

Unit Zone 1 (MW) | Zone 2 (MW) | Zone 3 (MW)
Gl [140, 170] [215, 235] -

G3 [270, 290] [350, 365] [400, 430]
G5 [260, 280] [355, 365] [445, 465]
G8 [100, 115] [150, 180] [230, 250]

Table 3.12 The best results comparison for case 3.5

Methods
Unit (MW)|  DE_ALM SADE_ALM
FT| Gen |FT| Gen
Gl 2 | 215.0000 | 2 | 214.4824
G2 1] 2136923 | 1| 212.4543
G3 1 | 270.0000 | 1 | 290.0000
G4 3 | 240.7144 | 3 | 240.5784
G5 1 | 280.0000 | 1 | 280.0000
G6 3| 239.5056 | 3 | 238.6988
G7 1] 2924695 | 1 | 287.8306
G8 3| 229.9647 | 3 | 229.9647
G9 3 | 440.0000 | 3 | 430.1931
G10 1| 278.6540 | 1 | 275.7976
TP (MW) | 2700.0000 2700.0000
TC ($) 624.7543 624.5925
CT (s) 17.594 11,063
NP 5 5

Table 3.13 Results comparison for case 3.5

Methods | NP Mean time | Best time | Mean cost | Maximum|Minimum

(s) (s) (03] cost ($) | cost($)

DE_ALM 9.032 2438 | 627.0854 | 655.2930 | 624.7543

SADE_ALM 10.027 2.266 | 625.8382 | 639.2923 | 624.5925
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Table 3.14 Relative frequency of the solution convergence for case 3.5

Range of cost ($
Methods 1676 5]629.5]628.5]627.5]626.5]625.5
633.5]632.5]631.5/630.5 627.51626.5|625.5]624.5
DE_ALM 2] sl 3|30l s 7)12] 5
SADE_ALM | 2 - - 2 1 4 1 8 | 12] 70

3.5 Conclusion

From the above five test cases, it is clearly shown that the proposed SADE_ALM is more
effective than other approaches in terms of the quality of the total production cost with acceptable
computation time. The proposed SADE_ALM shows promising capability for solving highly
complicated economic dispatch problems. In the next chapter, we will discuss the solution
procedure of the optimal power flow (OPF) that have been used wildly in power system operation

and planning using both sequential and parallel algorithm of SADE_ALM.
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