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CHAPTER 1
INTRODUCTION

1.1 Introduction

Polymer materials are presently used instead of the metal parts in the
electronic devices because of their advantages such as lightweight, high corrosive
resistance, and easy processing [1]. However, the thermal conductivity of neat polymer

is usually lower than that of the ceramics and metal as shown in Table 1.1.

Table 1.1 Thermal conductivity of materials

Thermal conductivity

Material Ref.
(W/m-K)

Copper (Cu) 400 [2]
Boron nitride (BN) 275 [2]
Aluminum (Al 230 (3]
Aluminum nitride (AIN) 200 (2]
Polybenzoxazine/78.5% BN (225 um) 325 (4]
Polypropylene/60% Al (125 um) 4.12 (5]
Polypropylene/40% Cu (40 um) 2.14 (5]
HDPE/26% Al oxide 1.65 (6]
HDPE/24% Cu 1.07 (6]
High density polyethylene (HDPE) 0.44 (7]
PS/10% AIN (<10 um) 0.33 (8]
Polypropylene (PP) 0.24 (5]
Polystyrene (PS) 0.14 (7]

Note: Concentration of filler is in percent by volume.

The materials used in the electronic devices should possess the high thermal

conductivity to protect the damage of the devices from the heat generated inside the



devices themselves [3, 9]. Thus the thermal conductivity of the polymer materials
have to be enhanced. This is a technological progress in the field of the thermal
management for the electrical and electronic devices [10]. A simple method for
improving the thermal conductivity of the polymer materials is to prepare them as the
composite by adding the thermally conductive filler, such as graphite, carbon black,
carbon fiber, ceramic particles, and metal particles, into the polymers [11]. By this
method, the polymer composite that conducts the heat well and is an electrical
insulator can be prepared. However, the thermal conductivity of the composite
depends on many factors such as shape, size, and content of filler particles as shown
by the experimental data depicted in Figure 1.1. Thus, it is essential to understand the

effect of those factors to successfully design the highly thermal conductive materials.

20

18 L R
16 L
® [EVA/Glass 36 um,
1or k¢ ko= a.44 (5]
12 +
= R * B EVA/Barium titanate
A 0 L
S 9 um,
A~ g L . kelko =
#/km=10 [5]
A
6 r & PP/ALS um,
4 L - kg /K= 992 [12]
A n u
2 r L . A PP/ALAS um
T oh onH ol [ ] ,u 3
0

: : ‘ : : ' Ky /= 992 [12]
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Volume Fraction of Filler Particles

Figure 1.1 Relationship between the effective thermal conductivity and the volume
fraction of filler particles where k¢ is thermal conductivity of filler, ky, is thermal

conductivity of polymer matrix, and k. is effective thermal conductivity

The modelling of the thermal conductivity of the composite is a way to
understand the effect of such factors on the thermal transport in the composite. Many
researches paid the attention to develop the analytical models that were classified

into theoretical model [13-18], empirical model [13], and semi-empirical model [19].



Furthermore, the theoretical model can be classified into two classes depending on
their solution method, i.e., exact and simplified solutions [20]. For example, Maxwell
model [13] and Bruggeman model [13] are classified as the exact solution, while Cheng
and Vachon model [14] and Liang and Liu model [15] are classified as the simplified
solution. As frequently found, those models gave the prediction in good agreement
with the experimental data only at some range of filler content, especially at low filler
loading [21]. In addition, the numerical models were presented by applying the
numerical methods [22, 23]. However, the analytical models are preferred more
because they possess more physical meaning, simpler calculation, and lower cost in
calculation than the numerical models [24, 25].

The comparison between the experimental data and the theoretical models
as shown in Figure 1.2. indicated that the basic theoretical models, namely series and
parallel models, cannot give the appropriate prediction due to the complicated
structure of the composites [26]. Other more complicated theoretical models showed
more possibility to fit the experimental data but there is no single model that can
precisely fit the curve. In addition, these models cannot describe the effect of the
particle size on the thermal conductivity of the composites. This led to the effort to
modify the analytical models in many researches [27-31].

A cause of the deviation of the classical model comes from the fact that these
models were focused on the idealized case of perfect interface contact between the
matrix and the filler particles. However, even though the interface contact is perfect,
a temperature drop usually occurs at the interface. This phenomena was first
discovered by Kapitza at a boundary between liquid helium and metals [32]. This
disturbance of the heat flow can be explained by means of the interfacial thermal
resistance. This thermal resistance is due to the scattering of heat carriers (phonon or
electron) at the interface of both materials which have the differences in vibrational
and electronic properties [33]. Many experiments revealed that the interfacial thermal
resistance had a dramatical effect on the effective thermal conductivity of the
composites [31]. The theoretical models which included the effect of the interfacial
thermal were presented by using the Kapitza radius concept [27, 31, 34]. By this way,

the effect of the particle size was automatically incorporated into the models. These



modified models showed the potential for describing the effect of the interfacial
thermal resistance and particle size on the effective thermal conductivity [27, 31].

However, only the theoretical models based on the exact solution were modified.
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Figure 1.2 Comparison between the experimental data and the prediction by the
analytical models of composite thermal conductivity where k,, is thermal conductivity

of polymer matrix, and k. is effective thermal conductivity

It was therefore interesting to modify the theoretical model based on the
simplified solution to include the effect of the interfacial thermal resistance and the
particle size. Due to the simplicity of the simplified solution, it was further expected
that the effect of the interfacial thermal resistance and the particle size may be easier
to be included and understood. This work was organized as follows. First, the effective
thermal conductivity models were derived based on the simplified solution and then
their performance were investigated. Second, the suitable model were modified by
applying the Kapitza radius concept and the effect of the interfacial thermal resistance

and particle size on the effective thermal conductivity were discussed.



1.2 Objectives

This work aimed to develop the thermal conductivity model based on the
simplified solution and to include the effect of the interfacial thermal resistance
between the matrix and filler particles and to examine the possibility to use this

modified model to predict the thermal conductivity of the polymer composite.



CHAPTER 2
THEORY

2.1 Thermal Property of Solid Material

Thermal property is the response of the material to heat. While solid material
absorbs energy in the form of heat, its temperature and volume will increase. The
difference of temperature between any positions in the bulk of material causes the
heat transport phenomena. Energy is always transferred from high- to low-temperature
regions of material. There are three mechanisms of heat transport, i.e. conduction,
convection, and radiation. In case of heat transport in solid, only heat conduction will
be considered.

2.1.1 Heat Conduction

Heat conduction or thermal conduction is the phenomenon in which heat is
transferred from a hot section to a cool section of material by molecular mechanism.
The simple relationship between the rate of heat transfer and temperature gradient

for steady state heat conduction through a solid in one-dimension (x-dimension) is

aT
qyx = —ka (21)

where g, is the local rate of heat flow per unit area (heat flux) in the positive x
direction. The minus sign in the expression (2.1) indicates that the direction of heat
flow is from hot region to cold region or down the temperature gradient [35]. This Eq.
(2.1) is called Fourier’s law of heat conduction.

The three-dimensional form of Fourier’s law is expressed as

q=—kvT (2.2)

where q is the heat flux vector and VT is the gradient of temperature. For the Cartesian

coordinate system VT is given by
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|7T——sx+£sy+5sZ (2.3)
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where sy, s, and s, are the unit vectors.

This Eqg. (2.2) describes the molecular transport of heat in isotropic media. The
word “isotropic” means that the properties of material is uniform in all directions;
therefore, heat is conducted with the same thermal conductivity in all directions [36].

Considering a stationary volume element of solid as a system, heat may enter
and leave the system by heat conduction and internal energy of system may be
changed. Because of a stationary solid, rate of kinetic and internal energy addition by
convective transport and rate of work done on system by molecular mechanisms and
external forces can be omitted. Thus, the equation of change for temperature for a

stationary solid can be expressed as follows:

. 0T
pC, — kV2T (2.0)

Eq. (2.4) is the heat balance equation for solid [36].

2.1.2 Heat Conduction Mechanism and Thermal Conductivity

The conduction heat transfer is the carrying of heat by molecular contact
among molecules in thermal nonequilibrium. For solids, conduction occurs between
adjacent molecules by propagation of the quantized lattice-vibrational waves which is
called phonon heat carriers, or by the drift and collision of free electrons which is
called electron heat carriers. These are described by phonon and electron mean-free
paths (4, and A,). The mean-free path is the average distance traveled between these
collisions. In conduction, the ability of the heat carriers to move in the medium, before
a significant loss of their heat content, makes them effective heat carriers. Since the
heat losses occur during collisions, the longer the length between collisions, the longer

the mean-free path and the higher the heat transfer rate [371].



Thermal conductivity is a transport or nonequilibrium property of a material
that characterizes the ability of a material to transfer heat per unit of time and per
unit of area and in the presence of a unit temperature difference (AT) over a unit
length (Ax) within the medium. Thermal conductivity has a unit of J-m/s-m*K or W/m-
K. The thermal conductivity depends on the ability of micro heat carriers, i.e. phonon
and electron, of heat to travel to exchange this heat [37]. This travel is in the form of
fluctuations or random-motion displacement about an equilibrium location. The ability
to transfer heat by conduction is related to the ability of electrons and holes for
metallic and semimetallic solids, and phonons for solids (dominant in nonmetals) to
store and release thermal energy, and the ability of the electrons and phonons to
travel before losing their energy.

For heat conduction in solid, electrons and phonons are the micro heat carriers.
To point out the roles of the conduction electrons and the phonons, an electrical
classification of solids (metals, nonmetals, and semiconductors) is used. The
conduction electrons play a significant role in conducting heat for the solid metals due
to their laree number of conduction electrons. The thermal lattice vibration or
phonons are the main heat conduction carrier for nonmetals (electrical insulators). The
semiconductors have an intermediate electrical behavior between metals and

nonmetals, however, their thermal conduction is similar to nonmetals [37].

[) Metals

Metals have a large number of conduction or free electrons (larger than 10%
conduction electrons/cm?®) because the atomic binding in crystalline metals reduces
the energy of the valence electrons as compared to electrons in free atoms and makes
a large number of valence electrons free to move [37]. The high thermal conductivity
of metals is due to the acceleration of the conduction electrons in the presence of a
temperature gradient and it is closely related to their high electrical conductivity
o, (1/ohm-m). The accelerated conduction electrons are stopped when the electrons
collide with atoms in the crystal, with other electrons, or with other heat carriers. The
average distance traveled between collisions is the mean-free path of the electron 4,.

The approximate electrical conductivity due to free electrons is given by



neegle
O, =

(2.5)
meue

where n, is the number of free electrons per unit volume (number of electrons/m?),
e. is the electron charge (Coulomb), m, is the electron mass (kg), and u, is the mean
electron speed (the carrier group velocity) (m/s) [37]. The ratio between 4, and u, is
called the electron residence time t, (or electron relaxation time, s).

By assuming the temperature-gradient accelerated electrons travel the same
average distance, i.e. mean-free path, before transferring their excess thermal energy

to the atoms, the free electron thermal conductivity k, is expressed as

)
ke = §ner,eue/16

= gne Cv,eugTe (2.6)

where CA,,,e is the specific heat capacity of each electron (J/electron-K) [37]. The value
of CA,,,e and A, depend on the temperature and 4, may be much larger than the
intermolecular spacing. In addition, the electron mean-free path (or relaxation time) is
influenced by the electron-electron, electron-phonon, and electron-lattice defect
scattering mechanisms [37]. From the quantum-statistical mechanics, the relation
between electrical and thermal conductivity for free electrons is given in the form of

Wiedemann-Franz law as

2 (K 2
= ”? (—”) = 2.442 x 10~ W-ohm/K? (2.7)

where T is the absolute temperature and kj, is the Boltzmann constant. Eq. (2.7) shows

that the ratio of k, and g, T is a constant. This equation holds well for the pure metals.
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[1) Nonmetals

Due to the absence of conduction electrons in solid nonmetals because the
electron conduction-gap energy is large, the heat conduction is dominated by
nonelectronic heat carriers. The presence of temperature gradient in the solid causes
a nonuniform elastic thermal lattice vibration that transfers heat in form of vibrational
energy along the solid. This heat carrier is phonon. In analogy with photons of
electromagnetic waves, phonons are the quanta of energy in each mode of vibration
traveling in the solid phase. The solid lattice is characterized as crystalline with periodic
structure or amorphous with nonperiodic structure. The phonon internal energy is the
sum of energy in all possible vibrational states and all polarizations. The vibration
frequencies, which are associated with the concerted harmonic motion of all atoms
and are called the normal modes, are orders of terahertz (102 Hz) [37]. The lattice or

phonon thermal conductivity can be expressed as
a3~
ky =3 pCitplyp (2.8)

where p is the density of solid material, CAW is the lattice specific heat capacity, u,, is
mean phonon velocity (also called lattice heat-carrier group velocity), and 4, is the
phonon mean-free path (also called heat-carrier mean-free path) [37]. The mean
phonon velocity u, can be determined as the speed of sound in the solid state (a),
thus it is called “acoustic phonons”. The plane longitudinal wave speed is generally

used, however, the average phonon speed is also used and is defined as
3uy® = 2u,3 4 uy ] (2.9)

where subscript t denotes the two transverse and | denotes the single longitudinal
wave speeds [37]. The mean-free path of the phonons is temperature and defect
dependent. Around the room temperature, the interphonon collisions are significant.
At low temperatures, the interphonon interactions become less significant and the

electron-lattice-defect and boundary scattering (elastic and inelastic) become
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important [37]. The mean free path is the most important parameter related to the
thermal conductivity. If the size of the system is greater than the mean free path,
scattering events will happen. But if the mean free path is greater than the system
size, no scattering event can occur prior to reaching the ends of the system [35].
Polymer is classified as a nonmetal. The thermal conductivities for most
polymers are on the order of 0.3 W/m-K [35]. These materials possess the lowest
thermal conductivities compared with metals and nonmetals. Heat transport in
polymers is accomplished by the vibration and rotation of the chain molecules. The
main thermal energy carriers are the phonons [38]. In contrast to ceramics or
nonmetals, the conduction is carried out with extremely small phonons mean free
path, i.e. a few angstroms, owing to their scattering from many defects, leading to a
very low thermal conductivity [38]. The magnitude of the thermal conductivity
depends on the degree of crystallinity. A polymer with a highly crystalline and ordered
structure will have a better conductivity than the equivalent amorphous materials
because of the better effective coordinated vibration of the molecular chains for the
crystalline state [35]. In addition, the thermal conductivity of polymer depends on
many factors such as chemical composition, strength of chemical bond, type of
structure, side group, molecular weight, molecular weight distribution, defects in
structure, processing condition, and temperature [7]. The thermal conductivity of
polymeric materials can be improved by adding high thermally conductive materials

such as Cu, Al, and Si [12, 39].

) Semiconductors

Semiconductors (e.g., Ge, Si) have conduction electron less than 10"
conduction electron/cm?. Their thermal conductivity is involved with the electrons k,
and the lattice vibration kp, and the total conductivity is the sum of the two

contributions as expressed by

k=ke+k, (2.10)
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A semiconductor is intrinsic when it has no imperfections and its electronic
properties are dominated by electrons thermally excited from valence to conduction
band. Semiconductors (e.g., Si) are made impure by adding other elements such as P,
As, and Sb; this is called doping and the resulting materials are called an extrinsic
materials. If impurities can provide free electrons, they are called donor elements and
the resulting material is called the n-type because the electrical conduction is by
electrons. In contrast, if these impurities are deficient in electrons, they are called
acceptor elements and the resulting material is called the p-type because the
electrical conduction is by hole. Electrons and holes are the electronic contributions
in semiconductors. However, the thermal conductivity of semiconductors is generally
dominated by phonon. The presence of impurities (dopants) can increase or decrease
the thermal conductivity depending on the extent of the extra scattering caused by

the impurities [37].

2.1.3 Thermal Resistance and Electrical Circuit Analogy

The analogy between electrical and heat conduction is based on the
fundamental similarity between voltage and temperature, current conduction and
heat conduction. Electrical conduction occurs in response to a voltage difference while
heat conduction occurs in response to a temperature difference. Starting with heat
conduction in only one direction (e.g., x direction) through a thin slab with a uniform
conduction cross-sectional area A, the heat flux g, is constant along x axis for the
case of no energy conversion. This is shown in Figure 2.1(a). Assuming that heat
conduction is steady-state and thermal conductivity k does not vary with x, Eq. (2.4)

can be written as

2
k%: 0 (2.11)

Eq. (2.11) is integrated to give
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T(x) =a;x + a, (2.12)

where a; and a, are the integration constants. The boundary conditions are

determined by the prescribed temperature on the bounding surface as

Tx=0)=T,,T(x=A4Ax)=T, (2.13)

Using the boundary conditions in Eq. (2.12), both integration constants are

solved, and the results are

-1
Z (2.14)
! Ax
and
az == Tl (215)
Substituting for a; and a, in Eq. (2.12), the temperature distribution is given
as

T, — T
T(x) =T, + —x (2.16)
Ax

Eq. (2.16) describes a linear distribution of temperature along the x axis. The

heat flux at any location x is determined by

dT T2 - Tl
— L — _ (2.17)
x dx & Ax
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Eqg. (2.17) indicates that g, is uniform throughout the planar layer which
perpendicular to x axis. For any locations x and x + Ax, the heat flux can be written

as

dT T(x + Ax) — T(x)
__ar_ (2.18)
x k dx k Ax

The heat flow rate Q, is the product of the heat flux g, and the cross-sectional

area A through which heat is transferred as

TZ - T1 T1 - TZ AT
Qui-z2 = AGy = —Ak——=—Fp— =7 (2.19)

Ak Ak

where the subscript 1 — 2 means the heat transfers from the wall on side 1 to the
wall on side 2 as shown in Figure 2.1. Since it is a one-dimensional heat flow, the
subscript x can be neglected.

Eq. (2.19) is the Fourier law in terms of a linear, one-dimensional temperature
distribution that can be compared to the Ohm law. By considering an electric current
flow J, when an electrical potential A or ¢, — @, is applied across a conductor of
thickness Ax with an electrical conductivity o,, and a cross-section area A, the

relationship of these parameters can be written as

Ap @2 — ¢
N Ax (2.20)
(.

]e,1—2 =
Re,1—2

where R, 1, is the electrical resistance. It is worth to notice that Eq. (2.19) is similar
to Eq. (2.20). Based on this analogy, the thermal resistance R{_, (°C/W or K/W) can be

defined as

T,—-T, Ax
R1_=1 2 _

= = — (2.21)
27 Q. Ak
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Eq. (2.21) is the heat conduction resistance for a slab. The thermal resistance
is the measure of the temperature difference needed for the flow of one Watt of
thermal energy through a layer of thermal conductivity k, thichness Ax, and area A.
The magnitude of thermal resistance is between zero (ideal conductor) and infinity
(ideal insulator) and it is always positive, i.e., 0 < R < oo. The thermal circuit model is
also shown in Figure 2.1(b). The inverse of the thermal resistance is the thermal

conductance h (W/°C) as expressed as

h=— (2.22)

(a) Physical model (b) Thermal circuit model

T; ~TJemperature Ax
T Ry, =
B LT, h-T
1-2

Figure 2.1 (a) A physical model of one-dimensional steady-state conduction through a
slab and (b) Thermal circuit model for this conduction heat transfer (adapted from

(37])

Composite is made of two or more distinct materials. Its thermal conductivity
and thermal resistance can be determined by the inclusion of the resistance for each
element of the composite. Composite can be divided into layered and nonlayered
structures. The layers can be perpendicular to the heat flow direction, resulting in the

series arrangement of the resistances. In contrast, the layers can be parallel to the
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heat flow direction and this is called parallel arrangement of resistances. The rendering
of these arrangements are shown in Figure 2.2(a). For nonlayered composite, one of
materials is continuous and the others can be continuous or discontinuous in one or

more directions. Figure 2.2(b) shows some examples of nonlayered composites.

(a) Layered composite
(i) Layers perpendicular (i) Layers Parallel

to heat flux vector to heat flux vector

Layer A LayerB LayerC

A, =4 =4
Q
T;
Axg
(b) Nonlayered composite
(i) One continuous material (ii) Both continuous materials

Inclusions or

Continuous material Both continuous materials

Dispersed material

T

Figure 2.2 Schematic of (a) layered composite and (b) nonlayered composite

(adapted from [37])
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Considering a composite composed of three materials arranged in series as
shown in Figure 2.3, the heat flows perpendicular to the interfaces. The heat flows out
of the surface to the left as designated by —@Q4 and to the right as designated by Q,_;.

The energy equation for surface node T; at steady state is written as

—Q1+Q1_y =00rQ1=0Q_y (2.22)

Likewise, this can be done for all surface nodes. Then the energy equations for

each of the surface shown in Figure 2.3 are listed below.

—Q;+Q,_y =0 for surface node T; (2.23a)
—Qq_y +Qq_, =0 forsurface node Ty (2.23b)
—Qq_p + Qy_, =0 forsurface node T, (2.230)

—Q,_,+Q, =0 forsurface node T, (2.23d)

From Eq. (2.23a) to (2.23d), it is found that

Q=017 =Qy_ =Qy_, =0, =01, (2.24)

It should be noted that same heat flow rate Q;_, flows through each
resistance.

For each resistance, the heat flow can be expressed as

AkA T1 - Tll Tl - Tl’
Qv =012 = _E(Tﬂ -1y = Ax, = R, v (2.25)
Aky

AkB T1’ - Tz’ Tl’ - TZ'
Ql’—z’ - Q1—2 - __(TZI - Tl’) - AxB - Rll_zl (226)

Axp
Akpg
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AkC TZI - TZ Tz’ - TZ
Qo= Q2 =~ = (T2 = To) = =g — = —p—— (2.27)

Akc

T, is solved by rearranging Eq. (2.25), and the result is

Q1-28x4

2.28
K, (2.28)

Ty =T, —

Layer A Layer B Layer C

Figure 2.3 Illustration of physical model and thermal circuit model for series layered-

composite (adapted from [37])
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In the same manner, the result for T,r from Eq. (2.26) and when using Eq. (2.28)

Q1-20xp Q128x,  Q1,8xp (AXA Axp
. - - 1-2

L=t =, =0 g, kg, T G,

) (2.29)

The result for T, from Eq. (2.27) and when using Eq. (2.29) is

_,Ax Ax Ax Ax
T2=T21—Q12 c_ A B c)

Ty — Q- ( + + (2.30)

Ak, 17 Q12 Ak,  Akg = Ak
Eq. (2.30) is rearranged into the form of the temperature difference across the
three layers as T; — T, and then using the definition of thermal resistance given by Eq.

(2.21), the heat flow through the composite can be expressed as

T, XED T,— T,
Q1_2 B Axz‘l + AxB + A-XC - R1_1’ + Rl’—Z’ + Rzl_z (231)
AT A T R4

Eq. (2.31) indicates that for this layered arrangement of layers perpendicular to
the heat flow, the thermal resistances are added as series resistances with the
temperature difference across the composite as the potential. This series arrangement
of resistances is shown in Figure 2.3.

For n layers placed perpendicular (series arrangement) to the heat flow

between surface 1 and 2, it can be generalized as

Q _ 1T — T, —-T,
1-2 Z?:lRi Ry

,Rs =X R; series resistances (2.32)

where Ry is the overall conduction resistance for the composite.
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In the other way, layers can be arranged in parallel to form layered composite
as shown in Figure 2.4. In this case, there are three heat flow rates. For surface nodes

1 and 2, the energy equation can be written as

_Ql + Ql—Z,A + Ql—Z,B + Ql—Z,C =0 for surface 1 (233)
_Ql—Z,A - Q1—2,B — Q1—2,C + QZ =0 for surface 2 (234)
T

TJ_ J TZ
Q, )_/\/\4\/_(>_ @,

Raas =i,
BB

Ql—: £

Ax
Rl—z.c=k A
cflc

1 1 1
Q12=0Q1 04+ @125+ Qi 5c= (T]. - Tz)( + + )

Rl—Z.A Rl—Z.B Rl—Z.C

Figure 2.4 Illustration of physical model and thermal circuit model for parallel layered-

composite (adapted from [37])
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Then from Eq. (2.33) and (2.34), it can be shown that

Q1 =0Q2=0Q124+ Q125+ Q12¢c =012 (2.35)

Using the definition of thermal resistance given by Eq. (2.21), the heat flow

through the composite can be expressed as

Q12 = Q124+ Q125 + Q1-2¢
nL-T, T,-T, T,-T,
T Ax + Ax + Ax
Apky Agkp Acke

1 1 1

Ax W Ax + Ax (2.36)

Apky  Apkp  Ackc

= (T1 = Tz)

For n layers placed parallel to the heat flow, in parallel arrangement, the heat

flow equation can be generalized as

1 _T,-T 1 1 .
—=212 —=3%" — Dparallel resistances (2.37)
R; Ry Ry R;

Q1-2 = (T1 - Tz) 2?:1

For nonlayered composite, there are many geometric variations where a
material A is in a nonlayered arrangement with another material B. One material or
more than one materials can be continuous, called continuous phase and co-
continuous phase, respectively. While one of the materials can be dispersed or
discontinuous in a continuous phase. In the case of composite composed of two
materials, it can be thought that its structure is ordered periodic arrangement with one
of the materials being discontinuous. This is also called ordered lattice. It is assumed
that there are many of unit cells arranged in a periodic arrangement and local thermal
equilibrium over a unit cell exists. An example is shown in Figure 2.5. The regular

arrangement of dispersed spherical inclusions of diameter D in a square array
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arrangement with the distance between centers of the adjacent spheres being L.
Assuming a one-dimensional heat flow with parallel-series arrangement of the
resistances in each unit cell, the thermal circuit model for each unit cell can be used

for calculating the heat flow by the same method described above.

QV
Material B ———H‘ .
Material A —] 7 .

Figure 2.5 Physical model and thermal circuit model of square array of spherical

inclusions (adapted from [37])
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2.1.4 Interfacial Thermal Resistance

The idea of interfacial thermal resistance or thermal boundary resistance
between two materials has been studied for a long period [32]. It is known as interfacial
thermal resistance and refers to the combined effect of two thermal resistances,
namely thermal contact resistance and thermal boundary resistance [33]. Thermal
contact resistance is caused by poor mechanical and chemical bonding between
constituent phases while thermal boundary resistance occurs due to differences in the
physical properties of constituent materials [33]. This latter thermal resistance is also
called Kapitza resistance in memory of P. Kapitza who was the first to discover a
temperature drop at a boundary between liquid helium and metals in 1941 [32]. The
interfacial thermal resistance (Rj,;) with a unit of m?K/W can be defined as the ratio
of the temperature difference at the interface AT to the heat flow rate Q per unit area

A flowing across that interface [32, 33]:

>

T AT
Ryleenrs 7
A

(2.38)

The difference in the physical properties of contacting materials causes the
interfacial thermal resistance and leads to the temperature drop at the interface [40].
For example, a schematic of temperature profile for Si/Ge interface at a temperature
of 500 K obtained from molecular dynamics simulations was shown in Figure 2.6. Heat
is transferred in a solid by phonon transport or electronic transport as described
previously. Because of different vibrational and electronic properties of each medium
(material), a heat carrier in form of electron or phonon, arriving at the interface, reaches
a physical end of the medium in which it originally propagates and must fulfill certain
requirements to continue its propagation in the other medium, and there will be only
some heat carriers that can pass the interface, although the mechanical contact
between the two phases is perfect [40]. This makes the thermal boundary resistance

different from the thermal contact resistance.
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The interfacial thermal resistance may result from interdiffusion or corrosion of
composite components, particle coating, particle electrochemical treatment, and
moisture absorption. Poor adhesion causes imperfect mechanical contact and also
increases the interfacial thermal resistance in term of thermal contact resistance.
Furthermore, thermal expansion mismatch between constituents may lead to the
formation of gas-filled gaps in the interfacial region; this gaps act as thermal resistance

[33].

540 : | T 1 | | ™

520 1 R T
w R 7 E
% 500 T i
B~ : :
480 |- Si’Ge, T=500K !
| g =723 GW/m’ i

: 1 | Il 1 1 b |

4600 20 40 60 80 100 120

z{nm)
Figure 2.6 Temperature profile for the Si/Ge interface at an average temperature T of
500 K obtained from molecular dynamics simulation where T, is temperature at

interface of Si and Ty is temperature at interface of Ge [41]

The interfacial thermal resistance acts as a thermal barrier in composites. This
negative effect increases when the filler particle size decreases, especially in high filler
volume fraction as shown in Figure 2.7. This effect can be explained in terms of the
interfacial thermal resistance which becomes increasingly dominant as the particles
become smaller and have higher surface area to volume ratio [27]. The interfacial
thermal resistance is an important parameter that affects the enhancement of the
thermal conductivity of composites, especially in nanocomposites [13]. To determine
the effective thermal conductivity of newly designed composites, it is essential to know
the interfacial thermal resistance of those composites. The measurement of the

interfacial thermal resistance can be separated into two types, i.e. direct method and
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indirect method. However, there are many difficulties during interfacial thermal

resistance measurement attempts due to the subtle nature of the phenomenon [40].
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Filler volume fraction

Figure 2.7 Relative thermal conductivity versus filler volume fraction of polypropylene
filled with aluminum in form of spherical particles with average particle size of 8 um

and 44 um (experimental data cited from [12])

2.2 Polymer Composites

Many modern technologies require materials with several special properties
which may coexist in one. These are not found in typical materials. To response to the
desirable requirement, composite materials are developed intensely. Composite is
material with several phases, but at least 2 phases. The continuous phase is called
“matrix”. The discontinuous phase surrounded by the matrix is called “dispersed

”»

phase” or “filler”. Each phase possesses innate property and different chemical
structure which can be clearly separated. This makes the composite to have several
properties depending on their composition. In addition, some properties of composites
are better than the original materials. The whole properties of composites depend on
type of original material, quantity and geometry of dispersed phase (shape and size),

and distribution and orientation of dispersed phase [35].
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2.2.1 Polymer Composite Preparation for Improving the Thermal

Conductivity

There are several methods to prepare thermally conductive polymer
composite. It depends on the type of matrix whether thermoplastic or thermoset.
Furthermore, shapes of filler whether cylindrical, flake, or sphere usually also influence
the processing method. However, all processing method has a similar purpose that is
to gain the composite which has desirable property. The processing method should
cause the uniform dispersion and distribution of filler without the fracture of filler.
Especially in fiber filler, the fractured fiber has lower aspect ratio and incurs the
decreasing in property. The satisfied processing method should make good interfacial
between the matrix and filler. In addition, it should be able to control the orientation
of filler particles and cause the anisotropic property as needed [2].

For thermoplastic, melt-mixing is very popular. The extruder and internal mixer
are usually used in this method. Solvent casting is alternative method for filler coated
with thermally sensitive chemical. After preparation, prepared composite is formed as

specimen by compression or injection molding machine [2].

2.2.2 Thermally Conductive Fillers

The thermal conductivity of polymer can be improved by adding thermally
conductive fillers such as graphite, carbon black, carbon fibers, ceramic particles and
metal particles. The thermal conductivities of those materials depend on their purity,
crystallinity, size of particle, or even the measurement technique. Especially in fiber or
cylindrical filler, the axial thermal conductivity is normally higher than the transverse
thermal conductivity [11]. The fillers used for improving the thermal conductivity of
polymeric material are divided as three types, namely carbon-based fillers, metallic

fillers, and ceramic fillers [11].

[) Carbon-based Fillers
Carbon-based filler is one of the appropriate fillers to improve the thermal

conduction of polymeric materials due to their high thermal conductivity and low
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weight. Typical carbon-based fillers are graphite, carbon fiber, and carbon black.
Graphite is the best filler due to high thermal conductivity, affordability, and very good
dispersion in polymer matrix. In one layer of graphite, graphene has the high thermal
conductivity around 800 W/m-K or more than 5,300 W/m-K theoretically. However,
graphite normally has the thermal conductivity of 100 to 400 W/m-K. The thermal
conductivity of composite depends on the dispersion of graphite and its aspect ratio
[11].

Carbon fiber is the hollow cylindrical filler. The axial thermal conductivity is
different from the transverse thermal conductivity. The axial thermal conductivity is
around 2000 W/m-K. The transverse thermal conductivity is around 10-110 W/m-K.
Thus, the orientation of carbon fiber affects the thermal conduction of composite

seriously [11].

1) Metallic Fillers

Metallic fillers may cause the increase in both of the thermal conductivity and
electrical conductivity. Furthermore, the density of composite is increased. These are
limitations for using this filler type. Metallic fillers for increasing the thermal
conductivity are aluminum, silver, copper, nickel, etc. The efficiency of improving the
thermal conductivity depends on the thermal conductivity of metallic particle, shape

and size of particle, volume fraction, and orientation [11].

[II) Ceramic Fillers

Ceramic fillers such as aluminum nitride, silicon carbide, beryllium oxide, etc.,
are widely used in electronics. They possess the interesting properties which are high
thermal conductivity and electrical insulator. Their thermal conductivities depend on

packing density, particle size, size distribution, and surface treatment [11].

2.3 Effective Thermal Conductivity Models

It is known that the thermal conductivity of polymer composite depends on

several factors such as particle size and size distribution, volume fraction of filler, shape
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of filler particle, dispersion state of fillers, interfacial thermal resistance , and so on [13,
42]. These factors make the thermal conductivity mechanism very complicated,
especially for a highly filled system [42]. To interpret thermal measurement results
and design materials for thermal applications, various theoretical, empirical, and
semiempirical models have been developed with a variety of assumptions [13]. The
result of modeling is a mathematical relationship involving at least the volume fraction
and the properties of each component of composite [5]. Sundstrom and Lee [20]
classified theoretical models into two classes depending on their solution method, i.e.,
exact or simplified solutions. In exact solution, the effective thermal conductivity is
obtained by an analytical solution of the heat equation for a simple idealized geometry
without any assumptions on heat flow or temperature patterns. The models are exact
solutions such as Maxwell model [13] and Bruggeman model [43]. In contrast,
simplified solutions generally assume that heat flow is unidirectional and isotherm
planes are perpendicular to the heat flow. By this way, the problem is reduced to
ordinary differential equation instead of a partial differential equation. Cheng and
Vachon model [14] is a model derived from simplified solution. There is an alternative
classification of thermal conductivity model that was proposed by Mottram [5, 26].
The models are divided into first, second, third and fourth order. First order models
are the simplest model, i.e., series and parallel model. Most well-known models are
organized in the second order group. The models that take into account the
disturbance between the phases of the composites and the geometry of the inclusions
are classified as the third and fourth order models. These models usually have a more
complicated parameter, for example, the three-point parameter that take into account
the statistical perturbation around each particle in Torquato model [44]. However,
there are only a few models in the third and fourth order. In this section, some basic

models of thermal conductivity based on exact and simplified solution were reviewed.
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2.3.1 Model Based on Simplified Solution
2.3.1.1 Series Model

If two components arranged in series with respect to the heat flow direction,

the effective thermal conductivity (k.fy) in this case can be written as

1 vy vf

Series model: (2.39)

keff o km kf

where vy, is the matrix volume fraction, vy is the filler volume fraction, k., is the
thermal conductivity of matrix, and kf is the thermal conductivity of filler.

Series model typically gives an underestimation for a particulate composite due
to the presumably complete localization of the contribution from the particles
embedded in the matrix; in other words, neglecting the interaction among the fillers
[13]. It can be imagined that the composite material responds as a homogeneous
material in which each filler particle is an isolated entity [26]. Thus, the series model

gives the lower bound for thermal conductivity of composites as shown in Figure 2.8.

i0

0.0 0.1 0.2 0.3 0.4 05 06 07

Volume Fraction of Metal Particles
Figure 2.8 The predictions of the relative thermal conductivity of a two phase system
as a function of volume fraction of the spherical metal particle where solid line is

parallel model and dot line is series model [26]
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2.3.1.2 Parallel Model

If two components arranged in parallel with respect to the heat flow, the

effective thermal conductivity in this case can be written as

Parallel model: kerr = Vmkm + vrky (2.40)

which is also called the rule of mixture for thermal conductivity [13].

Parallel model accounts for the particle-particle interactions by assuming the
perfect contact between particles in a fully percolating network [13, 26]. This model
gives an overestimation of thermal conductivity for composites [13]. Therefore, it gives

upper bound for thermal conductivity of composites as shown in Figure 2.8.

2.3.1.3 Cheng and Vachon Model

Based on the series and the parallel models, Tsao [45] developed a

probabilistic model for the effective thermal conductivity of composites as follows:

1 _fl ap,
kerr 1 1P —u\? (2.41)
eff Okm+(kf—km)fpllame 2(2E) ap,

where P; is the one-dimensional porosity (line fraction), i is the mean of P;, and ¢ is
the standard deviation.

The values of u and o are derived from the experiment and it is specific for a
composite. To solve this problem, Cheng and Vachon [14] postulated a parabolic
distribution of the discontinuous phase in the matrix. The constants of the parabolic
distribution are given as a function of the volume fraction of discontinuous phase. In

case of composite filled with highly conductive filler (kg > k), the formula is
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B [.
1 1 \/km+B(kf—km)+7\/C(kf—km) 1-B

= In .

= (2.42)
Fers Jc’(kf — ko) [lem + B(ks — kom)] ka +B(ky — k) — g\/c’(kf — k)

1

where B = (3%)5 and C' = %.

The maximum volume fraction of filler in Cheng and Vachon model
consequently was fixed to be 0.667 due to assuming the parabolic distribution curve.
However, this value should depend on the dispersion state and the shape of the filler.
Okamoto and Ishida [46] suggested that the maximum packing volume fraction
(Vfmax) Of the filler phase should be used as a new parameter applied to the Cheng
and Vachon model. This new parameter reflects the dispersion state and the shape of
the filler. They assumed that the dispersion state of the discontinuous phase does not
change substantially throughout the volume fraction of the discontinuous phase under
examination. The shape of the distribution curve at a certain volume fraction (vy) is
supposed to be geometrically similar to that at vf yqy, as shown in Figure 2.9. They

defined the relationship between vy and v 145 as follows:
Vf = BZVf‘max (2.43)

Therefore, B and C can be rewritten as

N[

v
B - < i ) (2.4)
vf,max
and
1
C=_4 <_vf 'maX>2 (2.45)
Vr
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Figure 2.9 Schematic diagram of Vg may and vy [46]

The value of Vg mqy Of this model can be found by fitting the modified Cheng
and Vachon model to the experimental data and it is very close to theoretical
maximum volume fraction derived by calculation. By this way, the modified Cheng and
Vachon model can account for the effects of the dispersion state and the shape of

filler on the thermal conductivity of composite.

2.3.1.4 Liang and Liu Model

Liang and Liu [15] presented a heat transfer model of inorganic particulate-
filled polymer composites based on the specific equivalent thermal resistance of the
element of composites, when only heat conduction is considered. Thus, the
calculation of the equivalent thermal conductivity for composites can be attributed to
the determination of the equivalent thermal conductivity of the unit cell with the
same specific equivalent thermal resistance. They supposed that an overall composite
consists of a number of small squared elements, and each element only contains a
spherical particle in the center. The element was divided into three parts. Part one
and part three contain only neat polymer, while part two contains both spherical
particle and polymer. The thermal conductivities of part one and part three are equal
to thermal conductivity of neat polymer. For part two, the mean thermal conductivity
is derived by considering the connection of polymer and particle in parallel. Then, the

total thermal resistance was calculated by a series model of thermal resistance of
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each part. From a definition of thermal resistance, the equation for effective thermal

conductivity can be written as

Kerr = I
3

1 1 (6vf 2
BT ()

. (2.46)
k, (;7’;)? + (2ﬁ> (ks — k)

Wl

Chauhan et al. [47] modified Liang and Liu model to consider the effect of
geometry of filler particles on the effective thermal conductivity. Two different shapes,
namely, elliptical and hexagonal, of filler particle were used in modeling.

For the elliptical shape of filler particle, the equation is

1
Kepr = I
1_1 (6”f)3 4 2 (2.47)
o Fem k % 2v¢ %
LS50 I it
A 6) + () =)
For the hexagonal shape of filler particle, the equation is
X 1
eff =
1 1. 23 2
e (vf)3 L— T (2.48)

1.62 —4 + 1.29(v; )3 (kf — ki)

(Vf)§

Although, the shapes of filler particle are different in Eq. (2.46), (2.47), and (2.48),

the predictive values from these equations are quite similar [47].
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2.3.2 Model Based on Exact Solution
2.3.2.1 Maxwell Model (Maxwell-Garnett Equation)

Maxwell solved the problem of determining the effective transport properties
of multiphase materials [13]. He derived an exact solution for the effective specific
resistance of a composite filled with spherical particles based on the continuity of
potential and electric current at the interface, and on the assumption that the
interactions among the spherical particles are neglected. This means the small
spherical particles are located far enough from each other. When the solution was

transformed to the thermal conductivity, the model can be written as

(2.49)

Eq. (2.49) is suitable for composites filled with spherical particles at very low
content and good dispersion. The interfacial thermal resistance is not considered in
this model. The effective thermal conductivity predicted by Maxwell model usually
deviates from experimental thermal conductivity at a high volume fraction, because
there is no consideration of mutual interaction of particles in this model [42]. Eq. (2.49)

is also named Maxwell-Garnett (MG) equation in terms of electrical conductivity [13].

2.3.2.2 Hamilton and Crosser Model

Hamilton and Crosser defined volume-temperature gradient-averaged thermal

conductivity of a composite as [13, 48]

Fim Vm (Z—Z)m + ke vy (Z—D .

(2.50)
o (72),, + o (),

Kepr =
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The ratio of the temperature gradient was determined from theoretical work
of Maxwell under the assumption that interaction between particles is negligible, which

relates to low filler concentration.

(Z_i)f _ nkm (2 51)
(d_y) Tk + (n— Dk, '
dx m

where n is shape factor depending on the shape of the dispersed particles and the
ratio of the conductivity of the two phases, and should be determined experimentally
for mixtures containing particles of arbitrary shapes. Substituting Eq. (2.51) into Eq.

(2.50), the equation for effective thermal conductivity is given by

1+
keff _ kf + (Tl . 1)km (2 52)
Km - vy (kr = km)

where n = %, Y is sphericity being an empirical factor. The W is defined as the ratio
of the surface area of a sphere, with a volume equal to that of the particle, to the

surface area of the particle.

2.3.2.3 Bruggeman Model

Bruggeman developed the differential effective medium (DEM) theory to
estimate the effective properties of composites at high particle concentration. The
principle of the DEM theory was briefly discussed in [49]. By considering the mutual
interaction between the particles in the composite with high filler concentration,
Bruggeman model was obtained by introducing the filler volume fraction under an

integral transformation of Maxwell model as [42]
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1

1—v = K = Keyy ( km >§ (2.53)
Ky — ko \Keopr

However, some research indicated that there are a smaller deviation between

the experiment data and the predictive value of Bruggeman model [42].

2.3.2.4 Hatta and Taya Model

Equivalent inclusion method (EIM) was first introduced by Eshelby [50] for the
determination of the elastic field of an ellipsoidal inclusion. By the principle of the
analogy of heat conduction to elasticity, Hatta and Taya [17] applied EIM to the study
of steady-state heat conduction in composite. In the EIM, an inhomogeneous region is
converted to an equivalent inclusion filled by a uniformly distributed doublet such
that the equivalent inclusion induces the same thermal intensity field as the particle.
After the temperature fields in and around an inclusion are solved, the effective
thermal conductivity of the composite can be computed. For a completely random
distribution and intrinsically isotropic property of the fillers, the effective thermal

conductivity is written as

kel =1+ vf(kf A km)[(kf I km)(2533 + 511) + 3km]

2 (2.54)
Km 3(kr — km) (1= v)S11S33 + ko (kf — k)R + 3K2,

where
R = 3(511 + 533) - Uf(2511 + 533) (255)

and S depends on the shape of the filler particle as [17]:
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1 2
S11 =822 =833 = § (2.56)

(2) Oblate spheroid (a; = a, > az)

1
a?a a a a?\2
Sll == 522 = 1—33 COS_1 _3 - _3 <1 - _3> (257)
2(a% —a3)2 Qi A a
533 = 1 - 2522 (258)
(3) Prolate spheroid (a; = a, < az)
2 2 2
asa as fa 2 a
S$11 =582, = < 3 _3<_§ - 1) — cosh 1= (2.59)
2(a2 — a2 |1 \% %
533 = 1 - 2522 (260)

where a4, a,, and az are semiaxes of ellipsoid.

2.3.2.5 Hashin Model

A generalized self-consistent scheme method of approximation for effective
properties was presented by Hashin [13]. The basic underlying assumption is that a
typical basic element of a heterogeneous medium, such as a particle in a composite,
can be regarded as being embedded in an equivalent homogeneous medium whose
properties are the unknowns to be calculated. The idea of modeling is that a spherical
particle of radius 7y, consisting of material of intrinsic conductivity ky, is embedded in
a concentric matrix shell of unspecified radius 7,, with the matrix conductivity being

k... Therefore, the composite sphere obtained is embedded in an infinite body of



38

conductivity Kesg, which is the unknown to be found. By this way, Hashin derived a

general quadratic equation as

k korr) k k k
2[2+a*+—f(1—a*)] L) 121 +2a) + L (1 —4a) +9(-L—1)v | -LL
km ko ko km ko

(2.61)
oo Ky .
—[2(1—a)+k—(1+2a )] =0

* L&Y 3
where a™ = (—) )

T2
For the particle embedded closely in the homogeneous medium of kesf, Eq.

(2.61) can be reduced by giving a* = 1 as follows:

ke — k
1- Keys Ll — 2.62
( ”f)k +2keff TV ke + 2keyy (262

Eq. (2.62) is known as Bruggeman-Landauer self-consistent effective medium

approximation (BL-SCEMA) [13].



CHAPTER 3
LITERATURE REVIEWS

Due to the continuing increase in electronic packing density, materials with high
thermal conductivities are preferred to solve the heat dissipation problem [4].
Furthermore, these materials should include the other desired properties such as
coefficients of thermal expansion matching those of substrates, low density, and low
cost [3]. To meet all requirements, new materials have been developed by combining
two or more constituents. These new materials are called composites that provide
unique combinations of properties.

Polymer is an interesting material that can be used as matrix of composite
because it possesses several desired properties such as light weight, chemical
inertness, long service life, easy processing, and low cost [3, 39]. However, the thermal
conductivity of polymer is low in the range of 0.15 - 0.25 W/m-K [42]. This causes a
plastic part to not able to conduct heat to reduce the hot spots or to act as a heat
sink for a thermally sensitive component [39]. By incorporating highly thermally
conductive filler such as ceramic particles or metal particles in polymer, it leads to a
polymer composite that possesses higher thermal conductivity than neat polymer and
still preserves the original properties of neat polymer. Polymer composites have been
used for several applications in electronic packaging such as printed circuit boards
(PCBs), electrically/thermally conductive adhesives, encapsulations, thermal interface
materials (TIMs), and electrical interconnections [3, 51]. Due to the needs of these
diverse applications, many researchers have paid their attention on the improvement
of the thermal conductivity of polymers [4, 6, 52-57]. Some important aspects of those
works were briefly reviewed in this section.

The effect of filler content on the thermal conductivity was studied by Sofian
et al. [56]. Metal powder filled high-density polyethylene composites were investigated
experimentally in the range of filler content of 0-24 vol.%. The thermal conductivity
of composites increased with the filler content. At low filler content, 0-16 vol.%, the

particles were distributed homogeneously in the polymer matrix and did not interact
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with each other. This led to the gradual increase of the thermal conductivity of
composites. At higher filler content, the formation of agglomerates and conductive
chains were occurred resulting in a rapid increase of thermal conductivity. However,
the thermal conductivity of composite could decrease at very high filler content due
to the agglomeration of filler and formation of voids [55].

Tekce et al. [57] investicated the effect of particle shape on thermal
conductivity of copper reinforced polyamide. For a given filler loading, they discovered
that copper particles in form of short fiber increased the thermal conductivity of
composite higher than copper particles in form of spherical and plate. This fact was
emphasized by Nurul and Mariatti [55] who indicated that polypropylene filled with
cylindrical particles, i.e. carbon nanotube, had the thermal conductivity higher than
polypropylene filled with spherical particles, i.e. synthetic diamond, boron nitride, and
copper. They suggested that the high aspect ratio of filler particle facilitates the
formation of bridges for phonon transformation.

The effect of particle size on thermal conductivity of epoxy-based composites
filled with boron nitride was studied by Kochetove et al. [58]. Boron nitride with
different average sizes, i.e. 70 nm (nanoparticles), 0.5 um (submicron or mesoparticles),
1.5 um and 5 um (micron sized particles) were used in the experiment. The results
showed that thermal conductivities of composites were nearly the same (0.234-0.264
W/m-K for 10 wt.% of boron nitride and 0.329-0.399 W/m-K for 20 wt.%) albeit the
average particle size increased. They seggested that the filler content strongly
dominated the thermal conductivity of composite more than the particle size. The
similar results were observed by Han et al. [59]. Their works showed that there was no
significant difference in the thermal conductivities of epoxy resin filled with different
sizes of boron nitride particle. They suggested that the size of filler particle was not
necessarily crucial to the thermal conductivity of the composites at low to moderate
concentrations. Except for high concentration, polymer filled with smaller size particles
could possess either higher thermal conductivity or lower thermal conductivity
depending on which effect of conductive path formation or interfacial thermal
resistance would be more influential [12, 60]. The distribution of particle size can be

used to improve the thermal conductivity of composite. By using filler particles with
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bimodal particle size distribution, Ishida and Rimdusit [4] succeeded in preparing a
boron nitride-filled polybenzoxazine with a high thermal conductivity of 32.5 W/m-K
at maximum filler loading of 78.5 vol.%. This high thermal conductivity was the result
of the increase of particle packing density that provided the capability of forming
conductive networks with low thermal resistance along the conductive paths.

The interfacial thermal resistance between matrix and nanoparticle plays the
important role in thermal transport in the nanocomposites. The interface thermal
resistance across the carbon nanotube matrix reported by Huxtable et al. [61] was
about 8.3x10® m?K/W. The understanding of the interface effect on the thermal
behavior of the nanotube composites was presented in form of a model by Nan et al.
[29]. They modified the Maxwell-Garnett-type effective medium approach (EMA) to
consider the effect of interfacial thermal resistance in form of the equivalent thermal
conductivities along transverse and longitudinal axes of a composite unit cell, i.e., a
nanotube coated with a very thin interfacial thermal barrier layer. The model showed
that a large interfacial thermal resistance across the nanotube-matrix interface caused
a significant degradation in the thermal conductivity. In addition, there are other
models that were developed to consider the effect of the interfacial thermal resistance
[13, 31, 34, 42, 62]. Although the concept of the interfacial thermal resistance had
been purposed by Kapitza [32] for a long time; however, the determination of the
interfacial thermal resistance for each composite still has not been reported in a large
number, partly because of the difficulties of such measurement related to the small
size of the particles [63]. Most researches just presented the values of interfacial
thermal resistance derived from fitting the experimental thermal conductivity with a
theoretical model (indirect method for determination of the interfacial thermal
resistance) [55, 62, 64]. To enhance the thermal transport of polymer composites,
Fukushima et al. [65] showed that the interfacial thermal resistance can be reduced
by the organic modifications of an inorganic surface of ceramic particles.

The basic models as described in section 2.4 generally take into account the
effects of filler content, shape of filler particle, and the orientation of filler particle.
Those models focused on the ideal case of perfect interface contact between filler

particle and matrix. In case of polymer composites filled with highly conductive filler,
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heat transfer at the interface is reduced due to thermal expansion mismatch and low
adhesion between phases, and the influence of the interface is more important if the
conductivity of the composite is high or filled with large amount of particles [63].
Recent theoretical models have been developed to include the effect of the interface
in term of the interfacial conductance or interfacial thermal resistance [13, 31]. Some
of interesting models were reviewed in this section.

Hasselman and Johnson [28] extended the classical work of Maxwell and Lord
Rayleigh to consider the interfacial thermal resistance by modifying the boundary
condition between the filler and the matrix [13, 31]. For composites filled with
spherical particles at low filler content and uniform distribution, the equation was

expressed as [13]

ki ks ke 2ks
kepr _ s (e~ = 1) + s+ * 2
K, ( ke ks ) ke 2k;
1 =z L A,
vf km ik rhint i km rhint

(3.1)

+2

where r is the radius of spherical particle and h;j,; is the thermal interfacial
conductance that is reciprocal of the thermal interfacial resistance R;,;. In case of
perfect interfaces or ﬁ = 0, Eq. (3.1) reduces to the MG equation (Eq. (2.49)).
Benveniste and Miloh [13] introduced a general approach to compute the
effective thermal conductivity of composites with imperfect interfaces between
constituents. This model was one of the first two models incorporating the effect of
the interfacial thermal resistance on the effective thermal conductivity of the
composite by modifying Maxwell’s theory (another was Hasselman and Johnson
model [28] as described previously). The method was based on the solution of the
temperature field both interior and exterior at the particle surface because of a uniform
heat flux at infinity. The temperature drop across the interface due to the interfacial

thermal resistance was accounted for in term of the interfacial conductance (hjy;). For

spherical particles, the derived equation was [13]
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where 7 is the radius of the spherical particles.

Eq. (3.2) was a special form of Eq. (3.1) in case of vanishingly small vy.
Furthermore, for perfect interface between the constituents, Eq. (3.2) also reduces to
the MG equation (Eq. (2.49)).

To extend the range of filler content, Benveniste [30] modified two
micromechanical models, i.e., generalized self-consistent scheme and Mori Tanaka
theory [66], to predict the effective thermal conductivity of particulate composites at
filler content up to vy = % and including a thermal contact resistance at interphase
boundaries. The two models resulted in the same closed-form expression for the
effective thermal conductivity of composites filled with spherical particles as follows

[30]:

rh 2k
Km

(3.3)
9 rhg 1— ko 2
( +vf)+—k vf+—kf( +vy)

where hg was the so-called “skin constant” that represented the effect of a thermal
interfacial resistance in this model.

In case of the composites filled with high conductive particles, the concept of

the Kapitza radius ag was often used, which was defined as [34]
ax = Rinckm (3.49)

The Kapitza radius is in principle the critical particle size and is usually used in

form of the interfacial thermal resistance factor (ag) as follows [34]:
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The dimensionless factor ak is a measure of the interfacial thermal resistance.
If ax =0 or v > ag, this means there is no interfacial thermal resistance; the
conductive filler can improve the thermal conductivity of the composite to be higher
than that of the matrix. In contrast, if  is smaller than ag, the thermal conductivity of
composites is lowered by adding the filler particles in the matrix even though the
particles themselves possess a much higher intrinsic conductivity than the matrix. If
the radius of the particles is equal to the Kapitza radius or ag = 1, the contribution of
the interfacial thermal resistance is then exactly balanced by the much higher thermal
conductivity of the particles [13].

Using the concept of the Kapitza radius, Eq. (3.1) can be rewritten as [34, 42]

= (3.6)

Eqg. (3.6) was also called “the modified MG equation” and can be reduced to MG
equation (Eqg. (2.49)) when the interfacial thermal resistance was neglected (ag = 0).
Eq. (3.6) was valid only when the volume fraction of filler was sufficiently dilute [34].
Nan et al. [31] developed a more general formulation for the effective thermal
conductivity of composites filled ellipsoidal particles based on multiple-scattering
theory. This model contained the effects of particle size, shape, orientation
distribution, volume fraction, and interfacial thermal resistance, but neglecting the
effect of the interaction between particles. To include the effect of interface, they
assumed that an ellipsoidal particle in the matrix was surrounded by interface layer of
thickness & and conductivity k;,: as a composite unit cell. The interfacial thermal
resistance was thought of as the limiting case of heat transport across bulk phase
separated by a thin, poorly conducting interphase region, leading to the limit that § —
0 and k;,: — 0. This interfacial thermal property was considered on a surface of zero

thickness and defined as

6
Ripe = lim ( ) 37
int kfn?go kmt ( )
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By this concept, the effective thermal conductivity (kesri,i = 1,2,3) was

derived as along the materials axes X;

24 vp[B11(1 = L11) (1 + (cos® 0)) + Pa3(1 — L33) (1 — (cos? 6))]

Kerpan = Keppze = lom 2 — v[B11L11 (1 + (cos? ) + Ba3Ls3(1 — (cos? 6))] 58
K — K 14+ ve[f11(1— L)1 — (cos? 6)) + B33(1 — L33){cos® 6)] (3.9)
e1133 " 1 = v¢[B11L11(1 — (cos? B)) + P33L33(cos? B)]
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kc (TR km

Bii = ; (3.10)
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9(0 20sin6 do

(cos? 8) =f @)cos _ St (3.11)

[9(6)sin6 do

where 6 was the angle between the materials axis X5 and the local particle axis X',
9(6) was a distribution function describing ellipsoidal particle orientation and L;; were

geometrical factors dependent on the particle shape given by

2

— — ar ar -1
Ly =Ly = 2@ —1)  2(az — 1) cosh™ a, fora, 21  (3.12a)
a? a,
Ly =Ly = sla, fora, <1 (3.12b)

+
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L33 = 1 — 2L11 (312C)
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where a, = :—i was the aspect ratio of the ellipsoidal particle; r; and 13 were radii of
the ellipsoid along the X'; and X'; axes, respectively, and a, > 1 and a, < 1 for a
prolate (a; = a, < a3) and an oblate (a; = a, > aj) ellipsoidal particle, respectively,
kefrii was the effective thermal conductivity along the local axes of an ellipsoidal

particle (i = 1,2,3) expressed as

kr

keprii = 1
(2 + a_r) akLiiks fora, =1 (3.13a)

1+ ko

ky
keff'ii o (1 + ZaT)aKLiikf for ar <1 (313b)
(1+ i )
m

Here the interfacial thermal resistance factor was defined by

ag = — fora, > 1 (3.14a)
a,
a

ag = — fora, <1 (3.14b)
as

When the ellipsoidal particles became spheres, a, = 1, L1; = L33 = é, and
(cos? @) = é, then Eq. (3.8) or (3.9) can revert back to modified MG equation (Eq. (3.6)).
For higher volume fraction of filler, Every et al. [27] developed a differential
form of Eq. (3.6) based on Differential Effective Medium theory (DEM) or Bruggeman’s
integration embedding principle [43] to take into account the particle-particle

interaction as follows:

dv[k;(1 — ay) — k]

(3.15)
(1= v)[ks(1 + 2ak) + 2k]

dk =
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where k is the thermal conductivity and v is the varying volume fraction of filler.
Integrating Eq. (3.15) with k from ky, to kesr, and v from 0 to vy, the effective

thermal conductivity of composites was derived as

1+2ak 3

3 (hm \ T (kepp — k(1 — i)\ (3.16)
(1_vf) _<Kff> <km—kf(1_a1<)

If ax = 0, negligible interfacial resistance, Eq. (3.16) reduces to Bruggeman’s equation
(Eqg. (2.53)). Thus Eq. (3.16) was called that modified Bruggeman model.

Jiajun and Xiao-Su [34] introduced into the remodified MG equation with the
effect of both interfacial thermal resistance and particle shape by combination of

Hasselman’s modification [28] and Hamiton’s modification [18] as follows:

Kerr 1+ Mm—Dagks+ (n— Dk, + (n— 1)[kf(1 —ag) — km]vf

(3.17)
km 1+ M —Dagks + (- Dk, — [kf(l —ag) — km]vf

For a small volume fraction of filler, the differential form of Eq. (3.17) can be

written as

dvlk, (1 = a) — K]
(1= v)[ks(1 + (n — Day) + (n — Dk]

dk = nk (3.18)

Eg. (3.18) was integrated based on Bruggeman’s integration embedding
principle with v from 0 to v and k from k, to kesf. The final equation which took
both the effects of interfacial thermal resistance and particle shapes into

considerations was as follows:

1+nag—ag n

n (kN Tk (kepp — k(1 — ag)\ T (3.19)
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Eqg. (3.19) predicted the effective thermal conductivities that was in good
agreement with the experimental data of polyimide filled with aluminum nitride

powder in range of filler volume fraction less than 0.25, by using ax = 0.117 [34].

z
A
Z=T COS 9 effective medium (0)
r (r1=r<e=)
continuous medium
iyl 1

particle shell

.
-

particle core

Figure 3.1 Geometry of cell for self-consistent field analysis of composite spheres

randomly mixed into a continuum [67]

Felske [67] extended the self-consistent scheme to determine the effective
thermal conductivity of composites containing randomly spherical particles and
including the thermal interfacial resistance. The geometry of cell for self-consistent
field analysis was modified by determining the core-shell sphere cell (0 <r <ry)
embedded in the effective medium (r; < r < 00) as shown in Figure 3.1. An analytical
solution was derived by determining the temperature distribution for each material
and using the volume average of any property on the volume of the material. After
performing algebraic manipulation, the effective thermal conductivity can be

expressed as

keff _ 2(1 B vf)lpz + 20y

= (3.20)
km (24 )%, + B,0)
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with

B2 = h;{lzrz (3.21)

W, = (24 vp3)ksy — 2(1 — vy3) (3.22)

Oy = (1 —vp)[2(1 + 2vp3) — 2(1 — vp3) k3o (3.23)
+ (14 20p)[(2 + vr3 )kzy — 2(1 — vp3 ) ko]

Op = (2 +v)[(1+ 2vp3) — (1 — vp3) ks (3.20)

+ (1= 2vp)[(2 + vz ) ks — 2(1 — vy3) ko]

where v¢; = (:—2)3 V3f = vf_31, h,; was the contact conductance at the interface
between the sphere and the continuous medium, k,,,, = i—’: wherem,n = 1,2,3 was
the thermal conductivity ratio where 1, 2, and 3 referred to continuous medium,
particle shell, and particle core, respectively. For a special case, the composite sphere
behaves as a uniform sphere when the shell and core have the same thermal
conductivity (k3 = k;) leading to k3, =1 and k3; = ky;. This makes Eq. (3.20)
reduces to Eq. (3.3) according to the result of Benveniste [30].

It should be noted that the equations of the modified models usually reduced
to the famous modified models, namely the modified Maxwell and the modified
Bruggeman models, for the composite filled with spherical particles. Every et al. [27]
plotted both models with the data of ZnS as a matrix and diamond particles as a filler.
The plots of these models at different values of ag were quite similar as shown in
Figure 3.2 for the modified Maxwell model and Figure 3.3 for the modified Bruggeman
model. The effective thermal conductivity decreased with increasing ak that related
to the interfacial thermal resistance. When ag = 1, the effective thermal conductivity
was the same as that of the matrix. This could be explained that the higher thermal

conductivity of the particles was exactly balanced by the higher resistance of the
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interfaces. For ag < 1, the effective thermal conductivity was lower than that of the
matrix, until ag approached infinity the lowest effective thermal conductivity was
obtained.

A comparison between the prediction by the modified Bruggeman model and
the experimental data of ZnS/diamond cited from [27] was presented in Figure 3.4. It
indicated that the modified Bruggeman model was in good agreement with the
experimental data of ZnS filled with average particle size = 2 um of diamond. It should
be noticed that this model cannot predict the effective thermal conductivity of ZnS
filled with average particle size = 0.25 um of diamond due to the nonspherical shape
of the diamond particles [27]. However, the effect of filler particle size was included
into the model. It showed that the composite filled with smaller particles had the
higher interfacial thermal resistance than the composite filled with larger particles.

As mentioned above, the effective interfacial thermal resistance can be
included into the effective thermal conductivity model by using the concept of Kapitza
radius. By this way, the effect of particle size was automatically incorporated in the
model. All modified models presented above were based on the exact solution. No

modified model based on the simplified solution has been presented so far.
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Figure 3.2 Relationship between the effective thermal conductivity and volume fraction of filler

of ZnS/diamond predicted by the modified Maxwell model by varying &g (adapted from [27])
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Figure 3.3 Relationship between the effective thermal conductivity and volume fraction of filler

of ZnS/diamond predicted by the modified Bruggeman model by varying @k (adapted from [27])
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Figure 3.4 Comparison between the effective thermal conductivity predicted by the

modified Bruggeman model and experimental data for ZnS/diamond (adapted from

[27])



CHAPTER 4
MODELING

4.1 Effective Thermal Conductivity Model without the Interfacial Thermal

Resistance

In this work, the effective thermal conductivity models were derive based on
the simplified solution and the analogy to the electrical circuit. Composite composed
of two materials, i.e., a polymer and a filler, was considered. In general, polymer is the
matrix phase while filler is the dispersed phase. For simplification, the fillers were
assumed as spherical particles that were homogeneously distributed and placed in the
form of ordered periodic arrangement. By this way, the particles could be considered
as being arranged similar to atoms in a crystal structure and the concept of unit cell
analogous to crystallography could be applied [68]. Therefore, unit cell was defined
as a representative volume element (RVE); a volume element which was small enough
to show the microscopic structural details and large enough to represent the overall
behavior of the composite [69]. In this work, three ideal arrangements, i.e. simple cubic
(SQ), body-centered cubic (BCC) and face-centered cubic (FCC), were chosen as RVE as

shown in Figure 4.1.

Heat flow Heat flow Heat flow

(a) (b) (©)
Figure 4.1 Representative volume element (RVE) in form of (a) simple cubic (SO),

(b) body-centered cubic (BCC), and (c) face-centered cubic (FCC)
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The side length of an element was defined as a. The radius and diameter of
spherical particle were r and D, respectively. The volume of each spherical particle
3
was % and the total volume of RVE was a3. Thus the filler volume fraction can be

expressed as

nenD?
Vr = 6a3

(4.1)

where n; is the number of spherical particles in a RVE.

For SC element, there is one spherical particle on each corner of the cube.
Each particle is shared equally between eight adjacent cubes. Therefore, RVE contains
in total one particle or ng = 1. The filler volume fraction for SC element (vf g¢) was

expressed as

nD3
Vrse = ead

(4.2)

For BCC element, there are one particle in the center and one spherical particle
on each corner of the cube (one-eight contribution per a particle). Thus the total
number of particle is equal to ny = 2. The filler volume fraction for BCC element

(vr gcc) was expressed as

D3
e = 355

(4.3)

For FCC element, there are one spherical particle on each face of the cube.
Each gives exactly one half contribution. In addition, there are one particle on each
corner of the cube similar to two cases above. Thus, the total number of particle is

equal to ng = 4. The filler volume fraction for FCC element (v gcc) was defined as

2nD3

Vrrce = 33

(4.4)
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In this study, the effective thermal conductivity of nonlayered composite was
modeled based on parallel-series arrangements of the thermal resistances. It was
essential to assume that local thermal equilibrium existed over a RVE and heat transfer
was occurred in one-dimension along x axis. The heat flow entered into the element
from top of the cube as shown in Figure 4.1. Thermal interfacial resistance was
neglected in this section. The mathematical model of each RVE depended on the filler
loading and their distribution in polymer matrix [10]. Consequently, the heat transfer
models of SC, BCC and FCC element were divided into eight cases by filler contents

as shown in Figures 4.2, 4.3 and 4.4, respectively.

(h (11

—

[ ]

()

Lo

Figure 4.2 Side view of simple cubic element for polymer composites filled with filler

volume fraction (1) < 0.524, and (Il) 0.524

= Y N S TR -
[ R PR R

(=2}

V)
Figure 4.3 Side view of body-centered cubic element for polymer composites filled

with filler volume fraction (Illl) < 0.131, (IV) 0.131, and (V) > 0.131
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Figure 4.4 Side view of face-centered cubic element for polymer composites filled

with filler volume fraction (VI) < 0.262, (VII) 0.262, and (VIII) > 0.262

4.1.1 Simple Cubic Model (SC1 Model)
4.1.1.1 Case I: SC1 Model with the Volume Fraction of Filler < 0.524

In case of SC element with filler volume fraction less than 0.524, the element
was divided into three section as shown in Figure 4.5(a). Section 1 and 3 contain
one-eighth of spherical particle on each corner and the rest is polymer matrix. Section
2 contains only polymer matrix. Thus, the thermal resistances of section 1 and 3 were
considered as parallel arrangement of polymer matrix resistance and filler resistance,
while the thermal resistance of section 2 comes from only the polymer matrix.
Thermal resistances of each section are arranged in series as shown in Figure 4.5(b)
where R, ; is the polymer matrix thermal resistance of section i and Ry ; is the filler
thermal resistance of section i and i = 1,2,3.

By the definition of series resistance (Eq. (2.32)), the total thermal resistance of

this element is the addition of thermal resistances of each section.
RZ = Rl + Rz + R3 (45)

where Ry, R,, and Rj3 is the thermal resistance of section 1, 2, and 3, respectively.

Then the heat flow can be written as

LT LT

Akefrsci-1
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where kefrsci-1 is the effective thermal conductivity of case | of SC1 model and A is

the area perpendicular to the heat flow.

(a) Physical model (b) Thermal circuit model
Ty
le Rf,l
R ¢
ng R.flg

- y N

Figure 4.5 (a) Physical and (b) Thermal circuit model of simple cubic element with

filler volume fraction < 0.524

Due to 4 = a?, kefrsci-1 can be derived by rearranging Eq. (4.6) as

1 1
kefrsci-1 = —(—) (a.7)
g a Rl + Rz + R3

Note that the thermal resistance of section 1 is equivalent to that of section 3,
thus they were considered together. It can be imagined that the element can be
divided into very thin layer j that its thickness is Ax;, as shown in Figure 4.5(a). The
resistance of a layer j is in parallel pattern of thermal resistances of polymer matrix
resistance Ry, ; and filler resistance Ry ;. These layers j are arranged in series pattern.

Therefore, the thermal resistances of section 1 and 3 can be written as

R—R—Zr: 1+1_1 (.8)
YT LRy Ry '
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Because there are one fourth of a circle on each corner of the square plane

(7, 2) of layer j, thus there is one circle in each layer and then Rf ; can be written as

Ry = (4.9)

fi = 9
(”bjz)kf

where bj is the radius of circle at x = x;. By trigonometric relationship, it can be written

as
b: = |r2— x.z (410)

The illustration of Eq. (4.10) is also shown in Figure 4.5.

The remaining area is of polymer matrix. Thus Ry, ; is expressed as

Rpj =
™ (a? — nb?)ky,

(4.11)

Substituting Eq. (4.9), (4.10), and (4.11) into Eq. (4.8), it can be arranged in form

of

Ax;
= 4.12
Z o 10k — ko) (7% — ) @12

When Ax; approaches to zero, it can be written as

T

R, =R lim Z A%,
P T R L Gkl — ) (7~ )

1

r
= d
fo a2k + 1(ky — k) (r? — x7) g

(4.13)



Before integrating, Eq. (4.13) can be further arranged as

Ry =Rz = (klk)fr ! dx;
T om0 ke +_(kf k)|
Ty —km) |
_ j 1
oEs (%) (&) 7 (52 + 1 -
— 1 d
O m>f P& )+ )%

From Eq. (4.2), the length of RVE for this case can be written as

1
<4nr3>3
a=
3Uf

Substituting Eq. (4.15) into Eq. (4.14), it goes to be

1

(niz) (kfk——mkm) +1

1

1
16 \3( k
2 m 2
r (97vaz> (kf_km>+1 X;

R1:R

2
3

(4nr )
3Uf

37T(kf1km),l:{ [

 n(ks 1— Km) fo

(ks — m)f [r¥sc1 + 1]2 —x?

where ygcq is expressed as

dx;
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(4.14)

(4.15)

(4.16)
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1

veer = (=2 (_km (4.17)
St \omv2 ) \kp — ki,

Integrating Eq. (4.16), the thermal resistances of section 1 or 3 can be written

as
1 1 v Vsc1 + 1 + 1
2mr (kp — k) V¥saa+1 Jysa+1-1
Considering section 2, thermal resistance of this section is expressed as
a—r)—r a-—2r
R, = ( ) = (4.19)
a’k,, a’k,,
Then Eq. (4.18) and (4.19) are substituted into Eq. (4.7) as
1 1
kefrsci-1 = z (4.20)

a—2r+2< 1 >< 1 hﬁW%1+1+1>

azkm 27T7"(kf — km) \/YSC1 +1 \/ySC1 +1-1

Dividing Eq. (4.20) by ky,, the ratio of keffsc1-1 and kpy, can be derived as

\

Kerpsci-1 _ 1 / 1
K akm\a—2r+2< 1 )( 1 In Vsc1+1+1>)
a’k, 21‘[T(kf - km) \/VSCl +1 \/VSCl +1-1
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_ 1
1+1
1_%4_( ak,y, )( 1 V¥satlt )
nr(ky —km) ) \Jrsci +1 rsca +1-1
1
B 3 3 1+1
2r 4mr3\3 /1 k., 1 Yscit1+
1= 1+(3vf) (ﬁ)(kf—km><\/y +1ln\/y +1_1)
ZT(L)3 SC1 SC1
6Uf
1
= I l
6Uf 3 4 3 km 1 YSC1+1+1
1—(—) + (5 (k . ) In
T 3mvy f T Em/ \Jyscr+1 ysei+1-1
1

1

3
<16>( k,, )( 1 VSC1+1+1>
omvg ) \kp = km Vrsaa+1 Jysci+1-1

keff,SCl—l _ 1
k 1
" 1— (6&)3 [1 __ Ysa g V¥sat 1+ 1] (4.21)
T 2J¥sci+1 Jrsa+1-1

Eq. (4.21) is the thermal conductivity model for spherical inclusions as stated

in [37].

4.1.1.2 Case Il: SC1 Model with the Volume Fraction of Filler = 0.524

In contrast to the previous case, there are no neat polymer layer in this case
because each spherical particle touches each other. The value of 0.524 is the
maximum packing fraction in case of simple cubic element. The element was divided
into two sections as shown in Figure 4.6(a). Sections 1 and 2 contain one-eighth of
spherical particle on each corner. The thermal resistances of sections 1 and 2 were
considered as parallel arrangement of polymer matrix resistance and filler resistance.

Thermal resistance of each section was arranged in series as shown in Figure 4.6(b).
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By the definition of series resistance (Eq. (2.32)), the total thermal resistance of

this element is the addition of thermal resistances of each section.
Ry =R, +R, (4.22)

where R; and R, is the thermal resistances of sections 1 and 2, respectively.

Then the heat flow can be expressed as

0= n-T7, Thi—-T,
- a - R1 + RZ (4.23)
Akeff,SCl—Z

where kefrrsci-2 is the effective thermal conductivity of case Il of SC1 model and
A = a? is the area perpendicular to the heat flow.

Rearranging Eq. (4.23), Kffsci1-2 can be given as

1 1
kerrsci-z = E(—Rl = R2> (4.24)

Note that the thermal resistance of section 1 is equivalent to that of section 2,
thus they were considered together. The element was divided into very thin layer j
that its thickness is Ax;, as shown in Figure 4.6(a). The resistance of a layer j is parallel
resistance due to polymer matrix resistance R, ; and filler resistance Ry ;. These layers
are arranged in series pattern. Therefore, the thermal resistances of sections 1 and 2

can be written as

1 1\*
R =R, = <— + —) (4.25)
0



(a) Physical model (b) Thermal circuit model
Ty
le Rf,l
Rz foz
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Figure 4.6 (a) Physical and (b) Thermal circuit model of simple cubic element with

filler volume fraction equal to 0.524

Because there are one fourth of a circle on each corner of the square plane

(,2) of layer j, thus there is one circle in each layer and then Ry ; is similar to Eq.

(4.9) and Ry, j is also similar to Eq. (4.11).
Substituting Eq. (4.9), (4.10) and (4.11) into Eq. (4.25), it leads to

T

R, = R —Z cti
! 2 — aky, + (ks — ki )(r2 — sz)

When Ax; approaches to zero, it can be written as

T

. Ax]
R1 = RZ = hm Z

30 £ @l + nlly — k)77~ )

Jj=0

T
1
- dx:
L a’k,, + T[(kf - km)(rz - sz) %)

(4.26)

(4.27)

Eq. (4.27) can be further arranged and it gave the same result with Eq. (4.14).

Here, that equation was written again as
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1

“ (ks - m)f [ 2 ( Km >+1]}_xj2dx,- (4.28)

K — Fom

R1=R

Substituting Eq. (4.15) into Eq. (4.28), it led to the result similar to Eq. (4.16).

dxj (4.29)

R1:R2

m(ky — m)f [rm] — %}

where ygcq is expressed as

1

16 \3 k
Vsc1 = <9 2> (k _mk ) (4.30)

Integrating Eq. (4.29), the thermal resistance of sectiosn 1 or 2 can be written

as

1 1 +1+1
Rl = RZ = < >< ln )/SC1 ) (431)
2mr (ke —km)) \Jysci +1  fysci+1-1

Then Eq. (4.31) was substituted into Eq. (4.24) as

1 / 1

k == (4.32)
effsci-z =~ \2 < " )( N 1))
2mr (ke = km) ) \\fysci #1 fysci +1-1

Dividing Eq. (4.20) by ky, the ratio of k,rfsc1-2 and ky, can be derived as
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Kefrsci-2 _ 1 1
Ko ak,y, 2( 1 >< 1 V¥sat 1+ 1)
an(kf - km) \/Vsc1 +1 \/VSCl +1-1
B 1
( ak,, >< 1 ¥ ¥sct 1+ 1)
(ks — ki) Vysci+1 Jysa+1-1
_ 1
- 1
<4nr3)§ (i)( ke, )( 1 1 Y¥sc +1+ 1)
3vp ) \mr) \ky — ky, V¥sci 1 ysci+1-1
1
- 1
< 4 >3< K )( (AN Vsc1+1+1>
3nvp ) \kp —km/\\fysci +1 \Jyscn +1—1
1
= 1
1 3
1(%)3(16)( fe )( 1 In Vsc1+1+1>
2\ m Imvi) \Kf —km Jrsca+1 Jysa+1-1
keppsci-z 1
Ko, 6 % 1+1 (4.33)
( vf) Yscp oo ga¥¥scat it ] '
T/ 12yysci+1 ysea+1-1

Eq. (4.33) is different from Eq. (4.21) due to the absence of the neat polymer
layer in the RVE. Eq. (4.33) predicts the effective thermal conductivity of the composite
when filler network is formed by the contact of spherical particles which are ideally

arranged in form of simple cubic structure.
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4.1.2 Body-centered Cubic Model (BCC1 Model)

4.1.2.1 Case lll: BCC1 Model with the Volume Fraction of Filler
< 0.131

In case of BCC element with filler volume fraction less than 0.131, the element
was divided into six sections as shown in Figure 4.7(a). Sections 1 and 6 contain one-
eighth of spherical particle on each corner and the rest is polymer matrix. Sections 2
and 5 contain neat polymer matrix. Sections 3 and 4 contain half of spherical particle
in the center. The thermal resistances of sections 1, 3, 4, and 6 were considered as
parallel arrangement of polymer matrix resistance and filler resistance, while the
thermal resistances of section 2 and 5 come from only the polymer matrix. Thermal
resistance of each section was arranged in series as shown in Figure 4.7(b) where R, ;
is the polymer matrix thermal resistance of section i and Ry is the filler thermal
resistance of sectioni,i =1,2,3,4,5,6.

By the definition of series resistance (Eq. (2.32)), the total thermal resistance of

this element is the addition of thermal resistances of each section.
Ry =R{+R,+R;+R,+Rs+ R (4.34)

where R; is the thermal resistance of section i.

Then the heat flow can be written as

L —T I —T

¢= a T Ri+Ry+Rs+ Ry +Rs +Re (4.35)
Akesrpcci-1

where kerrpcci-1 is the effective thermal conductivity of case Il of BCC1 model, and
A is the area perpendicular to the heat flow.

Due to A = a?, kefrBcci—1 can be derived by rearranging Eq. (4.35) as

1 1
Keppmocin = - ( ) (.36)
SIBEAT T \Ry + Ry + Ry + Ry + Rs + Rg
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Note that the thermal resistance of section 1 is equivalent to that of sections
3,4, and 6, thus they were considered together. It can be imagined that the element
was divided into very thin layer j that its thickness is Ax;, as shown in Figure 4.7(a).
The resistance of a layer j is parallel resistances due to polymer matrix resistance Ry, ;
and filler resistance Ry ;. These layers are arranged in series pattern. Therefore, the

thermal resistances of sections 1, 3, 4, and 6 can be written as

/1 1\
R1=R3=R4=R6=z _— 4 — (437)

i \Rmj  Ryj
(a) Physical model (b) Thermal circuit model
Ty
le Rf,l
h : < X = Rz
! .Z ___________ x._ X xX=r
2 Y R sz
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-
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Figure 4.7 (a) Physical and (b) Thermal circuit model of body-centered cubic element

with filler volume fraction < 0.131

Because there is one fourth of a circle on each corner of the square plane
(y,2) in sections 1 and 6 and there is a circle on center of the square plane (y,z) in

sections 3 and 4, thus there is one circle in each layer and then Ry ; can be written as
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R 2% (4.38)
A i :
(nbjz)kf
where b; is the radius of circle at x = x; as defined in Eq. (4.10).
The remaining area is of polymer matrix. Thus R,y ; is expressed as
R &% (4.39)
™ (a2 — nbjz)km '
Substituting Eq. (4.38) and (4.39) into Eq. (4.37), it can be rearranged as
¥
R, =R;=R,=R 2 2% (4.40)
1= 3 =y = Re = .
= a2k + (ks — k) (2 — sz)
When Ax; approaches zero, it can be written as
T
Ry =Ry =R, =Rg = li Z <
1= Rz =y = Ke = LM
a0 a2k, + m(ky — kpp ) (r? — x7)
" 1
= dx; (4.41)
jo aky + (ks — ki )(r2 — sz) J

Before integrating, Eq. (4.41) can be further arranged as

1

1 r
Ri=Ry=R,=Rs= f dx;
1 3 4 6 T[(kf_km) 0 km+%rf(kf—km) i ]
— x?
%(kf_km) !

1
dx;

. T

)\ a? ) [nr? \k; — ki,
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1 fr 1 4
= ) Xj 4.42
R PR -

From Eq. (4.3), the length of RVE for BCC can be written in form of

1
4= (BT (4.43)
3Uf

Substituting Eq. (4.43) into Eq. (4.42), it goes to be

1 / 1

(ks — k) Jo i\
T & G )+

dxj

dx; (4.44)

1 jr 1
T[(kf - km) 0 [TW,yBCC1 + 1]2 - sz

where Ypcc1 is expressed as

1

YBcc1 =< o1 >3< Fem ) (4.45)
InvE) \kr—kn

Integrating Eq. (4.44), the thermal resistances of these sections can be written

as
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1 1 +14+1
R1 = R3 = R4_ = R6 = < >< ln )/BCC1 > (446)
2mr (ky — k) Vyecci+1 ¥Beccr+1-1

Considering sections 2 and 5, thermal resistance is expressed as

(%—r)—r_%—Zr (a.47)

Then Eq. (4.46) and (4.47) are substituted into Eq. (4.36) as

1/ 1 \

keffBcci-1 == a (4.48)

4 1 )( 1 n YBCC1+1+1>
2mr (ky — k) Vyeeer+1 ¥Bear+1-1

Q
[\S}
/N
o [l
S
N
3%
~—
+
PO

Dividing Eq. (4.48) by k., the ratio of k.¢fpcc1-1 and ky, can be derived as

Kefrpcci-i 1 1

km akm | q — ar < 1 >< 1 1 YYBeCt +1+ 1)
Kum)

a’k,, an(kf - J¥eeei +1 ¥ +1-1

1

1_ﬂ+2( ak,, )( 1 ln\/VBCC1+1+1)
a r(kp — k) J¥Beer 1 ¥Bean +1-1

1

1
3\3 1+1
1 4r 14_2(8117” )3(1)( km )( 1 ln\/Vch"' + )

ke = km \/yBCC1+1 \/VBCC1+1_1

1
3 km 1 YBcc1 +1+1
- In
£ tm \/VBCC1 +1 \/yBCC1 +1-1
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1

= 1

1 1 3

1_2(3vf)3 z(ﬁf( 64 ) < ki )< 1 In VBCC1+1+1)
T 2\m Invi ) \kp = km V¥ecar +1 ¥ypean +1-1
KeffBCcci-1 _ 1
1
i 1— (24’71‘)§ [1 __ ¥Yeear g, ¥¥YBcaaFl 1] (4.49)
T 2\/VBCC1 +1 \/VBCC1 +1-1

4.1.2.2 Case IV: BCC1 Model with the Volume Fraction of Filler
= 0.131

In case of BCC element with filler volume fraction equal to 0.131, the element
was divided into four sections as shown in Figure 4.8(a). Sections 1 and 4 contain one-
eighth of spherical particle on each corner and the rest is polymer matrix. Sections 2
and 3 contain half of a spherical particle on center of each section. The thermal
resistances of each section were considered as parallel arrangement of polymer matrix
resistance and filler resistance. Thermal resistances of each section were arranged in
series as shown in Figure 4.8(b) where R, ; is the polymer matrix thermal resistance of
section i and Rf'l- is the filler thermal resistance of section i, i = 1, 2, 3, 4.

By the definition of series resistance (Eq. (2.32)), the total thermal resistance of

this element is the addition of thermal resistances of each section.
Rs =R;+R,+R;+R, (4.50)

where R; is the thermal resistance of section i.

Then the heat flow can be written as

-1 -1

Q - —a - R1 + R2 + R3 + R4 (451)
AkefrBCc1-2
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where kerrBcci-2 is the effective thermal conductivity of case IV of BCC1-2 and A is
the area perpendicular to the heat flow.

Due to A = a?, kefrBcc1-2 can be derived by rearranging Eq. (4.51) as

1 1
kefrpcci-z == ( ) (4.52)
' a\R, + R, + R; + R,

Note that the thermal resistances of every sections are equal, thus they were
considered together. It can be imagined that the element is divided into very thin layer
j that its thickness is Ax;, as shown in Figure 4.8(a). The resistance of a layer j is parallel
resistance due to polymer matrix resistance R, ; and filler resistance Ry ;. These layers
arrange in series pattern. Therefore, the thermal resistances of sections 1, 2, 3, and 4

can be written as
1 1\7"
R1:R2:R3:R4: —_—lt — (453)
0

Because there is one circle in each layer, then Ry ; can be written as

ij

Re:=—2
£ = abDk; (4.54)

where b is the radius of circle at x = x; as defined in Eq. (4.10).
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(a) Physical model (b) Thermal circuit model

Figure 4.8 (a) Physical and (b) Thermal circuit model of body-centered cubic element

with filler volume fraction = 0.131

The remaining area is of polymer matrix. Thus R,y ; is expressed as

R &% (4.55)
= 55
™ o(@2 = b Yo
Substituting Eq. (4.54) and (4.55) into Eq. (4.53), it can be rearranged as
T
R, =R,=R;=R —Z 2% (4.56)
e e T L2k, + (ke — k) (r? — x7) ’

j=0
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When Ax; approaches zero, it can be written as

Ry =R; =R3 =Ry = lim

%0 £ @+ 1y — ) (2 =)

T
1
.];, @y + (ks — k) (12 — sz) (@.57)
Before integrating, Eq. (4.57) can be further arranged as
R, =R, =R; =R ! fr ! d
1= Ry =Rz =R~y = X;
— x'
j
= (kf - m)
L 1 :
w(k a2\ (nmr a? k., ) ]} o2
U = m) {( >(a2)[ﬂr2<kf—km Ty
L 1 .
(k o[ a% [ km J (4.58)
5 P
Substituting Eq. (4.43) into Eq. (4.58), it goes to be
R R, =R R, = ! fr ! d
1= [ = ~R3 T Tk —k,, 2 Xj
i) O{r [(837 ) () (2% )“}‘xf
f/ T f— Km
1 T 1
dx
T[(kf km)‘f(; X 64 % km , !
<97rvf) <kf km) Y
. f - &% (4.59)
n( f m) [7V¥Becr + ] — X}
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where ypccy is expressed as

1

vocer = () (K (4.60)
BT\ o2 ) \kp — ke

Integrating Eq. (4.44), the thermal resistance of these sections can be written

as

R1:R2:R3:R4

_ < 1 > < 1 ln\/VBCCl +1+ 1) (4.61)

Z”r(kf — ki) V¥ecar+1 Yo +1-1

Then Eq. (4.61) is substituted into Eq. (4.52) as

1 / 1

k == (4.62)
eff,BCC1-2 ak ( 1 )( 1 lnwl)/BCC1+1+1>)

4
2mr (g — k) J¥eccr +1 ¥Becr +1-1

Dividing Eq. (4.62) by k,, the ratio of k.¢fpcc1-2 and ky, can be derived as

Kerrpeci—z 1 1

km akm < 1 ) < 1 In v/ VBCC1 +1+ 1)

4
2mr (kp — k) J¥Beer 1 ¥Bear+1-1

1

aky, 1 YBcca+1+1
2 In
wr(ky — k) J¥eecci+1l ¥Becar+1-1

Z(Snr3>%(1)< Ky )( 1 lnm-l_l)

3vy mr) \ky — km Jyeccr+1 ¥Becci +1-1
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Wl

8
2
(3”2”f>

ko 1 YBcci +1+1
- In
F = *m/\Jygecc1+1 ¥Bccr +1-1

1

1

3
64 Km 1 Yecca t1+1
ey o In
TUs f~%m/ \\Jygeccr +1  /¥Becr +1-1
kerrBcci—z 1

k 1
" (24vf)3 ( VBccr g, VYBeer F 1+ 1) (4.63)

T 2\/VBCC1 Hi \/)/BCC1 +1-1

1
3

2 317f
2 (T)

4.1.2.3 Case V: BCC1 Model with the Volume Fraction of Filler
> 0.131

In case of BCC element with filler volume fraction more than 0.131, the
element was divided into six sections as shown in Figure 4.9(a). Sections 1 and 6 contain
some segment of spherical particle on each corner and the rest is polymer matrix.
Sections 2 and 5 contain some segment of spherical particle on each corner and
center. Sections 3 and 4 contain some segment of spherical particle on center. The
thermal resistances of every sections were considered as parallel arrangement of
polymer matrix resistance and filler resistance. Thermal resistance of each section was
arranged in series as shown in Figure 4.9(b) where R, ; is the polymer matrix thermal
resistance of section i and Rf; is the filler thermal resistance of section i, i =
1,2,3,4,5,6.

From the definition of series resistance (Eq. (2.32)), the total thermal resistance

of this element is the addition of thermal resistances of each section.

RZ=R1+R2+R3+R4+R5+R6 (464)

where R; is the thermal resistance of section i.



14

Then the heat flow can be written as

LT LT

¢= a " Ri+R,+R;+ Ry +Rs + Rg (4.65)
Akerrpeci-3

where kqfr pcei-3 is the effective thermal conductivity of case V of BCC1 model, and
A is the area perpendicular to the heat flow.

Due to A = a?, kefrBcc1-3 can be derived by rearranging Eq. (4.65) as

1 1
k _ =—( ) (4.66)
effBCCI=3 = o \R; + R, + R; + R, + Rs + R,

It is worth to note that the thermal resistance of section 1 is equivalent to that
of section 6, the thermal resistance of section 2 is equivalent to that of section 5, and
the thermal resistance of section 3 is equivalent to that of section 4. Each section will
be considered separately.

It can be imagined that the element is divided into very thin layer j that its
thickness is Ax;j, as shown in Figure 4.9(a). The resistance of a layer j is parallel
resistances due to polymer matrix resistance R, ; and filler resistance Ry ;. These
layers arrange in series pattern. Therefore, the thermal resistance of each section can

be written as

-1

1 1
<_ + —> (4.67)
Rm,j Ry

n

3,

j=0
where subscript j is the layer number.

For sections 1 and 6, because there is one fourth of a circle on each corner of
the square plane (¥, z), thus there is one circle in each layer and then Ry ; can be

written as
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R = —————

where b; is the radius of circle at x = x; as defined in Eq. (4.10).

(a) Physical model (b) Thermal circuit model
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Figure 4.9 (a) Physical and (b) Thermal circuit model of body-centered cubic element

with filler volume fraction > 0.131
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The remaining area is of polymer matrix. Thus R,y ; is expressed as

ij

(a2 — nbjz)km

Ry ; = (4.69)

Substituting Eq. (4.68) and (4.69) into Eq. (4.67), it can be arranged in form of

a
2

_ z Ax; (4.70)
= a’k,, + T[(kf m)(rz - x-z)

]

-r

When Ax; approaches to zero, it can be written as

27 1
= d (a.71)
JO aky + (ks — k) (12 — sz) *
Before integrating, Eq. (4.71) can be further arranged as
Ry =R ! J__T ! d
1= hg = Xj
n(kf — km) 0 K, _|_ = (kf m) ,
— X
a? (kf - m)
e, 1
n(kf m)f a2\ (mr a2 K, ) 3 dx;
{<ﬂ)(a2)[nr2<kf k )+ ]}_xf
e
x.
~ (K a2 Ko j (4.72)
(f ) e 2) + 1t -

Substituting Eq. (4.43) into Eq. (4.72), it leads to
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P S 1 :
1= e = 2 %
T[(kf - km) 0 , (87‘(T‘3>§( 1 )( Ko ) il e
r 3Uf 77,'7"2 kf - km xj
a
1 j‘f‘r 1 d
(ks = km) Jo 3 !
r2 64 ( o ) +1|p—x?
onv? ) \ly = Fom i
a
1 2" 1
= f = dx; (4.73)
T[(kf - km) 0 [rW/)/BCCI + 1] - ij

where yYpcc1 is expressed as

1

vace, 2 [/ & S(_km (a.70)
BeCt onvi) \kr—km

Integrating Eq. (4.73), the thermal resistances of sections 1 and 6 can be written

as

R, = R, = < 1 > < 1 In VYBcci +1+ ,BBCC1> (@75)

2”r(kf - km) \/VBCCl +1 \/VBCC1 + 1 — Brccr
where Bgccy is defined as

1
3

T
Pecc1 = <E> -1 (4.76)
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For sections 2 and 5, there are one fourth of a circle on each corner and one
circle on center of the square plane (y, z), thus there is two circle in each layer and

then Ry ; can be written as

77 (wb? + md? )k,

@.77)

where b; is the radius of circle at x = x; as defined in Eq. (4.10) and d; is the radius of

circle at x = x; as follows

g = \/rz _ (% Z xj)z (4.78)

The illustration of Eq. (4.78) is shown as Figure 4.10.

N2

Figure 4.10 Radius of two spherical particles on plane (y,z) in section 2 of body-

centered cubic element with filler volume fraction > 0.131
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The remaining area is of polymer matrix. Thus R,y ; is expressed as

Z&Ag

R, .=
™ (a2 - nb} — ndjz)km

(4.79)

Substituting Eq. (4.77) and (4.79) into Eq. (4.67), thermal resistances of sections

2 and 5 can be written as

RZ = R5 =

2
—2m(k; — )sz +an(kp — km)x; + kya? + 2mr2(kp — kyy,) — % (kf — km)

]———r

Ax;
Z 50
T[(kaf n1) —'2§¥ A Clla + ( k}nCl ) _ E%? ( )
km

When Ax; approaches zero, it can be written as

R, = Rg = i 2
2 = hg = IQE :E: 2 2
8% O”(kf m) »—2x% + ax A _kma” + 2r2 — aT
7T(kf — km)
1 - 1
~ a1k, — k) Ja Ko a2 2 (4.81)
n(ky — km) ALOBGKDRN, WNIVERSITY - '
”(kf )
Before integrating, Eq. (4.81) can be further arranged as
R R ! ' ! d
2 = s = 2 7 dx;
ﬂ(kf -k ) Z—T -2 2 i kma 2r2 — a_
m) 5 Xj +ax]+n(kf—km)+ r )
1 r 1
dx;

=7rk — k. )Ja_ a?\ (nr2\ [ a? k a? U
U =) e 2+ 0 +{( ) () [m(kf )~ + 2
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1 r 1
= dx:
ke — k) Ja, a2 k,, a? J (4.82)
=) s 4 a4 b W(kf ) e 2]
Substituting Eq. (4.43) into Eq. (4.82), it leads to
R, =R ! ' ! d
= = X
2 5 T[(kf _ km) %—r 2 2

— D2 . 2
ij +ax; + {r

(55) G o) - (55) ) +2

1 r
il — k) S,

[T

2
5m7) (52) ~(35)
<97w]3> (kf_km 3vr +2

_ 1 r 1
(ks — k) J2_

2
—2x7 + ax; + {rz

—2x% + ax; +{r? |y —(L) +2
i i { Bect ~ \ 3y

} (4.83)

where ygccy is defined as Eq. (4.74).

Integrating Eq. (4.83), the thermal resistances of sections 2 and 5 can be written

as

wIN

1
T \3 1
1 2 2_(W> +\/4+2”BCC1_(E)
R, =Ry = In
2 > (nr(kf — km)) - 2 . 1 i
4+ 2¥pcc1 — (%) 2- (@) — |4+ 2ypcca — (E)

1 2 1- +6
R, = Rs = ( )( In Pecct BCC1> (4.80)
mr(ky — km)/ \Oscca 1= PBeccr — Speca

wIN

where Bpccy is defined as Eq. (4.76) and dpccy is expressed as
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2

T 3
Ogcc1 = |4+ 2¥Bec1 — <£> = 4+ 2ypccr — Beecy + 1)2

(4.85)

For sections 3 and 4, there is one circle on center in each layer of the square

plane (¥,z) and then Ry j can be written as

R 2 (4.86)
i T T :
(T[djz)kf
where d; is the radius of circle at x = x; as defined in Eq. (4.78).
The remaining area is of polymer matrix. Thus R,y ; is expressed as
R L (a.87)
™ (a2 = wd? ko ’
Substituting Eq. (4.86) and (4.87) into Eq. (4.67), it can be arranged as
a
d A
x.
R, =R, = Z J (4.88)

=r a’k,, + T[(kf — k) (rz = (% — x]-)2>

When Ax; approaches zero, it can be written as

N Q

A.Xj

Rs =Ry = lim, a 2
IS @k + (ke — k) (r2 - (7 - xj) )
a

2 1
fr a2k + (ke — k) (rz -(3- xj)z) K (4.89)
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Before integrating, Eq. (4.89) can be further arranged as

ok 1 f% 1 ;
3 = 4 = xj
T[(kf —km) k., + (kf Kum) B (2 B x')z
a? (kf o m) 2 7
1 z 1
- n(k —k )]2 a2\ (nr2\ [ a? ko a 7 4%
Pl () () [ () + 1) - G )
a
2
dx;
( f T‘Z W W)‘Fl]} ——X])
Substituting Eq. (4.43) into Eq. (4.90), it led to
a
R; =R, = ! fi 1 dx
3 =Ry = :
T[(kf—km) r 87r3 ; 1 km )+1 _(g_ )2
re ( 3Uf ) (HTZ) (kf -k, 2 %j

N[ Q

1

1
64 \3( k a_ 2
2 m — (= — 4.
r (97“;;) (kf - km> +1|t-(3-%)

(K, 1— o) f

N[ Q

1

1
B (kg — k) f [7/vBee: + ] — (— — x])2 9 o

where Ypccy is expressed as Eq. (4.74).
Integrating Eq. (4.91), the thermal resistances of sections 3 and 4 can be written

as

Ry =R, = ( 1 )( ! myreca 1+ ﬁBC“) (4.92)

an(kf - km) \/VBCCl +1 \/)’ch + 1 — Brccr
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where Bgccy is defined as Eq. (4.76).
Then Eq. (4.75), (4.84), and (4.92) are substituted into Eq. (4.66) as

!
|
1

(
" |
Keppccios = — /
FFBCCL=3 ™ 4 { ) < 2 pl=Feca t 5Bcc1) + 1 Vocer + 1+ Bocer }
§ nr(kf k)

5Bcc1 T = Byces — Bsecn V¥Beer + 1 \/}/ch +1— Bgecs

.f \.
kefspeci-s _ L{ 1 }
km akn, 2 1 2 In — Bgcer + Opect 1 1 VYBect + 1+ Beccs

- 5 = Bacer — Osccr) T )
( (ks — k) BCC1 BCC1 ~ OBcCt V¥Beer + 1 \/VBcc1 +1—PBrccr

1

( aky >[( 2 n 1—Brccs + 5Bcc1) + ( 1 nY YBcci + 1+ ﬁch)]

2
”T(kf - km) Oscer 1~ Preet — OBcer \/VBCC1 + 1 \/}’Bcc1 +1 - Bgect

1

Z(Snﬁ)%(l)( K )[( 2 1- ﬁBcc1+5BCC1)+< 1 Wﬂf}m)]

3vr ) \mwr/\ky — ki) |\8ecci 1= Beeer — Osect V¥Beer +1 \/Vch +1 - Bgecs

1

(kfkm )[( 2 T 1 ﬁBcc1+5Bcc1)+( 1 \/VBCC1 +BBCC1>]

= km/[\dscer 1= Becer ~ dpecn V¥Bcar + 1 \/}/BCCI +1 - Brcct

1
3

8
2 (Snzvf)

1

( 64 >3 (kfkm )[( 2 In 1 ﬁBcc1+5Bcc1)+( 1 W"'ﬁsccl)]

omv} = km/ [\OBcc ~ Prcer — Opecr V¥eca +1 \/)/BCC1 +1 - Brccs

1
3

(%)

keffpcci-s _ 1
k 1
" (3&>3 (ZVBCC11 1—Brces + 5Bcc1) I YBcc1 VVBCC1 1+ Brcca (4.93)
T dpcc ~ Brcer ~ Opec N 1 \/)/BCC1 +1—Bgcc

Finally, the ratio of keffpcci—3 and ky, is derived as shown in Eq. (4.93).
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4.1.3 Face-centered Cubic Model (FCC1 Model)

4.1.3.1 Case VI: FCC1 Model with the Volume Fraction of Filler
< 0.262

In case of FCC element with filler volume fraction less than 0.262, the element
was divided into six sections as shown in Figure 4.11(a). Sections 1, 3, 4 and 6 contain
one-eighth of spherical particle on each corner and half of spherical particle on center.
Sections 2 and 5 contain neat polymer matrix. The thermal resistances of sections 1,
3, 4, and 6 were considered as parallel arrangement of polymer matrix resistance and
filler resistance, while the thermal resistance of sections 2 and 5 come from only the
polymer matrix. Thermal resistances of each section is arranged in series as shown in
Figure 4.11(b) where R, ; is the polymer matrix thermal resistance of section i and
Ry ; is the filler thermal resistance of section i, i = 1,2, 3, 4, 5, 6.

By the definition of series resistance (Eq. (2.32)), the total thermal resistance of

this element (Ry) is the addition of thermal resistances of each section.
Ry =R{+R,+R;+R,+Rs+ R (4.94)

where R; is the thermal resistance of section i.

Then the heat flow can be written as

L —T -1

¢= a “Ri+R,+Rs+ R, +Rs +Re (4.95)
Akesrreci-1

where kerrreci-1 1S the effective thermal conductivity of case VI of FCC1 model and
A is the area perpendicular to the heat flow.

Due to 4 = a?, kefrrcc1—1 can be derived by rearranging Eq. (4.95) as

1 1
k . =_( ) (4.96)
ILFCCI=1 ™ g \Ry + R, + Ry + Ry + Rs + R
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(a) Physical model (b) Thermal circuit model

R

X =
X
r—x—r R 3
a
| = Q
2
a
==
§+ R
— x=—-+r
2
—x=a-—r
A.?Cj
XxX=a
Rm 6

NS

Figure 4.11 (a) Physical and (b) Thermal circuit model of face-centered cubic element

n
1 Rr 1
Rp2
.3 Rf.
4 Re
Rm,S
6 Ry,
T,

with filler volume fraction < 0.262

Note that the thermal resistance of section 1 is equivalent to that of sections
3,4, and 6, thus they were considered together. It can be imagined that the element
is divided into very thin layer j that its thickness is Ax;, as shown in Figure 4.11(a). The
resistance of a layer j is parallel resistances due to polymer matrix resistance R, ; and
filler resistance Ry ;. These layers arrange in series pattern. Therefore, the thermal

resistances of sections 1, 3, 4, and 6 can be written as

1 1\ "
i \Rmj Ryj

Because there is one fourth of a circle on each corner and one circle on center
of the square plane (y, z) in these sections, thus there is two circles in each layer and

then Ry ; can be written as
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R, =9 (4.98)
fii = .98
where b; is the radius of circle at x = x; as defined in Eq. (4.10).
The remaining area is of polymer matrix. Thus R,y ; is expressed as
R 2% (4.99)
P = .99
mJ (a2 — anjz)km
Substituting Eq. (4.98) and (4.99) into Eq. (4.97), it can be arranged as
r
R, =Ry =R, =R 2 2% (4.100)
1= 3 = [y = Reg = .
= aky, + 2m(ky — k) (r? — sz)
When Ax; approaches zero, it can be written as
T
R, =R; =R, = Rg = li Z 2
1= Rz =y = Ke = LM
e~ a2k, + 21 (kp — k) (r? — x7)
[ : d @.10)
= X; 4.101
o @%ky + 2m(ky — kp)(r? — sz) J

Eq. (4.101) can be further arranged as

1 T 1
Ry =R3=R,=Rs= f dx;
1 3 4 6 Zﬂ(kf—km) o km+2n§2 (kf_km) ]
a
2 %
a_g(kf_km)

1
dx;

"5 e

)\ a? ) 12nr2 \ks — kp,
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1

1 fr
= dx;
_ 2 J 4.102
Zﬂ(kf km) 0 {rz 2;7«-2 (kf k_mkm> + 1]} _ sz ( )

From Eq. (4.4), the length of RVE for FCC can be written in form of

1

_ (16’"3>§ (4.103)
3Uf

Substituting Eq. (4.103) into Eq. (4.102), it goes to be

1

1 r
Ry = Re = 2n(ky — km)fo {rz [(16111’3)%( 1 )( K ) +1

3vy 2nr2) \ks — km

R1=R3=

1

1
32 \3/ k
2 m )
& <9nv]§> (kf_km)+1 X

1 T
2n(ky - km)JO

dx; (4.104)

_ 1 fr 1
2 (ks — k) Jo [rVEceL + 1]2 —x7

where Ygcc1 is expressed as

1

Yrcc1 = 32\ (__fem (4.105)
onvE) \kr—kn

Integrating Eq. (4.104), the thermal resistance of these sections can be written

as
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1 1 +14+1
R1 = R3 = R4_ = R6 = < >< ln )/FCC1 > (4106)
arr(kp — ko) V¥rcar+ 1 Jypcaa +1-1

Considering sections 2 and 5, thermal resistances are expressed as

(z-7)-r -2 (4.107)
R2:R5: = N

Then Eq. (4.106) and (4.107) are substituted into Eq. (4.96) as

1/ 1 \

keffrcci-1 == a (4.108)

) ( 1 )( 1 Yrea F1+1
+4 n
4 (kp — k) J¥rccr +1 ¥rear +1-1

Q
N
N
a [~
N
P\T‘[\)
gﬁ

Dividing Eq. (4.108) by ki, the ratio of keffrcc1—1 and kp, can be derived as

Kefrcci-1 1 1

km akm a—4r < 1 >< 1 lnﬂ)/FCC:L +1+ 1>

a’ky, 47T7"(kf - km) \/)/Fcc1 +1 \/VFCC1 +1-1

1_ﬂ+( ak,, )( 1 1n\/VFCC1+1+1>
a mr (ke — km) Jrrccr+ 1 J¥pecaa +1-1

1
= 1
L4 +C@wvwgo< h1)< 1 m“”“1+1+ﬁ
: 3vr ) \ky = ki \/VFcc1 +1 \/VFcc1 +1-1

1

1
3 km 1 Yrcc1 +1+1
=k In
£ tm \/VFCC1 +1 \/VFCC1 +1-1
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1
3
32 ko 1 Yrecr +1+1
oy - In
vy f~%m/ \J¥rce1 + 1 ¥rcan +1-1

Kefrrcci-1 1

k 1
" 1— (ﬂ)B ll ____ Yrca ln\/m + 1] (4.109)

T 2\/VFCC1 +1 \/)/FCC1 +1-1

4.1.3.2 Case VII: FCC1 Model with the Volume Fraction of Filler
= 0.262

In case of BCC element with filler volume fraction equal to 0.262, the element
was divided into four sections as shown in Figure 4.12(a). Every sections contain one-
eighth of spherical particle on each corner and half of a spherical particle on center of
each section. The thermal resistances of each section were considered as parallel
arrangement of polymer matrix resistance and filler resistance. Thermal resistance of
each section was arranged in series as shown in Figure 4.12(b) where R,,; is the
polymer matrix thermal resistance of section i and Ry ; is the filler thermal resistance
of sectioni,i=1,2,3,4.

By the definition of series resistance (Eq. (2.32)), the total thermal resistance of

this element is the addition of thermal resistances of each section.
Ry =R;+R, +R; + R, (4.110)

where R; is the thermal resistance of section i.

Then the heat flow can be written as

-1 -1

Q:—a :R1+R2+R3+R4 (4111)
Akefrrcci-z
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where kefr peci-2 is the effective thermal conductivity of case VI of FCC1 model and
A is the area perpendicular to the heat flow.

Due to A = a?, kefrrcci-2 can be derived by rearranging Eq. (4.101) as

1 1
k _ =—( ) (@.112)
effFCC-2= o \R,+ R, + Rs + R,

Note that the thermal resistances of every sections are equal, thus they were
considered together. It can be imagined that the element is divided into very thin layer
J that its thickness is Ax;, as shown in Figure 4.12(a). The resistance of a layer j is
parallel resistance due to polymer matrix resistance R, ; and filler resistance Ry ;.
These layers arrange in series pattern. Therefore, the thermal resistances of sections 1,

2, 3, and 4 can be written as
1 1\
R1:R2:R3:R4: _+_ (4113)
0

Because there are two circles in each layer, then Ry ; can be written as

ij

Re:=—1
7 btk (4.114)

where bj is the radius of circle at x = x; as defined in Eq. (4.10).
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(a) Physical model (b) Thermal circuit model

= =
E E|
w %]
= =
w [*]

Figure 4.12 (a) Physical and (b) Thermal circuit model of face-centered cubic element

with filler volume fraction = 0.262

The remaining area is of polymer matrix. Thus Ry, ; is expressed as

ij

R, =
- (aZ—ZTrij)km

(4.115)

Substituting Eq. (4.114) and (4.115) into Eq. (4.113), it can be arranged as

r

Ax;
R =R, = R. = R :Z / 4.116
P Liaky, + 2n(ky — k) (12 — x7) (@119

Jj=0
When Ax; approaches zero, it can be written as

r

Ax;
R1=R2=R3=R4=limz ]
8xj=0 £ a2k, + 21 (kp — k) (r? — x7)
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T
1
= d
,I;, aky, + 2m(ky — k) (r? — sz) x

(4.117)

Before integrating, Eq. (4.117) can be further arranged as

1
(k= m)
(kf km)

1
dx;

2n(kf m)f {(az) (nr ) 22; (kfk—mkm)“]}—xf j

1
dx;

27T(kf—km)f 2[27Tr2( Kin )+1]}—ij J (4.118)

ks — km

Ri=R,=R3=R, =
1 2 3 4 zn_(kf _ km)fo k 27_”,.

Substituting Eq. (4.103) into Eq. (4.118), it goes to be

1

Rom [’
P 2m (ke — k) Jo {rz [(16nr3>§( 1 )( ko )+1

R1=R2=R3=

dxj

3vy 2rnr2) \ks — km

=
1

1
32 \3/ k
2 m ;
r <97w]§> (kf_km)+1 X;

1 T
2n(ky - km)JO

dx; (4.119)

B 1 fr 1
2m(ky = k) Jo [r\fypees + 1) — x2

where Ygcc1 is expressed as

1

veces = (=2 ) [(Km (4.120)
97'[17]2 kf_km
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Integrating Eq. (4.119), the thermal resistances of these sections can be written

as

1 1 +14+1
R,=R,=R;=R, = < >< In YYECCL > (@.121)
amr (ky — k) Vyrcei+1 J¥pcaa +1-1

Then Eq. (4.121) is substituted into Eq. (4.112) as

n 1 \

k == | (@122
eff,FCC1-2 ak ( 1 >< 1 lnﬂ'yFCC1+1+1>/

4
amr(kp — ki) J¥reccr 1 Ypecar +1-1

Dividing Eq. (4.122) by Ky, the ratio of ks rcc1-2 and Ky, can be derived as

kefrrcci-z _ 1 1
km akm 4< 1 ) < 1 ln YFrcc1 + 1 + 1>/
aer (fep — k) V¥ecar+ 1 ¥recar +1-1
_ 1
( ak,, > < 1 1 VYFec +1+ 1)
(ke — k) V¥ecaa+1 ¥recar +1-1
1
- 1
(16nr3)3 (L) ( K ) < 1 rreat1+4 1)
3vy r) \kg — km \/)’ch +1 \/VFCC1 +1-1
1

1
( 16 >§( ko ) < 1 1 VYFec + 1+ 1)
3m2vp) \kp = kim V¥rccr 1 ¥pcan +1-1
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1

(3vf>%< 32 >3( k., )( 1 ln‘/erl)

2w ) \9mvg) \kr = km J¥recer + 1 ¥recar +1-1
Kefrreci-z 1
- 1
m (12Uf)§< Yrcca ), VVFca +1+ 1) (4.123)
n 2J¥rccr +1 ¥rcaa +1-1

4.1.3.3 Case VIII: FCC1 Model with the Volume Fraction of Filler >
0.262

In case of BCC element with filler volume fraction more than 0.262, the
element was divided into six sections as shown in Figure 4.13(a). Sections 1 and 6
contain some segment of spherical particle on each corner and center. Sections 2 and
5 contain some segment of spherical particle on each corner, edge, and center.
Sections 3 and 4 contain some segment of spherical particle on each edge. The
thermal resistances of every sections were considered as parallel arrangement of
polymer matrix resistance and filler resistance. Thermal resistances of each section
were arranged in series as shown in Figure 4.13(b) where Ry, ; is the polymer matrix
thermal resistance of section i and R is the filler thermal resistance of section i, i =
1,2,3,4,5,6.

By the definition of series resistance (Eq. (2.32)), the total thermal resistance of

this element is the addition of thermal resistances of each section.
RZ =R1+R2+R3+R4+R5+R6 (4124)

where R; is the thermal resistance of section i.

Then the heat flow can be written as

LT -1

Q=#=R1+R2+R3+R4+R5+R6 (4.125)
Akeff,FCC1—3
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where Kerr rcci-3 IS the effective thermal conductivity for case VIII of FCC1 model and
A is the area perpendicular to the heat flow.

Due to A = a?, kesr rcc1-3 can be derived by rearranging Eq. (4.125) as

1 1
Kepprccrs == ) (4.126)
IIFCCI=3 T g \Ry + Ry + Ry + Ry + Rs + Rg

It is worth to note that the thermal resistance of section 1 is equivalent to that
of sections 3, 4, and 6, and the thermal resistance of section 2 is equivalent to that of
section 5.

It can be imagined that the element is divided into very thin layer j that its
thickness is Ax;, as shown in Figure 4.13(a). The resistance of a layer j is parallel
resistances due to polymer matrix resistance R, ; and filler resistance Ry ;. These
layers arrange in series pattern. Therefore, the thermal resistance of each section can

be written as

1 1.5
R, =Z<—+—> (4.127)
‘ Li\Rm; Ry

For sections 1, 3, 4, and 6, because there is one fourth of a circle on each
corner and one circle on center of the square plane (y, z), thus there is one circle in
each layer and then Ry ; can be written as

A.Xj

R =— 2 —
£ (2rb?)k; (4.128)

where b; is the radius of circle at x = x; as defined in Eq. (4.10).
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(a) Physical model (b) Thermal circuit model

T

Ry o Rf,Z
x=0
1 X a
L yx = ——17r
2 4 2 R R
—x =7 m,3 .3
3 a
4 T2
xX=a-—r Ry Ry
5 a
— X =E+?’
6 ::&xj
X=a Rins Rys
T,
Rm6 Rf,G
T,

Figure 4.13 (a) Physical and (b) Thermal circuit model of face-centered cubic element

with filler volume fraction > 0.262

The remaining area is of polymer matrix. Thus R,y ; is expressed as

(4.129)

™ (a? = 2wb? )k,

Substituting Eq. (4.128) and (4.129) into Eq. (4.127), it can be arranged as

o-r
2

Ax;
R —R.=R,=R :z J (4.130)
toos T e — a2k, + 21 (kp — k) (r? — x7)
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When Ax; approaches to zero, it can be written as

a
2

R1:R3:R4:R6: llm Z

8xj=0 £t a2k, + 210 (kp — k) (1?2 — x7)

—r

=0

-

a

7T 1
= dx; (4.131)
.[; a2k + 21 (kp — k) (r? — x7) g

Before integrating, Eq. (4.131) can be further arranged as

R R R R —1 f%_r - d
1= R3 =Ry = Re = 2 Xj
2n(ks — k 27r
n(f m) 0 km+7(kf—km) .
2T J
ﬁ(kf o km)
1 J%—T 1 ;
R — X;
21k, — k a2\ (nr®\[ a? k J
wl =) do {(F) () [ () + 1} -
1 f%‘r 1 ;
=S N Xj (4.132)
2r(ks — k 2 az(km ) ]}_2 g

Substituting Eq. (4.103) into Eq. (4.132), it led to

R1:R3:R4=R

16mr3\3/ 1 ko

o m[ {TZ [

j
— x?

1

a
_ 1 J‘E‘r
Zﬂ(kf - km) 0

l dx]
32 \3/ k
2 m 2
T <97rv]3> (kf — km) +1 X
1 77 1
- f _dx (4.133)
Zn(kf - km) 0 [rﬂ,)/FCCI + 1] — sz
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where Ygcc1 is expressed as

1

Yrcc1 = 32 V' (_Km (4.134)
97'[17]; kf - km

Integrating Eq. (4.133), the thermal resistances of sections 1, 3, 4 and 6 can be

written as

1 >( 1 In VYrcc1 +1+ ﬁFCCl) (4.135)

1= s m e e amr (ke — km)) \\V¥eccr + 1 ¥recr + 1 — Breca

where Brccy is defined as

Brcc1 = <2—T[>3 -1 (4.136)
f

For sections 2 and 5, there are one fourth of a circle on each corner, one circle
on center, and half of circle on each edge of the square plane (y, z), thus there are

four circles in each layer and then Ry ; can be written as

Ry =
P17 (2rb? + 2md? ks

(4.137)

where bj is the radius of circle at x = x; as defined in Eq. (4.10) and d; is the radius of
circle at x = x; as defined in Eq. (4.78).

The remaining area is of polymer matrix. Thus Ry, ; is expressed as

R _ AXJ
™ (a2 - 2mb? — 2md? )k,

(4.138)
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Substituting Eq. (4.137) and (4.138) into Eq. (4.127), thermal resistances of

sections 2 and 5 can be written as

RZ = Rs = Ax}
= —4n(kp — kp )7 + 2ant(ky — kin)Xj + kppa? + 4mr? (ke — ki) — (kf — ki)
1 i Ax;
2 2 (4.139)
Zn(kf k) joT, —2x7 +ax; + _tm@ o2 aT
2 Zﬂ(kf - km)
When Ax; approaches zero, it can be written as
) Ax;
RZ_RS_ALl-rBozn(k — k) z : k,,a? _a?
J fotm) @ =2+ axg + — -
=7 [k Zn(kf m) 4
1 r 1
~ 20k, — k) Ja kpa? 2% (a.140)
fT M) 20 4 axg + <+ 212 — '
J 2n(kp — k) 4

Before integrating, Eq. (4.140) can be further arranged as

R R ! ' - d
2 = s = 2%
2n(ly —kem) Joor px2 4 gy 4 —Km@ 4 g0 &
J J Zﬂ(kf m) 4
1 r 1
N 2n(ks — k) Ja 2 a?\ (nr?\[_a? km a? 5
f m) T =2x7 +ax; + {<?) <7) [Zm”z <kf — km) T 4r? + 2]}
1 r 1

= — 2 2 J 4141
2mlly = hem) S —ax? + ax; + U 2 (kfk—imkm) g2+ 7] e
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Substituting Eq. (4.103) into Eq. (4.141), it led to

Ry = —— ' . d
* " 2nly — k) Jos z %

2
16mr3\3 [ 1 ko, 167r3\3 /1
( 3vf ) (271'7"2) (kf—km>_( 3vy ) (W)-i-z

R2=

— D42 , 2
2x]~ +ax; + {r

1 T
~2m(ky = k) J2r

Wl =
&
=

2
32 k 21\3
— 2 . 2 m 2=
ij +ax; + {r (971'17]3) (kf — km) <3vf) +2

B 1 r 1
2n(ky — ko) a,

> dx;

—2x7 + ax; + {rz Yrcc1 — (?)2—117;)3 +2

where yYgccy is defined as Eq. (4.134).

Integrating Eq. (4.142), the thermal resistances of sections 2 and 5 can be

written as

Wl

2

2 2m\3

1 L 2- <E) + j4 + 2¥pce1 — (E>

Rs = < > In
mr (ks — ki) \/ 2

1 2
2m\3 2m\3 2m\3
4+ 2yrce1 — (E> 2= <E) & j4 + 2Yrccr — (E>

1 1 1- + 6
R, = Ry = ( >( In Brcca FCC1) (4.143)
mr(ke — ky)) \6rcca 1 — Breca — Skcca

R, =

where Brccy is defined as Eq. (4.136) and Sgccq is expressed as

2
2T

Secer = |4 +2 g—\/4 2 1)2 (4.144)
FCC1 = Yrcc1 — E =4+ 2¥pcc1 — (Brecr + 1)
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Then Eq. (4.135) and (4.143) are substituted into Eq. (4.126) as

1

1
k, == [
JIRCC=s =g < 1 )[( 2 In1 1— Brcca +6Fcc1)+< 1 Yrcc1 t +ﬂFcc1)]
k m‘(kf Kim)

drcea — Brcer — Orcc V¥rcc1 + 1 \/YFCCI + 1 — Brcca

.f \.
kefsrcci-s _ 1 1
fen akm, { ( 1 ) [( 2 — Breaa + 5Fcc1) + < 1 n Y Yrca +1+ BFCCl)] }
k ”r(kf m) Orcct 1 Prce1 — Orcea \/Vch + 1 \/Vch +1— Brcc1

1

( ak,, )) [( 2 In — Brcc1 + 5Fcc1) - ( 1 W + ﬂFcc1)]

mr(ky — ko Srcct 1 — Brcc1 — Orcct J¥rcer + 1 \/)’Fcc1 +1 — Breca

1

(16nr3)%(i)( Ky )[( 2, 1- BFCC1+5FCC1)+< 1 m"'ﬁk‘cm)]

3vy ) \kg = km) [\8rcc1 1 = Brcer = Orecn Ve +1 \/Vch + 1= Brcca

i

<k ko ) [( 2 n1=Brca 5FCC1) + ( 1 jp Y¥rFccr + 1+ .BFCC1>]
f

~ e/ [\drcer 1 = Prect — Orect Vrecer + 1 V¥reer + 1= Bree

[

16
37T2‘l7f

1

1
3

(92@)( Ky, )[( 2 ]1 5Fcc1+5m1)+< 1 Ve t +.BFCC1>]

ke —km/ [\8kcca 1= Breca — Orcca Vrrea + 1 \/)/FCC1 + 1= Brcea

1
3

(%)

kefrpcci-s 1

Fn (32&) [(ZVFCC11 1 — Brcc1 + 5Fcc1) + < Yrcer gy, ¥ YFccr F 1+ .BFCC1>] (4.145)
Vs

drccr 1= PBreer — Oree \/VFcc1+1 \/VFcc1+1 Brcct

W=
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4.2 Effective Thermal Conductivity Model with the Interfacial Thermal Resistance

Effective thermal conductivity models in section 4.1 were modified to include
the effect of interfacial thermal resistance. In general, the presence of the interfacial
thermal resistance causes the temperature discontinuity at the interface between
matrix and filler as shown in Figure 4.14. This makes the temperature not a linear
distribution along the x axis. In order to comply with the assumption that the heat
flow is unidirectional and the temperature distribution along x axis is linear, the
concept of the cubic element included the interfacial layer were introduced in this
work.

The temperature along x axis of a composite is modeled as shown in Figure
4.14(a). The temperature immediately drops at the interface between matrix and filler
phase due to the interfacial thermal resistance. Since the heat flux along the x axis is
constant, the interfacial thermal resistance in this case can be expressed by the

definition in Eq. (2.38) as

A AT
Rint = TP AT (4.146)
le=r
Al

where AT is the temperature difference at the interface and Al is the thickness of an
imaginative interfacial layer material.

Eq. (4.146) can be rearranged as

Al
Rine = 7= (4.147)
m

Eq. (4.147) is in accordance with the concept of Kapitza radius (Eq. (3.4)) and
Al is equal to ag. This means that the effect of the temperature discontinuity at the
interface can be compensated by a layer of a matrix material that has a thickness of
ax as shown in Figure 4.14(b). This layer is called the “interfacial layer" and has a
thickness equal to the Kapitza radius ag. It should be noted that the interfacial layer

is just an idealized layer and non-existent.
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(a)
T(x)
Matrix
AT Tesl |
;% _______ Filler
Al ;
Y
X1 X2
(b)
T(x)
Matrix
- Interfacial Layer
ATH i s

________ ~ Filler

N

=
]

X1 x, +ag

Figure 4.14 The simple scheme of temperature along x axis of a composite (a) and

with the interfacial layer (b)

In the previous section, each cubic RVE has the side length of a and the total

volume of RVE is equal to

V=V,+V=a? (4.148)
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where Vp, and V; are volume of matrix and filler, respectively. Since the filler particle

is spherical, the volume of filler can be written as

4nf7rr3

vy =—5 (4.149)

It was assumed that each spherical particle is surrounded by an interfacial layer
as shown in Figure 4.15. In this case, the radius of spherical particle with the interfacial
layer or effective filler particle (r') is smaller than that without the interfacial layer (r).
This means that the volume of filler was reduced due to the presence of interfacial
thermal resistance while the volume of matrix was defined as a constant. The volume

of RVE with the interfacial layer can be written as
V="V, +Vg+V=a’ (4.150)

where Vi is the volume of interfacial layer and Vf' is the volume of effective filler
particle (i.e. volume of filler less the volume of interfacial layer).

The value of a for RVE with the interfacial layer can be calculated by

1
B 4-nf7T(T")3 3 (4.151)
a 317]2

where vy is the volume fraction of effective filler particle .

The volume of filler with the interfacial layer can be defined as

. 4nem(r')?
f= 3
dnem(r — ag)?
B 3
4nemr3 ag\3
= - (4.152)
3 (1 r )
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From Eq. (4.149), Eq. (4.152) can be further simplified as
Vi = eV (4.153)

where &g is the effective volume factor defined as

!

3
—(1-ay)? = <T?> (a.154)

o= (1-2)

and ag is the interfacial thermal resistance factor as defined in Eq. (3.5) (see chapter
3).
Dividing Eq. (4.153) by V, Eq. (4.153) can be written in term of volume fraction

as
Vp = vy (4.155)

By the way, the volume of interfacial layer is the volume of spherical shell and

can be defined as

B 4nemr’ _ 4nem(r')?

Ve =3 3
dnem
=——[r* =]
3
4nemr3 T — ag\3
3 [_( r )]

_ Angmr [1 ~(1- a_K)3] (4.156)
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Figure 4.15 A spherical surrounded by an interfacial layer

From Eq. (4.149) and Eq. (4.154), Eq. (4.156) can be written as

Dividing Eq. (4.157) by V, Eq. (4.157) can be written in term of volume fraction

as

vg = (1 — eg)vp = vp —vp (4.158)

where vy is the volume fraction of the interfacial layer.

From Eqg. (4.154), it can be referred that the value of effective volume factor
gk is always in the range of 0 — 1. Therefore, Eq. (4.155) gives the volume fraction of
effective filler particle is only &g times of the original volume fraction when the
interfacial layer was included. In case of gx = 1, the effect of interfacial thermal
resistance is neglected (ax = 0). In contrast, for e = 0, this means the contribution
of the interfacial thermal resistance is exactly balanced by the thermal conductivity of
the filler particles. Since the interfacial layer is the imaginary layer which is built from

the matrix phase according to Kapitza radius concept (Eqg. (3.4)), thus its properties are
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similar to the matrix. This leads to an easy way to include the effect of the interfacial
thermal resistance into the models derived in previous section. In addition, it should

be noted that the effect of the radius of particle is also included by this way.

4.2.1 SC Model with the Interfacial Thermal Resistance Layer (SC2)

SC model was chosen as a model to be modified by including the interfacial
layer because this model predicted the effective thermal conductivity closer to the
experimental data and showed more appropriate behavior of predictive curve than
the other models in section 4.1.

It is assumed that there is the presence of the interfacial layer in simple cubic
element at filler volume fraction lower than 0.524. Under this maximum filler volume
fraction, it is expected that the filler particles have a uniform distribution and not
touching each other. The physical model of simple cubic element with the interfacial
layer was shown in Figure 4.16. It was noted that this physical model is similar with the
physical model of simple cubic element without the interfacial layer (Figure 4.5(a)).
Therefore, the thermal circuit model of this element is still the same with that of
simple cubic element without the interfacial layer (Figure 4.5(b)). This was a result of
the similarity of the interfacial layer and matrix.

The total thermal resistance of this element is the same as Eqg. (4.5) and can

be rewritten as
RZ - Rl + RZ + R3 (4159)
The effective thermal conductivity can be written as

k _1( ! ) (4.160)
ef1SC2 = g \R, + R, + Ry '
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ag

ag

Figure 4.16 Physical model of simple cubic element with the interfacial layer

The thermal resistance of section 1 and 3 can be expressed by substituting r’

instead of r in Eq. (4.14) as follows:

1

1 !
3 = (ks — km)J0 {(r,)z n((i)’;z (kf k—mkm) . 1]} e dx; (4.161)

R1=R

Substituting Eq. (4.151) where ny = 1 and Eq. (4.155) into Eq. (4.161) and

rearranging, This led to

R1=R3=

1 r
(k —km)f na\ 3
(ks 0 {(r,)z [(4;;(;})3)3 (n(i,)z) (kf k_mkm) 1

1 r’ 1
= T[(kf - km)—f() {( ,)2 [ _%( 16 )
T &

[V

f f m)
l 1
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1

where yscq is expressed in Eq. (4.17).

dx;
2 g (4.162)
— x?

Integrating Eq. (4.162), the thermal resistance of section 1 or 3 can be written

as
2
1 1 w/s 3%sc1 + 1+ 1\
Ry =R; = (-— In 2K X0 (4.163)
21 (kp — k) )\ [ 2 2 /
e Vscit 1 &lysaa+1-1
Considering section 2, thermal resistance of this section is expressed as
i 14 e ! aah 2 !
R, = LI, a2 (4.164)
a’k,, a’k,,
Then Eq. (4.163) and (4.164) are substituted into Eq. (4.160) as
1 1
kefrsca = 2 (4.165)

a’k,, 2nr’(kp — k)

2
a—2r ( 1 ) 1 1n" e Vsc1+1+1

2 2
£ 3¥scr +1 \/€K3Vsc1 +1-1

Dividing Eq. (4.165) by Kk, the ratio of k,ffsc2 and kg, can be derived as
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Keppsca 1
kmn ak,,

— 4! / w’e +1+1\
a—2r +2< 1 ) 1 Vsc1
\\/5 %Ysc1 + 1 \/81( Yscat1— 1/

1 1'8 ]/SC1+1+1\

£ Vsc1+1 JS Ysaat1-1
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where &g is defined in Eq. (4.154).

All models derived in this work were summarized in Table 4.1.
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CHAPTER 5
RESULTS AND DISCUSSIONS

The effective thermal conductivity models derived in this work were discussed
and compared with the experiments and other well-known models. The effective
thermal conductivity models without the interfacial thermal resistance were studied
in the section 5.1. Then the effective thermal conductivity models modified with the
interfacial thermal resistance were studied in the section 5.2.

All of the experimental data discussed in this chapter were of polymer
composite filled with spherical filler particles. The experimental data were cited from
references and tabulated in the Appendix. In addition, the relative thermal
conductivity, the ratio between the thermal conductivity of the composite and that of
the polymer matrix, was used in order to compare various composite systems and to

discount any effect of measurement errors.

5.1 Effective Thermal Conductivity Models without the Interfacial Thermal

Resistance

The equations of all models without the interfacial thermal resistance were
summarized in Table 4.1. It can be observed that these models depended on thermal
conductivity of polymer matrix and filler, and volume fraction of filler. Thus the effects
of these parameters on each model were considered. Furthermore, in order to discuss
the predictive ability of derived models, the values predicted by each model were

compared with experimental data and other models.

5.1.1 Effect of Thermal Conductivities of Filler and Polymer and Volume

Fraction of Filler on SC1 Model, BCC1 Model, and FCC1 Model

The relationship between the relative effective thermal conductivity (kesr/kp)
and the ratio of thermal conductivity of filler and matrix (k¢ /ky,) predicted by SC1
model at various volume fractions of filler is shown in Figure 5.1. It indicated that for

value of k¢ /k,, below 100 the relative effective thermal conductivity rapidly increased
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with increasing kf/ky,. At 100 < kf/k, < 500, the relative effective thermal
conductivity gradually increased with increasing kg /kp,. At k¢ [k, > 500, there was an
insignificant effect of kr/k,, on the effective thermal conductivity. Thus the effective
thermal conductivity depended only on the volume fraction of filler at a sufficiently
high ratio of k¢ /ky,. Figure 5.2 showed the relationship between k,f¢ /K., and volume
fraction of filler for SC1 model at various values of k¢ /k.,. It can be seen that for ratios
of k¢/km greater than 500:1 the curve predicted by SC1 model overlapped with
others. This was a result of a decrease in ysc; in Eq. (4.21) at high ratio of k¢ /kpn,; Eq.
(4.21) thus predicted that the effective thermal conductivity depended greatly on the
volume fraction of filler particles. The behaviors as shown in Figure 5.1 and 5.2 were
also found in Nielsen model but the effective thermal conductivity depended only on
the volume fraction of filler at the ratios of k¢ /k,, greater than 100:1 [39].

At a maximum packing volume fraction of filler particles for simple cubic
element (v = 0.524), the effective thermal conductivity still depended on the ratio
of kg /kpm as shown in Figure 5.1. This indicated that, at a maximum packing volume
fraction of filler particles, the high thermal conductivity of filler dominated the effective
thermal conductivity due to the formation of filler particle network. In addition, it
should be noted that the slope of predicted curves rapidly increased at volume
fraction of filler of 0.524 as shown in Figure 5.2. This referred to the percolation
behavior, which is a rapid increase of the effective thermal conductivity over several
order of magnitude [53]. Thus it could said that SC1 model predicted a percolation
threshold at volume fraction of filler of 0.524. This was a result of the contact of filler
particles in the representative volume element of simple cubic at vy = 0.524.

Figure 5.3 showed the relationship between the relative effective thermal
conductivity and the ratio of ks/k., predicted by BCC1 model at various volume
fractions of filler particles. It could be observed that the behavior similar to SC1 model
occurred only at the filler volume fraction of filler particles less than 0.131 due to the
same reason with SC1 model. At the volume fraction of filler particles more than 0.131,
the relative effective thermal conductivity increased linearly with increasing ratio of
ks /K. This indicated that for filler volume fraction more than 0.131 the effective
thermal conductivity predicted by BCC1 model depended strongly on both ratio of
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ks/ky and volume fraction of filler. The strong influences of ratio of kf/ky, and
volume fraction of filler were also shown in Figure 5.4. This was due to the
denominator in Eq. (4.93) which was in term of addition; Eq. (4.93) thus predicted high
effective thermal conductivities at high ratios of k¢ /kyp,.

Furthermore, it should be noted that BCC1 model predicted a percolation
threshold at volume fraction of filler of 0.131. This percolation behavior was the cause
of the addition of resistances that possessed the commutative of addition. Therefore,
the geometry of representative volume element of body-centered cubic in case of
vy = 0.131 can change to be the contact of filler particles.

FCC1 model gave the prediction similar with BCC1 model as shown in Figure
5.5 and 5.6 but FCC1 model predicted the percolation threshold at vy = 0.262. This

was due to the similarity of predictive equations.

60

Volume Fraction of Filler Particles

50

a0

10

0 200 400 600 800 1000
Jele
Figure 5.1 The relationship between kefr/ky, and ks /ky, for SC1I model at various

volume fraction of filler particles
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Figure 5.6 The relationship between k,f¢/kmy, and volume fraction of filler particles

for FCC1 model at various kf/kp,

SC1 model, BCC1 model, and FCC1 model gave the different predictions that
were discussed in previous paragraphs. The effects of thermal conductivity of filler and
polymer and volume fraction of filler on the effective thermal conductivity were very
significant for BCC1 model and FCC1 model but not SC1 model in which the effective
thermal conductivity depended greatly on the volume fraction of filler for ratios of
ks/km greater that 500:1. This difference was due to the different location of a
percolation threshold predicted. SC1 model predicted a percolation threshold at filler
volume fraction of 0.524, which is its maximum packing volume fraction of filler. Thus
the effects of thermal conductivity of filler and polymer and volume fraction of filler

were very significant at only the maximum packing volume fraction for SC1 model.

5.1.2 Comparison with Experimental Data and Other Models

In this section, the three models, i.e. SC1 model, BCC1 model, and FCC1 model,
were compared with the experiment data of various composite systems with different
ratios of kf/kp,. The predictions of other models, i.e. Maxwell model, Bruggeman
model, Hashin model, Cheng and Vachon model, and Liang and Liu model, were also

plotted in the same graph in order to compare their performance.
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Figure 5.7 showed the overview of relationship between relative effective
thermal conductivity and filler volume fraction of EVA/BaTiOs; with ks /k,, = 10:1.
Maxwell model, Bruggeman model, and Hashin model gave the predictions throughout
the entire range of filler volume fraction, owing to these models were the exact
solutions obtained by an analytical solution of the heat equation for a spherical
particle surrounded by matrix without any assumptions on heat flow or temperature
patterns [20]. While Cheng and Vachon model, Liang and Liu model, and three models
derived in this work were simplified solutions in which unidirectional heat flow and
isotherm planes perpendicular to the heat flow were assumed. To derive these second
type models, the representative volume element (RVE) was first required. The filler
particles were packed in the RVE until reaching the maximum packing volume fraction,
which had different values depending on the arrangements of filler particles in the
RVE. This led to the limitation of the second type models that could only predict the
effective thermal conductivity at the volume fraction of filler under the maximum
packing volume fraction. It should be noted in Figure 5.7 that albeit EVA filled with
different particle size of BaTiO3, i.e. 9 and 105 um in diameter showed the different
thermal conductivities, all models still gave the prediction depending on volume
fraction of filler particles. This was due to the fact that these models never take into
account the filler particle size.

When the ratio of k¢ /k,, increased to be 992:1 and 1721:1 as shown in Figure
5.8 and 5.9, respectively, the percolation behavior was observed in each model. This
was not in agreement with the experimental data, which does not show the
percolation behavior. The percolation threshold usually appears in the electrical
conductive composites more than thermal conductive composites. This can be
explained that the thermal conductivities of the filler particle and of the polymer
matrix are comparable to each other, whereas the filler electrical conductivity is
10'°-10%° times larger than the polymer conductivity [53]. Therefore, models derived
in this work might be suitable in case of very high ratio of k¢ /k,,. However, this should
be further investigated by comparing with the experimental data of composites with
very high ratio of k¢ /ky, in wide range of volume fraction of filler particles. It should

be further noted that the predictions of SC1 model and Liang and Liu model converged
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to the same value when the ratios of ks /k,, increased. The result was due to the
same modeling method based on the additivity of resistances in series, and these
models had an equivalent RVE in which they contained a sphere. By this way, the
arrangement of particles can be rearranged without the effect on the overall thermal
resistance of the whole element [45]. However, it should be further stated that this

property occurred at sufficiently high ratio of ks /ky,.
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Figure 5.7 Overview of relationship between relative effective thermal conductivity

and filler volume fraction of EVA/BaTiOs with ks /k,, = 10:1
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Figure 5.8 Overview of relationship between relative effective thermal conductivity

and filler volume fraction of PP/Al with k¢ /kp, = 992:1
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Figure 5.9 Overview of relationship between relative effective thermal conductivity

and filler volume fraction of Epoxy/Ag with k¢ /ky, = 1721:1

For more apparent observation, the scale of graphs were enlarged as shown in
Figure 5.10, 5.11, and 5.12, for composite system with kf/km equal to 10:1, 992:1, and
1721:1, respectively. It could be seen that Hashin model gave a closer prediction to
the EVA composite filled with 105 um BaTiO; particles and Bruggeman model gave a
closer prediction to the EVA composite filled with 9 um BaTiO; particles than other
models throughout the volume fraction of filler as shown in Figure 5.10. For PP filled
with 8 and 44 um Al particle, it seemed that Bruggeman model and Cheng and Vachon
model gave a good agreement with the experimental data as shown in Figure 5.11. For
epoxy filled with 27 and 48 um Ag particles, Maxwell model showed a good prediction
throughout the volume fraction of filler as shown in Figure 5.12. These different results
indicated that there were no any single model that was applicable to all composite

systems.
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Figure 5.11 Comparison between theoretical predicted effective thermal conductivity

and experimental data of PP/Al with k¢ /k,, = 992:1
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Figure 5.12 Comparison between theoretical predicted effective thermal conductivity

and experimental data of Epoxy/Ag with k¢ /k,, = 1721:1

The three models derived in this work overestimated the effective thermal
conductivities compared with the other theoretical models. BCC1 model gave the
most overestimated values, and then followed by FCC1 model, and SC1 model,
respectively. Comparing with the models based on the simplified solution, Liang and
Liu model gave a more overestimation compared to SC1 model, but less than BCC1
and FCC1 model, at the low ratio of kf/ky, and similar to SC1 model at the high ratio
of kf/kp. As described in previous, Liang and Liu model was equivalent to SC1 model
at sufficiently high ratio of k¢/kp,. Cheng and Vachon model predicted the effective
thermal conductivity in the different manner. It gave an underestimation for
EVA/BaTiOs, a reasonable estimation for PP/AL, and an overestimation for Epoxy/Ag.
Although Cheng and Vachon model gave the predictions closer to the experimental
data than the others, it possessed the instability for the prediction that was difficult to
anticipate. In contrast, SC1 model, BCC1 model, and FCC1 model usually gave the
overestimation. This result might come from the fact that these models were derived
by considering the minimal thermal resistance that directly relates to the bulk or
intrinsic thermal conductivity of each material in the composite [15]. Thus these
models always overestimated the effective thermal conductivity. To meet the good

agreement with the experimental, the interfacial thermal resistance due to the
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incomplete bonding between constituents and phonon acoustic mismatch should be
taken into account in the model [10]. This would be study in the further section. SC1
model was chosen as a model that would be modified with the interfacial thermal
resistance because SC1 model showed a more appropriate prediction than BCC1
model and FCCl model that gave the very inconsistent predictions with the
experimental data; they always showed the percolation threshold at low filler content,

which was non-existent in thermally conductive composites.

5.2 Effective Thermal Conductivity Models with the Interfacial Thermal Resistance

5.2.1 Effect of Interfacial Thermal Resistance on SC2 Model (Modified SC1
Model)

The SC2 model derived by modifying SC1 model indicated that the effect of
the interfacial thermal resistance on the effective thermal conductivity was controlled
by the interfacial thermal resistance factor ay that its value is related to the ratio of
the Kapitza radius and particle radius. As a numerical example, Figure 5.13, 5.14, 5.15,
and 5.16 illustrated the relative effective thermal conductivity as a function of volume
fraction and a g with kf/km = 10, 50, 250, and 1000, respectively. It could be observed
that for ag = 0 the effect of the interfacial thermal resistance was neglected and the
prediction of SC2 model was similar to that of SC1 model because the equation of
SC2 (Eq. (4.166)) reduced to the equation of SC1 (Eq. (4.21)) where g = 0. For ag > 0,
it was noted that the predicted values were lowered and the larger ag, the
lower kesr/ky would be. In addition, for higher ratio of k¢ /ky,, ag had more effect
on the reduction of the effective thermal conductivity. For ag = 1, it could be seen
that the effective thermal conductivity of the composite was the same as that of the
matrix. This was due to the contribution of the interfacial thermal resistance was then
exactly balanced by the much higher thermal conductivity of filler particles according
to the results of the modified Maxwell and Bruggeman models reported by Every et
al [27]. Furthermore, it was interesting to note that the effect of particle size was
automatically included to the model in term of interfacial thermal resistance factor

ag or the ratio of radius of effective filler particle and radius of filler (r'/7). The
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relationship between these two factors was given in Eq. (4.154). The value of r'/r is
always in the range of 0 — 1. Figure 5.13, 5.14, 5.15, and 5.16 also showed the effective
thermal conductivities decreased with decreasing r'/r. For r'/r = 1, the size of
particles were not reduced and this was equivalent to the case of ag = 0 as described
previously. For r'/r < 1, this meant that the contribution of filler particles on the heat
transfer was reduced due to the presence of interfacial thermal resistance. For r'/r =
0, it could be though that there were not any filler particles, thus the heat conduction
was only occurred in the matrix phase. This event is equivalent to the case of ag = 1.

SC2 model predicted the effective thermal conductivity in the range of 0 <
ag < 1, while the modified Maxwell and Bruggeman model predicted the effective
thermal conductivity in range of 0 < ax < o [27]. This difference was due to the
dissimilar modeling concept for including the effect of the interfacial thermal
resistance. SC2 model was developed by determining the effective filler particle, the
filler particle surrounded by interfacial layer, that its size would be reduced with
increasing the thickness of interfacial layer. In contrast, the modified Maxwell and
Bruggeman models were developed by modifying the boundary conditions at the
interface with the interfacial thermal conductivity which is the reciprocal of the
interfacial thermal resistance [28, 33]. If the interfacial thermal conductivity is very high
(the interfacial thermal conductivity will approach to zero), the flow of heat across the
interface into the conductive filler will be more difficult, then the conductive filler can

less contribute to the heat transfer [28].
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5.2.2 Comparison with Experimental Data and Other Modified Models

To verifying the ability of SC2 model, it was essential to compare this model
with the experimental data. For appropriate experimental data for comparison, both
the thermal conductivity and the interfacial thermal resistance measured from a
composite must be reported. Unfortunately, there were no any such experimental
data. This might come from the difficulty to measure the interfacial thermal resistance
[40, 63]. Thus in this work the numerical results predicted by modified model were
compared with the experimental data used in the previous section.

The comparison between effective thermal conductivities predicted by SC2
model at various values of ax and experimental data of EVA filled with 9 and 105 um
BaTiO3 particles were shown in Figure 5.17. It could be observed that the SC2 model
could not fit the experimental data by using a value of ay, different from other models
[27, 31]. This indicated that the SC2 model predicted the different value of the
interfacial thermal resistance of each composite system depending on the volume
fraction of filler and particle size. The similar events were also seen in the Figure 5.18
and 5.19 for PP filled Al particles and Epoxy filled Ag particles, respectively. These
might come from the fact that SC2 model was derived based on the ideal arrangement
of the uniform spherical particles in the form of simple cubic but the arrangement of
particles in real composite system is variant from that ideal pattern due to effects of
processing [54], size distribution of filler particles [4], and irregular-shaped particles [70].
The composites might have the same or different arrangement at each volume fraction
of filler particles. Therefore, the effect of the arrangement of the particles that deviates
from the ideal simple cubic arrangement should be further incorporated into the
model.

From Figure 5.17, 5.18, and 5.19, it could be seen that the experimental data
of composites filled with smaller particle size always located on the predicted curve
with higher ag (lower r'/r) compared with the composites filled with larger particle
size. This represented the larger values of the interfacial thermal resistance of the
composites filled with smaller filler particles. This was due to the fact that ,with

decreasing average particle radius, the effective thermal conductivity decreases while
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the area of interfacial contact per unit volume increases [33]. The interfacial thermal
resistance began to play a significant role in the thermal transfer.

The modified Bruggeman model was only one model that could reasonably
predict the effect of the interfacial thermal resistance. The modified Maxwell model
gave the negative interfacial thermal resistance because it usually underestimates the
effective thermal conductivity, albeit ag = 0 (see Figure 5.10, 5.11, and 5.12). However,
the modified Bruggeman model also gave the negative interfacial thermal resistance,
if kg/kp is lower than 1000 as shown in 5.10 and 5.12. Thus the modified Bruggeman
model could be only used for epoxy filled Ag particles with kg /ky, = 1721:1. It could
be seen in Figure 5.19 that the modified Bruggeman model gave the good prediction
for epoxy filled Ag particles by used ag in range of 0.09 — 0.16. This might indicate to
the superior performance of the exact solution model type and the differential
effective medium theory (DEM). However, this model was suitable for the composite
system with ks >> k,, according to the suggestion of Every et al. [27]. In contrast, SC2
model could use for lower value of the ratio ks/k,, because it always gave an

overestimation over the volume fraction of filler particles.

®  [VA/BaTiO; 9 um [5]
0.187

0.262 B EVA/BaTiOs; 105 um [5]
0.375

0.895

0 0.1 0.2 0.3 04 05 0.6
Volume Fraction of Filler Particles
Figure 5.17 Comparison between effective thermal conductivity predicted by SC2
model at various values of ak and experimental data of EVA/BaTiOs; with k¢ /kpy, =

10:1
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® pPP/ALS um [12]

B PP/AL 44 um [12]

0 1 1
0 0.1 0.2 03 0.4 0.5 0.6

Volume Fraction of Filler Particles

Figure 5.18 Comparison between effective thermal conductivity predicted by SC2

model at various values of ay and experimental data of PP/Al with k¢ /k,,= 992:1

®  Epoxy/Ag 27 um [39]
B Epoxy/Ag 48 um [39]

.......... Modified Bruggeman
model [27]

— SC2 model

0 0.1 02 03 0.4 0.5 0.6
Volume Fraction of Filler Particles
Figure 5.19 Comparison between effective thermal conductivity predicted by SC2
model (solid line) and the modified Bruggeman model (dot line) at various values of

ay and experimental data of Epoxy/Ag with k¢ /Ky, = 1721:1

The SC2 model were further discussed by substituting the thermal conductivity
of Epoxy filled silver particles into predictive equation of SC2 to calculate the
properties as tabulated in Table 5.1. The interfacial thermal resistance predicted by

the SC2 model decreased with increasing volume fraction of filler particles as shown
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in Table 5.1. The interfacial thermal resistance was referred to the combined effect of
two thermal resistances, i.e. thermal contact resistance and thermal boundary
resistance [33]. The value of thermal boundary resistance was constant for a composite
system according to acoustic mismatch model [32]. Thus the decrease of interfacial
thermal resistance should be a result of the decrease in the thermal contact resistance
that occurred at polymer-filler and filler-filler interfaces [11]. This might be consistent
to the formation of some segment of filler network or chains of connected conductive
particles at high filler content [33]. Furthermore, it was possible to form the
agglomeration of particles at high filler content [71]. The formation of highly thermally
conductive networks might minimize the thermal resistance along the conductive
paths [4]. This characteristic has never been seen before in the exact solution type
models. This might make SC2 model suitable to describe the composites with the
presence of some clusters of filler particles at high volume fraction of filler. In addition,
this idea might be supported by the ratio of r'/r that increased with the volume
fraction of filler particles. This indicated that the contribution of filler on the heat
conduction was enhanced. If the relationship between the interfacial thermal
resistance and volume fraction of filler was known, the SC2 model could be further
modified and might give the better prediction. However, for more accuracy, the SC2
model must further be developed to include the other effect such as arrangement,
size distribution, shape, and agglomeration of filler particles apart from the effect of
the interfacial thermal resistance.

Furthermore, it should be noted that the values of vy were the sum of and vk
according to Eq. (4.158). The effective volume fraction of filler v]’c can be though as the
volume fraction of filler at a point on the curve predicted by SC1 model. If the values
of vy and thermal conductivities of composite were known from the experiment, the
values of v} could be found by a graphical method as shown in Figure 5.20. Then the
value of ag or r'/r could be calculated by using Eq. (4.154) and (4.155), respectively.

This led to the simple method to find the interfacial thermal resistance.
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Figure 5.20 Graphical method for finding the effective volume of filler (v})
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CHAPTER 6
CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

The three effective thermal conduction models, namely SC1, BCC1, and FCC1
model, for polymer composite filled with spherical particles were successfully derived
based on the simplified solution of three ideal arrangements of spherical filler particles
in the representative volume elements, i.e. simple cubic, body-centered cubic, and
face-centered cubic, respectively. By an analogy between electrical and heat
conduction, these models were easily generated and was consistent with the volume
fraction of filler. These three models differently predicted that the effective thermal
conductivity depended on the ratio between thermal conductivity of filler and
polymer matrix (k¢ /kp,) and volume fraction of filler. The SC1 model predicted the
thermal conductivity of a composite increased with the increasing the ratio of kr/ky,
and for a sufficiently high ratio of kf/ky, the effective thermal conductivity depended
only on the volume fraction of filler. The BCC1 and FCC1 models predicted the same
event with SC1 model only at the volume fraction of filler lower than 0.131 for BCC1
model, and 0.262 for FCC1 model. At higher volume fraction of filler, both BCC1 and
FCC1 models predicted the effective thermal conductivity strongly increased with
increasing the ratio of k¢ /ky,. Al models gave the overestimation compared to the
experimental data and predicted the percolation threshold at volume fraction of filler
equal to 0.524 for SC1 model, 0.131 for BCC1 model, and 0.262 for FCC1 model.
However, the SC1 model showed more appropriate and reasonable predictions than
BCC1 and FCC1 models. Furthermore, SC1 model was also consistent to Liang and Liu
model at high ratio of k¢ /kp,.

The SC2 model was developed from SC1 model by combining the effect of
the interfacial thermal resistance in term of the interfacial layer according to the
Kapitza radius concept. The effect of the interfacial thermal resistance on the effective
thermal conductivity was in the form of an interfacial thermal resistance factor ay or

the ratio of effective radius and radius of filler r'/r. Thus, the SC2 model gave the
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prediction depending on the particle size of filler, apart from the thermal conductivity
of filler and polymer matrix (k¢ /k,) and volume fraction of filler. For ax = 0 orr'/r
= 1, the effect of the interfacial thermal resistance was neglected and the SC2 model
reduced to SC1 model. For ag > 0 or r'/r < 1, The SC2 model predicted that the
effective thermal conductivity decreased with increasing ay (decreasing r'/r). Similar
to the modified Maxwell and the modified Bruggeman model, the SC2 model
predicted the thermal conductivity of the composite equal to that of the matrix for
ag = 1 or r'/r = 0. The comparisons of numerical results with experimental data
showed that the SC2 model predicted the interfacial thermal resistance decreased
with increasing volume fraction of filler. Furthermore, the smaller particle size led to
the higher interfacial thermal resistance than the larger particle size. The SC2 model
can be further modified and may give the better prediction if the relationship between

the interfacial thermal resistance and volume fraction of filler is known.
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6.2 Recommendations

In order to develop a more accurate effective thermal conductivity model, the
following recommendations were made.

1. Because the predictive ability of the models strongly depended on the
arrangement of filler particles in the representative volume element, thus the
arrangement of filler particles in real composite systems should be further studied to
find a more appropriate representative volume element for modelling.

2. The effect of the size distribution, shape, and agglomeration of filler particles
should be further incorporated into the model.

3. To investigate the ability of the models to predict the percolation behavior,
the experimental data measured from the polymer composites with very high ratio of
thermal conductivity between filler and polymer and volume fraction of filler in range
of 0 to maximum packing volume fraction are required.

4. The relationship between the interfacial thermal resistance and volume
fraction of filler should be further investigated to find a correlation that is useful for
fitting predicted curve with the experimental data.

5. To verify the ability of the modified model, the appropriate experimental
data, the thermal conductivity and the interfacial thermal resistance measured directly
from a composite, should be used for comparison.

6. In additional to such appropriate experimental data, the thermal conductivity
of the composites should be measured on a wide range of filler volume fraction or up
to the maximum packing volume fraction and the necessary data such as the thermal
conductivity of polymer matrix and filler, particle size of filler, and so on, which is
according to the basic requirements of Mottram [26], should be available.

7. As the lack of the data as listed in 4 and 5 above still is the main problem;
the polymer composites should be prepared and their experimental data should be

measured in the laboratory.
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APPENDIX A

INTEGRATION FORMULA

Two definite integrals of rational functions used in chapter IV were listed here.

1. Integral Involving PR

1
For |x| < |b|, the definite integral involving P from e to f can be written

as

sz—xz (ln|b+f antZD (A1)

2. Integral Involving

bx?+cx+d
For 4bd — c? < 0, the definite integral involving ————— from e to f can be
bx2+cx+d
written as
1 4 2 <1 ‘2bf+c—\/c2—4bd | ‘2be+c—\/c2—4bd> (A2)
X = n —1n .
e bx?+cx+d VeZ —4bd \  [2bf + ¢ +/cZ — 4bd 2be + ¢ +VcZ — 4bd
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Matrix Filler d kym ki ke/km Ve kepr kepp/km  Ref
EVA Glass sphere 36 0.27 1.2 4.4 0 0.27 1.0 [5]
EVA Glass sphere 36 0.27 1.2 4.4 0.03 0.27 1.0 (5]
EVA Glass sphere 36 0.27 1.2 4.4 0.08 0.29 1.1 (5]
EVA Glass sphere 36 0.27 1.2 4.4 0.15 0.33 1.2 [5]
EVA Glass sphere 36 027 1.2 4.4 0.29 037 1.4 (5]
EVA Glass sphere 36 0.27 1.2 4.4 036  0.45 1.7 (5]
EVA Glass sphere 36 0.27 1.2 4.4 0.45 0.48 1.8 [5]
EVA Barium titanate 9 027 27 10 0 0.27 1.0 [5]
EVA Barium titanate OFPT—2:14 10 0.05 0.27 1.0 (5]
EVA Barium titanate 0.27 2.7 10 0.10 0.31 1.1 [5]
EVA Barium titanate 9 0.27 27 10 0.16 0.36 1.3 [5]
EVA Barium titanate 9 0.27 2.7 10 028 0.54 2.0 (5]
EVA Barium titanate 9 0.27 2.7 10 038  0.69 2.6 (5]
EVA Barium titanate 9 0.27 27 10 0.48  0.89 3.3 [5]
EVA Barium titanate 105 0.27 2.7 10 0 0.27 1.0 [5]
EVA Barium titanate 105 0.27 2.7 10 0.05 0.30 1.1 (5]
EVA Barium titanate 105 0.27 2.7 10 0.12 0.36 1.3 [5]
EVA Barium titanate 105 0.27 2.7 10 0.20 0.48 1.8 (5]
EVA Barium titanate 105 0.27 2.7 10 0.27  0.58 2.1 (5]
EVA Barium titanate 105 0.27 2.7 10 0.36 0.74 2.7 (5]
EVA Barium titanate 105 0.27 2.7 10 0.44  0.90 33 [5]
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Table B.1 Thermal conductivity of composites filled with spherical particles (cont.)

Matrix Filler d ki ke kelkm Ve kesp kepp/km Ref
PP Aluminum 8 0239 237 992 0 0.239 1.00 [12]
PP Alurminum 8 0239 237 992 0.050 0.242 1.01 [12]
PP Alurminum 8 0239 237 992  0.178  0.394 1.65 [12]
PP Aluminum 8 0239 237 992 0231 0.580 2.43 [12]
PP Aluminum 8 0.239 237 992 0.405 0.980 4.10 [12]
PP Aluminum 8 0.239 237 992 0.488 1.950 8.16 [12]
PP Aluminum 8 0239 237 992 0.587  2.677 11.2 [12]
PP Aluminum 44 0239 237 992 0 0.239 1.00 [12]
PP Aluminum a4 0.239 237 992 0.050 0.271 1.13 [12]
PP Aluminum 44 0239 237 992 0201 0.515 2.15 [12]
PP Aluminum 44 0239 237 992 0269 0.691 2.89 [12]
PP Aluminum a4 0.239 237 992 0.393  1.580 6.61 [12]
PP Aluminum a4 0.239 237 992 0.489 2.575 10.8 [12]
PP Aluminum 44 0239 237 992 0.583 4.222 17.7 [12]
Epoxy Silver 48 0244 420 1721 0 0.244 1.00 [39]
Epoxy Silver 48 0.244 420 1721 0.106  0.339 1.39 [39]
Epoxy Silver 48 0244 420 1721 0200 0.423 1.73 [39]
Epoxy Silver 48 0244 420 1721 0312 0.584 2.39 [39]
Epoxy Silver 48 0.244 420 1721 0.474  0.906 3.71 [39]
Epoxy Silver 48 0.244 420 1721 0.569  1.187 4.86 [39]
Epoxy Silver 27 0244 420 1721 0 0.244 1.00 [39]
Epoxy Silver 27 0244 420 1721 0.097  0.309 1.27 [39]
Epoxy Silver 27 0244 420 1721 0.246 0.434 1.78 [39]
Epoxy Silver 27 0.244 420 1721 0.306 0.583 2.39 [39]
Epoxy Silver 27 0244 420 1721 0391  0.760 3.11 [39]
Epoxy Silver 27 0244 420 1721 0557 1326 5.43 [39]
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Introduction

Polymers are presemtly common materisls used in elecoonic
devices due w their remnarkahls properties such as light weight, cormosion
resistance and easy processing. However, most pobyiners have low
thermal conduectivity and this causes 2 limitation for polyimer spplication
in elecronic devices baczuse the materials used in thesa devices should
passazz high thenmal conductivity to protect the damase from heat during
operatiom [1]. Therefore, it iz essential o improve the thenmal
conductivity of polyroer materizls. 4 simple methad to solve this problem
is the preparation as the polymer compozite by mixing the hish thenmal
conductive fller imto the polymer matrix. The thenmal conduction
behavior of final polymer composite materiz]l dapands on type, shape,
amrangement and content of fller [1]. Accordinsly, the understanding of
heat transfer machanizm of polymer composite is necaszary.

In thiz article, the therms]l capductivin: model was developad o
wnderstand the hest ransfer mechanizm of polymer composite and the
affects of fillers. The model was derived based on a zeries of thenmal
resistance along the haat flow direction. The threa ides] aranzemants of
zpherics] pariculste ie simple cobic, body-cemtered cubic and face-
cemtered cubic, ware selectad as the heat fransfer alement. These proposed
modals showed different prediction behavior depending on the filler
arangement and lesding.

Alndels for effective thermal conductivity

Several models have besn developed by the different methods to
pradict the effective thermal conductivity (k) of Slled polymer
compozites [2]. Teao [3] developed a probabilistic modsl hased on the
zerizz and parallel models for effective thermal conductivity, Aftenwands,
thiz model was firther davaloped by Chenz and Vachon [4]. They
proposed a parsbolic diswibution of the discomtibwous phase. The
constants of the parabolic diswibution were presented as 2 fimction of the
filler phaze volume Tacion (ghy). The Cheng and Vachon equation
azmumed that the thermz] conductivity of fillars (k) always are higher
than the thermal canductivity of polymer matrix (k,,) end was given as

1 1
T o
il ‘1|'C.L.'.fr Enlltm + Bk — kg

wln J{"' * 'S{'{,{ - '{.'.n :' +§JC{-{;1 —.{__a :| . 1-E
“I'i_: +BEy -%a) —g ullc{-{;’ i k.

where Bag3g /200, Ca4/B.

Fecantly, 2 new theorstical model of heat wansfer in pohmer
compositas was established based om the law of minimal thenmal
resistance and the egusl law of the specific equivalest thenmal
conductivity by Liang and Lin [5]. The effective thennal conductivity
was given by
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Development of the theoretical models

Heat transfer elements. In 3 simpls case, polymer composite iz
mpposed that §t consist: of umiform spherical particles disparzsed
hamogeneously in polymer matviz. The particles can be considared as
being arransed similar to 2toms in 2 crystal strectare and the conceps of
unit cell analogous to crystallegraphy can be applied [6]. In this work,
thres idea] aranzaments, ie simple cubic, body-centared cabic and face-
cemtared cubic, wera chosen as heat transfar alement 3z shown in Figure
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1. Bupposs the side lensth of the cube and the particle dizmeter i= o and
Zr, respactively, an sxpression of the fillar vohme faction was derived
for each elemeant as follows:

. . A =
simple cubic © g oz = — 3
3

.

body-centered cubic @ ¢, ;oc = = )
g’

fare-centered cubic @ . oo -E-— (3
32

Thrat flaw Thrat flaw Heal Bow

] (b 1]
Figure 1. Hest transfer element in form of (2) simple cabic, (b} body-
centared cwbic and {c) face-centered cubic.

Mpdeling. The effective thermal conductivity of a2 polvmer
composite was derived by considering 3 serisg of thenmal resistars along
the beat flow direction. According to Laumg et @l [7], the differsnces
betwean the physical vahies and the mathematicz] model: dapand on the
fillar lpading and their distribation in polymer matriz. Consequantly, in
thiz work, the heat transfer model: of simple cubic element, body-
centared element and face-centered cubic element were divided into eight
cases by filler cantents 22 shown i Figure: 1, 3 and 4, respectively.

o [ N

in il
Figure 2. Zide view of simple cubic elemant for palymer compozitas
filled with {T) =52.36 vol.% and (IT) 52.36 wol. % fillers.

{niny
Figure 3. Zide view of body-cemtered cubic element for pobmer
composites flled with (I <13.08 wol%, (IV) 1308 vol% and (W)
=13.08 vol % fillers.

[ 11 v

Figure 4. 3Side view of face-cemtersd cubic slemest for pobmer

compozites fillad with (VI) <2618 wol %, (VI 26.18 vol %0 and (VIID)
>26.18 vol % fllers.

Each layer of elemants poszeszed thermal resistances equal to R,
whera { was the layer mmmber 22 showm in Figures 2, 3 and 4, respectivaly.
These alements can be thought of thermal resiztors comnected i serias
alang tha heat flow direction. The heat Sow amntars into the alement from
top of the cube. Thennal interfacis] resistance was neglected in this works
The total therrmal resiztance (R, of each slement can be expressed as

Rew -ilﬁs @

where # is the overall amount of layers of each elermemt



From the Fourier's Law, the heat flow (&) across the element can ba
aprazzed as

Q- B =" .'idf.ﬂ.'ir )]
The therms] resistance 1= given &3
AT 1
fonr g Ry ®

Caonsidering 3 thin layer of tha alement with thickmas: gy slong the
heat fow direction, the heat Siow across the layer of thickness gy is
aT dr - dT
Qmb d,—+b;dr—=kd—
c @ N E T @
where A, Ay and A ara the orozs-sectionsl aress of the polyrner matrix,
fillar and overall zections, respectivaly, and
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The thannal resistance of each lzvar can be determinad by
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Caze I: simple cubic elament with fller content < 5238 val. %0 The
thermal resistance for each layer was detemmined by
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Caze IT: zimple cabic elament with fller content = 52,36 w0l % Tha
thermal resistance for each layer was detemmined by
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Czze IIL: body-centared cubic element with filler camtemt < 13.08
val %6 The thennsl resistance for each layer was detanrnined by
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Caze IV bady-centered cubic alement with filler comtent = 13.08
val.% The thennsl resistance for each layer was detenmined by
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Caze V- body-cemtered cubic elament with filler contest > 13.08
val.% The thennsl resistance for each layer was detenmined by
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Case VI: face-centered cubic element with filler content < 26,18
val.%6 The thennsl resistance for each layer was deterrnined by
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(23}

24)

25)

Caze VII: face-centered cubic alement with filler comteant = 26,18
val.% The thennsl resistance for each layer was detenmined by
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Caze VI face-camtered cubic element with filler comtent = 26,18
val.% The thennsl resistance for each layer was detenmined by
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The total resistance for cases I-WIIT derived by takins the intesration
and substifuting the results imto Eq. (&) can be expressed 2= Eqs. (31)-
{38}, respectively.
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The afective thermal conductivity for each slement can then ba
calculsted by Eq. (2).




Remlts and Discussion

Bazed om a series of thennal resiztance along the heat flow direction,
the total resistances of polyamide § filled with copper particles (average
particle size 30 om) (PAGCY) 2t various fller comtents weare czloalated
by Egs. (31) — (35) then the affective themmal conductivities can be
calulated by Eg. (3). The caloulated values ware compared with the
exgperimental thenmal conductivity of PASCo composite cited from [8]
as shoom in Figore 5 for overview of predicted valoes and Figura 6 for
comparative values. From the resalts, the predictive valoes of each model
depended on the filler comtent only. In this work thres idesl srranzaments
of particnlate wera uzed as representative volume element. It was clear
that ody-centared cubic model offered the most overestimated valies
and then followed by face-centerad cubic madal and simple cubic modal,
respectively. Leung of al. [7] susgested that these differences wers
atiributed to the thermsl contact resistance at the interfaces behwesn
particles and polymer matrin dues to the incamplete bonding and phonon
acoustic mizmarch; this was ignored o this work. Also, these ideal
particulate arrangement could be & canse of the differences spart from the
thermal contact reststance. In real systam the arangement of pariclas of
palymer composites iz varant fom the ideal aranzament due to effects
of processing [9], size distrintion of filler particles [10], and imegular-
shaped particles [11]. Furthenmare, the szzlomeration of particles results
in nownspherical geometries of the azzlomerates such 2= 3 dendritic or
fractal strwchare which affacts to the thermal conductivity enhancement

[12]. Thus, the imegularh-shaped azslomerates should be inchded in
further work, such 2: considering in the fomn of egquivalent spherical
diamater.
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Figure 6. Comparison between theoretical prediced effective thenmal
conductivity and experimental datz of PASCu with different fller
valume contents.
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It shonld be noted in Figura § that percolation behavior, which is 2
rapid increase of the effective themmal conductivity over several order of
maznimde [13], was obzsarved when filler vobume contents were equal to
52.36 vol % for simple cubic model {case I, 13.08 vol% for body-
centered cubic modal (czze IV) and 26.13 vol % for face-centerad cubic
modal (case VII). In contrast, the experimental data did not show the
percolation behavior. Different from electrical conductivity, it was known
that mast palymer composites showed an sbsence of percolztion behavior
for their thenmal conductivity becanse the difference betvesn the thenmal
conductivity of fillers and polymer mamrices was relatively small for most
systems [9]. However, these percolation behavior indicated the influence
of the different arrangement of fller particles in the heat transfer alsment
upon the predictive ability of the madels.

Fram sach differsnces, it is suzgested that there should ke a suitabla
amrangemant of filler particles for haat transfer elament modaling. In thiz
waork, zitple cubic amangement offered the best predicted wvalues
compared with the others two amangements. Besides simple oubic
amrangemeant, Lizne and Lin [5] propozed the thermal conductivity model
bazed on the :ame principal but 2 heat tramefar elament was 2 spharical
particle located in the cester of & cube. This model provided the
satisfactory resnlts in their work and the predicted valies were similar
with the simple cobic madel i this article Unfortanately, both models
could not predict the effactive thermmal condwctvity where filler content
waz more than 52 38 vol % and they nsually oversstimated the effective
thermal conductivity. However, it indicated that there mmst be an
eguivalant heat tramsfer clement that hes the same quanfity of fller
particles bnut diferant amanzement of particles. Based upon the additivity
of resiztances in seriez the awanzament of particles can be reamangad
without the effect on the overall therms] resistance of the whale alement
[3]. By this principal, Cheng and Vachan [4] proposed a theoretical maodel
that azmmed 2 parzbolic distribation of the discomtmoons phass and
determined the constant of the parabolic distribation as 2 fimction of the
discontinmans phase vohme fraction Thiz modsl was showm to predict
the effective thermal conductivity closer to the experimental data than the
other models 25 shown i Figare 6. This infered that the model based on
a series of thermal resistance should be developed farther by using the
appropriste fonction repressnting distriation or arangement of fller
particle in polymesr mamices.

Concluzions

The theorstical models hased on a series of thermal resistance lang
one dirnanzionsl bast conduction had besn proposed by nzing thres idaal
fillar aangaments as heat transfer slements, ie simple cubic, body-
centered cubic and face-centered cubic. Each model overestimated the
affiective thermsal conductivity as a fonction of the filler content. The
behavior of predictive values were also significanthy affected by the fller
arangemant modals. Hence mone sppropriste Sller arrangement uzad as
the heat transfer element should be firther studied for developing the
effective thermal conductivity model of polymer composites,
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