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1. Introduction 

This paper addresses the challenge in valuing derivative securities 

with “knock-in” feature whose payoff depends not only on the first time that 

the underlying breaches a barrier, but also on the value of the underlying 

at the that time. Contingent Convertible bonds (Coco), for example, is a 

hybrid security which will be automatically converted from debt into equity 

by a certain pre-defined trigger event which is the time 𝜏 that underlying 

cross the barrier. Its price is sensitive not only to the first-passage time 𝜏, 

but also the share price  𝑆𝜏 at the first-passage time. Other examples of 

securities with such feature include knock-in American options, Lookback 

options, and American-style Asian option. 

The valuation of these securities is relatively simple if we restrict 

ourselves to the case where the underlying process has continuous path. For 

example, if the underlying follows Geometric Brownian Motion (GBM), the 

closed-form valuation formula for such securities is available. However, the 

valuation will be more difficult if the underlying process does not have 

continuous path, because the overshoot’s distribution is often unknown 

(Kou, 2002). For example, if the underlying follows well-known Jump 

Diffusion Model (JDM), generally the closed-form valuation formula for 

such securities is not available. (Although the JDM can be approximated to 

be GBM by moment matching method (Bates, 1991), but many important 

features of JDM such as the leptokurtic and the ability to explain the 

volatility smile will be lost because the pure diffusion model with high 

volatility tends to cause many small jumps instead of instantaneous jumps 

which happen in the real market (Teneberg, 2012).) In this study, we 

assume that underlying follows the JDM with log-Normal jumps (Merton, 

1976). 

Because of the aforementioned issue with overshoot, some 

researchers considered the special case where the jump-size follows double-
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exponential distribution and used its Memory-Less property to obtain the 

distribution of the overshoot (Kou and Wang, 2003) so the closed-form 

valuation formulas for most of such securities are available (Kou and Wang, 

2004). But for general case, Monte Carlo simulation remarks most 

convenient and universal.  

Classical Monte Carlo simulation, while straightforward, produces 

estimates with high variance for the first-passage time problem (Primožič, 

2011). In particular, the high variance of Monte Carlo estimate is due to a 

high variation of payoff (depending on the first-passage time 𝜏) and the rare-

event nature of the first-passage. Furthermore, using Monte Carlo 

simulation to generate price path inevitably requires time discretization, 

which, combined with the effort requires to deal with the high variance lead 

to unacceptably high computational effort. To solve this specific first-

passage time problem, we enhance the traditional Monte Carlo simulation 

by combining three techniques: partitioning, exponential twisting, and 

conditional Monte Carlo. 

In the partitioning technique, we divide the security into smaller sub-

period. In each sub-period, we define a security that pays off the same as 

the original security if first passage occurs during that sub-period (effective 

period), and pays off zero otherwise. The newly defined security represents 

a “component” of the original security. Thus, the price of the original 

security can be expressed as the sum of the price of all components. Hence, 

our problem reduces to how to use Monte Carlo simulation to price each 

component. Because partitioning helps to limit the range of possible payoff 

of each component, the estimated price of the component given 𝜏 occurs in 

its effective period is expected to have small variance. Thus, if our proposed 

method can sample 𝜏 that falls in effective period, then we can reduce the 

variance of each component (and thus the variance of the full estimate) 

substantially. This technique is conceptually similar to stratified sampling 
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or numerical integration over 𝜏. Though, unlikely stratify sampling or 

numerical integration, our technique does not require explicit knowledge of 

the distribution of 𝜏.  

In order to sample 𝜏 that is likely to fall in a given period, we combine 

Monte Carlo simulation with importance sampling. Here, we use a class of 

importance sampling technique known as exponential twisting. In this 

technique, the component’s price is expressed as expectation under a new 

probability measure that make the non-zero payoff event less rare. 

Changing probability measure by exponential twisting is convenient 

because under the new measure, the dynamic of the underlying process can 

be shown to be JDM still, but with parameters altered by a twist parameter. 

We choose the twist parameter so that, the underlying is unlikely to cross 

the barrier before the effective period, but at the same time, tends to breach 

barrier within the effective period. In this study, we also discuss the way to 

choose an appropriate twist parameter by minimizing an approximated 

second moment of the component’s price estimator.  

Under this partitioning technique with exponential twisting, the only 

relevant information about the path before effective period is whether or 

not the underlying share price crosses the barrier. We take advantage of 

this observation by applying the conditional Monte Carlo (Boyle et al., 1997) 

to simulate the price path before the effective period. In this technique, we 

sample the underlying’s price just before and after each jump. Then rather 

than simulate the path between jumps to identify the first-passage, we 

adjust the value of the estimate by the probability that the underlying does 

not cross the barrier between two jumps. (This probability is available in 

closed-form because the fact that the process between two jumps is 

continuous.) This technique not only allow us to avoid discretize time (and 

discretization error) before the effective period, but also reduce the 

computational effort substantially.   
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All in all, this paper demonstrates the effectiveness of combination of 

these three techniques in reducing variance of the price estimate. We use 

Coco as a primary example. We also address and analyze important issues 

such as choice of partition and change of measure. In particular, we derive 

semi-analytical formula that approximates the second moment that 

depends on the twist parameters which could be used to choose appropriate 

twist parameters. The Numerical study shows significant variance 

reduction compare with the traditional Monte Carlo simulation and the 

stand-alone basic variance reduction technique. Our novel way of combining 

these three techniques adds to the body of literature on knock-in options by 

providing an efficient simulation-based method for computing the price. 

 Organization of this paper is as follows. Section 2 explicitly 

addresses the JDM and the Coco which will be used in this paper. Section 3 

reviews three simulation techniques which will be applied together in the 

proposed method and also presents how to apply the proposed method on 

the sample security. Section 4 contains the result of numerical experiment 

and also discuss about a method to choose appropriate decision parameters. 

Section 5 concludes the paper, and an Appendix contains the proofs. 
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2. Model Setting 

2.1. Dynamic of the Underlying 

 The assumption that the underlying share price of first-passage time 

dependent securities follows log-Normal JDM will be assumed. Let 𝑆𝑡 is 

share price at time 𝑡. Given constant risk-free rate 𝑟, the process of 𝑆𝑡 under 

the risk-neutral measure is given by (1) (Glasserman, 2003). 

𝑆𝑡 = 𝑆0𝑒
𝜇𝑡+𝜎𝑊(𝑡)∏𝑌𝑗

𝑁(𝑡)

𝑗=1

 (1) 

Where, 𝜎 is a constant, 𝑊(𝑡) is Wiener’s process, 𝑌𝑗 is jump-size, 𝑁(𝑡) is a 

Poisson process with rate 𝜆, and 𝜇 = 𝑟 − 𝜆𝑌̅ −
1

2
𝜎2, with 𝑌̅ being expected 

value of 𝑌𝑗. (We define 𝜇 this way so that 𝑆𝑡 is a martingale.) Assume that 

𝑌𝑗 , 𝑁(𝑡) and 𝑊(𝑡) are independent to each other. In differential form: 

𝑑𝑆𝑡
𝑆𝑡−

= 𝑟𝑑𝑡 + 𝜎𝑑𝑊(𝑡) + 𝑑𝐽𝑡 − 𝜆𝑌̅𝑑𝑡 (2) 

Where, 𝐽𝑡 is a pure jump process which equals to ∑ (𝑌𝑗 − 1)
𝑁(𝑡)
𝑗=1 . Assume that 

log𝑌𝑗 are i.i.d. 𝑁(𝐽,̅ 𝜎𝑗
2) random variables. In this paper, 𝑆0, 𝑟 and 𝐽 ̅will be set 

to be 10, 5% and 0 respectively as a default except state differently. 

2.2. Characteristics of Securities (Coco) 

In order to find an appropriate simulation technique for securities of 

which the payoff is a function of the first-passage time 𝜏, and underlying 

share price at the first-passage time 𝑆𝜏, the Coco will be used as a 

representative. Coco is a hybrid security that is automatically converted 

from debt into equity when the trigger event, which is normally assumed to 

be 𝜏 as defines in equation (3), occurs.  

𝜏 = inf{𝑡 > 0|𝑆𝑡 ≤ 𝐵} (3) 
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Where, 𝐵 is implied trigger level or a barrier. At conversion, some parts of 

the notional principal 𝑁 will be converted into pre-defined number of shares 

or the conversion rate 𝐶𝑟 which could be calculated as in equation (4). The 

conversion fraction 𝛼 is a parameter that determines the fraction of the 

Coco’s face value that will be converted when the first-passage time occurs. 

If the conversion fraction equals to one, the Coco will be called a “Full” Coco 

which is recommended structure by the American Enterprise Institute 

(Spiegeleer, 2011). The Full Coco will be focused in this study.  

𝐶𝑟 =
𝛼𝑁

𝐶𝑝
 (4) 

Where, 𝐶𝑝 is the conversion price. Note that in this paper, 𝐵 and 𝐶𝑝 will be 

set to be 2.5 and 𝑆0 respectively except state differently. 

The Coco’s value can be expressed as in equation (5). 

Coco = 𝔼 [∑𝑐𝑒−𝑟𝑡𝛿𝕀(𝜏 > 𝑡𝛿)

ℎ

𝛿=1

+ 𝑒−𝑟𝑇𝑁𝕀(𝜏 > 𝑇) + 𝑒−𝑟𝜏𝐶𝑟𝑆𝜏𝕀(𝜏 ≤ 𝑇)] (5) 

Where, 𝕀(•)  is an indicator function, 𝑐 is coupon payment which will be set 

to be 8% compound quarterly except state differently and 𝑡𝛿 is time that 𝛿𝑡ℎ 

coupon is paid where 𝛿 = 1, 2, … , ℎ and 𝑡ℎ = 𝑇. As present in (5), lower 𝜏 

reduces the value of Coco. The maximum Coco’s value is equal to the value 

of coupon bond. From (5), it could be concluded that when the first-passage 

time occurs, the Coco investors will suffer from the losses of conversion 

which is the cancellation of the coupons from 𝜏 to maturity and the 

conversion of 𝑁 into a 𝐶𝑟𝑆𝜏. These equation indicates that the value of Coco 

is really sensitive on two factors which are 𝜏 and 𝑆𝜏. 
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2.3. Express Price as Expectation 

 The price of Coco can be computed from the expectation of Coco’s 

value. Consider closely, the value of the Coco is equal to its maximum value 

minus by the conversion losses. Moreover, as mention before, the maximum 

value of the Coco is equal to the value of coupon bond and the value of the 

coupon bond can be computed easily by discounting its payoff. Therefore, 

the value of Coco can be expressed as in equation (6). 

Coco = Coupon bond −Conversion losses (6) 

 From equation (6), the value of Coco can be viewed as a combination 

of two securities which are the Coupon bond and the second security that 

has the same value as the Conversion loss. Let’s refer to the second security 

(the conversion losses) as the Trigger Adjustment. The value of Trigger 

Adjustment 𝑋 is defined as in equation (7). Because the value of the coupon 

bond can be obtained from closed-form formula so it is constant, this shows 

that the variance of Coco price comes only from the Trigger Adjustment 

part. This variance might seem to be low compare with the Coco’s value. 

However, comparing with the Trigger Adjustment’s value, this variance is 

unacceptably high. If the value of Trigger Adjustment is ignored, the Coco 

price will be the same as the coupon bond price. Therefore, in this research, 

in order to find a variance reduction technique for Coco, an efficiently 

method for evaluate Trigger Adjustment’s value will be focus, which is the 

method to minimize the variance of estimator in equation (7). 

𝔼[𝑋] = 𝔼 [∑𝑐𝑒−𝑟𝑡𝛿𝕀(𝜏 ≤ 𝑡𝛿)

ℎ

𝛿=1

+ 𝑒−𝑟𝑇𝑁𝕀(𝜏 ≤ 𝑇) − 𝑒−𝑟𝜏𝐶𝑟𝑆𝜏𝕀(𝜏 ≤ 𝑇)] (7) 
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3. Suggested Method of Estimating the Expectation 

To price the first-passage time securities, we propose a method that 

combines three techniques which are partitioning, exponential twisting and 

conditional Monte Carlo. The details of the methods can be shown as 

following. 

3.1. Partitioning 

 The first-passage time dependent securities’ payoff is a function of 𝜏 

so the variation of payoff is high. Moreover, some events such as the early 

first-passage time have an extremely low probability of occurrence, but 

when these rare events occur, its extreme payoffs makes the estimator’s 

variance high. These events can be regarded in the similar way as the tail-

risk which cannot be ignored.  

 To solve these problems, we now describe our partitioning technique. 

Let’s defined (8) as a component. 

𝑋[𝛼,𝛽] ≜  𝑋𝕀(𝛼 < 𝜏 ≤ 𝛽) (8) 

The set of time (𝛼, 𝛽] is an effective period. Let Γ = 𝛽 − 𝛼 denote the length 

of effective period, which will be set to be equal for every component. The 

value of the security can be viewed as a combination of ℎ components, which 

have orderly effective period, 0 = 𝜀0 < 𝜀1 < ⋯ < 𝜀ℎ−1 < 𝜀ℎ = 𝑇, as shown in 

equation (9).  

𝔼[𝑋] =∑𝔼[𝑋[𝜀𝑖−1,𝜀𝑖]]

ℎ

𝑖=1

 (9) 

 Each component 𝑋[𝛼,𝛽] will have the same payoff as the original 

security, only if the first-passage time occurs within the certain period, the 

effective period and zero payoff otherwise. Each component will be price by 

Monte Carlo simulation. If Γ is chosen to be small and given that the first-
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passage time occurs only within the effective period, the estimator’s 

variance of that component is expected to be small. (In theory, if Γ is 

infinitesimally small and if the distribution of 𝜏 is known, then (9) can be 

seen to be equivalent to a numerical integration that yields a zero-variance 

estimate.)  However, with too small Γ, event which the first-passage time 

occurs within the effective period becomes extremely rare event. An 

appropriate Γ will be suggested and discussed from the numerical result.  

3.2. Exponential Twisting 

After using partitioning technique to divide the security into many 

components, the simulation problem is now reduced to how to compute the 

value of each component 𝔼[𝑋[𝛼,𝛽]] by Monte Carlo simulation efficiently. The 

only event that 𝑋[𝛼,𝛽] is positive is when 𝜏 ∈ (𝛼, 𝛽] which is rare event.  

We use importance sampling technique to deal with rare event 

problem effectively. The main idea of importance sampling is to simulate 

the sample from a new probability measure then adjust the value of each 

sample as shown in equation (10) (See (Večeř, 2011)). 

𝔼[𝑌] = 𝔼̃[𝑌ℒ] (10) 

Where, 𝑌 is any random variable and ℒ is the inverse of Radon-Nikodym 

derivative 
𝑑ℙ̃

𝑑ℙ
 (or the likelihood ratio) which defines the new measure ℙ̃ with 

respect to the original measure ℙ. Note that ℒ > 0 and 𝔼̃[ℒ] = 1. 

In this work, we define the new measure using  

ℒ = 𝑒−∫ 𝜃𝑡
𝜏
0 𝑑ln(𝑆𝑡)+∫ 𝜓(𝜃𝑡)𝑑𝑡

𝜏
0  (11) 

Where, 𝜃𝑡 is a time dependent deterministic variable and 𝜓(𝜃𝑡) = 𝜃𝑡𝜇 +

0.5𝜃𝑡
2𝜎2 + 𝜆 (𝑒𝜃𝑡𝐽+̅0.5𝜃𝑡

2𝜎𝑗
2

− 1). It is easy to show that ℒ satisfy 𝔼̃[ℒ] = 1. This 

setting is equivalent to use the special class of the importance sampling, the 
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exponential twisting (See for example Glasserman, 2003) with 

parameter 𝜃𝑡, on the increment 𝑑ln(𝑆𝑡).  

Lemma 3.1  Under the new measure defined by ℒ in (11) the process of 𝑆𝑡 

follows the JDM as in equation (2), but its parameters are twisted from 𝜇 

to 𝜇𝜃𝑡 which equals to 𝜇 + 𝜃𝑡𝜎
2, 𝑁(𝑡) to 𝑁𝜃𝑡(𝑡) which follows 

Poisson (𝜆𝑡𝑒𝜃𝑡𝐽+̅0.5𝜃𝑡
2𝜎𝑗
2

) and 𝑌𝑗 to 𝑌𝑗
𝜃𝑡 which follows 𝑙𝑜𝑔𝑁𝑜𝑟𝑚𝑎𝑙(𝐽 ̅ + 𝜃𝑡𝜎𝑗

2, 𝜎𝑗
2).  

The detail of Lemma 3.1 derivation is shown in Appendix 1. From 

Lemma 3.1, when 𝜃𝑡 is negative, the mean of the process will be shifted 

down, but the jump intensity will be increased. The alternation will increase 

the probability of the first-passage time.    

In this work, for simplicity, we set 

𝜃𝑡 = {
𝜃,     𝑡 ≤ 𝛼
𝜗,     𝑡 > 𝛼

 

Having two differences values for before and within the effective 

period, 𝜃 and 𝜗 could be set to fit their role properly in each period. To reduce 

the variance efficiently, the new measure should be chosen to increases the 

probability of the importance event which is the event that has high pay off 

and high probability to occur in the original measure. For our components, 

this importance event is when 𝜏 ∈ (𝛼, 𝛽]. Therefore, 𝜗 should be as negative 

as necessary to make the share price hit the barrier within the effective 

period. On the other hand, 𝜃 should be chosen in such a way that the share 

price is not likely to hit the barrier before 𝛼, but still close to the barrier at 

𝛼 which is to be slightly negative.  

From those two twist parameters 𝜃 and 𝜗, ℒ can be written as in 

equation (12).  

ℒ = ℒ𝛼ℒ𝛽 (12) 

Where, 
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ℒ𝛼 = 𝑒𝑥𝑝 (−𝜃 𝑙𝑛 (
𝑆𝛼
𝑆0
) + 𝛼 (𝜃𝜇 + 0.5𝜃2𝜎2 + 𝜆 (𝑒𝜃𝐽+̅0.5𝜃

2𝜎𝑗
2

− 1)))  

ℒ𝛽 = 𝑒𝑥𝑝(−𝜗 𝑙𝑛 (
𝑆𝜏
𝑆𝛼
) + (𝜏 − 𝛼) (𝜗𝜇 + 0.5𝜗2𝜎2 + 𝜆 (𝑒𝜗𝐽+̅0.5𝜗

2𝜎𝑗
2

− 1)))  

Even 𝜃 and 𝜗  should be chosen to be negative to shift the mean of 

the process down. With too negative twist parameters, the likelihood ratio 

will increase dramatically. On the other hand, with not enough negative 

value of  𝜃 and 𝜗, the first-passage time might never occurs. Therefore, the 

value of these 𝜃 and 𝜗 are needed to be chosen carefully.  

3.3. Conditional Monte Carlo 

Crucial information for pricing 𝔼[𝑋[𝛼,𝛽]] from before and within the 

effective period is difference. Because 𝜏 and 𝑆𝜏 is necessary information from 

the effective period, a traditional discretization simulation cannot be 

avoided. On the other hand, from before 𝛼, the only importance information 

is whether or not the underlying share price crosses the barrier so 

discretization is not the only option.  

Metwally and Atiya (2002) proposed a simulation technique for 

barrier options pricing to observe whether or not the underlying share price 

breaches the barrier without discretization error (Metwally and Atiya, 

2002). Adjusting the value of the sample by the probability that the share 

price does not breach the barrier between two jumps which is defined as in 

equation (13) (See (Karatzas and Shreve, 1991)), the technique allow us to 

simulate only the value of share price just before and after the jumps to 

observe the first-passage event.  The concept of this method is generalized 

by technique called the conditional Monte Carlo (See Boyle et al., 1997).  

ℙ(𝑀(𝑎,𝑏] ≤ 𝐵|𝑆𝑎, 𝑆𝑏) = 𝑔(𝑏 − 𝑎, 𝑆𝑎, 𝑆𝑏) (13) 

Where, 𝑀(𝑎,𝑏] = min(𝑆𝑡, 𝑡 ∈ (𝑎, 𝑏]) 
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𝑔(Δ𝑡, 𝑥, 𝑦) = {exp(−
2[ln(𝐵/𝑥)][ln(𝐵/𝑦)]

Δ𝑡𝜎2
) 

1

       , 𝑥 > 𝐵, 𝑦 > 𝐵
 , otherwise

  

 From the main idea of previous algorithms, the estimator of 𝑋[𝛼,𝛽] can 

be formulated as shown below.  

Twisting the probability measure then using the law of iterated 

expectation to given the jump time before the effective period. 

𝔼[𝑋[𝛼,𝛽]] = 𝔼̃[𝕀(𝛼 < 𝜏 ≤ 𝛽)𝑋ℒ𝛼ℒ𝛽] 

                  = 𝔼̃ [𝔼̃𝑇[𝕀(𝑀(0,𝛼] > 𝐵)𝕀(𝑀(𝛼,𝛽] ≤ 𝐵)𝑋ℒ𝛼ℒ𝛽]] (14) 

 

Where,𝔼̃𝑇[•] is  𝔼̃ (• |𝑇𝑗 , 𝑗 = 1,2, … ,𝑁(𝛼)) and 𝑇𝑗 is jump time of 𝑗𝑡ℎ jump, 0 =

𝑇0 < 𝑇1 < ⋯ < 𝑇𝑁(𝛼).  

The conditional expectation in (14) can be transformed and simplify 

by using the law of iterated expectation. After that, we consider the Markov 

property to view the inner conditional expectation as a function of 𝑆𝛼 to be 

able to take expectation as following. Let {ℱ𝑡}𝑡≥0 denote the filtration 

generated by the path of {𝑆𝑡}𝑡≥0. 

𝔼̃𝑇 [𝔼̃𝑇[𝕀(𝑀(0,𝛼] > 𝐵)𝕀(𝑀(𝛼,𝛽] ≤ 𝐵)𝑋ℒ𝛼ℒ𝛽|ℱ𝛼]]  = 𝔼̃𝑇[𝕀(𝑀(0,𝛼] > 𝐵)ℒ𝛼𝑓(𝑆𝛼)] 

   = 𝔼̃𝑇 [𝔼̃𝑇 [𝕀(𝑀(0,𝛼] > 𝐵)ℒ𝛼𝑓(𝑆𝛼)|𝑆𝑇𝑗
± , 𝑗 = 1,2, … ,𝑁(𝛼) + 1]] 

   = 𝔼̃𝑇 [ℒ𝛼𝑓(𝑆𝛼)𝔼̃𝑇 [𝕀(𝑀(0,𝛼] > 𝐵)|𝑆𝑇𝑗
± , 𝑗 = 1,2, … ,𝑁(𝛼) + 1]] 

   = 𝔼̃𝑇 [ℒ𝛼𝑓(𝑆𝛼)∏ 𝑔 (∆𝑇𝑗, 𝑆𝑇𝑗−1+ , 𝑆𝑇𝑗−)
𝑁𝜃(𝛼)+1
𝑗=1 ] 
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Where, we define  ∆𝑇𝑗 ≔ 𝑇𝑗 − 𝑇𝑗−1, 𝑇𝑁(𝛼)+1 ≔ 𝛼, , 𝑆
𝑇𝑗
± = lim

ℎ→0±
𝑆𝑇𝑗+ℎ, 𝑓(𝑆𝛼) =

𝔼̃𝑇[𝕀(𝑀(𝛼,𝛽] ≤ 𝐵)𝑋ℒ𝛽|ℱ𝛼] and  𝑔 (∆𝑇𝑗 , 𝑆𝑇𝑗−1+ , 𝑆𝑇𝑗
−) is the probability given in (13). 

The last expectation above, after substituting 𝑓(𝑆𝛼) and using the law 

of iterated expectation, simplifies to 

𝔼̃𝑇 [ ∏ 𝑔(∆𝑇𝑗 , 𝑆𝑇𝑗−1
+ , 𝑆𝑇𝑗

−)

𝑁𝜃(𝛼)+1

𝑗=1

𝕀(𝑀(𝛼,𝛽] ≤ 𝐵)𝑋ℒ𝛼ℒ𝛽] 

The event that the underlying might cross the barrier between two 

jumps is taking into account by ∏ 𝑔 (∆𝑇𝑗, 𝑆𝑇𝑗−1
+ , 𝑆𝑇𝑗

−)
𝑁𝜃(𝛼)+1
𝑗=1  term which is the 

probability that the share price path does not hit the barrier between two 

jumps given the value of underlying just before and after jumps. Aside from 

reducing the variance and eliminating the discretization error, this method 

also has another great benefit which is the significant reduction of the 

computation effort. 

3.4. Putting it together: Explicit expression of Estimator 

 To simulate the first-passage time securities’ price efficiently, the 

proposed method combine three techniques in section 3.1-3.3. First, we use 

partitioning to divides the securities into many components to reduce the 

variation of payoff. Then exponential twisting is suitable to deal with the 

rare positive payoff property of the component. At last, conditional Monte 

Carlo can help reducing the computational effort and eliminate the 

discretization error before the effective period. The estimator of the 

component can be defined as in equation (15).  

𝔼[𝑋[𝛼,𝛽]] = 𝔼̃ [ ∏ 𝑔(∆𝑇𝑗, 𝑆𝑇𝑗−1
+ , 𝑆𝑇𝑗

−)

𝑁𝜃(𝛼)+1

𝑗=1

𝕀(𝑀(𝛼,𝛽] ≤ 𝐵)𝑋ℒ𝛼ℒ𝛽] (15) 
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 The optimum 𝜃 and 𝜗 are the set that minimize the variance of the 

estimator. Since, the value of the estimator will always be the same 

regardless the choice of twist parameter, minimizing the variance of the 

estimator is the same as minimizing the second moment 𝑀(2) which is 

defined as in equation (16). 

𝑀(2) = 𝔼̃ [ ∏ 𝑔(∆𝑇𝑗 , 𝑆𝑇𝑗−1
+ , 𝑆𝑇𝑗

−)
2

𝑁𝜃(𝛼)+1

𝑗=1

 𝕀(𝑀(𝛼,𝛽] ≤ 𝐵)𝑋
2ℒ𝛼

2ℒ𝛽
2] (16) 

Choosing appropriate value for 𝜃 and 𝜗 is an interesting problem. The 

more negative value of 𝜃 will reduce the value of ∏ 𝑔(∆𝑇𝑗 , 𝑆𝑇𝑗−1
+ , 𝑆𝑇𝑗

−)
2𝑁𝜃(𝛼)+1

𝑗=1 . 

On the other hand, it will increase the value of  ℒ𝛼. Likewise, similar 

tradeoff also occurs with 𝜗. These tradeoff must be considered to choose the 

appropriate value of 𝜃 and 𝜗. 

Choosing 𝜃 and 𝜗 by minimizing equation (16) directly might not be 

possible because the expectation in equation (16) is too complicated to get a 

closed-form formula. In this study, 𝜃 and 𝜗 will be chosen by optimizing an 

approximated second moment 𝑀̂(2) instead. Using the fact that when Γ is 

small, we can approximate 𝑋 by its upper bound 𝑋𝑚 which is maximum 

value of 𝑋[𝛼,𝛽] and 𝜏 − 𝛼  by 
1

2
(𝛽 − 𝛼) so the approximation can be shown as 

following. After making these substitutions, the expectation in (16) can be 

shown (see Appendix 2) to simplify to 

𝑀(2) ≈ 𝑒(𝛽+𝛼)𝛾(𝜗)𝑆0
2𝜃𝐵−2𝜗𝑋𝑚

2 ℙ̃(𝑀(0,𝛼] > 𝐵) 

× 𝔼̃𝑀𝛼 [𝑆𝛼
2(𝜗−𝜃) ℙ̃𝑀𝛼(𝑀(𝛼,𝛽] ≤ 𝐵|𝑆𝛼)𝔼̃

𝑀𝛼 [∏ 𝑔 (∆𝑇𝑗, 𝑆𝑇𝑗−1
+ , 𝑆𝑇𝑗

−)
𝑁𝜃(𝛼)+1
𝑗=1 |𝑆𝛼]] 

Where, 𝛾(𝑥) = 𝑥𝜇 + 0.5𝑥2𝜎2 + 𝜆 (𝑒𝑥𝐽+̅0.5𝑥
2𝜎𝑗
2

− 1), 𝔼𝑀𝛼[•] is 𝔼[• |𝑀(0,𝛼] > 𝐵] 

and ℙ𝑀𝛼[•] is ℙ[• |𝑀(0,𝛼] > 𝐵]. The detail of this approximation is shown in 

Appendix 2. 
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Under JDM, some terms such as ℙ̃(𝑀(0,𝛼] > 𝐵), ℙ̃(𝑀(𝛼,𝛽] ≤ 𝐵|𝑆𝛼), and 

the expectation terms do not have closed-form formulas so we approximated 

the JDM process of the underlying with an adjusted GBM by using moment 

matching method (Bates, 1991). The process of the adjusted GBM can be 

showed as in equation (17). In (17), ln(𝑑𝑆𝑡) and ln(𝑑𝑆𝑡
′) have the same first 

and second moment. 

𝑆𝑡 ≈ 𝑆𝑡
′ = 𝑆0𝑒

𝜇𝜃
′ 𝑡+𝜎𝜃

′𝑊(𝑡) (17) 

Where, 

𝜇𝜃
′         = 𝜇𝜃 + 𝜆𝜃𝐽𝜃̅ 

𝜎𝜃
′ 2     = 𝜎2 + 𝜆𝜃(𝐽𝜃̅

2 + 𝜎𝑗
2) 

Note that the exponential twist did not affect the value of 𝜎 and 𝜎𝑗, 

but the value of 𝜎𝜃
′  is a function of 𝜆𝜃 and 𝐽𝜃̅ so the value of 𝜎𝜃

′  is a function 

of exponential twist parameter. Therefore, 𝑀̂(2) is defined as in equation 

(18). 

𝑀̂(2) = 𝑒2𝛼𝛾(𝜃)+(𝛽−𝛼)𝛾(𝜗)𝑆0
2𝜃𝐵−2𝜗𝑋𝑚

2 ℙ̃𝐺(𝑀(0,𝛼] > 𝐵) 

× 𝔼̃𝐺
𝑀𝛼[𝑆𝛼

2(𝜗−𝜃)ℙ̃𝐺
𝑀𝛼(𝑀(𝛼,𝛽] ≤ 𝐵|𝑆𝛼)𝑔(𝛼, 𝑆𝛼, 𝑆0)] 

(18) 

Where, 𝔼𝐺[•] and ℙ̃𝐺[•] are expectation and probability while approximate 

that 𝑆𝑡 ≈ 𝑆𝑡
′. Detail of the approximation will be showed in Appendix 3. The 

appropriate value of 𝜃 and 𝜗 will be chosen by minimize 𝑀̂(2) in equation 

(18). Detail of the approximation will be showed in Appendix 3. 

 Before discussing about the algorithm of the proposed method, first 

let’s briefly review the traditional discretization simulation. The basic of the 

traditional discretization method is to discretize time into many tiny time 

steps then simulates the share price value at each time steps  𝑆𝑡 to observe 

𝜏 and 𝑆𝜏. Then compute the value of 𝑋[𝛼,𝛽]. Average the value from N 
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scenarios to obtain the value of the estimator. This method not only 

produces the estimate with high variance, but also requires long 

computational time because of the discretization. The proposed method can 

be applied to solve these problems as the following.  

1. Optimizing 𝑀̂(2) in equation (18) to select appropriate twist 

parameters. 

2. Simulate number of Jump up to 𝛼 (𝑁𝜃(𝛼) ∼ Poisson(𝜆𝜃𝛼)) and Jump 

time𝑇𝑗. 

3. Simulate share price path before 𝛼 𝑆
𝑇𝑗
± , 𝑗 = 1,2, … , 𝑁𝜃(𝛼) + 1 from (19) 

and (20) 

𝑆𝑇𝑗
−  = 𝑆𝑇𝑗−1

+  𝑒𝜇𝜃∆𝑇𝑗+𝜎√∆𝑇𝑗𝑧𝑗 (19) 

𝑆𝑇𝑗
+  = 𝑆𝑇𝑗

−  𝑒(𝜎𝑗𝑦𝑗+𝐽𝜃̅) (20) 

Where,  𝑧𝑗 follows 𝑁(0,1) and 𝑦𝑗 follows 𝑁(0,1). Note that 𝑇𝑁𝜃(𝛼)+1 = 𝛼, 

𝑦𝑁𝜃(𝛼)+1 = 0  

4. Compute ℒ𝛼 and 𝑔 (∆𝑇𝑗 , 𝑆𝑇𝑗−1+ , 𝑆𝑇𝑗
−). 

5. Using the traditional discretization simulation method as shown in 

the previous algorithm to simulate share price path within the 

effective period. 

6. Obtain 𝜏 and 𝑆𝜏 from share price path from step 4th if the share price 

never hit barrier, 𝜏 = ∞.   

7. Compute ℒ𝛽 and 𝑋[𝛼,𝛽] 

8. Continue doing step 1st – 7th for N replications then compute the 

value of the first and second moment from (15) and (16) respectively 
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4. Numerical Experiment 

The effectiveness of the proposed method depends on how well the 

two main importance choices, which are i) set of twist parameters and ii) 

length of effective period, are made. The following sections investigate, 

through numerical experiment, these choices and provide recommendations 

of how to select them. 

4.1. Effect of Twist parameters 

As mentioned in section 3.2, the good set of twist parameters is the 

one that increase the probability of importance event, which is when the 

first-passage time occurs within the effective period. The twist parameter 

within the effective period 𝜗 should be as negative as necessary to make the 

underlying share price hits the barrier within this period. The twist 

parameter before the effective period 𝜃 should also be negative to help 

driving the underlying share price to move close to the barrier before the 

effective period, but not so negative as to make the first-passage time tends 

to occur before the effective period. These were confirmed as shown in figure 

1. 

 

Figure 1 Numerical example of 𝐌(𝟐) when vary twist parameters. 

The underlying has parameters as follows: 𝛔 = 𝟎. 𝟐𝟓, 𝛌 =

𝟎. 𝟐𝟓 and 𝛔𝐣 = 𝟎. 𝟐𝟓 . 

𝑀(2) 

𝜗 
𝜃  
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From figure 1, the proposed method will present great variance reduction 

ratio, if the set of twist parameters is chosen appropriately.  

Appropriate twist parameters may be chosen by optimizing 𝑀̂(2) 

which was shown in section 3.4. Note that 𝑀̂(2) successfully captures the 

variation between 𝑀(2) and the twist parameters as shown in figure 2.  

 

Figure 2 Numerical example of 𝐌̂(𝟐) when vary twist parameters. 

The underlying has parameters as follows: 𝛔 = 𝟎. 𝟐𝟓, 𝛌 =

𝟎. 𝟐𝟓 and 𝛔𝐣 = 𝟎. 𝟐𝟓 . 

The 𝜃 and 𝜗 which are obtained by minimizing 𝑀̂(2) gave not much 

difference variance reduction ratio compare with the optimum one as shown 

in table 1 so we would suggest to used this method to select appropriate 

twist parameters. 

 

 

 

 

𝑀̂(2) 

𝜗 
𝜃  
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Table 1 Numerical example of variance reduction ratio of 

components when use optimum 𝛉&𝛝 compare with appropriated 

𝛉&𝛝 from the suggested method when (𝛂, 𝛃] = (𝟓, 𝟓. 𝟐𝟓]. 

Parameters Variance Reduction Ratio  

𝜎 𝜆 𝜎𝑗 Optimum 𝜃&𝜗 𝜃&𝜗 From 𝑀̂(2) 

0.2 0.2 0.2 99.22% 99.16% 

0.4 0.2 0.4 86.65% 84.63% 

0.2 0.1 0.1 99.20% 99.18% 

0.3 0.2 0.1 95.18% 95.13% 

0.3 0.1 0.2 95.47% 94.93% 

0.15 0.2 0.3 98.98% 92.21% 

 

The results of 𝑋[𝛼,𝛽] simulation of sample Trigger Adjustment show 

significant variance reduction for every component. For example when 

set 𝜎 ∈ [0.1,0.4], 𝜆 ∈ [0,0.2], and 𝜎𝑗 ∈ [0.1,0.4], the results show variance 

reduction ratio range from 84.08% to 99.99%. Another advantage of the 

proposed method is the discretization does not need before the effective 

period. This helps reduce the computational effort drastically. 

4.2. Effect of Length of Effective Period 

This section discusses the appropriate choice of Γ, the length of 

effective period. The variance of the full estimator 𝔼[𝑋] can be written as a 

combination of ℎ components as equation (21).  

∑Var[𝑋̂[𝜀𝑖−1,𝜀𝑖]]

ℎ

𝑖=1

 (21) 

As mentioned in section 3.1, too small length Γ makes the first-passage time 

becomes too rare. On the other hand, too large Γ will increase the variation 

of the possible payoff. This section seeks to determine an appropriate Γ to 

help reducing the variance of the complete security efficiently. 
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To demonstrate this point, consider the following numerical 

experiment. Consider the following five choice of length Γ = 1, 0.5, 0.25, 0.125 

and 0.0625 (i.e., annually, semi-annually, quarterly, and so on.). For a given 

set of underlying’s parameters, we find that extreme value of Γ (Γ =

1 and 0.0625) often give high variance for estimator. The choice of Γ that give 

lowest variance is shown in table 2. 

Table 2 Numerical example of the best choice of  𝚪 for difference 

set of underlying’s parameters. 

𝜎 0.2 0.3 0.3 0.2 0.25 0.3 0.15 0.15 0.1 

𝜆 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.15 0.2 

𝜎𝑗 0.1 0.2 0.2 0.2 0.2 0.3 0.2 0.15 0.2 

Best  

Γ 
0.125 0.125 0.125 0.25 0.25 0.25 0.5 0.5 0.5 

 

For example, for parameters 𝜎 = 0.25, 𝜆 = 0.2 and 𝜎𝑗 = 0.2, if Γ is 

chosen to be 0.125 or 0.5, the total variance of the estimate price will 

increase by 5% and 20% respectively compare with when Γ = 0.25. This 

implies the existence of an optimal value of Γ. 

However, in practice, it is difficult to pinpoint the optimum value 

for Γ. Nevertheless, we find an approximate linear relationship between Γ 

and logarithm of average variance of ℎ components. If we defined the 

average variance as 𝑉̅ =
1

ℎ
∑ Var[𝑋[𝜀𝑖−1,𝜀𝑖]]ℎ
𝑖=1 , the following plot shows a 

linear trend between ln(𝑉̅) and Γ. 
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Figure 3 Numerical example of the relation of 𝐥𝐧(𝐕̅) and 𝚪. 

Figure 3 implies an approximate relationship of the form 

𝑉̅ = 𝐾𝑒𝛤 Γ
∗⁄  

Where, 𝐾 and Γ
∗
 are some constants. It follows that 

𝜕

𝜕𝛤
[
𝑇

𝛤
𝐾𝑒𝛤 Γ

∗⁄ ] = 0 

𝛤 = 𝛤∗ 

𝛤 can be estimated by test run and fit the linear regression between ln(𝑉̅) 

and 𝛤. The slope is mainly affected by source of variation of the underlying 

process. When the variation mainly comes from the diffusion process, the 

slope will be steep, and vice versa. This is because when the variation 

mainly comes from the jump process, with too small 𝛤, the jump is not likely 

to occur so an appropriate value of 𝛤∗ should not be too small. Alternatively, 

we also found that  

𝛤∗ ≈ 1 −
ℙ𝜎(𝜏≤𝑇)

ℙ𝐺(𝜏≤𝑇)
 is a good guideline for choosing appropriate 𝛤 for this 

setting, in particular, for range of length parameters used in experiment 

above. 

Finally, The proposed method was test on many samples by varying 

the volatile parameters as follow: 𝜎 ∈ [0.1,0.4], 𝜆 ∈ [0,0.2], and 𝜎𝑗 ∈ [0.1,0.4] 

and choosing 𝜃 & 𝜗 by minimizing 𝑀̂(2) and Γ as suggestion above. The 
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number of scenario for each simulation method is computed in such a way 

that each method have approximated same number of underlying share 

price value that need to be simulated. The simulation results of the 

proposed method on the sample Trigger Adjustments show significantly 

variance reduction ratio range from 91.12% to 99.99% when compare with 

the basic simulation. Figure 4 shows the relation between the adjusted 

volatility (from the adjusted GBM) and the variance reduction ratio. We also 

test an effectiveness of the proposed method by varying the barrier level 𝐵 

while set 𝜎 = 0.2, 𝜆 = 0.2 and 𝜎𝑗 = 0.2. The results show 99.76%, 92.77%, 

91.11% and 90.76% variance reduction ratio for 𝐵 = 1.5, 2.5, 4 and 5 

respectively. As expected, with low adjusted volatility or low barrier level 

which indicates the rarity of the first-passage event, the variance reduction 

ratio will be high and vice versa.  The simulation time of the proposed 

method over the traditional method is range from 0.09 to 0.11. Please note 

that these ratios might vary depended on many variables such as 

performance of PC that used to run, coding, underlying parameters etc. 

 

Figure 4 Numerical example of relation of variance reduction 

ratio and adjusted volatility 
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Comparing the proposed method with the exponential twist without 

partitioning (whose twist parameter is chosen by the same algorithm as a 

component with (𝛼, 𝛽] = (0, 𝑇]), the proposed method gave a better variance 

reduction ratio for every sample. The variance reduction ratio of the 

proposed method compare with the result from exponential twisted method 

is 67.35% on average. Furthermore, we also observe how the effectiveness 

of variance reduction depends on the volatile parameters of the underlying. 

For both proposed method and well-known exponential twisted technique, 

when the volatile parameters decrease, the efficiency of both variance 

reduction methods will be increase. This is because when the volatile 

parameters increase, this problem becomes less rare event problem so the 

methods that were designed to increase simulation efficiency of rare event 

problem becomes less necessary. On the other hands, when the problem 

becomes extremely rare (ex. = 0.15, 𝜆 = 0.1, 𝜎𝑗 = 0.1 ), the efficiency of both 

methods are very high. Especially for the proposed method, even when 

compare with the exponential twisted method, the variance reduction ratio 

is still 97.98%. 
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5. Conclusion 

We have developed a simulation method for pricing the first-passage 

time dependent securities under the assumption that its underlying process 

follows the JDM. The method combines three variance reduction techniques 

which are partitioning, exponential twisting and conditional Monte Carlo. 

Partitioning is used to limit the variation of the payoff that is conditional 

on the first-passage time taking value within certain period. We apply a 

version of exponential twisting to deal with the rare non-zero payoff event 

and has convenient of preserving the JDM dynamic of underlying in this 

simulation pricing. Lastly, taking advantage of the fact that whether or not 

the underlying breaches the barrier is the only relevant information about 

the underlying path before the effective period, the conditional Monte Carlo 

helps avoiding discretization error and reducing the computational effort. 

Two main decision parameters which need to be chosen carefully to apply 

this method effectively are the twist parameters and the length of partition. 

We derived approximated second moment which is function of twist 

parameters in semi-closed-form which can be minimized to choose 

appropriated twist parameters. We also discuss about the method to select 

appropriate length of effective period from the numerical experiment. 

Finally, we applied this method to compute the price of sample securities 

and illustrated its effectiveness through numerical results. 
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Appendix 1 

Lemma 3.1  

When the underlying share price follows the log-Normal JDM, the 

increment of logarithm of the underlying share price could be defined as in 

equation (22).  

∆ ln(𝑆𝑛) = 𝜇∆𝑡 + 𝜎√∆𝑡𝑧𝑛 + ∑ ln (𝑌𝑗)

𝑁(𝑛∆𝑡)

𝑗=𝑁((𝑛−1)∆𝑡)+1

 (22) 

Where, Δ ln(𝑆𝑛) = ln(𝑆𝑛Δ𝑡) − ln(𝑆(𝑛−1)Δ𝑡), 𝑧𝑛 standard normal random variable. Let 

𝜓(𝜃) be the logarithm of moment generating function of ∆ ln(𝑆𝑛), which can 

be shown as the following 

𝜓(𝜃)    = ln 𝔼[exp(𝜃∆ ln(𝑆𝑛))] 

 = ln𝔼 [exp (𝜃 (𝜇∆𝑡 + 𝜎√∆𝑡𝑧𝑛 + ∑ ln (𝑌𝑗)
𝑁(𝑛∆𝑡)
𝑗=𝑁((𝑛−1)∆𝑡)+1 ))] 

 = ln (exp(𝜃𝜇∆𝑡) 𝔼 [exp (𝜃 (𝜎√∆𝑡𝑧𝑛 + ∑ ln (𝑌𝑗)
𝑁(𝑛∆𝑡)
𝑗=𝑁((𝑛−1)∆𝑡)+1 ))]) 

 = ln (exp(𝜃𝜇∆𝑡 + 0.5𝜃2𝜎2∆𝑡) 𝔼 [exp (𝜃 (∑ ln (𝑌𝑗)
𝑁(𝑛∆𝑡)
𝑗=𝑁((𝑛−1)∆𝑡)+1 ))]) 

 = ln(

exp(𝜃𝜇∆𝑡 + 0.5𝜃2𝜎2∆𝑡)                                                                                 

  × 𝔼 [𝔼 [exp (𝜃 (∑ ln (𝑌𝑗)
𝑁(𝑛∆𝑡)
𝑗=𝑁((𝑛−1)∆𝑡)+1 )) |𝑁((𝑛 − 1)∆𝑡), 𝑁(𝑛∆𝑡)]]

) 

 = ln (exp(𝜃𝜇∆𝑡 + 0.5𝜃2𝜎2∆𝑡)∑
𝑒−𝜆∆𝑡(𝜆∆𝑡)𝑚

𝑚!
∞
𝑚=0 𝔼 [exp (𝜃(∑ ln (𝑌𝑗)

𝑚
𝑗=1 ))]) 

 = ln (exp(𝜃𝜇∆𝑡 + 0.5𝜃2𝜎2∆𝑡)∑
𝑒−𝜆∆𝑡(𝜆∆𝑡)𝑚

𝑚!
∞
𝑚=0 exp(𝑚𝜃𝐽 ̅ + 0.5𝜃2𝜎𝑗

2𝑚 )) 

 = ln(exp(𝜃𝜇∆𝑡 + 0.5𝜃2𝜎2∆𝑡 − 𝜆∆𝑡) ∑
(𝜆∆𝑡𝑒

𝜃𝐽̅+0.5𝜃2𝜎𝑗
2
 )

𝑚

𝑚!
∞
𝑚=0 ) 

 = ln (exp (𝜃𝜇∆𝑡 + 0.5𝜃2𝜎2∆𝑡 + 𝜆∆𝑡 (𝑒𝜃𝐽+̅0.5𝜃
2𝜎𝑗
2

− 1))) 

 = 𝜃𝜇∆𝑡 + 0.5𝜃2𝜎2∆𝑡 + 𝜆∆𝑡 (𝑒𝜃𝐽+̅0.5𝜃
2𝜎𝑗
2

− 1) 
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Therefore, the likelihood ratio can be written as in equation (23) 

𝑒−𝜃∆ ln(𝑆𝑛)+𝜓(𝜃)∆𝑡 = exp(
−𝜃 ln (

𝑆𝑛
𝑆𝑛−1

) + 𝜃𝜇∆𝑡 + 0.5𝜃2𝜎2∆𝑡                    

                                   +𝜆∆𝑡 (𝑒𝜃𝐽+̅0.5𝜃
2𝜎𝑗
2

− 1)

) (23) 

To obtain the process of the underlying after the twist, the moment 

generating function of ∆ ln(Sn) is defined as in equation (24). 

𝔼[𝑒𝜌∆ ln(𝑆𝑛)] = exp (𝜌𝜇∆𝑡 + 0.5𝜌2𝜎2∆𝑡 + 𝜆∆𝑡 (𝑒𝜌𝐽+̅0.5𝜌
2𝜎𝑗
2

− 1)) (24) 

Under the new measure defined by (11), the moment generating function of 

∆ ln(Sn) is 

𝔼̃[𝑒𝜌∆ ln(𝑆𝑛)]     = exp (−𝜃𝜇∆𝑡 − 0.5𝜃2𝜎2∆𝑡 − 𝜆∆𝑡 (𝑒𝜃𝐽+̅0.5𝜃
2𝜎𝑗
2

− 1)) 

× exp ((𝜌 + 𝜃)𝜇∆𝑡 + 0.5(𝜌 + 𝜃)2𝜎2∆𝑡 + 𝜆∆𝑡 (𝑒(𝜌+𝜃)𝐽+̅0.5(𝜌+𝜃)
2𝜎𝑗
2

− 1)) 

 = exp(
𝜌𝜇∆𝑡 + 0.5(𝜌2 + 2𝜌𝜃)𝜎2∆𝑡                                                                      

                                                +𝜆∆𝑡𝑒𝜃𝐽+̅0.5𝜃
2𝜎𝑗
2

(𝑒𝜌(𝐽+̅𝜃𝜎𝑗
2)+0.5𝜌2𝜎𝑗

2

− 1)
) 

 = exp(
(𝜇∆𝑡 + 𝜃𝜎2∆𝑡)𝜌 + 0.5𝜌2𝜎2∆𝑡                                                                   

                                                +𝜆∆𝑡𝑒𝜃𝐽+̅0.5𝜃
2𝜎𝑗
2

(𝑒𝜌(𝐽+̅𝜃𝜎𝑗
2)+0.5𝜌2𝜎𝑗

2

− 1)
) 

 = exp (𝜇𝜃∆𝑡𝜌 + 0.5𝜌
2𝜎2∆𝑡 + 𝜆𝜃∆𝑡 (𝑒

𝜌(𝐽𝜃̅)+0.5𝜌
2𝜎𝑗
2

− 1)) 

𝔼̃[𝑒𝜌∆ ln(𝑆𝑛)] = exp (𝜌𝜇𝜃∆𝑡 + 0.5𝜌
2𝜎2∆𝑡 + 𝜆𝜃∆𝑡 (𝑒

𝜌𝐽𝜃̅+0.5𝜌
2𝜎𝑗
2

− 1)) (25) 

Where, 𝜇𝜃 = 𝜇 + 𝜃𝜎
2, 𝜆𝜃 = 𝜆𝑡𝑒

𝜃𝐽+̅0.5𝜃2𝜎𝑗
2

, 𝑁𝜃(𝑡) is Poisson process with rate 

𝜆𝜃, and 𝐽𝜃̅ = 𝐽̅ + 𝜃𝜎
2. As present in equation (24) and (25), the moment 

generating function in both equations have same form, but with difference 

parameters. Therefore, after the exponential twisting the dynamic of the 

underlying process is still JDM.  
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Appendix 2 

Approximate the second moment of the component price estimator 

Let 

𝔼𝑀𝛼[•]   : 𝔼[• |𝑀(0,𝛼] > 𝐵] 

ℙ𝑀𝛼[•]   : ℙ[• |𝑀(0,𝛼] > 𝐵] 

𝛾(𝑥)   : 𝑥𝜇 + 0.5𝑥2𝜎2 + 𝜆 (𝑒𝑥𝐽+̅0.5𝑥
2𝜎𝑗
2

− 1) 

𝑀(2)     = 𝔼̃ [ ∏ 𝑔(∆𝑇𝑗 , 𝑆𝑇𝑗−1
+ , 𝑆𝑇𝑗

−)
2

𝑁𝜃(𝛼)+1

𝑗=1

 𝕀(𝑀(𝛼,𝛽] ≤ 𝐵)𝑋
2ℒ𝛼

2ℒ𝛽
2] 

 = 𝔼̃ [∏ 𝑔 (∆𝑇𝑗 , 𝑆𝑇𝑗−1
+ , 𝑆𝑇𝑗

−)
𝑁𝜃(𝛼)+1
𝑗=1 𝕀(𝑀(0,𝛼] > 𝐵)𝕀(𝑀(𝛼,𝛽] ≤ 𝐵)𝑋

2ℒ𝛼
2ℒ𝛽

2] 

 = 𝑒2𝛼𝛾(𝜃)𝑆0
2𝜃ℙ̃(𝑀(0,𝛼] > 𝐵) 

× 𝔼̃𝑀𝛼 [ ∏ 𝑔(∆𝑇𝑗, 𝑆𝑇𝑗−1
+ , 𝑆𝑇𝑗

−)

𝑁𝜃(𝛼)+1

𝑗=1

𝕀(𝑀(𝛼,𝛽] ≤ 𝐵)𝑋
2𝑆𝛼

2(𝜗−𝜃)𝑆𝜏
−2𝜗𝑒2(𝜏−𝛼)𝛾(𝜗)] 

Where, the last equality follows from substituting ℒ𝛼 and ℒ𝛽 from (12). 

Using the fact that when 𝛤 is small, we can approximate 𝑋 by its 

upper bound 𝑋𝑚 which is maximum value of 𝑋[𝛼,𝛽] and 𝜏 − 𝛼  by 
1

2
(𝛽 − 𝛼) 

 ≈ 𝑒2𝛼𝛾(𝜃)𝑆0
2𝜃𝐵−2𝜗𝑋𝑚

2 ℙ̃(𝑀(0,𝛼] > 𝐵)𝑒
(𝛽−𝛼)𝛾(𝜗) 

× 𝔼̃𝑀𝛼 [ ∏ 𝑔(∆𝑇𝑗 , 𝑆𝑇𝑗−1
+ , 𝑆𝑇𝑗

−)

𝑁𝜃(𝛼)+1

𝑗=1

𝕀(𝑀(𝛼,𝛽] ≤ 𝐵)𝑆𝛼
2(𝜗−𝜃)] 

 = 𝑆0
2𝜃𝐵−2𝜗𝑋𝑚

2 ℙ̃(𝑀(0,𝛼] > 𝐵)𝑒
(𝛽+𝛼)𝛾(𝜃) 

× 𝔼̃𝑀𝛼 [𝔼̃𝑀𝛼 [∏ 𝑔 (∆𝑇𝑗, 𝑆𝑇𝑗−1
+ , 𝑆𝑇𝑗

−)
𝑁𝜃(𝛼)+1
𝑗=1 𝕀(𝑀(𝛼,𝛽] ≤ 𝐵)𝑆𝛼

2(𝜗−𝜃)|ℱ𝛼]] 
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 = 𝑆0
2𝜃𝐵−2𝜗𝑋𝑚

2 ℙ̃(𝑀(0,𝛼] > 𝐵)𝑒
(𝛽+𝛼)𝛾(𝜃) 

× 𝔼̃𝑀𝛼 [ ∏ 𝑔(∆𝑇𝑗, 𝑆𝑇𝑗−1
+ , 𝑆𝑇𝑗

−)

𝑁𝜃(𝛼)+1

𝑗=1

𝑆𝛼
2(𝜗−𝜃)ℙ̃𝑀𝛼(𝑀(𝛼,𝛽] ≤ 𝐵|𝑆𝛼)] 

 = 𝑒(𝛽+𝛼)𝛾(𝜃)𝑆0
2𝜃𝐵−2𝜗𝑋𝑚

2 ℙ̃(𝑀(0,𝛼] > 𝐵) 

× 𝔼̃𝑀𝛼 [𝑆𝛼
2(𝜗−𝜃)ℙ̃𝑀𝛼(𝑀(𝛼,𝛽] ≤ 𝐵|𝑆𝛼)𝔼̃

𝑀𝛼 [∏ 𝑔 (∆𝑇𝑗, 𝑆𝑇𝑗−1
+ , 𝑆𝑇𝑗

−)
𝑁𝜃(𝛼)+1
𝑗=1 |𝑆𝛼]] 

Which yields (18). 

  



 

 

 

36 

Appendix 3 

Approximate JDM by adjusted GBM 

We approximated the JDM process of the underlying with an 

adjusted GBM by using a matching moment method [2]. Let set St
′ to follow 

the GBM whose process has the same first and second moment as process 

of St. Then the parameter of St
′ process can be obtained as the following 

𝔼[ln(𝑑𝑆𝑡
′)]      = 𝔼[ln(𝑑𝑆𝑡)] 

𝜇𝜃
′ 𝑑𝑡  = 𝜇𝜃𝑑𝑡 + 𝜆𝜃𝐽𝜃̅𝑑𝑡 

∴ 𝜇𝜃
′ = 𝜇𝜃 + 𝜆𝜃𝐽𝜃̅ 

𝔼[ln(𝑑𝑆𝑡
′)2]     = 𝔼[ln(𝑑𝑆𝑡)

2] 

𝜎𝜃
′2𝑑𝑡  = 𝜎2𝑑𝑡 + 𝜆𝜃(𝐽𝜃̅

2 + 𝜎𝑗
2)𝑑𝑡 

∴ 𝜎𝜃
′2 = 𝜎2 + 𝜆𝜃(𝐽𝜃̅

2 + 𝜎𝑗
2) 

 From this approximation, the closed-form of some terms in the 

approximated second moment which do not have closed-form under JDM is 

now available (See Karatzas and Shreve, 1991) as the following. 

ℙ̃(𝑀(0,𝛼] > 𝐵) ≈ ℙ̃𝐺(𝑀(0,𝛼] > 𝐵) = 1 −

(

 
 
𝑁(𝑑𝛼

−) + (
𝐵

𝑆0
)
(
2𝜇𝜃

′

𝜎𝜃
′2 )

𝑁(𝑑𝛼
+)

)

 
 

 

ℙ̃(𝑀(𝛼,𝛽] ≤ 𝐵|𝑆𝛼) ≈ ℙ̃𝐺(𝑀(𝛼,𝛽] ≤ 𝐵|𝑆𝛼) = 𝑁(𝑑𝛽
−) + (

𝐵

𝑆0
)
(
2𝜇𝜗

′

𝜎𝜗
′2 )

𝑁(𝑑𝛽
+) 

Where, dα
± =

ln(
B

S0
)±μθ

′ α

σθ
′ √α

  and dβ
± =

ln(
B

Sα
)±μϑ

′ (β−α)

σϑ
′√(β−α)

 . 
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For 𝔼̃𝑀𝛼 [∏ ℙ̃𝑇 (𝑀∆𝑇𝑗 > 𝐵| 𝑆𝑇𝑗−1
+ , 𝑆𝑇𝑗

−)
𝑁𝜃(𝛼)+1
𝑗=1 |𝑆𝛼] terms, because we 

approximate the JDM process with the adjusted GBM process so 𝑁(𝛼) 

should be zero. 

𝔼̃𝑀𝛼 [∏ ℙ̃𝑇 (𝑀∆𝑇𝑗 > 𝐵| 𝑆𝑇𝑗−1
+ , 𝑆𝑇𝑗

−)
𝑁𝜃(𝛼)+1
𝑗=1 |𝑆𝛼]      ≈ g(α, S0, 𝑆𝛼) 

                                                                                             

= 1 − 𝑒𝑥𝑝(−
2[ln(𝐵/𝑆0)][ln(𝐵/𝑆𝛼)]

𝛼𝜎𝜃
′2

) 

Lastly, because 𝔼̃𝐺
𝑀𝛼[𝑆𝛼

2(𝜗−𝜃)ℙ̃𝐺
𝑀𝛼(𝑀(𝛼,𝛽] ≤ 𝐵|𝑆𝛼)g(α, S0, 𝑆𝛼)]  is function of 𝑆𝛼 

and the probability density function of 𝑆𝛼 given 𝑀𝛼 > 𝐵 is available (See 

Karatzas and Shreve, 1991), the conditional expectation can be computed 

by numerical integration. 
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