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THAI ABSTRACT 

ณัฐกานต์ ขัตตเนตร์ : การพัฒนาแบบจ าลองค่าการน าความร้อนของวัสดุพอลิเมอร์คอมโพสิตที่
รวมผลของความต้านทานทางความร้อนที่ส่วนต่อประสานระหว่างเฟส (DEVELOPMENT OF 
THERMAL CONDUCTIVITY MODEL OF POLYMER COMPOSITES WITH INTERFACIAL 
THERMAL RESISTANCE EFFECT) อ.ที่ปรึกษาวิทยานิพนธ์หลัก: อ. ดร.วรัญ แต้ไพสิฐพงษ์ {, 156 
หน้า. 

ค่าการน าความร้อนของวัสดุพอลิเมอร์สามารถถูกปรับปรุงได้โดยการผสมสารเติมแต่งน าความ
ร้อนลงในพอลิเมอร์ ค่าการน าความร้อนของวัสดุพอลิเมอร์คอมโพสิตขึ้นอยู่กับหลายปัจจัย งานวิจัยนี้มุ่ง
ศึกษาเฉพาะผลของความต้านทานทางความร้อนที่ส่วนต่อประสานระหว่างเฟส  (interfacial thermal 
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ทิศทางการถ่ายเทความร้อนของหน่วยปริมาตรตัวแทนที่มีการจัดเรียงอนุภาคสารเติมแต่งที่แตกต่างกันสาม
รูปแบบ ได้แก่ ลูกบาศก์อย่างง่าย (simple cubic) ลูกบาศก์กลางตัว (body-centered cubic) และ
ลูกบาศก์กลางหน้า (face-centered cubic) แบบจ าลองทั้งสามที่ได้ถูกพัฒนาขึ้นโดยไม่รวมผลของความ
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ENGLISH ABSTRACT 

# # 5570185821 : MAJOR CHEMICAL ENGINEERING 
KEYWORDS: THERMAL CONDUCTIVITY / INTERFACIAL THERMAL RESISTANCE / POLYMER 
COMPOSITES / MATHEMATHICAL MODEL 

NUTTAKAN KUTTANATE: DEVELOPMENT OF THERMAL CONDUCTIVITY MODEL OF 
POLYMER COMPOSITES WITH INTERFACIAL THERMAL RESISTANCE EFFECT. ADVISOR: 
VARUN TAEPAISITPHONGSE, Ph.D.{, 156 pp. 

Thermal conductivity of polymers can be enhanced by incorporating the thermally 
conductive fillers into the polymer matrix. Various factors affect the thermal conductivity of 
polymer composites. The effects of interfacial thermal resistance, ratio between thermal 
conductivity of filler and polymer matrix, content and size of filler particles on the effective 
thermal conductivity of polymer composites were investigated in this work. 

The theoretical models for predicting the thermal conductivity of composite were 
derived based on the simplified solution by considering a series of thermal resistance along 
the heat flow direction of the representative volume element with three different 
arrangements of filler particles, i.e. simple cubic , body-centered cubic, and face-centered 
cubic. The three models derived without the interfacial thermal resistance effect predicted 
that the effective thermal conductivity increased with increasing filler content and the ratio 
between thermal conductivity of filler and polymer matrix. However, these three models 
overestimated the effective thermal conductivity compared with the experimental data. 
Among these models, simple cubic model gave a more appropriate and reasonable 
prediction than the others and thus it was further developed by including the effect of the 
interfacial thermal resistance using the Kapitza radius concept. By this way, the effect of 
particle size was also incorporated into the model. The modified simple cubic model 
indicated that the effective thermal conductivity decreased with increasing interfacial 
thermal resistance. The smaller filler particle size resulted in the higher interfacial thermal 
resistance. In addition, the model predicted that the interfacial thermal resistance decreased 
with increasing filler content. 
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CHAPTER 1 
INTRODUCTION 

1.1 Introduction 

 Polymer materials are presently used instead of the metal parts in the 
electronic devices because of their advantages such as lightweight, high corrosive 
resistance, and easy processing [1]. However, the thermal conductivity of neat polymer 
is usually lower than that of the ceramics and metal as shown in Table 1.1.  
 
Table 1.1 Thermal conductivity of materials 

Material 
Thermal conductivity  

(W/m-K) 
Ref. 

Copper (Cu) 400 [2] 
Boron nitride (BN) 275 [2] 
Aluminum (Al) 230 [3] 
Aluminum nitride (AlN) 200 [2] 
Polybenzoxazine/78.5% BN (225 𝜇m) 32.5 [4] 
Polypropylene/60% Al (125 𝜇m) 4.12 [5] 
Polypropylene/40% Cu (40 𝜇m) 2.14 [5] 
HDPE/26% Al oxide 1.65 [6] 
HDPE/24% Cu 1.07 [6] 
High density polyethylene (HDPE) 0.44 [7] 
PS/10% AlN (<10 𝜇m) 0.33 [8] 
Polypropylene (PP) 0.24 [5] 
Polystyrene (PS) 0.14 [7] 

Note: Concentration of filler is in percent by volume. 
 
 The materials used in the electronic devices should possess the high thermal 
conductivity to protect the damage of the devices from the heat generated inside the 
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devices themselves [3, 9]. Thus the thermal conductivity of the polymer materials 
have to be enhanced. This is a technological progress in the field of the thermal 
management for the electrical and electronic devices [10]. A simple method for 
improving the thermal conductivity of the polymer materials is to prepare them as the 
composite by adding the thermally conductive filler, such as graphite, carbon black, 
carbon fiber, ceramic particles, and metal particles, into the polymers [11]. By this 
method, the polymer composite that conducts the heat well and is an electrical 
insulator can be prepared. However, the thermal conductivity of the composite 
depends on many factors such as shape, size, and content of filler particles as shown 
by the experimental data depicted in Figure 1.1. Thus, it is essential to understand the 
effect of those factors to successfully design the highly thermal conductive materials. 
 

 

  

EVA/Glass 36 𝜇m, 
𝑘𝑓/𝑘𝑚= 4.44 [5] 

EVA/Barium titanate 
9 𝜇m,  
𝑘𝑓/𝑘𝑚= 10  [5] 
PP/Al 8 𝜇m, 
𝑘𝑓/𝑘𝑚= 992 [12] 

PP/Al 44 𝜇m,  
𝑘𝑓/𝑘𝑚= 992 [12] 

 

Figure 1.1 Relationship between the effective thermal conductivity and the volume 
fraction of filler particles where 𝑘𝑓 is thermal conductivity of filler, 𝑘𝑚 is thermal 
conductivity of polymer matrix, and 𝑘𝑒𝑓𝑓 is effective thermal conductivity 
 
 The modelling of the thermal conductivity of the composite is a way to 
understand the effect of such factors on the thermal transport in the composite. Many 
researches paid the attention to develop the analytical models that were classified 
into theoretical model [13-18], empirical model [13], and semi-empirical model [19]. 
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Furthermore, the theoretical model can be classified into two classes depending on 
their solution method, i.e., exact and simplified solutions [20]. For example, Maxwell 
model [13] and Bruggeman model [13] are classified as the exact solution, while Cheng 
and Vachon model [14] and Liang and Liu model [15] are classified as the simplified 
solution.  As frequently found, those models gave the prediction in good agreement 
with the experimental data only at some range of filler content, especially at low filler 
loading [21]. In addition, the numerical models were presented by applying the 
numerical methods [22, 23]. However, the analytical models are preferred more 
because they possess more physical meaning, simpler calculation, and lower cost in 
calculation than the numerical models [24, 25]. 
 The comparison between the experimental data and the theoretical models 
as shown in Figure 1.2. indicated that the basic theoretical models, namely series and 
parallel models, cannot give the appropriate prediction due to the complicated 
structure of the composites [26]. Other more complicated theoretical models showed 
more possibility to fit the experimental data but there is no single model that can 
precisely fit the curve. In addition, these models cannot describe the effect of the 
particle size on the thermal conductivity of the composites. This led to the effort to 
modify the analytical models in many researches [27-31]. 

A cause of the deviation of the classical model comes from the fact that these 
models were focused on the idealized case of perfect interface contact between the 
matrix and the filler particles. However, even though the interface contact is perfect, 
a temperature drop usually occurs at the interface. This phenomena was first 
discovered by Kapitza at a boundary between liquid helium and metals [32]. This 
disturbance of the heat flow can be explained by means of the interfacial thermal 
resistance. This thermal resistance is due to the scattering of heat carriers (phonon or 
electron) at the interface of both materials which have the differences in vibrational 
and electronic properties [33]. Many experiments revealed that the interfacial thermal 
resistance had a dramatical effect on the effective thermal conductivity of the 
composites [31]. The theoretical models which included the effect of the interfacial 
thermal were presented by using the Kapitza radius concept [27, 31, 34]. By this way, 
the effect of the particle size was automatically incorporated into the models. These 
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modified models showed the potential for describing the effect of the interfacial 
thermal resistance and particle size on the effective thermal conductivity [27, 31]. 
However, only the theoretical models based on the exact solution were modified. 
 

 

  
PP/Al 8 𝜇m [12] 
PP/Al 44 𝜇m [12] 

Series model 

Parallel model 

Maxwell model [13] 
Bruggeman model [13] 
Cheng and Vachon 

model [14] 
Liang and Liu  

model [15] 

 

Figure 1.2 Comparison between the experimental data and the prediction by the 
analytical models of composite thermal conductivity where 𝑘𝑚 is thermal conductivity 
of polymer matrix, and 𝑘𝑒𝑓𝑓 is effective thermal conductivity 
 
 It was therefore interesting to modify the theoretical model based on the 
simplified solution to include the effect of the interfacial thermal resistance and the 
particle size. Due to the simplicity of the simplified solution, it was further expected 
that the effect of the interfacial thermal resistance and the particle size may be easier 
to be included and understood. This work was organized as follows. First, the effective 
thermal conductivity models were derived based on the simplified solution and then 
their performance were investigated. Second, the suitable model were modified by 
applying the Kapitza radius concept and the effect of the interfacial thermal resistance 
and particle size on the effective thermal conductivity were discussed. 
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1.2 Objectives 

 This work aimed to develop the thermal conductivity model based on the 
simplified solution and to include the effect of the interfacial thermal resistance 
between the matrix and filler particles and to examine the possibility to use this 
modified model to predict the thermal conductivity of the polymer composite.



 

 

CHAPTER 2 
THEORY 

2.1 Thermal Property of Solid Material 

 Thermal property is the response of the material to heat. While solid material 
absorbs energy in the form of heat, its temperature and volume will increase. The 
difference of temperature between any positions in the bulk of material causes the 
heat transport phenomena. Energy is always transferred from high- to low-temperature 
regions of material. There are three mechanisms of heat transport, i.e. conduction, 
convection, and radiation. In case of heat transport in solid, only heat conduction will 
be considered. 

2.1.1 Heat Conduction 

 Heat conduction or thermal conduction is the phenomenon in which heat is 
transferred from a hot section to a cool section of material by molecular mechanism. 
The simple relationship between the rate of heat transfer and temperature gradient 
for steady state heat conduction through a solid in one-dimension (x-dimension) is  
 

𝑞𝑥 = −𝑘
𝑑𝑇

𝑑𝑥
 (2.1) 

 
where 𝑞𝑥 is the local rate of heat flow per unit area (heat flux) in the positive 𝑥 
direction. The minus sign in the expression (2.1) indicates that the direction of heat 
flow is from hot region to cold region or down the temperature gradient [35]. This Eq. 
(2.1) is called Fourier’s law of heat conduction.  

The three-dimensional form of Fourier’s law is expressed as 
 

𝒒 = −𝑘𝜵𝑇 (2.2) 

 
where 𝒒 is the heat flux vector and 𝜵𝑇 is the gradient of temperature. For the Cartesian 
coordinate system 𝜵𝑇 is given by 
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𝜵𝑇 =
𝜕𝑇

𝜕𝑥
𝒔𝑥 +

𝜕𝑇

𝜕𝑦
𝒔𝑦 +

𝜕𝑇

𝜕𝑧
𝒔𝑧 (2.3) 

 
where 𝒔𝑥, 𝒔𝑦 , and 𝒔𝑧 are the unit vectors. 

This Eq. (2.2) describes the molecular transport of heat in isotropic media. The 
word “isotropic” means that the properties of material is uniform in all directions; 
therefore, heat is conducted with the same thermal conductivity in all directions [36].  
 Considering a stationary volume element of solid as a system, heat may enter 
and leave the system by heat conduction and internal energy of system may be 
changed. Because of a stationary solid, rate of kinetic and internal energy addition by 
convective transport and rate of work done on system by molecular mechanisms and 
external forces can be omitted. Thus, the equation of change for temperature for a 
stationary solid can be expressed as follows: 
 

𝜌𝐶̂𝑝
𝜕𝑇

𝜕𝑡
= 𝑘𝛁2𝑇 (2.4) 

 
Eq. (2.4) is the heat balance equation for solid [36].  

 
2.1.2 Heat Conduction Mechanism and Thermal Conductivity 

 The conduction heat transfer is the carrying of heat by molecular contact 
among molecules in thermal nonequilibrium. For solids, conduction occurs between 
adjacent molecules by propagation of the quantized lattice-vibrational waves which is 
called phonon heat carriers, or by the drift and collision of free electrons which is 
called electron heat carriers. These are described by phonon and electron mean-free 
paths (𝜆𝑝 and 𝜆𝑒). The mean-free path is the average distance traveled between these 
collisions. In conduction, the ability of the heat carriers to move in the medium, before 
a significant loss of their heat content, makes them effective heat carriers. Since the 
heat losses occur during collisions, the longer the length between collisions, the longer 
the mean-free path and the higher the heat transfer rate [37]. 
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 Thermal conductivity is a transport or nonequilibrium property of a material 
that characterizes the ability of a material to transfer heat per unit of time and per 
unit of area and in the presence of a unit temperature difference (∆𝑇) over a unit 
length (∆𝑥) within the medium. Thermal conductivity has a unit of J-m/s-m2-K or W/m-
K. The thermal conductivity depends on the ability of micro heat carriers, i.e. phonon 
and electron, of heat to travel to exchange this heat [37]. This travel is in the form of 
fluctuations or random-motion displacement about an equilibrium location. The ability 
to transfer heat by conduction is related to the ability of electrons and holes for 
metallic and semimetallic solids, and phonons for solids (dominant in nonmetals) to 
store and release thermal energy, and the ability of the electrons and phonons to 
travel before losing their energy. 
 For heat conduction in solid, electrons and phonons are the micro heat carriers. 
To point out the roles of the conduction electrons and the phonons, an electrical 
classification of solids (metals, nonmetals, and semiconductors) is used. The 
conduction electrons play a significant role in conducting heat for the solid metals due 
to their large number of conduction electrons. The thermal lattice vibration or 
phonons are the main heat conduction carrier for nonmetals (electrical insulators). The 
semiconductors have an intermediate electrical behavior between metals and 
nonmetals, however, their thermal conduction is similar to nonmetals [37]. 
 
I) Metals 
 Metals have a large number of conduction or free electrons (larger than 1022 
conduction electrons/cm3) because the atomic binding in crystalline metals reduces 
the energy of the valence electrons as compared to electrons in free atoms and makes 
a large number of valence electrons free to move [37]. The high thermal conductivity 
of metals is due to the acceleration of the conduction electrons in the presence of a 
temperature gradient and it is closely related to their high electrical conductivity 
𝜎𝑒 (1/ohm-m). The accelerated conduction electrons are stopped when the electrons 
collide with atoms in the crystal, with other electrons, or with other heat carriers. The 
average distance traveled between collisions is the mean-free path of the electron 𝜆𝑒. 
The approximate electrical conductivity due to free electrons is given by 
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𝜎𝑒 =
𝑛𝑒𝑒𝑐

2𝜆𝑒
𝑚𝑒𝑢𝑒

 (2.5) 

 
where 𝑛𝑒 is the number of free electrons per unit volume (number of electrons/m3), 
𝑒𝑐 is the electron charge (Coulomb), 𝑚𝑒 is the electron mass (kg), and 𝑢𝑒  is the mean 
electron speed (the carrier group velocity) (m/s) [37]. The ratio between 𝜆𝑒 and 𝑢𝑒 is 
called the electron residence time 𝜏𝑒 (or electron relaxation time, 𝑠).  

By assuming the temperature-gradient accelerated electrons travel the same 
average distance, i.e. mean-free path, before transferring their excess thermal energy 
to the atoms, the free electron thermal conductivity 𝑘𝑒 is expressed as 

 

𝑘𝑒 =
1

3
𝑛𝑒𝐶̂𝑣,𝑒𝑢𝑒𝜆𝑒  

=
1

3
𝑛𝑒𝐶̂𝑣,𝑒𝑢𝑒

2𝜏𝑒 (2.6) 

 
where 𝐶̂𝑣,𝑒 is the specific heat capacity of each electron (J/electron-K) [37]. The value 
of 𝐶̂𝑣,𝑒 and 𝜆𝑒 depend on the temperature and 𝜆𝑒 may be much larger than the 
intermolecular spacing. In addition, the electron mean-free path (or relaxation time) is 
influenced by the electron-electron, electron-phonon, and electron-lattice defect 
scattering mechanisms [37]. From the quantum-statistical mechanics, the relation 
between electrical and thermal conductivity for free electrons is given in the form of 
Wiedemann-Franz law as 
 

𝑘𝑒

𝜎𝑒𝑇
=

𝜋2

3
(
𝑘𝑏

𝑒𝑐
)
2
=  2.442 × 10−8 W-ohm/K2 (2.7) 

 
where 𝑇 is the absolute temperature and 𝑘𝑏 is the Boltzmann constant. Eq. (2.7) shows 
that the ratio of 𝑘𝑒 and 𝜎𝑒𝑇 is a constant. This equation holds well for the pure metals.  
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II) Nonmetals 
 Due to the absence of conduction electrons in solid nonmetals because the 
electron conduction-gap energy is large, the heat conduction is dominated by 
nonelectronic heat carriers. The presence of temperature gradient in the solid causes 
a nonuniform elastic thermal lattice vibration that transfers heat in form of vibrational 
energy along the solid. This heat carrier is phonon. In analogy with photons of 
electromagnetic waves, phonons are the quanta of energy in each mode of vibration 
traveling in the solid phase. The solid lattice is characterized as crystalline with periodic 
structure or amorphous with nonperiodic structure. The phonon internal energy is the 
sum of energy in all possible vibrational states and all polarizations. The vibration 
frequencies, which are associated with the concerted harmonic motion of all atoms 
and are called the normal modes, are orders of terahertz (1012 Hz) [37]. The lattice or 
phonon thermal conductivity can be expressed as  
 

 𝑘𝑝 =
1

3
𝜌𝐶̂𝑣,𝑙𝑢𝑝𝜆𝑝 (2.8) 

 
where 𝜌 is the density of solid material, 𝐶̂𝑣,𝑙 is the lattice specific heat capacity, 𝑢𝑝 is 
mean phonon velocity (also called lattice heat-carrier group velocity), and 𝜆𝑝 is the 
phonon mean-free path (also called heat-carrier mean-free path) [37]. The mean 
phonon velocity 𝑢𝑝 can be determined as the speed of sound in the solid state (𝑎𝑠), 
thus it is called “acoustic phonons”. The plane longitudinal wave speed is generally 
used, however, the average phonon speed is also used and is defined as  
 

3𝑢𝑝
−3 = 2𝑢𝑝,𝑡

−3 + 𝑢𝑝,𝑙
−3 (2.9) 

 
where subscript 𝑡 denotes the two transverse and 𝑙 denotes the single longitudinal 
wave speeds [37]. The mean-free path of the phonons is temperature and defect 
dependent. Around the room temperature, the interphonon collisions are significant. 
At low temperatures, the interphonon interactions become less significant and the 
electron-lattice-defect and boundary scattering (elastic and inelastic) become 
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important [37]. The mean free path is the most important parameter related to the 
thermal conductivity. If the size of the system is greater than the mean free path, 
scattering events will happen. But if the mean free path is greater than the system 
size, no scattering event can occur prior to reaching the ends of the system [35].  

Polymer is classified as a nonmetal. The thermal conductivities for most 
polymers are on the order of 0.3 W/m-K [35]. These materials possess the lowest 
thermal conductivities compared with metals and nonmetals. Heat transport in 
polymers is accomplished by the vibration and rotation of the chain molecules. The 
main thermal energy carriers are the phonons [38]. In contrast to ceramics or 
nonmetals, the conduction is carried out with extremely small phonons mean free 
path, i.e. a few angstroms, owing to their scattering from many defects, leading to a 
very low thermal conductivity [38]. The magnitude of the thermal conductivity 
depends on the degree of crystallinity. A polymer with a highly crystalline and ordered 
structure will have a better conductivity than the equivalent amorphous materials 
because of the better effective coordinated vibration of the molecular chains for the 
crystalline state [35]. In addition, the thermal conductivity of polymer depends on 
many factors such as chemical composition, strength of chemical bond, type of 
structure, side group, molecular weight, molecular weight distribution, defects in 
structure, processing condition, and temperature [7]. The thermal conductivity of 
polymeric materials can be improved by adding high thermally conductive materials 
such as Cu, Al, and Si [12, 39]. 

 
III) Semiconductors 
 Semiconductors (e.g., Ge, Si) have conduction electron less than 1017 
conduction electron/cm3. Their thermal conductivity is involved with the electrons 𝑘𝑒 
and the lattice vibration 𝑘𝑝, and the total conductivity is the sum of the two 
contributions as expressed by 
 

𝑘 = 𝑘𝑒 + 𝑘𝑝 (2.10) 
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A semiconductor is intrinsic when it has no imperfections and its electronic 
properties are dominated by electrons thermally excited from valence to conduction 
band. Semiconductors (e.g., Si) are made impure by adding other elements such as P, 
As, and Sb; this is called doping and the resulting materials are called an extrinsic 
materials. If impurities can provide free electrons, they are called donor elements and 
the resulting material is called the n-type because the electrical conduction is by 
electrons. In contrast, if these impurities are deficient in electrons, they are called 
acceptor elements and the resulting material is called the p-type because the 
electrical conduction is by hole. Electrons and holes are the electronic contributions 
in semiconductors. However, the thermal conductivity of semiconductors is generally 
dominated by phonon. The presence of impurities (dopants) can increase or decrease 
the thermal conductivity depending on the extent of the extra scattering caused by 
the impurities [37].  

 
2.1.3 Thermal Resistance and Electrical Circuit Analogy 

 The analogy between electrical and heat conduction is based on the 
fundamental similarity between voltage and temperature, current conduction and 
heat conduction. Electrical conduction occurs in response to a voltage difference while 
heat conduction occurs in response to a temperature difference. Starting with heat 
conduction in only one direction (e.g., 𝑥 direction) through a thin slab with a uniform 
conduction cross-sectional area 𝐴, the heat flux 𝑞𝑥 is constant along 𝑥 axis for the 
case of no energy conversion. This is shown in Figure 2.1(a). Assuming that heat 
conduction is steady-state and thermal conductivity 𝑘 does not vary with 𝑥, Eq. (2.4) 
can be written as  
 

𝑘
𝑑2𝑇

𝑑𝑥2
= 0 (2.11) 

 
Eq. (2.11) is integrated to give  
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𝑇(𝑥) = 𝑎1𝑥 + 𝑎2 (2.12) 

 
where 𝑎1 and 𝑎2 are the integration constants. The boundary conditions are 
determined by the prescribed temperature on the bounding surface as 
 

𝑇(𝑥 = 0) = 𝑇1, 𝑇(𝑥 = ∆𝑥) = 𝑇2 (2.13) 

 
Using the boundary conditions in Eq. (2.12), both integration constants are 

solved, and the results are 
 

𝑎1 =
𝑇2 − 𝑇1
∆𝑥

 (2.14) 

and 
 

𝑎2 = 𝑇1 (2.15) 

 
Substituting for 𝑎1 and 𝑎2 in Eq. (2.12), the temperature distribution is given 

as 
 

𝑇(𝑥) = 𝑇1 +
𝑇2 − 𝑇1
∆𝑥

𝑥 (2.16) 

 
Eq. (2.16) describes a linear distribution of temperature along the 𝑥 axis. The 

heat flux at any location 𝑥 is determined by  
 

𝑞𝑥 = −𝑘
𝑑𝑇

𝑑𝑥
= −𝑘

𝑇2 − 𝑇1
∆𝑥

 (2.17) 
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Eq. (2.17) indicates that 𝑞𝑥 is uniform throughout the planar layer which 
perpendicular to 𝑥 axis. For any locations 𝑥 and 𝑥 + ∆𝑥, the heat flux can be written 
as 
 

𝑞𝑥 = −𝑘
𝑑𝑇

𝑑𝑥
= −𝑘

𝑇(𝑥 + ∆𝑥) − 𝑇(𝑥)

∆𝑥
 (2.18) 

 
The heat flow rate 𝑄𝑥 is the product of the heat flux 𝑞𝑥 and the cross-sectional 

area 𝐴 through which heat is transferred as 
 

𝑄𝑥,1−2 = 𝐴𝑞𝑥 = −𝐴𝑘
𝑇2 − 𝑇1
∆𝑥

=
𝑇1 − 𝑇2
∆𝑥
𝐴𝑘

=
∆𝑇

∆𝑥
𝐴𝑘

 (2.19) 

 
where the subscript 1 − 2 means the heat transfers from the wall on side 1 to the 
wall on side 2 as shown in Figure 2.1.  Since it is a one-dimensional heat flow, the 
subscript 𝑥 can be neglected.  

Eq. (2.19) is the Fourier law in terms of a linear, one-dimensional temperature 
distribution that can be compared to the Ohm law. By considering an electric current 
flow 𝐽𝑒 when an electrical potential ∆𝜑 or 𝜑1 − 𝜑2 is applied across a conductor of 
thickness ∆𝑥 with an electrical conductivity 𝜎𝑒, and a cross-section area 𝐴, the 
relationship of these parameters can be written as 
 

𝐽𝑒,1−2 =
∆𝜑

𝑅𝑒,1−2
= −

𝜑2 −𝜑1
∆𝑥
𝜎𝑒𝐴

 (2.20) 

 
where 𝑅𝑒,1−2 is the electrical resistance. It is worth to notice that Eq. (2.19) is similar 
to Eq. (2.20). Based on this analogy, the thermal resistance 𝑅1−2 (°C/W or K/W) can be 
defined as 
   

𝑅1−2 ≡
𝑇1 − 𝑇2
𝑄1−2

=
∆𝑥

𝐴𝑘
 (2.21) 
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Eq. (2.21) is the heat conduction resistance for a slab. The thermal resistance 
is the measure of the temperature difference needed for the flow of one Watt of 
thermal energy through a layer of thermal conductivity 𝑘, thichness ∆𝑥, and area 𝐴. 
The magnitude of thermal resistance is between zero (ideal conductor) and infinity 
(ideal insulator) and it is always positive, i.e., 0 ≤ 𝑅 ≤ ∞. The thermal circuit model is 
also shown in Figure 2.1(b). The inverse of the thermal resistance is the thermal 
conductance ℎ (W/°C) as expressed as  
 

ℎ =
𝐴𝑘

∆𝑥
 (2.22) 

 
 
(a) Physical model (b) Thermal circuit model 

  
 
Figure 2.1 (a) A physical model of one-dimensional steady-state conduction through a 
slab and (b) Thermal circuit model for this conduction heat transfer (adapted from 
[37]) 
 

Composite is made of two or more distinct materials. Its thermal conductivity 
and thermal resistance can be determined by the inclusion of the resistance for each 
element of the composite. Composite can be divided into layered and nonlayered 
structures. The layers can be perpendicular to the heat flow direction, resulting in the 
series arrangement of the resistances. In contrast, the layers can be parallel to the 



 

 

16 

heat flow direction and this is called parallel arrangement of resistances. The rendering 
of these arrangements are shown in Figure 2.2(a). For nonlayered composite, one of 
materials is continuous and the others can be continuous or discontinuous in one or 
more directions. Figure 2.2(b) shows some examples of nonlayered composites.  
 
(a) Layered composite 
(i) Layers perpendicular 

to heat flux vector 
(ii) Layers Parallel 

to heat flux vector 

 
 

(b) Nonlayered composite 
(i) One continuous material (ii) Both continuous materials 

  
Figure 2.2 Schematic of (a) layered composite and (b) nonlayered composite 

(adapted from [37]) 
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Considering a composite composed of three materials arranged in series as 
shown in Figure 2.3, the heat flows perpendicular to the interfaces. The heat flows out 
of the surface to the left as designated by −𝑄1 and to the right as designated by 𝑄1−1′. 
The energy equation for surface node 𝑇1 at steady state is written as 

 

−𝑄1 + 𝑄1−1′ = 0 or 𝑄1 = 𝑄1−1′ (2.22) 

 
Likewise, this can be done for all surface nodes. Then the energy equations for 

each of the surface shown in Figure 2.3 are listed below. 
 

−𝑄1 + 𝑄1−1′ = 0 for surface node 𝑇1 (2.23a) 

−𝑄1−1′ + 𝑄1′−2′ = 0 for surface node 𝑇1′ (2.23b) 

−𝑄1′−2′ + 𝑄2′−2 = 0 for surface node 𝑇2′ (2.23c) 

−𝑄2′−2 + 𝑄2 = 0 for surface node 𝑇2 (2.23d) 
 

From Eq. (2.23a) to (2.23d), it is found that 
 

𝑄1 = 𝑄1−1′ = 𝑄1′−2′ = 𝑄2′−2 = 𝑄2 = 𝑄1−2 (2.24) 

 
It should be noted that same heat flow rate 𝑄1−2 flows through each 

resistance. 
For each resistance, the heat flow can be expressed as 

 

𝑄1−1′ = 𝑄1−2 = −
𝐴𝑘𝐴
∆𝑥𝐴

(𝑇1′ − 𝑇1) =
𝑇1 − 𝑇1′

∆𝑥𝐴
𝐴𝑘𝐴

=
𝑇1 − 𝑇1′

𝑅1−1′
 (2.25) 

 

𝑄1′−2′ = 𝑄1−2 = −
𝐴𝑘𝐵
∆𝑥𝐵

(𝑇2′ − 𝑇1′) =
𝑇1′ − 𝑇2′

∆𝑥𝐵
𝐴𝑘𝐵

=
𝑇1′ − 𝑇2′

𝑅1′−2′
 (2.26) 
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𝑄2′−2 = 𝑄1−2 = −
𝐴𝑘𝐶
∆𝑥𝐶

(𝑇2 − 𝑇2′) =
𝑇2′ − 𝑇2
∆𝑥𝐶
𝐴𝑘𝐶

=
𝑇2′ − 𝑇2
𝑅2′−2

 (2.27) 

 
𝑇1′ is solved by rearranging Eq. (2.25), and the result is 

 

𝑇1′ = 𝑇1 −
𝑄1−2∆𝑥𝐴
𝐴𝑘𝐴

 (2.28) 

 
 

 
Figure 2.3 Illustration of physical model and thermal circuit model for series layered-
composite (adapted from [37]) 
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In the same manner, the result for 𝑇2′ from Eq. (2.26) and when using Eq. (2.28) 
is 
 

𝑇2′ = 𝑇1′ −
𝑄1−2∆𝑥𝐵
𝐴𝑘𝐵

= 𝑇1 −
𝑄1−2∆𝑥𝐴
𝐴𝑘𝐴

−
𝑄1−2∆𝑥𝐵
𝐴𝑘𝐵

= 𝑇1 − 𝑄1−2 (
∆𝑥𝐴
𝐴𝑘𝐴

+
∆𝑥𝐵
𝐴𝑘𝐵

) (2.29) 

 
The result for 𝑇2 from Eq. (2.27) and when using Eq. (2.29) is 

 

𝑇2 = 𝑇2′ −
𝑄1−2∆𝑥𝐶
𝐴𝑘𝐶

= 𝑇1 − 𝑄1−2 (
∆𝑥𝐴
𝐴𝑘𝐴

+
∆𝑥𝐵
𝐴𝑘𝐵

+
∆𝑥𝐶
𝐴𝑘𝐶

) (2.30) 

 
Eq. (2.30) is rearranged into the form of the temperature difference across the 

three layers as 𝑇1 − 𝑇2 and then using the definition of thermal resistance given by Eq. 
(2.21), the heat flow through the composite can be expressed as 
 

𝑄1−2 =
𝑇1 − 𝑇2

∆𝑥𝐴
𝑘𝐴𝐴

+
∆𝑥𝐵
𝑘𝐵𝐴

+
∆𝑥𝐶
𝑘𝐶𝐴

=
𝑇1 − 𝑇2

𝑅1−1′ + 𝑅1′−2′ + 𝑅2′−2
 (2.31) 

 
Eq. (2.31) indicates that for this layered arrangement of layers perpendicular to 

the heat flow, the thermal resistances are added as series resistances with the 
temperature difference across the composite as the potential. This series arrangement 
of resistances is shown in Figure 2.3. 

For 𝑛 layers placed perpendicular (series arrangement) to the heat flow 
between surface 1 and 2, it can be generalized as 

 

𝑄1−2 =
𝑇1−𝑇2

∑ 𝑅𝑖
𝑛
𝑖=1

≡
𝑇1−𝑇2

𝑅Σ
 , 𝑅Σ ≡ ∑ 𝑅𝑖

𝑛
𝑖=1     series resistances (2.32) 

 
where 𝑅Σ is the overall conduction resistance for the composite.  



 

 

20 

In the other way, layers can be arranged in parallel to form layered composite 
as shown in Figure 2.4. In this case, there are three heat flow rates. For surface nodes 
1 and 2, the energy equation can be written as 
 

−𝑄1 + 𝑄1−2,𝐴 + 𝑄1−2,𝐵 + 𝑄1−2,𝐶 = 0          for surface 1 (2.33) 

 

−𝑄1−2,𝐴 − 𝑄1−2,𝐵 − 𝑄1−2,𝐶 + 𝑄2 = 0           for surface 2 (2.34) 

 
Figure 2.4 Illustration of physical model and thermal circuit model for parallel layered-
composite (adapted from [37]) 
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Then from Eq. (2.33) and (2.34), it can be shown that 
 

𝑄1 = 𝑄2 = 𝑄1−2,𝐴 + 𝑄1−2,𝐵 + 𝑄1−2,𝐶 ≡ 𝑄1−2 (2.35) 

 
Using the definition of thermal resistance given by Eq. (2.21), the heat flow 

through the composite can be expressed as 
 

𝑄1−2 = 𝑄1−2,𝐴 + 𝑄1−2,𝐵 + 𝑄1−2,𝐶  

𝑄1−2 =
𝑇1 − 𝑇2
∆𝑥
𝐴𝐴𝑘𝐴

+
𝑇1 − 𝑇2
∆𝑥
𝐴𝐵𝑘𝐵

+
𝑇1 − 𝑇2
∆𝑥
𝐴𝐶𝑘𝐶

  

𝑄1−2 = (𝑇1 − 𝑇2) (
1

∆𝑥
𝐴𝐴𝑘𝐴

+
1

∆𝑥
𝐴𝐵𝑘𝐵

+
1

∆𝑥
𝐴𝐶𝑘𝐶

) (2.36) 

 
 For n layers placed parallel to the heat flow, in parallel arrangement, the heat 
flow equation can be generalized as 
 

𝑄1−2 = (𝑇1 − 𝑇2) ∑
1

𝑅𝑖
≡𝑛

𝑖=1
𝑇1−𝑇2

𝑅Σ
,   

1

𝑅Σ
= ∑

1

𝑅𝑖

𝑛
𝑖=1     parallel resistances (2.37) 

 
 For nonlayered composite, there are many geometric variations where a 
material A is in a nonlayered arrangement with another material B. One material or 
more than one materials can be continuous, called continuous phase and co-
continuous phase, respectively. While one of the materials can be dispersed or 
discontinuous in a continuous phase.  In the case of composite composed of two 
materials, it can be thought that its structure is ordered periodic arrangement with one 
of the materials being discontinuous. This is also called ordered lattice. It is assumed 
that there are many of unit cells arranged in a periodic arrangement and local thermal 
equilibrium over a unit cell exists. An example is shown in Figure 2.5. The regular 
arrangement of dispersed spherical inclusions of diameter 𝐷 in a square array 
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arrangement with the distance between centers of the adjacent spheres being 𝑙. 
Assuming a one-dimensional heat flow with parallel-series arrangement of the 
resistances in each unit cell, the thermal circuit model for each unit cell can be used 
for calculating the heat flow by the same method described above. 
 

 
Figure 2.5 Physical model and thermal circuit model of square array of spherical 
inclusions (adapted from [37]) 
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2.1.4 Interfacial Thermal Resistance 

 The idea of interfacial thermal resistance or thermal boundary resistance 
between two materials has been studied for a long period [32]. It is known as interfacial 
thermal resistance and refers to the combined effect of two thermal resistances, 
namely thermal contact resistance and thermal boundary resistance [33]. Thermal 
contact resistance is caused by poor mechanical and chemical bonding between 
constituent phases while thermal boundary resistance occurs due to differences in the 
physical properties of constituent materials [33]. This latter thermal resistance is also 
called Kapitza resistance in memory of P. Kapitza who was the first to discover a 
temperature drop at a boundary between liquid helium and metals in 1941 [32]. The 
interfacial thermal resistance (𝑅𝑖𝑛𝑡) with a unit of m2K/W can be defined as the ratio 
of the temperature difference at the interface ∆𝑇 to the heat flow rate 𝑄 per unit area 
𝐴 flowing across that interface [32, 33]: 
 

𝑅𝑖𝑛𝑡 =
∆𝑇

𝑄
𝐴

=
∆𝑇

𝑞
 (2.38) 

 
 The difference in the physical properties of contacting materials causes the 
interfacial thermal resistance and leads to the temperature drop at the interface [40]. 
For example, a schematic of temperature profile for Si/Ge interface at a temperature 
of 500 K obtained from molecular dynamics simulations was shown in Figure 2.6. Heat 
is transferred in a solid by phonon transport or electronic transport as described 
previously. Because of different vibrational and electronic properties of each medium 
(material), a heat carrier in form of electron or phonon, arriving at the interface, reaches 
a physical end of the medium in which it originally propagates and must fulfill certain 
requirements to continue its propagation in the other medium, and there will be only 
some heat carriers that can pass the interface, although the mechanical contact 
between the two phases is perfect [40]. This makes the thermal boundary resistance 
different from the thermal contact resistance. 



 

 

24 

 The interfacial thermal resistance may result from interdiffusion or corrosion of 
composite components, particle coating, particle electrochemical treatment, and 
moisture absorption. Poor adhesion causes imperfect mechanical contact and also 
increases the interfacial thermal resistance in term of thermal contact resistance. 
Furthermore, thermal expansion mismatch between constituents may lead to the 
formation of gas-filled gaps in the interfacial region; this gaps act as thermal resistance 
[33]. 
 

 
Figure 2.6 Temperature profile for the Si/Ge interface at an average temperature 𝑇̅ of 
500 K obtained from molecular dynamics simulation where 𝑇𝐿 is temperature at 
interface of Si and 𝑇𝑅 is temperature at interface of Ge [41] 

 
The interfacial thermal resistance acts as a thermal barrier in composites. This 

negative effect increases when the filler particle size decreases, especially in high filler 
volume fraction as shown in Figure 2.7. This effect can be explained in terms of the 
interfacial thermal resistance which becomes increasingly dominant as the particles 
become smaller and have higher surface area to volume ratio [27]. The interfacial 
thermal resistance is an important parameter that affects the enhancement of the 
thermal conductivity of composites, especially in nanocomposites [13]. To determine 
the effective thermal conductivity of newly designed composites, it is essential to know 
the interfacial thermal resistance of those composites. The measurement of the 
interfacial thermal resistance can be separated into two types, i.e. direct method and 
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indirect method. However, there are many difficulties during interfacial thermal 
resistance measurement attempts due to the subtle nature of the phenomenon [40]. 
 

 
Figure 2.7 Relative thermal conductivity versus filler volume fraction of polypropylene 
filled with aluminum in form of spherical particles with average particle size of 8 𝜇m 
and 44 𝜇m (experimental data cited from [12]) 
 
2.2 Polymer Composites 

 Many modern technologies require materials with several special properties 
which may coexist in one. These are not found in typical materials. To response to the 
desirable requirement, composite materials are developed intensely. Composite is 
material with several phases, but at least 2 phases. The continuous phase is called 
“matrix”. The discontinuous phase surrounded by the matrix is called “dispersed 
phase” or “filler”. Each phase possesses innate property and different chemical 
structure which can be clearly separated. This makes the composite to have several 
properties depending on their composition. In addition, some properties of composites 
are better than the original materials. The whole properties of composites depend on 
type of original material, quantity and geometry of dispersed phase (shape and size), 
and distribution and orientation of dispersed phase [35]. 
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2.2.1 Polymer Composite Preparation for Improving the Thermal 
Conductivity 

 There are several methods to prepare thermally conductive polymer 
composite. It depends on the type of matrix whether thermoplastic or thermoset. 
Furthermore, shapes of filler whether cylindrical, flake, or sphere usually also influence 
the processing method. However, all processing method has a similar purpose that is 
to gain the composite which has desirable property. The processing method should 
cause the uniform dispersion and distribution of filler without the fracture of filler. 
Especially in fiber filler, the fractured fiber has lower aspect ratio and incurs the 
decreasing in property. The satisfied processing method should make good interfacial 
between the matrix and filler. In addition, it should be able to control the orientation 
of filler particles and cause the anisotropic property as needed [2]. 
 For thermoplastic, melt-mixing is very popular. The extruder and internal mixer 
are usually used in this method. Solvent casting is alternative method for filler coated 
with thermally sensitive chemical. After preparation, prepared composite is formed as 
specimen by compression or injection molding machine [2]. 

 
2.2.2 Thermally Conductive Fillers 

 The thermal conductivity of polymer can be improved by adding thermally 
conductive fillers such as graphite, carbon black, carbon fibers, ceramic particles and 
metal particles. The thermal conductivities of those materials depend on their purity, 
crystallinity, size of particle, or even the measurement technique. Especially in fiber or 
cylindrical filler, the axial thermal conductivity is normally higher than the transverse 
thermal conductivity [11]. The fillers used for improving the thermal conductivity of 
polymeric material are divided as three types, namely carbon-based fillers, metallic 
fillers, and ceramic fillers [11].  
 
I) Carbon-based Fillers 
 Carbon-based filler is one of the appropriate fillers to improve the thermal 
conduction of polymeric materials due to their high thermal conductivity and low 
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weight. Typical carbon-based fillers are graphite, carbon fiber, and carbon black. 
Graphite is the best filler due to high thermal conductivity, affordability, and very good 
dispersion in polymer matrix. In one layer of graphite, graphene has the high thermal 
conductivity around 800 W/m-K or more than 5,300 W/m-K theoretically. However, 
graphite normally has the thermal conductivity of 100 to 400 W/m-K. The thermal 
conductivity of composite depends on the dispersion of graphite and its aspect ratio 
[11]. 
 Carbon fiber is the hollow cylindrical filler. The axial thermal conductivity is 
different from the transverse thermal conductivity. The axial thermal conductivity is 
around 2000 W/m-K. The transverse thermal conductivity is around 10-110 W/m-K. 
Thus, the orientation of carbon fiber affects the thermal conduction of composite 
seriously [11]. 
 
II) Metallic Fillers 
 Metallic fillers may cause the increase in both of the thermal conductivity and 
electrical conductivity. Furthermore, the density of composite is increased. These are 
limitations for using this filler type. Metallic fillers for increasing the thermal 
conductivity are aluminum, silver, copper, nickel, etc. The efficiency of improving the 
thermal conductivity depends on the thermal conductivity of metallic particle, shape 
and size of particle, volume fraction, and orientation [11]. 
 
III) Ceramic Fillers 
 Ceramic fillers such as aluminum nitride, silicon carbide, beryllium oxide, etc., 
are widely used in electronics. They possess the interesting properties which are high 
thermal conductivity and electrical insulator. Their thermal conductivities depend on 
packing density, particle size, size distribution, and surface treatment [11]. 
 
2.3 Effective Thermal Conductivity Models 

It is known that the thermal conductivity of polymer composite depends on 
several factors such as particle size and size distribution, volume fraction of filler, shape 
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of filler particle, dispersion state of fillers, interfacial thermal resistance , and so on [13, 
42]. These factors make the thermal conductivity mechanism very complicated, 
especially for a highly filled system [42]. To interpret thermal measurement results 
and design materials for thermal applications, various theoretical, empirical, and 
semiempirical models have been developed with a variety of assumptions [13]. The 
result of modeling is a mathematical relationship involving at least the volume fraction 
and the properties of each component of composite [5]. Sundstrom and Lee [20] 
classified theoretical models into two classes depending on their solution method, i.e., 
exact or simplified solutions. In exact solution, the effective thermal conductivity is 
obtained by an analytical solution of the heat equation for a simple idealized geometry 
without any assumptions on heat flow or temperature patterns. The models are exact 
solutions such as Maxwell model [13] and Bruggeman model [43]. In contrast, 
simplified solutions generally assume that heat flow is unidirectional and isotherm 
planes are perpendicular to the heat flow. By this way, the problem is reduced to 
ordinary differential equation instead of a partial differential equation. Cheng and 
Vachon model [14] is a model derived from simplified solution. There is an alternative 
classification of thermal conductivity model that was proposed by Mottram [5, 26]. 
The models are divided into first, second, third and fourth order. First order models 
are the simplest model, i.e., series and parallel model. Most well-known models are 
organized in the second order group. The models that take into account the 
disturbance between the phases of the composites and the geometry of the inclusions 
are classified as the third and fourth order models. These models usually have a more 
complicated parameter, for example, the three-point parameter that take into account 
the statistical perturbation around each particle in Torquato model [44]. However, 
there are only a few models in the third and fourth order. In this section, some basic 
models of thermal conductivity based on exact and simplified solution were reviewed. 
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2.3.1 Model Based on Simplified Solution 

  2.3.1.1 Series Model 

 If two components arranged in series with respect to the heat flow direction, 
the effective thermal conductivity (𝑘𝑒𝑓𝑓) in this case can be written as 
 

Series model:                         1

𝑘𝑒𝑓𝑓
=

𝑣𝑚

𝑘𝑚
+

𝑣𝑓

𝑘𝑓
 (2.39) 

 
where 𝑣𝑚 is the matrix volume fraction, 𝑣𝑓 is the filler volume fraction, 𝑘𝑚 is the 
thermal conductivity of matrix, and 𝑘𝑓 is the thermal conductivity of filler.  

Series model typically gives an underestimation for a particulate composite due 
to the presumably complete localization of the contribution from the particles 
embedded in the matrix; in other words, neglecting the interaction among the fillers 
[13]. It can be imagined that the composite material responds as a homogeneous 
material in which each filler particle is an isolated entity [26]. Thus, the series model 
gives the lower bound for thermal conductivity of composites as shown in Figure 2.8.  
 

 
 

Figure 2.8 The predictions of the relative thermal conductivity of a two phase system 
as a function of volume fraction of the spherical metal particle where solid line is 
parallel model and dot line is series model  [26] 

𝑘𝑒𝑓𝑓

𝑘𝑚
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2.3.1.2 Parallel Model 

 If two components arranged in parallel with respect to the heat flow, the 
effective thermal conductivity in this case can be written as 
 

Parallel model:                      𝑘𝑒𝑓𝑓 = 𝑣𝑚𝑘𝑚 + 𝑣𝑓𝑘𝑓 (2.40) 

 
which is also called the rule of mixture for thermal conductivity [13].  
 Parallel model accounts for the particle-particle interactions by assuming the 
perfect contact between particles in a fully percolating network [13, 26]. This model 
gives an overestimation of thermal conductivity for composites [13]. Therefore, it gives 
upper bound for thermal conductivity of composites as shown in Figure 2.8. 
  

2.3.1.3 Cheng and Vachon Model 

 Based on the series and the parallel models, Tsao [45] developed a 
probabilistic model for the effective thermal conductivity of composites as follows: 
 

1

𝑘𝑒𝑓𝑓
= ∫

𝑑𝑃1

𝑘𝑚 + (𝑘𝑓 − 𝑘𝑚) ∫
1

𝜎√2𝜋

1

𝑃1
𝑒−

1
2 (
𝑃1 − 𝜇
𝜎 )

2

𝑑𝑃1

1

0

 (2.41) 

 
where 𝑃1 is the one-dimensional porosity (line fraction), 𝜇 is the mean of 𝑃1, and 𝜎 is 
the standard deviation.  
 The values of 𝜇 and 𝜎 are derived from the experiment and it is specific for a 
composite. To solve this problem, Cheng and Vachon [14] postulated a parabolic 
distribution of the discontinuous phase in the matrix. The constants of the parabolic 
distribution are given as a function of the volume fraction of discontinuous phase. In 
case of composite filled with highly conductive filler (𝑘𝑓 > 𝑘𝑚), the formula is 
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1

𝑘𝑒𝑓𝑓
=

1

√𝐶′(𝑘𝑓 − 𝑘𝑚)[𝑘𝑚 + 𝐵(𝑘𝑓 − 𝑘𝑚)]

ln

√𝑘𝑚 + 𝐵(𝑘𝑓 − 𝑘𝑚) +
𝐵
2
√𝐶′(𝑘𝑓 − 𝑘𝑚)

√𝑘𝑚 + 𝐵(𝑘𝑓 − 𝑘𝑚) −
𝐵
2
√𝐶′(𝑘𝑓 − 𝑘𝑚)

+
1 − 𝐵

𝑘𝑚
 (2.42) 

 

 where 𝐵 = (3𝑣𝑓
2
)

1

2 and 𝐶′ = 4

𝐵
. 

 The maximum volume fraction of filler in Cheng and Vachon model 
consequently was fixed to be 0.667 due to assuming the parabolic distribution curve. 
However, this value should depend on the dispersion state and the shape of the filler. 
Okamoto and Ishida [46] suggested that the maximum packing volume fraction  
(𝑣𝑓,𝑚𝑎𝑥)  of the filler phase should be used as a new parameter applied to the Cheng 
and Vachon model. This new parameter reflects the dispersion state and the shape of 
the filler. They assumed that the dispersion state of the discontinuous phase does not 
change substantially throughout the volume fraction of the discontinuous phase under 
examination. The shape of the distribution curve at a certain volume fraction (𝑣𝑓) is 
supposed to be geometrically similar to that at 𝑣𝑓,𝑚𝑎𝑥, as shown in Figure 2.9. They 
defined the relationship between 𝑣𝑓 and 𝑣𝑓,𝑚𝑎𝑥 as follows: 
 

𝑣𝑓 = 𝐵2𝑣𝑓,𝑚𝑎𝑥 (2.43) 

 
Therefore, 𝐵 and 𝐶 can be rewritten as 

 

𝐵 = (
𝑣𝑓

𝑣𝑓,𝑚𝑎𝑥
)

1
2

 (2.44) 

 
and 
 

𝐶 = −4(
𝑣𝑓,𝑚𝑎𝑥

𝑣𝑓
)

1
2

 (2.45) 

 



 

 

32 

 
 

Figure 2.9 Schematic diagram of 𝑣𝑓,𝑚𝑎𝑥 and 𝑣𝑓 [46] 
 
 The value of 𝑣𝑓,𝑚𝑎𝑥 of this model can be found by fitting the modified Cheng 
and Vachon model to the experimental data and it is very close to theoretical 
maximum volume fraction derived by calculation. By this way, the modified Cheng and 
Vachon model can account for the effects of the dispersion state and the shape of 
filler on the thermal conductivity of composite. 
 

2.3.1.4 Liang and Liu Model 

 Liang and Liu [15] presented a heat transfer model of inorganic particulate-
filled polymer composites based on the specific equivalent thermal resistance of the 
element of composites, when only heat conduction is considered. Thus, the 
calculation of the equivalent thermal conductivity for composites can be attributed to 
the determination of the equivalent thermal conductivity of the unit cell with the 
same specific equivalent thermal resistance. They supposed that an overall composite 
consists of a number of small squared elements, and each element only contains a 
spherical particle in the center. The element was divided into three parts. Part one 
and part three contain only neat polymer, while part two contains both spherical 
particle and polymer. The thermal conductivities of part one and part three are equal 
to thermal conductivity of neat polymer. For part two, the mean thermal conductivity 
is derived by considering the connection of polymer and particle in parallel. Then, the 
total thermal resistance was calculated by a series model of thermal resistance of 

𝑣𝑓,𝑚𝑎𝑥 

𝑣𝑓 
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each part. From a definition of thermal resistance, the equation for effective thermal 
conductivity can be written as 
 

𝑘𝑒𝑓𝑓 =
1

1
𝑘𝑚

−
1
𝑘𝑚

(
6𝑣𝑓
𝜋 )

1
3
+

2

𝑘𝑚 (
4𝜋
3𝑣𝑓

)

1
3
+ (

2𝑣𝑓
9𝜋
)

1
3
𝜋(𝑘𝑓 − 𝑘𝑚)

 
(2.46) 

 
 Chauhan et al. [47] modified Liang and Liu model to consider the effect of 
geometry of filler particles on the effective thermal conductivity. Two different shapes, 
namely, elliptical and hexagonal, of filler particle were used in modeling.  
 For the elliptical shape of filler particle, the equation is 
 

𝑘𝑒𝑓𝑓 =
1

1
𝑘𝑚

−
1
𝑘𝑚

(
6𝑣𝑓
𝜋 )

1
3
+

2

𝑘𝑚
√2

(
𝜋
6𝑣𝑓

)

1
3
+ (

2𝑣𝑓
9𝜋 )

1
3
𝜋(𝑘𝑓 − 𝑘𝑚)

 
(2.47) 

 
 For the hexagonal shape of filler particle, the equation is 
 

𝑘𝑒𝑓𝑓 =
1

1
𝑘𝑚

−
1.23
𝑘𝑚

(𝑣𝑓)
1
3 +

2

1.62
𝑘𝑚

(𝑣𝑓)
1
3

+ 1.29(𝑣𝑓)
1
3(𝑘𝑓 − 𝑘𝑚)

 

(2.48) 

 
 Although, the shapes of filler particle are different in Eq. (2.46), (2.47), and (2.48), 
the predictive values from these equations are quite similar [47]. 
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2.3.2 Model Based on Exact Solution 

2.3.2.1 Maxwell Model (Maxwell-Garnett Equation) 

 Maxwell solved the problem of determining the effective transport properties 
of multiphase materials [13]. He derived an exact solution for the effective specific 
resistance of a composite filled with spherical particles based on the continuity of 
potential and electric current at the interface, and on the assumption that the 
interactions among the spherical particles are neglected. This means the small 
spherical particles are located far enough from each other. When the solution was 
transformed to the thermal conductivity, the model can be written as 
 

𝑘𝑒𝑓𝑓

𝑘𝑚
= 1 + 3𝑣𝑓

𝑘𝑓 − 𝑘𝑚

2𝑘𝑚 + 𝑘𝑓 − 𝑣𝑓(𝑘𝑓 − 𝑘𝑚)
 (2.49) 

  
Eq. (2.49) is suitable for composites filled with spherical particles at very low 

content and good dispersion. The interfacial thermal resistance is not considered in 
this model. The effective thermal conductivity predicted by Maxwell model usually 
deviates from experimental thermal conductivity at a high volume fraction, because 
there is no consideration of mutual interaction of particles in this model [42]. Eq. (2.49) 
is also named Maxwell-Garnett (MG) equation in terms of electrical conductivity [13]. 
 

2.3.2.2 Hamilton and Crosser Model 

 Hamilton and Crosser defined volume-temperature gradient-averaged thermal 
conductivity of a composite as [13, 48] 
 

𝑘𝑒𝑓𝑓 =

𝑘𝑚𝑣𝑚 (
𝑑𝑇
𝑑𝑥
)
𝑚
+ 𝑘𝑓𝑣𝑓 (

𝑑𝑇
𝑑𝑥
)
𝑓

𝑣𝑚 (
𝑑𝑇
𝑑𝑥
)
𝑚
+ 𝑣𝑓 (

𝑑𝑇
𝑑𝑥
)
𝑓

 (2.50) 

 



 

 

35 

 The ratio of the temperature gradient was determined from theoretical work 
of Maxwell under the assumption that interaction between particles is negligible, which 
relates to low filler concentration.  
 

(
𝑑𝑇
𝑑𝑥
)
𝑓

(
𝑑𝑦
𝑑𝑥
)
𝑚

=
𝑛𝑘𝑚

𝑘𝑓 + (𝑛 − 1)𝑘𝑚
 (2.51) 

 
where 𝑛 is shape factor depending on the shape of the dispersed particles and the 
ratio of the conductivity of the two phases, and should be determined experimentally 
for mixtures containing particles of arbitrary shapes. Substituting Eq. (2.51) into Eq. 
(2.50), the equation for effective thermal conductivity is given by 
 

𝑘𝑒𝑓𝑓

𝑘𝑚
=

1 +
𝑣𝑓(𝑛 − 1)(𝑘𝑓 − 𝑘𝑚)

𝑘𝑓 + (𝑛 − 1)𝑘𝑚

1 −
𝑣𝑓(𝑘𝑓 − 𝑘𝑚)

𝑘𝑓 + (𝑛 − 1)𝑘𝑚

 (2.52) 

 
where 𝑛 = 3

Ψ
, Ψ is sphericity being an empirical factor. The Ψ is defined as the ratio 

of the surface area of a sphere, with a volume equal to that of the particle, to the 
surface area of the particle.  
 

2.3.2.3 Bruggeman Model 

 Bruggeman developed the differential effective medium (DEM) theory to 
estimate the effective properties of composites at high particle concentration. The 
principle of the DEM theory was briefly discussed in [49]. By considering the mutual 
interaction between the particles in the composite with high filler concentration, 
Bruggeman model was obtained by introducing the filler volume fraction under an 
integral transformation of Maxwell model as [42] 
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1 − 𝑣𝑓 =
𝑘𝑓 − 𝑘𝑒𝑓𝑓

𝑘𝑓 − 𝑘𝑚
(
𝑘𝑚
𝑘𝑒𝑓𝑓

)

1
3

 (2.53) 

 
 However, some research indicated that there are a smaller deviation between 
the experiment data and the predictive value of Bruggeman model [42]. 
 

2.3.2.4 Hatta and Taya Model 

 Equivalent inclusion method (EIM) was first introduced by Eshelby [50] for the 
determination of the elastic field of an ellipsoidal inclusion. By the principle of the 
analogy of heat conduction to elasticity, Hatta and Taya [17] applied EIM to the study 
of steady-state heat conduction in composite. In the EIM, an inhomogeneous region is 
converted to an equivalent inclusion filled by a uniformly distributed doublet such 
that the equivalent inclusion induces the same thermal intensity field as the particle. 
After the temperature fields in and around an inclusion are solved, the effective 
thermal conductivity of the composite can be computed. For a completely random 
distribution and intrinsically isotropic property of the fillers, the effective thermal 
conductivity is written as  
 

𝑘𝑒𝑓𝑓

𝑘𝑚
= 1 +

𝑣𝑓(𝑘𝑓 − 𝑘𝑚)[(𝑘𝑓 − 𝑘𝑚)(2𝑆33 + 𝑆11) + 3𝑘𝑚]

3(𝑘𝑓 − 𝑘𝑚)
2
(1 − 𝑣𝑓)𝑆11𝑆33 + 𝑘𝑚(𝑘𝑓 − 𝑘𝑚)𝑅 + 3𝑘𝑚2

 (2.54) 

 
where  
 

𝑅 = 3(𝑆11 + 𝑆33) − 𝑣𝑓(2𝑆11 + 𝑆33) (2.55) 

 
and 𝑆 depends on the shape of the filler particle as [17]: 
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(1) Sphere (𝑎1 = 𝑎2 = 𝑎3) 
 

𝑆11 = 𝑆22 = 𝑆33 =
1

3
 (2.56) 

 
(2) Oblate spheroid (𝑎1 = 𝑎2 > 𝑎3) 
 

𝑆11 = 𝑆22 =
𝑎1
2𝑎3

2(𝑎1
2 − 𝑎3

2)
3
2

{cos−1
𝑎3
𝑎1
−
𝑎3
𝑎1
(1 −

𝑎3
2

𝑎1
2)

1
2

} (2.57) 

𝑆33 = 1 − 2𝑆22 (2.58) 

 
(3) Prolate spheroid (𝑎1 = 𝑎2 < 𝑎3) 
 

𝑆11 = 𝑆22 =
𝑎1
2𝑎3

2(𝑎3
2 − 𝑎1

2)
3
2

{
𝑎3
𝑎1
(
𝑎3
2

𝑎1
2 − 1)

1
2

− cosh−1
𝑎3
𝑎1
} (2.59) 

 

𝑆33 = 1 − 2𝑆22 (2.60) 

 
where 𝑎1, 𝑎2, and 𝑎3 are semiaxes of ellipsoid.  
   

2.3.2.5 Hashin Model 

 A generalized self-consistent scheme method of approximation for effective 
properties was presented by Hashin [13]. The basic underlying assumption is that a 
typical basic element of a heterogeneous medium, such as a particle in a composite, 
can be regarded as being embedded in an equivalent homogeneous medium whose 
properties are the unknowns to be calculated. The idea of modeling is that a spherical 
particle of radius 𝑟1, consisting of material of intrinsic conductivity 𝑘𝑓, is embedded in 
a concentric matrix shell of unspecified radius 𝑟2, with the matrix conductivity being 
𝑘𝑚. Therefore, the composite sphere obtained is embedded in an infinite body of 
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conductivity 𝑘𝑒𝑓𝑓, which is the unknown to be found. By this way, Hashin derived a 
general quadratic equation as  
 

2 [2 + 𝑎∗ +
𝑘𝑓

𝑘𝑚
(1 − 𝑎∗)] (

𝑘𝑒𝑓𝑓

𝑘𝑚
)

2

− [2(1 + 2𝑎∗) +
𝑘𝑓

𝑘𝑚
(1 − 4𝑎∗) + 9(

𝑘𝑓

𝑘𝑚
− 1)𝑣𝑓]

𝑘𝑒𝑓𝑓

𝑘𝑚
 

(2.61) 
−[2(1 − 𝑎∗) +

𝑘𝑓

𝑘𝑚
(1 + 2𝑎∗)] = 0 

 

where 𝑎∗ = (
𝑟1

𝑟2
)
3

. 
 For the particle embedded closely in the homogeneous medium of 𝑘𝑒𝑓𝑓, Eq. 
(2.61) can be reduced by giving 𝑎∗ = 1 as follows: 
 

(1 − 𝑣𝑓)
𝑘𝑚 − 𝑘𝑒𝑓𝑓

𝑘𝑚 + 2𝑘𝑒𝑓𝑓
+ 𝑣𝑓

𝑘𝑓 − 𝑘𝑒𝑓𝑓

𝑘𝑓 + 2𝑘𝑒𝑓𝑓
= 0 (2.62) 

 
 Eq. (2.62) is known as Bruggeman-Landauer self-consistent effective medium 
approximation (BL-SCEMA) [13].  



 

 

CHAPTER 3 
LITERATURE REVIEWS 

 Due to the continuing increase in electronic packing density, materials with high 
thermal conductivities are preferred to solve the heat dissipation problem [4]. 
Furthermore, these materials should include the other desired properties such as 
coefficients of thermal expansion matching those of substrates, low density, and low 
cost [3]. To meet all requirements, new materials have been developed by combining 
two or more constituents. These new materials are called composites that provide 
unique combinations of properties.  
 Polymer is an interesting material that can be used as matrix of composite 
because it possesses several desired properties such as light weight, chemical 
inertness, long service life, easy processing, and low cost [3, 39]. However, the thermal 
conductivity of polymer is low in the range of 0.15 – 0.25 W/m-K [42]. This causes a 
plastic part to not able to conduct heat to reduce the hot spots or to act as a heat 
sink for a thermally sensitive component [39]. By incorporating highly thermally 
conductive filler such as ceramic particles or metal particles in polymer, it leads to a 
polymer composite that possesses higher thermal conductivity than neat polymer and 
still preserves the original properties of neat polymer. Polymer composites have been 
used for several applications in electronic packaging such as printed circuit boards 
(PCBs), electrically/thermally conductive adhesives, encapsulations, thermal interface 
materials (TIMs), and electrical interconnections [3, 51]. Due to the needs of these 
diverse applications, many researchers have paid their attention on the improvement 
of the thermal conductivity of polymers [4, 6, 52-57]. Some important aspects of those 
works were briefly reviewed in this section.  

The effect of filler content on the thermal conductivity was studied by Sofian 
et al. [56]. Metal powder filled high-density polyethylene composites were investigated 
experimentally in the range of filler content of 0-24 vol.%. The thermal conductivity 
of composites increased with the filler content. At low filler content, 0-16 vol.%, the 
particles were distributed homogeneously in the polymer matrix and did not interact 
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with each other. This led to the gradual increase of the thermal conductivity of 
composites. At higher filler content, the formation of agglomerates and conductive 
chains were occurred resulting in a rapid increase of thermal conductivity. However, 
the thermal conductivity of composite could decrease at very high filler content due 
to the agglomeration of filler and formation of voids [55]. 

Tekce et al. [57] investigated the effect of particle shape on thermal 
conductivity of copper reinforced polyamide. For a given filler loading, they discovered 
that copper particles in form of short fiber increased the thermal conductivity of 
composite higher than copper particles in form of spherical and plate. This fact was 
emphasized by Nurul and Mariatti [55] who indicated that polypropylene filled with 
cylindrical particles, i.e. carbon nanotube, had the thermal conductivity higher than 
polypropylene filled with spherical particles, i.e. synthetic diamond, boron nitride, and 
copper. They suggested that the high aspect ratio of filler particle facilitates the 
formation of bridges for phonon transformation. 

The effect of particle size on thermal conductivity of epoxy-based composites 
filled with boron nitride was studied by Kochetove et al. [58]. Boron nitride with 
different average sizes, i.e. 70 nm (nanoparticles), 0.5 𝜇m (submicron or mesoparticles), 
1.5 𝜇m and 5 𝜇m (micron sized particles) were used in the experiment. The results 
showed that thermal conductivities of composites were nearly the same (0.234-0.264 
W/m-K for 10 wt.% of boron nitride and 0.329-0.399 W/m-K for 20 wt.%) albeit the 
average particle size increased. They seggested that the filler content strongly 
dominated the thermal conductivity of composite more than the particle size. The 
similar results were observed by Han et al. [59]. Their works showed that there was no 
significant difference in the thermal conductivities of epoxy resin filled with different 
sizes of boron nitride particle. They suggested that the size of filler particle was not 
necessarily crucial to the thermal conductivity of the composites at low to moderate 
concentrations. Except for high concentration, polymer filled with smaller size particles 
could possess either higher thermal conductivity or lower thermal conductivity 
depending on which effect of conductive path formation or interfacial thermal 
resistance would be more influential [12, 60]. The distribution of particle size can be 
used to improve the thermal conductivity of composite. By using filler particles with 
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bimodal particle size distribution, Ishida and Rimdusit [4] succeeded in preparing a 
boron nitride-filled polybenzoxazine with a high thermal conductivity of 32.5 W/m-K 
at maximum filler loading of 78.5 vol.%. This high thermal conductivity was the result 
of the increase of particle packing density that provided the capability of forming 
conductive networks with low thermal resistance along the conductive paths.  
 The interfacial thermal resistance between matrix and nanoparticle plays the 
important role in thermal transport in the nanocomposites. The interface thermal 
resistance across the carbon nanotube matrix reported by Huxtable et al. [61] was 
about 8.3×10-8 m2K/W. The understanding of the interface effect on the thermal 
behavior of the nanotube composites was presented in form of a model by Nan et al. 
[29]. They modified the Maxwell-Garnett-type effective medium approach (EMA) to 
consider the effect of interfacial thermal resistance in form of the equivalent thermal 
conductivities along transverse and longitudinal axes of a composite unit cell, i.e., a 
nanotube coated with a very thin interfacial thermal barrier layer. The model showed 
that a large interfacial thermal resistance across the nanotube-matrix interface caused 
a significant degradation in the thermal conductivity. In addition, there are other 
models that were developed to consider the effect of the interfacial thermal resistance 
[13, 31, 34, 42, 62]. Although the concept of the interfacial thermal resistance had 
been purposed by Kapitza [32] for a long time; however, the determination of the 
interfacial thermal resistance for each composite still has not been reported in a large 
number, partly because of the difficulties of such measurement related to the small 
size of the particles [63]. Most researches just presented the values of interfacial 
thermal resistance derived from fitting the experimental thermal conductivity with a 
theoretical model (indirect method for determination of the interfacial thermal 
resistance) [55, 62, 64]. To enhance the thermal transport of polymer composites, 
Fukushima et al. [65] showed that the interfacial thermal resistance can be reduced 
by the organic modifications of an inorganic surface of ceramic particles.  
 The basic models as described in section 2.4 generally take into account the 
effects of filler content, shape of filler particle, and the orientation of filler particle. 
Those models focused on the ideal case of perfect interface contact between filler 
particle and matrix. In case of polymer composites filled with highly conductive filler, 
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heat transfer at the interface is reduced due to thermal expansion mismatch and low 
adhesion between phases, and the influence of the interface is more important if the 
conductivity of the composite is high or filled with large amount of particles [63]. 
Recent theoretical models have been developed to include the effect of the interface 
in term of the interfacial conductance or interfacial thermal resistance [13, 31]. Some 
of interesting models were reviewed in this section. 
 Hasselman and Johnson [28] extended the classical work of Maxwell and Lord 
Rayleigh to consider the interfacial thermal resistance by modifying the boundary 
condition between the filler and the matrix [13, 31]. For composites filled with 
spherical particles at low filler content and uniform distribution, the equation was 
expressed as [13] 
 

𝑘𝑒𝑓𝑓

𝑘𝑚
=
2𝑣𝑓 (

𝑘𝑓
𝑘𝑚

−
𝑘𝑓
𝑟ℎ𝑖𝑛𝑡

− 1) +
𝑘𝑓
𝑘𝑚

+
2𝑘𝑓
𝑟ℎ𝑖𝑛𝑡

+ 2

𝑣𝑓 (1 −
𝑘𝑓
𝑘𝑚

+
𝑘𝑓
𝑟ℎ𝑖𝑛𝑡

) +
𝑘𝑓
𝑘𝑚

+
2𝑘𝑓
𝑟ℎ𝑖𝑛𝑡

+ 2

 (3.1) 

 
where 𝑟 is the radius of spherical particle and ℎ𝑖𝑛𝑡 is the thermal interfacial 
conductance that is reciprocal of the thermal interfacial resistance 𝑅𝑖𝑛𝑡. In case of 
perfect interfaces or 1

ℎ𝑖𝑛𝑡
= 0, Eq. (3.1) reduces to the MG equation (Eq. (2.49)). 

 Benveniste and Miloh [13] introduced a general approach to compute the 
effective thermal conductivity of composites with imperfect interfaces between 
constituents. This model was one of the first two models incorporating the effect of 
the interfacial thermal resistance on the effective thermal conductivity of the 
composite by modifying Maxwell’s theory (another was Hasselman and Johnson 
model [28] as described previously). The method was based on the solution of the 
temperature field both interior and exterior at the particle surface because of a uniform 
heat flux at infinity. The temperature drop across the interface due to the interfacial 
thermal resistance was accounted for in term of the interfacial conductance (ℎ𝑖𝑛𝑡). For 
spherical particles, the derived equation was [13] 
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𝑘𝑒𝑓𝑓

𝑘𝑚
= 1 − 3𝑣𝑓

1 −
𝑘𝑓
𝑘𝑚

+
𝑘𝑓
𝑟ℎ𝑖𝑛𝑡

2 +
𝑘𝑓
𝑘𝑚

+
2𝑘𝑓
𝑟ℎ𝑖𝑛𝑡

 (3.2) 

 
where 𝑟 is the radius of the spherical particles.  

Eq. (3.2) was a special form of Eq. (3.1) in case of vanishingly small 𝑣𝑓. 
Furthermore, for perfect interface between the constituents, Eq. (3.2) also reduces to 
the MG equation (Eq. (2.49)). 

To extend the range of filler content, Benveniste [30] modified two 
micromechanical models, i.e., generalized self-consistent scheme and Mori Tanaka 
theory [66], to predict the effective thermal conductivity of particulate composites at 
filler content up to 𝑣𝑓 =

𝜋

6
 and including a thermal contact resistance at interphase 

boundaries. The two models resulted in the same closed-form expression for the 
effective thermal conductivity of composites filled with spherical particles as follows 
[30]:  
 

𝑘𝑒𝑓𝑓

𝑘𝑚
=

2(1 − 𝑣𝑓) +
𝑟ℎ𝐵
𝑘𝑚

[1 + 2𝑣𝑓 +
2𝑘𝑚
𝑘𝑓

(1 − 𝑣𝑓)]

(2 + 𝑣𝑓) +
𝑟ℎ𝐵
𝑘𝑚

[1 − 𝑣𝑓 +
𝑘𝑚
𝑘𝑓
(2 + 𝑣𝑓)]

 (3.3) 

 
where ℎ𝐵 was the so-called “skin constant” that represented the effect of a thermal 
interfacial resistance in this model. 

In case of the composites filled with high conductive particles, the concept of 
the Kapitza radius 𝑎𝐾 was often used, which was defined as [34] 
 

𝑎𝐾 = 𝑅𝑖𝑛𝑡𝑘𝑚 (3.4) 

 
The Kapitza radius is in principle the critical particle size and is usually used in 

form of the interfacial thermal resistance factor (𝛼𝐾) as follows [34]: 
 

𝛼𝐾 =
𝑎𝐾
𝑟

 (3.5) 
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 The dimensionless factor 𝛼𝐾 is a measure of the interfacial thermal resistance. 
If 𝛼𝐾 = 0 or 𝑟 ≫ 𝑎𝐾, this means there is no interfacial thermal resistance; the 
conductive filler can improve the thermal conductivity of the composite to be higher 
than that of the matrix. In contrast, if 𝑟 is smaller than 𝑎𝐾, the thermal conductivity of 
composites is lowered by adding the filler particles in the matrix even though the 
particles themselves possess a much higher intrinsic conductivity than the matrix. If 
the radius of the particles is equal to the Kapitza radius or 𝛼𝐾 = 1, the contribution of 
the interfacial thermal resistance is then exactly balanced by the much higher thermal 
conductivity of the particles [13]. 
 Using the concept of the Kapitza radius, Eq. (3.1) can be rewritten as [34, 42] 
 

𝑘𝑒𝑓𝑓

𝑘𝑚
=
[𝑘𝑓(1 + 2𝛼𝐾) + 2𝑘𝑚] + 2𝑣𝑓[𝑘𝑓(1 − 𝛼𝐾) − 𝑘𝑚]

[𝑘𝑓(1 + 2𝛼𝐾) + 2𝑘𝑚] − 𝑣𝑓[𝑘𝑓(1 − 𝛼𝐾) − 𝑘𝑚]
 (3.6) 

 
Eq. (3.6) was also called “the modified MG equation” and can be reduced to MG 
equation (Eq. (2.49)) when the interfacial thermal resistance was neglected (𝛼𝐾 = 0). 
Eq. (3.6) was valid only when the volume fraction of filler was sufficiently dilute [34]. 
 Nan et al. [31] developed a more general formulation for the effective thermal 
conductivity of composites filled ellipsoidal particles based on multiple-scattering 
theory. This model contained the effects of particle size, shape, orientation 
distribution, volume fraction, and interfacial thermal resistance, but neglecting the 
effect of the interaction between particles. To include the effect of interface, they 
assumed that an ellipsoidal particle in the matrix was surrounded by interface layer of 
thickness 𝛿 and conductivity 𝑘𝑖𝑛𝑡 as a composite unit cell. The interfacial thermal 
resistance was thought of as the limiting case of heat transport across bulk phase 
separated by a thin, poorly conducting interphase region, leading to the limit that 𝛿 →
0 and 𝑘𝑖𝑛𝑡 → 0. This interfacial thermal property was considered on a surface of zero 
thickness and defined as 
 

𝑅𝑖𝑛𝑡 = lim
𝛿→0
𝑘𝑖𝑛𝑡→0

(
𝛿

𝑘𝑖𝑛𝑡
) (3.7) 
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 By this concept, the effective thermal conductivity (𝑘𝑒𝑓𝑓,𝑖𝑖, 𝑖 = 1,2,3) was 
derived as along the materials axes 𝑋𝑖 
 

𝑘𝑒𝑓𝑓,11 = 𝑘𝑒𝑓𝑓,22 = 𝑘𝑚
2 + 𝑣𝑓[𝛽11(1 − 𝐿11)(1 + 〈cos

2 𝜃〉) + 𝛽33(1 − 𝐿33)(1 − 〈cos
2 𝜃〉)]

2 − 𝑣𝑓[𝛽11𝐿11(1 + 〈cos
2 𝜃〉) + 𝛽33𝐿33(1 − 〈cos

2 𝜃〉)]
 (3.8) 

 

𝑘𝑒𝑓𝑓,33 = 𝑘𝑚
1 + 𝑣𝑓[𝛽11(1 − 𝐿11)(1 − 〈cos

2 𝜃〉) + 𝛽33(1 − 𝐿33)〈cos
2 𝜃〉]

1 − 𝑣𝑓[𝛽11𝐿11(1 − 〈cos2 𝜃〉) + 𝛽33𝐿33〈cos2 𝜃〉]
 (3.9) 

 
with 
 

𝛽𝑖𝑖 =
𝑘𝑐,𝑖𝑖 − 𝑘𝑚

𝑘𝑚 + 𝐿𝑖𝑖(𝑘𝑐,𝑖𝑖 − 𝑘𝑚)
 (3.10) 

 
 

〈cos2 𝜃〉 =
∫𝜗(𝜃) cos2 𝜃 sin 𝜃 𝑑𝜃

∫𝜗(𝜃) sin 𝜃 𝑑𝜃
 (3.11) 

 
where 𝜃 was the angle between the materials axis 𝑋3 and the local particle axis 𝑋′3, 
𝜗(𝜃) was a distribution function describing ellipsoidal particle orientation and 𝐿𝑖𝑖 were 
geometrical factors dependent on the particle shape given by 
 

𝐿11 = 𝐿22 =
𝑎𝑟
2

2(𝑎𝑟2 − 1)
−

𝑎𝑟
2(𝑎𝑟2 − 1)1.5

cosh−1 𝑎𝑟 for 𝑎𝑟 ≥ 1 (3.12a) 

 

𝐿11 = 𝐿22 =
𝑎𝑟
2

2(𝑎𝑟2 − 1)
+

𝑎𝑟
2(1 − 𝑎𝑟2)1.5

cos−1 𝑎𝑟 for 𝑎𝑟 ≤ 1 (3.12b) 

 

𝐿33 = 1 − 2𝐿11 (3.12c) 
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where 𝑎𝑟 =
𝑟3

𝑟1
 was the aspect ratio of the ellipsoidal particle; 𝑟1 and 𝑟3 were radii of 

the ellipsoid along the 𝑋′1 and 𝑋′3 axes, respectively, and 𝑎𝑟 > 1 and 𝑎𝑟 < 1 for a 
prolate (𝑎1 = 𝑎2 < 𝑎3) and an oblate (𝑎1 = 𝑎2 > 𝑎3) ellipsoidal particle, respectively,  
𝑘𝑒𝑓𝑓,𝑖𝑖 was the effective thermal conductivity along the local axes of an ellipsoidal 
particle (𝑖 = 1,2,3) expressed as 
 

𝑘𝑒𝑓𝑓,𝑖𝑖 =
𝑘𝑓

(1 +
(2 +

1
𝑎𝑟
)𝛼𝐾𝐿𝑖𝑖𝑘𝑓

𝑘𝑚
)

 
for 𝑎𝑟 ≥ 1 (3.13a) 

 

𝑘𝑒𝑓𝑓,𝑖𝑖 =
𝑘𝑓

(1 +
(1 + 2𝑎𝑟)𝛼𝐾𝐿𝑖𝑖𝑘𝑓

𝑘𝑚
)

 for 𝑎𝑟 ≤ 1 (3.13b) 

 
Here the interfacial thermal resistance factor was defined by 
 

𝛼𝐾 =
𝑎𝐾
𝑎1

 for 𝑎𝑟 ≥ 1 (3.14a) 

 

𝛼𝐾 =
𝑎𝐾
𝑎3

 for 𝑎𝑟 ≤ 1 (3.14b) 

 
 When the ellipsoidal particles became spheres, 𝑎𝑟 = 1, 𝐿11 = 𝐿33 =

1

3
, and 

〈cos2 𝜃〉 =
1

3
, then Eq. (3.8) or (3.9) can revert back to modified MG equation (Eq. (3.6)). 

 For higher volume fraction of filler, Every et al. [27] developed a differential 
form of Eq. (3.6) based on Differential Effective Medium theory (DEM) or Bruggeman’s 
integration embedding principle [43] to take into account the particle-particle 
interaction as follows: 
 

𝑑𝑘 = 3𝑘
𝑑𝑣[𝑘𝑓(1 − 𝛼𝐾) − 𝑘]

(1 − 𝑣)[𝑘𝑓(1 + 2𝛼𝐾) + 2𝑘]
 (3.15) 
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where 𝑘 is the thermal conductivity and 𝑣 is the varying volume fraction of filler. 
 Integrating Eq. (3.15) with 𝑘 from 𝑘𝑚 to 𝑘𝑒𝑓𝑓, and 𝑣 from 0 to 𝑣𝑓 , the effective 
thermal conductivity of composites was derived as 
 

(1 − 𝑣𝑓)
3
= (

𝑘𝑚
𝑘𝑒𝑓𝑓

)

1+2𝛼𝐾
1−𝛼𝐾

(
𝑘𝑒𝑓𝑓 − 𝑘𝑓(1 − 𝛼𝐾)

𝑘𝑚 − 𝑘𝑓(1 − 𝛼𝐾)
)

3
1−𝛼𝐾

 (3.16) 

 
If 𝛼𝐾 = 0, negligible interfacial resistance, Eq. (3.16) reduces to Bruggeman’s equation 
(Eq. (2.53)). Thus Eq. (3.16) was called that modified Bruggeman model. 

Jiajun and Xiao-Su [34] introduced into the remodified MG equation with the 
effect of both interfacial thermal resistance and particle shape by combination of 
Hasselman’s modification [28] and Hamiton’s modification [18] as follows: 
 

𝑘𝑒𝑓𝑓

𝑘𝑚
=
(1 + (𝑛 − 1)𝛼𝐾)𝑘𝑓 + (𝑛 − 1)𝑘𝑚 + (𝑛 − 1)[𝑘𝑓(1 − 𝛼𝐾) − 𝑘𝑚]𝑣𝑓

(1 + (𝑛 − 1)𝛼𝐾)𝑘𝑓 + (𝑛 − 1)𝑘𝑚 − [𝑘𝑓(1 − 𝛼𝐾) − 𝑘𝑚]𝑣𝑓
 (3.17) 

 
 For a small volume fraction of filler, the differential form of Eq. (3.17) can be 
written as 
 

𝑑𝑘 = 𝑛𝑘
𝑑𝑣[𝑘𝑓(1 − 𝛼𝐾) − 𝑘]

(1 − 𝑣)[𝑘𝑓(1 + (𝑛 − 1)𝛼𝐾) + (𝑛 − 1)𝑘]
 (3.18) 

 
 Eq. (3.18) was integrated based on Bruggeman’s integration embedding 
principle with 𝑣 from 0 to 𝑣𝑓 and 𝑘 from 𝑘𝑚 to 𝑘𝑒𝑓𝑓. The final equation which took 
both the effects of interfacial thermal resistance and particle shapes into 
considerations was as follows: 
 

(1 − 𝑣𝑓)
𝑛
= (

𝑘𝑚
𝑘𝑒𝑓𝑓

)

1+𝑛𝛼𝐾−𝛼𝐾
1−𝛼𝐾

(
𝑘𝑒𝑓𝑓 − 𝑘𝑓(1 − 𝛼𝐾)

𝑘𝑚 − 𝑘𝑓(1 − 𝛼𝐾)
)

𝑛
1−𝛼𝐾

 (3.19) 
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 Eq. (3.19) predicted the effective thermal conductivities that was in good 
agreement with the experimental data of polyimide filled with aluminum nitride 
powder in range of filler volume fraction less than 0.25, by using 𝛼𝐾 = 0.117 [34]. 
   

 
Figure 3.1 Geometry of cell for self-consistent field analysis of composite spheres 
randomly mixed into a continuum [67] 
 

Felske [67] extended the self-consistent scheme to determine the effective 
thermal conductivity of composites containing randomly spherical particles and 
including the thermal interfacial resistance. The geometry of cell for self-consistent 
field analysis was modified by determining the core-shell sphere cell (0 ≤ 𝑟 ≤ 𝑟1) 
embedded in the effective medium (𝑟1 ≤ 𝑟 < ∞) as shown in Figure 3.1. An analytical 
solution was derived by determining the temperature distribution for each material 
and using the volume average of any property on the volume of the material. After 
performing algebraic manipulation, the effective thermal conductivity can be 
expressed as 
 

𝑘𝑒𝑓𝑓

𝑘𝑚
=
2(1 − 𝑣𝑓)Ψ2 + 𝛽2Θ𝑁

(2 + 𝑣𝑓)Ψ2 + 𝛽2Θ𝐷
 (3.20) 
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with 
 

𝛽2 =
ℎ21𝑟2
𝑘2

 (3.21) 

 

Ψ2 = (2 + 𝑣𝑓3)𝑘32 − 2(1 − 𝑣𝑓3) (3.22) 

 

Θ𝑁 = (1 − 𝑣𝑓)[2(1 + 2𝑣𝑓3) − 2(1 − 𝑣𝑓3)𝑘32]                                      

+ (1 + 2𝑣𝑓)[(2 + 𝑣𝑓3)𝑘31 − 2(1 − 𝑣𝑓3)𝑘21] 
(3.23) 

 
Θ𝐷 = (2 + 𝑣𝑓)[(1 + 2𝑣𝑓3) − (1 − 𝑣𝑓3)𝑘32]                                    

+ (1 − 2𝑣𝑓)[(2 + 𝑣𝑓3)𝑘31 − 2(1 − 𝑣𝑓3)𝑘21] 
(3.24) 

 

where 𝑣𝑓3 = (
𝑟2

𝑟3
)
3

, 𝑣3𝑓 = 𝑣𝑓3
−1, ℎ21 was the contact conductance at the interface 

between the sphere and the continuous medium, 𝑘𝑚𝑛 =
𝑘𝑚

𝑘𝑛
  where 𝑚, 𝑛 = 1,2,3  was 

the thermal conductivity ratio where 1, 2, and 3 referred to continuous medium, 
particle shell, and particle core, respectively. For a special case, the composite sphere 
behaves as a uniform sphere when the shell and core have the same thermal 
conductivity (𝑘3 = 𝑘2) leading to 𝑘32 = 1 and 𝑘31 = 𝑘21. This makes Eq. (3.20) 
reduces to Eq. (3.3) according to the result of Benveniste [30].  

It should be noted that the equations of the modified models usually reduced 
to the famous modified models, namely the modified Maxwell and the modified 
Bruggeman models, for the composite filled with spherical particles. Every et al. [27] 
plotted both models with the data of ZnS as a matrix and diamond particles as a filler. 
The plots of these models at different values of 𝛼𝐾 were quite similar as shown in 
Figure 3.2 for the modified Maxwell model and Figure 3.3 for the modified Bruggeman 
model. The effective thermal conductivity decreased with increasing 𝛼𝐾 that related 
to the interfacial thermal resistance. When 𝛼𝐾 = 1, the effective thermal conductivity 
was the same as that of the matrix. This could be explained that the higher thermal 
conductivity of the particles was exactly balanced by the higher resistance of the 
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interfaces. For 𝛼𝐾 < 1, the effective thermal conductivity was lower than that of the 
matrix, until  𝛼𝐾 approached infinity the lowest effective thermal conductivity was 
obtained. 

A comparison between the prediction by the modified Bruggeman model and 
the experimental data of ZnS/diamond cited from [27] was presented in Figure 3.4. It 
indicated that the modified Bruggeman model was in good agreement with the 
experimental data of ZnS filled with average particle size ≈ 2 𝜇m of diamond. It should 
be noticed that this model cannot predict the effective thermal conductivity of ZnS 
filled with average particle size ≈ 0.25 𝜇m of diamond due to the nonspherical shape 
of the diamond particles [27]. However, the effect of filler particle size was included 
into the model. It showed that the composite filled with smaller particles had the 
higher interfacial thermal resistance than the composite filled with larger particles.  
 As mentioned above, the effective interfacial thermal resistance can be 
included into the effective thermal conductivity model by using the concept of Kapitza 
radius. By this way, the effect of particle size was automatically incorporated in the 
model. All modified models presented above were based on the exact solution. No 
modified model based on the simplified solution has been presented so far.  
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Figure 3.2 Relationship between the effective thermal conductivity and volume fraction of filler 

of ZnS/diamond predicted by the modified Maxwell model by varying 𝛼𝐾 (adapted from [27]) 
 

 
Figure 3.3 Relationship between the effective thermal conductivity and volume fraction of filler 

of ZnS/diamond predicted by the modified Bruggeman model by varying 𝛼𝐾 (adapted from [27]) 

𝑘𝑒𝑓𝑓

𝑘𝑚
 

Volume Fraction of Diamond 
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Figure 3.4 Comparison between the effective thermal conductivity predicted by the 
modified Bruggeman model and experimental data for ZnS/diamond (adapted from 
[27])

Volume Fraction of Diamond 

𝑘𝑒𝑓𝑓

𝑘𝑚
 

average particle size ≈ 2 𝜇m 

average particle size ≈ 0.25 𝜇m 



 

 

CHAPTER 4 
MODELING 

4.1 Effective Thermal Conductivity Model without the Interfacial Thermal 
Resistance 

In this work, the effective thermal conductivity models were derive based on 
the simplified solution and the analogy to the electrical circuit. Composite composed 
of two materials, i.e., a polymer and a filler, was considered. In general, polymer is the 
matrix phase while filler is the dispersed phase. For simplification, the fillers were 
assumed as spherical particles that were homogeneously distributed and placed in the 
form of ordered periodic arrangement. By this way, the particles could be considered 
as being arranged similar to atoms in a crystal structure and the concept of unit cell 
analogous to crystallography could be applied [68]. Therefore, unit cell was defined 
as a representative volume element (RVE); a volume element which was small enough 
to show the microscopic structural details and large enough to represent the overall 
behavior of the composite [69]. In this work, three ideal arrangements, i.e. simple cubic 
(SC), body-centered cubic (BCC) and face-centered cubic (FCC), were chosen as RVE as 
shown in Figure 4.1.  
 

 
Figure 4.1 Representative volume element (RVE) in form of (a) simple cubic (SC), 
(b) body-centered cubic (BCC), and (c) face-centered cubic (FCC)  
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The side length of an element was defined as 𝑎. The radius and diameter of 
spherical particle were 𝑟 and 𝐷, respectively. The volume of each spherical particle 

was 𝜋𝐷
3

6
 and the total volume of RVE was 𝑎3. Thus the filler volume fraction can be 

expressed as 
 

𝑣𝑓 =
𝑛𝑓𝜋𝐷

3

6𝑎3
 (4.1) 

 
where 𝑛𝑓 is the number of spherical particles in a RVE.  

For SC element, there is one spherical particle on each corner of the cube. 
Each particle is shared equally between eight adjacent cubes. Therefore, RVE contains 
in total one particle or 𝑛𝑓 = 1. The filler volume fraction for SC element (𝑣𝑓,SC) was 
expressed as 
 

𝑣𝑓,SC =
𝜋𝐷3

6𝑎3
 (4.2) 

 
For BCC element, there are one particle in the center and one spherical particle 

on each corner of the cube (one-eight contribution per a particle). Thus the total 
number of particle is equal to 𝑛𝑓 = 2. The filler volume fraction for BCC element 
(𝑣𝑓,BCC) was expressed as 
 

𝑣𝑓,BCC =
𝜋𝐷3

3𝑎3
 (4.3) 

 
For FCC element, there are one spherical particle on each face of the cube. 

Each gives exactly one half contribution. In addition, there are one particle on each 
corner of the cube similar to two cases above. Thus, the total number of particle is 
equal to 𝑛𝑓 = 4. The filler volume fraction for FCC element (𝑣𝑓,FCC) was defined as 
 

𝑣𝑓,FCC =
2𝜋𝐷3

3𝑎3
 (4.4) 
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In this study, the effective thermal conductivity of nonlayered composite was 
modeled based on parallel-series arrangements of the thermal resistances. It was 
essential to assume that local thermal equilibrium existed over a RVE and heat transfer 
was occurred in one-dimension along 𝑥 axis. The heat flow entered into the element 
from top of the cube as shown in Figure 4.1. Thermal interfacial resistance was 
neglected in this section. The mathematical model of each RVE depended on the filler 
loading and their distribution in polymer matrix [10]. Consequently, the heat transfer 
models of SC, BCC and FCC element were divided into eight cases by filler contents 
as shown in Figures 4.2, 4.3 and 4.4, respectively. 
 

 
Figure 4.2 Side view of simple cubic element for polymer composites filled with filler 
volume fraction (I) < 0.524, and (II) 0.524  
 

 
Figure 4.3 Side view of body-centered cubic element for polymer composites filled 
with filler volume fraction (III) < 0.131, (IV) 0.131, and (V) > 0.131 
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Figure 4.4 Side view of face-centered cubic element for polymer composites filled 
with filler volume fraction (VI) < 0.262, (VII) 0.262, and (VIII) > 0.262 
 

4.1.1 Simple Cubic Model (SC1 Model)  

4.1.1.1 Case I: SC1 Model with the Volume Fraction of Filler < 0.524  

In case of SC element with filler volume fraction less than 0.524, the element 
was divided into three section as shown in Figure 4.5(a). Section 1 and 3 contain  
one-eighth of spherical particle on each corner and the rest is polymer matrix. Section 
2 contains only polymer matrix. Thus, the thermal resistances of section 1 and 3 were 
considered as parallel arrangement of polymer matrix resistance and filler resistance, 
while the thermal resistance of section 2 comes from only the polymer matrix. 
Thermal resistances of each section are arranged in series as shown in Figure 4.5(b) 
where 𝑅𝑚,𝑖 is the polymer matrix thermal resistance of section 𝑖 and 𝑅𝑓,𝑖 is the filler 
thermal resistance of section 𝑖 and 𝑖 = 1,2,3. 

By the definition of series resistance (Eq. (2.32)), the total thermal resistance of 
this element is the addition of thermal resistances of each section.   
 

𝑅Σ = 𝑅1 + 𝑅2 + 𝑅3 (4.5) 

 
where 𝑅1, 𝑅2, and 𝑅3 is the thermal resistance of section 1, 2, and 3, respectively.  

Then the heat flow can be written as 
 

𝑄 =
𝑇1 − 𝑇2
𝑎

𝐴𝑘𝑒𝑓𝑓,SC1−1

=
𝑇1 − 𝑇2

𝑅1 + 𝑅2 + 𝑅3
 (4.6) 
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where 𝑘𝑒𝑓𝑓,SC1−1 is the effective thermal conductivity of case I of SC1 model and 𝐴 is 
the area perpendicular to the heat flow.  
 
(a) Physical model (b) Thermal circuit model 

  
Figure 4.5 (a) Physical and (b) Thermal circuit model of simple cubic element with 
filler volume fraction < 0.524 
 

Due to 𝐴 = 𝑎2, 𝑘𝑒𝑓𝑓,SC1−1 can be derived by rearranging Eq. (4.6) as 
 

𝑘𝑒𝑓𝑓,SC1−1 =
1

𝑎
(

1

𝑅1 + 𝑅2 + 𝑅3
) (4.7) 

 
Note that the thermal resistance of section 1 is equivalent to that of section 3, 

thus they were considered together. It can be imagined that the element can be 
divided into very thin layer 𝑗 that its thickness is ∆𝑥𝑗 , as shown in Figure 4.5(a). The 
resistance of a layer 𝑗 is in parallel pattern of thermal resistances of polymer matrix 
resistance 𝑅𝑚,𝑗 and filler resistance 𝑅𝑓,𝑗. These layers 𝑗 are arranged in series pattern. 
Therefore, the thermal resistances of section 1 and 3 can be written as 
 

𝑅1 = 𝑅3 =∑(
1

𝑅𝑚,𝑗
+

1

𝑅𝑓,𝑗
)

−1𝑟

𝑗=0

 (4.8) 
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Because there are one fourth of a circle on each corner of the square plane 
(𝑦, 𝑧) of layer j, thus there is one circle in each layer and then 𝑅𝑓,𝑗 can be written as 
 

𝑅𝑓,𝑗 =
∆𝑥𝑗

(𝜋𝑏𝑗
2)𝑘𝑓

 (4.9) 

 
where 𝑏𝑗 is the radius of circle at 𝑥 = 𝑥𝑗 . By trigonometric relationship, it can be written 
as 
 

𝑏𝑗 = √𝑟2 − 𝑥𝑗
2 (4.10) 

 
The illustration of Eq. (4.10) is also shown in Figure 4.5. 

The remaining area is of polymer matrix. Thus 𝑅𝑚,𝑗 is expressed as 
 

𝑅𝑚,𝑗 =
∆𝑥𝑗

(𝑎2 − 𝜋𝑏𝑗
2)𝑘𝑚

 (4.11) 

 
Substituting Eq. (4.9), (4.10), and (4.11) into Eq. (4.8), it can be arranged in form 

of 
  

𝑅1 = 𝑅3 =∑
∆𝑥𝑗

𝑎2𝑘𝑚 + 𝜋(𝑘𝑓 − 𝑘𝑚)(𝑟2 − 𝑥𝑗
2)

𝑟

𝑗=0

 (4.12) 

 
 When ∆𝑥𝑗 approaches to zero, it can be written as 
 

𝑅1 = 𝑅3 = lim
∆𝑥𝑗→0

∑
∆𝑥𝑗

𝑎2𝑘𝑚 + 𝜋(𝑘𝑓 − 𝑘𝑚)(𝑟2 − 𝑥𝑗
2)

𝑟

𝑗=0

  

 = ∫
1

𝑎2𝑘𝑚 + 𝜋(𝑘𝑓 − 𝑘𝑚)(𝑟2 − 𝑥𝑗
2)
𝑑𝑥𝑗

𝑟

0

 (4.13) 
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Before integrating, Eq. (4.13) can be further arranged as 

 

𝑅1 = 𝑅3 =
1

𝜋(𝑘𝑓 − 𝑘𝑚)
∫

1

[
𝑘𝑚 +

𝜋𝑟2

𝑎2
(𝑘𝑓 − 𝑘𝑚)

𝜋
𝑎2
(𝑘𝑓 − 𝑘𝑚)

] − 𝑥𝑗
2

𝑟

0

𝑑𝑥𝑗 
 

=
1

𝜋(𝑘𝑓 − 𝑘𝑚)
∫

1

{(
𝑎2

𝜋 ) (
𝜋𝑟2

𝑎2
) [
𝑎2

𝜋𝑟2
(

𝑘𝑚
𝑘𝑓 − 𝑘𝑚

) + 1]} − 𝑥𝑗
2

𝑟

0

𝑑𝑥𝑗 
 

=
1

𝜋(𝑘𝑓 − 𝑘𝑚)
∫

1

{𝑟2 [
𝑎2

𝜋𝑟2
(

𝑘𝑚
𝑘𝑓 − 𝑘𝑚

) + 1]} − 𝑥𝑗
2

𝑟

0

𝑑𝑥𝑗 (4.14) 

 
 From Eq. (4.2), the length of RVE for this case can be written as 
 

𝑎 = (
4𝜋𝑟3

3𝑣𝑓
)

1
3

 (4.15) 

 
Substituting Eq. (4.15) into Eq. (4.14), it goes to be 

 

𝑅1 = 𝑅3 =
1

𝜋(𝑘𝑓 − 𝑘𝑚)
∫

1

{𝑟2 [(
4𝜋𝑟3

3𝑣𝑓
)

2
3
(
1
𝜋𝑟2

) (
𝑘𝑚

𝑘𝑓 − 𝑘𝑚
) + 1]} − 𝑥𝑗

2

𝑟

0

𝑑𝑥𝑗 
 

=
1

𝜋(𝑘𝑓 − 𝑘𝑚)
∫

1

{𝑟2 [(
16
9𝜋𝑣𝑓

2)

1
3

(
𝑘𝑚

𝑘𝑓 − 𝑘𝑚
) + 1]} − 𝑥𝑗

2

𝑟

0

𝑑𝑥𝑗  
 

=
1

𝜋(𝑘𝑓 − 𝑘𝑚)
∫

1

[𝑟√𝛾SC1 + 1]
2
− 𝑥𝑗

2

𝑟

0

𝑑𝑥𝑗  (4.16) 

 
where 𝛾SC1 is expressed as 
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𝛾SC1 = (
16

9𝜋𝑣𝑓
2)

1
3

(
𝑘𝑚

𝑘𝑓 − 𝑘𝑚
) (4.17) 

 
Integrating Eq. (4.16), the thermal resistances of section 1 or 3 can be written 

as 
  

𝑅1 = 𝑅3 = (
1

2𝜋𝑟(𝑘𝑓 − 𝑘𝑚)
) (

1

√𝛾SC1 + 1
ln
√𝛾SC1 + 1 + 1

√𝛾SC1 + 1 − 1
) (4.18) 

 
 Considering section 2, thermal resistance of this section is expressed as 
 

𝑅2 =
(𝑎 − 𝑟) − 𝑟

𝑎2𝑘𝑚
=
𝑎 − 2𝑟

𝑎2𝑘𝑚
 (4.19) 

 
 Then Eq. (4.18) and (4.19) are substituted into Eq. (4.7) as 
 

𝑘𝑒𝑓𝑓,SC1−1 =
1

𝑎

(

 
 1

𝑎 − 2𝑟
𝑎2𝑘𝑚

+ 2(
1

2𝜋𝑟(𝑘𝑓 − 𝑘𝑚)
)(

1

√𝛾SC1 + 1
ln
√𝛾SC1 + 1 + 1

√𝛾SC1 + 1 − 1
)
)

 
 

 (4.20) 

 
 Dividing Eq. (4.20) by 𝑘𝑚, the ratio of 𝑘𝑒𝑓𝑓,SC1−1 and 𝑘𝑚 can be derived as 
 

𝑘𝑒𝑓𝑓,SC1−1

𝑘𝑚
=

1

𝑎𝑘𝑚

(

 
 1

𝑎 − 2𝑟
𝑎2𝑘𝑚

+ 2(
1

2𝜋𝑟(𝑘𝑓 − 𝑘𝑚)
) (

1

√𝛾SC1 + 1
ln
√𝛾SC1 + 1 + 1

√𝛾SC1 + 1 − 1
)
)
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=
1

1 −
2𝑟
𝑎
+ (

𝑎𝑘𝑚
𝜋𝑟(𝑘𝑓 − 𝑘𝑚)

)(
1

√𝛾SC1 + 1
ln
√𝛾SC1 + 1 + 1

√𝛾SC1 + 1 − 1
)

 

=
1

1 −
2𝑟

2𝑟 (
𝜋
6𝑣𝑓

)

1
3

+ (
4𝜋𝑟3

3𝑣𝑓
)

1
3
(
1
𝜋𝑟
) (

𝑘𝑚
𝑘𝑓 − 𝑘𝑚

)(
1

√𝛾SC1 + 1
ln
√𝛾SC1 + 1 + 1

√𝛾SC1 + 1 − 1
)

 

=
1

1 − (
6𝑣𝑓
𝜋
)

1
3
+ (

4
3𝜋2𝑣𝑓

)

1
3

(
𝑘𝑚

𝑘𝑓 − 𝑘𝑚
)(

1

√𝛾SC1 + 1
ln
√𝛾SC1 + 1 + 1

√𝛾SC1 + 1 − 1
)

 

=
1

1 − (
6𝑣𝑓
𝜋
)

1
3
+
1
2
(
6𝑣𝑓
𝜋
)

1
3
(
16
9𝜋𝑣𝑓

2)

1
3

(
𝑘𝑚

𝑘𝑓 − 𝑘𝑚
) (

1

√𝛾SC1 + 1
ln
√𝛾SC1 + 1 + 1

√𝛾SC1 + 1 − 1
)

 

𝑘𝑒𝑓𝑓,SC1−1

𝑘𝑚
=

1

1 − (
6𝑣𝑓
𝜋
)

1
3
[1 −

𝛾SC1
2√𝛾SC1 + 1

ln
√𝛾SC1 + 1 + 1

√𝛾SC1 + 1 − 1
]

 
(4.21) 

 
 Eq. (4.21) is the thermal conductivity model for spherical inclusions as stated 
in [37].  
 

4.1.1.2 Case II: SC1 Model with the Volume Fraction of Filler = 0.524  

In contrast to the previous case, there are no neat polymer layer in this case 
because each spherical particle touches each other. The value of 0.524 is the 
maximum packing fraction in case of simple cubic element. The element was divided 
into two sections as shown in Figure 4.6(a). Sections 1 and 2 contain one-eighth of 
spherical particle on each corner. The thermal resistances of sections 1 and 2 were 
considered as parallel arrangement of polymer matrix resistance and filler resistance. 
Thermal resistance of each section was arranged in series as shown in Figure 4.6(b). 
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By the definition of series resistance (Eq. (2.32)), the total thermal resistance of 
this element is the addition of thermal resistances of each section.   
 

𝑅Σ = 𝑅1 + 𝑅2 (4.22) 

 
where 𝑅1 and 𝑅2 is the thermal resistances of sections 1 and 2, respectively.  

Then the heat flow can be expressed as 
 

𝑄 =
𝑇1 − 𝑇2
𝑎

𝐴𝑘𝑒𝑓𝑓,SC1−2

=
𝑇1 − 𝑇2
𝑅1 + 𝑅2

 (4.23) 

 
where 𝑘𝑒𝑓𝑓,SC1−2 is the effective thermal conductivity of case II of SC1 model and 
𝐴 = 𝑎2 is the area perpendicular to the heat flow.  

Rearranging Eq. (4.23), 𝑘𝑒𝑓𝑓,SC1−2 can be given as 
 

𝑘𝑒𝑓𝑓,SC1−2 =
1

𝑎
(

1

𝑅1 + 𝑅2
) (4.24) 

 
Note that the thermal resistance of section 1 is equivalent to that of section 2, 

thus they were considered together. The element was divided into very thin layer 𝑗 
that its thickness is ∆𝑥𝑗 , as shown in Figure 4.6(a). The resistance of a layer 𝑗 is parallel 
resistance due to polymer matrix resistance 𝑅𝑚,𝑗 and filler resistance 𝑅𝑓,𝑗. These layers 
are arranged in series pattern. Therefore, the thermal resistances of sections 1 and 2 
can be written as 
 

𝑅1 = 𝑅2 =∑(
1

𝑅𝑚,𝑗
+

1

𝑅𝑓,𝑗
)

−1𝑟

𝑗=0

 (4.25) 
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(a) Physical model (b) Thermal circuit model 

  

Figure 4.6 (a) Physical and (b) Thermal circuit model of simple cubic element with 
filler volume fraction equal to 0.524 
 

Because there are one fourth of a circle on each corner of the square plane 
(𝑦, 𝑧) of layer j, thus there is one circle in each layer and then 𝑅𝑓,𝑗 is similar to Eq. 
(4.9) and 𝑅𝑚,𝑗 is also similar to Eq. (4.11). 

Substituting Eq. (4.9), (4.10) and (4.11) into Eq. (4.25), it leads to 
  

𝑅1 = 𝑅2 =∑
∆𝑥𝑗

𝑎2𝑘𝑚 + 𝜋(𝑘𝑓 − 𝑘𝑚)(𝑟2 − 𝑥𝑗
2)

𝑟

𝑗=0

 (4.26) 

 
When ∆𝑥𝑗 approaches to zero, it can be written as 

 

𝑅1 = 𝑅2 = lim
∆𝑥𝑗→0

∑
∆𝑥𝑗

𝑎2𝑘𝑚 + 𝜋(𝑘𝑓 − 𝑘𝑚)(𝑟2 − 𝑥𝑗
2)

𝑟

𝑗=0

  

 = ∫
1

𝑎2𝑘𝑚 + 𝜋(𝑘𝑓 − 𝑘𝑚)(𝑟2 − 𝑥𝑗
2)
𝑑𝑥𝑗

𝑟

0

 (4.27) 

 
Eq. (4.27) can be further arranged and it gave the same result with Eq. (4.14). 

Here, that equation was written again as 
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𝑅1 = 𝑅2 =
1

𝜋(𝑘𝑓 − 𝑘𝑚)
∫

1

{𝑟2 [
𝑎2

𝜋𝑟2
(

𝑘𝑚
𝑘𝑓 − 𝑘𝑚

) + 1]} − 𝑥𝑗
2

𝑟

0

𝑑𝑥𝑗 (4.28) 

 
 Substituting Eq. (4.15) into Eq. (4.28), it led to the result similar to Eq. (4.16).  
 

𝑅1 = 𝑅2 =
1

𝜋(𝑘𝑓 − 𝑘𝑚)
∫

1

[𝑟√𝛾SC1 + 1]
2
− 𝑥𝑗

2

𝑟

0

𝑑𝑥𝑗 (4.29) 

 
where 𝛾SC1 is expressed as 
 

𝛾SC1 = (
16

9𝜋𝑣𝑓
2)

1
3

(
𝑘𝑚

𝑘𝑓 − 𝑘𝑚
) (4.30) 

 
 Integrating Eq. (4.29), the thermal resistance of sectiosn 1 or 2 can be written 
as 
  

𝑅1 = 𝑅2 = (
1

2𝜋𝑟(𝑘𝑓 − 𝑘𝑚)
) (

1

√𝛾SC1 + 1
ln
√𝛾SC1 + 1 + 1

√𝛾SC1 + 1 − 1
) (4.31) 

 
 Then Eq. (4.31) was substituted into Eq. (4.24) as 
 

𝑘𝑒𝑓𝑓,SC1−2 =
1

𝑎

(

 
 1

2(
1

2𝜋𝑟(𝑘𝑓 − 𝑘𝑚)
)(

1

√𝛾SC1 + 1
ln
√𝛾SC1 + 1 + 1

√𝛾SC1 + 1 − 1
)
)

 
 

 (4.32) 

   
Dividing Eq. (4.20) by 𝑘𝑚, the ratio of 𝑘𝑒𝑓𝑓,SC1−2 and 𝑘𝑚 can be derived as 
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𝑘𝑒𝑓𝑓,SC1−2

𝑘𝑚
=

1

𝑎𝑘𝑚

(

 
 1

2(
1

2𝜋𝑟(𝑘𝑓 − 𝑘𝑚)
)(

1

√𝛾SC1 + 1
ln
√𝛾SC1 + 1 + 1

√𝛾SC1 + 1 − 1
)
)

 
 

  

 =
1

(
𝑎𝑘𝑚

𝜋𝑟(𝑘𝑓 − 𝑘𝑚)
)(

1

√𝛾SC1 + 1
ln
√𝛾SC1 + 1 + 1

√𝛾SC1 + 1 − 1
)

 

 

=
1

(
4𝜋𝑟3

3𝑣𝑓
)

1
3
(
1
𝜋𝑟
) (

𝑘𝑚
𝑘𝑓 − 𝑘𝑚

)(
1

√𝛾SC1 + 1
ln
√𝛾SC1 + 1 + 1

√𝛾SC1 + 1 − 1
)

 

 

=
1

(
4

3𝜋2𝑣𝑓
)

1
3

(
𝑘𝑚

𝑘𝑓 − 𝑘𝑚
)(

1

√𝛾SC1 + 1
ln
√𝛾SC1 + 1 + 1

√𝛾SC1 + 1 − 1
)

 
 

=
1

1
2 (
6𝑣𝑓
𝜋 )

1
3
(
16
9𝜋𝑣𝑓

2)

1
3

(
𝑘𝑚

𝑘𝑓 − 𝑘𝑚
)(

1

√𝛾SC1 + 1
ln
√𝛾SC1 + 1 + 1

√𝛾SC1 + 1 − 1
)

 
 

𝑘𝑒𝑓𝑓,SC1−2

𝑘𝑚
=

1

(
6𝑣𝑓
𝜋 )

1
3
[

𝛾SC1
2√𝛾SC1 + 1

ln
√𝛾SC1 + 1 + 1

√𝛾SC1 + 1 − 1
]

 
(4.33) 

 
 Eq. (4.33) is different from Eq. (4.21) due to the absence of the neat polymer 
layer in the RVE. Eq. (4.33) predicts the effective thermal conductivity of the composite 
when filler network is formed by the contact of spherical particles which are ideally 
arranged in form of simple cubic structure. 
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4.1.2 Body-centered Cubic Model (BCC1 Model) 

4.1.2.1 Case III: BCC1 Model with the Volume Fraction of Filler  
< 0.131 

In case of BCC element with filler volume fraction less than 0.131, the element 
was divided into six sections as shown in Figure 4.7(a). Sections 1 and 6 contain one-
eighth of spherical particle on each corner and the rest is polymer matrix. Sections 2 
and 5 contain neat polymer matrix. Sections 3 and 4 contain half of spherical particle 
in the center. The thermal resistances of sections 1, 3, 4, and 6 were considered as 
parallel arrangement of polymer matrix resistance and filler resistance, while the 
thermal resistances of section 2 and 5 come from only the polymer matrix. Thermal 
resistance of each section was arranged in series as shown in Figure 4.7(b) where 𝑅𝑚,𝑖 
is the polymer matrix thermal resistance of section 𝑖 and 𝑅𝑓,𝑖 is the filler thermal 
resistance of section 𝑖, 𝑖 = 1, 2, 3, 4, 5, 6.  

By the definition of series resistance (Eq. (2.32)), the total thermal resistance of 
this element is the addition of thermal resistances of each section.   
 

𝑅Σ = 𝑅1 + 𝑅2 + 𝑅3 + 𝑅4 + 𝑅5 + 𝑅6 (4.34) 

 
where 𝑅𝑖 is the thermal resistance of section 𝑖.  

Then the heat flow can be written as 
 

𝑄 =
𝑇1 − 𝑇2
𝑎

𝐴𝑘𝑒𝑓𝑓,BCC1−1

=
𝑇1 − 𝑇2

𝑅1 + 𝑅2 + 𝑅3 + 𝑅4 + 𝑅5 + 𝑅6
 (4.35) 

 
where 𝑘𝑒𝑓𝑓,BCC1−1 is the effective thermal conductivity of case III of BCC1 model, and 
𝐴 is the area perpendicular to the heat flow. 

Due to 𝐴 = 𝑎2, 𝑘𝑒𝑓𝑓,BCC1−1 can be derived by rearranging Eq. (4.35) as 
 

𝑘𝑒𝑓𝑓,BCC1−1 =
1

𝑎
(

1

𝑅1 + 𝑅2 + 𝑅3 + 𝑅4 + 𝑅5 + 𝑅6
) (4.36) 
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Note that the thermal resistance of section 1 is equivalent to that of sections 
3, 4, and 6, thus they were considered together. It can be imagined that the element 
was divided into very thin layer 𝑗 that its thickness is ∆𝑥𝑗 , as shown in Figure 4.7(a). 
The resistance of a layer 𝑗 is parallel resistances due to polymer matrix resistance 𝑅𝑚,𝑗 
and filler resistance 𝑅𝑓,𝑗. These layers are arranged in series pattern. Therefore, the 
thermal resistances of sections 1, 3, 4, and 6 can be written as 

 

𝑅1 = 𝑅3 = 𝑅4 = 𝑅6 =∑(
1

𝑅𝑚,𝑗
+

1

𝑅𝑓,𝑗
)

−1𝑟

𝑗=0

 (4.37) 

 
 (a) Physical model (b) Thermal circuit model 

 

 
Figure 4.7 (a) Physical and (b) Thermal circuit model of body-centered cubic element 
with filler volume fraction < 0.131 
 
 Because there is one fourth of a circle on each corner of the square plane 
(𝑦, 𝑧) in sections 1 and 6 and there is a circle on center of the square plane (𝑦, 𝑧) in 
sections 3 and 4, thus there is one circle in each layer and then 𝑅𝑓,𝑗 can be written as 
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𝑅𝑓,𝑗 =
∆𝑥𝑗

(𝜋𝑏𝑗
2)𝑘𝑓

 (4.38) 

 
where 𝑏𝑗 is the radius of circle at 𝑥 = 𝑥𝑗 as defined in Eq. (4.10). 

The remaining area is of polymer matrix. Thus 𝑅𝑚,𝑗 is expressed as 
 

𝑅𝑚,𝑗 =
∆𝑥𝑗

(𝑎2 − 𝜋𝑏𝑗
2)𝑘𝑚

 (4.39) 

 
 Substituting Eq. (4.38) and (4.39) into Eq. (4.37), it can be rearranged as 
  

𝑅1 = 𝑅3 = 𝑅4 = 𝑅6 =∑
∆𝑥𝑗

𝑎2𝑘𝑚 + 𝜋(𝑘𝑓 − 𝑘𝑚)(𝑟2 − 𝑥𝑗
2)

𝑟

𝑗=0

 (4.40) 

 
 When ∆𝑥𝑗 approaches zero, it can be written as 
 

𝑅1 = 𝑅3 = 𝑅4 = 𝑅6 = lim
∆𝑥𝑗→0

∑
∆𝑥𝑗

𝑎2𝑘𝑚 + 𝜋(𝑘𝑓 − 𝑘𝑚)(𝑟2 − 𝑥𝑗
2)

𝑟

𝑗=0

  

 = ∫
1

𝑎2𝑘𝑚 + 𝜋(𝑘𝑓 − 𝑘𝑚)(𝑟2 − 𝑥𝑗
2)
𝑑𝑥𝑗

𝑟

0

 (4.41) 

 
 Before integrating, Eq. (4.41) can be further arranged as 
 

𝑅1 = 𝑅3 = 𝑅4 = 𝑅6 =
1

𝜋(𝑘𝑓 − 𝑘𝑚)
∫

1

[
𝑘𝑚 +

𝜋𝑟2

𝑎2
(𝑘𝑓 − 𝑘𝑚)

𝜋
𝑎2
(𝑘𝑓 − 𝑘𝑚)

] − 𝑥𝑗
2

𝑟

0

𝑑𝑥𝑗  
 

=
1

𝜋(𝑘𝑓 − 𝑘𝑚)
∫

1

{(
𝑎2

𝜋 ) (
𝜋𝑟2

𝑎2
) [
𝑎2

𝜋𝑟2
(

𝑘𝑚
𝑘𝑓 − 𝑘𝑚

) + 1]} − 𝑥𝑗
2

𝑟

0

𝑑𝑥𝑗  
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=
1

𝜋(𝑘𝑓 − 𝑘𝑚)
∫

1

{𝑟2 [
𝑎2

𝜋𝑟2
(

𝑘𝑚
𝑘𝑓 − 𝑘𝑚

) + 1]} − 𝑥𝑗
2

𝑟

0

𝑑𝑥𝑗  (4.42) 

 
 From Eq. (4.3), the length of RVE for BCC can be written in form of 
 

𝑎 = (
8𝜋𝑟3

3𝑣𝑓
)

1
3

 (4.43) 

  
Substituting Eq. (4.43) into Eq. (4.42), it goes to be 

 

𝑅1 = 𝑅3 = 𝑅4 = 𝑅6 =
1

𝜋(𝑘𝑓 − 𝑘𝑚)
∫

1

{𝑟2 [(
8𝜋𝑟3

3𝑣𝑓
)

2
3
(
1
𝜋𝑟2

) (
𝑘𝑚

𝑘𝑓 − 𝑘𝑚
) + 1]} − 𝑥𝑗

2

𝑟

0

𝑑𝑥𝑗  

=
1

𝜋(𝑘𝑓 − 𝑘𝑚)
∫

1

{𝑟2 [(
64
9𝜋𝑣𝑓

2)

1
3

(
𝑘𝑚

𝑘𝑓 − 𝑘𝑚
) + 1]} − 𝑥𝑗

2

𝑟

0

𝑑𝑥𝑗  

=
1

𝜋(𝑘𝑓 − 𝑘𝑚)
∫

1

[𝑟√𝛾BCC1 + 1]
2
− 𝑥𝑗

2

𝑟

0

𝑑𝑥𝑗  (4.44) 

 
where 𝛾BCC1 is expressed as 
 

𝛾BCC1 = (
64

9𝜋𝑣𝑓
2)

1
3

(
𝑘𝑚

𝑘𝑓 − 𝑘𝑚
) (4.45) 

 
 Integrating Eq. (4.44), the thermal resistances of these sections can be written 
as 
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𝑅1 = 𝑅3 = 𝑅4 = 𝑅6 = (
1

2𝜋𝑟(𝑘𝑓 − 𝑘𝑚)
)(

1

√𝛾BCC1 + 1
ln
√𝛾BCC1 + 1 + 1

√𝛾BCC1 + 1 − 1
) (4.46) 

 
 Considering sections 2 and 5, thermal resistance is expressed as 
 

𝑅2 = 𝑅5 =
(
𝑎
2
− 𝑟) − 𝑟

𝑎2𝑘𝑚
=

𝑎
2
− 2𝑟

𝑎2𝑘𝑚
 (4.47) 

 
 Then Eq. (4.46) and (4.47) are substituted into Eq. (4.36) as 
 

𝑘𝑒𝑓𝑓,BCC1−1 =
1

𝑎

(

 
 
 1

2(

𝑎
2
− 2𝑟

𝑎2𝑘𝑚
) + 4(

1

2𝜋𝑟(𝑘𝑓 − 𝑘𝑚)
) (

1

√𝛾BCC1 + 1
ln
√𝛾BCC1 + 1 + 1

√𝛾BCC1 + 1 − 1
)
)

 
 
 

 (4.48) 

 
 Dividing Eq. (4.48) by 𝑘𝑚, the ratio of 𝑘𝑒𝑓𝑓,BCC1−1 and 𝑘𝑚 can be derived as 
 

𝑘𝑒𝑓𝑓,BCC1−1

𝑘𝑚
=

1

𝑎𝑘𝑚

(

 
 1

𝑎 − 4𝑟
𝑎2𝑘𝑚

+ 4(
1

2𝜋𝑟(𝑘𝑓 − 𝑘𝑚)
)(

1

√𝛾BCC1 + 1
ln
√𝛾BCC1 + 1 + 1

√𝛾BCC1 + 1 − 1
)
)

 
 

  

=
1

1 −
4𝑟
𝑎
+ 2(

𝑎𝑘𝑚
𝜋𝑟(𝑘𝑓 − 𝑘𝑚)

)(
1

√𝛾BCC1 + 1
ln
√𝛾BCC1 + 1 + 1

√𝛾BCC1 + 1 − 1
)

 

 

=
1

1 −
4𝑟

2𝑟 (
𝜋
3𝑣𝑓

)

1
3

+ 2(
8𝜋𝑟3

3𝑣𝑓
)

1
3
(
1
𝜋𝑟
) (

𝑘𝑚
𝑘𝑓 − 𝑘𝑚

) (
1

√𝛾BCC1 + 1
ln
√𝛾BCC1 + 1 + 1

√𝛾BCC1 + 1 − 1
)

 
 

=
1

1 − 2 (
3𝑣𝑓
𝜋
)

1
3
+ 2 (

8
3𝜋2𝑣𝑓

)

1
3
(

𝑘𝑚
𝑘𝑓 − 𝑘𝑚

) (
1

√𝛾BCC1 + 1
ln
√𝛾BCC1 + 1 + 1

√𝛾BCC1 + 1 − 1
)
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=
1

1 − 2 (
3𝑣𝑓
𝜋
)

1
3
+
2
2
(
3𝑣𝑓
𝜋
)

1
3
(
64
9𝜋𝑣𝑓

2)

1
3

(
𝑘𝑚

𝑘𝑓 − 𝑘𝑚
) (

1

√𝛾BCC1 + 1
ln
√𝛾BCC1 + 1 + 1

√𝛾BCC1 + 1 − 1
)

 
 

𝑘𝑒𝑓𝑓,BCC1−1

𝑘𝑚
=

1

1 − (
24𝑣𝑓
𝜋
)

1
3
[1 −

𝛾BCC1
2√𝛾BCC1 + 1

ln
√𝛾BCC1 + 1 + 1

√𝛾BCC1 + 1 − 1
]

 
(4.49) 

 
4.1.2.2 Case IV: BCC1 Model with the Volume Fraction of Filler  

= 0.131 

In case of BCC element with filler volume fraction equal to 0.131, the element 
was divided into four sections as shown in Figure 4.8(a). Sections 1 and 4 contain one-
eighth of spherical particle on each corner and the rest is polymer matrix. Sections 2 
and 3 contain half of a spherical particle on center of each section. The thermal 
resistances of each section were considered as parallel arrangement of polymer matrix 
resistance and filler resistance. Thermal resistances of each section were arranged in 
series as shown in Figure 4.8(b) where 𝑅𝑚,𝑖 is the polymer matrix thermal resistance of 
section 𝑖 and 𝑅𝑓,𝑖 is the filler thermal resistance of section 𝑖, 𝑖 = 1, 2, 3, 4.  
 By the definition of series resistance (Eq. (2.32)), the total thermal resistance of 
this element is the addition of thermal resistances of each section.   
 

𝑅Σ = 𝑅1 + 𝑅2 + 𝑅3 + 𝑅4 (4.50)  

 
where 𝑅𝑖 is the thermal resistance of section 𝑖.  

Then the heat flow can be written as 
 

𝑄 =
𝑇1 − 𝑇2
𝑎

𝐴𝑘𝑒𝑓𝑓,BCC1−2

=
𝑇1 − 𝑇2

𝑅1 + 𝑅2 + 𝑅3 + 𝑅4
 (4.51) 
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where 𝑘𝑒𝑓𝑓,BCC1−2 is the effective thermal conductivity of case IV of BCC1-2 and 𝐴 is 
the area perpendicular to the heat flow.  

Due to 𝐴 = 𝑎2, 𝑘𝑒𝑓𝑓,BCC1−2 can be derived by rearranging Eq. (4.51) as 
 

𝑘𝑒𝑓𝑓,BCC1−2 =
1

𝑎
(

1

𝑅1 + 𝑅2 + 𝑅3 + 𝑅4
) (4.52) 

 
Note that the thermal resistances of every sections are equal, thus they were 

considered together. It can be imagined that the element is divided into very thin layer 
j that its thickness is ∆𝑥𝑗 , as shown in Figure 4.8(a). The resistance of a layer j is parallel 
resistance due to polymer matrix resistance 𝑅𝑚,𝑗 and filler resistance 𝑅𝑓,𝑗. These layers 
arrange in series pattern. Therefore, the thermal resistances of sections 1, 2, 3, and 4 
can be written as 
 

𝑅1 = 𝑅2 = 𝑅3 = 𝑅4 =∑(
1

𝑅𝑚,𝑗
+

1

𝑅𝑓,𝑗
)

−1𝑟

𝑗=0

 (4.53) 

 
Because there is one circle in each layer, then 𝑅𝑓,𝑗 can be written as 

 

𝑅𝑓,𝑗 =
∆𝑥𝑗

(𝜋𝑏𝑗
2)𝑘𝑓

 (4.54) 

 
where 𝑏𝑗 is the radius of circle at 𝑥 = 𝑥𝑗 as defined in Eq. (4.10).  
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(a) Physical model (b) Thermal circuit model 

 

 
Figure 4.8 (a) Physical and (b) Thermal circuit model of body-centered cubic element 
with filler volume fraction = 0.131 
 

The remaining area is of polymer matrix. Thus 𝑅𝑚,𝑗 is expressed as 
 

𝑅𝑚,𝑗 =
∆𝑥𝑗

(𝑎2 − 𝜋𝑏𝑗
2)𝑘𝑚

 (4.55) 

 
 Substituting Eq. (4.54) and (4.55) into Eq. (4.53), it can be rearranged as 
  

𝑅1 = 𝑅2 = 𝑅3 = 𝑅4 =∑
∆𝑥𝑗

𝑎2𝑘𝑚 + 𝜋(𝑘𝑓 − 𝑘𝑚)(𝑟2 − 𝑥𝑗
2)

𝑟

𝑗=0

 (4.56) 
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When ∆𝑥𝑗 approaches zero, it can be written as 
 

𝑅1 = 𝑅2 = 𝑅3 = 𝑅4 = lim
∆𝑥𝑗→0

∑
∆𝑥𝑗

𝑎2𝑘𝑚 + 𝜋(𝑘𝑓 − 𝑘𝑚)(𝑟2 − 𝑥𝑗
2)

𝑟

𝑗=0

  

 = ∫
1

𝑎2𝑘𝑚 + 𝜋(𝑘𝑓 − 𝑘𝑚)(𝑟2 − 𝑥𝑗
2)
𝑑𝑥𝑗

𝑟

0

 (4.57) 

 
 Before integrating, Eq. (4.57) can be further arranged as 
 

𝑅1 = 𝑅2 = 𝑅3 = 𝑅4 =
1

𝜋(𝑘𝑓 − 𝑘𝑚)
∫

1

[
𝑘𝑚 +

𝜋𝑟2

𝑎2
(𝑘𝑓 − 𝑘𝑚)

𝜋
𝑎2
(𝑘𝑓 − 𝑘𝑚)

] − 𝑥𝑗
2

𝑟

0

𝑑𝑥𝑗  
 

=
1

𝜋(𝑘𝑓 − 𝑘𝑚)
∫

1

{(
𝑎2

𝜋 ) (
𝜋𝑟2

𝑎2
) [
𝑎2

𝜋𝑟2
(

𝑘𝑚
𝑘𝑓 − 𝑘𝑚

) + 1]} − 𝑥𝑗
2

𝑟

0

𝑑𝑥𝑗  
 

=
1

𝜋(𝑘𝑓 − 𝑘𝑚)
∫

1

{𝑟2 [
𝑎2

𝜋𝑟2
(

𝑘𝑚
𝑘𝑓 − 𝑘𝑚

) + 1]} − 𝑥𝑗
2

𝑟

0

𝑑𝑥𝑗  (4.58) 

 
 Substituting Eq. (4.43) into Eq. (4.58), it goes to be 
 

𝑅1 = 𝑅2 = 𝑅3 = 𝑅4 =
1

𝜋(𝑘𝑓 − 𝑘𝑚)
∫

1

{𝑟2 [(
8𝜋𝑟3

3𝑣𝑓
)

2
3
(
1
𝜋𝑟2

) (
𝑘𝑚

𝑘𝑓 − 𝑘𝑚
) + 1]} − 𝑥𝑗

2

𝑟

0

𝑑𝑥𝑗 

=
1

𝜋(𝑘𝑓 − 𝑘𝑚)
∫

1

{𝑟2 [(
64
9𝜋𝑣𝑓

2)

1
3

(
𝑘𝑚

𝑘𝑓 − 𝑘𝑚
) + 1]} − 𝑥𝑗

2

𝑟

0

𝑑𝑥𝑗 

=
1

𝜋(𝑘𝑓 − 𝑘𝑚)
∫

1

[𝑟√𝛾BCC1 + 1]
2
− 𝑥𝑗

2

𝑟

0

𝑑𝑥𝑗  (4.59) 
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where 𝛾BCC1 is expressed as 
 

𝛾BCC1 = (
64

9𝜋𝑣𝑓
2)

1
3

(
𝑘𝑚

𝑘𝑓 − 𝑘𝑚
) (4.60) 

 
 Integrating Eq. (4.44), the thermal resistance of these sections can be written 
as 
  

𝑅1 = 𝑅2 = 𝑅3 = 𝑅4

= (
1

2𝜋𝑟(𝑘𝑓 − 𝑘𝑚)
) (

1

√𝛾BCC1 + 1
ln
√𝛾BCC1 + 1 + 1

√𝛾BCC1 + 1 − 1
) (4.61) 

 
 Then Eq. (4.61) is substituted into Eq. (4.52) as 
 

𝑘𝑒𝑓𝑓,BCC1−2 =
1

𝑎

(

 
 1

4(
1

2𝜋𝑟(𝑘𝑓 − 𝑘𝑚)
) (

1

√𝛾BCC1 + 1
ln
√𝛾BCC1 + 1 + 1

√𝛾BCC1 + 1 − 1
)
)

 
 

 (4.62) 

 
 Dividing Eq. (4.62) by 𝑘𝑚, the ratio of 𝑘𝑒𝑓𝑓,BCC1−2 and 𝑘𝑚 can be derived as 
 

𝑘𝑒𝑓𝑓,BCC1−2

𝑘𝑚
=

1

𝑎𝑘𝑚

(

 
 1

4(
1

2𝜋𝑟(𝑘𝑓 − 𝑘𝑚)
) (

1

√𝛾BCC1 + 1
ln
√𝛾BCC1 + 1 + 1

√𝛾BCC1 + 1 − 1
)
)

 
   

=
1

2(
𝑎𝑘𝑚

𝜋𝑟(𝑘𝑓 − 𝑘𝑚)
)(

1

√𝛾BCC1 + 1
ln
√𝛾BCC1 + 1 + 1

√𝛾BCC1 + 1 − 1
)

 
 

=
1

2 (
8𝜋𝑟3

3𝑣𝑓
)

1
3
(
1
𝜋𝑟) (

𝑘𝑚
𝑘𝑓 − 𝑘𝑚

)(
1

√𝛾BCC1 + 1
ln
√𝛾BCC1 + 1 + 1

√𝛾BCC1 + 1 − 1
)
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=
1

2(
8

3𝜋2𝑣𝑓
)

1
3

(
𝑘𝑚

𝑘𝑓 − 𝑘𝑚
)(

1

√𝛾BCC1 + 1
ln
√𝛾BCC1 + 1 + 1

√𝛾BCC1 + 1 − 1
)

 
 

=
1

2
2
(
3𝑣𝑓
𝜋
)

1
3
(
64
9𝜋𝑣𝑓

2)

1
3

(
𝑘𝑚

𝑘𝑓 − 𝑘𝑚
) (

1

√𝛾BCC1 + 1
ln
√𝛾BCC1 + 1 + 1

√𝛾BCC1 + 1 − 1
)

 
 

𝑘𝑒𝑓𝑓,BCC1−2

𝑘𝑚
=

1

(
24𝑣𝑓
𝜋 )

1
3
(

𝛾BCC1
2√𝛾BCC1 + 1

ln
√𝛾BCC1 + 1 + 1

√𝛾BCC1 + 1 − 1
)

 
(4.63) 

 
4.1.2.3 Case V: BCC1 Model with the Volume Fraction of Filler  

> 0.131 

In case of BCC element with filler volume fraction more than 0.131, the 
element was divided into six sections as shown in Figure 4.9(a). Sections 1 and 6 contain 
some segment of spherical particle on each corner and the rest is polymer matrix. 
Sections 2 and 5 contain some segment of spherical particle on each corner and 
center. Sections 3 and 4 contain some segment of spherical particle on center. The 
thermal resistances of every sections were considered as parallel arrangement of 
polymer matrix resistance and filler resistance. Thermal resistance of each section was 
arranged in series as shown in Figure 4.9(b) where 𝑅𝑚,𝑖 is the polymer matrix thermal 
resistance of section 𝑖 and 𝑅𝑓,𝑖 is the filler thermal resistance of section 𝑖, 𝑖 =
1, 2, 3, 4, 5, 6.  

From the definition of series resistance (Eq. (2.32)), the total thermal resistance 
of this element is the addition of thermal resistances of each section.   
 

𝑅Σ = 𝑅1 + 𝑅2 + 𝑅3 + 𝑅4 + 𝑅5 + 𝑅6 (4.64) 

 
where 𝑅𝑖 is the thermal resistance of section 𝑖.  
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Then the heat flow can be written as 
 

𝑄 =
𝑇1 − 𝑇2
𝑎

𝐴𝑘𝑒𝑓𝑓,BCC1−3

=
𝑇1 − 𝑇2

𝑅1 + 𝑅2 + 𝑅3 + 𝑅4 + 𝑅5 + 𝑅6
 (4.65) 

 
where 𝑘𝑒𝑓𝑓,BCC1−3 is the effective thermal conductivity of case V of BCC1 model, and 
𝐴 is the area perpendicular to the heat flow.  

Due to 𝐴 = 𝑎2, 𝑘𝑒𝑓𝑓,BCC1−3 can be derived by rearranging Eq. (4.65) as 
 

𝑘𝑒𝑓𝑓,BCC1−3 =
1

𝑎
(

1

𝑅1 + 𝑅2 + 𝑅3 + 𝑅4 + 𝑅5 + 𝑅6
) (4.66) 

 
It is worth to note that the thermal resistance of section 1 is equivalent to that 

of section 6, the thermal resistance of section 2 is equivalent to that of section 5, and 
the thermal resistance of section 3 is equivalent to that of section 4. Each section will 
be considered separately.  

It can be imagined that the element is divided into very thin layer j that its 
thickness is ∆𝑥𝑗 , as shown in Figure 4.9(a). The resistance of a layer j is parallel 
resistances due to polymer matrix resistance 𝑅𝑚,𝑗 and filler resistance 𝑅𝑓,𝑗 . These 
layers arrange in series pattern. Therefore, the thermal resistance of each section can 
be written as 
 

𝑅𝑖 =∑(
1

𝑅𝑚,𝑗
+

1

𝑅𝑓,𝑗
)

−1𝑛

𝑗=0

 (4.67) 

 
where subscript 𝑗 is the layer number. 

For sections 1 and 6, because there is one fourth of a circle on each corner of 
the square plane (𝑦, 𝑧), thus there is one circle in each layer and then 𝑅𝑓,𝑗 can be 
written as 
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𝑅𝑓,𝑗 =
∆𝑥𝑗

(𝜋𝑏𝑗
2)𝑘𝑓

 (4.68) 

 
where 𝑏𝑗 is the radius of circle at 𝑥 = 𝑥𝑗 as defined in Eq. (4.10). 
 
 (a) Physical model (b) Thermal circuit model 

 

 
Figure 4.9 (a) Physical and (b) Thermal circuit model of body-centered cubic element 
with filler volume fraction > 0.131 
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The remaining area is of polymer matrix. Thus 𝑅𝑚,𝑗 is expressed as 
 

𝑅𝑚,𝑗 =
∆𝑥𝑗

(𝑎2 − 𝜋𝑏𝑗
2)𝑘𝑚

 (4.69) 

 
 Substituting Eq. (4.68) and (4.69) into Eq. (4.67), it can be arranged in form of 
  

𝑅1 = 𝑅6 =∑
∆𝑥𝑗

𝑎2𝑘𝑚 + 𝜋(𝑘𝑓 − 𝑘𝑚)(𝑟2 − 𝑥𝑗
2)

𝑎
2
−𝑟

𝑗=0

 (4.70) 

  
When ∆𝑥𝑗 approaches to zero, it can be written as 

 

𝑅1 = 𝑅6 = lim
∆𝑥𝑗→0

∑
∆𝑥𝑗

𝑎2𝑘𝑚 + 𝜋(𝑘𝑓 − 𝑘𝑚)(𝑟2 − 𝑥𝑗
2)

𝑎
2
−𝑟

𝑗=0

  

= ∫
1

𝑎2𝑘𝑚 + 𝜋(𝑘𝑓 − 𝑘𝑚)(𝑟2 − 𝑥𝑗
2)
𝑑𝑥𝑗

𝑎
2
−𝑟

0

 (4.71) 

 
 Before integrating, Eq. (4.71) can be further arranged as 
 

𝑅1 = 𝑅6 =
1

𝜋(𝑘𝑓 − 𝑘𝑚)
∫

1

[
𝑘𝑚 +

𝜋𝑟2

𝑎2
(𝑘𝑓 − 𝑘𝑚)

𝜋
𝑎2
(𝑘𝑓 − 𝑘𝑚)

] − 𝑥𝑗
2

𝑎
2
−𝑟

0

𝑑𝑥𝑗 
 

=
1

𝜋(𝑘𝑓 − 𝑘𝑚)
∫

1

{(
𝑎2

𝜋 ) (
𝜋𝑟2

𝑎2
) [
𝑎2

𝜋𝑟2
(

𝑘𝑚
𝑘𝑓 − 𝑘𝑚

) + 1]} − 𝑥𝑗
2

𝑎
2
−𝑟

0

𝑑𝑥𝑗 
 

=
1

𝜋(𝑘𝑓 − 𝑘𝑚)
∫

1

{𝑟2 [
𝑎2

𝜋𝑟2
(

𝑘𝑚
𝑘𝑓 − 𝑘𝑚

) + 1]} − 𝑥𝑗
2

𝑎
2
−𝑟

0

𝑑𝑥𝑗  (4.72) 

 
 Substituting Eq. (4.43) into Eq. (4.72), it leads to 
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𝑅1 = 𝑅6 =
1

𝜋(𝑘𝑓 − 𝑘𝑚)
∫

1

{𝑟2 [(
8𝜋𝑟3

3𝑣𝑓
)

2
3
(
1
𝜋𝑟2

) (
𝑘𝑚

𝑘𝑓 − 𝑘𝑚
) + 1]} − 𝑥𝑗

2

𝑎
2
−𝑟

0

𝑑𝑥𝑗 

=
1

𝜋(𝑘𝑓 − 𝑘𝑚)
∫

1

{𝑟2 [(
64
9𝜋𝑣𝑓

2)

1
3

(
𝑘𝑚

𝑘𝑓 − 𝑘𝑚
) + 1]} − 𝑥𝑗

2

𝑎
2
−𝑟

0

𝑑𝑥𝑗 

=
1

𝜋(𝑘𝑓 − 𝑘𝑚)
∫

1

[𝑟√𝛾BCC1 + 1]
2
− 𝑥𝑗

2

𝑎
2
−𝑟

0

𝑑𝑥𝑗  (4.73) 

 
where 𝛾BCC1 is expressed as 
 

𝛾BCC1 = (
64

9𝜋𝑣𝑓
2)

1
3

(
𝑘𝑚

𝑘𝑓 − 𝑘𝑚
) (4.74) 

 
 Integrating Eq. (4.73), the thermal resistances of sections 1 and 6 can be written 
as 
  

𝑅1 = 𝑅6 = (
1

2𝜋𝑟(𝑘𝑓 − 𝑘𝑚)
) (

1

√𝛾BCC1 + 1
ln
√𝛾BCC1 + 1 + 𝛽BCC1

√𝛾BCC1 + 1 − 𝛽BCC1
) (4.75) 

 
where 𝛽BCC1 is defined as 
 

𝛽BCC1 = (
𝜋

3𝑣𝑓
)

1
3

− 1 (4.76) 
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 For sections 2 and 5, there are one fourth of a circle on each corner and one 
circle on center of the square plane (𝑦, 𝑧), thus there is two circle in each layer and 
then 𝑅𝑓,𝑗 can be written as 
 

𝑅𝑓,𝑗 =
∆𝑥𝑗

(𝜋𝑏𝑗
2 + 𝜋𝑑𝑗

2)𝑘𝑓
 (4.77) 

 
where 𝑏𝑗 is the radius of circle at 𝑥 = 𝑥𝑗 as defined in Eq. (4.10) and 𝑑𝑗 is the radius of 
circle at 𝑥 = 𝑥𝑗 as follows 
 

𝑑𝑗 = √𝑟2 − (
𝑎

2
− 𝑥𝑗)

2

 (4.78) 

 
The illustration of Eq. (4.78) is shown as Figure 4.10. 

 
 

 
Figure 4.10 Radius of two spherical particles on plane (𝑦, 𝑧) in section 2 of body-
centered cubic element with filler volume fraction > 0.131 
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The remaining area is of polymer matrix. Thus 𝑅𝑚,𝑗 is expressed as 
 

𝑅𝑚,𝑗 =
∆𝑥𝑗

(𝑎2 − 𝜋𝑏𝑗
2 − 𝜋𝑑𝑗

2)𝑘𝑚
 (4.79) 

 
 Substituting Eq. (4.77) and (4.79) into Eq. (4.67), thermal resistances of sections 
2 and 5 can be written as 
  

𝑅2 = 𝑅5 = ∑
∆𝑥𝑗

−2𝜋(𝑘𝑓 − 𝑘𝑚)𝑥𝑗
2 + 𝑎𝜋(𝑘𝑓 − 𝑘𝑚)𝑥𝑗 + 𝑘𝑚𝑎

2 + 2𝜋𝑟2(𝑘𝑓 − 𝑘𝑚) −
𝜋𝑎2

4
(𝑘𝑓 − 𝑘𝑚)

𝑟

𝑗=
𝑎
2
−𝑟

 

=
1

𝜋(𝑘𝑓 − 𝑘𝑚)
∑

∆𝑥𝑗

−2𝑥𝑗
2 + 𝑎𝑥𝑗 +

𝑘𝑚𝑎2

𝜋(𝑘𝑓 − 𝑘𝑚)
+ 2𝑟2 −

𝑎2

4

𝑟

𝑗=
𝑎
2
−𝑟

 (4.80) 

 
 When ∆𝑥𝑗 approaches zero, it can be written as 
 

𝑅2 = 𝑅5 = lim
∆𝑥𝑗→0

1

𝜋(𝑘𝑓 − 𝑘𝑚)
∑

∆𝑥𝑗

−2𝑥𝑗
2 + 𝑎𝑥𝑗 +

𝑘𝑚𝑎
2

𝜋(𝑘𝑓 − 𝑘𝑚)
+ 2𝑟2 −

𝑎2

4

𝑟

𝑗=
𝑎
2
−𝑟

  

 =
1

𝜋(𝑘𝑓 − 𝑘𝑚)
∫

1

−2𝑥𝑗
2 + 𝑎𝑥𝑗 +

𝑘𝑚𝑎
2

𝜋(𝑘𝑓 − 𝑘𝑚)
+ 2𝑟2 −

𝑎2

4

𝑑𝑥𝑗

𝑟

𝑎
2
−𝑟

 (4.81) 

 
 Before integrating, Eq. (4.81) can be further arranged as 
 

𝑅2 = 𝑅5 =
1

𝜋(𝑘𝑓 − 𝑘𝑚)
∫

1

−2𝑥𝑗
2 + 𝑎𝑥𝑗 +

𝑘𝑚𝑎
2

𝜋(𝑘𝑓 − 𝑘𝑚)
+ 2𝑟2 −

𝑎2

4

𝑟

𝑎
2
−𝑟

𝑑𝑥𝑗   

=
1

𝜋(𝑘𝑓 − 𝑘𝑚)
∫

1

−2𝑥𝑗
2 + 𝑎𝑥𝑗 + {(

𝑎2

𝜋
) (
𝜋𝑟2

𝑎2
) [
𝑎2

𝜋𝑟2
(

𝑘𝑚
𝑘𝑓 − 𝑘𝑚

) −
𝑎2

4𝑟2
+ 2]}

𝑟

𝑎
2
−𝑟

𝑑𝑥𝑗  
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=
1

𝜋(𝑘𝑓 − 𝑘𝑚)
∫

1

−2𝑥𝑗
2 + 𝑎𝑥𝑗 + {𝑟

2 [
𝑎2

𝜋𝑟2
(

𝑘𝑚
𝑘𝑓 − 𝑘𝑚

) −
𝑎2

4𝑟2
+ 2]}

𝑟

𝑎
2
−𝑟

𝑑𝑥𝑗  (4.82) 

 
 Substituting Eq. (4.43) into Eq. (4.82), it leads to 
 

𝑅2 = 𝑅5 =
1

𝜋(𝑘𝑓 − 𝑘𝑚)
∫

1

−2𝑥𝑗
2 + 𝑎𝑥𝑗 + {𝑟

2 [(
8𝜋𝑟3

3𝑣𝑓
)

2
3
(
1
𝜋𝑟2

) (
𝑘𝑚

𝑘𝑓 − 𝑘𝑚
) − (

8𝜋𝑟3

3𝑣𝑓
)

2
3
(
1
4𝑟2

) + 2]}

𝑟

𝑎
2
−𝑟

𝑑𝑥𝑗  

=
1

𝜋(𝑘𝑓 − 𝑘𝑚)
∫

1

−2𝑥𝑗
2 + 𝑎𝑥𝑗 + {𝑟

2 [(
64
9𝜋𝑣𝑓

2)

1
3

(
𝑘𝑚

𝑘𝑓 − 𝑘𝑚
) − (

𝜋
3𝑣𝑓

)

2
3
+ 2]}

𝑟

𝑎
2
−𝑟

𝑑𝑥𝑗  

=
1

𝜋(𝑘𝑓 − 𝑘𝑚)
∫

1

−2𝑥𝑗
2 + 𝑎𝑥𝑗 + {𝑟

2 [𝛾BCC1 − (
𝜋
3𝑣𝑓

)

2
3
+ 2]}

𝑟

𝑎
2
−𝑟

𝑑𝑥𝑗  
(4.83) 

 
where 𝛾BCC1 is defined as Eq. (4.74). 
 Integrating Eq. (4.83), the thermal resistances of sections 2 and 5 can be written 
as 
  

𝑅2 = 𝑅5 = (
1

𝜋𝑟(𝑘𝑓 − 𝑘𝑚)
)

(

 
 
 

2

√4 + 2𝛾BCC1 − (
𝜋
3𝑣𝑓

)

2
3

ln

2 − (
𝜋
3𝑣𝑓

)

1
3
+ √4 + 2𝛾BCC1 − (

𝜋
3𝑣𝑓

)

2
3

2 − (
𝜋
3𝑣𝑓

)

1
3
− √4 + 2𝛾BCC1 − (

𝜋
3𝑣𝑓

)

2
3

)

 
 
 

 

 𝑅2 = 𝑅5 = (
1

𝜋𝑟(𝑘𝑓 − 𝑘𝑚)
) (

2

𝛿BCC1
ln
1 − 𝛽BCC1 + 𝛿BCC1
1 − 𝛽BCC1 − 𝛿BCC1

) (4.84) 

 
where 𝛽BCC1 is defined as Eq. (4.76) and 𝛿BCC1 is expressed as 
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𝛿BCC1 =
√4 + 2𝛾BCC1 − (

𝜋

3𝑣𝑓
)

2
3

= √4 + 2𝛾BCC1 − (𝛽BCC1 + 1)2 (4.85) 

 
For sections 3 and 4, there is one circle on center in each layer of the square 

plane (𝑦, 𝑧) and then 𝑅𝑓,𝑗 can be written as 
 

𝑅𝑓,𝑗 =
∆𝑥𝑗

(𝜋𝑑𝑗
2)𝑘𝑓

 (4.86) 

 
where 𝑑𝑗 is the radius of circle at 𝑥 = 𝑥𝑗 as defined in Eq. (4.78). 

The remaining area is of polymer matrix. Thus 𝑅𝑚,𝑗 is expressed as 
 

𝑅𝑚,𝑗 =
∆𝑥𝑗

(𝑎2 − 𝜋𝑑𝑗
2)𝑘𝑚

 (4.87) 

 
 Substituting Eq. (4.86) and (4.87) into Eq. (4.67), it can be arranged as 
  

𝑅3 = 𝑅4 =∑
∆𝑥𝑗

𝑎2𝑘𝑚 + 𝜋(𝑘𝑓 − 𝑘𝑚) (𝑟2 − (
𝑎
2 − 𝑥𝑗)

2

)

𝑎
2

𝑗=𝑟

 (4.88) 

 
 When ∆𝑥𝑗 approaches zero, it can be written as 
 

𝑅3 = 𝑅4 = lim
∆𝑥𝑗→0

∑
∆𝑥𝑗

𝑎2𝑘𝑚 + 𝜋(𝑘𝑓 − 𝑘𝑚) (𝑟2 − (
𝑎
2 − 𝑥𝑗)

2

)

𝑎
2

𝑗=𝑟

  

 = ∫
1

𝑎2𝑘𝑚 + 𝜋(𝑘𝑓 − 𝑘𝑚) (𝑟2 − (
𝑎
2 − 𝑥𝑗)

2

)
𝑑𝑥𝑗

𝑎
2

𝑟

 (4.89) 
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 Before integrating, Eq. (4.89) can be further arranged as 
 

𝑅3 = 𝑅4 =
1

𝜋(𝑘𝑓 − 𝑘𝑚)
∫

1

[
𝑘𝑚 +

𝜋𝑟2

𝑎2
(𝑘𝑓 − 𝑘𝑚)

𝜋
𝑎2
(𝑘𝑓 − 𝑘𝑚)

] − (
𝑎
2 − 𝑥𝑗)

2

𝑎
2

𝑟

𝑑𝑥𝑗  
 

=
1

𝜋(𝑘𝑓 − 𝑘𝑚)
∫

1

{(
𝑎2

𝜋 ) (
𝜋𝑟2

𝑎2
) [
𝑎2

𝜋𝑟2
(

𝑘𝑚
𝑘𝑓 − 𝑘𝑚

) + 1]} − (
𝑎
2 − 𝑥𝑗)

2

𝑎
2

𝑟

𝑑𝑥𝑗  

=
1

𝜋(𝑘𝑓 − 𝑘𝑚)
∫

1

{𝑟2 [
𝑎2

𝜋𝑟2
(

𝑘𝑚
𝑘𝑓 − 𝑘𝑚

) + 1]} − (
𝑎
2 − 𝑥𝑗)

2

𝑎
2

𝑟

𝑑𝑥𝑗 (4.90) 

 
 Substituting Eq. (4.43) into Eq. (4.90), it led to 
 

𝑅3 = 𝑅4 =
1

𝜋(𝑘𝑓 − 𝑘𝑚)
∫

1

{𝑟2 [(
8𝜋𝑟3

3𝑣𝑓
)

2
3
(
1
𝜋𝑟2

) (
𝑘𝑚

𝑘𝑓 − 𝑘𝑚
) + 1]} − (

𝑎
2 − 𝑥𝑗)

2

𝑎
2

𝑟

𝑑𝑥𝑗  

=
1

𝜋(𝑘𝑓 − 𝑘𝑚)
∫

1

{𝑟2 [(
64
9𝜋𝑣𝑓

2)

1
3

(
𝑘𝑚

𝑘𝑓 − 𝑘𝑚
) + 1]} − (

𝑎
2
− 𝑥𝑗)

2

𝑎
2

𝑟

𝑑𝑥𝑗  

=
1

𝜋(𝑘𝑓 − 𝑘𝑚)
∫

1

[𝑟√𝛾BCC1 + 1]
2
− (

𝑎
2 − 𝑥𝑗)

2

𝑎
2

𝑟

𝑑𝑥𝑗  (4.91) 

 
where 𝛾BCC1 is expressed as Eq. (4.74). 
 Integrating Eq. (4.91), the thermal resistances of sections 3 and 4 can be written 
as 
  

𝑅3 = 𝑅4 = (
1

2𝜋𝑟(𝑘𝑓 − 𝑘𝑚)
) (

1

√𝛾BCC1 + 1
ln
√𝛾BCC1 + 1 + 𝛽BCC1

√𝛾BCC1 + 1 − 𝛽BCC1
) (4.92) 
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where 𝛽BCC1 is defined as Eq. (4.76). 
 Then Eq. (4.75), (4.84), and (4.92) are substituted into Eq. (4.66) as 
 

𝑘𝑒𝑓𝑓,BCC1−3 =
1

𝑎

{
 
 

 
 

1

2(
1

𝜋𝑟(𝑘𝑓 − 𝑘𝑚)
) [(

2
𝛿BCC1

ln
1 − 𝛽BCC1 + 𝛿BCC1
1 − 𝛽BCC1 − 𝛿BCC1

) + (
1

√𝛾BCC1 + 1
ln
√𝛾BCC1 + 1+ 𝛽BCC1

√𝛾BCC1 + 1− 𝛽BCC1
)]
}
 
 

 
 

 

𝑘𝑒𝑓𝑓,BCC1−3

𝑘𝑚
=

1

𝑎𝑘𝑚

{
 
 

 
 

1

2(
1

𝜋𝑟(𝑘𝑓 − 𝑘𝑚)
) [(

2
𝛿BCC1

ln
1 − 𝛽BCC1 + 𝛿BCC1
1 − 𝛽BCC1 − 𝛿BCC1

) + (
1

√𝛾BCC1 + 1
ln
√𝛾BCC1 + 1+ 𝛽BCC1

√𝛾BCC1 + 1− 𝛽BCC1
)]
}
 
 

 
 

 

=
1

2(
𝑎𝑘𝑚

𝜋𝑟(𝑘𝑓 − 𝑘𝑚)
) [(

2
𝛿BCC1

ln
1 − 𝛽BCC1 + 𝛿BCC1
1 − 𝛽BCC1 − 𝛿BCC1

) + (
1

√𝛾BCC1 + 1
ln
√𝛾BCC1 + 1+ 𝛽BCC1

√𝛾BCC1 + 1− 𝛽BCC1
)]

 

=
1

2(
8𝜋𝑟3

3𝑣𝑓
)

1
3
(
1
𝜋𝑟
) (

𝑘𝑚
𝑘𝑓 − 𝑘𝑚

) [(
2

𝛿BCC1
ln
1 − 𝛽BCC1 + 𝛿BCC1
1 − 𝛽BCC1 − 𝛿BCC1

) + (
1

√𝛾BCC1 + 1
ln
√𝛾BCC1 + 1 + 𝛽BCC1

√𝛾BCC1 + 1 − 𝛽BCC1
)]

 

=
1

2(
8

3𝜋2𝑣𝑓
)

1
3
(

𝑘𝑚
𝑘𝑓 − 𝑘𝑚

) [(
2

𝛿BCC1
ln
1 − 𝛽BCC1 + 𝛿BCC1
1 − 𝛽BCC1 − 𝛿BCC1

) + (
1

√𝛾BCC1 + 1
ln
√𝛾BCC1 + 1+ 𝛽BCC1

√𝛾BCC1 + 1− 𝛽BCC1
)]

 

=
1

(
3𝑣𝑓
𝜋
)

1
3
(
64
9𝜋𝑣𝑓

2)

1
3

(
𝑘𝑚

𝑘𝑓 − 𝑘𝑚
) [(

2
𝛿BCC1

ln
1 − 𝛽BCC1 + 𝛿BCC1
1 − 𝛽BCC1 − 𝛿BCC1

) + (
1

√𝛾BCC1 + 1
ln
√𝛾BCC1 + 1 + 𝛽BCC1

√𝛾BCC1 + 1 − 𝛽BCC1
)]

 

𝑘𝑒𝑓𝑓,BCC1−3

𝑘𝑚
=

1

(
3𝑣𝑓
𝜋
)

1
3
[(
2𝛾BCC1
𝛿BCC1

ln
1 − 𝛽BCC1 + 𝛿BCC1
1 − 𝛽BCC1 − 𝛿BCC1

) + (
𝛾BCC1

√𝛾BCC1 + 1
ln
√𝛾BCC1 + 1 + 𝛽BCC1

√𝛾BCC1 + 1 − 𝛽BCC1
)]

 
(4.93) 

 
 Finally, the ratio of 𝑘𝑒𝑓𝑓,BCC1−3 and 𝑘𝑚 is derived as shown in Eq. (4.93). 
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4.1.3 Face-centered Cubic Model (FCC1 Model) 

4.1.3.1 Case VI: FCC1 Model with the Volume Fraction of Filler  
< 0.262 

In case of FCC element with filler volume fraction less than 0.262, the element 
was divided into six sections as shown in Figure 4.11(a). Sections 1, 3, 4 and 6 contain 
one-eighth of spherical particle on each corner and half of spherical particle on center. 
Sections 2 and 5 contain neat polymer matrix. The thermal resistances of sections 1, 
3, 4, and 6 were considered as parallel arrangement of polymer matrix resistance and 
filler resistance, while the thermal resistance of sections 2 and 5 come from only the 
polymer matrix. Thermal resistances of each section is arranged in series as shown in 
Figure 4.11(b) where 𝑅𝑚,𝑖 is the polymer matrix thermal resistance of section 𝑖 and 
𝑅𝑓,𝑖 is the filler thermal resistance of section 𝑖, 𝑖 = 1, 2, 3, 4, 5, 6.  
 By the definition of series resistance (Eq. (2.32)), the total thermal resistance of 
this element (𝑅Σ) is the addition of thermal resistances of each section.   
 

𝑅Σ = 𝑅1 + 𝑅2 + 𝑅3 + 𝑅4 + 𝑅5 + 𝑅6 (4.94) 

 
where 𝑅𝑖 is the thermal resistance of section 𝑖.  

Then the heat flow can be written as 
 

𝑄 =
𝑇1 − 𝑇2
𝑎

𝐴𝑘𝑒𝑓𝑓,FCC1−1

=
𝑇1 − 𝑇2

𝑅1 + 𝑅2 + 𝑅3 + 𝑅4 + 𝑅5 + 𝑅6
 (4.95) 

 
where 𝑘𝑒𝑓𝑓,FCC1−1 is the effective thermal conductivity of case VI of FCC1 model and 
𝐴 is the area perpendicular to the heat flow.  

Due to 𝐴 = 𝑎2, 𝑘𝑒𝑓𝑓,FCC1−1 can be derived by rearranging Eq. (4.95) as 
 

𝑘𝑒𝑓𝑓,FCC1−1 =
1

𝑎
(

1

𝑅1 + 𝑅2 + 𝑅3 + 𝑅4 + 𝑅5 + 𝑅6
) (4.96) 
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(a) Physical model (b) Thermal circuit model 

 

 
Figure 4.11 (a) Physical and (b) Thermal circuit model of face-centered cubic element 
with filler volume fraction < 0.262 
 

Note that the thermal resistance of section 1 is equivalent to that of sections 
3, 4, and 6, thus they were considered together. It can be imagined that the element 
is divided into very thin layer j that its thickness is ∆𝑥𝑗 , as shown in Figure 4.11(a). The 
resistance of a layer j is parallel resistances due to polymer matrix resistance 𝑅𝑚,𝑗 and 
filler resistance 𝑅𝑓,𝑗 . These layers arrange in series pattern. Therefore, the thermal 
resistances of sections 1, 3, 4, and 6 can be written as 
 

𝑅1 = 𝑅3 = 𝑅4 = 𝑅6 =∑(
1

𝑅𝑚,𝑗
+

1

𝑅𝑓,𝑗
)

−1𝑟

𝑗=0

 (4.97) 

 
Because there is one fourth of a circle on each corner and one circle on center 

of the square plane (𝑦, 𝑧) in these sections, thus there is two circles in each layer and 
then 𝑅𝑓,𝑗 can be written as 
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𝑅𝑓,𝑗 =
∆𝑥𝑗

(2𝜋𝑏𝑗
2)𝑘𝑓

 (4.98) 

 
where 𝑏𝑗 is the radius of circle at 𝑥 = 𝑥𝑗 as defined in Eq. (4.10). 

The remaining area is of polymer matrix. Thus 𝑅𝑚,𝑗 is expressed as 
 

𝑅𝑚,𝑗 =
∆𝑥𝑗

(𝑎2 − 2𝜋𝑏𝑗
2)𝑘𝑚

 (4.99) 

 
 Substituting Eq. (4.98) and (4.99) into Eq. (4.97), it can be arranged as 
  

𝑅1 = 𝑅3 = 𝑅4 = 𝑅6 =∑
∆𝑥𝑗

𝑎2𝑘𝑚 + 2𝜋(𝑘𝑓 − 𝑘𝑚)(𝑟2 − 𝑥𝑗
2)

𝑟

𝑗=0

 (4.100) 

 
 When ∆𝑥𝑗 approaches zero, it can be written as 
 

𝑅1 = 𝑅3 = 𝑅4 = 𝑅6 = lim
∆𝑥𝑗→0

∑
∆𝑥𝑗

𝑎2𝑘𝑚 + 2𝜋(𝑘𝑓 − 𝑘𝑚)(𝑟2 − 𝑥𝑗
2)

𝑟

𝑗=0

  

 = ∫
1

𝑎2𝑘𝑚 + 2𝜋(𝑘𝑓 − 𝑘𝑚)(𝑟2 − 𝑥𝑗
2)
𝑑𝑥𝑗

𝑟

0

 (4.101) 

 
 Eq. (4.101) can be further arranged as 
 

𝑅1 = 𝑅3 = 𝑅4 = 𝑅6 =
1

2𝜋(𝑘𝑓 − 𝑘𝑚)
∫

1

[
𝑘𝑚 +

2𝜋𝑟2

𝑎2
(𝑘𝑓 − 𝑘𝑚)

2𝜋
𝑎2
(𝑘𝑓 − 𝑘𝑚)

] − 𝑥𝑗
2

𝑟

0

𝑑𝑥𝑗 

=
1

2𝜋(𝑘𝑓 − 𝑘𝑚)
∫

1

{(
𝑎2

𝜋 ) (
𝜋𝑟2

𝑎2
) [

𝑎2

2𝜋𝑟2
(

𝑘𝑚
𝑘𝑓 − 𝑘𝑚

) + 1]} − 𝑥𝑗
2

𝑟

0

𝑑𝑥𝑗 
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=
1

2𝜋(𝑘𝑓 − 𝑘𝑚)
∫

1

{𝑟2 [
𝑎2

2𝜋𝑟2
(

𝑘𝑚
𝑘𝑓 − 𝑘𝑚

) + 1]} − 𝑥𝑗
2

𝑟

0

𝑑𝑥𝑗  (4.102) 

 
 From Eq. (4.4), the length of RVE for FCC can be written in form of 
 

𝑎 = (
16𝜋𝑟3

3𝑣𝑓
)

1
3

 (4.103) 

 
 Substituting Eq. (4.103) into Eq. (4.102), it goes to be 
 

𝑅1 = 𝑅3 = 𝑅4 = 𝑅6 =
1

2𝜋(𝑘𝑓 − 𝑘𝑚)
∫

1

{𝑟2 [(
16𝜋𝑟3

3𝑣𝑓
)

2
3
(
1

2𝜋𝑟2
) (

𝑘𝑚
𝑘𝑓 − 𝑘𝑚

) + 1]} − 𝑥𝑗
2

𝑟

0

𝑑𝑥𝑗 

=
1

2𝜋(𝑘𝑓 − 𝑘𝑚)
∫

1

{𝑟2 [(
32
9𝜋𝑣𝑓

2)

1
3

(
𝑘𝑚

𝑘𝑓 − 𝑘𝑚
) + 1]} − 𝑥𝑗

2

𝑟

0

𝑑𝑥𝑗  

=
1

2𝜋(𝑘𝑓 − 𝑘𝑚)
∫

1

[𝑟√𝛾FCC1 + 1]
2
− 𝑥𝑗

2

𝑟

0

𝑑𝑥𝑗  (4.104) 

 
where 𝛾FCC1 is expressed as 
 

𝛾FCC1 = (
32

9𝜋𝑣𝑓
2)

1
3

(
𝑘𝑚

𝑘𝑓 − 𝑘𝑚
) (4.105) 

  
Integrating Eq. (4.104), the thermal resistance of these sections can be written 

as 
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𝑅1 = 𝑅3 = 𝑅4 = 𝑅6 = (
1

4𝜋𝑟(𝑘𝑓 − 𝑘𝑚)
)(

1

√𝛾FCC1 + 1
ln
√𝛾FCC1 + 1 + 1

√𝛾FCC1 + 1 − 1
) (4.106) 

 
 Considering sections 2 and 5, thermal resistances are expressed as 
 

𝑅2 = 𝑅5 =
(
𝑎
2
− 𝑟) − 𝑟

𝑎2𝑘𝑚
=

𝑎
2
− 2𝑟

𝑎2𝑘𝑚
 (4.107) 

 
 Then Eq. (4.106) and (4.107) are substituted into Eq. (4.96) as 
 

𝑘𝑒𝑓𝑓,FCC1−1 =
1

𝑎

(

 
 
 1

2(

𝑎
2
− 2𝑟

𝑎2𝑘𝑚
) + 4(

1

4𝜋𝑟(𝑘𝑓 − 𝑘𝑚)
) (

1

√𝛾FCC1 + 1
ln
√𝛾FCC1 + 1 + 1

√𝛾FCC1 + 1 − 1
)
)

 
 
 

 (4.108) 

 
 Dividing Eq. (4.108) by 𝑘𝑚 , the ratio of 𝑘𝑒𝑓𝑓,FCC1−1 and 𝑘𝑚 can be derived as 
 

𝑘𝑒𝑓𝑓,FCC1−1

𝑘𝑚
=

1

𝑎𝑘𝑚

(

 
 1

𝑎 − 4𝑟
𝑎2𝑘𝑚

+ 4(
1

4𝜋𝑟(𝑘𝑓 − 𝑘𝑚)
)(

1

√𝛾FCC1 + 1
ln
√𝛾FCC1 + 1 + 1

√𝛾FCC1 + 1 − 1
)
)

 
  

=
1

1 −
4𝑟
𝑎 + (

𝑎𝑘𝑚
𝜋𝑟(𝑘𝑓 − 𝑘𝑚)

)(
1

√𝛾FCC1 + 1
ln
√𝛾FCC1 + 1 + 1

√𝛾FCC1 + 1 − 1
)

 

=
1

1 −
4𝑟

2𝑟 (
2𝜋
3𝑣𝑓

)

1
3

+ (
16𝜋𝑟3

3𝑣𝑓
)

1
3
(
1
𝜋𝑟
) (

𝑘𝑚
𝑘𝑓 − 𝑘𝑚

) (
1

√𝛾FCC1 + 1
ln
√𝛾FCC1 + 1 + 1

√𝛾FCC1 + 1 − 1
)

 

=
1

1 − 2 (
3𝑣𝑓
2𝜋
)

1
3
+ (

16
3𝜋2𝑣𝑓

)

1
3
(

𝑘𝑚
𝑘𝑓 − 𝑘𝑚

) (
1

√𝛾FCC1 + 1
ln
√𝛾FCC1 + 1 + 1

√𝛾FCC1 + 1 − 1
)
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=
1

1 − 2 (
3𝑣𝑓
2𝜋
)

1
3
+ (

3𝑣𝑓
2𝜋
)

1
3
(
32
9𝜋𝑣𝑓

2)

1
3

(
𝑘𝑚

𝑘𝑓 − 𝑘𝑚
) (

1

√𝛾FCC1 + 1
ln
√𝛾FCC1 + 1 + 1

√𝛾FCC1 + 1 − 1
)

 

𝑘𝑒𝑓𝑓,FCC1−1

𝑘𝑚
=

1

1 − (
12𝑣𝑓
𝜋 )

1
3
[1 −

𝛾FCC1
2√𝛾FCC1 + 1

ln
√𝛾FCC1 + 1 + 1

√𝛾FCC1 + 1 − 1
]

 
(4.109) 

 
4.1.3.2 Case VII: FCC1 Model with the Volume Fraction of Filler  

= 0.262 

 In case of BCC element with filler volume fraction equal to 0.262, the element 
was divided into four sections as shown in Figure 4.12(a). Every sections contain one-
eighth of spherical particle on each corner and half of a spherical particle on center of 
each section. The thermal resistances of each section were considered as parallel 
arrangement of polymer matrix resistance and filler resistance. Thermal resistance of 
each section was arranged in series as shown in Figure 4.12(b) where 𝑅𝑚,𝑖 is the 
polymer matrix thermal resistance of section 𝑖 and 𝑅𝑓,𝑖 is the filler thermal resistance 
of section 𝑖, 𝑖 = 1, 2, 3, 4. 

By the definition of series resistance (Eq. (2.32)), the total thermal resistance of 
this element is the addition of thermal resistances of each section.   

 

𝑅Σ = 𝑅1 + 𝑅2 + 𝑅3 + 𝑅4 (4.110) 

 
where 𝑅𝑖 is the thermal resistance of section 𝑖. 

Then the heat flow can be written as 
 

𝑄 =
𝑇1 − 𝑇2
𝑎

𝐴𝑘𝑒𝑓𝑓,FCC1−2

=
𝑇1 − 𝑇2

𝑅1 + 𝑅2 + 𝑅3 + 𝑅4
 (4.111) 
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where 𝑘𝑒𝑓𝑓,FCC1−2 is the effective thermal conductivity of case VII of FCC1 model and 
𝐴 is the area perpendicular to the heat flow. 

Due to 𝐴 = 𝑎2, 𝑘𝑒𝑓𝑓,FCC1−2 can be derived by rearranging Eq. (4.101) as 
 

𝑘𝑒𝑓𝑓,FCC1−2 =
1

𝑎
(

1

𝑅1 + 𝑅2 + 𝑅3 + 𝑅4
) (4.112) 

 
Note that the thermal resistances of every sections are equal, thus they were 

considered together. It can be imagined that the element is divided into very thin layer 
𝑗 that its thickness is ∆𝑥𝑗 , as shown in Figure 4.12(a). The resistance of a layer 𝑗 is 
parallel resistance due to polymer matrix resistance 𝑅𝑚,𝑗 and filler resistance 𝑅𝑓,𝑗 . 
These layers arrange in series pattern. Therefore, the thermal resistances of sections 1, 
2, 3, and 4 can be written as 
 

𝑅1 = 𝑅2 = 𝑅3 = 𝑅4 =∑(
1

𝑅𝑚,𝑗
+

1

𝑅𝑓,𝑗
)

−1𝑟

𝑗=0

 (4.113) 

 
Because there are two circles in each layer, then 𝑅𝑓,𝑗 can be written as 

 

𝑅𝑓,𝑗 =
∆𝑥𝑗

(2𝜋𝑏𝑗
2)𝑘𝑓

 (4.114) 

 
where 𝑏𝑗  is the radius of circle at 𝑥 = 𝑥𝑗 as defined in Eq. (4.10). 
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(a) Physical model (b) Thermal circuit model 

 

 
Figure 4.12 (a) Physical and (b) Thermal circuit model of face-centered cubic element 
with filler volume fraction = 0.262 
 

The remaining area is of polymer matrix. Thus 𝑅𝑚,𝑗 is expressed as 
 

𝑅𝑚,𝑗 =
∆𝑥𝑗

(𝑎2 − 2𝜋𝑏𝑗
2)𝑘𝑚

 (4.115) 

 
 Substituting Eq. (4.114) and (4.115) into Eq. (4.113), it can be arranged as 
  

𝑅1 = 𝑅2 = 𝑅3 = 𝑅4 =∑
∆𝑥𝑗

𝑎2𝑘𝑚 + 2𝜋(𝑘𝑓 − 𝑘𝑚)(𝑟2 − 𝑥𝑗
2)

𝑟

𝑗=0

 (4.116) 

 
 When ∆𝑥𝑗 approaches zero, it can be written as 
 

𝑅1 = 𝑅2 = 𝑅3 = 𝑅4 = lim
∆𝑥𝑗→0

∑
∆𝑥𝑗

𝑎2𝑘𝑚 + 2𝜋(𝑘𝑓 − 𝑘𝑚)(𝑟2 − 𝑥𝑗
2)

𝑟

𝑗=0
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 = ∫
1

𝑎2𝑘𝑚 + 2𝜋(𝑘𝑓 − 𝑘𝑚)(𝑟2 − 𝑥𝑗
2)
𝑑𝑥𝑗

𝑟

0

 (4.117) 

 
 Before integrating, Eq. (4.117) can be further arranged as 
 

𝑅1 = 𝑅2 = 𝑅3 = 𝑅4 =
1

2𝜋(𝑘𝑓 − 𝑘𝑚)
∫

1

[
𝑘𝑚 +

2𝜋𝑟2

𝑎2
(𝑘𝑓 − 𝑘𝑚)

2𝜋
𝑎2
(𝑘𝑓 − 𝑘𝑚)

] − 𝑥𝑗
2

𝑟

0

𝑑𝑥𝑗 

=
1

2𝜋(𝑘𝑓 − 𝑘𝑚)
∫

1

{(
𝑎2

𝜋 ) (
𝜋𝑟2

𝑎2
) [

𝑎2

2𝜋𝑟2
(

𝑘𝑚
𝑘𝑓 − 𝑘𝑚

) + 1]} − 𝑥𝑗
2

𝑟

0

𝑑𝑥𝑗 

=
1

2𝜋(𝑘𝑓 − 𝑘𝑚)
∫

1

{𝑟2 [
𝑎2

2𝜋𝑟2
(

𝑘𝑚
𝑘𝑓 − 𝑘𝑚

) + 1]} − 𝑥𝑗
2

𝑟

0

𝑑𝑥𝑗  (4.118) 

 
 Substituting Eq. (4.103) into Eq. (4.118), it goes to be 
 

𝑅1 = 𝑅2 = 𝑅3 = 𝑅4 =
1

2𝜋(𝑘𝑓 − 𝑘𝑚)
∫

1

{𝑟2 [(
16𝜋𝑟3

3𝑣𝑓
)

2
3
(
1

2𝜋𝑟2
) (

𝑘𝑚
𝑘𝑓 − 𝑘𝑚

) + 1]} − 𝑥𝑗
2

𝑟

0

𝑑𝑥𝑗 

=
1

2𝜋(𝑘𝑓 − 𝑘𝑚)
∫

1

{𝑟2 [(
32
9𝜋𝑣𝑓

2)

1
3

(
𝑘𝑚

𝑘𝑓 − 𝑘𝑚
) + 1]} − 𝑥𝑗

2

𝑟

0

𝑑𝑥𝑗  

=
1

2𝜋(𝑘𝑓 − 𝑘𝑚)
∫

1

[𝑟√𝛾FCC1 + 1]
2
− 𝑥𝑗

2

𝑟

0

𝑑𝑥𝑗  (4.119) 

 
where 𝛾FCC1 is expressed as 
 

𝛾FCC1 = (
32

9𝜋𝑣𝑓
2)

1
3

(
𝑘𝑚

𝑘𝑓 − 𝑘𝑚
) (4.120) 
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 Integrating Eq. (4.119), the thermal resistances of these sections can be written 
as 
  

𝑅1 = 𝑅2 = 𝑅3 = 𝑅4 = (
1

4𝜋𝑟(𝑘𝑓 − 𝑘𝑚)
)(

1

√𝛾FCC1 + 1
ln
√𝛾FCC1 + 1 + 1

√𝛾FCC1 + 1 − 1
) (4.121) 

 
 Then Eq. (4.121) is substituted into Eq. (4.112) as 
 

𝑘𝑒𝑓𝑓,FCC1−2 =
1

𝑎

(

 
 1

4(
1

4𝜋𝑟(𝑘𝑓 − 𝑘𝑚)
) (

1

√𝛾FCC1 + 1
ln
√𝛾FCC1 + 1 + 1

√𝛾FCC1 + 1 − 1
)
)

 
 

 (4.122) 

 
 Dividing Eq. (4.122) by 𝑘𝑚, the ratio of 𝑘𝑒𝑓𝑓,FCC1−2 and 𝑘𝑚 can be derived as 
 

𝑘𝑒𝑓𝑓,FCC1−2

𝑘𝑚
=

1

𝑎𝑘𝑚

(

 
 1

4(
1

4𝜋𝑟(𝑘𝑓 − 𝑘𝑚)
) (

1

√𝛾FCC1 + 1
ln
√𝛾FCC1 + 1 + 1

√𝛾FCC1 + 1 − 1
)
)

 
 

 

=
1

(
𝑎𝑘𝑚

𝜋𝑟(𝑘𝑓 − 𝑘𝑚)
) (

1

√𝛾FCC1 + 1
ln
√𝛾FCC1 + 1 + 1

√𝛾FCC1 + 1 − 1
)

 

=
1

(
16𝜋𝑟3

3𝑣𝑓
)

1
3
(
1
𝜋𝑟) (

𝑘𝑚
𝑘𝑓 − 𝑘𝑚

) (
1

√𝛾FCC1 + 1
ln
√𝛾FCC1 + 1 + 1

√𝛾FCC1 + 1 − 1
)

 

=
1

(
16

3𝜋2𝑣𝑓
)

1
3
(

𝑘𝑚
𝑘𝑓 − 𝑘𝑚

) (
1

√𝛾FCC1 + 1
ln
√𝛾FCC1 + 1 + 1

√𝛾FCC1 + 1 − 1
)
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=
1

(
3𝑣𝑓
2𝜋 )

1
3
(
32
9𝜋𝑣𝑓

2)

1
3

(
𝑘𝑚

𝑘𝑓 − 𝑘𝑚
) (

1

√𝛾FCC1 + 1
ln
√𝛾FCC1 + 1 + 1

√𝛾FCC1 + 1 − 1
)

 

𝑘𝑒𝑓𝑓,FCC1−2

𝑘𝑚
=

1

(
12𝑣𝑓
𝜋 )

1
3
(

𝛾FCC1
2√𝛾FCC1 + 1

ln
√𝛾FCC1 + 1 + 1

√𝛾FCC1 + 1 − 1
)

 
(4.123) 

 
4.1.3.3 Case VIII: FCC1 Model with the Volume Fraction of Filler > 

0.262 

In case of BCC element with filler volume fraction more than 0.262, the 
element was divided into six sections as shown in Figure 4.13(a). Sections 1 and 6 
contain some segment of spherical particle on each corner and center. Sections 2 and 
5 contain some segment of spherical particle on each corner, edge, and center. 
Sections 3 and 4 contain some segment of spherical particle on each edge. The 
thermal resistances of every sections were considered as parallel arrangement of 
polymer matrix resistance and filler resistance. Thermal resistances of each section 
were arranged in series as shown in Figure 4.13(b) where 𝑅𝑚,𝑖 is the polymer matrix 
thermal resistance of section 𝑖 and 𝑅𝑓,𝑖 is the filler thermal resistance of section 𝑖, 𝑖 = 
1, 2, 3, 4, 5, 6.  

By the definition of series resistance (Eq. (2.32)), the total thermal resistance of 
this element is the addition of thermal resistances of each section.   
 

𝑅Σ = 𝑅1 + 𝑅2 + 𝑅3 + 𝑅4 + 𝑅5 + 𝑅6 (4.124) 

 
where 𝑅𝑖 is the thermal resistance of section 𝑖.  

Then the heat flow can be written as 
 

𝑄 =
𝑇1 − 𝑇2
𝑎

𝐴𝑘𝑒𝑓𝑓,FCC1−3

=
𝑇1 − 𝑇2

𝑅1 + 𝑅2 + 𝑅3 + 𝑅4 + 𝑅5 + 𝑅6
 (4.125) 



 

 

98 

 
where 𝑘𝑒𝑓𝑓,FCC1−3 is the effective thermal conductivity for case VIII of FCC1 model and 
𝐴 is the area perpendicular to the heat flow. 

Due to 𝐴 = 𝑎2 , 𝑘𝑒𝑓𝑓,FCC1−3 can be derived by rearranging Eq. (4.125) as 
 

𝑘𝑒𝑓𝑓,FCC1−3 =
1

𝑎
(

1

𝑅1 + 𝑅2 + 𝑅3 + 𝑅4 + 𝑅5 + 𝑅6
) (4.126) 

 
It is worth to note that the thermal resistance of section 1 is equivalent to that 

of sections 3, 4, and 6, and the thermal resistance of section 2 is equivalent to that of 
section 5.  

It can be imagined that the element is divided into very thin layer j that its 
thickness is ∆𝑥𝑗 , as shown in Figure 4.13(a). The resistance of a layer j is parallel 
resistances due to polymer matrix resistance 𝑅𝑚,𝑗 and filler resistance 𝑅𝑓,𝑗 . These 
layers arrange in series pattern. Therefore, the thermal resistance of each section can 
be written as 
 

𝑅𝑖 =∑(
1

𝑅𝑚,𝑗
+

1

𝑅𝑓,𝑗
)

−1𝑛

𝑗=0

 (4.127) 

 
For sections 1, 3, 4, and 6, because there is one fourth of a circle on each 

corner and one circle on center of the square plane (𝑦, 𝑧), thus there is one circle in 
each layer and then 𝑅𝑓,𝑗 can be written as 
 

𝑅𝑓,𝑗 =
∆𝑥𝑗

(2𝜋𝑏𝑗
2)𝑘𝑓

 (4.128) 

 
where 𝑏𝑗 is the radius of circle at 𝑥 = 𝑥𝑗 as defined in Eq. (4.10). 
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(a) Physical model (b) Thermal circuit model 

 

 
Figure 4.13 (a) Physical and (b) Thermal circuit model of face-centered cubic element 
with filler volume fraction > 0.262 
 
 The remaining area is of polymer matrix. Thus 𝑅𝑚,𝑗 is expressed as 
 

𝑅𝑚,𝑗 =
∆𝑥𝑗

(𝑎2 − 2𝜋𝑏𝑗
2)𝑘𝑚

 (4.129) 

 
 Substituting Eq. (4.128) and (4.129) into Eq. (4.127), it can be arranged as 
  

𝑅1 = 𝑅3 = 𝑅4 = 𝑅6 =∑
∆𝑥𝑗

𝑎2𝑘𝑚 + 2𝜋(𝑘𝑓 − 𝑘𝑚)(𝑟2 − 𝑥𝑗
2)

𝑎
2
−𝑟

𝑗=0

 (4.130) 
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 When ∆𝑥𝑗 approaches to zero, it can be written as 
 

𝑅1 = 𝑅3 = 𝑅4 = 𝑅6 = lim
∆𝑥𝑗→0

∑
∆𝑥𝑗

𝑎2𝑘𝑚 + 2𝜋(𝑘𝑓 − 𝑘𝑚)(𝑟2 − 𝑥𝑗
2)

𝑎
2
−𝑟

𝑗=0

  

 = ∫
1

𝑎2𝑘𝑚 + 2𝜋(𝑘𝑓 − 𝑘𝑚)(𝑟
2 − 𝑥𝑗

2)
𝑑𝑥𝑗

𝑎
2
−𝑟

0

 (4.131) 

 
 Before integrating, Eq. (4.131) can be further arranged as 
 

𝑅1 = 𝑅3 = 𝑅4 = 𝑅6 =
1

2𝜋(𝑘𝑓 − 𝑘𝑚)
∫

1

[
𝑘𝑚 +

2𝜋𝑟2

𝑎2
(𝑘𝑓 − 𝑘𝑚)

2𝜋
𝑎2
(𝑘𝑓 − 𝑘𝑚)

] − 𝑥𝑗
2

𝑎
2
−𝑟

0

𝑑𝑥𝑗 

=
1

2𝜋(𝑘𝑓 − 𝑘𝑚)
∫

1

{(
𝑎2

𝜋 ) (
𝜋𝑟2

𝑎2
) [

𝑎2

2𝜋𝑟2
(

𝑘𝑚
𝑘𝑓 − 𝑘𝑚

) + 1]} − 𝑥𝑗
2

𝑎
2
−𝑟

0

𝑑𝑥𝑗 

=
1

2𝜋(𝑘𝑓 − 𝑘𝑚)
∫

1

{𝑟2 [
𝑎2

2𝜋𝑟2
(

𝑘𝑚
𝑘𝑓 − 𝑘𝑚

) + 1]} − 𝑥𝑗
2

𝑎
2
−𝑟

0

𝑑𝑥𝑗 (4.132) 

 
 Substituting Eq. (4.103) into Eq. (4.132), it led to 
 

𝑅1 = 𝑅3 = 𝑅4 = 𝑅6 =
1

2𝜋(𝑘𝑓 − 𝑘𝑚)
∫

1

{𝑟2 [(
16𝜋𝑟3

3𝑣𝑓
)

2
3
(
1

2𝜋𝑟2
) (

𝑘𝑚
𝑘𝑓 − 𝑘𝑚

) + 1]} − 𝑥𝑗
2

𝑎
2
−𝑟

0

𝑑𝑥𝑗 

=
1

2𝜋(𝑘𝑓 − 𝑘𝑚)
∫

1

{𝑟2 [(
32
9𝜋𝑣𝑓

2)

1
3

(
𝑘𝑚

𝑘𝑓 − 𝑘𝑚
) + 1]} − 𝑥𝑗

2

𝑎
2
−𝑟

0

𝑑𝑥𝑗 

=
1

2𝜋(𝑘𝑓 − 𝑘𝑚)
∫

1

[𝑟√𝛾FCC1 + 1]
2
− 𝑥𝑗

2

𝑎
2
−𝑟

0

𝑑𝑥𝑗 (4.133) 
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where 𝛾FCC1 is expressed as 
 

𝛾FCC1 = (
32

9𝜋𝑣𝑓
2)

1
3

(
𝑘𝑚

𝑘𝑓 − 𝑘𝑚
) (4.134) 

 
 Integrating Eq. (4.133), the thermal resistances of sections 1, 3, 4 and 6 can be 
written as 
  

𝑅1 = 𝑅3 = 𝑅4 = 𝑅6 = (
1

4𝜋𝑟(𝑘𝑓 − 𝑘𝑚)
)(

1

√𝛾FCC1 + 1
ln
√𝛾FCC1 + 1 + 𝛽FCC1

√𝛾FCC1 + 1 − 𝛽FCC1
) (4.135) 

 
where 𝛽FCC1 is defined as 
 

𝛽FCC1 = (
2𝜋

3𝑣𝑓
)

1
3

− 1 (4.136) 

 
 For sections 2 and 5, there are one fourth of a circle on each corner, one circle 
on center, and half of circle on each edge of the square plane (𝑦, 𝑧), thus there are 
four circles in each layer and then 𝑅𝑓,𝑗 can be written as 
 

𝑅𝑓,𝑗 =
∆𝑥𝑗

(2𝜋𝑏𝑗
2 + 2𝜋𝑑𝑗

2)𝑘𝑓
 (4.137) 

 
where 𝑏𝑗 is the radius of circle at 𝑥 = 𝑥𝑗  as defined in Eq. (4.10) and 𝑑𝑗 is the radius of 
circle at 𝑥 = 𝑥𝑗 as defined in Eq. (4.78). 

The remaining area is of polymer matrix. Thus 𝑅𝑚,𝑗 is expressed as 
 

𝑅𝑚,𝑗 =
∆𝑥𝑗

(𝑎2 − 2𝜋𝑏𝑗
2 − 2𝜋𝑑𝑗

2)𝑘𝑚
 (4.138) 
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 Substituting Eq. (4.137) and (4.138) into Eq. (4.127), thermal resistances of 
sections 2 and 5 can be written as 
  

𝑅2 = 𝑅5 = ∑
∆𝑥𝑗

−4𝜋(𝑘𝑓 − 𝑘𝑚)𝑥𝑗
2 + 2𝑎𝜋(𝑘𝑓 − 𝑘𝑚)𝑥𝑗 + 𝑘𝑚𝑎

2 + 4𝜋𝑟2(𝑘𝑓 − 𝑘𝑚) −
𝜋𝑎2

2
(𝑘𝑓 − 𝑘𝑚)

𝑟

𝑗=
𝑎
2
−𝑟

 

=
1

2𝜋(𝑘𝑓 − 𝑘𝑚)
∑

∆𝑥𝑗

−2𝑥𝑗
2 + 𝑎𝑥𝑗 +

𝑘𝑚𝑎2

2𝜋(𝑘𝑓 − 𝑘𝑚)
+ 2𝑟2 −

𝑎2

4

𝑟

𝑗=
𝑎
2
−𝑟

 (4.139) 

 
 When ∆𝑥𝑗 approaches zero, it can be written as 
 

𝑅2 = 𝑅5 = lim
∆𝑥𝑗→0

1

2𝜋(𝑘𝑓 − 𝑘𝑚)
∑

∆𝑥𝑗

−2𝑥𝑗
2 + 𝑎𝑥𝑗 +

𝑘𝑚𝑎
2

2𝜋(𝑘𝑓 − 𝑘𝑚)
+ 2𝑟2 −

𝑎2

4

𝑟

𝑗=
𝑎
2
−𝑟

  

 =
1

2𝜋(𝑘𝑓 − 𝑘𝑚)
∫

1

−2𝑥𝑗
2 + 𝑎𝑥𝑗 +

𝑘𝑚𝑎
2

2𝜋(𝑘𝑓 − 𝑘𝑚)
+ 2𝑟2 −

𝑎2

4

𝑑𝑥𝑗

𝑟

𝑎
2
−𝑟

 (4.140) 

 
 Before integrating, Eq. (4.140) can be further arranged as 
 

𝑅2 = 𝑅5 =
1

2𝜋(𝑘𝑓 − 𝑘𝑚)
∫

1

−2𝑥𝑗
2 + 𝑎𝑥𝑗 +

𝑘𝑚𝑎
2

2𝜋(𝑘𝑓 − 𝑘𝑚)
+ 2𝑟2 −

𝑎2

4

𝑟

𝑎
2
−𝑟

𝑑𝑥𝑗  

=
1

2𝜋(𝑘𝑓 − 𝑘𝑚)
∫

1

−2𝑥𝑗
2 + 𝑎𝑥𝑗 + {(

𝑎2

𝜋
) (
𝜋𝑟2

𝑎2
) [

𝑎2

2𝜋𝑟2
(

𝑘𝑚
𝑘𝑓 − 𝑘𝑚

) −
𝑎2

4𝑟2
+ 2]}

𝑟

𝑎
2
−𝑟

𝑑𝑥𝑗 

=
1

2𝜋(𝑘𝑓 − 𝑘𝑚)
∫

1

−2𝑥𝑗
2 + 𝑎𝑥𝑗 + {𝑟

2 [
𝑎2

2𝜋𝑟2
(

𝑘𝑚
𝑘𝑓 − 𝑘𝑚

) −
𝑎2

4𝑟2
+ 2]}

𝑟

𝑎
2
−𝑟

𝑑𝑥𝑗 (4.141) 
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 Substituting Eq. (4.103) into Eq. (4.141), it led to 
 

𝑅2 = 𝑅5 =
1

2𝜋(𝑘𝑓 − 𝑘𝑚)
∫

1

−2𝑥𝑗
2 + 𝑎𝑥𝑗 + {𝑟

2 [(
16𝜋𝑟3

3𝑣𝑓
)

2
3
(
1

2𝜋𝑟2
) (

𝑘𝑚
𝑘𝑓 − 𝑘𝑚

) − (
16𝜋𝑟3

3𝑣𝑓
)

2
3
(
1
4𝑟2

) + 2]}

𝑟

𝑎
2
−𝑟

𝑑𝑥𝑗  

=
1

2𝜋(𝑘𝑓 − 𝑘𝑚)
∫

1

−2𝑥𝑗
2 + 𝑎𝑥𝑗 + {𝑟

2 [(
32
9𝜋𝑣𝑓

2)

1
3

(
𝑘𝑚

𝑘𝑓 − 𝑘𝑚
) − (

2𝜋
3𝑣𝑓

)

2
3
+ 2]}

𝑟

𝑎
2
−𝑟

𝑑𝑥𝑗  

=
1

2𝜋(𝑘𝑓 − 𝑘𝑚)
∫

1

−2𝑥𝑗
2 + 𝑎𝑥𝑗 + {𝑟

2 [𝛾FCC1 − (
2𝜋
3𝑣𝑓

)

2
3
+ 2]}

𝑟

𝑎
2
−𝑟

𝑑𝑥𝑗 (4.142) 

 
where 𝛾BCC1 is defined as Eq. (4.134). 
 Integrating Eq. (4.142), the thermal resistances of sections 2 and 5 can be 
written as 
  

𝑅2 = 𝑅5 = (
1

𝜋𝑟(𝑘𝑓 − 𝑘𝑚)
)

(

 
 
 

1

√4 + 2𝛾FCC1 − (
2𝜋
3𝑣𝑓

)

2
3

ln

2 − (
2𝜋
3𝑣𝑓

)

1
3
+√4 + 2𝛾FCC1 − (

2𝜋
3𝑣𝑓

)

2
3

2 − (
2𝜋
3𝑣𝑓

)

1
3
−√4 + 2𝛾FCC1 − (

2𝜋
3𝑣𝑓

)

2
3

)

 
 
 

 

 𝑅2 = 𝑅5 = (
1

𝜋𝑟(𝑘𝑓 − 𝑘𝑚)
) (

1

𝛿FCC1
ln
1 − 𝛽FCC1 + 𝛿FCC1
1 − 𝛽FCC1 − 𝛿FCC1

) (4.143) 

 
where 𝛽FCC1 is defined as Eq. (4.136) and 𝛿FCC1 is expressed as 
 

𝛿FCC1 =
√4 + 2𝛾FCC1 − (

2𝜋

3𝑣𝑓
)

2
3

= √4 + 2𝛾FCC1 − (𝛽FCC1 + 1)2 (4.144) 
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Then Eq. (4.135) and (4.143) are substituted into Eq. (4.126) as 
 

𝑘𝑒𝑓𝑓,FCC1−3 =
1

𝑎

{
 
 

 
 

1

(
1

𝜋𝑟(𝑘𝑓 − 𝑘𝑚)
) [(

2
𝛿FCC1

ln
1 − 𝛽FCC1 + 𝛿FCC1
1 − 𝛽FCC1 − 𝛿FCC1

) + (
1

√𝛾FCC1 + 1
ln
√𝛾FCC1 + 1 + 𝛽FCC1

√𝛾FCC1 + 1 − 𝛽FCC1
)]
}
 
 

 
 

 

𝑘𝑒𝑓𝑓,FCC1−3

𝑘𝑚
=

1

𝑎𝑘𝑚

{
 
 

 
 

1

(
1

𝜋𝑟(𝑘𝑓 − 𝑘𝑚)
) [(

2
𝛿FCC1

ln
1 − 𝛽FCC1 + 𝛿FCC1
1 − 𝛽FCC1 − 𝛿FCC1

) + (
1

√𝛾FCC1 + 1
ln
√𝛾FCC1 + 1 + 𝛽FCC1

√𝛾FCC1 + 1 − 𝛽FCC1
)]
}
 
 

 
 

 

=
1

(
𝑎𝑘𝑚

𝜋𝑟(𝑘𝑓 − 𝑘𝑚)
) [(

2
𝛿FCC1

ln
1 − 𝛽FCC1 + 𝛿FCC1
1 − 𝛽FCC1 − 𝛿FCC1

) + (
1

√𝛾FCC1 + 1
ln
√𝛾FCC1 + 1 + 𝛽FCC1

√𝛾FCC1 + 1 − 𝛽FCC1
)]

 

=
1

(
16𝜋𝑟3

3𝑣𝑓
)

1
3
(
1
𝜋𝑟
) (

𝑘𝑚
𝑘𝑓 − 𝑘𝑚

) [(
2

𝛿FCC1
ln
1 − 𝛽FCC1 + 𝛿FCC1
1 − 𝛽FCC1 − 𝛿FCC1

) + (
1

√𝛾FCC1 + 1
ln
√𝛾FCC1 + 1 + 𝛽FCC1

√𝛾FCC1 + 1 − 𝛽FCC1
)]

 

=
1

(
16

3𝜋2𝑣𝑓
)

1
3

(
𝑘𝑚

𝑘𝑓 − 𝑘𝑚
) [(

2
𝛿FCC1

ln
1 − 𝛽FCC1 + 𝛿FCC1
1 − 𝛽FCC1 − 𝛿FCC1

) + (
1

√𝛾FCC1 + 1
ln
√𝛾FCC1 + 1 + 𝛽FCC1

√𝛾FCC1 + 1 − 𝛽FCC1
)]

 

=
1

(
3𝑣𝑓
2𝜋
)

1
3
(
32
9𝜋𝑣𝑓

2)

1
3

(
𝑘𝑚

𝑘𝑓 − 𝑘𝑚
) [(

2
𝛿FCC1

ln
1 − 𝛽FCC1 + 𝛿FCC1
1 − 𝛽FCC1 − 𝛿FCC1

) + (
1

√𝛾FCC1 + 1
ln
√𝛾FCC1 + 1+ 𝛽FCC1

√𝛾FCC1 + 1− 𝛽FCC1
)]

 

𝑘𝑒𝑓𝑓,FCC1−3

𝑘𝑚
=

1

(
3𝑣𝑓
2𝜋
)

1
3
[(
2𝛾FCC1
𝛿FCC1

ln
1 − 𝛽FCC1 + 𝛿FCC1
1 − 𝛽FCC1 − 𝛿FCC1

) + (
𝛾FCC1

√𝛾FCC1 + 1
ln
√𝛾FCC1 + 1 + 𝛽FCC1

√𝛾FCC1 + 1 − 𝛽FCC1
)]

 
(4.145) 
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4.2 Effective Thermal Conductivity Model with the Interfacial Thermal Resistance 

Effective thermal conductivity models in section 4.1 were modified to include 
the effect of interfacial thermal resistance. In general, the presence of the interfacial 
thermal resistance causes the temperature discontinuity at the interface between 
matrix and filler as shown in Figure 4.14. This makes the temperature not a linear 
distribution along the 𝑥 axis. In order to comply with the assumption that the heat 
flow is unidirectional and the temperature distribution along 𝑥 axis is linear, the 
concept of the cubic element included the interfacial layer were introduced in this 
work. 

The temperature along 𝑥 axis of a composite is modeled as shown in Figure 
4.14(a). The temperature immediately drops at the interface between matrix and filler 
phase due to the interfacial thermal resistance. Since the heat flux along the 𝑥 axis is 
constant, the interfacial thermal resistance in this case can be expressed by the 
definition in Eq. (2.38) as 
 

𝑅𝑖𝑛𝑡 =
∆𝑇

𝑞
=

∆𝑇

𝑘𝑚
∆𝑇
∆𝑙

 (4.146) 

 
where ∆𝑇 is the temperature difference at the interface and ∆𝑙 is the thickness of an 
imaginative interfacial layer material. 

Eq. (4.146) can be rearranged as 
 

𝑅𝑖𝑛𝑡 =
∆𝑙

𝑘𝑚
 (4.147) 

 
Eq. (4.147) is in accordance with the concept of Kapitza radius (Eq. (3.4)) and 

∆𝑙 is equal to 𝑎𝐾. This means that the effect of the temperature discontinuity at the 
interface can be compensated by a layer of a matrix material that has a thickness of 
𝑎𝐾 as shown in Figure 4.14(b). This layer is called the “interfacial layer" and has a 
thickness equal to the Kapitza radius 𝑎𝐾. It should be noted that the interfacial layer 
is just an idealized layer and non-existent.   
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(a) 

 
(b) 

 
Figure 4.14 The simple scheme of temperature along 𝑥 axis of a composite (a) and 
with the interfacial layer (b) 
 

In the previous section, each cubic RVE has the side length of 𝑎 and the total 
volume of RVE is equal to   

 

𝑉 = 𝑉𝑚 + 𝑉𝑓 = 𝑎
3 (4.148) 
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where 𝑉𝑚 and 𝑉𝑓 are volume of matrix and filler, respectively. Since the filler particle 
is spherical, the volume of filler can be written as 
 

𝑉𝑓 =
4𝑛𝑓𝜋𝑟

3

3
 (4.149) 

 
It was assumed that each spherical particle is surrounded by an interfacial layer 

as shown in Figure 4.15. In this case, the radius of spherical particle with the interfacial 
layer or effective filler particle (𝑟′) is smaller than that without the interfacial layer (𝑟). 
This means that the volume of filler was reduced due to the presence of interfacial 
thermal resistance while the volume of matrix was defined as a constant.  The volume 
of RVE with the interfacial layer can be written as 
 

𝑉 = 𝑉𝑚 + 𝑉𝐾 + 𝑉𝑓
′ = 𝑎3 (4.150) 

 
where 𝑉𝐾 is the volume of interfacial layer and 𝑉𝑓′ is the volume of effective filler 
particle (i.e. volume of filler less the volume of interfacial layer). 

The value of 𝑎 for RVE with the interfacial layer can be calculated by 
 

𝑎 = (
4𝑛𝑓𝜋(𝑟′)

3

3𝑣𝑓
′ )

1
3

 (4.151) 

 
where 𝑣𝑓′  is the volume fraction of effective filler particle . 

The volume of filler with the interfacial layer can be defined as 
 

𝑉𝑓
′ =

4𝑛𝑓𝜋(𝑟′)
3

3
  

=
4𝑛𝑓𝜋(𝑟 − 𝑎𝐾)

3

3
  

=
4𝑛𝑓𝜋𝑟

3

3
(1 −

𝑎𝐾
𝑟
)
3

 (4.152) 
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From Eq. (4.149), Eq. (4.152) can be further simplified as 
 

𝑉𝑓
′ = 𝜀𝐾𝑉𝑓 (4.153) 

 
where 𝜀𝐾 is the effective volume factor defined as 
 

𝜀𝐾 = (1 −
𝑎𝐾
𝑟
)
3

= (1 − 𝛼𝐾)
3 = (

𝑟′

𝑟
)

3

 (4.154) 

 
and 𝛼𝐾 is the interfacial thermal resistance factor as defined in Eq. (3.5) (see chapter 
3). 

Dividing Eq. (4.153) by 𝑉, Eq. (4.153) can be written in term of volume fraction 
as 
 

𝑣𝑓
′ = 𝜀𝐾𝑣𝑓 (4.155) 

 
By the way, the volume of interfacial layer is the volume of spherical shell and 

can be defined as 
 

𝑉𝐾 =
4𝑛𝑓𝜋𝑟

3

3
−
4𝑛𝑓𝜋(𝑟′)

3

3
  

=
4𝑛𝑓𝜋

3
[𝑟3 − (𝑟′)3]  

=
4𝑛𝑓𝜋𝑟

3

3
[1 − (

𝑟 − 𝑎𝐾
𝑟

)
3

]  

=
4𝑛𝑓𝜋𝑟

3

3
[1 − (1 −

𝑎𝐾
𝑟
)
3

] (4.156) 
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Figure 4.15 A spherical surrounded by an interfacial layer 

 
From Eq. (4.149) and Eq. (4.154), Eq. (4.156) can be written as 

 

𝑉𝐾 = (1 − 𝜀𝐾)𝑉𝑓 (4.157) 

 
Dividing Eq. (4.157) by 𝑉, Eq. (4.157) can be written in term of volume fraction 

as 
 

𝑣𝐾 = (1 − 𝜀𝐾)𝑣𝑓 = 𝑣𝑓 − 𝑣𝑓
′  (4.158) 

 
where 𝑣𝐾 is the volume fraction of the interfacial layer. 

From Eq. (4.154), it can be referred that the value of effective volume factor 
𝜀𝐾 is always in the range of 0 – 1. Therefore, Eq. (4.155) gives the volume fraction of 
effective filler particle is only  𝜀𝐾 times of the original volume fraction when the 
interfacial layer was included. In case of 𝜀𝐾 = 1, the effect of interfacial thermal 
resistance is neglected (𝑎𝐾 = 0). In contrast, for 𝜀𝐾 = 0, this means the contribution 
of the interfacial thermal resistance is exactly balanced by the thermal conductivity of 
the filler particles. Since the interfacial layer is the imaginary layer which is built from 
the matrix phase according to Kapitza radius concept (Eq. (3.4)), thus its properties are 
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similar to the matrix. This leads to an easy way to include the effect of the interfacial 
thermal resistance into the models derived in previous section. In addition, it should 
be noted that the effect of the radius of particle is also included by this way.  
 

4.2.1 SC Model with the Interfacial Thermal Resistance Layer (SC2) 

SC model was chosen as a model to be modified by including the interfacial 
layer because this model predicted the effective thermal conductivity closer to the 
experimental data and showed more appropriate behavior of predictive curve than 
the other models in section 4.1.  

It is assumed that there is the presence of the interfacial layer in simple cubic 
element at filler volume fraction lower than 0.524. Under this maximum filler volume 
fraction, it is expected that the filler particles have a uniform distribution and not 
touching each other. The physical model of simple cubic element with the interfacial 
layer was shown in Figure 4.16. It was noted that this physical model is similar with the 
physical model of simple cubic element without the interfacial layer (Figure 4.5(a)). 
Therefore, the thermal circuit model of this element is still the same with that of 
simple cubic element without the interfacial layer (Figure 4.5(b)). This was a result of 
the similarity of the interfacial layer and matrix.  

The total thermal resistance of this element is the same as Eq. (4.5) and can 
be rewritten as 
 

𝑅Σ = 𝑅1 + 𝑅2 + 𝑅3 (4.159) 

 
The effective thermal conductivity can be written as 

 

𝑘𝑒𝑓𝑓,SC2 =
1

𝑎
(

1

𝑅1 + 𝑅2 + 𝑅3
) (4.160) 

 
 



 

 

111 

 
Figure 4.16 Physical model of simple cubic element with the interfacial layer 

 
 The thermal resistance of section 1 and 3 can be expressed by substituting 𝑟′ 
instead of 𝑟 in Eq. (4.14) as follows: 
 

𝑅1 = 𝑅3 =
1

𝜋(𝑘𝑓 − 𝑘𝑚)
∫

1

{(𝑟′)2 [
(𝑎)2

𝜋(𝑟′)2
(

𝑘𝑚
𝑘𝑓 − 𝑘𝑚

) + 1]} − 𝑥𝑗
2

𝑟′

0

𝑑𝑥𝑗 (4.161) 

 
 Substituting Eq. (4.151) where 𝑛𝑓 = 1 and Eq. (4.155) into Eq. (4.161) and 
rearranging, This led to  
 

𝑅1 = 𝑅3 =
1

𝜋(𝑘𝑓 − 𝑘𝑚)
∫

1

{(𝑟′)2 [(
4𝜋(𝑟′)3

3𝑣𝑓
′ )

2
3

(
1

𝜋(𝑟′)2
) (

𝑘𝑚
𝑘𝑓 − 𝑘𝑚

) + 1]} − 𝑥𝑗
2

𝑟′

0

𝑑𝑥𝑗 

=
1

𝜋(𝑘𝑓 − 𝑘𝑚)
∫

1

{(𝑟′)2 [𝜀𝐾
−
2
3 (

16
9𝜋𝑣𝑓

2)

1
3

(
𝑘𝑚

𝑘𝑓 − 𝑘𝑚
) + 1]} − 𝑥𝑗

2

𝑟′

0

𝑑𝑥𝑗  
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=
1

𝜋(𝑘𝑓 − 𝑘𝑚)
∫

1

[𝑟′√𝜀𝐾
−
2
3𝛾SC1 + 1]

2

− 𝑥𝑗
2

𝑟′

0

𝑑𝑥𝑗  
(4.162) 

 
where 𝛾SC1 is expressed in Eq. (4.17). 

Integrating Eq. (4.162), the thermal resistance of section 1 or 3 can be written 
as 
  

𝑅1 = 𝑅3 = (
1

2𝜋𝑟′(𝑘𝑓 − 𝑘𝑚)
)

(

 
1

√𝜀𝐾
−
2
3𝛾SC1 + 1

ln
√𝜀𝐾

−
2
3𝛾SC1 + 1 + 1

√𝜀𝐾
−
2
3𝛾SC1 + 1 − 1)

  (4.163) 

 
 Considering section 2, thermal resistance of this section is expressed as 
 

𝑅2 =
(𝑎 − 𝑟′) − 𝑟′

𝑎2𝑘𝑚
=
𝑎 − 2𝑟′

𝑎2𝑘𝑚
 (4.164) 

 
 Then Eq. (4.163) and (4.164) are substituted into Eq. (4.160) as 
 

𝑘𝑒𝑓𝑓,SC2 =
1

𝑎

(

 
 
 
 
 
 

1

𝑎 − 2𝑟′
𝑎2𝑘𝑚

+ 2(
1

2𝜋𝑟′(𝑘𝑓 − 𝑘𝑚)
)

(

 1

√𝜀𝐾
−
2
3𝛾SC1 + 1

ln
√𝜀𝐾

−
2
3𝛾SC1 + 1 + 1

√𝜀𝐾
−
2
3𝛾SC1 + 1 − 1)

 

)

 
 
 
 
 
 

 (4.165) 

 
 Dividing Eq. (4.165) by 𝑘𝑚, the ratio of 𝑘𝑒𝑓𝑓,SC2 and 𝑘𝑚 can be derived as 
 



 

 

113 

𝑘𝑒𝑓𝑓,SC2

𝑘𝑚
=

1

𝑎𝑘𝑚

(

 
 
 
 
 
 

1

𝑎 − 2𝑟′
𝑎2𝑘𝑚

+ 2(
1

2𝜋𝑟′(𝑘𝑓 − 𝑘𝑚)
)

(

 1

√𝜀𝐾
−
2
3𝛾SC1 + 1

ln
√𝜀𝐾

−
2
3𝛾SC1 + 1 + 1

√𝜀𝐾
−
2
3𝛾SC1 + 1 − 1)

 

)

 
 
 
 
 
 

 

=
1

1 −
2𝑟′
𝑎
+ (

𝑎𝑘𝑚
𝜋𝑟′(𝑘𝑓 − 𝑘𝑚)

)

(

 1

√𝜀𝐾
−
2
3𝛾SC1 + 1

ln
√𝜀𝐾

−
2
3𝛾SC1 + 1 + 1

√𝜀𝐾
−
2
3𝛾SC1 + 1 − 1)

 

 

=
1

1 −
2𝑟′

2𝑟′ (
𝜋
6𝑣𝑓

′)

1
3

+ (
4𝜋(𝑟′)3

3𝑣𝑓
′ )

1
3

(
1
𝜋𝑟′
) (

𝑘𝑚
𝑘𝑓 − 𝑘𝑚

)

(

 1

√𝜀𝐾
−
2
3𝛾SC1 + 1

ln
√𝜀𝐾

−
2
3𝛾SC1 + 1 + 1

√𝜀𝐾
−
2
3𝛾SC1 + 1 − 1)

 

 

=
1

1 − (
6𝑣𝑓

′

𝜋
)

1
3

+ (
4

3𝜋2𝑣𝑓
′)

1
3

(
𝑘𝑚

𝑘𝑓 − 𝑘𝑚
)

(

 1

√𝜀𝐾
−
2
3𝛾SC1 + 1

ln
√𝜀𝐾

−
2
3𝛾SC1 + 1 + 1

√𝜀𝐾
−
2
3𝛾SC1 + 1 − 1)

 

 

=
1

1 − (
6𝑣𝑓

′

𝜋
)

1
3

+
1
2
(
6𝑣𝑓

′

𝜋
)

1
3

(
16

9𝜋 (𝑣𝑓
′ )
2)

1
3

(
𝑘𝑚

𝑘𝑓 − 𝑘𝑚
)

(

 1

√𝜀𝐾
−
2
3𝛾SC1 + 1

ln
√𝜀𝐾

−
2
3𝛾SC1 + 1 + 1

√𝜀𝐾
−
2
3𝛾SC1 + 1 − 1)

 

 

𝑘𝑒𝑓𝑓,SC2

𝑘𝑚
=

1

1 − (
6𝜀𝐾𝑣𝑓
𝜋

)

1
3

[
 
 
 

1 −
𝜀𝐾
−
2
3𝛾SC1

2√𝜀𝐾
−
2
3𝛾SC1 + 1

ln
√𝜀𝐾

−
2
3𝛾SC1 + 1 + 1

√𝜀𝐾
−
2
3𝛾SC1 + 1 − 1]

 
 
 

 

(4.166) 

 
where 𝜀𝐾 is defined in Eq. (4.154).  
 All models derived in this work were summarized in Table 4.1. 
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CHAPTER 5 
RESULTS AND DISCUSSIONS 

 The effective thermal conductivity models derived in this work were discussed 
and compared with the experiments and other well-known models. The effective 
thermal conductivity models without the interfacial thermal resistance were studied 
in the section 5.1. Then the effective thermal conductivity models modified with the 
interfacial thermal resistance were studied in the section 5.2.  

All of the experimental data discussed in this chapter were of polymer 
composite filled with spherical filler particles. The experimental data were cited from 
references and tabulated in the Appendix. In addition, the relative thermal 
conductivity, the ratio between the thermal conductivity of the composite and that of 
the polymer matrix, was used in order to compare various composite systems and to 
discount any effect of measurement errors. 
 
5.1 Effective Thermal Conductivity Models without the Interfacial Thermal 

Resistance 

The equations of all models without the interfacial thermal resistance were 
summarized in Table 4.1. It can be observed that these models depended on thermal 
conductivity of polymer matrix and filler, and volume fraction of filler. Thus the effects 
of these parameters on each model were considered. Furthermore, in order to discuss 
the predictive ability of derived models, the values predicted by each model were 
compared with experimental data and other models. 
 

5.1.1 Effect of Thermal Conductivities of Filler and Polymer and Volume 
Fraction of Filler on SC1 Model, BCC1 Model, and FCC1 Model 

The relationship between the relative effective thermal conductivity (𝑘𝑒𝑓𝑓/𝑘𝑚) 
and the ratio of thermal conductivity of filler and matrix (𝑘𝑓/𝑘𝑚) predicted by SC1 
model at various volume fractions of filler is shown in Figure 5.1. It indicated that for 
value of 𝑘𝑓/𝑘𝑚 below 100 the relative effective thermal conductivity rapidly increased 
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with increasing 𝑘𝑓/𝑘𝑚. At 100 ≤ 𝑘𝑓/𝑘𝑚 ≤ 500, the relative effective thermal 
conductivity gradually increased with increasing 𝑘𝑓/𝑘𝑚. At 𝑘𝑓/𝑘𝑚 > 500, there was an 
insignificant effect of 𝑘𝑓/𝑘𝑚 on the effective thermal conductivity. Thus the effective 
thermal conductivity depended only on the volume fraction of filler at a sufficiently 
high ratio of 𝑘𝑓/𝑘𝑚. Figure 5.2 showed the relationship between 𝑘𝑒𝑓𝑓/𝑘𝑚 and volume 

fraction of filler for SC1 model at various values of 𝑘𝑓/𝑘𝑚. It can be seen that for ratios 
of 𝑘𝑓/𝑘𝑚 greater than 500:1 the curve predicted by SC1 model overlapped with 
others. This was a result of a decrease in 𝛾SC1 in Eq. (4.21) at high ratio of 𝑘𝑓/𝑘𝑚; Eq. 
(4.21) thus predicted that the effective thermal conductivity depended greatly on the 
volume fraction of filler particles. The behaviors as shown in Figure 5.1 and 5.2 were 
also found in Nielsen model but the effective thermal conductivity depended only on 
the volume fraction of filler at the ratios of 𝑘𝑓/𝑘𝑚 greater than 100:1 [39]. 

At a maximum packing volume fraction of filler particles for simple cubic 
element (𝑣𝑓 = 0.524), the effective thermal conductivity still depended on the ratio 
of 𝑘𝑓/𝑘𝑚 as shown in Figure 5.1. This indicated that, at a maximum packing volume 
fraction of filler particles, the high thermal conductivity of filler dominated the effective 
thermal conductivity due to the formation of filler particle network. In addition, it 
should be noted that the slope of predicted curves rapidly increased at volume 
fraction of filler of 0.524 as shown in Figure 5.2. This referred to the percolation 
behavior, which is a rapid increase of the effective thermal conductivity over several 
order of magnitude [53]. Thus it could said that SC1 model predicted a percolation 
threshold at volume fraction of filler of 0.524. This was a result of the contact of filler 
particles in the representative volume element of simple cubic at 𝑣𝑓 = 0.524. 

Figure 5.3 showed the relationship between the relative effective thermal 
conductivity and the ratio of 𝑘𝑓/𝑘𝑚 predicted by BCC1 model at various volume 
fractions of filler particles. It could be observed that the behavior similar to SC1 model 
occurred only at the filler volume fraction of filler particles less than 0.131 due to the 
same reason with SC1 model. At the volume fraction of filler particles more than 0.131, 
the relative effective thermal conductivity increased linearly with increasing ratio of 
𝑘𝑓/𝑘𝑚. This indicated that for filler volume fraction more than 0.131 the effective 
thermal conductivity predicted by BCC1 model depended strongly on both ratio of 
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𝑘𝑓/𝑘𝑚 and volume fraction of filler. The strong influences of ratio of 𝑘𝑓/𝑘𝑚 and 
volume fraction of filler were also shown in Figure 5.4. This was due to the 
denominator in Eq. (4.93) which was in term of addition; Eq. (4.93) thus predicted high 
effective thermal conductivities at high ratios of 𝑘𝑓/𝑘𝑚.  

Furthermore, it should be noted that BCC1 model predicted a percolation 
threshold at volume fraction of filler of 0.131. This percolation behavior was the cause 
of the addition of resistances that possessed the commutative of addition. Therefore, 
the geometry of representative volume element of body-centered cubic in case of  
𝑣𝑓 = 0.131 can change to be the contact of filler particles. 
 FCC1 model gave the prediction similar with BCC1 model as shown in Figure 
5.5 and 5.6 but FCC1 model predicted the percolation threshold at 𝑣𝑓 = 0.262. This 
was due to the similarity of predictive equations.  
 

 
Figure 5.1 The relationship between 𝑘𝑒𝑓𝑓/𝑘𝑚 and 𝑘𝑓/𝑘𝑚 for SC1 model at various 
volume fraction of filler particles 
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Figure 5.2 The relationship between 𝑘𝑒𝑓𝑓/𝑘𝑚 and volume fraction of filler particles for 
SC1 model at various 𝑘𝑓/𝑘𝑚 
  

 
Figure 5.3 The relationship between 𝑘𝑒𝑓𝑓/𝑘𝑚 and 𝑘𝑓/𝑘𝑚 for BCC1 model at various 
volume fraction of filler particles 
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Figure 5.4 The relationship between 𝑘𝑒𝑓𝑓/𝑘𝑚 and volume fraction of filler particles for 
BCC1 model at various 𝑘𝑓/𝑘𝑚 
 
 

 

Figure 5.5 The relationship between 𝑘𝑒𝑓𝑓/𝑘𝑚 and 𝑘𝑓/𝑘𝑚 for FCC1 model at various 
volume fraction of filler particles 
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Figure 5.6 The relationship between 𝑘𝑒𝑓𝑓/𝑘𝑚 and volume fraction of filler particles 
for FCC1 model at various 𝑘𝑓/𝑘𝑚 
 
 SC1 model, BCC1 model, and FCC1 model gave the different predictions that 
were discussed in previous paragraphs. The effects of thermal conductivity of filler and 
polymer and volume fraction of filler on the effective thermal conductivity were very 
significant for BCC1 model and FCC1 model but not SC1 model in which the effective 
thermal conductivity depended greatly on the volume fraction of filler for ratios of 
𝑘𝑓/𝑘𝑚 greater that 500:1. This difference was due to the different location of a 
percolation threshold predicted. SC1 model predicted a percolation threshold at filler 
volume fraction of 0.524, which is its maximum packing volume fraction of filler. Thus 
the effects of thermal conductivity of filler and polymer and volume fraction of filler 
were very significant at only the maximum packing volume fraction for SC1 model.  
 

5.1.2 Comparison with Experimental Data and Other Models 

 In this section, the three models, i.e. SC1 model, BCC1 model, and FCC1 model, 
were compared with the experiment data of various composite systems with different 
ratios of 𝑘𝑓/𝑘𝑚. The predictions of other models, i.e. Maxwell model, Bruggeman 
model, Hashin model, Cheng and Vachon model, and Liang and Liu model, were also 
plotted in the same graph in order to compare their performance. 
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 Figure 5.7 showed the overview of relationship between relative effective 
thermal conductivity and filler volume fraction of EVA/BaTiO3 with 𝑘𝑓 𝑘𝑚⁄  = 10:1. 
Maxwell model, Bruggeman model, and Hashin model gave the predictions throughout 
the entire range of filler volume fraction, owing to these models were the exact 
solutions obtained by an analytical solution of the heat equation for a spherical 
particle surrounded by matrix without any assumptions on heat flow or temperature 
patterns [20]. While Cheng and Vachon model, Liang and Liu model, and three models 
derived in this work were simplified solutions in which unidirectional heat flow and 
isotherm planes perpendicular to the heat flow were assumed. To derive these second 
type models, the representative volume element (RVE) was first required. The filler 
particles were packed in the RVE until reaching the maximum packing volume fraction, 
which had different values depending on the arrangements of filler particles in the 
RVE. This led to the limitation of the second type models that could only predict the 
effective thermal conductivity at the volume fraction of filler under the maximum 
packing volume fraction. It should be noted in Figure 5.7 that albeit EVA filled with 
different particle size of BaTiO3, i.e. 9 and 105 𝜇m in diameter showed the different 
thermal conductivities, all models still gave the prediction depending on volume 
fraction of filler particles. This was due to the fact that these models never take into 
account the filler particle size. 

When the ratio of 𝑘𝑓 𝑘𝑚⁄  increased to be 992:1 and 1721:1 as shown in Figure 
5.8 and 5.9, respectively, the percolation behavior was observed in each model. This 
was not in agreement with the experimental data, which does not show the 
percolation behavior. The percolation threshold usually appears in the electrical 
conductive composites more than thermal conductive composites. This can be 
explained that the thermal conductivities of the filler particle and of the polymer 
matrix are comparable to each other, whereas the filler electrical conductivity is  
1010-1020 times larger than the polymer conductivity [53]. Therefore, models derived 
in this work might be suitable in case of very high ratio of 𝑘𝑓 𝑘𝑚⁄ . However, this should 
be further investigated by comparing with the experimental data of composites with 
very high ratio of 𝑘𝑓 𝑘𝑚⁄  in wide range of volume fraction of filler particles.  It should 
be further noted that the predictions of SC1 model and Liang and Liu model converged 



 

 

124 

to the same value when the ratios of 𝑘𝑓 𝑘𝑚⁄  increased. The result was due to the 
same modeling method based on the additivity of resistances in series, and these 
models had an equivalent RVE in which they contained a sphere. By this way, the 
arrangement of particles can be rearranged without the effect on the overall thermal 
resistance of the whole element [45]. However, it should be further stated that this 
property occurred at sufficiently high ratio of 𝑘𝑓 𝑘𝑚⁄ . 
 

 

  
 EVA/BaTiO3 9 𝜇m [5] 
 EVA/BaTiO3 105 𝜇m [5] 
 Maxwell model [13] 
 Bruggeman model [13] 
 Hashin model [13] 
 Cheng and Vachon model [14] 
 Liang and Liu model [15] 
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 BCC1 model 
 FCC1 model 
  

Figure 5.7 Overview of relationship between relative effective thermal conductivity 
and filler volume fraction of EVA/BaTiO3 with 𝑘𝑓 𝑘𝑚⁄  = 10:1 
 

 

  
 PP/Al 8 𝜇m [12] 
 PP/Al 44 𝜇m [12] 
 Maxwell model [13] 
 Bruggeman model [13] 
 Hashin model [13] 
 Cheng and Vachon model [14] 
 Liang and Liu model [15] 
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 FCC1 model 
  

Figure 5.8 Overview of relationship between relative effective thermal conductivity 
and filler volume fraction of PP/Al with 𝑘𝑓 𝑘𝑚⁄  = 992:1  
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 Maxwell model [13] 
 Bruggeman model [13] 
 Hashin model [13] 
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 Liang and Liu model [15] 
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Figure 5.9 Overview of relationship between relative effective thermal conductivity 
and filler volume fraction of Epoxy/Ag with 𝑘𝑓 𝑘𝑚⁄  = 1721:1 
 

For more apparent observation, the scale of graphs were enlarged as shown in 
Figure 5.10, 5.11, and 5.12, for composite system with 𝑘𝑓 𝑘𝑚⁄  equal to 10:1, 992:1, and 
1721:1, respectively. It could be seen that Hashin model gave a closer prediction to 
the EVA composite filled with 105 𝜇m BaTiO3 particles and Bruggeman model gave a 
closer prediction to the EVA composite filled with 9 𝜇m BaTiO3 particles than other 
models throughout the volume fraction of filler as shown in Figure 5.10. For PP filled 
with 8 and 44 𝜇m Al particle, it seemed that Bruggeman model and Cheng and Vachon 
model gave a good agreement with the experimental data as shown in Figure 5.11. For 
epoxy filled with 27 and 48 𝜇m Ag particles, Maxwell model showed a good prediction 
throughout the volume fraction of filler as shown in Figure 5.12. These different results 
indicated that there were no any single model that was applicable to all composite 
systems.  
 
  



 

 

126 

 

  
 EVA/BaTiO3 9 𝜇m [5] 
 EVA/BaTiO3 105 𝜇m [5] 
 Maxwell model [13] 
 Bruggeman model [13] 
 Hashin model [13] 
 Cheng and Vachon model [14] 
 Liang and Liu model [15] 
 SC1 model 
 BCC1 model 
 FCC1 model 
  

Figure 5.10 Comparison between theoretical predicted effective thermal conductivity 
and experimental data of EVA/BaTiO3 with 𝑘𝑓 𝑘𝑚⁄  = 10:1 
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Figure 5.11 Comparison between theoretical predicted effective thermal conductivity 
and experimental data of PP/Al with 𝑘𝑓 𝑘𝑚⁄  = 992:1 
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 Maxwell model [13] 
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Figure 5.12 Comparison between theoretical predicted effective thermal conductivity 
and experimental data of Epoxy/Ag with 𝑘𝑓 𝑘𝑚⁄  = 1721:1 
 

The three models derived in this work overestimated the effective thermal 
conductivities compared with the other theoretical models. BCC1 model gave the 
most overestimated values, and then followed by FCC1 model, and SC1 model, 
respectively. Comparing with the models based on the simplified solution, Liang and 
Liu model gave a more overestimation compared to SC1 model, but less than BCC1 
and FCC1 model, at the low ratio of  𝑘𝑓 𝑘𝑚⁄  and similar to SC1 model at the high ratio 
of  𝑘𝑓 𝑘𝑚⁄ . As described in previous, Liang and Liu model was equivalent to SC1 model 
at sufficiently high ratio of 𝑘𝑓 𝑘𝑚⁄ . Cheng and Vachon model predicted the effective 
thermal conductivity in the different manner. It gave an underestimation for 
EVA/BaTiO3, a reasonable estimation for PP/Al, and an overestimation for Epoxy/Ag. 
Although Cheng and Vachon model gave the predictions closer to the experimental 
data than the others, it possessed the instability for the prediction that was difficult to 
anticipate. In contrast, SC1 model, BCC1 model, and FCC1 model usually gave the 
overestimation. This result might come from the fact that these models were derived 
by considering the minimal thermal resistance that directly relates to the bulk or 
intrinsic thermal conductivity of each material in the composite [15]. Thus these 
models always overestimated the effective thermal conductivity. To meet the good 
agreement with the experimental, the interfacial thermal resistance due to the 
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incomplete bonding between constituents and phonon acoustic mismatch should be 
taken into account in the model [10]. This would be study in the further section. SC1 
model was chosen as a model that would be modified with the interfacial thermal 
resistance because SC1 model showed a more appropriate prediction than BCC1 
model and FCC1 model that gave the very inconsistent predictions with the 
experimental data; they always showed the percolation threshold at low filler content, 
which was non-existent in thermally conductive composites. 
 
5.2 Effective Thermal Conductivity Models with the Interfacial Thermal Resistance 

5.2.1 Effect of Interfacial Thermal Resistance on SC2 Model (Modified SC1 
Model) 

The SC2 model derived by modifying SC1 model indicated that the effect of 
the interfacial thermal resistance on the effective thermal conductivity was controlled 
by the interfacial thermal resistance factor 𝛼𝐾 that its value is related to the ratio of 
the Kapitza radius and particle radius. As a numerical example, Figure 5.13, 5.14, 5.15, 
and 5.16 illustrated the relative effective thermal conductivity as a function of volume 
fraction and 𝛼𝐾 with 𝑘𝑓 𝑘𝑚⁄  = 10, 50, 250, and 1000, respectively. It could be observed 
that for 𝛼𝐾 = 0 the effect of the interfacial thermal resistance was neglected and the 
prediction of SC2 model was similar to that of SC1 model because the equation of 
SC2 (Eq. (4.166)) reduced to the equation of SC1 (Eq. (4.21)) where 𝜀𝐾 = 0. For 𝛼𝐾 > 0, 
it was noted that the predicted values were lowered and the larger 𝛼𝐾, the 
lower 𝑘𝑒𝑓𝑓 𝑘𝑚⁄  would be. In addition, for higher ratio of 𝑘𝑓 𝑘𝑚⁄ , 𝛼𝐾 had more effect 
on the reduction of the effective thermal conductivity. For 𝛼𝐾 = 1, it could be seen 
that the effective thermal conductivity of the composite was the same as that of the 
matrix. This was due to the contribution of the interfacial thermal resistance was then 
exactly balanced by the much higher thermal conductivity of filler particles according 
to the results of the modified Maxwell and Bruggeman models reported by Every et 
al [27]. Furthermore, it was interesting to note that the effect of particle size was 
automatically included to the model in term of interfacial thermal resistance factor 
𝛼𝐾 or the ratio of radius of effective filler particle and radius of filler (𝑟′ 𝑟⁄ ). The 
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relationship between these two factors was given in Eq. (4.154). The value of  𝑟′ 𝑟⁄  is 
always in the range of 0 – 1. Figure 5.13, 5.14, 5.15, and 5.16 also showed the effective 
thermal conductivities decreased with decreasing 𝑟′ 𝑟⁄ . For 𝑟′ 𝑟⁄  = 1, the size of 
particles were not reduced and this was equivalent to the case of 𝛼𝐾 = 0 as described 
previously. For 𝑟′ 𝑟⁄  < 1, this meant that the contribution of filler particles on the heat 
transfer was reduced due to the presence of interfacial thermal resistance. For 𝑟′ 𝑟⁄  = 
0, it could be though that there were not any filler particles, thus the heat conduction 
was only occurred in the matrix phase. This event is equivalent to the case of 𝛼𝐾 = 1. 

SC2 model predicted the effective thermal conductivity in the range of 0 ≤
𝛼𝐾 ≤ 1, while the modified Maxwell and Bruggeman model predicted the effective 
thermal conductivity in range of 0 ≤ 𝛼𝐾 ≤ ∞ [27]. This difference was due to the 
dissimilar modeling concept for including the effect of the interfacial thermal 
resistance. SC2 model was developed by determining the effective filler particle, the 
filler particle surrounded by interfacial layer, that its size would be reduced with 
increasing the thickness of interfacial layer.  In contrast, the modified Maxwell and 
Bruggeman models were developed by modifying the boundary conditions at the 
interface with the interfacial thermal conductivity which is the reciprocal of the 
interfacial thermal resistance [28, 33]. If the interfacial thermal conductivity is very high 
(the interfacial thermal conductivity will approach to zero), the flow of heat across the 
interface into the conductive filler will be more difficult, then the conductive filler can 
less contribute to the heat transfer [28]. 
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Figure 5.13 Effect of the interfacial thermal resistance on the effective thermal 
conductivity of polymer matrix filled with spherical filler particles for 𝑘𝑓 𝑘𝑚⁄  = 10 
 

 
Figure 5.14 Effect of the interfacial thermal resistance on the effective thermal 
conductivity of polymer matrix filled with spherical filler particles for 𝑘𝑓 𝑘𝑚⁄  = 50 
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Figure 5.15 Effect of the interfacial thermal resistance on the effective thermal 
conductivity of polymer matrix filled with spherical filler particles for 𝑘𝑓 𝑘𝑚⁄  = 250 
 

 
Figure 5.16 Effect of the interfacial thermal resistance on the effective thermal 
conductivity of polymer matrix filled with spherical filler particles for 𝑘𝑓 𝑘𝑚⁄  = 1000 
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5.2.2 Comparison with Experimental Data and Other Modified Models 

 To verifying the ability of SC2 model, it was essential to compare this model 
with the experimental data. For appropriate experimental data for comparison, both 
the thermal conductivity and the interfacial thermal resistance measured from a 
composite must be reported. Unfortunately, there were no any such experimental 
data. This might come from the difficulty to measure the interfacial thermal resistance 
[40, 63]. Thus in this work the numerical results predicted by modified model were 
compared with the experimental data used in the previous section.  
 The comparison between effective thermal conductivities predicted by SC2 
model at various values of 𝛼𝐾 and experimental data of EVA filled with 9 and 105 𝜇m 
BaTiO3 particles were shown in Figure 5.17. It could be observed that the SC2 model 
could not fit the experimental data by using a value of 𝛼𝐾, different from other models 
[27, 31]. This indicated that the SC2 model predicted the different value of the 
interfacial thermal resistance of each composite system depending on the volume 
fraction of filler and particle size. The similar events were also seen in the Figure 5.18 
and 5.19 for PP filled Al particles and Epoxy filled Ag particles, respectively. These 
might come from the fact that SC2 model was derived based on the ideal arrangement 
of the uniform spherical particles in the form of simple cubic but the arrangement of 
particles in real composite system is variant from that ideal pattern due to effects of 
processing [54], size distribution of filler particles [4], and irregular-shaped particles [70]. 
The composites might have the same or different arrangement at each volume fraction 
of filler particles. Therefore, the effect of the arrangement of the particles that deviates 
from the ideal simple cubic arrangement should be further incorporated into the 
model.  

From Figure 5.17, 5.18, and 5.19, it could be seen that the experimental data 
of composites filled with smaller particle size always located on the predicted curve 
with higher 𝛼𝐾 (lower 𝑟′ 𝑟⁄ ) compared with the composites filled with larger particle 
size. This represented the larger values of the interfacial thermal resistance of the 
composites filled with smaller filler particles. This was due to the fact that ,with 
decreasing average particle radius, the effective thermal conductivity decreases while 
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the area of interfacial contact per unit volume increases [33]. The interfacial thermal 
resistance began to play a significant role in the thermal transfer.  

The modified Bruggeman model was only one model that could reasonably 
predict the effect of the interfacial thermal resistance. The modified Maxwell model 
gave the negative interfacial thermal resistance because it usually underestimates the 
effective thermal conductivity, albeit 𝛼𝐾 = 0 (see Figure 5.10, 5.11, and 5.12). However, 
the modified Bruggeman model also gave the negative interfacial thermal resistance, 
if  𝑘𝑓 𝑘𝑚⁄  is lower than 1000 as shown in 5.10 and 5.12. Thus the modified Bruggeman 
model could be only used for epoxy filled Ag particles with 𝑘𝑓 𝑘𝑚⁄  = 1721:1. It could 
be seen in Figure 5.19 that the modified Bruggeman model gave the good prediction 
for epoxy filled Ag particles by used 𝛼𝐾 in range of 0.09 – 0.16. This might indicate to 
the superior performance of the exact solution model type and the differential 
effective medium theory (DEM). However, this model was suitable for the composite 
system with 𝑘𝑓 ≫ 𝑘𝑚 according to the suggestion of Every et al. [27]. In contrast, SC2 
model could use for lower value of the ratio 𝑘𝑓 𝑘𝑚⁄  because it always gave an 
overestimation over the volume fraction of filler particles.  
 

 

  

 EVA/BaTiO3 9 𝜇m [5] 

 EVA/BaTiO3 105 𝜇m [5] 

  

Figure 5.17 Comparison between effective thermal conductivity predicted by SC2 
model at various values of 𝛼𝐾 and experimental data of EVA/BaTiO3 with 𝑘𝑓 𝑘𝑚⁄  = 
10:1  
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 PP/Al 8 𝜇m [12] 

 PP/Al 44 𝜇m [12] 

  

Figure 5.18 Comparison between effective thermal conductivity predicted by SC2 
model at various values of 𝛼𝐾 and experimental data of PP/Al with 𝑘𝑓 𝑘𝑚⁄ = 992:1 
 

 

  

 Epoxy/Ag 27 𝜇m [39] 

 Epoxy/Ag 48 𝜇m [39] 

 Modified Bruggeman 
model [27] 

 SC2 model 
  

Figure 5.19 Comparison between effective thermal conductivity predicted by SC2 
model (solid line) and the modified Bruggeman model (dot line) at various values of 
𝛼𝐾 and experimental data of Epoxy/Ag with 𝑘𝑓 𝑘𝑚⁄  = 1721:1 
 
 The SC2 model were further discussed by substituting the thermal conductivity 
of Epoxy filled silver particles into predictive equation of SC2 to calculate the 
properties as tabulated in Table 5.1. The interfacial thermal resistance predicted by 
the SC2 model decreased with increasing volume fraction of filler particles as shown 
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in Table 5.1. The interfacial thermal resistance was referred to the combined effect of 
two thermal resistances, i.e. thermal contact resistance and thermal boundary 
resistance [33]. The value of thermal boundary resistance was constant for a composite 
system according to acoustic mismatch model [32]. Thus the decrease of interfacial 
thermal resistance should be a result of the decrease in the thermal contact resistance 
that occurred at polymer-filler and filler-filler interfaces [11]. This might be consistent 
to the formation of some segment of filler network or chains of connected conductive 
particles at high filler content [33]. Furthermore, it was possible to form the 
agglomeration of particles at high filler content [71]. The formation of highly thermally 
conductive networks might minimize the thermal resistance along the conductive 
paths [4]. This characteristic has never been seen before in the exact solution type 
models. This might make SC2 model suitable to describe the composites with the 
presence of some clusters of filler particles at high volume fraction of filler. In addition, 
this idea might be supported by the ratio of 𝑟′ 𝑟⁄  that increased with the volume 
fraction of filler particles. This indicated that the contribution of filler on the heat 
conduction was enhanced. If the relationship between the interfacial thermal 
resistance and volume fraction of filler was known, the SC2 model could be further 
modified and might give the better prediction.  However, for more accuracy, the SC2 
model must further be developed to include the other effect such as arrangement, 
size distribution, shape, and agglomeration of filler particles apart from the effect of 
the interfacial thermal resistance. 

Furthermore, it should be noted that the values of 𝑣𝑓 were the sum of and 𝑣𝐾  

according to Eq. (4.158). The effective volume fraction of filler 𝑣𝑓′  can be though as the 
volume fraction of filler at a point on the curve predicted by SC1 model. If the values 
of 𝑣𝑓 and thermal conductivities of composite were known from the experiment, the 
values of 𝑣𝑓′  could be found by a graphical method as shown in Figure 5.20. Then the 
value of 𝛼𝐾 or 𝑟′ 𝑟⁄  could be calculated by using Eq. (4.154) and (4.155), respectively. 
This led to the simple method to find the interfacial thermal resistance.  
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 Epoxy/Ag 48 𝜇m [39] 

 SC1 model 
  
  
  

Figure 5.20 Graphical method for finding the effective volume of filler (𝑣𝑓′ ) 
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CHAPTER 6 
CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions 

 The three effective thermal conduction models, namely SC1, BCC1, and FCC1 
model, for polymer composite filled with spherical particles were successfully derived 
based on the simplified solution of three ideal arrangements of spherical filler particles 
in the representative volume elements, i.e. simple cubic, body-centered cubic, and 
face-centered cubic, respectively. By an analogy between electrical and heat 
conduction, these models were easily generated and was consistent with the volume 
fraction of filler. These three models differently predicted that the effective thermal 
conductivity depended on the ratio between thermal conductivity of filler and 
polymer matrix (𝑘𝑓/𝑘𝑚) and volume fraction of filler. The SC1 model predicted the 
thermal conductivity of a composite increased with the increasing the ratio of 𝑘𝑓/𝑘𝑚 
and for a sufficiently high ratio of 𝑘𝑓/𝑘𝑚 the effective thermal conductivity depended 
only on the volume fraction of filler. The BCC1 and FCC1 models predicted the same 
event with SC1 model only at the volume fraction of filler lower than 0.131 for BCC1 
model, and 0.262 for FCC1 model. At higher volume fraction of filler, both BCC1 and 
FCC1 models predicted the effective thermal conductivity strongly increased with 
increasing the ratio of 𝑘𝑓/𝑘𝑚. All models gave the overestimation compared to the 
experimental data and predicted the percolation threshold at volume fraction of filler 
equal to 0.524 for SC1 model, 0.131 for BCC1 model, and 0.262 for FCC1 model. 
However, the SC1 model showed more appropriate and reasonable predictions than 
BCC1 and FCC1 models. Furthermore, SC1 model was also consistent to Liang and Liu 
model at high ratio of 𝑘𝑓 𝑘𝑚⁄ .  

The SC2 model was developed from SC1 model by combining the effect of 
the interfacial thermal resistance in term of the interfacial layer according to the 
Kapitza radius concept. The effect of the interfacial thermal resistance on the effective 
thermal conductivity was in the form of an interfacial thermal resistance factor 𝛼𝐾 or 
the ratio of effective radius and radius of filler 𝑟′ 𝑟⁄ . Thus, the SC2 model gave the 
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prediction depending on the particle size of filler, apart from the thermal conductivity 
of filler and polymer matrix (𝑘𝑓/𝑘𝑚) and volume fraction of filler.  For 𝛼𝐾 = 0 or 𝑟′ 𝑟⁄  

= 1, the effect of the interfacial thermal resistance was neglected and the SC2 model 
reduced to SC1 model. For 𝛼𝐾 > 0 or 𝑟′ 𝑟⁄  < 1, The SC2 model predicted that the 
effective thermal conductivity decreased with increasing 𝛼𝐾 (decreasing 𝑟′ 𝑟⁄ ). Similar 
to the modified Maxwell and the modified Bruggeman model, the SC2 model 
predicted the thermal conductivity of the composite equal to that of the matrix for 
𝛼𝐾 = 1 or 𝑟′ 𝑟⁄  = 0. The comparisons of numerical results with experimental data 
showed that the SC2 model predicted the interfacial thermal resistance decreased 
with increasing volume fraction of filler. Furthermore, the smaller particle size led to 
the higher interfacial thermal resistance than the larger particle size.  The SC2 model 
can be further modified and may give the better prediction if the relationship between 
the interfacial thermal resistance and volume fraction of filler is known.  
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6.2 Recommendations 

 In order to develop a more accurate effective thermal conductivity model, the 
following recommendations were made. 
 1. Because the predictive ability of the models strongly depended on the 
arrangement of filler particles in the representative volume element, thus the 
arrangement of filler particles in real composite systems should be further studied to 
find a more appropriate representative volume element for modelling. 
 2. The effect of the size distribution, shape, and agglomeration of filler particles 
should be further incorporated into the model. 
 3. To investigate the ability of the models to predict the percolation behavior, 
the experimental data measured from the polymer composites with very high ratio of 
thermal conductivity between filler and polymer and volume fraction of filler in range 
of 0 to maximum packing volume fraction are required. 
 4. The relationship between the interfacial thermal resistance and volume 
fraction of filler should be further investigated to find a correlation that is useful for 
fitting predicted curve with the experimental data. 
 5. To verify the ability of the modified model, the appropriate experimental 
data, the thermal conductivity and the interfacial thermal resistance measured directly 
from a composite, should be used for comparison.  
 6. In additional to such appropriate experimental data, the thermal conductivity 
of the composites should be measured on a wide range of filler volume fraction or up 
to the maximum packing volume fraction and the necessary data such as the thermal 
conductivity of polymer matrix and filler, particle size of filler, and so on, which is 
according to the basic requirements of Mottram [26], should be available. 
 7. As the lack of the data as listed in 4 and 5 above still is the main problem; 
the polymer composites should be prepared and their experimental data should be 
measured in the laboratory. 
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APPENDIX A 

INTEGRATION FORMULA 
 

Two definite integrals of rational functions used in chapter IV were listed here. 

1. Integral Involving 1

𝑏2−𝑥2
 

 For |𝑥| < |𝑏|, the definite integral involving 1

𝑏2−𝑥2
 from 𝑒 to 𝑓 can be written 

as 
 

∫
1

𝑏2 − 𝑥2
𝑑𝑥

𝑓

𝑒

=
1

2𝑏
(ln |

𝑏 + 𝑓

𝑏 − 𝑓
| − ln |

𝑏 + 𝑒

𝑏 − 𝑒
|) (A.1) 

 

2. Integral Involving 1

𝑏𝑥2+𝑐𝑥+𝑑
 

For 4𝑏𝑑 − 𝑐2 < 0, the definite integral involving 1

𝑏𝑥2+𝑐𝑥+𝑑
 from 𝑒 to 𝑓 can be 

written as 
 

∫
1

𝑏𝑥2 + 𝑐𝑥 + 𝑑
𝑑𝑥

𝑓

𝑒

=
2

√𝑐2 − 4𝑏𝑑
(ln |

2𝑏𝑓 + 𝑐 − √𝑐2 − 4𝑏𝑑

2𝑏𝑓 + 𝑐 + √𝑐2 − 4𝑏𝑑
| − ln |

2𝑏𝑒 + 𝑐 − √𝑐2 − 4𝑏𝑑

2𝑏𝑒 + 𝑐 + √𝑐2 − 4𝑏𝑑
|) (A.2) 

  



 

 

150 

APPENDIX B 

TABULATION OF EXPERIMENTAL DATA ON 
THE THERMAL CONDUCTIVITY OF 

COMPOSITE MATERIALS 
 

Table B. 1.Thermal conductivity of composites filled with spherical particles 

Matrix Filler 𝑑 𝑘𝑚 𝑘𝑓 𝑘𝑓 𝑘𝑚⁄  𝑣𝑓 𝑘𝑒𝑓𝑓 𝑘𝑒𝑓𝑓 𝑘𝑚⁄  Ref 

EVA Glass sphere   36 0.27 1.2     4.4 0 0.27      1.0 [5] 

EVA Glass sphere   36 0.27 1.2     4.4 0.03 0.27      1.0 [5] 

EVA Glass sphere   36 0.27 1.2     4.4 0.08 0.29      1.1 [5] 

EVA Glass sphere   36 0.27 1.2     4.4 0.15 0.33      1.2 [5] 

EVA Glass sphere   36 0.27 1.2     4.4 0.29 0.37      1.4 [5] 

EVA Glass sphere   36 0.27 1.2     4.4 0.36 0.45      1.7 [5] 

EVA Glass sphere   36 0.27 1.2     4.4 0.45 0.48      1.8 [5] 

EVA Barium titanate    9 0.27 2.7    10 0 0.27      1.0 [5] 

EVA Barium titanate    9 0.27 2.7    10 0.05 0.27      1.0 [5] 

EVA Barium titanate    9 0.27 2.7    10 0.10 0.31      1.1 [5] 

EVA Barium titanate    9 0.27 2.7    10 0.16 0.36      1.3 [5] 

EVA Barium titanate    9 0.27 2.7    10 0.28 0.54      2.0 [5] 

EVA Barium titanate    9 0.27 2.7    10 0.38 0.69      2.6 [5] 

EVA Barium titanate    9 0.27 2.7    10 0.48 0.89      3.3 [5] 

EVA Barium titanate 105 0.27 2.7    10 0 0.27      1.0 [5] 

EVA Barium titanate 105 0.27 2.7    10 0.05 0.30      1.1 [5] 

EVA Barium titanate 105 0.27 2.7    10 0.12 0.36      1.3 [5] 

EVA Barium titanate 105 0.27 2.7    10 0.20 0.48      1.8 [5] 

EVA Barium titanate 105 0.27 2.7    10 0.27 0.58      2.1 [5] 

EVA Barium titanate 105 0.27 2.7    10 0.36 0.74      2.7 [5] 

EVA Barium titanate 105 0.27 2.7    10 0.44 0.90      3.3 [5] 
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Table B.1 Thermal conductivity of composites filled with spherical particles (cont.) 

 
  

Matrix Filler 𝑑 𝑘𝑚 𝑘𝑓 𝑘𝑓 𝑘𝑚⁄  𝑣𝑓 𝑘𝑒𝑓𝑓 𝑘𝑒𝑓𝑓 𝑘𝑚⁄  Ref 

PP Aluminum     8 0.239 237    992 0 0.239     1.00 [12] 

PP Aluminum     8 0.239 237    992 0.050 0.242     1.01 [12] 

PP Aluminum     8 0.239 237    992 0.178 0.394     1.65 [12] 

PP Aluminum     8 0.239 237    992 0.231 0.580     2.43 [12] 

PP Aluminum     8 0.239 237    992 0.405 0.980     4.10 [12] 

PP Aluminum     8 0.239 237    992 0.488 1.950     8.16 [12] 

PP Aluminum     8 0.239 237    992 0.587 2.677    11.2 [12] 

PP Aluminum   44 0.239 237    992 0 0.239     1.00 [12] 

PP Aluminum   44 0.239 237    992 0.050 0.271     1.13 [12] 

PP Aluminum   44 0.239 237    992 0.201 0.515     2.15 [12] 

PP Aluminum   44 0.239 237    992 0.269 0.691     2.89 [12] 

PP Aluminum   44 0.239 237    992 0.393 1.580     6.61 [12] 

PP Aluminum   44 0.239 237    992 0.489 2.575    10.8 [12] 

PP Aluminum   44 0.239 237    992 0.583 4.222    17.7 [12] 

Epoxy Silver   48 0.244 420  1721 0 0.244     1.00 [39] 

Epoxy Silver   48 0.244 420  1721 0.106 0.339     1.39 [39] 

Epoxy Silver   48 0.244 420  1721 0.200 0.423     1.73 [39] 

Epoxy Silver   48 0.244 420  1721 0.312 0.584     2.39 [39] 

Epoxy Silver   48 0.244 420  1721 0.474 0.906     3.71 [39] 

Epoxy Silver   48 0.244 420  1721 0.569 1.187     4.86 [39] 

Epoxy Silver   27 0.244 420  1721 0 0.244     1.00 [39] 

Epoxy Silver   27 0.244 420  1721 0.097 0.309     1.27 [39] 

Epoxy Silver   27 0.244 420  1721 0.246 0.434     1.78 [39] 

Epoxy Silver   27 0.244 420  1721 0.306 0.583     2.39 [39] 

Epoxy Silver   27 0.244 420  1721 0.391 0.760     3.11 [39] 

Epoxy Silver   27 0.244 420  1721 0.557 1.326     5.43 [39] 
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APPENDIX C 

Publication 
 

 MACRO 2014 was taken place on 6 – 11 July 2014 at Chiang Mai International 
Convention and Exhibition Center (CMICE), Chiang Mai, Thailand. Part of this thesis was 
published on the “PROCEEDING MACRO 2014”, in the section of “Polymer Processing 
and Composites” on page of 177 – 180. 
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