CHAPTER 11

THE THECRY OF MUCLELR MAGHNETIC RESQ.LCE

2.1 Magmetic end ingular Momentum Properties of the Nuclews (5.

We can compute the magnetie momemt of a mucleus of spinning

spherical shell from the equation,

n = g _ﬁiﬁc } Py = s { 2.1}
where L T magnetic moment,

E =  mecleer g ~ factor,

g = electronic-chafge,

H = nass of proten,

C = velocity of 1ipht,

p = angular momentuom,

The anpgular rnomentum vector p is given by p = Al, where B =29 ,
I = mclear spin and b = Plank's constant, The magnetic moment is

o

prapartioral to the angular momentum, and we can write,

B - H {ﬂl), ““““““““““ (2-2)
where T o= E;E =  gyromagnetic ratic.
If we substitute p = RI in eq. (2,1}, we obtein
a = g (2RI, -~ oo~ - (2,3
) b, )
or n = glpy,  mmem---- ( 2.4}
, _ _ . — 24,
where iy = _€ E = 5.850 x 10 erg/zeuss,
ZHi
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2,2 - The Lormor Precession; Enerey in the Mapgnetic Field {21,
. - :
If 2 magnet of dipole'mﬂment u is placedin megnetic field E, -

torque is exerted on the megnetic dipole,

Newton's law of rotational motion states that the rate of change of

angular momemtum of a system is egaal: to the topque applisd to it, or
dpfdt = L - -~ - == - R (2.6}

Since the torgue on a micleus with magnetic moment n is given by the

squation (2.5}, it follows that

dp/ét = mox B - e o oo = {207)
Sineen = g fle / 2M) p, we haye
dp/dt = ~gle/BC) Hxp---=- -~ - - {2,8)

which is the equation of motion for a ventor p of constant magnitude

precessing with angular velocity

Wo 4

Wa

g {8/} H v = - o - - oo oo (2,9}

Fig, 1 THCTOR DIACRMUI OF A PTECILEGE
AFCULAR FGIRNTUN YECTOR OF COrSTAMT
MAGFITUDE I A IAGNATIC-FIGLD,




We conciude thet if a nueleus of magnetie moment n = g (e/2MC) p is
placed in n.hagnetic rield, the magretic moment vector [or the angular
momentu vector) precesses with the angular freguency (eq. fE.lG)) repard—
less of the angle between n and H, This is called the Larmor Precession
Frequency, |

Since quantum mechanical arguments show that the value of p.p is

I{I+1) hz, the length of the angular mementum vector is
#
1 I [I (I+1) ] Boam e - - (2.11)

The nuclear magnetic moment of a nmuecleus with spin T is a2 veetor

of length,

1
g (/) [1 @ n ool (222)

i

It hos a component

g (eh/2MIm, - = = = = = oo~ - {2.13)

_,LLH

where  m I, I-~3, I -2 ----- , -1, along the

direction of an externelly appiied magnetic field H, and a component cf

length .
By = g(eh/EHG}[IfI'l'l] -mg]..-—-iz.u}

which 1s perpendicilar to the external field and precesses with an

anguler I[requency of magnitude

Mo = gle/MO)H sowoooowoomeon (2.15)
As moy be derived from eq. {2.5), the potential energy U of a magnetic

moment. 1 in o magnetic field H is, apart from an additive constant,



U= -n.8 = ~agh L0 _(2,16)

The energy of ouwr muclear dipole in o state characterized by m is

Um) = -g {en/2M0)mil, - - - - - « - - {2_17}

arnd a mucleus of spin I hds intergral 2T + 1 energy levels {one Tor
each value of m) accessible to it in consegquence of its interaction
with a magnetic field H, These are called the Zeeman levels, since
they are similer to those responsible for the Zeeman splittings in
gtomic spectra, It should be noted explicitly that the foregcing

equations ere valid whether g iz negative or positive

2.3 Miclear Magmetic Resonance (1, 2. 5).

If we place a bare nueleus, such as = proton, in a magnetic
field of strength Ho. We have seen that muelei possesss two very
important properties associcted with angular momentum. These properties
are the spin mmber I and the magnetie moment 1, When such meleug is
placed in a static uniform magnetic field Ho, it may teke wp one of
{2 1 +1) orientations and (2 I + 1} energy levels, Transitions among
these levels are possible., The energy difference between any two such

levels in the constant external magnetic field Ho is
Ulm"} -0 (m') = guid, (5" -n") - - - - - - (2.18]

Jobr's explaination imvolved the postulates that = system charecterized

by two diserete energy states sapapated by emergy AU may make =



tronsition from one state to the other accompanded by eiiher emission or

gbsorption of a quantum of electromagnetic radiation of energy

AU o mem e o - - {2.19)

I

hv = hy'

The trensiticons are permitted by the selection rule, lor example
Ar = +1, and the transitions are permitted between adjacent

states of energy level scheme such as that of Fig. 2 which

& . m= -5/
U {m} 2 m= - 3/2 bw o soto
y .
of
0 -
. m=  1/2 Fig. 2 B:ERGY LEVEL DIACRAL
-1 FOR A NUCLZAd -GzNT OF SPIR 5/2
‘m= 32 SHGWING THE ASSGIRTION OF A QUANTUM
-2 OF RADIATLON WHICH INDUCHES A
m= 5/2 . TRANSITION BETWEEIN A PALR CF ADJAOEUT
ZEEMAN LEVELS.
b3
capplies to a nucleus with I = 5/2, The selection rule applied to

8gs. (2,18} and {2.19) determines the fraguency of the radiation emitted

or aosorbad by the muelesr magnetic dipele,
Wo = hyo = gumoHo = -=~-- .

which is precisely the Larmor frequency of eq, (2.9}s Protons in a field
. &
10,000 gamss precess at a2 frequency vo = 42,6 x 10 <¢ps, vhich is in

the radip - lrequency range.

To mnm% if one subjects a2 sample contzining mucleer magnets
to rodiation at . the Larmer frequency, which i1s the order of megacycles

in ordinary laboratory magretic fields, & mueleus in a lower Zeeman



)

energy stote ﬁay absorbt a quantum of enerpgy from the radiatien field and
make: a transition to the next highsr energy state, I the freguency of
£he radiation is not near the Larmor freguency, we expect little for no
absorption, and hence the absorption is what physicists eall n nuclear

megnetic rosonapce™.

" Quantum mechanies does not give us complete information as to the
energy, angular moﬁentum, énd.pasition'nf each micleus at any time, but
it does provide us with all that we need to know, namely, the probability
that a ruclear magnetic moment initially in a state = will at some
leter time t be fourd in a state m'., Thi= probability, expressed per
unit tine, will be denoted by P (m = m').

If a mucleus in one of its Zeecman energy siotes is Immersed in
& radiation bath with energy in the frequency range dY meer ¥ given by
';j)f ¥)ady , one expects the probablilty of transition to be propor-
tional to the number of quanta present.with [requency near the Lamor
frequency, thet is, propostional to y”{ Vo J. 1In fact the quaptum

mechanical result obtained by perturbation theory is
Plm-sm') = [E‘T[f_?aﬂz} 32 '1.1.02| Imm! |E f{l] D}r -{2,21}

The quantity | Emn'] s which 1s the so called matrix selement of the

melear spin, is usually of order of magnitude unity, Qhen [m' - mi)l
it.vanishea, giving rise to the selection rule mentioned in sec, 2eda
When this transition probebility is applied to the problem of nuelear

magnetic resonance it is shown by Pound (1) that the signal to noilse
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ratio is given by
1

) g
Yo = (Yi E¥ 10 k) | ved Vo 1), - - -(2012)
Va 4B WT % TBoFT

where X static susceptibility,
=~

the [illing factor,

S
"

o= totel mumber of muclel per;cm3¢,

a4
1

oyromegnetic ratio,

T = tempareture of spin and lattice in thepmnl
equilibriyn, .

Ve = the effective volizme in which the aneroy is
shored,

g = 9 -value of the ccil,.

F' = the neise figure of the auplifier,

Bo = the effective tend width of the amplifier,

k= DBoltegmann's constant,

Tl = the spin-lattise relaXation tdme,

and Ts = {he spin-spin relaxation time,

245 The Spin-Latiice Relaxation Time and the 3pin=Spin Relawntion

Timne {31, 2, 5).

There are two factors that affect to the line width and meelear
negnetic resonance siznal, The first, is the spin-lattice relaxaticn
tima or the thermal relaxaticn time, Tt is the time required for all
tut 1/e of the equilibrium excess number to reach the lower state, This

tine is demcted by Ty , which can bw shown to be

Tl = 1} g e = s == {2-'2-3:’
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.wherﬁ P is the transition probability from eé. (2.21), T is coﬁcarned
only with the maintenance of.fhe equilibrivn distribution of populations of
nuclgi befween spin states, A&ny provess which reduces the'tfansition :
prohabilit}, increases Ty. If Tl is larg:, the time requiréd to establish
the equilihrﬁum %alué of n (256}, that is the excess population of the lower
enefgy spin state; becones long, leading in extrens cases 1o difficulty.in
obtaining on ﬁuclear mégnetic resonancé signal. The second, is the spin-
spiﬁ relaxation time. Tt 1s the time for spins to precess out of phase of

gach other,. This is also connceted with the iaverse of the line width. It

is dencted by Ty, which can be shown to be

where g { ) J s 15 the maximm value of the normelized shape

function (1,7) of the absorption line
o

g (Y eY = re--=-n ' R (2.25)

o :
To 1s concerncd with the I1ife tinme of spin states a= a result of partici-

pation in smme relaxallon process, If Tz is sméll, the spread
ffequenciea of the spin state transitions is increased, causing a
broadening of the abéorption peal, and céncurrEntly a reducticon in the
singﬁl strength which in the 1init can quenﬂh‘the nuelear mammetic

resonance signal,
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