CHAPTER 111
MATHEMATICAL MODELING

This chapter describes the model geometry, model assumption, model
formulation which performs the relationship between transient mass transport and

Darcy’s law and model algorithm in finite difference and finite element methods.

3.1 Model Description

Naturally, shapes of petroleum reservoirs have different geometries. For
example, anticline shape has been found where the impermeable rock traps the
natural gas under the ground, like an umbrella. Natural gas can be recovered by
drilling a well through the impermeable rock. Gas in these reservoirs is typically
under extremely high pressure, thereby releasing from the reservoir itself.

In this work, the reservoir model initially assumed for the petroleum
reservoir as a simple rectangular shape. The model was used to investigate the
reservoir behaviours such as pressure distribution, wellbore pressure, bottom well
pressure, and production time after gas withdrawal or injection. Afterwards, the
interior islands and curved edge were added into the regular shape to simulate more
realistic the reservoir behaviours.

The geometries of reservoir are illustrated in Figures 3.1(a), (b) and (c). The
white and gray regions represent the permeable and impermeable rock, respectively.
The reservoir was surrounded by impermeable rock or water that no mass transfer
along these boundaries. Figure 3.1(c) illustrates the actual reservoir geometry which
contains 12 withdrawal wells (white dots) and is surrounded by impermeable rock.

The size of this reservoir performs in SI unit.
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Figure 3.1 Geometries of modeling reservoir, (a) regular shape, (b) irregular shape,

(c) carbonate reservoir.
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3.2 Model Assumptions

In this work, some specifications of reservoir properties are assumed as
follows otherwise stated:
1. The permeability, k, was assumed constant along the reservoir.
2. The gas (predominantly methane) behaves ideally, and so has a
compressibility factor Z=1.
3. The porosity and reservoir temperature are uniform throughout the

TESErvoir.
3.3 Model Formulation

In the natural gas production, flow of natural gas into the well depends on
the pressure drop in the reservoir, p, . p,,, where p, is average reservoir pressure and
Pw 1s wellbore pressure. The relationship between flow rate and pressure drop
occurring in the porous medium is very complex and depends on many parameters

such as rock properties, fluid properties and flow regime.

For single phase flow in porous medium, the fluid velocity (17) throughout
the porous medium can be determined using the Darcy’s law (Wilkes, 1999).

= k
V=-"Vp (3-1)
H

where, & is the rock permeability, u the gas viscosity, Vp the pressure gradient.

The three dimensional mass balance equation (combining with Darcy’s law)
as a function of pressure in the rectangular coordinate can be written as (Wilkes,
1999),

E[LE@).}E(J’_.&@J_,_E[LEQ _ZMR =£6{p/ZT) 32
ox\ZT pox) y\Zrpoy) oz\zr poz) Mw ot :



19

where, ¢ is porosity; Az, the reservoir thickness; M, the mass withdrawal rate per unit
volume; MW, the molecular weight of gas; p, the reservoir pressure; R, the gas
constant, T, the reservoir temperature; and Z, the compressibility factor.

The volumetric flow rate per volume (g;) at standard conditions is given by,

M ZMRT.
qs =—= z (3"3)
P, pMW
Place gs into Eq. (3-2).
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Defining the gas potential (compared with reference pressure, p, ) as
tp
= |-
$= L (-5)
pr
Assuming that reference pressure (p;) is equal 0, Eq. (3-5) becomes
¢=p"2u (3-6)
or
p=Qup"” 3-7)
Eq. (3-4) is rearranged to
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Using assumptions indicated previously, Eq. (3-8) for gas withdrawal from a

reservoir becomes,
o’¢ o'¢ ¢, _ P 04 39
k(62+ay2+62) aqs_ﬁaf ( )

In case of gas injection into reservoir, the equation becomes
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In case of flow from the reservoir into the i well, (Figure 3.2)

2 2

B mle_gs

rw
where, plus and minus signs represent injection and withdrawal, respectively.
And the flow in the well,

MW |+ oD (0%t p2 _ p2
g sl (PR I 20 (3-12)
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where, a; = 2MWg/RT, plus and minus signs represent injection and withdrawal,
respectively.

The volumetric flow rate per volume (g,) is related to volume flow rate (Q,) by

0, = q,(AxAyAz) (3-13)
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Figure 3.2 Flows in the block / well system (Wilkes, 1999).

21

Well pressure

Block average
pressure



	Chapter III Mathematical Model Formulation
	3.1 Model Description
	3.2 Model Assumption
	3.3 Model Formulation


