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1. Introduction

This paper addresses the challenge in valuing derivative securities
with “knock-in” feature whose payoff depends not only on the first time that
the underlying breaches a barrier, but also on the value of the underlying
at the that time. Contingent Convertible bonds (Coco), for example, is a
hybrid security which will be automatically converted from debt into equity
by a certain pre-defined trigger event which is the time 7 that underlying
cross the barrier. Its price is sensitive not only to the first-passage time 7,
but also the share price S; at the first-passage time. Other examples of
securities with such feature include knock-in American options, Lookback

options, and American-style Asian option.

The valuation of these securities is relatively simple if we restrict
ourselves to the case where the underlying process has continuous path. For
example, if the underlying follows Geometric Brownian Motion (GBM), the
closed-form valuation formula for such securities is available. However, the
valuation will be more difficult if the underlying process does not have
continuous path, because the overshoot’s distribution is often unknown
(Kou, 2002). For example, if the underlying follows well-known Jump
Diffusion Model (JDM), generally the closed-form valuation formula for
such securities is not available. (Although the JDM can be approximated to
be GBM by moment matching method (Bates, 1991), but many important
features of JDM such as the leptokurtic and the ability to explain the
volatility smile will be lost because the pure diffusion model with high
volatility tends to cause many small jumps instead of instantaneous jumps
which happen in the real market (Teneberg, 2012).) In this study, we
assume that underlying follows the JDM with log-Normal jumps (Merton,
1976).

Because of the aforementioned i1ssue with overshoot, some

researchers considered the special case where the jump-size follows double-



exponential distribution and used its Memory-Less property to obtain the
distribution of the overshoot (Kou and Wang, 2003) so the closed-form
valuation formulas for most of such securities are available (Kou and Wang,
2004). But for general case, Monte Carlo simulation remarks most

convenient and universal.

Classical Monte Carlo simulation, while straightforward, produces
estimates with high variance for the first-passage time problem (Primozic,
2011). In particular, the high variance of Monte Carlo estimate is due to a
high variation of payoff (depending on the first-passage time 7) and the rare-
event nature of the first-passage. Furthermore, using Monte Carlo
simulation to generate price path inevitably requires time discretization,
which, combined with the effort requires to deal with the high variance lead
to unacceptably high computational effort. To solve this specific first-
passage time problem, we enhance the traditional Monte Carlo simulation
by combining three techniques: partitioning, exponential twisting, and

conditional Monte Carlo.

In the partitioning technique, we divide the security into smaller sub-
period. In each sub-period, we define a security that pays off the same as
the original security if first passage occurs during that sub-period (effective
period), and pays off zero otherwise. The newly defined security represents
a “component” of the original security. Thus, the price of the original
security can be expressed as the sum of the price of all components. Hence,
our problem reduces to how to use Monte Carlo simulation to price each
component. Because partitioning helps to limit the range of possible payoff
of each component, the estimated price of the component given t occurs in
its effective period is expected to have small variance. Thus, if our proposed
method can sample 7 that falls in effective period, then we can reduce the
variance of each component (and thus the variance of the full estimate)

substantially. This technique is conceptually similar to stratified sampling
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or numerical integration over 7. Though, unlikely stratify sampling or
numerical integration, our technique does not require explicit knowledge of

the distribution of t.

In order to sample 7 that is likely to fall in a given period, we combine
Monte Carlo simulation with importance sampling. Here, we use a class of
importance sampling technique known as exponential twisting. In this
technique, the component’s price is expressed as expectation under a new
probability measure that make the non-zero payoff event less rare.
Changing probability measure by exponential twisting is convenient
because under the new measure, the dynamic of the underlying process can
be shown to be JDM still, but with parameters altered by a twist parameter.
We choose the twist parameter so that, the underlying is unlikely to cross
the barrier before the effective period, but at the same time, tends to breach
barrier within the effective period. In this study, we also discuss the way to
choose an appropriate twist parameter by minimizing an approximated

second moment of the component’s price estimator.

Under this partitioning technique with exponential twisting, the only
relevant information about the path before effective period is whether or
not the underlying share price crosses the barrier. We take advantage of
this observation by applying the conditional Monte Carlo (Boyle et al., 1997)
to simulate the price path before the effective period. In this technique, we
sample the underlying’s price just before and after each jump. Then rather
than simulate the path between jumps to identify the first-passage, we
adjust the value of the estimate by the probability that the underlying does
not cross the barrier between two jumps. (This probability is available in
closed-form because the fact that the process between two jumps is
continuous.) This technique not only allow us to avoid discretize time (and
discretization error) before the effective period, but also reduce the

computational effort substantially.
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All in all, this paper demonstrates the effectiveness of combination of
these three techniques in reducing variance of the price estimate. We use
Coco as a primary example. We also address and analyze important issues
such as choice of partition and change of measure. In particular, we derive
semi-analytical formula that approximates the second moment that
depends on the twist parameters which could be used to choose appropriate
twist parameters. The Numerical study shows significant variance
reduction compare with the traditional Monte Carlo simulation and the
stand-alone basic variance reduction technique. Our novel way of combining
these three techniques adds to the body of literature on knock-in options by

providing an efficient simulation-based method for computing the price.

Organization of this paper is as follows. Section 2 explicitly
addresses the JDM and the Coco which will be used in this paper. Section 3
reviews three simulation techniques which will be applied together in the
proposed method and also presents how to apply the proposed method on
the sample security. Section 4 contains the result of numerical experiment
and also discuss about a method to choose appropriate decision parameters.

Section 5 concludes the paper, and an Appendix contains the proofs.
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2. Model Setting
2.1. Dynamic of the Underlying

The assumption that the underlying share price of first-passage time
dependent securities follows log-Normal JDM will be assumed. Let S; is
share price at time t. Given constant risk-free rate r, the process of S; under

the risk-neutral measure is given by (1) (Glasserman, 2003).

S, = Syeht+oW(® 1_[ Y, 1)

Where, o is a constant, W (t) is Wiener’s process, Y; is jump-size, N(t) is a
Poisson process with rate A, andu =r —AY — %02, with Y being expected
value of ¥;. (We define u this way so that S, is a martingale.) Assume that
Y;, N(t) and W(¢t) are independent to each other. In differential form:

ds; _

§ =rdt + odW(t) + dJ; — AYdt (2)

Where, J, is a pure jump process which equals to Zjvz(?(Y] —1). Assume that

logY; are i.id. N(J,07) random variables. In this paper, S, r and J will be set

to be 10, 5% and O respectively as a default except state differently.
2.2. Characteristics of Securities (Coco)

In order to find an appropriate simulation technique for securities of
which the payoff is a function of the first-passage time 7, and underlying
share price at the first-passage timeS;, the Coco will be used as a
representative. Coco is a hybrid security that is automatically converted
from debt into equity when the trigger event, which is normally assumed to

be T as defines in equation (3), occurs.

T = inf{t > 0|S; < B} (3)



13

Where, B is implied trigger level or a barrier. At conversion, some parts of
the notional principal N will be converted into pre-defined number of shares
or the conversion rate C, which could be calculated as in equation (4). The
conversion fraction a i1s a parameter that determines the fraction of the
Coco’s face value that will be converted when the first-passage time occurs.
If the conversion fraction equals to one, the Coco will be called a “Full” Coco
which is recommended structure by the American Enterprise Institute

(Spiegeleer, 2011). The Full Coco will be focused in this study.
Cr=— (4)

Where, C, 1s the conversion price. Note that in this paper, B and C, will be

set to be 2.5 and S, respectively except state differently.

The Coco’s value can be expressed as in equation (5).
h
Coco = E [Z ce TUI(t>ts) +e "INI(z>T)+ e "C.SI(t <T) (5)
5=1

Where, I(e) is an indicator function, ¢ is coupon payment which will be set
to be 8% compound quarterly except state differently and tg is time that §*
coupon is paid where § =1,2,..,handt, =T. As present in (5), lower t
reduces the value of Coco. The maximum Coco’s value is equal to the value
of coupon bond. From (5), it could be concluded that when the first-passage
time occurs, the Coco investors will suffer from the losses of conversion
which is the cancellation of the coupons from 7 to maturity and the
conversion of N into a C,.S;. These equation indicates that the value of Coco

is really sensitive on two factors which are 7 and S;.
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2.3. Express Price as Expectation

The price of Coco can be computed from the expectation of Coco’s
value. Consider closely, the value of the Coco is equal to its maximum value
minus by the conversion losses. Moreover, as mention before, the maximum
value of the Coco is equal to the value of coupon bond and the value of the
coupon bond can be computed easily by discounting its payoff. Therefore,

the value of Coco can be expressed as in equation (6).
Coco = Coupon bond — Conversion losses (6)

From equation (6), the value of Coco can be viewed as a combination
of two securities which are the Coupon bond and the second security that
has the same value as the Conversion loss. Let’s refer to the second security
(the conversion losses) as the Trigger Adjustment. The value of Trigger
Adjustment X is defined as in equation (7). Because the value of the coupon
bond can be obtained from closed-form formula so 1t is constant, this shows
that the variance of Coco price comes only from the Trigger Adjustment
part. This variance might seem to be low compare with the Coco’s value.
However, comparing with the Trigger Adjustment’s value, this variance is
unacceptably high. If the value of Trigger Adjustment is ignored, the Coco
price will be the same as the coupon bond price. Therefore, in this research,
in order to find a variance reduction technique for Coco, an efficiently
method for evaluate Trigger Adjustment’s value will be focus, which is the

method to minimize the variance of estimator in equation (7).

h
E[X] =E [Z ce TUI(t<ts) +e "TNI(z<T)—e ™C.SI(t<T) (7
5=1
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3. Suggested Method of Estimating the Expectation

To price the first-passage time securities, we propose a method that
combines three techniques which are partitioning, exponential twisting and
conditional Monte Carlo. The details of the methods can be shown as

following.
3.1. Partitioning

The first-passage time dependent securities’ payoff is a function of t
so the variation of payoff is high. Moreover, some events such as the early
first-passage time have an extremely low probability of occurrence, but
when these rare events occur, its extreme payoffs makes the estimator’s
variance high. These events can be regarded in the similar way as the tail-

risk which cannot be ignored.

To solve these problems, we now describe our partitioning technique.

Let’s defined (8) as a component.
XleBl 2 Xl(a <7t <p) )

The set of time (a, ] is an effective period. Let I' = 8 — a denote the length
of effective period, which will be set to be equal for every component. The
value of the security can be viewed as a combination of h components, which
have orderly effective period, 0 = ¢, < &; < - < g_; < &, =T, as shown in

equation (9).

E[X] = Z E[x!e-ved) )

h
=1

Each component X!*#l will have the same payoff as the original
security, only if the first-passage time occurs within the certain period, the

effective period and zero payoff otherwise. Each component will be price by

Monte Carlo simulation. If I" is chosen to be small and given that the first-
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passage time occurs only within the effective period, the estimator’s
variance of that component is expected to be small. (In theory, if T is
infinitesimally small and if the distribution of 7 is known, then (9) can be
seen to be equivalent to a numerical integration that yields a zero-variance
estimate.) However, with too small I', event which the first-passage time
occurs within the effective period becomes extremely rare event. An

appropriate I will be suggested and discussed from the numerical result.
3.2. Exponential Twisting

After using partitioning technique to divide the security into many
components, the simulation problem is now reduced to how to compute the

value of each component [E[X L2 ]] by Monte Carlo simulation efficiently. The

only event that X[*#1 is positive is when 7 € (a, 8] which is rare event.

We use importance sampling technique to deal with rare event
problem effectively. The main idea of importance sampling is to simulate
the sample from a new probability measure then adjust the value of each

sample as shown in equation (10) (See (Vecer, 2011)).
E[Y] = E[Y£] (10)

Where, Y is any random variable and £ is the inverse of Radon-Nikodym
derivative Z—i (or the likelihood ratio) which defines the new measure P with

respect to the original measure P. Note that £ > 0 and E[£] = 1.
In this work, we define the new measure using

L = e Jo 0edin(s)+[5 w(Bpat (11)

Where, 6, is a time dependent deterministic variable and ¥(6;) = 6,u +
0.560,%02 + 1 (erI_JFO'SHtZUJ2 - 1). It is easy to show that £ satisfy E[£] = 1. This

setting is equivalent to use the special class of the importance sampling, the
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exponential twisting (See for example Glasserman, 2003) with

parameter 6;, on the increment dIn(S,).

Lemma 3.1 Under the new measure defined by L in (11) the process of S;
follows the JDM as in equation (2), but its parameters are twisted from u

topg, which equals tou+6,0% N(t) to Ng(t) which follows

Poisson ﬂtegtﬂo'setz"f} and Y; to Yjet which follows logNormal(J + 6,07, 7).

The detail of Lemma 3.1 derivation is shown in Appendix 1. From
Lemma 3.1, when 6, is negative, the mean of the process will be shifted
down, but the jump intensity will be increased. The alternation will increase

the probability of the first-passage time.
In this work, for simplicity, we set

<
%={5 iSa

Having two differences values for before and within the effective
period, 6 and 9 could be set to fit their role properly in each period. To reduce
the variance efficiently, the new measure should be chosen to increases the
probability of the importance event which is the event that has high pay off
and high probability to occur in the original measure. For our components,
this importance event is when 7 € (a, f]. Therefore, ¥ should be as negative
as necessary to make the share price hit the barrier within the effective
period. On the other hand, 8 should be chosen in such a way that the share
price is not likely to hit the barrier before a, but still close to the barrier at

a which is to be slightly negative.

From those two twist parameters 8 andd9, £ can be written as in

equation (12).
L=LyLg (12)

Where,



18

S _
L, = exp (—9 In (S_a) +a (Hu +0.560%¢% + A (e(”J’O'SBZ"J2 — 1)))
0

a

S, ] .
Lg = exp (—19 In (5—) +(t—a) (19,u + 0.59%0% 4+ 1 (6’19]+O'519261' - 1)))

Even 6 and 9 should be chosen to be negative to shift the mean of
the process down. With too negative twist parameters, the likelihood ratio
will increase dramatically. On the other hand, with not enough negative
value of 6 and 9, the first-passage time might never occurs. Therefore, the

value of these 6 and 9 are needed to be chosen carefully.
3.3. Conditional Monte Carlo

Crucial information for pricing IE[X [“'B]] from before and within the
effective period is difference. Because T and S; is necessary information from
the effective period, a traditional discretization simulation cannot be
avoided. On the other hand, from before a, the only importance information
1s whether or not the underlying share price crosses the barrier so

discretization is not the only option.

Metwally and Atiya (2002) proposed a simulation technique for
barrier options pricing to observe whether or not the underlying share price
breaches the barrier without discretization error (Metwally and Atiya,
2002). Adjusting the value of the sample by the probability that the share
price does not breach the barrier between two jumps which is defined as in
equation (13) (See (Karatzas and Shreve, 1991)), the technique allow us to
simulate only the value of share price just before and after the jumps to
observe the first-passage event. The concept of this method is generalized

by technique called the conditional Monte Carlo (See Boyle et al., 1997).
P(Mp) < BISa,Sp) = (b — a,54,Sp) (13)

Where, M, p) = min(S;, t € (a, b])
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_ 2[In(B/x)][In(B/y)]
g(At, x,y) = exp Ato? ,Xx>B,y>B
1 , otherwise

From the main idea of previous algorithms, the estimator of X*#1 can

be formulated as shown below.

Twisting the probability measure then using the law of iterated

expectation to given the jump time before the effective period.

E[x!®Fl] = E[I(a < T < B)XL,Lg]

= E|Er[1(Moa > B)I(Map) < B)XLoLy]] (14)

Where,Er[¢] is E (-

T;,j =12, ...,N(a)) and T; is jJump time of j** jump, 0 =

TO < Tl < e < TN(a)-

The conditional expectation in (14) can be transformed and simplify
by using the law of iterated expectation. After that, we consider the Markov
property to view the inner conditional expectation as a function of S, to be
able to take expectation as following. Let {F;};s, denote the filtration

generated by the path of {S;};s¢.

Er [Er[1(Meo,0) > B)I(Meap) < B)XLoLp|Fo]| = Er[1(Mo,0 > B)Laf (Sa)]

Er 1Mo > B)Lq f(sa)|5Tji, j =12, N@) +1]

Il
Bl
ﬂ

Il
&R
bﬂ

Lof(SE, [H(M(O,a] > B)|ST]¢,j =12,..,N(a) + 1]

Il
&R
bﬂ

[ N 1
_Laf(Sa) ijfaH ) (AT]" ST]*_I'ST;)]
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Where, we define AT; :=T; —Tj_1, Ty@)+1 = @, , STJ¢ = hlLr(r)li Sri+hs f(S,) =

ET[H(M(a,B] < B)XLﬁ|Ta] and g (AY},STj»f_l,STj—) 1s the probability given in (13).

The last expectation above, after substituting f(S,) and using the law

of iterated expectation, simplifies to

Ng(a)+1

Er H g(ATj,STJtl,ST],—)H(M(a,ﬁ] < B)XL,Lg
j=1

The event that the underlying might cross the barrier between two

jumps is taking into account by H?’ffa)ﬂ g (ATJ—, S TH ST]_—) term which is the

probability that the share price path does not hit the barrier between two
jumps given the value of underlying just before and after jumps. Aside from
reducing the variance and eliminating the discretization error, this method
also has another great benefit which is the significant reduction of the

computation effort.
3.4. Putting it together: Explicit expression of Estimator

To simulate the first-passage time securities’ price efficiently, the
proposed method combine three techniques in section 3.1-3.3. First, we use
partitioning to divides the securities into many components to reduce the
variation of payoff. Then exponential twisting is suitable to deal with the
rare positive payoff property of the component. At last, conditional Monte
Carlo can help reducing the computational effort and eliminate the
discretization error before the effective period. The estimator of the

component can be defined as in equation (15).

Ng(a)+1

E[x«f)] = 1_[ g (ATJ-,ST; S22 ) 1Mo ) < B)XLoLp (15)
j=1
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The optimum 6 and ¥ are the set that minimize the variance of the
estimator. Since, the value of the estimator will always be the same
regardless the choice of twist parameter, minimizing the variance of the
estimator is the same as minimizing the second moment M® which is

defined as in equation (16).

Ng(a)+1

M(Z) = E 1—[ AT ST+ ,ST ) H(M(a,ﬁ] = B)XZL‘%‘LE (16)

Choosing appropriate value for 6 and 9 is an interesting problem. The
2
more negative value of 8 will reduce the value of HNe(a)+1 g (AT S T ,ST ) .

On the other hand, it will increase the value of L,. Likewise, similar
tradeoff also occurs with 9. These tradeoff must be considered to choose the

appropriate value of 8 and 9.

Choosing 8 and ¥ by minimizing equation (16) directly might not be
possible because the expectation in equation (16) is too complicated to get a
closed-form formula. In this study, 8 and 9 will be chosen by optimizing an
approximated second moment M® instead. Using the fact that when T is

small, we can approximate X by its upper bound X,, which is maximum
value of X!%fl and 7 — a by % (B — a) so the approximation can be shown as

following. After making these substitutions, the expectation in (16) can be

shown (see Appendix 2) to simplify to

M@ ~ e([3+0!)V(19)5026)B‘ZﬁXTZnEV”(M(o,a] > B)
% EM“ S 2(9-0) ]P)Ma(M( a,p] < BlS )IEMa [l—[NB(a)+1g(AT ST+ ST )|S ]l

Where, y(x) = xu + 0.5x%02 + 1 (c—:"‘]_J“O'S"z"J2 - 1), EMa[e] is E[e [M(g 4 > B]
and PMa[e] is P[e |[M (g4 > B]. The detail of this approximation is shown in

Appendix 2.
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Under JDM, some terms such as P(Mg, > B), P(M(4p < B|S,), and
the expectation terms do not have closed-form formulas so we approximated
the JDM process of the underlying with an adjusted GBM by using moment
matching method (Bates, 1991). The process of the adjusted GBM can be
showed as in equation (17). In (17), In(dS,) and In(dS;) have the same first

and second moment.
S, ~ S| = SyeHet+oeW(® (17)
Where,
to = g + AoJp
oy’ =0+ 49(Jg + 0?)

Note that the exponential twist did not affect the value of o and gj,
but the value of gy is a function of 1y and J so the value of oy is a function

of exponential twist parameter. Therefore, M@ is defined as in equation

(18).

M@ = 92ay(9)+(ﬁ—a)y(19)50293—ZﬁXT;;l]’pG(M(O > B)
(18)
=My —-0) My
X Eg [Sazw G)PG (M(a,ﬁ] = BlSa)g(a,Sa,So)]

Where, E;[¢] and P;[¢] are expectation and probability while approximate
that S; = §{. Detail of the approximation will be showed in Appendix 3. The
appropriate value of 8 and ¥ will be chosen by minimize M® in equation

(18). Detail of the approximation will be showed in Appendix 3.

Before discussing about the algorithm of the proposed method, first
let’s briefly review the traditional discretization simulation. The basic of the
traditional discretization method is to discretize time into many tiny time
steps then simulates the share price value at each time steps S; to observe

7 and S;. Then compute the value of X[*Fl. Average the value from N
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scenarios to obtain the value of the estimator. This method not only

produces the estimate with high variance, but also requires long

computational time because of the discretization. The proposed method can

be applied to solve these problems as the following.

. Optimizing M@ in equation (18) to select appropriate twist
parameters.

. Simulate number of Jump up to @ (Ng(a) ~ Poisson(1ya)) and Jump
timeT;.

. Simulate share price path before a S, +,j = 1,2,..,Nyg(a) + 1 from (19)
J

and (20)
ST]_— = .S'T]_+_1 eHoATj+o /AT z; (19)
Sry = Sr e(owite) (20)

Where, z; follows N(0,1) and y; follows N(0,1). Note that Ty, )+1 = @,

Yng@+1 =0

. Compute £, and g (AT},STj_l,STj—).

. Using the traditional discretization simulation method as shown in
the previous algorithm to simulate share price path within the
effective period.

. Obtain 7 and S; from share price path from step 4th if the share price
never hit barrier, T = oo.

. Compute Lz and X [ ]

. Continue doing step 1st — 7th for N replications then compute the

value of the first and second moment from (15) and (16) respectively
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4. Numerical Experiment

The effectiveness of the proposed method depends on how well the
two main importance choices, which are 1) set of twist parameters and ii)
length of effective period, are made. The following sections investigate,
through numerical experiment, these choices and provide recommendations

of how to select them.
4.1. Effect of Twist parameters

As mentioned in section 3.2, the good set of twist parameters is the
one that increase the probability of importance event, which is when the
first-passage time occurs within the effective period. The twist parameter
within the effective period ¥ should be as negative as necessary to make the
underlying share price hits the barrier within this period. The twist
parameter before the effective period 6 should also be negative to help
driving the underlying share price to move close to the barrier before the
effective period, but not so negative as to make the first-passage time tends
to occur before the effective period. These were confirmed as shown in figure

1.

M@

Figure 1 Numerical example of M® when vary twist parameters.
The underlying has parameters as follows: 6 = 0.25,A =

0.25 and c; = 0.25.



25

From figure 1, the proposed method will present great variance reduction

ratio, if the set of twist parameters is chosen appropriately.

Appropriate twist parameters may be chosen by optimizing M®
which was shown in section 3.4. Note that M@ successfully captures the

variation between M® and the twist parameters as shown in figure 2.

M@

1.
150
[P -
130
120
fod

100,
i

Figure 2 Numerical example of M® when vary twist parameters.
The underlying has parameters as follows: 6 = 0.25,A =

0.25 and G = 0.25.

The 6 and 9 which are obtained by minimizing M® gave not much
difference variance reduction ratio compare with the optimum one as shown
in table 1 so we would suggest to used this method to select appropriate

twist parameters.
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Table 1 Numerical example of variance reduction ratio of
components when use optimum 0&9 compare with appropriated

0&9 from the suggested method when («, 8] = (5,5.25].

Parameters Variance Reduction Ratio

o A aj Optimum &9 | &9 From M@
0.2 0.2 0.2 99.22% 99.16%

0.4 0.2 0.4 86.65% 84.63%

0.2 0.1 0.1 99.20% 99.18%

0.3 0.2 0.1 95.18% 95.13%

0.3 0.1 0.2 95.47% 94.93%

0.15 0.2 0.3 98.98% 92.21%

The results of X*Fl simulation of sample Trigger Adjustment show
significant variance reduction for every component. For example when
set g € [0.1,0.4], 41 €[0,0.2], and g; € [0.1,0.4], the results show variance
reduction ratio range from 84.08% to 99.99%. Another advantage of the
proposed method is the discretization does not need before the effective

period. This helps reduce the computational effort drastically.
4.2. Effect of Length of Effective Period

This section discusses the appropriate choice of I', the length of
effective period. The variance of the full estimator E[X] can be written as a

combination of h components as equation (21).

h
> Var[fleiveil] 21)
i=1

As mentioned in section 3.1, too small length I' makes the first-passage time
becomes too rare. On the other hand, too large I" will increase the variation
of the possible payoff. This section seeks to determine an appropriate I' to

help reducing the variance of the complete security efficiently.
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To demonstrate this point, consider the following numerical
experiment. Consider the following five choice of length I' = 1, 0.5, 0.25, 0.125
and 0.0625 (i.e., annually, semi-annually, quarterly, and so on.). For a given
set of underlying’s parameters, we find that extreme value of I' (I' =
1 and 0.0625) often give high variance for estimator. The choice of T that give

lowest variance is shown in table 2.

Table 2 Numerical example of the best choice of T for difference

set of underlying’s parameters.

o 0.2 0.3 0.3 0.2 0.25 |0.3 0.15 [0.15 |O0.1

A 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.15 |0.2

g |0.1 0.2 0.2 0.2 0.2 0.3 0.2 0.15 |0.2

0.125 | 0.125 | 0.125 | 0.25 | 0.25 | 0.25 0.5 0.5 0.5

For example, for parameters o = 0.25, A=0.2and g; = 0.2, if T is

chosen to be 0.125 or 0.5, the total variance of the estimate price will
increase by 5% and 20% respectively compare with when I' = 0.25. This

implies the existence of an optimal value of T.

However, in practice, it is difficult to pinpoint the optimum value
for I'. Nevertheless, we find an approximate linear relationship between I’

and logarithm of average variance of h components. If we defined the
average variance as V =% ?lear[X [si-l'ei]], the following plot shows a

linear trend between In(V) andT.
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Figure 3 Numerical example of the relation of In(V) and I.

Figure 3 implies an approximate relationship of the form
V =Kel/

Where, K and I'" are some constants. It follows that
o [T X
L 25 r/T ] .
ar [r @ 0
IE—4

I' can be estimated by test run and fit the linear regression between In(V)
and I'. The slope i1s mainly affected by source of variation of the underlying
process. When the variation mainly comes from the diffusion process, the
slope will be steep, and vice versa. This is because when the variation
mainly comes from the jump process, with too small I', the jump is not likely
to occur so an appropriate value of I'* should not be too small. Alternatively,

we also found that

—i”gsg 1s a good guideline for choosing appropriate I' for this
Gg(T=

r =
setting, in particular, for range of length parameters used in experiment

above.

Finally, The proposed method was test on many samples by varying

the volatile parameters as follow: o € [0.1,0.4], A € [0,0.2], and o; € [0.1,0.4]

and choosing &9 by minimizing M® and T as suggestion above. The
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number of scenario for each simulation method is computed in such a way
that each method have approximated same number of underlying share
price value that need to be simulated. The simulation results of the
proposed method on the sample Trigger Adjustments show significantly
variance reduction ratio range from 91.12% to 99.99% when compare with
the basic simulation. Figure 4 shows the relation between the adjusted
volatility (from the adjusted GBM) and the variance reduction ratio. We also
test an effectiveness of the proposed method by varying the barrier level B
while set 0 = 0.2,4 = 0.2 and g; = 0.2. The results show 99.76%, 92.77%,
91.11% and 90.76% variance reduction ratio for B = 1.5,2.5,4 and 5
respectively. As expected, with low adjusted volatility or low barrier level
which indicates the rarity of the first-passage event, the variance reduction
ratio will be high and vice versa. The simulation time of the proposed
method over the traditional method is range from 0.09 to 0.11. Please note
that these ratios might vary depended on many variables such as

performance of PC that used to run, coding, underlying parameters etc.

1.02
1 °
[ ]
[ ]
2 \
®
e 0.98 ®
c
0
i3]
3 0.96 ‘
[J] )
o ()
] .
c
& 0.94
&
> ()
o ©
0.92
\'o\'\'.
0.9
0 0.02 0.04 0.06 0.08 0.1 0.12
o'?

Figure 4 Numerical example of relation of variance reduction

ratio and adjusted volatility
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Comparing the proposed method with the exponential twist without
partitioning (whose twist parameter is chosen by the same algorithm as a
component with (a, 8] = (0, T]), the proposed method gave a better variance
reduction ratio for every sample. The variance reduction ratio of the
proposed method compare with the result from exponential twisted method
1s 67.35% on average. Furthermore, we also observe how the effectiveness
of variance reduction depends on the volatile parameters of the underlying.
For both proposed method and well-known exponential twisted technique,
when the volatile parameters decrease, the efficiency of both variance
reduction methods will be increase. This is because when the volatile
parameters increase, this problem becomes less rare event problem so the
methods that were designed to increase simulation efficiency of rare event
problem becomes less necessary. On the other hands, when the problem
becomes extremely rare (ex. = 0.15, 4 = 0.1, g; = 0.1), the efficiency of both
methods are very high. Especially for the proposed method, even when
compare with the exponential twisted method, the variance reduction ratio

1s still 97.98%.
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5. Conclusion

We have developed a simulation method for pricing the first-passage
time dependent securities under the assumption that its underlying process
follows the JDM. The method combines three variance reduction techniques
which are partitioning, exponential twisting and conditional Monte Carlo.
Partitioning is used to limit the variation of the payoff that is conditional
on the first-passage time taking value within certain period. We apply a
version of exponential twisting to deal with the rare non-zero payoff event
and has convenient of preserving the JDM dynamic of underlying in this
simulation pricing. Lastly, taking advantage of the fact that whether or not
the underlying breaches the barrier is the only relevant information about
the underlying path before the effective period, the conditional Monte Carlo
helps avoiding discretization error and reducing the computational effort.
Two main decision parameters which need to be chosen carefully to apply
this method effectively are the twist parameters and the length of partition.
We derived approximated second moment which i1s function of twist
parameters in semi-closed-form which can be minimized to choose
appropriated twist parameters. We also discuss about the method to select
appropriate length of effective period from the numerical experiment.
Finally, we applied this method to compute the price of sample securities

and illustrated its effectiveness through numerical results.
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Appendix 1

Lemma 3.1

When the underlying share price follows the log-Normal JDM, the
increment of logarithm of the underlying share price could be defined as in

equation (22).

N(nAt)

Aln(S,) = pAt + o/Atz, + Z In(Y;) (22)
J=N((n—1)At)+1

Where, AIn(S,) = In(Spar) — In(Sr-1)ar), 2z, Standard normal random variable. Let
Y (0) be the logarithm of moment generating function of AIn(S,,), which can

be shown as the following

Y(6) =InE[exp(6AIn(S,))]

=InE [exp (6 (/,tAt + o/Atz, + Z;L%A(a_l)mﬂ ln(Yj)))]
=In (exp(GuAt) E [exp (9 (ax/A_tzn + Z?]:(TALIA(E’)'I_DAt)'fl ln(Yj)))D

= In (exp(G,uAt + 0.50%0%At) E [exp (0 (ny;fA(a—l)At)+1 ln(Yj)))])
exp(QuAt + 0.560%02At)

=In E [exp (9 (e ey ln(Yj))) |1v((n — 1DAt),N (nAt)]l

X [E

=In (exp(G,uAt + 0.56%02%A¢t) Z?';L:Oe_/mi;—lft)m E [exp (9 (Z;’lﬂ ln(Yj)))])

e_AM(AAt)m

m!

=In (exp(HuAt + 0.50%02At) Y7 - exp(m6] + 0.56%c7m ))

— m
9]+0.5920'? >

(AAte

= In| exp(QuAt + 0.50%02At — AAL) Y5y

m!

=In (exp (HuAt + 0.50202At + 1At (BGIM'SQZGI2 - 1)))

= QuAt + 0.50%20%At + AAL (e9f+°-5920f _ 1)
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Therefore, the likelihood ratio can be written as in equation (23)

s
0 ln( n ) + OuAt + 0.50%02A¢

e~ 08IN(S)+Y(O)At — exp Sn_1 (23)
+2A¢ (e97+059%) — 1)
To obtain the process of the underlying after the twist, the moment
generating function of Aln(S,) is defined as in equation (24).
E[ePA1n(n)] = exp (p,uAt + 0.5p%02%At + AAt (e”]_J“O'S”Z"JZ — 1)) (24)

Under the new measure defined by (11), the moment generating function of
Aln(S,) is

E[ertnGn)] = exp (—HMAt — 0.56%02A¢ — AAt (e%7+050°7) — 1))

X exp ((P + 0)ult + 0.5(p + 6)*c*At + AAL (e(”’f")f’f"ﬁ(”“’)2"1Z — 1))

pult + 0.5(p? + 2p08)c?At

= exp +/1At69]‘+0_5920-]? (ep(]_+60'j2)+0.5pza']2 _ 1)
(uAt + 602At)p + 0.5p2c %At

= exp +AAt?T+056%0} (ep(]_+9cff)+0-5ﬂz0’1Z - 1)

= eXp (nu'HAtp + OSpZO'ZAt M AgAt (ep(j9)+0-5p20']2 _ 1)>

’I‘E:'[epAln(Sn)] = exp (p'ueAt + 0.5p20'2At + AgAt (ep]_9+0.5p20]2 - 1)) (25)

Where, py = u+ 002, g = Ate@]_+0.5920]g’ Ng(t) is Poisson process with rate
Ag, and Jg =] + 002. As present in equation (24) and (25), the moment
generating function in both equations have same form, but with difference
parameters. Therefore, after the exponential twisting the dynamic of the

underlying process is still JDM.
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Appendix 2

Approximate the second moment of the component price estimator

Let
EMa[e] :E[e |M(oq > B]
PMae] :P[e |M,q > B]
y(x) sxpu+0.5x%0%2+ 2 (e"]_JrO'S’“z"J2 - 1)
-Ng(a)+1
2
M@ =E 1_[ 9 (ATjrSTj_l»ST;) I(Mcap) < B)X2LELG
j=1

= B[} 9 (87,871, 517 ) 1M1 > BYI (M < B)X* £33

= 2@ 5,2°B(My o1 > B)
Ng(a’)-i-l
x Ma H g (AY},STj_l,STj—) [(Mg p) < B)X2S, 2005, 720 g2(r-adv(®)
j=1

Where, the last equality follows from substituting £, and £z from (12).

Using the fact that when I' is small, we can approximate X by its

upper bound X,,, which is maximum value of X*f! and t — a by % B—-a)

~ eZ“V(G)SOZQB_MX,Z,L@S(M(O,“] > B)e(ﬁ—a))/(ﬁ)
Ng(a)+1
=M, 2(9-6)
x M 1_[ 9 (8T, S+ 517 ) WMo < B)S,
j=1

= So*’ B XL P(M(gq) > B)eF+®¥®)

« M [ﬂm [[17257* g (AT, S St ) WMy < B)Saw‘”lfa]l



= So2 9B X2 B(M(gq > B)eB+OY®

Ng(a)+1
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x EMa 1_[ g (ATJ‘;STj-l'STj_)Saz(ﬁ_e)pM“(M(a.ﬁ] < B|S,)

j=1
= B+ (@) 5 26 =292 B(M(y ) > B)

% FMa [Saz(ﬁ—e)ﬂiMa (M(a,ﬁ] < B|5a)EMa [l‘[

Which yields (18).

Ng(a)+1
j=1

g (AT] Stit STj_) |S“”
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Appendix 3

Approximate JDM by adjusted GBM

We approximated the JDM process of the underlying with an
adjusted GBM by using a matching moment method [2]. Let set S{ to follow
the GBM whose process has the same first and second moment as process

of S;. Then the parameter of S{ process can be obtained as the following
E[ln(dS)] = E[In(dS,)]

ppdt = Updt + AgJodt

“ Hp = Mo + AeJo

E[In(dS)?] = E[In(dS,)?%]

og’dt = o2dt + Ag(J§ + 0/ )dt

vyt = 0%+ 2(J§ + of)

From this approximation, the closed-form of some terms in the
approximated second moment which do not have closed-form under JDM 1is

now available (See Karatzas and Shreve, 1991) as the following.

Zﬁ
]TD(M(O,O:] > B) ~ FG(M(O,az] > B) =1-| N(dg) + (_)<092>N(d; \

- _ B <_
P(Map) < B|Sy) = Po(My ) < B|S,) = N(dg) + <S_o>

ln(%)iuéa

In(g)£1h(B—)
opVa

Where, di = N

+ _
anddB =



37

For [EMa« [H?’fia)ﬂ P (MAT]. > B| STj+_1,STj—) |Sa] terms, because we

approximate the JDM process with the adjusted GBM process so N(a)

should be zero.

B (174 Br (Mar, > B| Spy S0 [Sa] = 880,52

3 ( 2[1H(B/50)][1n(3/5a)]>
=1—exp|— B
aog
Lastly, because E;*[S,*® ®P;(M(,p < B|S.)8(e,So,S,)] is function of S,
and the probability density function of S, given M, > B is available (See

Karatzas and Shreve, 1991), the conditional expectation can be computed

by numerical integration.
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