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CHAPTER I

INTRODUCTION

1.1 Introduction

Nowadays, with powerful computing facilities, all tedious numerical computations are per-

formed by computers. Consequently, designers are allowed to concentrate on the design problems so

that they are formulated in an accurate and realistic manner. Along this direction, Zakian [36–39]was

prompted to develop a useful design framework which consists of the principle of matching (PoM)

and the method of inequalities (MoI).

The method of inequalities [38, 39] suggests that the constrains and design specifications of a

control system are expressed as a set of inequalities, that is,

φi(p) ≤ εi, i = 1, 2, ...,m, (1.1)

where φi(p) is a performance measure, each constant εi denotes the largest value of the function

φi(p) that the system can tolerate and p ∈ Rn, as usual, denotes the design parameter. The solution

of the problem is any value p that satisfies (1.1). In practice, (1.1) are solved numerically by using

search algorithms (see, for example, [38] and the references therein). Throughout this work, the

search algorithm called moving boundaries process (MBP) ( [38, 39]) is used.

The principle of matching [36,37] considers the system in relation to the environment in which

it operates. The environment generates the input f for the system and the input f is only known to

the extent that it belongs to a set P , called the possible set. The set of all inputs that the system can

tolerate is called tolerable set T . The environment-system couple is matched if

P ⊆ T . (1.2)

The couple is said to be well matched if it is matched and the possible set P is close to the tolerable

set T in some sense.

In other words, the method of inequalities suggests that the design problem should be stated

in a form of the conjunction of inequalities while the principle of matching suggests what kind of

inequalities should be chosen in order to make the formulation of the design problem more accurate

and realistic. The framework has been used for designing control systems and been investigated by

many researchers (see, for example, [5, 18, 20–22]. Readers are referred to [38] for a more complete

list of references on this). In this connection, this thesis focuses on the principle of matching.

According to the principle of matching [36–38], a chief design objective is to guarantee that a

response v of the system under consideration stays within a prescribed bound in the presence of all
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Gc(s,p) ψ(·) Gp(s)

controller nonlinearity plant

f + e u us y

−

Figure 1.1: Feedback system with nonlinearity

possible inputs (that is, inputs that can happen or are likely to happen in practice). In this regard, the

design criterion can be expressed as

|v(f, t)| ≤ ε, ∀ f ∀t ∈ R (1.3)

where v(f, t) is the value of v at time t in response to a possible input f , and ε is the largest value of

|v(f, t)| that the system can tolerate. The criterion (1.3) is often utilized to monitor the performance of

control systems in practice and has been investigated by many authors (for example, [20–22,31,32,35]

and the references therein). See [37, 38] and also [5, 31] for details on this.

Specifically, Mai et al. [20–22] (see also [18]) have recently developed a method for designing

a feedback control system that consists of a memoryless, sector-bounded nonlinearity and linear time-

invariant convolution plants (see Fig. 1.1) to ensure that the error e and the controller output u stay

within prescribed bounds for all time and for all possible inputs having bounded magnitude and

bounded slope. It should be noted that the above-mentioned articles do not consider the case in which

the nonlinearity ψ(·) does not satisfy a sector bound condition. Nor are they applicable to the case of

ψ(·) being a backlash, which can be found in many practical applications (see [15, 23] and also the

references therein).

Consider the feedback control system displayed in Fig. 1.1, which is described by

u = gc ∗ e

e = f − us ∗ gp = f − ψ(u) ∗ gp

 (1.4)

where ψ is a backlash, gp is the impulse response of the plant and has Laplace transform equal to

Gp(s), gc is the impulse response of the controller and has Laplace transform equal to Gc(s,p), and

p ∈ Rn denotes a design parameter vector. As usual, the asterisk denotes the convolution; that is

(gc ∗ e)(t) =

∫ t

0
gc(t− τ)e(τ)dτ, t ≥ 0. (1.5)

Suppose that the input f is known only to the extent that it belongs to a possible set P (that is, the set

of possible inputs).

In this work, we consider the possible set P consisting of continuous signals with bounded

magnitude and bounded slope, and it can be defined in many ways. In general, P ⊂ L∞, where

L∞ , {x : R+→ R| |x(t)| < ∞ ∀t ≥ 0}. When the possible inputs are continuous bounded
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functions, using the set L∞ as the set of possible inputs may not be appropriate because L∞ contains

signals having stepwise discontinuities. For further discussion on this, see [37, 38].

The problem considered here is to determine a design parameter p, which characterizes the

controller transfer function Gc(s,p), such that the following design criteria are satisfied.

ê ≤ Emax and û ≤ Umax (1.6)

where the bounds Emax and Umax are given, and

ê , sup
f∈P
‖e‖∞ and û , sup

f∈P
‖u‖∞. (1.7)

The performance measures ê and û are sometimes called the peak error and the peak controller output,

respectively, for the possible set P . Obviously, ê and û depend upon p.

It is worth noting that the design criteria (1.6) are used to ensure that the error e and the

controller output u stay within their respective bounds Emax and Umax for all time and for all f ∈ P .

Observe that (1.6) are equivalent to

|e(f, t)| ≤ Emax, ∀f ∈ P ∀t ∈ R+

|u(f, t)| ≤ Umax, ∀f ∈ P ∀t ∈ R+

 . (1.8)

Following previous work ( [31, 32, 38, 39] and also the references therein), it is readily appre-

ciated that in solving the inequalities (1.6) by numerical methods, a search algorithm needs to start

from a stability point, that is, a point p for which

ê(p) <∞ and û(p) <∞. (1.9)

Therefore, it is necessary to establish a practical condition for determining stability points of the

system (1.4) where ψ(·) is a backlash. Once such a point is obtained, design criteria (1.6) can be

solved by numerical methods, provided that the peak outputs ê and û can be computed in practice.

The objective of the thesis is to develop a systematic and practical method for designing a

controller the feedback control system (1.4) where the nonlinearity is a backlash so as to guarantee

the criteria (1.6) are satisfied. In order to find such a controller, we need to solve the problem of

finding a stability point first. In other words, we need to establish practical conditions for determining

stability points of the system.

1.2 Literature Review

This section will briefly describe the series of work done by Mai et al. [18–22]. Consider the

system (1.4) where the nonlinearity ψ(·) is memoryless and sector bounded.

1. Mai et al. [19], based on the Popov criterion, have established a practical inequality for deter-

mining stability points by numerical methods. The key idea of this work is that, instead of using
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the Popov plot, the convex hull of the Popov plot is used, which is more suitable for automatic

computation.

2. Mai et al. [20, 21] have developed a method for designing the system so as to ensure that the

error and the controller output stay within prescribed bounds for all time and for all inputs hav-

ing bounded magnitude and bounded slope. The design formulation is based on the principle of

matching, thereby explicitly considering the peak error and the peak controller output for such

a possible set. The original design inequalities are replaced with the surrogate design criteria

that are in keeping with the method of inequalities. The sufficient conditions for the satisfaction

of the original design criteria are proved by using Schauder fixed point theorem (see, for exam-

ple, [40]). By replacing the nonlinearity with a constant gain and an equivalent disturbance, the

original nonlinear system becomes a linear system with two inputs. Therefore, the associated

performance measures are readily obtainable by known methods.

3. Mai et al. [22] have extended the work [20, 21] to the case that the plant is an uncertain linear

time-invariant convolution system. First, the Schauder fixed point theorem is used to show

that a design solution for an uncertain linear system obtained by replacing the nonlinearity

with a gain and a bounded disturbance (if exists) is also a solution for the original nonlinear

problem. Then, by extending Zakian’s theory of majorants and applying it to the so-obtained

linear problem, the design inequalities that can readily be solved in practice are derived.

1.3 Scope of thesis

1. Provide stability conditions and then develop a computational inequality for determining sta-

bility points with inputs restricted in magnitude and slope for the system (1.4).

2. Develop a practical method for designing the system subjected to inputs satisfying bounding

conditions on their magnitude and slope to ensure the condition (1.6).

3. Design controllers for some systems whose the linear plants are possibly described by non-

rational transfer functions.

1.4 Methodology

1. Stability points can be obtained by using the stability results developed above.

2. By using the decomposition technique used in [18, 20–22, 25], the backlash can be replaced by

a constant gain and an equivalent disturbance, thus the nominal system used during the design

process becomes linear with two inputs.
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3. Develop sufficient conditions for ensuring (1.6) in terms of inequalities that are in keeping with

the MoI.

1.5 Expected Outcomes

1. A practical inequality for determining stability points of feedback control systems with a back-

lash.

2. A practical method for designing the system (1.4).

3. Numerical examples showing the usefulness of the developed method.

1.6 Thesis Outline

The organization of the thesis is as follows. Chapter 2 presents the input-output stability of a

nonlinear feedback system where a linear convolution subsystem is in cascade with a hysteresis or

a backlash subject to bounded inputs whose slopes belonging to the set N2 (which will be defined

in details in Chapter 2). Based on this, a practical method for determining stabilizing controllers

by numerical methods is developed. However, the input set considered in Chapter 2 is not suitable

to characterize persistent inputs (that is, signals that vary persistently for all time). For that reason,

Chapter 3 considers the input-output stability of the control feedback system where a linear convo-

lution subsystem is in cascade with a backlash subject to a inputs having bounded magnitude, and

the stability conditions established in Chapter 3 are used to guarantee the finiteness of the error and

the controller output in the following chapters. Chapter 4 develops a practical numerical method

for designing nonlinear feedback control systems with backlash under inputs whose magnitude and

slope are bounded. Chapter 5 develops a method to design a robust controller for nonlinear feedback

systems where the an uncertain linear time-invariant plant is in cascade connection with an uncer-

tain backlash and a controller subject to bounded inputs. Conclusions and future works are given in

Chapter 6.



CHAPTER II

STABILITY CONDITIONS FOR FEEDBACK SYSTEMS WITH
HYSTERESIS SUBJECT TO BOUNDED INPUTS WHOSE SLOPES

BELONGING TO THE SET N2

This chapter considers the input-output stability of feedback systems made up of a time-

invariant linear element and a hysteresis element. From previous work, it is appreciated that for

any input such that the two norm of the product of its slope and an increasing exponential function

is finite, if the linear subsystem satisfies a Popov inequality for a sector bound and if the slope of the

hysteresis lies within the same sector bound, then the outputs of the system are ensured to be finite

for all time. Based on this, we develop a practical method for determining stabilizing controllers by

numerical methods. To illustrate the usefulness and the potential of the method, three numerical ex-

amples are provided in which the plants are described by rational and non-rational transfer functions.

2.1 Introduction

Many researchers have been prompted to investigate the input-output stability of the feedback

control system shown in Fig. 2.1, whereG(s) is a linear plant and ψ(·) is memoryless, sector-bounded

nonlinearity. Following previous work ( [9, 11, 12, 18, 19]), it is readily appreciated that the Popov

criterion can be used to ensure that the system is stable in the sense that the outputs e1, e2, y2 are

bounded for any nonlinearity ψ(·) in a given sector bound whenever the inputs u1, u2 have bounded

magnitude and bounded slope.

In this connection, Mai et al. [19] has developed a practical inequality that is equivalent to

the Popov criterion for ensuring the input-output stability of the system. This inequality provides a

readily computable test for checking the stability of the system and also can be used to determine

stabilizing controllers for the system. In addition, the inequality has been used to design feedback

control systems in conjunction with the design theories developed in [20–22].

It should be noted that the above-mentioned results are not applicable to the case of ψ being

a hysteresis or backlash, which is a nonlinear element that does not satisfy a sector-bound condition

and has memory. A hysteresis can be found in many practical applications, for example, structural or

mechanical control systems (see [23, 24] and also the references therein).

This work considers the input-output stability of the feedback control system in Fig. 2.1 where

G(s) is the transfer function which can be non-rational and ψ(·) is a hysteresis. In [16,17], it has been

shown that whenever the inputs u1, u2 belong to a space of functions such that the two norm of the

product of the slope of any function belonging to the space with an increasing exponential function
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is finite, if the linear subsystem satisfies a Popov inequality for a sector bound and if the slope of the

hysteresis lies within the same sector bound then we can ensure that the magnitudes of the outputs

e1, e2, y1, y2 are finite for all time and that there is no sustained oscillation in the system. It should be

noted that the input spaces considered here is different from the input spaces investigated in [19–22].

ψ(·) G(s)

nonlinearity linear subsystem

u1 + e1 y1

+

e2 y2

−

u2

+

Figure 2.1: Feedback control system with nonlinearity

In the same spirit as [19], we develop a practical condition based on the Popov-type stability

condition in [17] for obtaining stability points in the form of an inequality which is suitable for

solution by numerical methods. Following the method of inequalities ( [39], and also [38]), it is

readily appreciated that this condition is a useful criterion for stabilizing feedback control systems

with a hysteresis. The key idea used in this work is that the stability results obtained from the Popov

plot is the same as the results obtained from the convex-hull of the Popov plot; however, the convex-

hull is much easier to deal with.

2.2 System Description

The system in Fig. 2.1 is described by the following equations.

e1(t) = u1(t)− y2(t)

e2(t) = u2(t) + y1(t)

y1(t) = ψ(e1)

y2(t) = (g ∗ e2)(t)


, ∀t ≥ 0. (2.1)

Suppose that the system is at rest for t ≤ 0. The notation ψ(·) in equation (2.1) expresses the input-

output characteristic of the hysteresis element in the system.

In order to give detailed descriptions of the system, the following definitions will be used. For

each real p ∈ [1,∞), the normed space Lp is defined as

Lp , {x : [0,∞)→ R |
∫ ∞

0
|x(t)|pdt <∞}.

We also define the space

N2[0,∞) = {x(·) | ∃σ > 0 so that eσtx(t) ∈ L2}.

The relationship of N2 with L1 and L2 can be seen from the properties of space N2 shown in

the following propositions.
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e1

y1

0

Figure 2.2: Example of a hysteresis element

Proposition 2.1 ( [16, 17]). N2 ⊂ L1 ∩ L2.

Proposition 2.2 ( [16, 17]). Let ẋ denote the derivative of function x. If ẋ ∈ N2, then x ∈ L∞ and
there exists a finite constant A such that x→ A when t→∞.

Assumption 2.1. The slopes of the inputs u1, u2 belong to N2.

From Proposition 2.2, it can be seen that if u1 and u2 satisfy Assumption 2.1, then their mag-

nitudes are bounded and they go to finite constants as t→∞.

Let A denote the set of generalized functions which have the form

g(t) =

 ga(t) +
∑∞

i=0 giδ(t− ti), t ≥ 0

0, t < 0
(2.2)

where δ(·) denotes the Dirac delta function, 0 ≤ t0 < t1 < t2... are constants,
∑∞

i=0 |gi| < ∞ and

ga ∈ L1. The norm || · ||A of a function g(·) in A is defined as follows.

||g(·)||A =

∫ ∞
0
|ga(t)|dt+

∞∑
i=0

|gi|. (2.3)

For a given σ > 0, the set Aσ consists of all functions that take the form

g(t) =

 ga(t) +
∑∞

i=0 giδ(t− ti), t ≥ 0

0, t < 0
(2.4)

in which δ(·) denotes the Dirac delta function, 0 ≤ t0 < t1 < t2... are constants,
∑∞

i=0 |gi|eσti <∞

and
∫∞

0 |ga|e
σtidt <∞. It is easy to see that for any σ > 0, Aσ is a subset of A. Now, we define the

set A as

A =
⋃
σ>0

Aσ. (2.5)

With this definition,A consists of all functions g that belong toAσ for any σ > 0. Moreover, the set

A is a proper subset of A and is closed under convolution. The details of the sets A,Aσ and A can

be found in [11], [30].
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Assumption 2.2. The linear subsystem G(s) is time-invariant and non-anticipative with zero initial
conditions. The input e2 and output y2 are related by the convolution integral

y2(t) = (g ∗ e2)(t) =

∫ t

0
g(t− τ)e2(τ)dτ, t ≥ 0 (2.6)

where g is the impulse response of G(s) and g can be decomposed as g(t) = c + g1(t), t ≥ 0, in
which c is a finite real constant and g1 ∈ A .

Note that this description of the linear part consists not only rational systems but also time-

delay or distributed-parameter systems. Moreover, the linear subsystem is allowed to have one pole

at the origin.

Assumption 2.3. Let e1 and y1 denote the input and the output of the hysteresis, and let ė1, ẏ1 denote
their first derivatives respectively. If ė1 = 0, then ẏ1 = 0. If ė1 6= 0, then there exists a real constant
k such that

0 ≤ ẏ1(t)ė1(t) ≤ kė2
1(t) ∀t ≥ 0. (2.7)

Moreover, for all e1 having a second derivative, it follows that∫ t

0
ẏ1(τ)ë1(τ) dτ ≤ 0, ∀t ≥ 0. (2.8)

−4 −3 −2 −1 0 1 2 3 4

−4

−3

−2

−1

0

1

2

3

4

ė1

ẏ 1

ẏ1 = kė1

Figure 2.3: The plot (ė1, ẏ1) of the hysteresis shown in Fig. 2.2

Assumption 2.3 can be explained graphically as follows. Inequality (2.7) implies that the curve

(ė1, ẏ1) lies inside the sector [0, k] (see Fig. 2.3), which means that the slope of the hysteresis belongs

to the sector [0, k]. Furthermore, (2.8) implies that if ė1 and ẏ1 follow the curve representing the graph

of the derivative of the input and the derivative of the output, the curve rotates in a counterclockwise

direction with increasing time. Backlash and some hysteresis satisfy this condition (see [16], [17]).

See [16] for more details.
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2.3 Stability Condition

This section presents a Popov-type stability condition ( [16, 17]) to check the stability of the

system in Fig. 2.1. The concept of stability considered here is that for any input whose slope belongs

to N2, the magnitude of the outputs are bounded and there is no sustained oscillation within the

system.

Theorem 2.1 ( [16], [17]). Let Assumptions 2.2 and 2.3 hold. Suppose that the derivatives u̇1, u̇2

of the inputs u1, u2 belong to N2. The derivatives ẏ1, ẏ2, ė1, ė2 of the outputs y1, y2, e1, e2 belong
to N2 for any hysteresis whose slope lies in the interval [0, k] if there exist real numbers q < 0 and
0 < β � 1 such that

Re [(1 + qjω)G(jω)] +
1

k
≥ β > 0, ∀ω ≥ 0. (2.9)

Consequently, the outputs e1, e2, y1, y2 are bounded and go to finite constants when t→∞.

The graphical interpretation of condition (2.9) is that if we can find a straight line (which is the

Popov line, see Fig. 2.4) with a negative slope 1/q, which passes through the point K , (−1/k, 0)

and divides the planes into 2 halves, such that the Popov plot {ReG(jω)+jωImG(jω) : ω ∈ [0,∞)}

lies strictly to the right half of the Popov line, then the system satisfying Assumptions 2 and 3 is stable

in the sense that the outputs are bounded and go to finite constants when t→∞ for any input whose

slope belongs to N2.

For a given linear subsystem G(s), condition (2.9) allows us to determine the maximum slope,

denoted as km, of the hysteresis element. If the slope of the hysteresis, which lies in the sector [0, k],

satisfies the inequality

k < km (2.10)

then the system is stable.

The stability condition (2.9) in Theorem 2.1 is a Popov-type inequality and takes the same form

as the stability conditions presented in [1, 9, 11, 12, 19]. However, it should be noted that inequality

(2.9) requires the sign of q (in other words, the slope 1/q) to be negative while for the others the sign

of q can be arbitrary.

2.4 Practical Design Inequality

We compute the value of km by finding the point Km , (−1/km, 0) on the negative side of

the real axis such that Km is the nearest point to the origin through which we are able to plot a Popov

line satisfying condition (2.9). Using the Popov plot and using the convex hull of the Popov plot to

determine Km are both possible. However, using the convex hull is much more convenient because

although Popov plots may have complex shapes, the convex hull of the Popov plot always have simple

shapes, and therefore it makes inequality (2.10) more readily computable. In order to use the convex

hull of Popov plot to compute km, the following propositions are useful.
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Proposition 2.3 ( [18]). The Popov plot lies to the right of the Popov line if and only if so does its
convex hull.

The Proposition 2.3 assures that the results achieved from Popov plot and from its convex hull

are the same.

Proposition 2.4 ( [18]). Let g be the impulse response of the transfer function G(s). If g can be
decomposed as g(t) = c + g1(t), t ≥ 0, in which g1, ġ1 ∈ A and |c| < ∞, then the Popov plot of
G(s) lies in the finite plane.

Proposition 2.4 states that the Popov plot exists in a finite plane and therefore the convex hull

is always obtainable.

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

Re G(jω)

ω
Im

G
(j
ω
)

(3)

Popov plot

(1)

Convex hull of Popov plot

(2)
(4)

Figure 2.4: Popov plot and its convex hull: (1) is the Popov line and (2) is the corresponding point
(−1/km, 0) where ψ is sector-bounded and memoryless; (3) is the Popov line and (4) is the corre-
sponding point (−1/km, 0) where ψ is a hysteresis.

Since Theorem 2.1 requires that q be negative, it is necessary to develop a new algorithm for

determining km, which is different from the one presented in [19].

Let Ω denote the convex hull of the Popov plot, the algorithm for determining km is outlined

as follows.

input: Popov plot

output: km

begin

compute Ω;

P = {(x, y) | (x, y) ∈ Ω, x < 0, y = 0};

if P = {},
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km =∞;

else

x̂ = min(x,y)∈P x;

calculate the slope q of the point (x̂, ŷ) ∈ P ;

if q < 0,

km = −1/x;

else

x∗ = min(x,y)∈Ω x;

km = −1/x∗;

end

end

end

The above algorithm can be explained as follows. First, we look for the point in Ω that is

furthest to the left on the negative real axis. If such point does not exist, then Km is at the origin (i.e.,

km =∞). If such point exists, then we need to check the slope of the convex hull at that point. If the

slope at that point is negative, then that point is Km. If not, then Km is the point (x∗, 0), where x∗ is

the real part of the furthest point to the left of the convex hull.

Let p ∈ Rn be a vector of design parameters in the linear subsystem G(s,p), and define

φ(p) , k − km(p). Inequality (2.10) can be expressed as

φ(p) ≤ −γ, 0 < γ � 1 (2.11)

Since φ(p) is readily computable in practice, it follows that inequality (2.11) provides a practical and

useful condition to determine a stabilizing controller for the system. This inequality is always soluble

by numerical methods and hence is in keeping with the method of inequalities (see [38], [39]).

2.5 Design of Stabilizing Controller

Consider the system in Fig. 2.5 where Gp(s) and Gc(s,p) are, respectively, the transfer func-

tions of the plant and of the controller with design parameter p ∈ Rn. The inputs u1, u2 of the system

are assumed to satisfy the condition that their derivatives u̇1, u̇2 belong to N2. Given the hysteresis

ψ(·) with the slope lying in the interval [0, k], we need to design a controller to stabilize the system.

Gc(s,p) ψ(·) Gp(s)
u1 + e1 y1

+

e2 y2

−

u2

+

Figure 2.5: Controller design system
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Define the composite transfer function

G(s) , Gc(s,p)Gp(s).

Let gc, gp and g denote, respectively, the impulse response of the transfer functions Gc(s), Gp(s) and

G(s). Then the following assumptions are required.

Assumption 2.4. The impulse response gc belongs to A .

Assumption 2.5. The impulse response g can be decomposed as g(t) = c + g1(t), t ≥ 0, in which
|c| <∞, and g1 ∈ A , ġ1 ∈ A.

To enable one to use the results stated in Sections 3.2 and 3.3, arrange the block diagram as

shown in Fig. 2.6, so that the system in Fig. 2.5 is transformed into the equivalent system in Fig. 2.1,

in which the linear subsystem has the transfer function G(s,p). The inputs of the equivalent closed-

loop system in Fig. 2.6 are ũ1, u2, where ũ1 = gc ∗u1. With the assumption that u̇1, u̇2 ∈ N2, we can

show that the derivative of ũ1 also belongs to N2 as follows.

˙̃u1 = ˙gc ∗ u1 = gc ∗ u̇1 (2.12)

Using the assumptions gc ∈ A and u̇1 ∈ N2, it follows that ˙̃u1 ∈ N2 (see Proposition 7.1 in Appendix

for detail).

Gc(s,p)

Gc(s,p)

ψ(·) Gp(s)

u1
ũ1

+

+

e1 y1

+

e2 y2

−

u2

+

Figure 2.6: Equivalent closed-loop system

From the above, it is easy to see that inequality (2.11) can be used to obtain stabilizing con-

trollers for the system.

2.6 Numerical Examples

In this section, three examples are given to illustrate how to design stabilizing controllers using

the method in the previous part. Note that in the following, the search algorithm called the moving-

boundaries-process (MBP) will be used for solving inequalities. For the detail of the algorithm,

readers are referred to [38, 39] and also references therein.
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h−h e1

y1

0

Figure 2.7: The friction-driven hysteresis model of backlash

2.6.1 Example 1: Rational system with backlash

Consider the system shown in Fig. 2.5 in which the transfer function of the plant is

Gp(s) =
48

(1 + s)(1 + 0.1s)
(2.13)

The nonlinearity in the system is a backlash which is assumed to satisfy the friction-driven hysteresis

model (see Fig. 2.7).

ẏ1 =


kė1 if ė1 ≥ 0 and y1 = k(e1 − h)

kė1 if ė1 ≤ 0 and y1 = k(e1 + h)

0 elsewhere

(2.14)

where e1, y1 denote the input and output of the backlash respectively, h is the backlash width and

k is the gear ratio or the slope of the backlash. The model (2.14) is widely used (see, for example,

[6, 15, 23]).

Suppose that we want to design a stabilizing controller Gc(s,p) for the case in which the

backlash has a unity slope (k = 1) and h = 0.4. The structure of the controller is chosen as

Gc(s,p) =
s+ p1

s+ p2
(2.15)

where p= [p1, p2]T is the design parameter. Among all the possible controllers satisfying the re-

quirement, the one with simple structure is usually preferred; therefore, designers should begin with

a simple one first.

Inequality (2.11) is solved by the moving boundaries process. From the starting point p0 =

[1, 1]T , a stability point p = [0.35, 13.1]T is located. The simulation results are displayed in Fig. 2.8.

It can be seen that when Gc(s) = 1, the system has a sustained oscillation. On the other hand, when

the stabilizing controller (2.15) is used, the output y2 is bounded and goes to a finite constant.
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0 2 4 6 8 10 12 14 16 18 20

−2

0

2

u
1

Input u1

0 2 4 6 8 10 12 14 16 18 20

−2

0

2

y 2

Output y2 when Gc = 1

0 2 4 6 8 10 12 14 16 18 20

−2

0

2

time (sec)

y 2

Output y with stabilizing controller (14)

Figure 2.8: Simulation results of Example 2.6.1

2.6.2 Example 2: Time-delay system with backlash

Consider the system shown in Fig. 2.5 in which the plant is a time-delay system whose transfer

function is

Gp(s) =
48e−0.1s

(1 + s)(1 + 0.1s)
. (2.16)

The nonlinearity in the system is a backlash which is assumed to satisfy the friction-driven hysteresis

model as shown in equation (2.14).

Suppose that we want to design a stabilizing controllerGc(s,p) in case the backlash has a unity

slope (k = 1) and h = 0.4. The structure of the controller is chosen as

Gc(s,p) =
s+ p1

s+ p2
(2.17)

where p= [p1, p2]T is the design parameter. Using the moving boundaries process, from the starting

point p0 = [1, 1]T , a stability point p = [0.35, 37.4]T is located. The simulation results are

displayed in Fig. 2.9. It can be seen that when Gc(s) = 1, the output y2 blows up as t → ∞. On

the other hand, when the stabilizing controller (2.17) is used, the output y2 is bounded and goes to a

finite constant.

2.6.3 Example 3: Heat conduction system with hysteresis

Consider the system shown in Fig. 2.5 in which the nonlinearity is a hysteresis whose slope is

known only to the extent that lies in the interval [0, 1] (see Fig. 2.11). This hysteresis can be considered

as a composition of the nonlinear function tanh and a backlash with unity slope (see Fig. 2.10). This
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0 2 4 6 8 10 12 14 16 18 20
−5

0

5
u
1

Input u1
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−20

0

20
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Output y2 when Gc(s) = 1

0 2 4 6 8 10 12 14 16 18 20
−2

−1

0

1

2

time(sec)

y 2

Output y2 with the stabilizing controller (16)

Figure 2.9: Simulation results of Example 2.6.2

idea can be found in [15]. Assume that the plant is a heat-conduction process whose transfer function

is given by

Gp(s) =
20√

s sinh(
√
s)
. (2.18)

It is known (see, for example, [10]) that the impulse response gp is given by

gp(t) = 20 + 40
∞∑
n=1

(−1)ne−n
2π2t, t ≥ 0 (2.19)

and the transfer function Gp(s) has one pole at the origin while others on the negative real axis.

The structure of the controller is chosen as

Gc(s,p) =
p3(s+ p1)

s+ p2
(2.20)

where p = [p1, p2, p3]T is the design parameter. From the starting point p0 = [5, 20, 5]T , which

is an unstable point, the stability point p = [4, 46, 4.75]T is located. The simulation results are

shown in Fig. 2.12. As can be seen, when Gc(s) = 1, the system has a sustained oscillation and when

the stabilizing controller (2.20) is used, the output y2 goes to a finite constant, which means that the

sustained oscillation is eliminated.

tanh(·) B(·)
e1 y1

Figure 2.10: Composition of the hysteresis element used in Example 2.6.3
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e1

y1

0

Figure 2.11: Hysteresis element in Example 2.6.3
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y 2

Output y2 with the stabilizing controller (19)

Figure 2.12: Simulation results of Example 2.6.3

2.7 Conclusions

This work has considered the input-output stability of feedback control systems with a hystere-

sis, in which the linear subsystem can be either a rational or a non-rational transfer function belonging

to a subclass of A . Based on the result that for all the inputs whose first derivatives belong to N2, if

the linear subsystem satisfies the Popov-type condition, then the outputs are bounded and go to finite

constants, we have developed a practical inequality to obtain stability points, which is in keeping with

the method of inequalities and is always soluble by numerical methods. The merit of the contribution

is clearly demonstrated by the given examples.
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The input space considered in this work is appropriate to characterize some types of vibration

signals such as seismic signals (see, for example, [5]) whose magnitudes and slopes are enveloped by

decreasing exponential functions.



CHAPTER III

STABILITY CONDITIONS FOR FEEDBACK SYSTEM WITH
BACKLASH SUBJECT TO BOUNDED INPUTS

3.1 Introduction

This chapter considers the BIBO stability of nonlinear feedback systems with backlash under

inputs having bounded magnitude, which is a different set of inputs with inputs considered in Chap-

ter 2. The reason we consider this input set is that, the input set considered in Chapter 2 is not suitable

to characterize persistent inputs.

The key theorem (Theorem 3.1) stated in this chapter is from [6]. Based on this, we develop

BIBO stability conditions (Theorem 3.2) for control feedback systems which includes a controller, a

backlash in cascade connection with a linear time-invariant plant. Theorem 3.2 is used in the follow-

ing chapter to guarantee the finiteness of the error and the controller output in the design process.

3.2 System Description

ψ(·) G(s)

backlash linear subsystem

u1 + e1 y1

+

e2 y2

−

u2

+

Figure 3.1: Feedback control system with backlash

The system in Figure 3.1 is described by the following equations.

e1(t) = u1(t)− y2(t)

e2(t) = u2(t) + y1(t)

y1(t) = ψ(e1)

y2(t) = (g ∗ e2)(t)


, ∀t ≥ 0. (3.1)

The notation ψ(·) in equation (2.1) expresses the input-output characteristic of the backlash element

in the system, g is the impulse response of the linear subsystem and has Laplace transform equal to

G(s). Suppose that the system is at rest for t ≤ 0.

The inputs u1, u2 belong to the space L∞.
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σ

−σ
u

us

0

Figure 3.2: The uncertainty model of backlash

σ
−σ

u

us

0

Figure 3.3: The friction-driven hysteresis model of backlash

Assumption 3.1. Let the backlash ψ(·) be represented by the uncertain band model ( [6])

ψ(x) = Kx+ n(x)

n(x) = [−h, h] ∀x

 , (3.2)

where K is a constant gain and n(·) denotes the interval valued function mapping R to 2R.

The uncertain band model (3.2) is useful in the sense that the backlash width does not need to

be known exactly (see Fig. 3.2). Hence, it can be used to find a robust controller to compensate the

backlash effect which may not be known accurately. In addition, the uncertain model can be used to

represent some other backlash models such as a friction-driven hysteresis model (see Fig. 3.3).

Assumption 3.2. The transfer function G(s) is strictly proper.

3.3 Stability Conditions

Theorem 3.1 ( [6]). Consider the system 3.1 and let Assumptions 3.1 and 3.2 hold. Define Gb(s) ,

G(s)(1 +KG(s))−1 and let gb be its inverse Laplace transform. If gb, ġb ∈ A then the responses e1

and e2 are bounded for any bounded inputs u1 and u2.

For the sake of completeness, the proof is given as follows.

Proof. For a function x : R+ → R and for a fixed T > 0, define

xT (t) ,


x(t), 0 ≤ t ≤ T

0, t > T

.
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Also, for a given X ⊂ L∞, define XT , {xT |x ∈ X}.
Now consider the system (3.1), and let Assumptions 3.1 and 3.2 hold, we have

e1 = ga ∗ u1 − gb ∗ [u2 + n(e1)] (3.3)

where ga and gb are respectively the impulse responses of Ga(s) , (1 + KG(s))−1 and Gb(s) ,

G(s)[1 +KG(s)]−1. Define a mapping

Υ(e1) = ga ∗ u1 − gb ∗ [u2 + n(e1)] (3.4)

It is easy to see that

||Υ||∞ ≤ ||ga||A||u1||∞ + ||gb||A(||u2||∞ + h) (3.5)

Since gb ∈ A, the right hand side of inequality 3.5 is finite. Choose a constant M such that

||ga||A||u1||∞ + ||gb||A(||u2||∞ + h) ≤M. (3.6)

For a chosen M , define the set S as follows.

S , {x : R+→ R| ||x||∞ ≤M}.

Following (3.3), define a truncated mapping ΥT : ST → 2ST for a given T > 0 and for any u1, u2 ∈
L∞T . It is easy to see that: (i) ST is a nonempty, closed, convex set in Banach space and ΥT is upper
semi-continuous; (ii) for all e1 ∈ ST , the set ΥT (e1) is nonempty, closed and convex; (iii) by the
compactness of Gb (see [18]), the set ΥT (ST ) is relatively compact. As a result, using Kakutani’s
fixed point theorem (see, for example, [40]), ΥT has a fixed point that guarantees the existence of
a ẽ1 ∈ ST such that ẽ1 ∈ ΥT (ẽ1). Since the constant M can be chosen arbitrarily large, it means
that there exists at least a solution ẽ1 ∈ L∞ such that ẽ1 ∈ ΥT (ẽ1), which is also the error e1 of the
feedback system (3.1). Then the boundedness of e2 readily follows.

3.4 Determing of Stabilizing Controller

Gc(s,p) ψ(·) Gp(s)

controller nonlinearity plant

f + e u us y

−

Figure 3.4: Feedback system with nonlinearity

Consider the feedback control system displayed in Fig. 3.4, which is described by

u = gc ∗ e

e = f − us ∗ gp = f − ψ(u) ∗ gp

 (3.7)

where ψ is a backlash, gp is the impulse response of the plant and has Laplace transform equal to

Gp(s), gc is the impulse response of the controller and has Laplace transform equal to Gc(s,p), and

p ∈ Rn denotes a design parameter vector. As usual, the asterisk denotes the convolution; that is

(gc ∗ e)(t) =

∫ t

0
gc(t− τ)e(τ)dτ, t ≥ 0. (3.8)
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Gc(s,p)

Gc(s,p)

ψ(·) Gp(s)

f
f̃

+
ẽ

+

u us y

−

Figure 3.5: Equivalent closed-loop system

In this section, we will develop a theorem to determine a controller Gc stabilizing the system

(3.7).

Assumption 3.3. For every input f , there exists at least a solution (e, u) that satisfy (4.1), where
e : R+ → R and u : R+ → R. All initial conditions are assumed to be zero for t ≤ 0.

Assumption 3.4. Let the backlash ψ(·) be represented by the uncertain band model ( [6])

Assumption 3.5. For G(s) defined by G(s) , Gp(s)Gc(s)[1 + KGp(s)Gc(s)]
−1, the impulse re-

sponse g satisfies conditions that g ∈ A and ġ ∈ A.

By using Theorem 3.1, the following result is obtained.

Theorem 3.2. Consider the system (3.7) and let Assumptions 3.3, 3.4 and 3.5 hold. Define the
composite transfer function G2(s) , Gc(s,p)Gp(s). Let G2(s) be strictly proper and suppose that
gc ∈ A where gc is the impulse response of Gc(s,p). Then it follows that the responses u and e are
bounded for any f ∈ P .

Proof. By rearranging the block diagram in Fig. 3.4 to the one shown in Fig. 3.5, one can easily see
that

u = f̃ + ẽ (3.9)

where f̃ = gc ∗ f . It is easy to show (see, for example, [11]) that f̃ ∈ L∞ if f ∈ P and gc ∈ A.
Assumption 3.5 implies that the transfer functionG(s) = Gp(s)Gc(s)[1+KGp(s)Gc(s)]

−1 is BIBO
stable; moreover, g, ġ ∈ A. Thus, by Theorem 3.1, it follows that ẽ ∈ L∞. Hence, for the system
(4.1), u and e are bounded for any f ∈ P .



CHAPTER IV

DESIGN OF FEEDBACK SYSTEMS WITH BACKLASH FOR
INPUTS RESTRICTED IN MAGNITUDE AND SLOPE

This chapter develops a design method for unity feedback systems comprising a backlash and

linear time-invariant convolution subsystems, where the main design objective is to ensure that the

error and the controller output stay within prescribed bounds for all time and for all possible inputs

having bounded magnitude and bounded slope. The design formulation is based on the principle

of matching, thereby explicitly considering the peak error and the peak controller output for such

a possible set. The original design inequalities are replaced with the surrogate design criteria that

are in keeping with the method of inequalities. Essentially, the backlash is replaced with a gain and

an equivalent disturbance; thus, the nominal system used during the design process becomes linear

and the associated performance measures are readily obtainable by known methods. To illustrate the

usefulness of the method, a design example is given where the plant has a time-delay.

4.1 Introduction

Consider the feedback control system displayed in Fig. 4.1, which is described by

u = gc ∗ e

e = f − us ∗ gp = f − ψ(u) ∗ gp

 (4.1)

where ψ is a backlash, gp is the impulse response of the plant and has Laplace transform equal to

Gp(s), gc is the impulse response of the controller and has Laplace transform equal to Gc(s,p), and

p ∈ Rn denotes a design parameter vector. As usual, the asterisk denotes the convolution; that is

(gc ∗ e)(t) =

∫ t

0
gc(t− τ)e(τ)dτ, t ≥ 0. (4.2)

Suppose that the input f is known only to the extent that it belongs to a possible set P (that is, the set

of possible inputs) described by

P , {f : R+→ R| ||f ||∞ ≤M, ||ḟ ||∞ ≤ D} (4.3)

where R+ denotes the half line [0,∞) and the bounds M and D are given. Notice that P ⊂ L∞,

where L∞ , {x : R+→ R| |x(t)| <∞ ∀t ≥ 0}.

It may be noted that P is suitable for characterizing persistent signals (that is, signals that vary

persistently for all time). Since L∞ includes some inputs that have stepwise discontinuities, using P

as the possible set can make the design formulation be more realistic and appropriate. For detailed

discussion, see [31, 38].
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Gc(s,p) ψ(·) Gp(s)

controller nonlinearity plant

f + e u us y

−

Figure 4.1: Feedback system with nonlinearity

Following [20–22], the problem considered here is to determine a design parameter p, and

hence the controller transfer function Gc(s,p), such that the following design criteria are satisfied.

ê ≤ Emax and û ≤ Umax (4.4)

where the bounds Emax and Umax are given and ê and û are defined by

ê , sup
f∈P
‖e‖∞ and û , sup

f∈P
‖u‖∞. (4.5)

The performance measures ê and û are sometimes called the peak error and the peak controller output,

respectively, for the possible set P . Obviously, ê and û depend upon p.

It is worth noting that the design criteria (4.4) are used to ensure that the error e and the

controller output u stay within their respective bounds Emax and Umax for all time and for all f ∈ P .

It is evident that (4.4) are equivalent to

|e(f, t)| ≤ Emax, ∀f ∈ P ∀t ∈ R+

|u(f, t)| ≤ Umax, ∀f ∈ P ∀t ∈ R+

 . (4.6)

The main objective of the chapter is to extend the results developed previously by [20, 21] so

as to enable one to determine, by numerical methods, the controller Gc(s,p) for the feedback system

(4.1) so that the criteria (4.4) are satisfied, in which ψ is a backlash and the plant Gp(s) can be a

rational or non-rational transfer function.

Note that the main results stated in [20, 21] were proved by applying Schauder’s fixed point

theorem (see, for example, [8]), while that of this work is proved by using a multivalued version of

the fixed point theorem known as Kakutani’s theorem (see, for example, [6, 40]), which was used

by [6]. In addition, the stability conditions used in [20, 21] and that in the present paper are different.

The organization of the chapter is as follows. Section 4.2 presents the main theoretical result.

Section 4.3 derives the surrogate design criteria, thereby providing practical inequalities for designing

the system (4.1) so that the original criteria (4.4) are satisfied. Section 4.4 provides the stability

conditions for ensuring that the peaks ê and û are finite, so as to enable a numerical algorithm to

search for a design solution (if exists) in the design parameter space. To illustrate the usefulness

and the potential of the developed method, a design example for a time-delay plant is carried out in

Section 4.5. Finally, the conclusions are given.
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Figure 4.2: Decomposition of the backlash

4.2 Main Theoretical Result

In this section, the main theoretical result is derived by: (i) the decomposition technique used

by [25] and [18, 20, 21], in which the backlash is replaced by a constant gain K and an equivalent

bounded disturbance, and (ii) Kakutani’s fixed point theorem. The result is stated in Theorem 4.1,

providing sufficient conditions for the satisfaction of the design criteria (4.4). The conditions will be

used in Section 3 to derive practical design inequalities that can be used for determining Gc(s,p) by

numerical methods so that the crieria (4.4) are satisfied.

Assumption 4.1. For every input f ∈ P , there exists at least a solution (e, u) that satisfy (4.1), where
e : R+ → R and u : R+ → R. All initial conditions are assumed to be zero for t ≤ 0.

Assumption 4.2. Let the backlash ψ(·) be represented by the uncertain band model ( [6])

From Assumption 4.2, it is easy to see that for a backlash with bandwidth σ (see Fig. 3.2),

||n(·)||∞ ≤ h where h = Kσ. (4.7)

In connection with the technique used in [25] and [18,20,21], if u is bounded then ψ(·) can be

decomposed as

ψ[u(t)] = Ku(t) + d[u(t)] for t ≥ 0 (4.8)

where K is a constant gain and d(·) is the equivalent disturbance (see Fig. 4.2). From (3.2) and the

decomposition (4.8), one can easily see that

d[u(t)] = n[u(t)] for t ≥ 0. (4.9)

Since ψ(·) is a multivalued function, so is d(·). From (4.7), it is obvious that

||d[u(t)]||∞ ≤ h ∀f ∈ P. (4.10)

Instead of considering the system (4.1), now we consider the system shown in Fig. 4.3, called

the auxiliary linear system, where the backlash is replaced by a fixed gain K and an equivalent

disturbance d(u). The auxiliary system is described by

u′ = gc ∗ e′

e′ = f − gp ∗ [Ku′ + d(u)]

 (4.11)
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Gc(s,p) K Gp(s)
f + e′ u′

+

y′

−

d(u)

+

Figure 4.3: Auxiliary linear system

where f ∈ P , d(u) ∈ Du and the set Du is defined by

Du , {d(u) = ψ(u)−Ku | ||u||∞ ≤ Umax} . (4.12)

Note that Du ⊂ L∞ and every element of Du depends on u for ||u||∞ ≤ Umax.

In connection with the auxiliary system (4.11), let g be the impulse response of the transfer

function from d(u) to u′, that is,

G(s) , Gp(s)Gc(s)[1 +KGp(s)Gc(s)]
−1. (4.13)

Assumption 4.3. For G(s) defined by (4.13), the impulse response g satisfies conditions that g ∈ A
and ġ ∈ A.

In the following, the relation between the systems (4.1) and (4.11) is described and can be

proved by using the technique used in [6] and [18], which is basically the application of Kakutani’s

theorem (see, for example, [40]).

Theorem 4.1. Consider the system (4.1) where û is finite, and let Assumptions 4.1, 4.2 and 4.3
hold. The original design criteria (4.4) are satisfied if, for the auxiliary system (4.11), the following
conditions hold:

ê′ ≤ Emax, ê′ , sup
f∈P,d∈Du

‖e′‖∞

û′ ≤ Umax, û′ , sup
f∈P,d∈Du

‖u′‖∞

 . (4.14)

Proof. For a function x : R+ → R and for a fixed T > 0, define

xT (t) ,


x(t), 0 ≤ t ≤ T

0, t > T

.

Also, for a given X ⊂ L∞, define XT , {xT |x ∈ X}. Define the sets of acceptable u’s and
acceptable e’s as follows.

U , {x : R+→ R| ||x||∞ ≤ Umax}.

E , {x : R+→ R| ||x||∞ ≤ Emax}.

Now consider the system (4.11), and let (4.14) hold. Consequently, it follows that e′ ∈ E and
u′ ∈ U for all f ∈ P and all u ∈ U . From (4.11), we have

u′ = −g ∗ d(u) + g1 ∗ f , Φ(u) (4.15)
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where g and g1 are respectively the impulse responses ofG(s) andG1(s) , Gc(s)[1+KGp(s)Gc(s)]
−1.

Following (4.15), define a truncated mapping ΦT : UT → 2UT for a given T > 0 and for any f ∈ PT .
It is easy to see that: (i) UT is a nonempty, closed, convex set in Banach space and ΦT is upper semi-
continuous; (ii) for all u ∈ UT , the set ΦT (u) is nonempty, closed and convex; (iii) by the compactness
of G (see [18]), the set ΦT (UT ) is relatively compact. As a result, using Kakutani’s fixed point theo-
rem (see, for example, [40]), ΦT has a fixed point that guarantees the existence of a ũ ∈ UT such that
ũ ∈ ΦT (ũ). Let ẽ : [0, T ]→ R denote the associated error. Then it follows that

ũ = gc ∗ ẽ

ẽ = f − gp ∗ [Kũ+ d(ũ)]

 . (4.16)

By the finiteness of û, (4.16) are equivalent to

ũ = gc ∗ ẽ

ẽ = f − gp ∗ ψ(ũ)

 . (4.17)

It readily follows that ũ and ẽ are also the error and the controller output of the system (4.1) for any
T > 0. The conditions ũ ∈ U and ẽ ∈ E imply that (4.4) are satisfied, and therefore the proof is
completed.

It should be noted that by virtue of Assumption 4.3, Theorem 4.1 is applicable to both lumped-

and distributed-parameter plants, that is to say, rational and non-rational plant transfer functions.

4.3 Surrogate Design Criteria

Based on the results in Section 4.2, this section develops the design criteria in the form of

inequalities that can be solved in practice by numerical methods.

From (4.12), it can be seen that the setDu cannot be readily employed in the design since every

d(u) ∈ Du depends on u. Thus, to eliminate the dependence of u, we replace d(u) with d and Du
with D where

D , {d ∈ L∞| ||d||∞ ≤ h}. (4.18)

Note that although both D and Du contain bounded signals whose magnitudes do not exceed h, all

members of D do not depend on u.

By the virtue of the linearity of (4.11), we have

ê′ ≤ sup
f∈P,d∈D

‖e′‖∞, φef + φed

û′ ≤ sup
f∈P,d∈D

‖u′‖∞, φuf + φud

 (4.19)

where
φef , sup{||e′||∞ | f ∈ P, d = 0}

φed , sup{||e′||∞ | f = 0, d ∈ D}

φuf , sup{||u′||∞ | f ∈ P, d = 0}

φud , sup{||u′||∞ | f = 0, d ∈ D}


. (4.20)
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The numbers φef , φuf can be computed by employing the method proposed in [31], in which

the impulse responses need to be calculated first. Further, from a well-known result in linear systems

theory (see, for example, [11]), it follows that

φed = h
∫∞

0 |e
′
d(δ, t)|dt

φud = h
∫∞

0 |u
′
d(δ, t)|dt

 , (4.21)

where e′d(δ, t) and u′d(δ, t) are the values of e′ and u′, respectively, at time t when f equals 0 and

d is the Dirac delta function. Hence, φed and φud can readily be computed by standard numerical

algorithms, provided that the responses e′d(δ, ·) and u′d(δ, ·) are obtained.

Next, the main result providing a useful computational tool is stated as follows.

Theorem 4.2. Consider the system (4.1) where û is finite, and let Assumptions 4.1, 4.2 and 4.3 hold.
If, for the auxiliary system (4.11), the following hold:

φ1(p) ≤ Emax where φ1(p) , φef + φed

φ2(p) ≤ Umax where φ2(p) , φuf + φud

 (4.22)

then the original design criteria (4.4) are satisfied.

Proof. First note that φef , φed, φuf , φud are functions of the design parameter p. By Theorem 4.1,
the proof follows readily from the above discussion.

From the above, it is easy to see that φ1(p) and φ2(p) are readily computable. Hence, it follows

from Theorem 4.2 that a design parameter p (that is, Gc(s,p)) satisfying the inequalities (4.22) is

also a solution of the original design problem defined by (4.4). For this reason, (4.22) are called the

surrogate design criteria.

4.4 Stability Condition

Following previous work ( [31, 32, 38, 39] and also the references therein), it is readily ap-

preciated that in solving the design inequalities (4.22) by numerical methods, a search algorithm

needs to start from a stability point (that is, a point p for which all associated performance measures

φef , φed, φuf , φud are all finite). Moreover, it is important to note that Theorems 4.1 and 4.2 require

the assumption that û is finite. Hence, a stability condition that ensures the finiteness of ê and û is

needed and will be established in the following.

From Theorem 3.2, it readily follows that to ensure the finiteness of ê and û of the system (4.1),

one needs to determine the controllerGc(s) that makes the transfer functionG(s) = Gp(s)Gc(s)[1+

KGp(s)Gc(s)]
−1 BIBO stable.

For retarded delay differential systems (which of course includes rational systems), it is well

known (see, for example, [3] and the references therein) that the system (or alternatively its transfer
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function) is BIBO stable if and only if all the characteristic roots (or alternatively all the poles of the

transfer function) have negative real parts.

Let f(s) be the characteristic function of a retarded delay differential system. Let φ0 denote

the abscissa of stability of f(s) defined by

φ0 , sup{Re(s) : f(s) = 0}.

Then it follows that the system is BIBO stable if

φ0(p) ≤ −ε where 0 < ε� 1. (4.23)

It should be noted that the inequality (4.23) can be used in practice to determine a value of p for which

the system is BIBO stable, by numerical methods. For further details, see [2, 3, 38, 39].

In this work, the abscissa of stability for retarded delay differential systems is computed by

using the method developed in [2, 3].

4.5 Numerical Example

In this section, the usefulness of the developed method is illustrated by a numerical example

which is an application arising in process control. The plant is a linear system with time delay whose

transfer function is

Gp(s) =
2e−0.2s

(s+ 1)(s+ 2)
. (4.24)

As advocated in [14, 26], the backlash phenomenon appears in the linkage mechanism in the

positioner and actuator of valves as the amount of friction increases. According to [14], a backlash

of 10% increases the peak error at load disturbance with 50%. When the backlash becomes too large,

the valve needs to be replaced. However, replacing the valve cannot be done without interrupting

the process. For this and for economical reasons, it may be better to take into account the backlash

phenomenon in the controller design process.

Assume that the backlash ψ has a unity slope and its bandwidth σ is known to the extent that it

belongs to the interval (0, 0.1].

Assume that the control objective is to keep the error e and the controller output u stay within

the ranges ±0.1 and ±10, respectively, for all time and for f ∈ P where

M = 1 and D = 0.1. (4.25)

Consequently, the design criteria are expressed as

ê ≤ 0.1 and û ≤ 10. (4.26)

By Theorems 4.2 and 3.2, a design solution p of the problem (4.26) is obtained by solving the follow-

ing inequalities:

φ0(p) ≤ 10−4, φ1(p) ≤ 0.1, φ2(p) ≤ 10, (4.27)
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Figure 4.4: Simulation results with the controller (4.28) and the backlash with different values of
bandwidth .

which are solved by using the numerical search algorithm called the moving boundaries process

(MBP) (see [39] and also [38]) in this work. Alternatively, other algorithms for solving a set of

inequalities may be used (see [38] and the references therein for details).

According to Assumption 4.3 and Theorem 3.2, it is required that the transfer function G(s,p)

be strictly proper and BIBO stable and that the composite transfer functionG2(s,p) be strictly proper.

The controller transfer function Gc(s,p) should be chosen so that all these requirements are fulfilled.

In computing φ1 and φ2, the impulse responses of the system need to be obtained (see Section

3). In this connection, such responses are evaluated by efficient and reliable algorithms described

in [2, 4], which are based on Zakian IMN approximations.

It should be noted that, among all the possible controllers satisfying the requirements, the one

with simple structure is usually preferred. Therefore, designers should begin with a simple one first.

After exhaustive searches with first- and second-order controllers, it was found that a solution

could not be located. Thus, a third-order controller of the form

Gc(s,p) =
p1(s2 + p2s+ p3)

(s+ p6)(s2 + p4s+ p5)
(4.28)

is to be used where p = [p1, p2, p3, p4, p5, p6]T ∈ R6 is the design parameter to be determined.

After a number of iterations, a design solution p is found where

p = [915.694, 3.107, 2.382, 47.96, 632.51, 0.011]T (4.29)
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and the corresponding performance measures are

φ0 = −1.5491, φ1 = 0.0999, φ2 = 1.5770. (4.30)

To verify the performance of the obtained controller, a test input f is generated randomly so that its

magnitude and its slope do not exceed the bounds given in (4.25). The backlash used in the simulation

has a unity slope with different values of bandwidth σ = 0.02, σ = 0.05 and σ = 0.1. The waveform

of f and the responses of the system are shown in Fig. 4.4. The simulation results clearly show that

the error and the controller output responses stay within the specified bounds.

4.6 Conclusions

This chapter has developed a practical method for designing a controller Gc(s) for the system

(4.1) so as to ensure the error e and the controller output u stay within the ranges±Emax and±Umax,

respectively, for all time and for all possible inputs f ∈ P . The useful decomposition (4.8) replaces

the backlash with a constant gain and a bounded disturbance. Theorem 4.1 provides an essential

basis for Theorem 4.2 to develop the design inequalities that are more computationally tractable

than (4.4). Accordingly, a solution of the original design problem (4.4) is obtained by solving the

surrogate design criteria (4.22), which is associated with the auxiliary linear system subject to the

inputs f ∈ P and d ∈ D and whose associated performance measures are readily obtainable by known

methods. The inequalities (4.22) are used in conjunction with (4.23) so as to enable a numerical

algorithm to search for the solution in the space of design parameters. Since the linear subsystems

are represented by using the convolution, the method developed in this work is applicable to both

lumped- and distributed-parameter plants as long as Assumption 4.3 holds. The simulation results

have illustrated the usefulness of the proposed method.



CHAPTER V

ROBUST CONTROLLER DESIGN FOR FEEDBACK SYSTEMS
WITH UNCERTAIN BACKLASH AND PLANT UNCERTAINTIES
SUBJECT TO INPUTS SATISFYING BOUNDING CONDITIONS

This chapter develops a method for designing unity feedback systems where an uncertain linear

time-invariant plant is in cascade connection with an uncertain backlash and a controller. The design

problem considered is to determine a robust controller so as to ensure that, despite plant uncertain-

ties, the error and the controller output stay within prescribed bounds for all time and for all inputs

satisfying given bounding conditions. In essence, the backlash is replaced with a constant gain and a

bounded disturbance, thereby resulting in an auxiliary uncertain linear system. Then, by applying the

multi-valued version of the fixed-point theorem and the extended version of the theory of majorants,

we derive a practical condition in the form of inequalities that can be solved in practice. Further

we show that if such inequalities are satisfied for a chosen nominal system, then the original design

problem is solved. The usefulness of the method is illustrated by a design example where the plant

has a time-delay.

5.1 Introduction

Backlash exists in many practical applications, and it has long been known that it can severely

limit system performance. Moreover, the model of a backlash is often not known accurately, and the

plant often has uncertainties in its parameters.

There are several ways to alleviate, or ideally eliminate, undesirable effects of backlash on the

performance of the system. One among them is to design an adaptive controller for the system (see,

for example, [29]). However, this approach often results in a complicated controller. An alternative

way is to design a robust controller where the uncertainty of the backlash is taken into account (see,

for example, Barreiro and Baños 2006). The advantage of this method is that although there may

be a certain amount of conservatism, the controller obtained (if exists) is much simpler and easier to

implement.

The purpose of this chapter is to develop a computational method for designing a robust con-

troller for feedback systems in which an uncertain backlash model and the plant uncertainties are

explicitly taken into account in the design formulation. Moreover, in the formulation, all inputs that

can happen or are likely to happen in practice are explicitly taken into account as a set of functions

that satisfy bounding conditions.

Specifically, the chapter considers the feedback control system displayed in Fig. 5.1, which is
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described by

u = gc ∗ e

e = f − us ∗ gp = f − ψ(u) ∗ gp, Gp(s) ∈ Gp

 (5.1)

where ψ is a backlash, gp is the impulse response of the plant and has Laplace transform equal to

Gp(s), gc is the impulse response of the controller and has Laplace transform equal to Gc(s,p), and

p ∈ Rn denotes a design parameter vector. Assume that the plant has uncertainties such that Gp(s) is

known to belong to a set Gp.

The backlash ψ(·) in the system (5.1) is described by the uncertain band model ( [6]).

Now assume that the input f is known only to the extent that it belongs to a possible set P

(defined as the set of inputs that can or are likely to happen in practice). For clarity, assume that the

possible set P considered throughout the chapter is defined by

P , {f : R+→ R| ||f ||∞ ≤M, ||ḟ ||∞ ≤ D} (5.2)

where the boundsM andD are given. However, it is important to note that the method to be developed

is applicable to any possible set of bounded signals. For different ways of characterizing the possible

set and the detailed discussion on this, see [31, 38] and the references therein.

The design problem considered in the chapter is to determine a design parameter p (or equiva-

lently the controller transfer function Gc(s,p)) such that the following design criteria are satisfied:

sup
Gp∈Gp

ê ≤ Emax and sup
Gp∈Gp

û ≤ Umax (5.3)

where the bounds Emax and Umax are given. The numbers ê and û are sometimes called the peak

error and the peak controller output, respectively, for the possible set P and defined by

ê , sup
f∈P
‖e‖∞ and û , sup

f∈P
‖u‖∞. (5.4)

Clearly, ê and û depend upon p and the plant Gp(s).

Note further that the criteria (5.3) are equivalent to

|e(f, t)| ≤ Emax, ∀f ∈ P ∀t ∈ R+ ∀Gp(s) ∈ Gp

|u(f, t)| ≤ Umax, ∀f ∈ P ∀t ∈ R+ ∀Gp(s) ∈ Gp

 . (5.5)

It is evident that once (5.3) are satisfied, one can ensure that despite the plant uncertainties, the

variables e and u lie within the respective bounds ±Emax and ±Umax for all time and for all inputs

in the possible set P .

Gc(s,p) ψ(·) Gp(s) ∈ Gp

controller backlash plant

f + e u us y

−

Figure 5.1: Uncertain feedback system with backlash
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G1(s) G2 ∈ G2

f + v1 v2

+−

d

+

Figure 5.2: An uncertain linear system with two inputs.

The key tools used in the chapter are the multivalued version of the fixed point theorem which

is known as Kakutani’s theorem (see, for example, [6]) and the extended version of the theory of ma-

jorants ( [18,22,34,38]). By decomposing the backlash as a constant gain and a bounded disturbance

( [25]), we obtain an auxiliary linear system with uncertainties. Then, by applying the multi-valued

version of the fixed-point theorem and the extended version of the theory of majorants, we derive a

practical condition in the form of inequalities that can be solved in practice. Further we show that if

such inequalities are satisfied for a chosen nominal system, then the original design problem is solved.

The organization of the chapter is as follows. Section 5.2 recapitulates the version of the the-

ory of majorants that was extended by [22]. Section 5.3 derives the surrogate design criteria, thereby

providing practical inequalities for designing the system (5.1) so that the original criteria (5.3) are

satisfied; this is indeed the main contribution of the chapter. Section 5.4 provides the stability con-

ditions for ensuring that the associated performance measures are finite, so as to enable a numerical

algorithm to search for a design solution in the space of design parameters. To illustrate the usefulness

and the potential of the developed method, a design example for a time-delay plant is carried out in

Section 5.5. Finally, the discussion and conclusions are given.

5.2 Theory of Majorants for Uncertain Linear Systems

The theory of majorants ( [33,34,37,38]) has been used for the design of robust control systems

in [7,27,28]. The theory have been extended by [22] (see also [18]) in a straightforward manner to the

case of uncertain linear feedback systems with inputs f and d (see below). The following summarizes

the theory to used in Section 5.3.

Consider the uncertain linear system that is described by

v2 = v1 ∗ g1

v1 = f − g2 ∗ (d+ v2), G2(s) ∈ G2

 , (5.6)

where Gp(s) belongs to a set of plant transfer functions Gp (see Fig. 5.2). As before, the Laplace

transforms of g1 and g2 are G1(s) and G2(s), respectively. The inputs f and d are assumed to belong

to the sets P and D, respectively, where

D , {d ∈ L∞|||d||∞ ≤ h}. (5.7)

Let the nominal system be obtained by replacing G2(s) in the the system (5.6) by a fixed
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G1(s) G∗2(s)
f + v∗1 v∗2

+−

d

+

Figure 5.3: The nominal system for the system (5.6).

transfer function G∗2(s) (see Fig. 5.3). Therefore, the nominal system is given by

v∗2 = v∗1 ∗ g1

v∗1 = f − g∗2 ∗ (d+ v∗2)

 . (5.8)

Define the peak outputs for the systems (5.6) and (5.8) as follows.

v̂i , sup
f∈P, d∈D

||vi||∞

v̂∗i , sup
f∈P, d∈D

||v∗i ||∞

 , i = 1, 2, (5.9)

In regard to the nominal system (5.8), the following theorem provides a useful sufficient con-

dition for ensuring

sup
G2∈G2

v̂i ≤ Vi (i = 1, 2) (5.10)

where the bounds V1 and V2 are given.

Theorem 5.1 ( [22]). Let v∗i (t, 1) is the value of v∗i at time t when the input f is the unit step function
1 and d is zero. Define

µ̃i , A|σi|+B||v∗i (1)− σi||1, σi = lim
t→∞

v∗i (t, 1), (5.11)

where

A = sup{||z||1 : G2 ∈ G2}, z = g2 − g∗2

B = sup{|z(0)|+ ||ż||1 : G2 ∈ G2}

 . (5.12)

Suppose that the nominal system (5.8) is BIBO stable, and let µ̃1 < ∞ and µ̃2 < 1. The design
criteria (5.10) are satisfied if

φ̂i ≤ Vimax, i = 1, 2, (5.13)

where
φ̂i ,

v̂∗i + µ̃ih

1− µ̃2
. (5.14)

Now let G1(s) = G1(s,p) be characterized by a design parameter vector p. [34, 37, 38] advo-

cates that in solving the inequalities (5.13) by numerical methods, the numbers v∗i , σi and µ̃i have to

be computed repeatedly for different values of p. However, it is clear from (5.12) that the numbers A

and B do not depend on G1(s) and thus need to be computed only once.

From the above, one can see for a chosen nominal transfer function G∗2(s), the condition (5.13)

provides useful inequalities for determining G1(s) by numerical methods so that the criteria (5.10)

are satisfied.
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Gc(s,p) K Gp(s) ∈ Gp
f + e′ u′

+

y′

−

d

+

Figure 5.4: The auxiliary linear system for the system (5.1).

5.3 Design of Uncertain Nonlinear System

This section develops the design criteria in the form of inequalities that can be solved by nu-

merical methods for the uncertain nonlinear system (5.1) to satisfy (5.3). Indeed, Theorems 5.2 and

5.3 are the main contribution of the chapter.

Assumption 5.1. For every input f ∈ P , there exists at least a solution (e, u) that satisfy (5.1), where
e : R+ → R and u : R+ → R. Assume that all initial conditions are zero for t ≤ 0.

Assumption 5.2. Let the backlash ψ(·) be represented by the uncertain band model (3.2).

By using the decomposition technique (4.8) (see [25]), the backlash is replaced by a constant

gain and an equivalent disturbance. Thus, we obtain the auxiliary system displayed in Fig. 5.4 and

described by

u′ = gc ∗ e′

e′ = f − gp ∗ [Ku′ + d], Gp(s) ∈ Gp

 , (5.15)

where f ∈ P , d ∈ D and the set D is defined by

D , {d ∈ L∞| ||d||∞ ≤ h}. (5.16)

Note that the decomposition (4.8) is valid when û is finite.

Next, define the peak values of e′ and u′ for each Gp(s) ∈ Gp as follows.

ê′ , sup
f∈P, d∈D

||e′||∞, and û′ , sup
f∈P, d∈D

||u′||∞ (5.17)

In connection with the system (5.15), let g be the impulse response of the transfer function

from d to u′; that is,

G(s) , Gp(s)Gc(s)[1 +KGp(s)Gc(s)]
−1. (5.18)

Assumption 5.3. For G(s) defined by (5.18), the impulse response g satisfies the conditions that
g ∈ A and ġ ∈ A for every Gp(s) ∈ Gp.

The following theorem reveals that a design solution associated with the auxiliary system (5.15)

is also a solution to the original design problem (5.3).

Theorem 5.2. Consider the system (5.1) where û < ∞. Let Assumptions 1, 2 and 3 hold. The
original design criteria (5.3) are satisfied if, for the auxiliary system (5.15), the following conditions
hold:

sup
Gp∈Gp

ê′ ≤ Emax, sup
Gp∈Gp

û′ ≤ Umax. (5.19)
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Gc(s,p) K G∗p(s)
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Figure 5.5: The nominal system for the uncertain system (5.15).

From Theorem 5.2, it readily follows that a solution to the inequalities (5.19), which is asso-

ciated with the uncertain linear system (5.15), is also a solution to the inequalities (5.3). However,

the inequalities (5.19) are not suitable for solution by numerical methods because the computation of

supGp∈Gp ê
′ and supGp∈Gp û

′ is intractable. Therefore, (5.19) will be replaced by readily computable

inequalities to be derived by using Theorem 5.1.

Consider the nominal system shown in Fig. 5.5 where f ∈ P, d ∈ D and G∗p(s) denotes the

nominal transfer function for Gp(s) ∈ Gp.

Assume that the nominal system is BIBO stable. Consequently, the following limits exist

σ1 , lim
t→∞

e∗(t, 1), σ2 , lim
t→∞

u∗(t, 1), (5.20)

where e∗(t, 1) and u∗(t, 1) are the values of e∗ and u∗ at the time t in response to the inputs f = 1(t)

and d(t) = 0. Define

µ̂1 , A|σ1|+B||e∗(1)− σ1||1

µ̂2 , A|σ2|+B||u∗(1)− σ2||1

 , (5.21)

where
A = sup{||z||1 : Gp ∈ Gp, z = gp − g∗p}

B = sup{|z(0)|+ ||ż||1 : Gp ∈ Gp}.

 . (5.22)

Let ê∗ and û∗ denote the peak values of e∗ and u∗ and be given by

ê∗ , sup
f∈P, d∈D

||e∗||∞, û∗ , sup
f∈P, d∈D

||u∗||∞. (5.23)

The sufficient conditions for ensuring the satisfaction of the inequalities (5.19) is stated as

follows and this is the main contribution of the chapter.

Theorem 5.3. Consider the system (5.1) where û < ∞. Let Assumptions 5.1, 5.2 and 5.3 hold.
Assume that the nominal system in Fig. 5.5 is BIBO stable and that µ̃1 and µ̃2 defined in (5.22) are
finite. The inequalities (5.19) for the auxiliary system (5.15), and hence the criteria (5.3), are satisfied
if µ̃2 < 1 and if

φ̂e ≤ Emax, where φ̂e ,
ê∗ + µ̃1h

1− µ̃2

φ̂u ≤ Umax, where φ̂u ,
û∗ + µ̃2h

K(1− µ̃2)

 . (5.24)
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For the possible setP in (5.2), the formulae for computing φ̂e and φ̂u are given in the following.

Since ê∗ and û∗ are the peak outputs of the nominal linear system, which has no uncertainty, one can

easily deduce by the superposition ( [22]) that

ê∗ = φef + h||e∗d(δ)||1, û∗ = φuf + h||u∗d(δ)||1, (5.25)

where e∗d(δ) and u∗d(δ) are the responses of e∗ and u∗, respectively, subject to the inputs d(t) = δ(t)

and f(t) = 0, and

φef , sup
f∈P, d=0

||e∗||∞, φuf , sup
f∈P, d=0

||u∗||∞. (5.26)

It should be noted that φef and φuf can be computed by using method developed in [31]. Therefore,

the values of ê∗ and û∗ can be readily obtained in practice.

From the above, it is easy to deduce that

φ̂e = (h||e∗d(δ))||1 + φef + hµ̃1)/(1− µ̃2)

φ̂u = (hK||u∗d(δ))||1 +Kφuf + hµ̃2)/K(1− µ̃2)

 . (5.27)

Therefore, the design problem now becomes the problem of determining a design parameter p satis-

fying

φ̂e(p) ≤ Emax

φ̂u(p) ≤ Umax

 , (5.28)

with the constraint µ̃2(p) < 1. It should be noted that, if there is no pole-zero cancellation, µ̃2(p) < 1

implies that µ̃1(p) is finite.

From the above discussion, it is easy to see that φ̂e and φ̂u can be obtained numerically in

practice. Thus, the inequalities (5.28) are called the surrogate design criteria.

5.4 Stability Conditions

In solving the design inequalities (5.28) by numerical methods, a search algorithm needs to

start from a stability point (that is, a point p for which the associated performance measures φ̂e and

φ̂u are finite).

It is important to note that Theorems 5.2 and 5.3 require the assumption that û is finite in order

to guarantee the validation of the decomposition of ψ. Hence, a stability condition that ensures the

finiteness of ê and û is needed. In additon, Theorem 5.3 also requires the nominal system to be BIBO

stable.

The following reveals that the BIBO stability of the auxiliary linear system (5.15) implies that

of the original nonlinear system (5.1).

Theorem 5.4. Consider the nonlinear system (5.1). Let Assumptions 5.1, 5.2 and 5.3 hold. Define
the composite transfer function G2(s) , Gc(s,p)Gp(s). For every Gp(s) ∈ Gp, let G2(s) be strictly
proper and suppose that gc ∈ A where gc is the impulse response of Gc(s,p). Then it follows that the
responses u and e are bounded for any f ∈ P .
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Proof. Note that Assumption 5.3 implies that the transfer function

G(s) = Gp(s)Gc(s)[1 +KGp(s)Gc(s)]
−1

is BIBO stable for every Gp(s) ∈ Gp. Then by extending the Theorem 3.2 in Chapter 3 to the case of
(5.15), theorem is obtained.

From Theorem 5.4, it readily follows that to ensure the finiteness of supGp∈Gp ê and supGp∈Gp û

for the system (5.1), one needs to determine the controller Gc(s) that makes the transfer function

G(s) = Gp(s)Gc(s)[1 +KGp(s)Gc(s)]
−1 BIBO stable for every Gp(s) ∈ Gp.

For retarded delay differential systems (which of course includes rational systems), it is well

known (see, for example, [3] and the references therein) that the system (or alternatively its transfer

function) is BIBO stable if and only if all the characteristic roots (or alternatively all the poles of the

transfer function) have negative real parts. Let f(s) be the characteristic function of a retarded delay

differential system. Let φ0 denote the abscissa of stability of f(s) defined by

φ0 , sup{Re(s) : f(s) = 0}.

Then it follows that the system is BIBO stable if

φ0(p) ≤ −ε where 0 < ε� 1. (5.29)

It should be noted that the inequality (5.29) can be used in practice to determine a value of p for

which the system is BIBO stable, by numerical methods. For further details, see [2, 3, 38, 39]. In this

work, the abscissa of stability for retarded delay differential systems is computed by using the method

developed in [2, 3].

5.5 Numerical Example

In this section, we consider a case study in process control system where the plant has time

delay.

As shown in [14, 26], in process control systems, wear (or erosion) leads to the appearance of

the backlash phenomenon in the linkage mechanism in the positioner and actuator of valves. Accord-

ing to [14], it is reported that a backlash of 10% increases the peak error at load disturbance with

50%. When the backlash becomes too large, the valve needs to be replaced. However, replacing the

valve cannot be done without interrupting the process. For this and for economical reasons, it may be

better to take into account the backlash phenomenon in the controller design process.

Consider an uncertain plant with time-delay whose transfer function is described by

Gp(s) =
ae−0.2s

s2 + bs+ 2
, a ∈ [2.5, 3.5], b ∈ [2.9, 3.1]. (5.30)

The backlash is assumed to have a unity slope and its bandwidth is only known to the extent that it

is in the interval (0,0.1]. Assume that the control objective is to keep the error e and the controller
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output u staying within the bounds ±0.2 and ±10, respectively, for all time and for all inputs f ∈ P

where

M = 1 and D = 0.1. (5.31)

Accordingly, the design criteria are expressed as

φ̂0(p) ≤ −0.01, µ̃2(p) ≤ 0.5, φ̂e(p) ≤ 0.2, φ̂u(p) ≤ 10, (5.32)

where

φ̂0 = sup{φ0 : a ∈ [2.5, 3.5], b ∈ [2.9, 3.1]}. (5.33)

It is worth noting that from (5.27) one can see that if µ̃2(p) is close to 1, then the values of φ̂e(p)

and φ̂u(p) become very large. Therefore, any p that makes the value of µ̃2(p) close to 1 will be

automatically eliminated by the search algorithm.

The nominal plant transfer function G∗p(s) is chosen with

a = 3 and b = 3. (5.34)

According to Assumption 5.3 and Theorem 5.4, it is required for every a ∈ [2.5, 3.5] and

every b ∈ [2.9, 3.1] that the transfer function G(s,p) be strictly proper and BIBO stable and that the

composite transfer function G2(s,p) be strictly proper. All these requirements can be fulfilled only if

Gc is chosen to be a proper transfer function.

In order to compute φ̂e and φ̂u, the impulse responses of the system need to be obtained (see

Section 3). In this example, we use the efficient and reliable algorithms described in [2, 4], which are

based on Zakian IMN approximations, to evaluate such responses. Furthermore, the design inequal-

ities are solved by using a numerical search algorithm called the moving boundaries process (MBP)

( [37–39]).

After exhaustive searches with first order controllers, no solution was found. Thus, a second-

order controller which has the form

Gc(s,p) =
p1(s2 + p2s+ p3)

s2 + p4s+ p5
(5.35)

is to be tried where p = [p1, p2, p3, p4, p5]T ∈ R5 is the design parameter to be determined.

After a number of iterations, a design solution p is found where

p = [6.770, 2.860, 1.901, 12.127, 0.010]T (5.36)

and the corresponding performance measures are

φ̂0(p) = −0.969, µ̃2(p) = 0.273,

φ̂e(p) = 0.199, φ̂u(p) = 1.191.
(5.37)

To verify the performance of the obtained controller, a test input f is generated randomly so that

its magnitude and its slope do not exceed the bounds given in (5.31). The waveform of f and the

responses of the system are shown in Fig. 5.6. The simulation results clearly show that the error and

the controller output responses stay within the specified bounds.
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Figure 5.6: Simulation results with the controller (5.35) and the backlash with different values of
bandwidth in the range (0, 0.1] and the parameters a = 2.5(0.1)3.5, b = 2.90(0.02)3.10

5.6 Discussion and Conclusions

This chapter has developed a practical method for designing the feedback control system (5.1).

The control objective is to ensure that the error e and the controller output u stay within the prescribed

ranges ±Emax and ±Umax, respectively, for all time and for all inputs f ∈ P in the presence of

uncertainties appearing in both the backlash and the plant. The backlash is decomposed using the

technique due to [25]. By using Kakutani’s theorem (see, for example, [6]) in conjunction with

the extension of the theory of majorants in [22], the chapter has developed computationally tractable

design inequalities (5.28) associated with a chosen nominal system. Since the nominal system is linear

and has no uncertainty, the performance measures are readily computed by known methods. Since

the plant is represented by using the convolution, the method developed in this work is applicable

to both lumped- and distributed-parameter plants as long as Assumption 5.3 holds. The simulation

results have illustrated the usefulness of the proposed method.

The method developed in the chapter is applied to the design of a robust controller for process

control systems where backlash characteristics appear in the linkage mechanism in the actuator of

valves. Taking the uncertain backlash into account is an advantageous alternative solution since

replacing the valve in which the backlash becomes too large is not feasible all the time, especially

when the system is in operation.

It is interesting to note that, unlike design methods based on a direct cancellation that requires

the backlash to be at the plant input ( [6]), the approach used in developing the design method in the
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chapter can be applied to the cases where the backlash is at the output of the plant (see [21]).



CHAPTER VI

CONCLUSIONS

6.1 Contributions

The contributions of the thesis are as follows.

First, we have developed a practical method for determining stabilizing controllers by numer-

ical methods based on the result that for any input such that the two norm of the product of its slope

and an increasing exponential function is finite, if the linear subsystem satisfies a Popov inequality

for a sector bound and if the slope of the hysteresis lies within the same sector bound, then the out-

puts of the system are ensured to be finite for all time. The usefulness of the method is illustrated by

numerical methods.

Second, we also consider the BIBO stability of nonlinear feedback systems with backlash de-

scribed by the uncertain band model (see, for example, [6]). It is shown that, the BIBO stability of the

nonlinear system with backlash is guaranteed by guaranteeing the BIBO stability of the corresponding

auxiliary linear system ( [6]).

Third, we develop a design method for unity feedback systems comprising a backlash describ-

ing by the uncertain band model and linear time-invariant convolution subsystems, where the main

design objective is to ensure that the error and the controller output stay within prescribed bounds for

all time and for all possible inputs having bounded magnitude and bounded slope. The design for-

mulation is based on the principle of matching, thereby explicitly considering the peak error and the

peak controller output for such a possible set. The original design inequalities are replaced with the

surrogate design criteria that are in keeping with the method of inequalities. Specifically, the design

procedure is as follows.

1. Replacing the backlash ψ with a constant gain K and a bounded disturbance d ∈ Du results in

the corresponding auxiliary linear system.

2. Using Kakutani ’s fixed point theorem to prove that the original design problem of the nonlinear

system can be replaced by that of the auxiliary linear system.

3. Replacing the set Du with a more tractable set D.

4. If the plant transfer function is known accurately, then the surrogate design criteria are obtained

by the virtue of the linearity of the auxiliary system. If the plant is vague, we need to replace

the auxiliary system with the nominal one by using the extension of Zakian’s majorants. After

this step, the surrogate design criteria are obtained by the virtue of the linearity of the nominal

system.
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5. The surrogate criteria are in keeping with the method of inequalities and suitable for solving by

numerical methods.

The usefulness of the method has been illustrated by some numerical examples.

6.2 Future works

The work can be extended in some directions as follows.

First, the design method is also applicable to the case where the plant has a backlash at the

output. It is similar to that work [20] ( see also [18]).

Second, the design method proposed in Chapters 4 and 5 for the input set P is applicable

to the input set considered in Chapter 2. This is because the method to compute the peak outputs

of linear systems in [31] is applicable to many possible sets defined with many (two or more than

two) bounding conditions on the two or/and infinity norms of the inputs and their slopes. See [31]

for details. However, it should be noted that, in that case, the stability conditions to guarantee the

finiteness of the error e and the controller u are different. To be more specific, we have to use the

Popov-like conditions developed in Chapter 2 instead.

Third, the nonlinearity ψ(·) can be generalized to some classes of hysteresis that satisfy some

conditions as discussed in the following. The condition for the function n(·) of the uncertain-band

model of backlash (3.2) to guarantee that the Theorem 4.1 holds is that n(·) is upper semi-continuous.

For the backlash, n(·) is defined as n(·) = [−h, h] which is trivially upper semi-continuous. If we

can define n(·) in a more complicated way but still ensure that n(·) is upper semi-continuous, then

we may describe the characteristics of some hysteresis with this model, and it follows that the design

method developed here may be applicable to the systems having those classes of hysteresis.
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[14] T. Hägglund, “Automatic on-line estimation of backlash in control loops,” Journal of Process Con-

trol, 17, (2007): 489–499.

[15] S. Kodama and H. Shirakawa, “Stability of nonlinear feedback systems with backlash,” IEEE

Trans. Automat. Contr., AC-13, 4, (1968): 392–399.



46

[16] L. P. Lecoq and A. M. Hopkin, “A functional analysis approach to L∞ stability and its ap-

plication to systems with hysteresis,” Electron. Res. Lab., Univ. California, Berkeley,

Tech. Memo. ERL-M269, 1970.

[17] L. P. Lecoq and A. M. Hopkin, “A functional analysis approach to L∞ stability and its application

to systems with hysteresis,” IEEE Trans. Automat. Contr., AC-17, 3,(1972): 328–338.

[18] V. S. Mai, Design of Feedback Control Systems with a Sector-bounded Nonlinearity Using Zakian’s

Framework, MEng thesis, Chulalongkorn Univeristy, Bangkok, 2010.

[19] V. S. Mai, S. Arunsawatwong and E. H. Abed, “Input-output stability of Lur’e systems with inputs

satisfying bounding conditions on magnitude and slope,” Proc. 7th ECTI Conference,

Chiang Mai, Thailand, 2010.

[20] V. S. Mai, S. Arunsawatwong and E. H. Abed, “Design of nonlinear feedback systems with inputs

and outputs satisfying bounding conditions,” Proc. of IEEE Multi-Conference on Systems

and Control, Pacifico Yokohoma, Japan, (2010): 2017–2022.

[21] V. S. Mai, S. Arunsawatwong and E. H. Abed, “Design of feedback systems with output nonlinear-

ity and with inputs and outputs satisfying bounding conditions,” Proc. of SICE Annual

Conference, Taipei, Taiwan, (2010): 1586–1591.

[22] V. S. Mai, S. Arunsawatwong and E. H. Abed, “Design of uncertain nonlinear feedback systems with

inputs and outputs satisfying bounding conditions,” 18th IFAC World Congress, Milan,

Italy, (2011): 10970–10975.

[23] M. Nordin and P.-O. Gutman, “Controlling mechanical systems with backlash - a survey,” Automat-

ica, 38, (2002): 1633–1649.

[24] J. Oh, B. Drincic and D. Bernstein, “Nonlinear feedback model of hysteresis,” IEEE Control Systems

Magazine, 11, (2009): 100–119.

[25] S. Oldak, C. Baril and P. O. Gutman, “Quantitative design of a class of nonlinear systems with

parameter uncertainty,” International Journal of Robust Nonlinear Control, 4, (1994):

101–117.

[26] M. A. A. Shoukat Choudhury, N. F. Thornhill and S. L. Shah, “Modelling valve stiction,” Control

Engineering Practice, 13, (2005): 641–658.

[27] O. Taiwo, “Two studies of robust matching,” in Control Systems Design: A New Framework, ed.

V. Zakian, Springer-Verlag, London, (2005): 339–353.

[28] O. Taiwo, “The design of robust control systems for plants with recycle,” Int. J. Contr., 43, (1986):

671–678.



47

[29] Tao, G. and Kokotovic, P.V., “Adaptive control of system with unknown output backlash,” IEEE

Trans. Autom. Contr., 40, (1995): 326–330.

[30] M. Vidyasagar, Nonlinear Systems Analysis, 2nd ed, Englewood Cliffs, Prentice-Hall, New Jersey,

1993.

[31] W. Silpsrikul and S. Arunsawatwong, “Computation of peak output for inputs satisfying many

bounding conditions on magnitude and slope,” Int. J. Contr., 83, 1, (2010): 49–65.

[32] V. Zakian, “New formulations for the method of inequalities,” Proc. Instn. Elect. Engrs, 126, (1979):

579–584.

[33] V. Zakian, “A criterion of appropximation for the method of inequalities,” Int. J. Contr., 37,(1983):

1103–1111.

[34] V. Zakian, “A Framework for Design: Theory of Majorants,” Control Systems Centre Report 604,

UMIST, Manchester, 1984.

[35] V. Zakian, “Critical systems and tolerable inputs,” Int. J. Contr., 49, 4, (1989): 1285–1289.

[36] V. Zakian, “Well matched systems,” IMA J. Math. Control Inform., 8, (1991): 29–38.

[37] V. Zakian, “Perspectives of the principle of matching and the method of inequalities,” Int. J. Contr.,

65,(1996): 147–175.

[38] V. Zakian, Control Systems Design: A New Framework, Springer-Verlag, London, 2005.

[39] V. Zakian and U. Al-Naib, “Design of dynamical and control systems by the method of inequalities,”

Proc. Instn. Elect. Engrs, 120, (1973): 1421–1427.

[40] E. Zeidler, Nonlinear Functional Analysis and its Application, Springer-Verlag, New York, 1986.



APPENDICES



APPENDIX A

Lemma 7.1 ( [18]). LetX , {x ∈ L∞ | ||x||∞ ≤ C} where C is a finite number. For a given T > 0,
define the convolution operator over XT , denoted as H , given by

Hx(t) =

∫ T

0
h(t− τ)x(τ)dτ. (7.1)

If h, ḣ ∈ A, then H is compact.

For the sake of completeness, the proof is given as follows.

Proof. In order to prove Lemma 7.1, we need the following theorems.

Theorem 7.1. Let X and Y denote normed spaces and H : X −→ Y be a linear operator. Then H
is compact if and only if it maps every bounded sequence {xn} in X onto a sequence {Hxn} in Y
such that {Hxn} has a convergent subsequence.

Theorem 7.2. If F is a set of functions defined, equicontinuous and uniformly bounded on a bounded
closed set, then from every sequence fn ∈ F it is possible to select a uniformly convergent subse-
quence.

Assume h, ḣ ∈ A. Consider a sequence {xn} ∈ XT and define the sequence {yn} as follows.

yn(t) = Hxn(t). (7.2)

For any x ∈ XT , it readily follows that

|
∫ T

0
h(t− τ)x(τ)dτ | ≤

∫ T

0
|h(t− τ)||x(τ)|dτ ≤ C

∫ ∞
0
|h(τ)|dτ. (7.3)

Since h ∈ A, there exists a finite number M such that
∫∞

0 |h(τ)|dτ < M . Thus,

||y||∞ = sup
t≥0
|
∫ T

0
h(t− τ)x(τ)dτ | ≤MC. (7.4)

Therefore, {yn} is uniformly bounded on [0, T ] for any T > 0. Next, we will prove that {yn} is
equicontinuous. For any t1, t2 ∈ [0, T ] and any k > 0, let ∆t , t1 − t2 and consider

lim
∆t→0

|yk(t1)− yk(t2)| ≤ lim
∆t→0

∫ T

0
|h(t1 − τ)− h(t2 − τ)||xk(τ)|dτ

≤ lim
∆t→0

C|∆t|
∫ ∞

0
|ḣ(τ)|dτ ≤ lim

∆t→0
C|∆t|M1 = 0.

(7.5)

Therefore, {yn} is equicontinuous by definition.
Since [0, T ] is a bounded and closed set, {yn} has a convergent subsequence according to

Theorem 7.2. Then, by applying Theorem 7.1, it follows that the operator H is compact.
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Proposition 7.1. Consider the system shown in Figure 2.6. If u̇1 ∈ N2 and if the impulse response
gc ∈ A , then ˙̃u1 ∈ N2.

Proof. Since u̇1 ∈ N2, there exists σ1 > 0 such that eσ1tu̇1 ∈ L2. Since gc ∈ A , there exists σ2 > 0

such that eσ2tgc ∈ L1. Choose σ = min(σ1, σ2) and consider

eσt ˙̃u1 = eσt(gc∗u̇1) = eσt
∫ t

0
gc(t−τ)u̇1(τ)dτ =

∫ t

0
gc(t−τ)eσ(t−τ)eστ u̇1(τ)dτ = [eσtgc]∗[eσtu̇1]

(7.6)
Since eσtgc ∈ L1 and eσtu̇1 ∈ L2, from a well-known fact (see, for example, [11]), it is easy to
see that eσt ˙̃u1 ∈ L2, which means that there exists a positive σ such that eσt ˙̃u1 ∈ L2. Hence,
˙̃u1 ∈ N2.
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