CHAPTER VI
Mixed-integer Self-adaptive Differential Evolution with

Augmented Lagrange Multiplier Method

6.1 Introduction

The chapter is started with the introduction of the mixed-integer self-adaptive differential
evolution with augmented lagrange multiplier method (MISADE_ALM) for solving the optimal
power flow (OPF) problems in section 6.2. Only the sequential MISADE_ALM is considered in
this chapter. The discussion of the numerical results and conclusion are provided in sections 6.3

and 6.4 respectively.

6.2 Mixed-integer SADE_ALM based optimal power flow (MISADE_ALM-OPF)

Similar to SADE_ALM, the proposed mixed-integer self-adaptive differential evolution
with augmented lagrange multiplier method (MISADE_ALM) consists of two iterative loops, i.e.
the inner loop and the outer loop. The inner loop solves the unconstrained minimization problem
through the augmented lagrange function L, using mixed-integer self-adaptive differential
evolution (MISADE). After the unconstrained minimization problem has been solved, the outer
loop will update the lagrange multipliers fs and the penalty parameter r, by the ALM method to
create the new augmented lagrange function L. The algorithm is then repeated until a termination
criterion, i.e. maximum number of iterations or convergence of the optimal solution, is reached.
The flowchart of the MISADE_ALM when applied to solve the OPF problems is shown in Figure
6.1. Details of MISADE _ALM are described as in the following.

6.2.1 The inner loop iteration

The inner loop solves the augmented lagrange function L, using mixed-integer self-
adaptive differential evolution (MISADE). The algorithm of the inner loop iteration is the same as
described in section 4.3.1 of chapter 4. However, there is one additional procedure to be included
in MISADE for handling integer and/or discrete control variables as shown in Figure 6.1 of which
it can be described as in the following.

In the canonical form of differential evolution, only continuous floating point variables

can be used. However, MISADE can be easily modified to cope with integer control variables x;
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Figure 6.1 Flowchart of MISADE_ALM-OPF

in a simple manner by transforming the continuous variables to integer variables for power flow
calculation in order to determine the state variables, whereas the MISADE itself still works
internally as continuous floating point control variables [19].

(1) _
Xy’ =

{INT (x,j ), Jor power flow calculation ©.1)

® o

i, otherwise

where x;.” is the integer OPF control variable i of the n-dimensional parent vector X, and INT(")
is an integer function for converting a real value to an integer value by truncation. Moreover, the
population of the associated integer variables will be initialized using (6.2) instead of (4.25) in

chapter 4.
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Xy = Xy sow + Py X (xw,,- - Xgjow + 1) (6.2)

Discrete control variables can also be handled in the same way as the integer control

)

variables. Suppose that the discrete control variable x;D contains g-elements as in (6.3).

xi?) = {Xy.t ’xU.Z’“'ny,q} (6.3)

where

Xjx <Xyxer» k=1,..,9 (6.4)

The discrete control variables will be transformed to integer variables of which the boundary
constrains are limited to range from 1, 2, ... ,g. In the same manner of integer control variable, the

discrete value x,,, will be used instead of its index & for power flow calculation.

6.2.2 The outer loop iteration
After the inner loop has converged, the outer loop is started by using the ALM method to
handle the inequality constraints of the state variables. The details of the outer loop iteration are

similar to SADE_ALM as described in section 4.3.1 of chapter 4.

6.3 Numerical Results

The proposed MISADE_ALM for solving the OPF problems was tested on the IEEE-30 bus
test system given in Alsac and Stott [65]. The effectiveness of the proposed algorithm has been
tested and compared with other approaches, i.e. TS [9], TS/SA [10], ITS [11], EP [7, 12, 13], and
IEP [14] based on different fuel cost characteristics, i.e. 1) quadratic cost curve model, 2)
piecewise quadratic cost curve model (multiple fuels), and 3) quadratic cost curve with rectified
sine component model (valve-point effects) as described in section 4.5 of chapter 4. Only in phase
tap-changing transformers were treated as discrete variables for MISADE_ALM with allowable
tapping ranges of 0.90 — 1.10 and a step size of 0.025, whereas the rest of the control variables
were considered as continuous control variables. The parameters of MISADE_ALM for all test

cases used the same setting as described section 4.5 of chapter 4.



6.3.1 Case 6.1: The OPF with Quadratic Fuel Cost Function

For this case, bus 1 is the slack bus of the system and the generator cost curves of all the
generators are represented by quadratic functions as shown in (3.1). The generator cost
coefficients are given in Table 4.1 of chapter 4 [7, 14]. The simulation results are shown in Table

6.1 and the convergence characteristic of SADE_ALM and MISADE_ALM is shown in Figure

6.2.

Table 6.1 Comparison of the total generator fuel costs for case 6.1

Fuel Cost ($/hr.) Average
Algorithm Average | Worst | S.D. of | computational
Best cost : :
cost cost cost time (minutes)
EP [14] 802.907 | 803.232 | 803.474| 0.226 66.693
TS [14] 802.502 | 802.632 | 802.746| 0.080 86.227
TS/SA [14] 802.788 | 803.032 | 803.291 | 0.187 62.275
ITS [14] 804.556 | 805.812 | 806.856| 0.754 88.495
IEP [14] 802.465| 802.521 | 802.581 | 0.039 99.013
SADE ALM 802.404 | 802.407 | 802.411 | 0.003 15.934
MISADE ALM 802.414 | 802.446 | 802.581 | 0.055 14.970
Note: Based on differentent computing hardwares
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Figure 6.2 Convergence characteristic of SADE_ALM and MISADE_ALM for case 6.1
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6.3.2 Case 6.2: The OPF with Multiple Fuels

In this case, the generator fuel cost curves of generator at bus 1 and 2 are represented by
piecewise quadratic functions or multiple fuels using (3.3). Bus 5 is selected as the slack bus of
the system to allow more accurate control over units with discontinuities in cost curves [7]. The
generator cost coefficients of those two generators are given in Table 4.2 of chapter 4 [7, 14]. The
simulation results are shown in Table 6.2 and the convergence characteristic of SADE_ALM and

MISADE_ALM is shown in Figure 6.3.

Table 6.2 Comparison of the total generator fuel costs for case 6.2

Fuel Cost ($/hr.) Average

Algorithm Average | Worst | S.D. of | computational

Best cost . .

cost cost cost time (minutes)
EP [14] 650.206 | 654.501 | 657.120 | 2.262 69.865
TS [14] 651.246 | 654.087 | 658911 | 2.054 88.447
TS/SA [14] 654.378 | 658.234 | 662.616| 2.788 73.243
ITS [14] 654.874 | 664.473 | 675.035| 6.888 94.832
IEP [14] 649.312 | 650.217 | 651.125] 0.555 100.427
SADE ALM | 647.833 | 648.159 | 650.049 | 0.680 17.505
MISADE ALM | 647.836 | 648.224 | 650.740 | 0.892 12.892

Note: Based on differentent computing hardwares
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Figure 6.3 Convergence characteristic of SADE_ALM and MISADE_ALM for case 6.2
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6.3.3 Case 6.3: The OPF with Valve-Point Effects

In this case, the generator fuel cost curves of generator at bus 1 and 2 are represented by
quadratic functions with rectified sine components or valve-point effects using (3.2). As in case
6.2, bus 5 is selected to be the slack bus of the system. The generator cost coefficients of those
two generators are given in Table 4.3 of chapter 4 [7, 14]. The simulation results are shown in

Table 6.3 and the convergence characteristic of SADE_ALM and MISADE_ALM is shown in

Figure 6.4.
Table 6.3 Comparison of the total generator fuel costs for case 6.3
Fuel Cost ($/hr.) Average
Algorithm Rest cans Average | Worst | S.D. of c.omputa}tlonal
cost cost cost | time (minutes)
EP [14] 955.508 | 957.709 | 959.379 | 1.084 61.419
TS [14] 956.498 | 958.456 | 960.261 | 1.070 88.210
TS/SA [14] | 959.563 | 962.889 | 966.023 | 2.146 65.109
ITS [14] 969.109 | 977.170 | 985.533 | 6.191 85.138
IEP [14] 953.573 | 956.460 | 958.263 | 1.720 93.583
SADE ALM | 944.031 [ 954.800 | 964.794 | 5.371 16.160
MISADE ALM | 936.681 | 953.331 | 966.338 [ 7.076 14.402

Note: Based on differentent computing hardwares
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Figure 6.4 Convergence characteristic of SADE_ALM and MISADE_ALM for case 6.3
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For all test cases, the results from ten test runs of both SADE_ALM and MISADE_ALM
do not violate any constraints. Tables 6.1 and 6.2 show that the best generator fuel costs of
MISADE_ALM are slightly higher than SADE_ALM except Table 6.3 where the best generator
fuel cost of MISADE_ALM is significantly lower. In addition, the best and the average fuel costs
of SADE_ALM and MISADE_ALM are less expensive than those obtained by TS, TS/SA, ITS,
EP, and IEP. The optimal values of the best solution given by both algorithms in each case are

shown in Table 6.4.

Table 6.4 Optimal solutions given by SADE_ALM and MISADE_ALM in each case

Case | Case 2 Case 3
SADE_ |MISADE| SADE_ |MISADE| SADE_ |MISADE
ALM | _ALM | ALM | ALM | ALM | ALM
P (MW) | 176.1522] 176.1146 | 140.0000 140.0000 | 193.2903 | 194.9772
P, (MW) | 48.8391 | 48.8514 | 55.0000 | 55.0000 | 52.5735 | 52.0580
Pgs (MW) | 21.5144 | 21.5096 | 24.1986 | 24.2070 | 17.5458 | 16.3493
Pgs (MW) | 22.1299 | 22.1636 | 35.0000 | 35.0000 | 10.0000 | 10.0000
Psii MW) | 12,2435 | 12.2401 | 18.6439 | 18.6259 | 10.0000 | 10.1640
Pgi; (MW) [ 12.0000 | 12.0000 | 17.6397 | 17.6499 | 12.0000 | 12.0645
Vi (pu) | 1.0500 | 1.0500 | 1.0500 | 1.0500 | 1.0493 | 1.0213
Ve (p-u) | 1.0381 | 1.0384 | 1.0402 | 1.0405 | 1.0271 [ 0.9944
Vs (pu) | 1.0112 | 1.0119 | 1.0146 | 1.0153 | 1.0081 | 0.9690
Vgs (p-u.) | 1.0190 | 1.0201 | 1.0255 | 1.0261 | 1.0109 | 0.9871
Ve (pu) | 1.0911 | 1.1000 | 1.0910 | 1.0971 | 1.0732 | 1.0344
Vgis (pu) | 1.0891 | 1.0863 | 1.0821 | 1.0824 | 0.9634 | 1.0975

Optimal
Solution

t, 1.0556 | 1.0250 | 1.0475 | 1.0250 | 0.9612 | 0.9750
ti 0.9000 | 0.9500 | 0.9139 | 0.9500 | 1.0680 | 0.9000
ts 1.0070 | 1.0000 | 1.0004 | 1.0000 | 1.0118 | 0.9750
ts 0.9420 | 0.9500 | 0.9451 | 0.9500 | 0.9041 | 0.9000

F“:;}E:’;‘S 802.404 | 802.414 | 647.833 | 647.836 | 944.031 | 936.681

Table 6.5 shows the new tap settings of SADE_ALM of the optimal solution in Table 6.4
after being modified to the nearest discrete tap. Based on the optimal solutions in Table 6.4 and
the new tap setting in Table 6.5, SADE_ALM violates voltage magnitude of load bus No. 12 by
+0.18% for case 6.1, while the generation fuel cost is slightly lower to $802.402/hr. based on a
new 176.1516 MW generation at slack bus No. 1. For case 6.2, SADE_ALM also violates voltage
magnitude of load bus No. 10 and 12 by +0.068% and +0.053%, while the generation fuel cost is

slightly increased to $647.837/hr. based on a new 24.1996 MW generation at slack bus No. 5. For
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case 6.3, SADE_ALM provides the optimal solution without violating any constraints, while the
generation fuel cost is slightly increased to $944.2366/hr. based on a new 17.61 MW generation
at slack bus No. 5. Therefore, it can be noticed for case 6.1 and 6.2 that MISADE_ALM provides
the optimal solutions better than SADE_ALM, while the generation fuel costs of both algorithms
are very similar. However, for case 6.3, the generation fuel cost of MISADE ALM is
significantly lower than SADE_ALM as shown in Table 6.4. Power flow results of
MISADE_ALM for all test cases are provided in Tables J.1-J.3 in Appendix J.

Table 6.5 New Tap settings of SADE_ALM after being modified to the nearest discrete taps

Disctete Casel | Case2 | Case3
tap -

t 1.050 | 1.050 | 0.950
ts 0.900 | 0.900 | 1.075
t1¢ 1.000 | 1.000 | 1.025
i 0.950 | 0.950 | 0.900

6.4 Conclusion

In this chapter, a mixed-integer self-adaptive differential evolution with augmented
lagrange multiplier method (MISADE_ALM) is introduced to solve the OPF problems with a
mixture of continuous and discrete control variables. The effectiveness of the proposed
algorithms has been tested on the IEEE 30-bus system with different fuel cost characteristics. The
MISADE_ALM is successfully and effectively implemented to find the feasible global or quasi-
global optimum of the OPF problems. The proposed MISADE_ALM shows promising capability
for the OPF problems where the optimal settings of discrete control variables are taken into
account. In the next chapter, the conclusion and recommendation for future work will be

presented.
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