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Let (S,o) be any semigroup, (F,+,:) be a field of characteristic different from 2. We
determine all pairs of f,g : S — F such that
fxey)=7(x)g()+g®f (), }
g(xoy)=g(x)g(y)—f(x)f(»)

forallx, yin S. Itis proved that if /' contains an element i such that i

)

2=_1,then f g are of

the form

.ﬂn=§wmw—%ow,
(%)
mm=§wmm+mu»

where @, @, are any homomorphisms from (S,o) into (F,-).In the case that F does not
contain such element i, we can extend it to F that contains such element. In this case f, g are

of the form

/() == (@C-5(x)),
2 (** %)
1 _
8(x) = - (P()+p (),
where ¢ is a homomorphism from (S,o) into (F,:) and @ is defined by #(x)=p(x), the
conjugate of @(x).

In case (S ,0) is a topological semigroup, (F,+,) is a topological field of
characteristic different from 2, we determine all pairs of continuous functions f,g:S — F such
that (*) holds forall x, yin S. Itis proved that if F contains an element i such that i* = -1,
then f, g are of the form (**) where ¢,, ¢, are any continuous homomorphisms from (S ,o)
into (F,-). In the case that ¥ does not contain such element i, we can extend it to F that
contains such element. In this case f, g are of the form (***) where ¢ is a continuous
homomorphism from (S,o) into (F,-) and @ is defined by @(x) = ¢(x), the conjugate of
P(x).



vl

ACKNOWLEDGEMENT

[ am greatly indebted to Assoc. Prof. Dr. Virool Boonyasombat, my
thesis supervisor, for his helpful supervision during the preparation and
completion of this thesis. Also, I would like to thank all of the lecturers for
their previous valuable lectures while studying. And I would like to thank
Huachew Chalermprakiet University for financial support.

In particular, I would like to express my deep gratitude to my father and

mother for their encouragement throughout my graduate study.



CONTENTS

Page
ABSTRACT IN THAL .. e e e e e, v
ABSTRACT IN ENGELISH. ... e e e e e i v
ACKNOWLEGEMEN T ... o e e e e vi
CHAPTER
1 INTRODUCTION. .. e e e, 1
II PRELIMINARIES. ... i i, 3
I GENERAL SOLUTIONS OF f(xoy)= f(x)g(y)+g(x)f ()
AND g(xoy)=g(x)g(y)— f(x)f(y)ON SEMIGROUPS.......... 9
v CONTINUOUS AND DISCONTINUOUS SOLUTIONS OF
flxoy)=f(x)g(y)+g(x)f(y)  AND
glxoy)=g(x)g(y)— f(x)f(y) ON ADDITIVE INTERVAL
SEMIGROUPS IN R ..., 16
REFERENCES .. ... ... c1udms . G ghaam s isttlos o 5 atlss rs « « o oo renensntretsssoroerosnensns 28
A4 U RPN 30



CHAPTER I

INTRODUCTION

It is well known that f(x)=sinx and g(x)=cosx satisfy
Jx+y)=Fx)gn)+gl) /). (1)
Such a pair (f, g) will be called a solution of (1).
However, sine and cosine are not the only solution of (1).
Srichan Layraman [10] solved (1) in the case where the domain is any
cyclic monoid and the codomain is any algebraically closed field of characteristic

different from 2. In [10], (1) was also solved in the case where the domain is
a dense submonoid of (R+U{O},+) which in turn solved the problem of finding

all continuous solutions of (1) from (R+u{0‘ , ) into C; the field of complex

numbers.

Somporn Malangpoo [9] found all solutions of the equation

gly™) =g+ f(x)f (), (2)

where the domain can be any abelian group and the codomain can be any field
of characteristic different from 2. In [9], all continuous solutions of (2) were also
found in the case where the domain is any abelian topological group and the
codomain is any T ,- topological field of characteristic different from 2.

Up to now, only partial solutions of (1) appeared in the literature, for
example, [1] and [10].

Solutions of the system of functional equations

fx+y)= (g +g(x)f(y),
gix+y)y=gx)g(y)~ f(x)f(»),

have been also considered, for example, [6], [13], [14] and [15]. Most of these

problems were considered in the case where f and g are functions from R

into C.




The purpose of this study is to characterize all the solutions of the

- system of functional equations

Fxeoy)=f(x)g(»)+g(x)f(») }
g(xoy)=g(x)g(y)—f(x)f(»)

on a semigroup into a field of characteristic different from 2.

*)

In Chapter III, we show that all the solutions of (*) can be
expressed in term of homomorphisms. In the case where the domain is a
topological semigroup and the codomain 1is a topological field with
characteristic different from 2, we show that all the continuous solutions of
(*) can be expressed in term of continuous homomorphisms.

In Chapter IV, all additive interval semigroups in R are determined.
We apply our results in Chapter III to give examples of continuous and
discontinuous solutions of (*) from these interval semigroups into the field C

of complex numbers.



CHAPTER 1I

PRELIMINARIES

In this chapter we shall collect some definitions which will be used in
our investigation. Some algebraic concepts are described in Section 2.1, while
in Section 2.2 we describe some topological concepts. Some properties of
complex numbers are described in Section 2.3, while in Section 2.4 we
describe the functions Exp and Log .

The following notations will be used.

Z = the set of integers,

R = the set of real numbers,

() = the setof rational numbers,
Q =Q\ {0},

C = the set of complex numbers,
C = C\ {0},

and in general for any field F we denote F\ {0} by F .
2.1. Algebraic Concepts

Let (7T,0) and (S,*) be semigroups. A mapping ¢ fromb T into S is
said to be a homomorphism if for any x,yeT, .

p(xoy)=o(x)* ().

Any field F in which x* +1#0 for any xe F can be extended into a
field F such that x> +1=0 for some xe F . An easy way to do this is as
following . Let

F={(a,b)/abeF) .

Define addition and multiplication on F as follows:



(a, b) +(c, d) = (atc, b+d) and (a b) (¢, d) = (ac-bd, ad+bc).
It can be shown that F under the above addition and multiplication forms a
field. This field contains { (a,0) /ae F} as a subfield isomoqihic to F. Hence
we may view F as a subfield of F. In the sequel, we shall denote the
element (a,0) of F by a and denote (0,1) by i, so that each element (a, b)
of F can be expressed as
(a, b) = (a,0)+ (5,0 )0, 1) = a+ bi.
Note that from the definition of i, we have Pt=- 1 Hence F is an
extension field of F such that F contains an element i such that i +1=0.
We call i the imaginary unit. It can be shown that the mapping 6 : F > F
given by
O(a + bi) = a-—bi
is the unique automorphism of F fixing all elements of F taking / into —i.

We call a—bi the conmjugate of a+bi, denoted by a+bi.

Remark 2.1.1. For any a+bi € F,
1) i((a+bi)—(a+bi))=i(a+bi—a+bi)=i2bi)=-2be F.
2) (a+b1')+ia+b1’) =(a+bi+a->bi)=2ack .

3) For any a,feF ,af =aff.

2.2. Topolagical Concepts
If (S,0) is a semigroup and J is a topology on S such that the binary
opreation o . considered as a function from the product space SxS into S,

is continuous, then we say that (S,o,3) is a topological semigroup.



A triple (G, ,3) is a topological group if and only if (G,o) is a
group, (G,J) is a topological space, (G, o) is a topological semigroup and a
mapping x into x~' is continuous from G into itself.

A ropological field is a quadruple (F, +, -+, 3) such that (¥, +, -) is a field,
(F, +, 3) and F -, SF*) are topological groups where 3.+ 1s the topology
induced by 3 on F'. We sometimes say “ F' 1s a topological field”. If F is a

topological field in which a+1 20 for all ae F, then F endowed with the

product topology is a topological field.

Let (X,3) be atopological space and p an equivalence relation on X
For each xe€ X we denote the equivalence class containing x by [x], , denote
the set of all equivalence classes by X/p and denote the quotient topology
by 3, .The function y,: X — X/p which maps each point x in X to its

equivalence class [x], in X 1s called the quotient map of p. It is continuous.
2.3. Some Properties of Complex Numbers

We adapt terminology of [8] and [l1] with some minor changes. Now,
we shall collect some definitions and properties as follows: For any complex
number z, we can write

z =|z|(cos@ +isind). (1)
Any such @ is called an argument of z. Among such & there is exactly
one which is in the interval [0,27) . Such @ will be denoted by Argz.

Let zeC". An n" roots of z is any complex number w such that

w” =z. For each k=0,1,2,..,n—1, let

! O+2knr . B+2knm
W, Z‘Z\” (cos———— +isin———
n

).

n

It can be verified that w,, k=0,1,2,...,n—1 , are the n distinct n™ roots of z.
For any complex number z=x+iy, exp(z) is defined by

expz =e (cosy+isiny).



It can be seen that

exp(z + 2km) = exp(z) (1)
for all keZ . So that exp is a many-to-one function. Note that exp(z)# 0

for any zeC . For any we C", if
z= ln‘w‘ +iArgw+ 2km
where &k € Z , we have
exp(z) = w.
Since the function e*, cos y, and siny are continuous functions of x
and y . Consequently,
Re(expz)=e“cosy and Im(expz)= e siny
are both continuous, so exp z is continuous at all points of the plane .
Logarithm , i.e. log, is defined to be the inverse of the exponential
function. It is many-valued function. For any complex number z, we may
write z =rexp(i@) . The values of logz are given by
logz =log(re'’)=Inr+i6@ +2kni,

where k eZ. .

In the next section we shall defined Exp and Log in such a way that

they are inverses of each other and such that Log is one-to-one.
2.4. The Functions Exp and Log

In our work we need to do some calculation of logarithm and
exponential function. In doing so, we need our logarithm to be single valued.
This can be done by considering the range of logarithm to be a quotient of
C over an equivalence relations. This is done as follows. We define p by

saying that



x+iy p x'+iy' if and only if x=x" and y—y'=2knr for some keZ.

It can be verified that ,0 is an equivalence relation. Let Cp=C/p . For any
z,,2,,2,,Zy such that

z, pz, and z, p zj,
it can be verified that z +z, p z +z,. So that © defined by

[zl]p®[zz]p =[z,+2,],
is well-defined.

For any z € C, there exists a unique z, €C such that 0< Arg z, <27

and z p z, . We shall denote such z, by y(z). Observe that for any z, z' € C
we have [z], =[z'], if and only if Re(z)=Re(z") and py(z)=y(z"). For
any [z]e C,, reR, defined ® by

r®[z], =[ly(ry(2)l,.

However, when it is not ambiguous we shall denote r ®[z], simply by r[z],.
Lemma 2.4.1. For any z,,z,eC, [y(z, +2,)], =[r(z ), ©[y(z,)],-

Proof. Let z, =x,+iy, , z, =x, +iy,€ C. Therefore,

y(z))=x +i(y, +2k7x) and y(z,)=x, +i(y, +2k,n)
for some k,k, €Z such that 0<y +2k7z <27 and 0<y, +2k,7w <27.
We also have

y{z, +z,)=(x, +x,)+i(y, + Vs +2k,m)

for some k,, €Z such that 0<(y +y,)+2k,7 <2x.
Observe that y(z)+y(zy) =(x, +x)+i(y, +y, + 2k, + k7).
Hence y(z, +z,) p y(z,)+y(z,). This implies that

[r(z +2))], =lr(z)+7(2)], #



Lemma 2.4.2. Let 7,7, €R and (], € Cp. Then
(n+r)®z], = ®[z],)®(, Oz],) .

Proof. Let r,r, € R and [z], € C . Therefore

(r +r)®[z], =ly((n +r)yr(2)],
=[y(ny(2N], ®[y(ry(2))l,
=(rh®[z],)®(r, ®[z],). #

Observe that the exponential function exp defined in Section 2.3 is a
many-to-one function such that for any z,,z,e C,
[z,], =[z,], implies expz, =expz,.

So that Exp : C — C’ defined by

Exp([z],) = exp ()
is well-defined. Since the range of exp is C’. The range of Exp is also C.
We now show that Exp is one-to-one . Assume that [z/] ,[z,], € Cp are
such that

Exp((z,],) = Exp([z,],) .
Then exp(z,)= exp(z,) .So, there exists ke Z such that 2z =z, +2km.
This implies that z, p z, . Hence [z,], =[z,],. Therefore Exp is a one-to-
one function from C onto C.

We shall denote the inverse function of Exp by Log. Thus Log is
also a one—to—o;le function from C  onto Cp. For any zeC and reR, we
define z" by

z" =Exp(r Log z).

Therefore
Log z" =Log (Exp(r Log z))
=r Log z.



CHAPTER 111

GENERAL SOLUTIONS OF

Sf(xop)= f(x)g(y)+g(x)f(y) AND g(xoy)=g(x)g(y)—f(x)f(»)
ON SEMIGROUPS

In this chapter we explain what are meant by solutions and continuous

solutions of the system of functional equations

f(xoy)= f(x)g(y)+gx)f(¥), }
g(xoy)=gx)g(y) - f(x)f(»).

Section 3.1 gives all the continuous solutions of (*) in the case where the

*)

domain of f and g is any topological semigroup and their codomain is any
topological field. Section 3.2 gives all the solutions of (*) in the most general

setting.

3.1. Continuous solutions of (*) on a topological semigroup

Definition 3.1.1. Let (S,0) be any semigroup, (F,+,") be any field. By a
solution of the system of functional equations (*) on S into F', we mean an
ordered pair (f,g) where [ and g are functions from S into F such that (¥)

holds for all x,y e §.

Remark 3.1.2. Let (S,o) be a semigroup, (F,+,-) be a field. Let / be
identically zero. Then the ordered pair (f,g) is a solution of (*) on S into F

if and only if ¢ 1s a homomorphism.

Definition 3.1.3. Any solution (f, g) of (*) is said to be the trivial solution if

[ is identically zero, any other solution will be called a non-trivial solution of (*).
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Definition 3.1.4. Let S be any topological semigroup. Let F be any
topological field. By a continuous solution of the system of functional
equations (*) on S into F, we mean a solution (f, g) such that f and g are
continuous. If either f or g 1is not continuous, then (f, g) will be called a

discontinuous solution.

Theorem 3.1.5. Let (S,0) be a topological semigroup. Let (F,+,) be a
~ topological field of characteristic different from 2 such that there exists i€ F,
i’+1=0. Then (f, g) is a continuous solution of (*) on S into F if and only
if there exist continuous homomorphisms ¢, and ¢, from (S,0) into (F),-)

such that /' and g are functions of the form
. l
/() =2 () -0, (),

1
g(x) = 5 ((/)1 (xX)+o, (X)),

for all xe §.

Proof. Let (f,g) be any continuous solution of (*) from S into F.
Define ¢,: S — F by ¢, (x)=g(x)—if(x) for all xeS,
@, S —> F by @,(x)=g(x)+if(x) for all xeS.

For any x,y in S, we have
0, ()0, () = [g(0)—if ()][g() —if )]
= g(0)g() —ig(x) f(¥) = if (Vg +i* f(x) [ ()
= [g(x)g0) = F W=/ (D) + g(x) f(1)]
= g(xoy)—if(xoy)
= ¢,(x0 ),
and
0, ()0, (1) = [g) + i () |[g() + i ()]
= g(X) g +ig(x)f (W) +if ()g(y)+i* f(x) f(¥)
= [g()g(0) = ) W]+ il f (D)g() + g(x) f(1)]
= g(xoy)+if(xoy)
= @, (xoy).
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So ¢, and ¢, are homomorphisms. Since f and g are continuous, by

definitions of ¢, and ¢,, ¢, and ¢, are continuous. And it follows that
S (x) = (<ol<x> 0, (1),
1
g(0) == lp )+, ()

Now, let ¢, and ¢, be any continuous homomorphisms from S into

F. Let f, g be functions from (S,0) into (F,) defined by
100 =51 0) -2 (),
g0 => (co, (X}, (1))
for all xeS. Since ¢, and ¢, are continuous, so are f and g. Then

@, (x) = 0, (x) }{ (<0|(y)+<02(y))}

F@E+E () = {5
+{% @, (x)+ @, (x) }{ (@1()’)_(02()’))}

i[«», ()@, (40,20, (1)-0, (1), (1)-0, (1), ()]
ikﬂh%%(w ~0,()@, ()0, ()P, () =0, ()9, ()]
i[z(p ()@, (1)-20, (), ()]

é[col (), (1) =02 ()9, ()]

(0,00 9)-0, (0 )]

1

~ o]~

f(xeoy),

and

gg)- f (S () = B AR <x>)}B CACHRY <y>)}
{20000 Lo -0, o)
= L1000 014900, 0)40: (90, ()03 (D, ()]

—%[co, ()@, (1)=0,()P, ()=0> (), (1) +0, ()@, ()]

— —j{[Z(pl ()@, (»)+20, ()¢, (V)]
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= %[gol(X)Q)l (V) +0,(X)e, ()]

= %[(/)1(350 Y@, (xo y)]

= g(xo).
#

Remark 3.1.6. It can be seen from Theorem 3.1.5, that (f, g) is a continuous

trivial solution of (*) if and only if ¢, and ¢, are identical.

Theorem 3.1.7. Let (S,0) be a topological semigroup. Let (F,+, ) be a
topological field of characteristic different from 2 such that /° has no an
imaginary unit. Let F be atopological extension field of F such that F has
an imaginary unit, says i. Then (f, g) is a continuous solution of (*) on S
into F if and only if there exists a continuous homomorphism ¢ from (S,)
into (F,-) such that / and g are functions of the form

10 = [p(x) o).

9(0) == px+o),

for all xe §.

Proof. Let (f,g) be any continuous solution of (*) from S into F.
Define ¢: S — F by p(x)=g(x)—if(x) for all xeS. Then, for any x, y

m S,
o(x)p(») =[g(x) - if () ][g) - if ()]
=g(x)g(») —ig(x) f(») ~ if ()g(¥) — [(x) [ (»)
=lg()g(») — F) S W]-ilgx) S () + f(x)g()]
=g(xoy)~if(xoy)
=p(xeoy).

This proved that ¢ 1s a homomorphism. Since f and g are continuous, so is

@ . And from the definition of ¢, it follows that
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fx)= (co(X) —o(®)),

500 = p(19()
Now, let @ be a continuous homomorphism from (S,0)into (F,-). Then it
' — 1 — .
i1s clear that f(x):é((p(x) —(p(x)) and g(x)za(go(x)%p(x)) are continuous.

Observe that i(¢p(x)—¢@(x)) and @(x)+@(x) are in F. Therefore / and g are

continuous functions from S into F. For any x, y in S, we see that

f(R)gre(x)S () = [5 o) —@)}B () +@)}
+B (e mﬁk (o0 -90)

- @00 10000 -2t 90)]

#2000 G0 90
- < Retier-26 9]

= oo~ 900 0)]

= ~lpeonpixey)]
= f(xoy),

and

g(0)g()-1(X) /() = { ¢<x>+%)}{i(¢m+@)}

[~ o(x) - (p(v)}{ o(y) - (p(y)ﬂ

[(/)(X)w(y)w(xxo(y)ﬂo(X)qﬂ(y)ﬂo(x) w(y)]

t\)~ NIH

+ 4 0010901001 +00) 900
. %[2<D(X)<p(y)+2m ol

- oo+ 9G00)
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1
= <lpeee oo y)
= g(xoy).
Hence / and g satisfy (*): #

Remark 3.1.8. It canbe seen from Theorem 3.1.7, that (£, g) is a trivial solution

of (*) if and only if @[S|c F.
3.2. General solutions of (*) on a semigroup

Theorem 3.2.1. Let S be a semigroup. Let (F,+, ) be a field of characteristic
different from 2 such that F has an imaginary unit, says i. Then ( f, g) is a
solution of (*) on S into F if and only if there exist homomorphisms ¢,

and ¢, from (S,e) into (f,-) such that

£ = (0, () > (1)),
‘12 (1)
g(x) = 5(@ (x)+0, (x)),

forall xeS.

Proof. Assume that (f, g) is any solution of (*) from S into F.
Define @S> F by @((x)=g(x)—if(x) forall xeS,
@, S — F by ¢,(x)=g(x)+if(x) for all xeS.
Then ¢, and ¢, can be shown as in the proof of Theorem 3.1.5 that ¢, and
@, are homomorphisms and satisfy (1). Then by definition of ¢, and ¢, , f
and g can be written in the form (1).
Now, let ¢, and ¢, be homomorphisms from (S,0) into (F,-).
Then it can be shown by using the same argument in the proof of Theorem

3.1.5 that /' and g satisfy (*). #
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Theorem 3.2.2. Let (S,0) be a semigroup. Let (F,+, -) be afield of characteristic
different from 2 such that F has no an imaginary unit. Let F be an extension
field of F such that F has an imaginary unit, says i. Then (f,g is a
solution of (*) on S into F if and only if there exists a homomorphism ¢

from (S,0) into (F,-) such that / and g are functions of the form

7o) = §(¢<x> 2@,
o )
8() = lp(xr+o()

for all xeS.

Proof. Assume that (/, g) is a solution of (*) from S into F.
Define @ S F by @(x)=g(x)—if(x) for all xeS.
Then ¢ can be shown as in the proof of Theorem 3.1.7 that ¢ is a
homomorphism and satisfy (2). Then by definition of ¢ , / and g can be
written in the form (2).

Now, let @ be a homomorphism from (S,°) into (F,). Then it can be

shown as in the proof of Theorem 3.1.7 that /' and g satisfy (*). #



CHAPTER IV

CONTINUOUS AND DISCONTINUOUS SOLUTIONS OF

f(xop)= f(x)g(y)+g(x)f(y) AND g(xoy)=g(x)g(y)— f(x)f(y)
ON ADDITIVE INTERVAL SEMIGROUPS IN R

By an additive interval semigroup in R, we mean an interval in R
which is closed under the usual addition. In case the interval semigroup
«

consists of a single element, we say that it is degenerafe otherwise it is non-

degenerate.

In the sequel, by a homomorphism from an additive Interval semigruop
T into the fiele C of complex numbers we mean that is a homomorphism
from (T,+) into (C,-).
Observe that ¢ : T—>C, defined by
px)=0
for all xeT is a homomorphism. Such a homomorphism will be called

the trivial homomorphism. Any other homomorphisms will be called non -

trivial homomorphisms.

In this chapter we characterize the continuous and discontinuous

solutions of the system of functional equations

flxey)= f(x)e(¥)+gx) f(»), }
glxeoy)=gx)g(y)— () /()

where f, g are functions from any additive interval semigroup 7 in R into

(*)

the field C under the usual topologies. This will be done by using the results

in Chapter III. All additive interval semigroups in R are described in Section
4.1, In Section 4.2 we determined all the continuous solutions of (*) on

degenerate additive interval semigroup {0}, while in Section 4.3 we
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characterize the continuous solutions of (*) on each of the non-degenerate
additive interval semigroups 7T in R into C .

Moreover we shall find some discontinuous solutions of the system of
functional equations (*) from any additive interval semigroup 7 in R into C .
Our method of construction of discontinuous solutions of (*) will make uses
of the fact that any non-degenerate additive interval semigroup 7 contains a

Hamel basis. This fact is established in Section 4.4. Section 4.5 deals with
construction of discontinuous solutions of (*) on 7 into C.

4.1. Additive interval semigroups in R

Proposition 4.1.1. A subset 7 of R is an additive interval semigroup in R if

and only if 7 is one of the following types:

(1) {0}, (2) R,
(3) (a,©)  where a>0, 4) [a,©) where a20,
(5) (-0, b) where b<0, (6) (-0, b] where 5<0.

Proof. Let 7 be an additive interval semigroup in R. Let

{ inf T if T is bounded below,

a =

—00 if T is not bounded below,
™ sup T if T is bounded above,
] w if T is not bounded above.

Since 7T 1is an interval in R, (a,b) < T

Case 1. a =-c0 and b= . Then (a,b)=R, so T=R. Thus T is of type (2).

Case2. -w< a and b= . Then (a,b)= (a,«),so

ol (@) if ael,
| [a,0) if aeT.
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. 2 4 2 4
Suppose that a <0. Since TaET’ _gz_a+g£€T-BUt?a<a.Thus %@ET.

3
This is a contradiction. Hence a>0. Then T is of type (3), (4).
Case3. a =-o and b<o.Then (a,b)= (-%,b), so

(—0,b) if beT,
(=e0,5] if beT.

T =

ﬁ:géJrEeT.But ﬁ>b . ThusﬁeT.
3 3 3 3

This is a contradiction. Hence 6<0.Then T is of type (5), (6).

A 2b
Suppose that b>0. Since B el,

Case4. —oo<ag and b<oo. Then

(a,b) if agT and beT,
. (a,b] if a¢T and beT,
[a,b) if ael and beT,
[a,b] if ael and beT.

Subcace 4.1 : a=b. Then T ={a}. Suppose a = 0. Therefore 2a #a

but 2a=a+aeT. Hence T #{a}. This is a contradiction. Thus a =0, so T is

type (1).
: 3a+b 3
Subcace 4.2 : a<b<0. Since ac< Cal <b, sa+b e T . Therefore
3“2+b - Ja:bﬁa;b ST But o gy, Thus 2227 Thisis a
contradiction.

a+3b a+3b
<

Subcace 4.3 : 0<a<b. Since a< b, Z e T . Therefore

a+35 B T T g e 2P LT This s a
2 4 4
contradiction.
Subcace4.4 : a<0 and b>0. Since %beT,t—b:il)sz}—beT.But

%11 > b . Thus i/z ¢ 7 . This 1s a contradiction.
J

The converse follows easily from the property of addition in R. #
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4.2. Solutions of (*) on degenerate additive interval semigroup {0}

Proposition 4.2.1. A function @ from {0} into C is a homomorphism if and

only if @(0)=0 or ¢(0)=1.

Proof. It is clear that ¢ with @(0)=0 or ¢(0)=1 1s a homomorphism.
To show the converse, assume that ¢ :{0} - C is a homomorphism.

Then @(0)=@(0+0) = (¢(0))*. Thus @(0)(1-¢@(0))=0.
Therefore @(0)=0 or ¢(0)=1. #

Corollary 4.2.2. (f, g) is a solution of
flxey)=f(¥)g()+gx)f(), }
g(xoy) =gx)gy) - f(x)f(»),

on {0} into C if and only if / and g are of the form

(*)

o)) /(0)=0, £(0)=0,
or
i 1
(1D f(O)——E,» g(O)—E,
or
: I 1
(11D ﬂO)_E’ g(O)—E,
or
(IV) J(0)=0, g0)=1.

*

Proof. By Theorem 3.1.5, (/. g) is a solution of (*) on {0} into C if and

only if there exist homomorphisms ¢, and ¢, from {0} into C such that f

and g are of the form
£(0) = é(cm (0)— 0, (0)),
(%)
g(0) = %«DI (0)+ 0, (0).
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By Proposition 4.2.1, ¢, and ¢, are homomorphisms from {0} into C if and

only if

(1.1)  p(0)=0,
or

(12) 9, (0) =1,
and

(2.1) ?,(0)=0,
or

(2.2) ?,(0)=1.

By substituting ¢, of the form (1.1) or (1.2) and ¢, of the form (2.1) or (2.2)

in (**) we have (I)-(IV). #

Remark 4.2.3. Since any constant function is continuous. So ¢, and ¢, in
Corollary 4.2.2 are continuous. This implies that / and g are also continuous

solutions of (*).

4.3. Continuous solutions of (*) on non-degenerate additive interval semigroups

In this section we shall construct a class of homomorphisms from the
non-degenerate additive interval semigroups 7 into C. By applying Theorem

3.1.5. We obtain a class of continuous solutions of (*).

‘

Proposition 4.3.1. Let 7" be any non-degenerate additive interval semigroup in
R. Let ¢ : T— C. If there exists ¢ e C such that

p(x)=c",

for all x € 7', then ¢ 1s a continuous non-trivial homomorphism .
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Proof. Let c e C be arbitrary and any function ¢ : 7 — C defined by
px)=c",
for all xeT . Since ¢* - Exp (x Logc)and Exp is continuous, so is c¢*.

We shall show that ¢ 1is a homomorphism. Let x,ye 7. Then

plx+y)=c™
= Exp ((x + y)Log ¢)
=Exp(xLogc+ yLogc)
=Exp (xLog ¢)Exp (v Log ¢)

=c*-c”

=p(x)p(y)-

Therefore ¢ is a continuous non-trivial homomorphism. #

Corollary 4.3.2. Let 7 be any non-degenerate additive interval semigroup in

R. Then the following (f, g) given (I) - (IV) are continuous solutions of

fxoy)=f(x)g()+g(x)f (), }
glxoy)=g(x)g(y)— f(x)f(»),

on T into C.

o)) f(x)=0, gx) =0,

for all xeT, or
(I there exists ¢ e C such that
fr=-Le*, g=2c*
I A
for all xeT, or
(IT11)  there exists ceC such that
fey=Lte,  g=sc
19 DY B
for all xeT, or
(IV)  there exist ¢, ¢, e C such that
i X X 1 X X
f(x)ZE(C] -¢y ), g(x)ZE(CI +¢,7 ),

for all xeT .
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Proof. Let ¢, and ¢, be functions from 7 into C such that

(1.1) @ (x)=0,
for all x e T, or
(1.2) there exists ¢, € C such that
g =c’,
for all x € T. And
2.1) P, (x)=0,
for all x e T, or
(2.2) there exists ¢, € C’ such that
P, (x)=¢,",
for all x e T.
Then ¢, and ¢, of the form (1.1) and (2.1) are continuous trivial
homomorphisms. By proposition 4.3.1, ¢, and ¢, of the form (1.2) and (2.2)

are continuous non-trivial homomorphisms. By Theorem 3.1.7, (f, g) is a

continuous solution of (*) on 7 into C if and only if

£6) =209 -3 (),
(%)
g(x) = %«pl () + 0, (X)),

where ¢, and ¢, are continuous homomorphisms from 7 into C. By

substituting ¢, of the form (1.1) or (1.2) and ¢, of the form (2.1) or (2.2) in

(**) we have (I) - (IV) are continuous solutions of (*). #
4.4. Existence of Hamel basis in an interval

It is a well-known fact that every vector space has a basis. A proof
can be found in [12]. Since R is a vector space over Q, R has a basis.

Such a basis is known as a Hamel basis for R.
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Proposition 4.4.1. Let H be any Hamel basis for R. Let (a,b) be any non-
empty open interval. Then,
(1) For each he H there exists a non-zero rational number s, such that

a<s,h<b.

(2) The set H ={s,h / he H} is a Hamel basis for R and H' < (a,b).

Proof. Let (a,b) be any non-empty open interval in R. Let H be a Hamel

basis for R.Let & be any element of H. So that ‘h‘ >0 . Hence

*
Since Q is a dense subset of R, there exists a non-zero rational number r,
such that

<r, <

o] " ]

For each he H, let

_Jrh i #>0
"len if k<o,

It follows that a<s,h<b. Let H ={s,h / he H}.Observe that
H ={s,h | he H}c (a,b).
Now we shall show that A is a Hamel basis for R . Assume that for

any r,,ry,..., 7

n

e Q and Sh, May>Su, Py 5> Sy, g, € H ' are such that

0=r(sy, hy)+ 7505, o)+t (5, By,
Then .

0= (1‘15,,”I hy + (1"25%2 Yy, +..+ (rnsha” D
Since H is a Hamel basis for R, it follows that rs, =0 forall i=12,....n.
Since Sy, * 0 for all i=12,...,n ,r =0 for all i=12,...,n. This implies
that H  is linearly independent. Let x e R . Then

x=rh, +r,h, +...+1,h

a" ?
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for some #,r,,....,r, € Q and A, ,h, ...k, €H, where n is positive integer.

Then

14 ¥ r
x=— (shalhal)Jr—2 (Sy,, P )+t == (s, P, ).
s, S, s n

o1 @2 han

_ . 7, ) - . ) ..
Since s, h, e H and ——eQ for all i=12,...,n, x is a linear combination
o e s,

ai

of elements of H' . This proves that H  is a Hamel basis for R. #
Corollary 4.4.2. Any interval / in R with \I ‘ >1 contains a Hamel basis.

Proof. Let / be any interval in R with ‘] ‘ >1. Let a,be R be such that
(a,b) c I. By Proposition 4.4.1, contains a Hamel basis. Therefore any interval

I in R contained a Hamel basis. #

4.5. Discontinuous solutions of (*) on non-degenerate additive interval

semigroups

In this section we shall provide a general method for constructing

discontinuous solutions of (*) on any non-degenerate additive interval semigroup

T in R into C.

Proposition 4.5.1. Let 7 be any non-degenerate additive interval semigroup in

R. Let H be a Hamel basis contained in 7. Let ¢:H — C be arbitrary.

Let ¢ : T— C be defined, for any x=> rh, in T, wherer, € Q,

i=]

h, € H, by

o(x)=Exp (>, Log 5(h, ) . (1)

i=]

Then ¢ is a non-trivial homomorphism.
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Proof. To show that ¢ is well-defined, assume that xe€ 7T has two

representations
n .

(1) x=>rh,,
i=l

(2) x= Zr,' by
i=l

for some r,,r'e Q, ha, e H, i=12,.,n.Here some of r, and r/ may be

zero. By definition of ¢ we have

(3) o(x)=Exp (3 r, Log 5(h, ))

i=]

according to (1) , and

@) o(x)=Exp (3.7 Log #(h, ))

1=]

according to (2). However, from (1) and (2) we have
O=x-x= Z(r, _”,')ha, :
7=l
which implies that » =r' for all i=12...,n. So that the right hand sides of

(3) and (4) are equal. Hence ¢@(x) is well-defined.

Let x, y be any elements in 7. Therefore ,
n n
P p— 2] . !
v=3 i, y=3rih,
i=l =1

h
where 7., 7' €Q, h, e H, i=12,.,n. Then x+y= Z(ri +r)h, , so

i=]

p(x+y)=Exp(Q (r, +r) Log @(h, )
i=1
= Exp(Q_r, Log @(h, )+ Y r/ Log @(h,))
i=1 =1

= Exp(Q_r, Log @(h, WExp (O r/ Log @(h, )
i=| =1

= p(xX)p(y).

Hence ¢ is a homomorphism. Since ¢:H — C", it follows that @ is

non-trivial. #
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Remark 4.5.2. From Proposition 4.3.1, if ¢ : T— C is defined by

p(x)=c"

for all xeT, then ¢ 1is a continuous non-trivial homomorphism . Observe that

such ¢ can be obtained from Proposition 4.5.1 by choosing ¢:H — C to be
p(h)y=c"

for each he H, where ce C . By using this ¢, ¢ defined by (1) of

Proposition 4.5.1 has the value at any x :Zr,.hai , where 7, €Q, h, € H,

i=l

i=12,.,n given by

@(x)=Exp (D r, Log ¢

i=]

=Exp (O r,h, Log ¢)
i=1

= Exp ((Z r.h, )Log ¢)
i=l

=Exp (xLog ¢)

X
=218
Discontinuous non-trivial homomorphisms can be constructed from (1)

of Proposition 4.5.1 by choosing ¢ different from above. For example, let T

be one of the following types:
(1) (a,0) where a>0, (2) [a,0) where a>0, 3) R.

Let ¢,c, € C’ be such that ¢, #c,. Let h,h, € H be such that h = h,.
Define p(h) = e,

Glh)=c,",

@p(h)y=1  for all h#h,,h,.

Then ¢ defined from ¢ is a homomorphism. Let x, € T be such that

n
xO = Zriha, ’
i=1

h, #h,h, for all i=12,.,n.So that x,+leT. Let (nf”), (r”(z)) be sequences
. 1 1 .

converging to — and —, respectively. Let

1 2

W =x, +r"h, and P =x,+rPh, .

n

X
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So that (x,gl)) converges to x, +1 and (xf,z)) converges to x, +1. Therefore
= @(x, )q)(rll(l)h] )

=Exp ()1, Log@(h, )) Exp(D>_r" Log (k)
i=] /=]

= Exp (Zr,f') Loge,™)
i=1

=Exp () r"h Log ¢)

i=l

A1)
Ly
|

. .U)l
Since (1‘(')}1]) converges to 1, (cl'” A

n

) converges to c,. Thus (go(x,ﬁ”)) converges

to ¢, . Similarly (gp(x,(,z))) converges to ¢,. Therefore lim @(x) does not exist.

XX+l

Hence ¢ 1is discontinuous. For the case 7" is one of the types:
(1) (-e0,b) where b<0, (2) (-0, b] where 5 <0,

we can construct discontinuous non-trivial homomorphism in similarly way.

Remark 4.5.3. Let 7" and H be given as Proposition 4.5.1. From Theorem

3.1.7, f,g:T — C 1s a continuous solution of

f(xoy)=f()g(»)+gx)f (). } )
glxoy)=gx)gy)— f(xX)f(»),
if and only if
) =2 @0) = 9, (),
(*%)

1
g(x) = 5(40, (x) + ¢, (x)),

where ¢, and ¢, are continuous homomorphisms from I' into C. By choosing
one of the ¢, , ¢, to be continuous and the other to be discontinuous we
obtain discontinuous /', g which form a discontinuous solution of (*). Such

choices of @, , @, can be done by using Remark 4.5.2.
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