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CHAPTER 1
INTRODUCTION

1.1 General

To date, stress intensity factor (SIF), which characterizes the magnitude of the singular
stress field in the vicinity of crack tip, is still a significant problem in fatigue and fracture
analysis of steel structures. By applying linear elastic fracture mechanics (LEFM), the
static strength of cracked steel structures, as well as the fatigue crack growth rate under
cyclic loading condition, can be calculated if SIF value is known. For steel structures,
the I-beams play an important role due to their extensive applications. It is therefore

essential to study the fracture behavior in structural I-beams with crack.

Many researchers have attempted to find the SIF of cracked structural I-beams.
Nevertheless, the effects of crack surface interference (non-overlapping behavior) were
commonly neglected in the analyses of these existing studies. Consequently, the SIF
at the tension-side crack tip, as well as the crack opening displacement (COD) profile,
which can be significantly influenced by non-overlapping crack surfaces, have not been

studied.

This present research will fulfill the gaps in knowledge by performing a finite element
analysis (FEA) of the stress intensity factors for cracked I-beams with non-overlapping
crack surfaces. The finite element method was selected to simulate the crack behavior
in l-beams. The non-overlapping models utilizing the commercial finite element
program ANSYS were used to investigate various configurations of structural I-beams
under in-plane bending. The analyses were based on linear elastic fracture mechanics.
The J-integral method was subsequently applied to calculate the SIF values at the
crack tips. The contact elements were employed to include the non-overlapping

behavior of the crack.
1.2 Research objectives and scope

The objectives of this study are: (1) to perform a finite element analysis to develop a

physically acceptable stress intensity factor solutions for structural I-beams that
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contain through-thickness cracks; (2) to evaluate the effect of non-overlapping
behavior on the opening-mode (mode |) stress intensity factors at the tension-side
crack tips; (3) to investigate the effects of various parameters: the normalized web

crack length, the flange-to-web area ratio and the normalized crack eccentricity.
The scope of this research was as follows

The analyses of non-overlapping models were based on linear elastic fracture

mechanics (LEFM).
The W- shapes in the Manual of steel construction were selected.

The opening-mode (mode 1) correction factor solutions for structural I-beams with
through-thickness cracks under bending were calculated at tension-side crack tip. The

crack configuration is a two tip crack in the web of W-shape.

The three-dimensional (3D) finite element analyses were performed with various
parameters: the normalized web crack length, the flange-to-web area ratio and the
normalized crack eccentricity. Besides, the effects of the parameters depth-to-width
ratio on the correction factor and the magnitude of the applied load on the COD

profile are also examined.
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CHAPTER 2
LITERATURE REVIEW

2.1. Stress intensity factors for finite-width cracked plates with overlapping crack

surface

Overlapping SIF of commonly finite-width cracked plates, which are subjected to
tension or bending, are presented in this section. Figure 2.1 illustrates the

configurations of the finite-width plates.

a a a
| — — | ——
/4 /4

Figure 2.1. Configurations of the finite-width plates: (a) Center-cracked plate under tension;

(b) edge-cracked plate under bending

The SIF solution is expressed as
K =f(1)ora (2.1)
where f(4) : correction factor of the SIF

o :remote axial or bending stress, MPa

A =alW : normalized crack length

a: crack length, mm



The functions f(A) are listed in the Table 2.1.

Table 2.1. Correction factors for center-cracked and edge cracked plates

Description

A center-cracked
plate under

tension

A edge-cracked
plate under

tension

A edge-cracked
plate under

bending

Reference

Irwin [1]

Koiter [2]

Brown [3]

Fedderson

[4]

Tada et al.

[5]

Brown [3]

Tada et al.

[5]

Brown [3]

Tada et al.
[5]

—tan—

—tan—

1-0.51+0.324°
1-4

1+0.1281-0.2884% +1.525.°

A
SeC—
V2
i

(1-0.00254% +0.061%), |sec 5

1.122 -0.2314 +10.5504% — 21.7104° + 30.3824"

3
0.752+2.024+0.37 [1—Sin ﬁ;j
T

2 Ccos 711
2

1.122 -1.404 +7.334° —13.084° +14.04"

/1 4
0.923+O.199[1—sin ”j
TT. 2

2 CcOosS ﬂi
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2.2. Stress intensity factor for cracked I-beams

Greif and Sanders [6] initially studied the problem of the cracked plate with zero-
flexural-stiffness edge stiffeners under tensile loading. The plane stress analysis was
conducted using the complex variable approach of Muskhelishvili to derive an integral

equation which is then solved by numerical method, e.g. Simpson’s rule.

Subsequently, the same problem including both axial and flexural rigidities was
investigated by /sida [7]. The method was based on the Laurent expansions of the
complex stress potentials. The perturbation technique was applied to determine their

coefficients from the boundary conditions. The studied problem shown in Figure 2.2.

1’“ As, Is
! I
|
R |
/ =— -— H — T
- - —

—

Figure 2.2. Centrally cracked strip with stiffened edges [7]
The stress intensity factors K, were obtained by 36 term power series of A% in the

following equations

K, =TzaF(a, 5, 1) (2.2)
35

F(a,B,4)=1+) C, A" (2.3)
n=1

where a = (E,/E).(I, /b’) : dimensionless inertia parameter
L =(E,/E).(A /Dbt) : dimensionless extensional rigidity
A, : sectional area of stringer
I,: moment of inertia of stringer section for in-plane bending
A =alb :crack ratio

and the coefficients ¢, ,C, ,... are functions of & and B .
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It was noted that the constraining effect, which is characterized by the dimensionless
parameters a and B, became pronounced for a long crack when the crack tip was
close to the stiffeners.

Of the two researches of Greif and Sanders [6] and Isida [7], the dimensionless
extensional rigidity of stringers, which is the cross-sectional area ratio of the stiffener-
to-plate, was the major factor affecting the stress intensity factor around the crack tip.
As the unstressed edge stiffeners were assumed, it is impossible to apply these solution
to I-beams.

Kienzler and Hermann [8] studied the stress intensity factors for cracked beams with
a rectangular cross section and different crack geometries, using the conservation laws
and elementary beam theory. Based on the remarkably applicable method in this
study, several researchers have investigated the stress intensity factors of various cross-
sectional shapes with many different loading conditions, e.g., Hermann and Sosa [9],
Gao and Hermann [10], Dunn et al. [11], Muller et al. [12], Ricci and Viola [13], Ghafoori
and Motavalli [14]. Of these studies, Dunn et al. [11] utilized an extension work of
Kienzler and Hermann [8], associated with dimensional considerations and a finite
element calibration to investigate the SIF of I-beams under a bending moment. Figure

2.3 illustrates the geometry of the cracked |-beam.

L [

Ju( } )

w/2

a

S
w/2

Figure 2.3. Geometry of the cracked I-beam [11]



15

The following dimensionless terms were utilized to compute the K; values

. K th*? a t w
K :—I y =—, =, - 24
T oM & n S 0 S N (2.4)

where K| : Non-dimensional loading variable.
&, &, and &, @ Non-dimensional geometric variables.

The non-dimensional stress intensity factor was represented as follows:

K, = Jﬂf{ L L } (2.5)
41-E) +R(E.E.E) 1+A-E)E D)
where

G-5)[6——20-&)] 3A0-2)a-&+g(5-20-0Ff

R(&1&504) = > T salg-20-8)]-8)

Besides, they also proposed a simple procedure to estimate the non-dimensional
parameter B, using solutions from Equation (2.4) to Equation (2.6) fitted with the finite

element results. The numerical solution for B is given as

P& 8,0 8;) =116, %% 2.7)

More recently, Xie et al. [15-17] proposed another approach called G*-integral method,
based on conservation laws and the concept of crack mouth widening energy release
rate, to calculate the SIF of cracked structures. Based on the G*-integral method,
Ghafoori and Motavalli [14] investigated the analytical solution of the SIF for cracked
steel I-beams subjected to both bending and tension loadings, as shown in Figure 2.4.
The analytical solution of the SIF for a plane strain condition, utilizing G*-integral

method, can be obtained as

N (M-vN) ; 1
K,_H T +N(21+/12)+Mc(nl+n2)]—tw(1_vz)} (2.8)

where v : Poisson’s ratio

J.om 7/! J-”m yoaonm= J.Om Yo = J. | (7) (2.9)
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Figure 2.4. A half-length cracked I-beam; Y. is the movement of the neutral axis for a crack

length of a. x-z is the plane of the symmetry of the beam. [14]

2
t
y and u are given by y:% and y:%: 1—[—f]

b and C: position of intersection between the lower and upper edges of bottom

flange and the elliptic hole, respectively.

A (7) and A,(7): area of cracked section for 0 < x<cand c<x<b,

respectively.

I,(7) and 1,(y): moment of inertia of cracked section for 0 < x < cand

C < X <D, respectively.

Beside the analytical approaches, numerical techniques were also efficient ways to
investigate the SIF solutions of cracked I-beams. Tian et al. [18] performed a three-
dimensional SGBEM (Symmetric Galerkin Boundary Element Method)-FEM to compute
the mixed mode SIF varied through the crack front and fatigue crack growth rate in

cracked |-beams. Mixed mode SIFs were examined for the I|-beams with an inclined
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crack in the web or a slant edge crack in the flange subjected to torsion loading (Figure

2.5).

h_
al
al
al
al

}

O
c
o

———— N

<

Figure 2.5. Schematics of I-beams: (a) With an inclined crack in the web; (b) with a slant edge

crack in the flange subjected to torsional forces. [18]

In recent years, an extensive amount of researches focused on the application of
advanced composites, e.g. carbon fiber-reinforced polymer (CFRP), as an apparently
effective method to enhance the load capacity and fatigue life of steel |-beams.
Hmidan et al. [19, 20] developed the three dimensional finite element solution for the
SIFs of cracked steel girders (W-shapes) strengthened with carbon fiber-reinforced
polymer (CFRP) sheets under bending. Figure 2.6 shows the W-shape geometry and
strengthening details.

The SIF solutions for cracked W-shape girders with and without CFRP strengthening

were proposed as follows

K, =Y (1,¢)o./7a, foran un-strengthened W-shape (2.10)
K, =Y(4,¢,w,n)ofra, fora CFRP-strengthened W-shape (2.11)

Where K, : mode | stress intensity factor, N/mm??

Y : correction factor of the SIF
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o : remote stress of the un-cracked section subjected to tension, MPa

ao: the depth of the crack, mm

A=A, A, : Flange-to-web ratio, where A; and A, are the cross-sectional
area of the flange and the web, respectively.

¢ =a,/h : Normalized crack depth.

w = A | A : CFRP-to-steel area ratio, where A, and A, are the cross-sectional
area of the CFRP and steel, respectively.

n=E, I E; : CFRP-to-steel modular ratio, where E; and E; are the elastic

modulus of the CFRP and steel, respectively.

0.25L
I—1
\ .
];?x
zZ
| |
VAN
L=10d
(@)
ey
S
fw
S
br be=b, be=0.5b,

(b) (a) (d)

Figure 2.6. W-shape details: (a) Geometry; (b) un-strengthened; (c) full-flange strengthened; (d)
half-flange strengthened. [20]
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Correction factors of stress intensity factors
- Un-strengthened W-shape
Y(1,8)=4.69-32.55¢ +2.831—2.63¢A —0.364% +47.12¢* —0.061°¢ +8.96°4
(2.12)
- Strengthened W-shape
Y(4,¢,w)=c +C, ¢ +CA+Cp +Cwd+Cly +C,¢A
+Cp 7 +C A% +C & +C AW +CLp A (2.13)
+ClW +CuWA? +C el + 0w+ C A
where ¢; to ¢;7 are curve-fitting coefficients, as shown in Table 2.2.
On the other hand, previous experimental researches of steel bridge details under
faticue loadings were investigated by Fisher et al. [21, 22]. It was pointed out that the
origination of fatigue cracks usually starts at the welded details. For the steel I-beams
with transverse stiffeners welded on the web, the two-tip web cracks can be formed
at the bottom end of the stiffener, with upper crack tip A and lower crack tip B growing
up and down the web, respectively. Because of the eccentricity of two-tip web cracks,
the SIFs at the upper and lower crack tips are usually unequal. The two-tip web crack
propagated gradually before the lower tip grew across the flange width to form a three-
tip crack in I-beam. It was noted that three-tip cracks are usually symmetric in I-beams.
Figure 2.7 shows the stages of fatigue crack in the |-beam with a stiffener welded to

the web.

Stage 1 \‘> Stage 3

Stage 2

I\ [ ) |

Figure 2.7. Stage of fatigue crack growth in a stiffener welded to the web [23]




Table 2.2. Coefficients of correction factors for A = 0.91 to 2.01. [20]

Coefficient

Cia

0.75

0.26

4.37

2.18

211.78

-53.98

-1393.84

2.32

-18.930

-0.29

-3.01

-163.31

8999.36

62279

-19.91

0.47

637.47

-3.48

Full flange
n=E,IE,
1.125
0.65
3.21
2.01
138.27
-94.37
-1218.76
1.69
-12.166
-0.17
-2.88
-104.23
10289.00
42164
-18.29
0.37
749.62

-3.18

15

0.87

2.48

1.95

59.03

-107.88

-1042.38

1.00

-3757

-0.13

-2.71

-60.94

7704.27

29930

-10.49

0.29

731.56

-2.59

0.75

0.16

5.72

2.07

272.72

-88.74

-1516.15

1.96

-20.518

-0.21

-3.41

-140.74

8445.87

70.234

-10.14

0.40

583.85

-3.19

Half flange
n=E,IE,
1.125
0.84
4.48
1.52
111.82
-25.46
-1352.67
1.52
-10746
0.02
-3.28
-53.41
7856.95
46901
-38.34
0.28
716.72

-3.16

20

1.5

0.69

3.65

2.14

85.09

-148.50

-1161.49

0.67

-903.73

-0.20

-2.97

-0.79

6121.60

30528

4.04

0.37

726.77

-2.84

Albrecht et al. [23] developed the SIF solutions for two-tip web cracks and symmetric

three-tip cracks in I-beams under tension or bending. Figure 2.8 illustrates cross-

sectional information of cracked |-beams.
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Figure 2.8. Cross-sectional information of cracked I-beams:

(a) Two-tip web crack; (b) symmetric three-tip crack. [23]

The SIF solution for a two-tip web crack subjected to tension or bending was proposed
to be
KAB = fAB(A4,,& B)ora, (2.14)
where a,,: a half of the web crack length, mm
o : tensile or bending stress at the junction of the web and flange, MPa

The SIF solution for a symmetric three-tip crack subjected to tension or bending was
proposed to be
K" = (4,2, ,ﬂ)aﬁ (2.15)
where

a, and a, : Web crack length and flange crack length, respectively, mm
The normalized parameters in Equations (2.14) and (2.15) are defined as follows:
- The normalized crack eccentricity: e =e/(d; /2) (two-tip web crack)
- The normalized flange crack length: A, =a, /(b,/2)
- The normalized web crack length for two-tip web crack (2.16a) and three-tip crack

(2.16b):

i (a)
A, =4 d;/2-e (2.16)
a,/d;  (b)

- The flange-to-web area ratio: g =2A; 1 A,
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Correction factors of stress intensity factors
- Two-tip web crack
fA%(A,,& B) =a, +ae+a,Be+ae” +a,h, +a.fpA, +a.el,
+a A’ +a,Bel, +a,Ble+a, fe’ +a A, p (2.17)
+apd,e” +a A +aued,”

where a, —a,, are regression coefficients given in Table 2.3.

- Symmetric three-tip crack

(@, +3,8+8,5° +a,4, +8sA, +8A + 2,4, +aA{ +aA] +8,PAA +ay AL, +a, AL + 3B
(L+ay, f+af’ +agh, +an Ay +ads + a6l + i +ay Al +8, A4 +8BAsk +2,PAA¢ +a,fAAL)

fr! (ﬂw,lf,ﬂ)z

(2.18)

where a, —a,, are regression coefficients given in Table 2.4.
It was shown that the flange-to-web area ratio £, which accounts for the constraining
effect of the flange on two-tip web cracks and the interaction effect on the three-tip

web cracks, can sufficiently characterize W shapes in the calculation of SIF.

2.3. Stress intensity factors for cracked plates with non-overlapping crack surface

The non-overlapping problem was first studied by Paris and Tada [24], which was

applied for a central crack in an infinite plate under bending, as shown in Figure 2.9.

al

1
[O)
V]
l><

Figure 2.9. Infinite center-cracked plate under bending after crack closure [24]
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By superimposing the solutions of bending and uniform tension cases, the analytical
solution of SIF, as well as the crack closure length, were determined with assumption
that the SIF was zero at the compression-side crack tip.

It was found that b=a/2 with zero SIF for the new crack tip at X=—a, where b is
the eccentricity of the new crack.

The stress intensity factor K at the tension-side crack tip was obtained as follow

2 |2
Kot = 3 \/ng \J7a =0.5440,\/7a (2.19)

Table 2.3. Coefficients for two-tip web cracks in I-beams [23]
Coefficient Tension Bending

Upper crack tip | Lower crack tip = Upper crack tip | Lower crack tip

Qo 1 1 0 0

ai -0.07184 -0.03591 1.02395 1.02052
a 0.05916 0.03257 -0.02824 -0.03142
az 0.07266 0.01609 -0.02660 -0.02841
a4 0.16801 0.17113 -0.51095 0.48403
as -0.15810 -0.17469 -0.00309 -0.02169
as -0.09645 0.00540 0.66587 -0.19538
az 0.13248 0.19882 0.02106 0.10116
ag 0.11124 0.10355 -0.03243 -0.02670
g -0.01464 -0.01573 0.00337 0.00206
aio -0.03299 0.00399 0.02660 0.03282
an 0.04288 0.05901 0.00483 0.01704
a -0.14373 -0.13149 -0.14302 -0.20652
ais -0.09648 -0.16125 -0.01281 -0.06069

a4 -0.03380 -0.27916 -0.04610 -0.28079
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Table 2.4. Coefficients for symmetric three-tip cracks in I-beams [23]

Coefficient

ai

az

as

as

as

as

ar

as

ag

aio

ain

aiz

ais

ai4

azis

azie

aiz

ais

azig

azo

azi

aze

azs

az4

azs

Web crack tip

0.82991
-0.67499
0.21031
5.48154
-7.24174
6.51764
-1.22688
2.27070
-0.04335
-3.53419
5.23305
1.11541
-2.53266
-0.67489
0.19608
9.15477
-13.48190
10.74853
-2.99836
5.46394
-2.86079
-6.27909
10.41571
3.65483

-7.95641

Tension

Flange crack tip

1.48266
0.29636
0.07549
4.44880
2.74806
-8.92438
-9.01819
10.67798
-2.79219
39.40912
-33.56530
-32.7345
30.52621
0.31779
0.08256
2.56783
-6.28871
3.32973
-6.42741
8.44963
-2.83403
38.11440
-35.78230
-38.73570

36.97307

Web crack tip

0.82922
-0.58551
0.16098
3.18865
-1.92470
-5.45652
-0.87320
1.30689
0.75006
1.92329
-1.28348
-2.84890
3.09458
-0.67725
0.17624
7.93375
-0.68127
1.25324
-2.47185
4.36222
-2.15147
-3.59192
11.11301
1.49894

-11.80580

Bending
Flange crack tip

1.39283
0.06970
0.04610
3.37633
-2.78526
-1.04763
-7.16218
9.95421
-3.94745
24.63084
-20.37830
-19.76580
18.05231
0.14847
0.04106
1.27056
-3.72795
2.41420
-5.07106
7.53843
-3.33554
23.75073
-20.20160
-23.70230

20.59509
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Bowie and Freese [25] developed an exact solution of SIF for cracks in an infinite plate
under bending by modifying the Muskhelishvili method (Figure 2.10). A combination of
Modified Mapping Collocation (MMC) and finite element methods was used to
determine the non-overlapping SIF solution of cracks in the finite-width plate. It was
indicated that the classical solution underestimated the SIFs at crack tip in tension by
approximately 9% for both infinite and finite-width plates.

The SIFs at the tension-side crack tip B were shown in the following formulae
Kg=(T/2)L¥sin’«

(2.20)
K, =—(T /2)L*?sin’ acosa

where Kz and K, are stress intensity factors for mode | and mode Il, respectively.

The effective crack length 2L/3 after crack closure was then obtained. For the center-

cracked infinite plate under bending, the effective SIF was given by
K =T(2L/3)**sin’a
Kit =-T(2L/3)**sin* acosa

It is clearly seen that K, / K& = K, / KL =2(2/3)** =~1.09.

(2.21)

(@) (b)

Figure 2.10. Non-overlapping model of center-cracked infinite plate under bending. (a) Original
crack; (b) newly formed crack (after closure) [25]
For a crack in the finite-width plate as shown in Figure 2.11, where a closed-form
cannot be found, the SIF solution was determined by using the Modified Mapping

Collocation (MMC) method combined with the finite elements.
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Figure 2.11. Non-overlapping model of a strip under bending. (a) Original crack; (b) newly formed
crack (after closure) [25]

Woo et al. [26] used a collocation method to obtain the SIF solutions of a finite-width

plate under bending, as shown in Figure 2.12(a).

For each step of this process, the crack tip in compression that has negative SIF value

changed its position closer to tension-side crack tip. If the crack tip in compression

reached the zero SIF value, the procedure would be ended. Figures 2.12(b) and 2.12(c)

i+1
1B

illustrate this process. With the assumption that K3~ =0, the approximate crack length
a,, inthe 1+1 step is given by
Kifl o Ki )
I (2.22)
KIB - KIB

The actual value of K;;*was then calculated. If K|i* 0, the procedure repeated

again until K; differed from zero by acceptable error.
It was found that the effective length of crack was reduced by 30% and correction
factor at tension-side crack tip increased by more than 30% in comparison with

classical solutions.

Albrecht and Lenwari [27] proposed a closed-form solution for the infinite plate under
linear stress distribution using superposition principle for the overlapping solutions.
Figure 2.13 and Figure 2.14 show the non-overlapping model of a center-cracked

infinite plate under in-plane bending and linear stress distribution, respectively.
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< A B | . = A_Jolop B | |
o 2a [ * o 2a1 *
2a
2b 2b
(@ (b)
SIF
2ai-1
2ai
(0)
X
2ai+1 \
Klll\
Kis

(o)
Figure 2.12. A finite-width plate under bending. (a) Original crack; (b) newly formed crack (after

closure); (c) Crack length at each step [26]

(a) (b)

Figure 2.13. Non-overlapping model of center-cracked infinite plate under in-plane bending. (a)

Original crack; (b) newly formed crack (after closure) [27]
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Based on the superposition principle, the effective SIF at the crack tip A was obtained

by applying the necessary condition K;. =0 for a physically acceptable solution.

Kaer = 0'; za' -I—%\/ﬂa' =0.5440,7a' (2.23)

where a'=2a/3 , o,=0,/3 and o, =20,/3

The crack closure length ¢ =2a/3 was also determined in this process.

This solution of the effective stress intensity factor at the crack tip A totally coincides
with the result given by Paris and Tada [24].

The effective SIF solution at the tension-side crack tip A was given by
O_' 2 3/2
Ky et z[oi;l +?b]\/7ra z{g(s +1)} o,Nra (2.24)

where a'=§(s+1)a, a;=%(s+1)ab and o-l;zg(s+1)0'b

s =0,/ o, : The axial-to-bending stress ratio.

(a) (b)
Figure 2.14. Non-overlapping model of center-cracked infinite plate under linear stress
distribution. (a) Original crack; (b) newly formed crack (after closure). [27]
A further calculation using the weight function method was conducted to obtain the
SIF solution for finite-width plate under polynomial stress distribution. The plate

configuration is shown in Figure 2.15.
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The m-degree form of polynomial stress distribution was as follow

o(X) = D, (x/W)" (2.25)
0

The crack tip SIF solution was then represented as
K ={Z DmF(E,ﬂ,m):|U\/7Ta' (2.26)
0

where & =e /W : the normalized crack eccentricity
A=a'l(W —e): the normalized crack length

m : the polynomial degree; m =0 for axial, m=1 for bending ...

F (&, A, m): correction factor for the SIF

AN
W,

—_— s O R ey

B B A
(]1_ Va4

2w

Figure 2.15. Configuration of center-cracked finite-width plate under polynomial stress

distribution. [27]

By applying the necessary condition K, =0 or z D, F(e,A,m) =0, the effective SIF
0

solution was determined as following expression
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K, = Z D, F (&, 2, m)aW \[z(a/W —c/ (2W) (2.27)

It was found that the classical solution underestimated the SIF at tension-side crack

tip at maximum 15% for the finite-width plate subjected to in-plane bending.
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CHAPTER 3
THEORETICAL BACKGROUND

This chapter presents a brief description of theoretical concepts that relate to the
research problem. The particular attentions are given on linear-elastic fracture
mechanics (especially the stress intensity factor), the J- Integral method and the non-
overlapping problem (crack surface interference).

3.1. Linear-elastic fracture mechanics

The fundamental of linear elastic fracture mechanics (LEFM) is one of the most
essential concepts in fracture mechanics.

Stress analysis of crack

Considering a linear elastic body subjected to external loading, the closed-form
solutions can be derived for the certain crack configurations. Such solutions were first
studied by Irwin [1]. In the defined polar coordinate system as shown in Figure 3.1, the

stress field for any linear elastic cracked body is represented by

— L - S m/2 _(_m)
Gij _K\/Fj fl] (9)+mZ:OAnr gu (0) (31)

where Oy stress tensor;

k : constant value

f; : non-dimensional function of @
It is obvious that stress field in the vicinity of the crack tip varies with 1/ \/F . The stress
singularity is described in Equation (3.1) since stress field approaches infinity when
r—0.
The stress fields near crack-tips can be divided into three basic types, each associated
with a local mode of deformation as illustrated in Figure 3.2. The superposition of
these three modes is sufficient to describe the most general three-dimensional case
of local crack-tip deformation and stress fields. Modes | and mode Il can be regarded

as two-dimensional plane-extensional problems (opening and in-plane shear). Mode IlI

can be analyzed as the two-dimensional pure shear (or torsion) problem.
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Figure 3.1. The coordinate system at a crack tip. [28]

The stress intensity factor

The constants k and f; depend on the mode of deformation and change
proportionally with the level of applied load. For convenience, constant k can be
replaced by the stress intensity K = ky2r . Consequently, the stress fields around a

crack tip in an isotropic linear elastic body can be expressed as

K
limoy” = T' f1(6) (3.2)
r- 7Z-r

K
limo;" = TM £(0) (3.3)
~ zr

for Mode |, Il and I, respectively.

The stress intensity factors (K, , K, and K,;, ) which are not functions of coordinates
represent the strength of the stress fields surrounding the crack tip that can be used
to predict the failure of a cracked structure. The SIFs depend on the geometries as
well as the loading conditions of the body. Consequently, all components of stress,
strain and displacement can be determined as a function of r and @ when the SIF is
known. For this reason, the crack tip SIF is one of the most important concept in
fracture mechanics.

The singular stress field expressions for Mode | and Mode |l are given in Table 3.1.
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Mode Il Mode Il

Figure 3.2. The three basic modes of crack extension. [5]

Table 3.1. Linear elastic, isotropic stress fields around the crack tip for Mode | and

Mode Il [28]

xy

2z

T

xz !

Mode |

ro(chi2]

el )

)

0 (Plane stress)

v(c, +o,) (Plane strain)

yz

Note: v is Poisson’s ratio.

Mode Il

ool oe(gol2]
ol (5ol
ool o(gef2]

0 (Plane stress)

v(o, +o,) (Planestrain)

Displacement field expressions for Mode | and Mode I are represented in Table 3.2.
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Table 3.2. Linear elastic, isotropic displacement fields for Mode | and Mode Il [28]

Mode | Mode Il

UX KI r o . 0 K r. 0 2 0
— ., |—cos| — || k=1+2sin"| — — [—sin| — || k+1-2cos’| —
2u\2rx 2 2 2u \ 2z 2 2

u, K [r (6 (0 K, [r 0 (0
—.[—sin| — || k+1-2cos" | — ——.,]—cos| — || k—=1+2sIin"| —
2u\2x 2 2 2u\2rx 2 2

Note: g is the shear modulus, k = 3—4v (plane strain) and K = (3 - V)(1+ V) (plane stress)

Table 3.3 lists the out-of-plane stress and displacement components for Mode Il
Table 3.3. Out-of-plane components of linear elastic, isotropic stress and

displacement in Mode Ill [28]

K||| H (9)
7, =~ sin| —
N 271 2

o
T = Ccos
g \2xr ( 2)

2K, [r . (0)
U, =—-—,/—sin| —
H \2r 2

The J contour integral

Rice [29] proposed a path-independent contour integral, J contour integral,
for the analysis of cracks. It was shown that the value of J - integral is path-
independent of integration around the crack tip. Consider an arbitrary counter-

clockwise path (I") around the crack tip, as illustrated in Figure 3.3. The - integral is

given by
ou.
J=||wdy-T. —ds 3.5

where
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W= J.:j O'ijdgij : strain energy density, N/mm?

T

i =oyN;: the components of the traction vector, N

o;; andg;: the stress and strain tensors, respectively, MPa
n;: the components of the unit vector normal to I"
U, : displacement vector components, mm

ds : the length increment along the contour I", mm

Crack

Figure 3.3. Arbitrary contour around the tip of a crack. [28]

The relationship between stress intensity factor K and J - integral is represented as

follows
2 2 2
J= %+%+% (3.6)
U
where

K,, K, and K,, : stress intensity factors for mode I, Il and Ill, respectively, N/mm??

E'=E for plane stress, MPa

E'=

5 for plane strain, MPa

1-v
E : Young’s modulus, MPa
Vv : Poisson’s ratio

4 : shear modulus
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3.2. Non-overlapping crack (crack surface interference)

y

o,=px/a

x=-a/3

\ a

v(x,0)/(pa/E’)

Figure 3.4. The center-cracked infinite plate subjected to in-plane bending. [5]

Table 3.4. Summarized solutions of the infinite plate under in-plane bending. [5]

Overlapping behavior Non-overlapping behavior
Mode | 1 Kixears =0
K..=*=pvra 3/2
SIF e T2 K,y = (%) pV7a = 0.5443pza
Stress
2
o X 1
variatio |X| (aj _E y
0 near | o, (0)=pll i@l 2 Gy(x,o)zg(x_éj [x+a/3
X>a X (Xj x<—al3,x>a a 3 X—a
the — | -1 ’
a
crack tip
2 (Dp-(2) 202 (3
COoD 2 )= 12| 1-] 2| 2v(X,0)=—.| X+— X+— [(a—X
V\g\l(a ) E' [aj (a} —a/(SSXSa) ' 3 3 (
profile
Crack )
: 2 pa’ 47\ 2pa
opening = A= —
P A<>0 SE. ( 9 J 3E.
area

In linear elastic fracture mechanics (LEFM), the negative values of both the stress

intensity factors and the crack opening displacements (COD) at the crack tips were
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usually predicted by the classical solutions that allow crack surfaces to overlap. Due
to the impenetrability of the continuous material, the overlapping solutions are not
acceptable in physical viewpoint and, consequently, solutions involving negative SIF
are not valid by themselves. This leads to the assumption of non-overlapping behavior
in which prevent the penetration of crack surfaces and accept a part of crack length
to close. The SIF at the tension-side crack tip as well as the COD profile are then
influenced by such crack closure.

Based on [5], some general traits of non-overlapping crack are given below

- The stress variation on the closed crack near the new compression side crack tip and
COD profile of the crack surfaces are in the form of a parabola (ocr?) and a semi-
cubical parabola (oc r¥?), respectively (Table 3.4).

- K, =0 at the new crack tip in compression is a necessary condition for an acceptable
solution in physical viewpoint, that produces the finite stresses and a smooth COD of
the surfaces at that tip. (Figure 3.4).

- Once the crack surfaces closed, they became a part of the continuum body and
might be negligible in the subsequent analysis of crack.

- The non-overlapping crack surface naturally increased the SIF at the tension-side
crack tip as well as the crack opening area. For the center-cracked plate under in-plane
bending, K, and the crack opening area became 2(2/3)** =1.089 and 47/9=1.396
times, respectively, to the overlapping solutions.

- A compression side crack tip did not necessarily close. In Fig 3.4, it is clearly seen that
K, >0 when the left tip was still in the compression region (—a/3<Xx<0) and the
crack, thus, remained open.

- Referring to Figure 3.5, it is evident that the final geometry of cracks is unique (i.e.,
the positions of the cuspidal ends, regardless of the level of the applied load. For the
linearly varying o, at infinity (in-plane bending), the proportional loading is determined
when the position of zero crossing of o, (i.e., the axis of moment) is fixed. Figure 3.5a
obviously shows that both tips of the crack are in the tensile region and the crack
surfaces are always open. In Figure 3.5b, the left crack tip is in compressive region, but
the compression side crack length is less than one-third of the tension side crack (

a,<a, /3), and the surfaces of the crack still remain open. When a,>a, /3 (Figure
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3.50), the cuspidal end is always formed at x=—a, /3. The position of the cuspidal
end is uniquely determined by the length on the tension side, regardless of the level
of the applied load, or the presence of cracks in Xx<—a, /3. Only the COD profile
changes proportionally to the applied load.

-
y Uy/4
A |
7 /
7~
7~
_ 7~
-a/3 =
— o a; X
e
7~
A
7~
7~
-~ -
7~
-
-
(a) Gl —
~S——

(b) £ 0N
S

(©) N

ay/3 at

Figure 3.5. The “unique geometry” of cracks under proportional loads. [5]
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CHAPTER 4
DEVELOPMENT OF FINITE ELEMENT MODEL

4.1. Finite element model

The commercial finite element program ANSYS was employed to simulate the non-
overlapping behavior of steel I-beams containing a crack on the web, as shown in
Figure 4.1. The J-integral method was employed to calculate the mode | SIFs of cracked
steel I-beams. Eventually, the obtained SIFs were normalized with applied stress and
crack length to determine the correction factors. This chapter describes the detailed
information of the FEM model such as element type, geometry and boundary

conditions of the W-shapes.

by
o
tW
Z B f
2 I O
!
| o
2 i
| 1
1 ]

VX
Figure 4.1. Coordinate and symbols for two-tip web crack in I-beam

4.1.1. W-shape details

Table 4.1 lists the W-shapes selected in this research. The W-shapes were chosen from
the Manual of Steel Construction [30], with the range of the flange-to-web area ratio
(f=2A;1A,) from 0.83 to 2.11; where A;and A, are the cross-sectional areas of

the flange and the web, respectively.

The isotropic linear elastic material represented the constitutive behavior of steel was

used, including the elastic modulus of 200 GPa and the Poisson’s ratio of 0.3.
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Table 4.1. W-shapes used in finite element analysis. [30]
Flange-
to-web Depth-
Equivalent to- d; t, by tr
area W-shape . Type
; SI W-shape ~ width (mm) (mm) (mm) (mm)
ratio
ratio
Y:;
Y

0.83 Wa40X149™°  W1000X222 3.16 948.9 16 300 21.1 1
0.83 W24x62° W610X92 3.28 587 10.9 179 15 2
1.00 WA0X167°  W1000X249 3.18 953.8 16.5 300 26.2 -
1.13 WA0X294°  W1000X438 31202 981 26.9 305 49 2
1.13 W36X194°°  W920X289 2.92 895 19.4 307 32 1
1.31 W24xX94 % W610X140 2.59 594.8 13.1 230 22.2 2
1.31 W21x83° W530X123 2.47 522.8 13.1 212 21.2 1
1.50 W40X324°  W1000X483 2.41 974 254 404 46 -
1.68 W24X117°¢  W610X174 1.83 595.4 14 325 21.6 1
1.68 W30X173°  W760X257 1.95 744.8 16.6 381 27.2 2
1.92 W21X122°¢  W530X182 1.67 526.6 15.2 315 24.4 1
1.92 W27X281°  W690X419 1.9 695 26.9 366 49 2
2.11 W21X201°  W530X300 ol 542.6 23.1 320 41.4 -

*W-shapes for validation of the finite element model.

®W-shapes for validation of parameter /3 .

“W-shapes for parametric study.

Notes: - B = 2A, | A, is the flange-to-web area ratio.

-y =d, /b, is the depth-to-width ratio.

Flange-to-web area ratio and depth-to-width ratio

The relationship between the flange-to-web area ratio () and the depth-to-width

ratio () of all 273 W-shapes listed in The Steel Construction Manual [30] is showed

in Figure 4.2. Each data point represents one W shape. Almost 60% of the data points

are in the range of £ values from 1 to 2.

Five pairs of the cracked W-shapes, specified by the footnote b in Table 4.1, were

chosen to assess the effect of the parameter depth-to-width ratio y . Each pair has the
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same S value but different y values. Type 1 denotes the W-shapes with lower depth-

to-width ratio in comparison with Type 2 (Figure 4.2).

The overlapping and non-overlapping SIF solutions at the lower crack tip were
calculated with the combination of: g = 0.83, 1.13, 1.31, 1.68 and 1.92; 4, = 0.3 and
0.7, €= 0. For both overlapping and non-overlapping behaviors, the difference
between the shapes in each type was less than 1% (Table 4.2) that is similar to the

conclusion of Albrecht et al. [23].

It is apparent that the effect of the depth-to-width ratio was not significant and the
flange-to-web area ratio could be sufficient to characterize the W- shapes for both

overlapping and non-overlapping behaviors.

3.5
3.0 4
O AISC
—— Typel
O 254
<
=
2 20-
8
=
g 15
a
©)
Range of the chosen © @0
1.0 A W-shapes O o ) %@
B,n=0.83 Bra=2-11
05 T T T T T T
0.5 1.0 15 2.0 25 3.0 35 4.0

Flange-to-web area ratio,

Figure 4.2. Relationship between 3 and y of AISC W-shapes. [30]



Table 4.2. Effect of the depth-to-width ratio to the correction factor

a2

Correction factor at lower crack tip Difference %
Flange
Depth Albrecht ANSYS ANSYS
_to_
-to- et al. solution solution
web A
W-shape | width [23] Overlapping Non-
area
ratio Fur overlapping
ratio
B e
(M) (N) ©) (N-M)/M
Wa0x149 0.3 0.1479 0.1429 0.1989 -3.4
3.16
(A) 0.7 0.3593 0.3510 0.4730 -2.3
0.3 0.1479 0.1429 0.1989 -3.4
0.83 W24x62 (B) 3.28
0.7 0.3593 0.3507 0.4723 -2.4
Difference % 0.3 0.0 0.0
(B-A)/A*100 0.7 -0.1 -0.1
W36x194 0.3 0.1473 0.1424 0.1664 -33
2.92
© 0.7 0.3529 0.3466 0.4033 -1.8
Wa0x294 0.3 0.1473 0.1424 0.1662 -3.4
1.13 3.22
(D) 0.7 0.3529 0.3459 0.4019 -2.0
Difference % 0.3 -0.1 -0.1
(D-C)/C*100 0.7 -0.2 -0.3
0.3 0.1474 0.1421 0.1660 -3.6
W21x83 (E) 2.47
0.7 0.3500 0.3447 0.4003 -1.5
0.3 0.1474 0.1419 0.1658 -3.7
1.31 W24x94 (F) 2.59
0.7 0.3500 0.3474 0.4032 -0.7
Difference % 0.3 -0.1 -0.2
(F-E)/E*100 0.7 0.8 0.7
W24x117 0.3 0.1486 0.1408 0.1646 -5.3
1.83
(@) 0.7 0.3466 0.3405 0.3948 -1.8
W30x173 0.3 0.1486 0.1411 0.1649 -5.1
1.68 1.95
(H) 0.7 0.3466 0.3410 0.3952 -1.6
Difference % 0.3 0.2 0.2
(H-G)/G*100 0.7 0.1 0.1
0.3 0.1502 0.1400 0.1606 -6.8
W21x122 (1) 1.67
0.7 0.3461 0.3378 0.3911 -2.4
W27x281 0.3 0.1502 0.1400 0.1605 -6.8
1.92 1.90
) 0.7 0.3461 0.3368 0.3890 -2.7
Difference % 0.3 0.0 0.0
(J-)/1¥100 0.7 -0.3 -0.5
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4.1.2. Boundary condition

Due to the symmetry of the I-beam geometry, the definition of symmetry boundary
condition supported by ANSYS was utilized to reduce computational expenses, as
shown in Figure 4.3. The length of the W-shape was maintained at a constant ratio of
two times of the beam height, L =d;. In-plane linear stress was applied directly on
the outmost lines of the web and the flange of I-beams. The I-beam was constrained

by a simply support along the edge of a flange, i.e. a roller support.

K7
o

T B

- A T ., aw

y

e
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144
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Figure 4.3. Geometry of the W-shapes containing two-tip web crack.

4.1.3. Element type

The eight-node quadrilateral shell elements (SHELL281) were selected for modeling
the |-beams. Each node of SHELL281 element has three translational and three
rotational degrees of freedom. Typically, this element is used to simulate the thin or
moderate shape of structural members for both linear and non-linear behavior (Figure
4.4). The W-shapes were simulated by one web plate combined with two flange plates,
supported by the command “AGLUE” in ANSYS program to ensure the strain
compatibility of the nodes along the junction lines. The shell element plates were
modeled by their mid-plane and thickness, with both membrane and bending

characteristics.
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To include the non-overlapping behavior, the 3-D contact elements (CONTA177 and
TARGE170) were placed between two sides of crack surfaces. These elements
prevented the crack surfaces from penetrating each other under compressive loading.
Figure 4.5 illustrates a 3-D contact pair consisting of contact surface (CONTA177) and
target surface (TARGE170).

3

Figure 4.4. Eight-node quadrilateral shell elements (SHELL281) [31]

CONTA177
SHELL281

I J K \
\ 3D TARGET SURFACE \\EDGE OF THE SHELL

(TARGE170) ELEMENTS
Figure 4.5. 3D Contact elements (TARGE170 and CONTA177) [31]

In finite element program ANSYS, 3D line-to-surface contact element CONTA177 which
has two or three nodes is used to simulate flexible-flexible or rigid-flexible (used in
the present model) contact between a 3D beam and a surface, or between a shell

edge and a surface (with or without mid-side nodes) [31].

To model the target surface for the I-beams, an arbitrary sized zone (lengthl =d;;
widthw =D, ) which was adequate to capture all necessary contact was created at
crack plane (Figure 4.6a). Subsequently, to decrease the computational cost, the ANSYS
command “CNCHECK, TRIM” was used to eliminate the contact and target elements

which were initially in far field, i.e. open or not near contact (Figure 4.6b).
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Normally, the 3D contact and target elements that used for W-shape model were
defined with the default properties in ANSYS program, i.e. “Contact algorithm”
(KEYOPT(2)) and “Behavior of contact surface” (KEYOPT(12)) were set as “Augmented
Lagrange method” and “Standard”, respectively. In “Augmented Lagrange method”,
“Normal penalty stiffness” (FKN) and “Penetration tolerance” (FTOLN) were set by

default to the values “1” and “0.1”, respectively.

(@ (b)

Figure 4.6. 3D target surface (TARGE170): (a) before and (b) after using “CNCHECK, TRIM”.

However, for some cases especially with short crack (4, <0.2), the penetration of the
crack surfaces in compression side after contact were still too large that might lead to
an un-satisfied SIF solution (Figure 4.7). The x-axis and y-axis of Figure 4.7 illustrate the
crack length and deformation of the crack surface, respectively. The negative value of
deformation represented the overlap of crack surface. To avoid those situations, the
“Normal penalty stiffness” property have to be adjusted to a larger value, i.e. FKN =
10. On the other hand, the global convergence difficulty would occur due to the high
stiffness value. So, before the analysis was solved, the nonlinear convergence criteria
of solution controls had to be set as “based on Displacement U” instead of default

options “based on Force F and Moment M”.
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Figure 4.7. Deformations of the web cracks of shape W40x149 under bending (o =100 MPa,
A, = 0.1) for: (a) Model without contact elements;

(b) and (c): Models including contact elements with FKN = 1 and FKN =10, respectively.
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4.1.4. Mesh design

For the web of the W- shapes, a mesh refinement zone (shaded area) was defined

depending on the crack length around the crack-tip region, as illustrated in Figure 4.8.

The mesh pattern of the refinement zone is shown in Figure 4.9. Parameter m defines
the number of elements along the short edge of rectangular refine-mesh area. The
effect of mesh density around the crack tip was evaluated by conducting a sensitivity
analysis on the center-cracked steel plate (plate A, table 4.3) under tensile loading

(Figure 4.10).

l=— Center line of eccentric web crack

m
m
m
&
m|m m m m m
'ﬁ' dw dw
W W W
0 <a,/W <0.5 a,/W=0.5 0.5 <a,/W<1

Figure 4.8. Mesh scheme for different crack length

Table 4.3. Plates used in finite element analysis

Thickness ~ Width  Height Remote Element Young’s Poisson’s

Plate b W h loading o type modulus ratio
(mm) (mm)  (mm) (MPa) (GPa)

Plate A° 10 50 150 100 SHELL281 200 0.3

Plate B 16 100 300 100 SHELLZ81 200 0.3

Plate C°° 16 474.45 9489 100 SHELL281 200 0.3

®For sensitivity analysis °For validation of model “For parametric study
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The SIFs of centered cracks (K, ) were compared with the solutions of Tada et al.
[4] (K,,;) for two cases of the crack length (a/W = 0.2 and 0.8), as shown in Table
4.4. The J- Integral values in Table 4.4 were obtained by only a half of the model.

Therefore, the SIF of full plate in plane stress condition can be represented as:

K =+JE =[2xJ_, xE (a.1)

According to [5], the SIF of finite-width plate under tension is expressed as

2 4
K., =|1-0.0025| 2 | +0.06] 2| | [sec 22 4.2)
W w W
2m =60
i
m =30 ®Q 0
Crack tip

Figure 4.9. Mesh pattern of the refinement zone around crack tip

Figure 4.10. Center-cracked plate under tension [5]

The path-independence of the SIF values was also examined. For a/W =0.2 and

m =45, the SIFs obtained by the counterclockwise paths 1, 2 and 3 (Figure 4.9) were
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574.83, 574.61 and 574.37 N /mm¥? | respectively (Table 4.4). In this study, the paths
along the edge of the refinement mesh area were used to calculate the J- Integral

values around the web crack tips of I-beams.

It was apparent that the mesh with m =30 was fine enough to capture the singularity
in the vicinity of the crack tip (Figure 4.11). The maximum difference for both a/W =
0.2 and 0.8 was within 2%. Figure 4.12 shows the typical mesh pattern of two-tip web
crack in the ANSYS program.

1.01 -
1.00{ @ ° o o)
0. o] 0
0994 ©° e = -v
_Am—m T v
-7 —e— Tada et al. (2000)
e 1 -
s 0%l v 0 aW=02
= -v- aw=08
" 0.97 A
0.96 - =
E ﬁ
0.95 -
0.94

5 10 15 20 25 30 35 40 45
Number of element along the short edge
of the mesh refinement zone, m

Figure 4.11. Sensitivity analysis of mesh density to SIFs
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Table 4.4. Sensitivity analysis of the mesh density around crack tip region to SIFs

al/W Number of PATH J- Integral Keem Kuir Difference
element for a half Equation (4.2) %
division along model [5]
crack length

m (N/mm¥?) | (N/mm¥?)
0.2 5 1 0.81306 570.28 -0.77
2 0.81142 569.71 -0.88
3 0.81040 569.35 -0.94
15 1 0.82270 573.65 -0.19
2 0.82223 573.49 -0.22
3 0.82137 573.19 -0.27

574.74
30 1 0.82530 574.56 -0.03
2 0.82467 574.34 -0.07
3 0.82406 574.13 -0.11
45 1 0.82608 574.83 0.02
2 0.82544 574.61 -0.02
3 0.82476 574.37 -0.06
0.8 5 1 10.194 2019.31 -2.11
2 10.176 2017.52 -2.20
3 10.209 2020.79 -2.04
15 1 10.339 2033.62 -1.42
2 10.347 2034.40 -1.38
3 10.364 2036.08 -1.30
2062.90

30 1 10.377 2037.35 -1.24
2 10.384 2038.04 -1.21
3 10.402 2039.80 -1.12
a5 1 10.388 2038.43 -1.19
2 10.397 2039.31 -1.14
3 10.413 2040.88 -1.07
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(a) (b)

Figure 4.12. Typical mesh for two-tip web crack: (a) Entire beam; (b) web only.
4.2. Development of SIF solution for W-shapes subjected to polynomial stress

distribution

The steel I-beam subjected to polynomial stress distribution was examined in this

section. The configuration of the newly formed web crack is illustrated in Figure 4.13.

The m-degree form of polynomial stress distribution in I-beam was as follow

5()=0>'D, [x/(@d;/2)] (4.3)

The SIFs solution after crack closure were then represented as
KA® {Z D, f*® (1", m)}a ra', (4.4)
0

where &'=e'/(d;/2): the new normalized crack eccentricity
Ay =a',/(d;/2-e’): the new normalized crack length

m: the polynomial degree; m=0 for tension, m=1 for bending (Albrecht et
al,, [23]).

e': the new eccentricity



4% (¢, 2", B,M) : correction factors for the SIF at crack tip A and B’.

o(x)

Figure 4.13. Newly formed web crack after crack closure
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After crack closure, the crack became more eccentric, and the parameters of the new

web crack was determined as follow
a',=a,—(e'-e)
g':5+(e'—e)/(dj /2)

Lo Aum-e)  Ax(A-£)-(e—e)/(d;/2)

" d2-¢ 1-¢—(e-e)/(d,/2)

where &=e/(d;/2): the original normalized eccentricity

e: the original eccentricity

A, =i: the original normalized crack length
d;/2-e

By applying the necessary condition

Kg =0 or > D, f%(e", 4", 8,m) =0
0

(4.5)

(4.6)

(4.7)

(4.8)
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The effective SIF solution was determined as following expression

KA =D, tA(e A%y, frm)ofzar,
0

: @.9)
PR R CAVANY ] m)O'\/IZ'[aW —(e'-e)]
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CHAPTER 5
VALIDATION OF MODEL

5.1. Plate subjected to bending

A simple model of center-cracked finite-width plate under bending (Plate B, Table 4.2)

was performed to verify the non-overlapping behavior in crack.

The SIF results from this model agreed very well with the previously conducted
numerical study (Albrecht and Lenwari, [27]). The differences were within 4% for both

overlapping and non-overlapping models (Figure 5.1).

Besides, an additional model of eccentric-cracked finite width plate under bending was

simulated for plate B to validate the overlapping crack.

The correction factors of eccentric cracks (¢ =e/W =0.1) were compared with the
solution of Chen and Albrecht [32] for the range of A =a/(W —e) from 0.1 to 0.9, as

shown in Figure 5.2. The maximum difference was less than 4% for both lower and

upper crack tip.

1000 -

Albrecht and Lenwari
(2006)

Overlapping @ o

FEM

800 -
Non-overlapping A

600 -

400 A

Stress intensity factor (N/mm®?)

200 -

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Crack length, A,

Figure 5.1. SIF solution of center-cracked plate under bending (Plate B, Table 4.2)
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1.2 -

1.0 A

Chen and Albrecht FEM

08 4 (1994)

Lower, F* °

0.6 + Upper, F® n
0.4 1

0.2 A

Correction factor, F

0.0

-0.2

'0.4 T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0

Crack length, A

Figure 5.2. SIF solution of eccentric-cracked plate under bending (Plate B, Table 4.2, £ =0.1)

From the above solution, it was obvious that the singularity around the crack tip region
in the overlapping and non-overlapping conditions could be captured by the proposed

model.
5.2. W-shape subjected to bending without contact elements

A finite element model of shape W40x149 ( f =0.83) subjected to both tension and
bending was performed in overlapping condition for the range of web crack length 4,

from 0.2 to 0.8.

Figure 5.3 and Figure 5.4 show the comparison of correction factors between the
overlapping finite element models and solution of Albrecht et al. [23], for both upper

and lower crack tips under tension and bending, respectively.

It was apparent that the finite element model under bending agreed well with the
results in [23]. For the model subjected to tension, although the form of the straight
line was not totally fitted with the literature line, the maximum difference was still

within 2%.



56

1.12 4
Albrecht et al. FEM
1.10 ~ (2008)
Lower, f* ° o)

w 1089 ypper, 18 A
<]
o]
S 1.06 |
S
c
2
§ 1.04 +
/o]
O

1.02 +

1.00 +

0.98 T T T T |

0.0 0.2 0.4 0.6 0.8 1.0
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Figure 5.3. Correction factors for both lower and upper crack tips in overlapping I-beam under

tension (W40x149, & = 0)

0.6 q

0.4 4
‘g— 0.2 | Albrecht et al. FEM
g (2008)
< Lower, f ® o
g 0.0
‘8 Upper, f® A A
3 02

-0.4

_06 T T T T T T T 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Web crack length, A,

Figure 5.4. Correction factors for both lower and upper crack tips in overlapping I-beam under

bending (W40x149, ¢ = 0)



5.3. W-shape subjected to bending with contact elements.
Superposition solution - Section 4.2

The form of bending stress in I-beam was as follow
o(x)=c|x/(d;/2)]

where o is the stress at the junction lines of the W-shapes.
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According to Equation (2.14), the overlapping SIF for central web crack of shape

Wa40x149 (S =0.83) was

KAB = fA'B(O,lW,O.83,1)ou/7raW

(5.1)

The coefficients of the correction factor for bending case (m =1) were shown in Table

2.3. [23]

According to Equation (4.4), the non-overlapping SIF for central web crack of shape

W40x149 was

K*=f*'4',,083)c/za’,

K®'=f%(e" 4,083 )0 fza’,

where e=0, e'=¢+(e'-e)/(d;/2)=e/(d;/2)

L _Pumel(d;12)
Y 1-eY(d;/2)

By applying the necessary condition
K& =0 or f B'(g',/l'W,O.83,1) =0

The effective SIF solution was determined as following expression

K& =fq(e, 2,083 )0 ma’,

=fq (e, 1',,083 o7 (a,-¢")

(5.6)

(5.7)
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By using Secant method to determine the root of Equation (5.6) in Matlab program,

the values of e' were calculated for the range of 4,, from 0.1 to 0.9, as shown in Table

5.1.

Table 5.1. Correction factors for central web crack in shape W40x149 under bending

with A,, from 0.1 to 0.9.

Ay ' g Crack A Correction factor, f# feé / fA
closure
(mm) length Overlapping Non-
overlapping
(mm)
0.1 15.90 0.034 31.80 0.0688 0.0483 0.0659 1.365
0.2 31.61 0.067 63.22 0.1429 0.0976 0.1331 1.363
0.3 47.14 0.099 94.28 0.2228 0.1479 0.2012 1.360
0.4 62.50 0.132 125.01 0.3090 0.1992 0.2701 1.356
0.5 77.73 0.164 155.47 0.4021 0.2516 0.3394 1.349
0.6 92.85 0.196 185.71 0.5027 0.3049 0.4085 1.340
0.7 107.90 0.227 215.81 0.6117 0.3593 0.4769 1.327
0.8 122.93 0.259 245.87 0.7301 0.4147 0.5437 1.311
0.9 138.01 0.291 276.02 0.8590 0.4711 0.6078 1.290

Finite element solution

A non-overlapping finite element model of shape W40x149 ( S =0.83) subjected to

bending was performed for the range of central web crack length A, from 0.1 to 0.9.

The correction factors of the non-overlapping web crack were compared with the

result in Table 5.1, as shown in Figure 5.5.

Figure 5.6 shows the crack closure length of non-overlapping central web crack in

shape Wa40x149.

The non-overlapping correction factor of the lower crack tip and the crack closure

length in the finite element model of shape W40x149 agreed well with the

superposition result in section 4.2 for most of the data points.
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Figure 5.5. Correction factors for the lower crack tip in non-overlapping -beam under bending

(W40x149, & =0)

The numerical solution in section 4.2 can be further developed for the higher-order

polynomial stress distribution if the forms of correction factor equations are

determined (i.e. f(e,4,, ., m) with m=>2).
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Figure 5.6. Crack closure length of non-overlapping -beam under bending (\W40x149, & = 0)
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5.4. W-shape subjected to linear stress distribution with contact elements.
Superposition solution - Section 4.2

The form of linear stress distribution in I-beam was as follow

c;(x)=amZ=le[x/(o|j 12)] =0{D0+D1x[x/(dj /2)]}

where m: the polynomial degree (m =0 for tension, m =1 for bending)

According to Equation (2.14), the overlapping SIF for central web crack of shape
Wa0x149 (S =0.83) under linear stress distribution was

m=1
KAB {Z D, f"*%(0,4,,0.83, m)}a na,
0

=[Dyx £*°(0,4,,0.83,0)+ D, x f (0, 4,,0.831) | o[,

(5.8)

The coefficients of the correction factor for tension and bending cases were shown in

Table 2.3. [23]

According to Equation (4.4), the non-overlapping SIF for central web crack of shape

W40x149 was

m=1
KA:{ZDmfA(g',/I'W,OBS,m)}a 7a',
0

(5.9)
=[Dyx f"(£",4',,0.83,0)+ D, x f*(£",4",,0.831) |o/ma’,
m=1
K® :{Z D f%(',1",,0.83 m)}a ra’',
0 (5.10)
=[D0 x %", 1",,0.83,0)+ D, x f B'(g',/1'W,0.83,1)}ou/7za'w
where e=0, ¢'=¢+(e'-e)/(d;/2)=e'(d;/2) (5.11)
—e'/(d. /2
A'W:iw (d;72) (5.12)
1-e'(d;/2)
By applying the necessary condition
K® =0 or D,xf®(g',1",,0.830)+D,x f®(e',4",,0.831) =0 (5.13)

The effective SIF solution was determined as following expression
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m=1
KA :[Z D, (s A",,0.83, m)}a ra’,
0

=[Dyx fp (¢',4',,0.83,0)+ D, x T (¢, 1,,0.831) |oy/x(a, —€)

By using Secant method to determine the root of Equation (5.13) in Matlab program,

(5.14)

the values of " were calculated for the range of 4, from 0.1 to 0.9 with D, =0.25

and D, =1, as shown in Table 5.2.

Table 5.2. Correction factors for central web crack in shape W40x149 under linear

stress distribution with A,, from 0.1 to 0.9 (D, =0.25and D, =1)

A, e o Crack A, Correction factor, Feﬁ |E~”
() closure EA Ei D fA
length 0
(mm) Overlapping Non-
overlapping

0.1 0.000 0.000 0.00 0.100 0.3001 0.3001 1.00
0.2 0.000 0.000 0.00 0.200 0.3516 0.3516 1.00
0.3 0.000 0.000 0.00 0.300 0.4044 0.4044 1.00
0.4 0.000 0.000 0.00 0.400 0.4585 0.4585 1.00
0.5 0.000 0.000 0.00 0.500 0.5140 0.5140 1.00
0.6 11.613 0.024 23.23 0.590 0.5708 0.5834 1.02
0.7 25.806 0.054 51.61 0.683 0.6290 0.6561 1.04
0.8 39.792 0.084 79.58 0.782 0.6885 0.7286 1.06
0.9 53.592 0.113 107.18 0.887 0.7493 0.8001 1.07

Finite element solution

The overlapping and non-overlapping finite element models of shape W40x149 (

£ =0.83) subjected to the linear stress distribution in  form  of
m=1 m

O'(X)ZO'ZDm[X/(dJ—/Z):' :0'{0.25+1><[X/(dj/2)J} were performed for the
0

range of central web crack length A, from 0.1 to 0.9. The correction factors of the
overlapping and non-overlapping web cracks were compared with the result in Table

5.2, as shown in Figure 5.7.
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Figure 5.8 shows the crack closure length of non-overlapping central web crack in

shape W40x149.
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Figure 5.7. Correction factors for the lower crack tip in non-overlapping -beam under linear
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Figure 5.8. Crack closure length of non-overlapping I-beam under linear stress distribution

(Wa0x149, & = 0)



CHAPTER 6
PARAMETRIC STUDY

6.1. Effect of the length of the W-shape
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In this section, the effect of the length to the I-beam (W40x149) which contains central

web crack (& =0) was examined for a combination of five values of the half-beam

length (L/dj = 0.25, 0.5, 1, 1.5 and 2); two values of the normalized crack length (4,

=0.2 and 0.7) and two types of loading (tension and bending) (Tables 6.1 and 6.2).

Table 6.1. Effect of the length on the SIF of center-cracked W40x149 under tension

A L/ dj Albrecht et al. [23] Overlapping Differences %
KAIbrecht KFEM (KFEM - KAIbrecht)/ KAIbrecht
Upper Lower Upper Lower Upper crack Lower crack
crack tip | crack tip | crack tip | crack tip tip tip
0.2 0.25 2016.23 | 2017.32 15.0 15.0
0.5 1817.53 | 1816.98 3.7 3.6
1 1753.37 | 1754.40 | 1740.10 | 1739.36 -0.8 -0.9
1.5 1733.76 | 1733.02 -1.1 -1.2
2 1732.84 | 1732.10 -1.2 -1.3
0.7 0.25 9219.98 | 9216.94 166.2 164.5
0.5 5065.49 | 5055.57 46.3 45.1
1 3463.58 | 3484.54 | 3595.44 | 3583.80 3.8 2.8
1.5 3521.99 | 3510.33 1.7 0.7
2 3519.03 | 3507.36 1.6 0.7
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Table 6.2. Effect of the length on the SIF of center-cracked W40x149 under bending

W L/ dj Albrecht et al. [23] Overlapping Differences %

KAIbrecht KFEM (KFEM - KAIbrecht) / KAIbrecht
Upper Lower Upper Lower Upper crack Lower crack

crack tip | crack tip | crack tip | crack tip tip tip

0.2 0.25 -172.55 176.53 -1.7 4.8

0.5 -172.17 172.30 -1.9 2.2

1 -175.48 168.51 -172.47 169.88 -1.7 0.8

1.5 -172.38 169.53 -1.8 0.6

2 -172.13 169.26 -1.9 0.4

0.7 0.25 -1615.51 | 1625.34 4a2.1 40.0

0.5 -1186.22 | 1179.80 43 1.6

1 -1137.25 | 1160.84 | -1145.22 | 1134.07 0.7 -2.3

1.5 -1144.97 | 1133.65 0.7 -2.3

2 -1144.80 | 1133.45 0.7 -2.4

For both lower and upper crack tips, the values of Kggy / Ky @PProached the

reference line (Kegy / Kapreae =1) When the half-length of beam L increased (Figures

6.1a and 6.1b).

From the Figure 6.1, it is also obvious that the value of L:dj is adequate for an

acceptable SIF solution of I-beam in this study.



2.8
o
2.6 1 .
2.4 4
: —e—— 1,=0.2 - Tension
2.2 4 | O A, =0.7 - Tension
£ 204 ‘ ——-v——- 1,=0.2 - Bending
é : — A — %, =0.7 - Bending
¥§ 1.8 : ———  Albrecht et al. [23]
w
xu_ 16 T .
Q.
1.4 BN :
1.2 A \
N\ .
1.0 — 9= —9
: ==V —————== B v - v
08 T T T T
0.0 0.5 1.0 15 2.0
L/dj
(a)
2.8
2.6 ©
—e—— 1,=0.2 - Tension
2.4 4 . O - A,=0.7 - Tension
- ——-v—— 1,=0.2-Bending
. — A — X, =0.7 - Bending
% 2.0 - — Albrechtetal. [23]
é N
¥ 18-
>
w
xLL 16 n
08 T T T T
0.0 0.5 1.0 1.5 2.0
L/dj
(b)

Figure 6.1 Effect of the length to center-cracked SIF of shape W40x149 under tension and

bending for: (a) Upper crack tip; (b) Lower crack tip.
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6.2. Effect of the magnitude of applied load on the crack opening displacement
(CoD)

The effect of the magnitude of the applied load on the COD profile for shape W40x149
(¢ =0) under bending was investicated with a combination of two values of the
normalized crack length (4, =0.2 and 0.7) and three levels of the bending magnitude
(o =100, 150 and 200 MPa), as shown in Figures 6.2 and 6.3. The x-axis and y-axis of

the Figures show the crack length and deformation of the crack surface, respectively.

Table 6.3. COD profile of shape W40x149 containing center-cracked web.

Stress intensity factor Crack opening Crack
Uma/ @ (Mm?3/N)

(N/mm?>?) displacement Uy (mm) closure

. length

ﬂ’w (Non—

(MPa) Non- Non- Non- .

Overlapping ) Overlapping 3 Overlapping ) overlapping)

overlapping overlapping overlapping

(mm)
100 169.53 184.51 0.004637 0.005351 4.637x10° | 5.351x10”

0.2 150 254.29 276.76 0.006956 0.008027 4.637x10° | 5.351x10° 71.19
200 339.05 369.01 0.009275 0.010704 4.638x10° | 5.352x107
100 1134.07 1255.26 0.05848 0.06905 5.848x10° | 6.905x10°

0.7 150 1701.12 1882.88 0.08772 0.10358 5.848x10° | 6.905x10° 216.01
200 2268.13 2510.54 0.11697 0.13811 5.849x10° | 6.906x10™

From the Table 6.3, the crack closure lengths for both 4,=0.2 and 4,=0.7 were
constant (71.19 mm and 216.01 mm, respectively). It means that the position of the
newly formed crack tip in compression are unique, regardless of the level of the
bending load. On contrary, the SIFs and the crack opening displacements varied
proportionally to the applied loads: U,/ o maintained constant for both overlapping
and non-overlapping models (with 4, =0.2, U,/ o were equal to 4.637x10° and

5.351x107, respectively).
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This phenomenon is also observed by Tada et al. [5] for the non-overlapping crack in

plate (Section 3.2).
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Figure 6.2. COD profile of shape W40x149 (4, = 0.2, € =0) with: (a) o =100 MPa, (b) o =150 MPa

and (c) o =200 MPa for both overlapping and non-overlapping cracks.
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Figure 6.3. COD profile of shape W40x149 (4, = 0.7, € =0) with: (a) o =100 MPa, (b) o =150 MPa

and (c) o =200 MPa for both overlapping and non-overlapping cracks.
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6.3. Effects of parameters on correction factor (5,4, and &)

To investigate the effect of the parameters including the web crack length 4,,, the
normalized eccentricity £ and the flange-to-web area ratio #, a total of 400 finite
element analyses under in-plane bending were performed with a combination of eight
W-shapes (S values from 0.83 to 2.11, as listed in Table 4.1), five values of the
eccentricity (& =0, 0.1 — 0.7 in steps of 0.2), five values of crack length (4,=0.1 - 0.9
in steps of 0.2) and two types of models (with and without contact elements). The

lengths of W-shapes were maintained at a constant ratio of two times of the beam

height, L=d;.

Figure 6.4 shows the comparison of the correction factors at the lower crack tip in
models using contact elements between shape W40x149 and plate C (equivalent to
the web of shape W40x149). Due to the constraining effect of the flange on the web
crack which is characterized by the flange-to-web area ratio A, the SIFs in plate were
always larger than I|-beam solutions. When f increased, the correction factors
decreased because of the increase in constraining effect (Figures 6.6). The effect of f
on correction factor became more explicit with the large values of crack eccentricity

(& = 0.5), when the lower crack tip was closed to the flange. In Figure 6.5 (& = 0),
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0 [ ] (@]
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0.1 A AN
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< 127 0.5 .
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0.0 0.2 0.4 0.6 0.8 1.0

Web crack length, A,

Figure 6.4. Comparison between W-shape (W40x149, B =0.83) and single plate (plate C, Table

4.3) solutions of the lower crack tip for models with contact elements under bending
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the parameter # almost had no effect on the correction factor for each value of 4,

because the crack tip was relatively far from the junction line of the web and flange.
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Figure 6.6. Effects of B and A, on the correction factor (& =0.7)

For the lower crack tip in W-shape, the stress intensity factor and correction factor

typically increased with the crack length for both models with and without contact
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elements. However, they decreased when the crack tip propagated close to the lower

flange (4, = 0.9 and & = 0.5), as shown in Figures 6.7 and 6.8.
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Figures 6.10 and 6.9 show the correction factors of the W-shape models with and

without contact elements, respectively. Each value of crack eccentricity was
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represented by a surface. It is obvious that the correction factors always increase as

the eccentricity € increases.

For & 2 0.3, the crack closure of the W-shapes did not occur and the crack remained
open for all combinations despite the fact that the upper crack tip still lie in
compressive region (similar to the crack of infinite plate in Figure 3.5b). This can be
attributed to the influence of the crack in tension side. When most of crack length was
under tension, the opening trend turned into dominant and controlled the closing
trend of the crack in compression. As shown in Table 6.4, the effect of non-overlapping
behavior ( f**" / f*) became pronounced when & decreased. Figures 6.11 and 6.12
represent the effect of the crack eccentricity on correction factor in the models using
contact elements of shapes WA40x147 and W21x201, respectively. Each line

corresponded to one crack length. As g increased, the correction factor of each 4,
also rose (except for A, = 0.9, the non-overlapping solutions at € =0 and 0.1 were

higher than correction factor at ¢ = 0.3 which was not influenced by non-overlapping
crack).
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Figure 6.9. Correction factors for the lower crack tip of the W-shape model without contact

elements (200 analyses)
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Figure 6.11. Effects of € and A,, on the correction factor (W40x167, B = 1.00)
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1.0 -
— —@ —  Superposition- Equation (5.7)
A FEM
0.8
AT TR T e
5 =078~ 7 B = -2
he A
S 0.6 4 A . ; %
Q — O _F
& 6= 05" T
c . .
g 0.4+ _ N P
5 £=0.3" e ;?
O <
0.2 .
e =0.1&" ~
€=0 &
00 T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0

Web crack length, &,

Figure 6.13. Correction factor at lower crack tip in model using contact element (W40x149)

The correction factor at lower crack tip and the crack closure length in comparison

between finite element and superposition solutions (as represented in Section 5.3) of

shape W40x149 (£ = 0.83) under bending were plotted in Figures 6.13 and 6.14,

respectively.
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1 Albrecht et al. [23] Closure FEM Closure
& " length length
r £ (mm) s | e (mm)
0.1 0.048 0.066 1.37 31.80 0.054 0.070 1.31 30.85
0.3 0.148 0.201 1.36 94.28 0.143 0.199 1.39 106.78
0 0.5 0.252 0.339 1.35 155.47 0.238 0.322 1.35 154.25
0.7 0.359 0.477 1.33 215.81 0.351 0.473 1.35 216.01
0.9 0.471 0.608 1.29 276.02 0.455 0.610 1.34 277.64
0.1 0.145 0.145 1.00 0.00 0.145 0.146 1.00 0.00
0.3 0.238 0.249 1.05 20.90 0.231 0.249 1.08 32.04
0.1 0.5 0.332 0.374 1.13 75.69 0.321 0.360 1.12 74.75
0.7 0.428 0.497 1.16 129.91 0.423 0.497 1.17 134.55
0.9 0.527 0.614 1.17 184.12 0.510 0.586 1.15 172.99
0.1 0.338 0.338 1.00 0.00 0.333 0.333 1.00 0.00
0.3 0.414 0.414 1.00 0.00 0.404 0.404 1.00 0.00
0.3 0.5 0.487 0.487 1.00 0.00 0.478 0.479 1.00 0.00
0.7 0.558 0.558 1.00 0.00 0.558 0.558 1.00 0.00
0.9 0.626 0.626 1.00 0.35 0.608 0.605 1.00 0.00
0.1 0.528 0.528 1.00 0.00 0.516 0.517 1.00 0.00
0.3 0.585 0.585 1.00 0.00 0.572 0.574 1.00 0.00
0.5 0.5 0.634 0.634 1.00 0.00 0.626 0.627 1.00 0.00
0.7 0.676 0.676 1.00 0.00 0.675 0.676 1.00 0.00
0.9 0.711 0.711 1.00 0.00 0.672 0.675 1.00 0.00
0.1 0.718 0.718 1.00 0.00 0.704 0.707 1.00 0.00
0.3 0.751 0.751 1.00 0.00 0.736 0.740 1.00 0.00
0.7 0.5 0.772 0.772 1.00 0.00 0.759 0.761 1.00 0.00
0.7 0.782 0.782 1.00 0.00 0.770 0.771 1.00 0.00
0.9 0.780 0.780 1.00 0.00 0.700 0.700 1.00 0.00
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Figure 6.14. Closure length of web crack in model using contact element (W40x149)

It is apparent that the FEM and superposition solutions agreed well with each other,
except for €2 0.5 and A, = 0.9 because this crack length was not included in the
regression equation (2.17) from the finite element analyses of Albrecht et al. [23]. The
present finite element solution became more different in comparison with result in
[23] due to the increase in the constraining effect when the crack tip approached the
web-to-flange junction line. In practice, some cases with large eccentricity cannot be
applicable because the lower crack tip were propagated across the flange, i.e. the W-

shapes with £=0.7, 4,=0.9 and S > 1.13.

Figures 6.15 and 6.16 plot the correction factors for W-shape models with and without
contact elements for & = 0and & = 0.1, respectively. As & decreased, the difference

in correction factor between models with and without element increased.

It was found that the overlapping finite element solutions underestimated the SIFs at
lower crack tip up to 11% (at € = 0 and 4, = 0.5). This number for the single plate
(plate C, Table 4.3) were 14%. For the correction factor, the maximum values of
enhancement were 39% and 37% for I-beam and plate, respectively (as shown in Table

6.4).
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CHAPTER 7
CONCLUSIONS

Summary

The physically acceptable analysis of stress intensity factors (SIFs) for cracked steel I-
beams under bending was presented in this study. Based on the linear elastic fracture
mechanics (LEFM), a three-dimensional finite element analysis of the stress intensity
factor for a two-tip web crack in W-shape (AISC 2010) was performed considering the
non-overlapping crack surfaces. The W-shapes were selected with the range of flange-
to-web area ratio from 0.83 to 2.11 because almost 60% of the AISC W- shapes are
within this range. Besides, a numerical solution based on the superposition of previous
finite element result of Albrecht et al. [23] was subsequently developed to verify with
the non-overlapping finite element model. The effects of beam length, magnitude of
applied load, crack length, crack eccentricity and flange-to-web area ratio on the
correction factor of the non-overlapping model were also discussed. The main

conclusions in this research are as follows

a. The overlapping solutions were not conservative due to the underestimation
of SIF at the tension side crack tip, especially in case of small eccentricities (
& <0.1). The maximum difference of the SIF between overlapping and non-
overlapping solutions was up to 11%. Forg 20.3, the overlapping crack
surfaces did not occur. Therefore, the SIF equation proposed by Albrecht et al.
[23] still can be applicable for W-shapes in practice with a minor modification:
a safety factor of 1.1 should be considered in SIF equation for & < 0.1in cracked

beam under bending.

b. It was found that the position of the new crack tip in compression are unique,
regardless of the magnitude of the bending load in I-beam. On contrary, the
crack tip opening displacement (CTOD) varied proportionally to the applied
load for the model with contact elements. Similar phenomenon on cracked
plate under bending was observed by Tada et al. [5], as mentioned in section

3.2.
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c. For the case of tension and bending, the SIF values approached the solution
of Albrecht et al. [23] as the length of I-beam increased. It was point out that
the half-beam length of L=d; was adequate for an acceptable solution in

this study.

d. Due to the constraining effect which is characterized by the flange-to-web area
ratio #, the non-overlapping SIF values and the percentage of the SIF
underestimation in a single plate were always larger than the I-beam solutions.
When f increased, the correction factors decreased because of the increase
in constraining effect. The effect of S became pronounced with the large
values of 4, and &, when the crack tip propagated close to the junction line
of the web to the flange.

e. The correction factor typically increased with the crack length for both models
with and without contact elements. However, it decreased when the crack tip

approached the flange (4, = 0.9 and & = 0.5).

f.  The correction factors always rose as the eccentricity € increased. In contrast,
the effect of non-overlapping behavior ( f**" / f*) became prominent when

& decreased.
Extension of the research for the future work

The numerical solution in Section 4.2 can be further developed for the two-tip web
crack and symmetric three-tip crack of the W-shape subjected to polynomial stress
distribution if the forms of the overlapping SIF equations are determined in the
following researches (form > 2). More combinations of the stress distribution can give
a more clearly behavior of the non-overlapping crack surfaces through the SIFs at the

tension side crack tip as well as the COD profile in the opened portion.
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THE FINITE ELEMENT MODEL OF STEEL I-BEAMS
WITH NON-OVERLAPPING CRACK SURFACE
IN ANSYS MECHANICAL APDL

1. Description of the problem
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W-shape details: W40x167 ( 8 =1.0, dj = 953.8 mm, t, = 16.5 mm, b, = 300 mm, t, =
26.2 mm)

- A half of the web crack length: a,, = 143.07 mm (A4, = 0.3).

- Bending stress at the junction of the web and flange: o = 100 MPa

- The crack eccentricity: € = 0 mm

- Half length of the I-beam: L = 953.8 mm
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2. Analysis of the problem
» STEP 1 : Choose the discipline to show in the GUI
GUI: Main menu > Preferences

Click on “Structural”.

A Preferences for GUI Filtering

[KEYW] Preferences for GUI Filtering

Individual discipline(s) to show in the GUI
¥ Structural
[~ Thermal
[~ ANSYS Fluid

Electromagnetic:

[~ Magnetic-Nodal
[~ Magnetic-Edge
[~ High Frequency
[~ Electric

Note: If no individual disciplines are selected they will all show.

Discipline options
& h-Method

oK Cancel | Help

Batch text:
/NOPR
KEYW,PR_SET,1
KEYW,PR_STRUC,1
KEYW,PR_THERM,0
KEYW,PR_FLUID,0
KEYW,PR_ELMAG,0
KEYW,MAGNOD,0
KEYW,MAGEDG,0
KEYW,MAGHFE,0
KEYW,MAGELC,0
KEYW,PR_MULTI,0
/GO
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» STEP 2 : Define element types
GUI: Main menu > Preprocessor > Element Type > Add/Edit/Delete
Element types 1, 2 and are defined as “8 node 281 shell element”, “3D Target element

TARGE170” and “3D line-surface contact element CONTA1777”, respectively.

A Library of Element Types

Only structural element types are shown

Library of Element Types Link A |[3D  4node 181 A
Beam
Pipe Axisym Znode 208
Solid 3node 209
Shear panel 23 v
Solid-Shell
Constraint v l 8node 281

Element type reference number I:l
0K Apply Cancel | Help |

Batch text:
ET,1,SHELL281
ET,2,TARGE170
ET,3,CONTA177

» STEP 3 : Define material properties
GUI: Main Menu > Preprocessor > Material Props > Material Models

The material is linear elastic isotropic with E = 200 GPa, v = 0.3.

J\ Define Material Model Behavior = O X
Material Edit Favorite Help
Material Models Defined Material Models Available
(JMaterial Model Number EUNEEEFY S W ES 2
@8 Structural
&3 Linear
@ Elastic
@
@ Orthotropic
@ Anisotropic ol
@ Nonlinear
@ Density
| @ Thermal Expansion =~

‘ | 2l Kl ]




A Linear Isotropic Properties for Material Number 1
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Linear Isotropic Material Properties for Material Number 1

Temperatures
EX
PRXY

T1

2ES

Add Temperature ‘ Delete Temperature ‘

Graph

oK ] Cancel ‘

Help ‘

Batch text:
MPTEMP,,,,.,,,,
MPTEMP,1,0
MPDATA,EX,1,,2E5
MPDATA,PRXY,1,,0.3

> STEP 4 : Define shell sections

GUI: Main Menu > Preprocessor > Sections > Shell > Lay-up > Add/Edit

The thickness of the web and the flange are 16.5 and 26.2 mm, respectively.

Choose “Mid-Plane” for “Section Offset”.

I\ Create and Modify Shell Sections

Section Edit Tools

Layup ]Section Controls|  Summary
Layup
Create and Modify Shell Sections Name|WEB ID|1 5
Thickness Material ID Orientation Integration Pts Pictorial View
1 I “flo [3 -l |
Add Layer Delete Layer
Section Offset | Mid-Plane | User Defined Value

Section Function|

i

KCN or Node|GIobaI Cartesian

0K Cancel Help

Batch text:
sect,1,shell, W
secdata, 16.5,1,0.0,3




secoffset,MID
seccontrol,,,, , , ,
sect,2,shell,,F

secdata, 26.2,1,0,3
secoffset,MID
seccontrol,0,0,0, 0, 1, 1,

» STEP 5 : Create the I-beam geometry

GUIs: Main Menu > Preprocessor > Modeling > Create > Keypoints > In Active CS

A Create Keypoints in Active Coordinate System

[K] Create Keypoints in Active Coordinate System
NPT Keypoint number

X.Y,Z Location in active CS

0K I Apply |

M L27
L43~

L2i
ka

Main Menu > Preprocessor > Modeling > Create > Areas > Arbitrary > By Lines

Main Menu > Preprocessor > Modeling > Operate > Booleans > Glue > Areas

Cancel |

Main Menu > Preprocessor > Modeling > Create > Lines > Lines > In Active Coord

Help I
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Batch text:

K, ,0,0,,

K, ,143.07,0,,

K, ,-143.07,0,,

K, ,286.14,0,,

K, ,-286.14,0,,

K, ,476.9,0,,

K, ,-476.9,0,,
FLST,3,7,3,0RDE,2
FITEM,3,1
FITEM,3,-7

K, ,-476.9,0,150,

K, ,-476.9,0,-150,

K, ,476.9,0,-150,

K, ,476.9,0,150,
FLST,3,11,3,0RDE,2
FITEM,3,1
FITEM,3,-11
KGEN,2,P51X, ,,,143.07,,,0
FLST,3,11,3,0RDE,2
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31

KGEN,2,P51X, ,, ,953.38,, ,0
30,

FITEM,3,1
FITEM,3,-11

(@)}
~—

=3
N}

~—
A8}

=
N

g 4 4O 4O 4 4 4 4

20
32
22
21
32
11
10
21
28
18
16
14
12
13
15
17
27
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33,
33,
22,
21,
22,
11,
10,
17,
29,
18,
18,
16,
14,
12,
13,
15,
29,
27,
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25,
23,

24,
26,
27,

25,

23,
24,

26,

16,
14,

12,
13,

— — — — — - - — — — — — —

L, 15,
FLST,2,4,4
FITEM,2,2
FITEM,2,1
FITEM,2,4
FITEM,2,3
AL,P51X
FLST,2,4,4
FITEM,2,5
FITEM,2,6
FITEM,2,7
FITEM,2,3
AL,P51X
FLST,2,4,4
FITEM,2,12
FITEM,2,10
FITEM,2,14
FITEM,2,13
AL,P51X
FLST,2,4,4
FITEM,2,10
FITEM,2,11

23
24
26
28
16
14
12
13
15
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FITEM,2,8
FITEM,2,9
AL,P51X
FLST,2,4,4
FITEM,2,17
FITEM,2,31
FITEM,2,37
FITEM,2,25
AL,P51X
FLST,2,4,4
FITEM,2,25
FITEM,2,18
FITEM,2,19
FITEM,2,42
AL,P51X
FLST,2,4,4
FITEM,2,16
FITEM,2,36
FITEM,2,41
FITEM,2,30
AL,P51X
FLST,2,4,4
FITEM,2,15
FITEM,2,24
FITEM,2,46
FITEM,2,30
AL,P51X
FLST,2,4,4
FITEM,2,32
FITEM,2,37
FITEM,2,38
FITEM,2,26
AL,P51X
FLST,2,4,4
FITEM,2,33
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FITEM,2,38
FITEM,2,39
FITEM,2,27
AL,P51X

FLST,2,4,4
FITEM,2,34
FITEM,2,39
FITEM,2,40
FITEM,2,28
AL,P51X

FLST,2,4,4
FITEM,2,35
FITEM,2,40
FITEM,2,41
FITEM,2,29
AL,P51X

FLST,2,4,4
FITEM,2,26
FITEM,2,42
FITEM,2,43
FITEM,2,20
AL,P51X

FLST,2,4,4
FITEM,2,27
FITEM,2,43
FITEM,2,44
FITEM,2,21
AL,P51X

FLST,2,4,4
FITEM,2,28
FITEM,2,44
FITEM,2,45
FITEM,2,22
AL,P51X

FLST,2,4,4
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FITEM,2,29
FITEM,2,45
FITEM,2,46
FITEM,2,23
ALP51X
FLST,2,16,5,0RDE,2
FITEM,2,1
FITEM,2,-16
AGLUE,P51X
» STEP 6 : Mesh the geometry

GUIs: Main Menu > Preprocessor > Meshing > Mesh Attributes > Pick Areas

A Area Attributes

[AATT] Assign Attributes to Picked Areas

MAT Material number I 1 v|
REAL Real constant set number | 1 .l

TYPE Element type number | 1 SHELL281 j
ESYS Element coordinate sys I 0 v I
SECT Element section 1 W -

0K I Apply | Cancel | Help I

Main Menu > Preprocessor > Meshing > Size Cntrls > ManualSize > Lines > Picked

Lines

A Element Sizes on Picked Lines
[LESIZE] Element sizes on picked lines
SIZE Element edge length

NDIV  No. of element divisions 30

1

(NDIV is used only if SIZE is blank or zero)
KYNDIV SIZE,NDIV can be changed

<

Yes

SPACE Spacing ratio

ANGSIZ Division arc (degrees)

i

( use ANGSIZ only if number of divisions (NDIV) and
element edge length (SIZE) are blank or zero)

Clear attached areas and volumes

5

No

oK Apply Cancel Help




Main Menu > Preprocessor > Meshing > Mesh > Areas > Free

Batch text:
FLST,5,4,5,0RDE,2
FITEM,5,17
FITEM,5,-20
CM, Y, AREA
ASEL, , , ,P51X
CM, Y1,AREA
CMSEL,S, Y
CMSEL,S, Y1
AATT, 1,, 1,
CMSEL,S, Y
CMDELE,_ Y
CMDELE,_Y1
FLST,5,4,5,0RDE,2
FITEM,5,21
FITEM,5,-24
CM, Y, AREA
ASEL, ,, ,P51X
CM, Y1,AREA
CMSEL,S, Y
CMSEL,S, Y1
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AATT, 1, 1,
CMSEL,S, Y
CMDELE, Y
CMDELE, Y1
FLST,5,12,5,0RDE,2
FITEM,5,5
FITEM,5,-16
CM,_Y,AREA
ASEL, , , P51X
CM,_Y1,AREA
CMSEL,S, Y
CMSEL,S, Y1
AATT, 1, 1,
CMSEL,S, Y
CMDELE, Y
CMDELE, Y1
FLST,5,52,4,0RDE,9
FITEM,5,2
FITEM,5,4
FITEM,5,-5
FITEM,5,7
FITEM,5,9
FITEM,5,11
FITEM,5,-12
FITEM,5,14
FITEM,5,-58
CM,_Y,LINE
LSEL, , , ,P51X
CM,_Y1,LINE
CMSEL,, Y
LESIZE, Y1,, 30, , , , ,1
MSHKEY,0
FLST,5,20,5,0RDE,2
FITEM,5,5
FITEM,5,-24

O)

O’

2

1
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CM,_Y,AREA
ASEL, , , P51X
CM,_Y1,AREA
CHKMSH, AREA'
CMSEL,S, Y
AMESH, Y1
CMDELE, Y
CMDELE, Y1
CMDELE, Y2

» STEP 7: Apply the displacement boundary condition
GUIs: Main Menu > Preprocessor > Loads > Define Loads > Apply > Structural

> Displacement > On Lines

A Apply UROT on Lines

[DL] Apply Displacements (U,ROT) on Lines
Lab2 DOFsto be constrained

Apply as |Cor‘|s‘tant value j
VALUE Displacement value :J
0K | Apply | Cancel | Help |

Main Menu > Preprocessor > Loads > Define Loads > Apply > Structural
> Displacement > Symmetry B.C. > On Lines

Batch text:
FLST,2,2,4,0RDE,2
FITEM,2,57
FITEM,2,-58

/GO

DL,P51X, ,UX,
FLST,2,2,4,0RDE,2
FITEM,2,57
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FITEM,2,-58

/GO

DL,P51X, ,UZ,
FLST,2,2,4,0RDE,2
FITEM,2,57
FITEM,2,-58

/GO

DL,P51X, ,ROTX,
FLST,2,2,4,0RDE,2
FITEM,2,57
FITEM,2,-58

/GO

DL,P51X, ,ROTY,
FLST,2,8,4,0RDE,8
FITEM,2,19
FITEM,2,-20
FITEM,2,23
FITEM,2,-24
FITEM,2,51
FITEM,2,-52
FITEM,2,57
FITEM,2,-58
DL,P51X, ,SYMM

» STEP 8 Apply the pressure

GUIs: Main Menu > Preprocessor > Loads > Define Loads > Apply > Functions

> Define/Edit
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A Function Editor X
File Edt Help

Function ]Reglme 1]Regime 2|Regime S}Regxme 4]Regime S]Regime 6]

- Function Type
« Single equation
© Multivalued function based on regime variable W
(XY,2)interpretedinCcSYS:0 -

Result =[(-1650/476.9)*(X}

© Degrees “ Radians

LIST
O I :
MIN ASIN erx
MAX I SIN I LN | 7 ‘ 8 ‘ 9 ‘ / ‘CLEAR‘
RCL ACOS 10%
STO | cos | LOG | 4 ‘ 5 ‘ 6 ‘ * ‘ - ‘
INSMEM ATAN  SQRT
ABS | TAN | xA2 1 ‘ 2 ‘ 3 ‘ = I E
Pl xM17y) T
INV | ATAN2 | xby 0 ‘ . ‘ + ‘ E

Main Menu > Preprocessor > Loads > Define Loads > Apply > Functions

> Read File

M\ Function Loader X

Comments

— Table parameter name
P1650]

Local coordinate system id for (x, y, x) in

g ]

Function‘
Equation
Result = (-1650/476.970<} =l
|
— Constant Values
None =2
=l

oK Cancel | Hep |
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Main Menu > Preprocessor > Loads > Define Loads > Apply > Structural
> Pressure > On Lines

On flange > Constant value

A Apply PRES on lines

[SFL) Apply PRES on lines as a | Constant value ~
If Constant value then:
VALUE Load PRES value 2620

If Constant value then:
Optional PRES values at end J of line
(leave blank for uniform PRES )

ok | Apply Cancel Help

On web > Existing table

n Apply PRES on lines

Apply Table Loads

Existing table

P1650

oK Apply Cancel Help

Batch text:
FLST,2,2,4,0RDE,2
FITEM,2,48
FITEM,2,50



/GO

SFL,P51X,PRES,2620,

FLST,2,2,4,0RDE,2

FITEM,2,54

FITEM,2,56

/GO

SFL,P51X,PRES,-2620,

*DEL,_FNCNAME

*DEL, FNCMTID

*DEL, FNCCSYS

*SET, FNCNAME,'P1650'

*SET, FNCCSYS,0

I /INPUT, \Desktop\THESIS\ANSYS Load\p1650.func,,,1
*DIM,%_ FNCNAME%,TABLE,6,9,1,,,,% FNCCSYS%
|

I Begin of equation: (-1650/476.9)*{X}

*SET,% FNCNAME%(0,0,1), 0.0, -999

*SET,% FNCNAME9%(2,0,1), 0.0

*SET,% FNCNAME%(3,0,1), 0.0

*SET,% FNCNAME%(4,0,1), 0.0

*SET,% FNCNAME%(5,0,1), 0.0

*SET,% FNCNAME%(6,0,1), 0.0

*SET,% FNCNAME%(0,1,1), 1.0, -1, 0,0, 0, 0, O
*SET,% FNCNAME%(0,2,1), 0.0, -2, 0, 1, 0, 0, -1
*SET,% FNCNAME%(0,3,1), 0,-3,0,1,-1,2,-2
*SET,% FNCNAME%(0,4,1), 0.0, -1, 0, 1650, 0, 0, -3
*SET,% FNCNAME%(0,5,1), 0.0, -2, 0, 1, -3, 3, -1
*SET,%_FNCNAME%:(0,6,1), 0.0, -1, 0, 476.9, 0, 0, -2
*SET,% FNCNAME%(0,7,1), 0.0, -3, 0, 1, -2, 4, -1
*SET,%_ FNCNAME%(0,8,1), 0.0, -1, 0, 1, -3, 3, 2
*SET,%_ FNCNAME%(0,9,1), 0.0, 99, 0, 1, -1, 0, 0

I End of equation: (-1650/476.9)*{X

>

FLST,2,6,4,0RDE,2

FITEM,2,31

101



102

FITEM,2,-36
/GO
SFL,P51X,PRES, %P1650%

» STEP 9 : Create and mesh the tareet plane
GUIs: Main Menu > Preprocessor > Modeling > Create > Areas > Arbitrary > Through

KPs

Main Menu > Preprocessor > Meshing > Mesh Attributes > Pick Areas

Pick area #1.

A Area Attributes

[AATT] Assign Attributes to Picked Areas

MAT Material number |1—;|
REAL Real constant set number |1—L’
TYPE Element type number | 1 SHELL281 j
ESYS Element coordinate sys IO—L'
SECT Element section 1 W v
oK Apply Cancel | Help |

Main Menu > Preprocessor > Meshing > Size Cntrls > ManualSize > Areas > Picked

Areas



A Element Size at Picked Areas
[AESIZE] Element size at picked areas

SIZE Element edge length

0K

Cancel | Help |

Main Menu > Preprocessor > Meshing > Mesh > Areas > Free

Batch text:
FLST,2,4,3
FITEM,2,8
FITEM,2,11
FITEM,2,10
FITEM,2,9
AP51X
CM,_Y,AREA
ASEL, , ,, 1
CM, Y1,AREA
CMSEL,S, Y
CMSEL,S, Y1
AATT, 1, 1, 1,
CMSEL,S, Y
CMDELE, Y
CMDELE, Y1
FLST,2,1,5,0RDE, 1
FITEM,2,1
AESIZE,P51X,5,
MSHKEY,0
CM,_Y,AREA
ASEL, , ,, 1
CM, Y1,AREA
CHKMSH,'AREA'
CMSEL,S, Y
AMESH, Y1
CMDELE, Y
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CMDELE, Y1
CMDELE, Y2
MSHKEY,0

» STEP 10 : Assign the target and contact elements

104

GUIs: Main Menu > Preprocessor > Modeling > Create > Elements > Elem Attributes

For contact element CONTA177 along the shell edge of the web

For the target surface TARGE170

A Element Attributes

Define attributes for elements

[TYPE] Element type number | 3 CONTA177 j

[MAT] Material number |1—;,

[REAL] Real constant set number Iﬁ

[ESYS] Element coordinate sys IQ—L,

[SECNUM] Section number |1w—;|

[TSHAP] Target element shape |Straight line j
OK Cancel | Help |

A Element Attributes

Define attributes for elements

[TYPE] Element type number | 2 TARGEI |

[MAT] Material number [+~

[REAL] Real constant set number |1—L,

[ESYS] Element coordinate sys lo—z,

[SECNUM] Section number 1 W -

[TSHAP] Target element shape |3 node quad j
0K | Cancel | Help |

Main Menu > Preprocessor > Modeling > Create > Elements > Surf/Contact

> Surf to Surf



A Mesh Free Surfaces

[ESURF] Owverlay Elements on Faces of Existing Elements

Tlab Surface element form |Top surface j

Shape Base shape of TARGE170s |Same as target j

oK | Cancel | Help

Main Menu > Preprocessor > Meshing > Clear > Areas

Main Menu > Preprocessor > Modeling > Delete > Areas Only
Pick area #1.

“CNCHECK, TRIM” to eliminate the unnecessary contact and target elements.

. PlotCtrls WorkPlane Parameters

EJ CNCHECK, TRIM

Batch text:
FLST,5,2,4,0RDE,2
FITEM,5,21
FITEM,5,-22
LSEL,S, , ,P51X
NSLL,S,1
NPLOT

TYPE, 3

MAT, 1
REAL, 1
ESYS, 0
SECNUM, 1
TSHAP,LINE
FLST,5,121,1,0RDE,7
FITEM,5,22142
FITEM,5,24842
FITEM,5,24902
FITEM,5,-24960
FITEM,5,27542
FITEM,5,27602
FITEM,5,-27660
CM,_Y,NODE
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NSEL, , , P51X
CM,_Y1,NODE
CMSEL,S, Y
CMSEL,, Y1
ESURF, ,TOP,
CMSEL,, Y
CMDELE, Y
CMDELE, Y1
ASELS,,, 1
NSLA,S,1
NPLOT
TYPE, 2
MAT, 1
REAL, 1
ESYS, 0
SECNUM, 1
TSHAP,QUA8
FLST,5,34883,1,0RDE,6
FITEM,5,38402
FITEM,5,41102
FITEM,5,49322
FITEM,5,52022
FITEM,5,54722
FITEM,5,-89600
CM,_Y,NODE
NSEL, , , P51X
CM,_Y1,NODE
CMSELS, Y
CMSEL,, Y1
ESURF, ,TOP,
CMSEL,, Y
CMDELE, Y
CMDELE, Y1
ACLEAR, 1
ADELE, 1



EPLOT
ALLSEL,ALL
CNCHECK,TRIM

> STEP 11 : Solve the problem

GUIs: Main Menu > Solution > Analysis Type > Sol’n Controls
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N Default Nonlinear Convergence Criteria X
Default Criteria to be Used:
Label Ref. Value Tolerance Norm Min. Ref
F calculated .001 L2 1.0
M calculated .001 L2 1.0
A Nonlinear Convergence Criteria
[CNVTOL] Nonlinear Convergence Criteria
Lab Convergence is based on Force F
Moment M
Magnetic Displacement U
Electric Rotation ROT
Fluid/CFD
VALUE Reference value of Lab I:l
TOLER Tolerance about VALUE 0.001
NORM Convergence norm [Zrom ]
MINREF Minimum reference value I:l
(Used only if VALUE is blank. If negative, no minimum is enforced)
oK I Cancel Help I
Close Help
Main Menu > Solution > Solve > Current LS
A /STATUS Command X
File
SOLUTION OPTIOHNS
PROBLEH DIMEHSIONALITY. . . . .. .. .. ... 3-0
DEGREES OF FREEDOH. . . . . . Ux 0¥ UZ ROTW ROTY ROTZ
ANALVSIS TYPE . . . o v v s i i i i i e e e STATIC (STERDY-STHTE)
HEMTON-RAPHSON OPTION . . . . . . .o oo v PROGRAH CHOSEN
GLOBALLY RSSEHBLED HATRIX . . . . . . . . . .. SYHHETRIC A Solve Current Load Step X

LOAD STEP OPTIOHNS

TIHE AT END OF THE LOAD STEP. . . .. .. ... 1.0000
HUHBER OF SUBSTEPS. . . . . .. o v v v u

HAXIHUR WUHBER OF EQUILIBRIUM ITERATIONS. . .. 15
STEF CHANGE BOUNDRRY COMDITIONS . . . . . ... OEFAULT
TERHINATE AWALYSIS IF MOT COMVERGED . . . . .. YES (EXIT)

COMVERGENCE COMTROLS
LABEL ~ REFERENCE  TOLERANCE HORH HINREF
U 0.000 0.1000E-02 2 0.000
PRINT OUTPUT COMTROLS . . . o v oo v w o u s HO PRINTOUT
DATRBASE OUTPUT CONTROLS. . . . . . o v 0w oW ALL DATH WRITTEN
FOR THE LAST SUBSTEP

Batch text:

/SOL

CNVTOL,U, ,0.001,2, ,
/STATUS,SOLU
SOLVE

[SOLVE] Begin Solution of Current Load Step

Review the summary information in the lister
window (entitled "/STATUS Command"), then
press OK to start the solution.
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» STEP 12 : Define a path around crack tip
GUIs: Main Menu > General Postproc > Path Operations > Define Path > By Nodes
Define the path along the edge of the refinement mesh area around the tension side

crack tip.

Batch text:
/POST1
FLST,2,4,1
FITEM,2,8463
FITEM,2,5703
FITEM,2,13983
FITEM,2,24842
PATH,s,4,30,20,
PPATH,P51X,1
PATH,STAT

» STEP 13 : Calculate the J- Integral value
Batch text:
AVPRIN,O, ,
ETABLE, ,SENE,
AVPRIN,O, ,



ETABLE, ,VOLU,
SEXP,sexp,SENE,VOLU, 1,1,
AVPRIN,0, ,

PDEF, ,ETAB,SEXP,AVG
/PBC,PATH, ,0
PCALC,INTG,WDY,ETABSEXP,YG, 1,
AVPRIN,0, ,

PDEF, ,S,X,AVG

/PBC,PATH, ,0

AVPRIN,0, ,

PDEF, ,S,Y,AVG

/PBC,PATH, ,0

AVPRIN,0, ,

PDEF, ,S,XY,AVG

/PBC,PATH, ,0
PVECT,NORM,NX,NY,NZ
PCALC,MULT,SXNX,SX,NX, 1,
PCALC,MULT,SXYNY,SXY,NY, 1,
PCALC,MULT,SYNY,SY,NY, 1,
PCALC,MULT,SXYNX,SXY,NX, 1,
PCALC,ADD,TX,SXNX,SXYNY, 1,1, ,
PCALC,ADD,TY,SYNY,SXYNX,1,1, ,
*GET,DX,PATH,LAST,S
*SET,DX,DX/100
PCAL,ADD,XG,XG,,,,-DX/2
PDEF,UX1,U,X

PDEF,UY1,U,Y
PCAL,ADD,XG,XG,,,,DX
PDEF,UX2,U,X

PDEF,UY2,U,Y
PCAL,ADD,XG,XG,,,-DX/2
*SET,C,1/DX
PCAL,ADD,C1,UX2,UX1,C,-C
PCAL,ADD,C2,UY2,UY1,C,-C
PCALC,MULT,TXUX,TX,C1,1,
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PCALC,MULT,TYUY,TY,C2,1,
PCALC,ADD, T, TXUX,TYUY,1,1, ,
PCALC,INTG,TDS,T,S,1,
PCALC,ADD,J,WDY,TDS,1,-1, ,
PRPATH,WDY,TX,TY,TDS,J
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