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CHAPTER 1  
INTRODUCTION 

1.1 General 

To date, stress intensity factor (SIF), which characterizes the magnitude of the singular 
stress field in the vicinity of crack tip, is still a significant problem in fatigue and fracture 
analysis of steel structures. By applying linear elastic fracture mechanics (LEFM), the 
static strength of cracked steel structures, as well as the fatigue crack growth rate under 
cyclic loading condition, can be calculated if SIF value is known. For steel structures, 
the I-beams play an important role due to their extensive applications. It is therefore 
essential to study the fracture behavior in structural I-beams with crack. 

Many researchers have attempted to find the SIF of cracked structural I-beams. 
Nevertheless, the effects of crack surface interference (non-overlapping behavior) were 
commonly neglected in the analyses of these existing studies. Consequently, the SIF 
at the tension-side crack tip, as well as the crack opening displacement (COD) profile, 
which can be significantly influenced by non-overlapping crack surfaces, have not been 
studied. 

This present research will fulfill the gaps in knowledge by performing a finite element 
analysis (FEA) of the stress intensity factors for cracked I-beams with non-overlapping 
crack surfaces. The finite element method was selected to simulate the crack behavior 
in I-beams. The non-overlapping models utilizing the commercial finite element 
program ANSYS were used to investigate various configurations of structural I-beams 
under in-plane bending. The analyses were based on linear elastic fracture mechanics. 
The J-integral method was subsequently applied to calculate the SIF values at the 
crack tips. The contact elements were employed to include the non-overlapping 
behavior of the crack. 

1.2 Research objectives and scope 

The objectives of this study are: (1) to perform a finite element analysis to develop a 
physically acceptable stress intensity factor solutions for structural I-beams that 
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contain through-thickness cracks; (2) to evaluate the effect of non-overlapping 
behavior on the opening-mode (mode I) stress intensity factors at the tension-side 
crack tips; (3) to investigate the effects of various parameters: the normalized web 
crack length, the flange-to-web area ratio and the normalized crack eccentricity.  

The scope of this research was as follows 

The analyses of non-overlapping models were based on linear elastic fracture 
mechanics (LEFM). 

The W- shapes in the Manual of steel construction were selected. 

The opening-mode (mode I) correction factor solutions for structural I-beams with 
through-thickness cracks under bending were calculated at tension-side crack tip. The 
crack configuration is a two tip crack in the web of W-shape.  

The three-dimensional (3D) finite element analyses were performed with various 
parameters: the normalized web crack length, the flange-to-web area ratio and the 
normalized crack eccentricity. Besides, the effects of the parameters depth-to-width 
ratio on the correction factor and the magnitude of the applied load on the COD 
profile are also examined. 
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CHAPTER 2  
 LITERATURE REVIEW 

2.1. Stress intensity factors for finite-width cracked plates with overlapping crack 
surface 

Overlapping SIF of commonly finite-width cracked plates, which are subjected to 
tension or bending, are presented in this section. Figure 2.1 illustrates the 
configurations of the finite-width plates. 

 

Figure 2.1. Configurations of the finite-width plates: (a) Center-cracked plate under tension;       
(b) edge-cracked plate under bending 

The SIF solution is expressed as  

( )K f a                                                                                       (2.1) 

where  ( )f   : correction factor of the SIF 

              : remote axial or bending stress, MPa  

           /a W  : normalized crack length 

           a : crack length, mm  
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The functions ( )f   are listed in the Table 2.1.  

Table 2.1. Correction factors for center-cracked and edge cracked plates 

Description Reference ( )f   

A center-cracked 
plate under 

tension 

Irwin [1] 2
tan

2




 

Koiter [2] 
21 0.5 0.32

1

 



 

  

Brown [3] 2 3
1 0.128 0.288 1.525    

 

Fedderson 
[4] 

sec
2



 

Tada et al. 
[5] 

2 4(1 0.0025 0.06 ) sec
2


  

 

A edge-cracked 
plate under 

tension 

Brown [3] 2 3 4
1.122 0.231 10.550 21.710 30.382        

Tada et al. 
[5] 

3

0.752 2.02 0.37 1 sin
2 2

tan
2

cos
2








 
   

 

 

A edge-cracked 
plate under 

bending 

Brown [3] 2 3 4
1.122 1.40 7.33 13.08 14.0      

 

Tada et al. 
[5] 

4

0.923 0.199 1 sin
2 2

tan
2

cos
2







 
  

 
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2.2. Stress intensity factor for cracked I-beams 

Greif and Sanders [6] initially studied the problem of the cracked plate with zero-
flexural-stiffness edge stiffeners under tensile loading. The plane stress analysis was 
conducted using the complex variable approach of Muskhelishvili to derive an integral 
equation which is then solved by numerical method, e.g. Simpson’s rule. 

Subsequently, the same problem including both axial and flexural rigidities was 
investigated by Isida [7]. The method was based on the Laurent expansions of the 
complex stress potentials. The perturbation technique was applied to determine their 
coefficients from the boundary conditions. The studied problem shown in Figure 2.2.  

 

Figure 2.2. Centrally cracked strip with stiffened edges [7] 

The stress intensity factors IK  were obtained by 36 term power series of 2  in the 
following equations 

( , , )IK T aF                                                                                  (2.2) 
35

2

2

1

( , , ) 1 n

n

n

F C   


                                                                              (2.3) 

where   3( / ).( / )s sE E I b t   : dimensionless inertia parameter 
            ( / ).( / )s sE E A bt   : dimensionless extensional rigidity 
            sA : sectional area of stringer 
            sI : moment of inertia of stringer section for in-plane bending 
            /a b   : crack ratio 
 and the coefficients 2 4, ,...c c  are functions of   and  . 
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It was noted that the constraining effect, which is characterized by the dimensionless 
parameters   and  , became pronounced for a long crack when the crack tip was 
close to the stiffeners.  
Of the two researches of Greif and Sanders [6] and Isida [7], the dimensionless 
extensional rigidity of stringers, which is the cross-sectional area ratio of the stiffener-
to-plate, was the major factor affecting the stress intensity factor around the crack tip. 
As the unstressed edge stiffeners were assumed, it is impossible to apply these solution 
to I-beams. 
Kienzler and Hermann [8] studied the stress intensity factors for cracked beams with 
a rectangular cross section and different crack geometries, using the conservation laws 
and elementary beam theory. Based on the remarkably applicable method in this 
study, several researchers have investigated the stress intensity factors of various cross-
sectional shapes with many different loading conditions, e.g., Hermann and Sosa [9], 
Gao and Hermann [10], Dunn et al. [11], Muller et al. [12], Ricci and Viola [13], Ghafoori 
and Motavalli [14]. Of these studies, Dunn et al. [11] utilized an extension work of 
Kienzler and Hermann [8], associated with dimensional considerations and a finite 
element calibration to investigate the SIF of I-beams under a bending moment. Figure 
2.3 illustrates the geometry of the cracked I-beam. 

 
 

 
 

Figure 2.3. Geometry of the cracked I-beam [11] 
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The following dimensionless terms were utilized to compute the KI values 
3/2

*

1 2 3
, , ,

6

I

I

K th a t w
K

M h b h
                                                               (2.4) 

where    *

IK : Non-dimensional loading variable. 
             1 , 2 and 3 : Non-dimensional geometric variables. 
The non-dimensional stress intensity factor was represented as follows: 

* 2

3 3

2 1 2 3 2 3

1 1

3 4(1 ) ( , , ) 1 (1 )( 1)
IK

R



     

 
  

     
                       (2.5) 

where 

    
  

2
223

1 3 3 2 3 1
2 3 1

1 2 3

2 3 1 3

3 4(1 ) 2(1 )(1 ) 2(1 )
( , , )

2 8 2(1 )
R

       
  

   

       
 

  
 (2.6) 

Besides, they also proposed a simple procedure to estimate the non-dimensional 
parameter  , using solutions from Equation (2.4) to Equation (2.6) fitted with the finite 
element results. The numerical solution for   is given as   

0.374 0.025

1 2 3 1 2( , , ) 1.16                                                                                    (2.7) 

More recently, Xie et al. [15-17] proposed another approach called G*-integral method, 
based on conservation laws and the concept of crack mouth widening energy release 
rate, to calculate the SIF of cracked structures. Based on the G*-integral method, 
Ghafoori and Motavalli [14] investigated the analytical solution of the SIF for cracked 
steel I-beams subjected to both bending and tension loadings, as shown in Figure 2.4. 
The analytical solution of the SIF for a plane strain condition, utilizing G*-integral 
method, can be obtained as 

 
1/2

2

2 2

1 2 1 2 2

.
( ) ( )

(1 )

c c

I c

w

M Y NN
K N M

A I t


   




      



  
  
  

                        (2.8) 

where   : Poisson’s ratio 

         1
0

1

1

( )
d

A



 


   , 
1

2

2

1

( )
d

A
 


   , 1

0
1

1

( )
d

I



 


   , 
1

2

2

1

( )
d

I
 


            (2.9) 
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Figure 2.4. A half-length cracked I-beam; YC is the movement of the neutral axis for a crack 
length of a. x-z is the plane of the symmetry of the beam. [14] 

           and   are given by x

b
   and 

2

1
ftc

b a


 
    

 
 

          b and c : position of intersection between the lower and upper edges of bottom 
flange and the elliptic hole, respectively. 

          1A   and  2A  : area of cracked section for 0 x c  and c x b  , 
respectively. 

          1I   and  2I  : moment of inertia of cracked section for 0 x c  and 
c x b  , respectively. 

Beside the analytical approaches, numerical techniques were also efficient ways to 
investigate the SIF solutions of cracked I-beams. Tian et al. [18] performed a three-
dimensional SGBEM (Symmetric Galerkin Boundary Element Method)-FEM to compute 
the mixed mode SIF varied through the crack front and fatigue crack growth rate in 
cracked I-beams. Mixed mode SIFs were examined for the I-beams with an inclined 
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crack in the web or a slant edge crack in the flange subjected to torsion loading (Figure 
2.5). 

 

(a) 

 

(b) 
Figure 2.5. Schematics of I-beams: (a) With an inclined crack in the web; (b) with a slant edge 

crack in the flange subjected to torsional forces. [18] 

In recent years, an extensive amount of researches focused on the application of 
advanced composites, e.g. carbon fiber-reinforced polymer (CFRP), as an apparently 
effective method to enhance the load capacity and fatigue life of steel I-beams. 
Hmidan et al. [19, 20] developed the three dimensional finite element solution for the 
SIFs of cracked steel girders (W-shapes) strengthened with carbon fiber-reinforced 
polymer (CFRP) sheets under bending. Figure 2.6 shows the W-shape geometry and 
strengthening details.  
The SIF solutions for cracked W-shape girders with and without CFRP strengthening 
were proposed as follows 

0( , )IK Y a     for an un-strengthened W-shape                                   (2.10) 

0( , , , )IK Y a       for a CFRP-strengthened W-shape                            (2.11) 
Where IK : mode I stress intensity factor, N/mm3/2 

         Y : correction factor of the SIF 
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          : remote stress of the un-cracked section subjected to tension, MPa 
          ao: the depth of the crack, mm 
         /f wA A   : Flange-to-web ratio, where fA  and wA  are the cross-sectional 
area of the flange and the web, respectively. 
         /oa h   : Normalized crack depth. 
         /c sA A   : CFRP-to-steel area ratio, where cA  and sA  are the cross-sectional 
area of the CFRP and steel, respectively. 
         /f sE E   : CFRP-to-steel modular ratio, where fE  and sE  are the elastic 
modulus of the CFRP and steel, respectively. 

 

(a) 

 
                             (b)                                         (c)                                     (d) 

Figure 2.6. W-shape details: (a) Geometry; (b) un-strengthened; (c) full-flange strengthened; (d) 
half-flange strengthened. [20] 
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Correction factors of stress intensity factors 
- Un-strengthened W-shape  

2 2 2 2( , ) 4.69 32.55 2.83 2.63 0.36 47.12 0.06 8.96Y                    
 (2.12) 

- Strengthened W-shape 

1 2 3 4 5 6 7

2 2 2 2

8 9 10 11 12

2 2 2 2 2

13 14 15 16 17

( , , )Y c c c c c c c

c c c c c

c c c c c

        

     

      

      

    

    

                               (2.13) 

where c1 to c17 are curve-fitting coefficients, as shown in Table 2.2. 
On the other hand, previous experimental researches of steel bridge details under 
fatigue loadings were investigated by Fisher et al. [21, 22]. It was pointed out that the 
origination of fatigue cracks usually starts at the welded details. For the steel I-beams 
with transverse stiffeners welded on the web, the two-tip web cracks can be formed 
at the bottom end of the stiffener, with upper crack tip A and lower crack tip B growing 
up and down the web, respectively. Because of the eccentricity of two-tip web cracks, 
the SIFs at the upper and lower crack tips are usually unequal. The two-tip web crack 
propagated gradually before the lower tip grew across the flange width to form a three-
tip crack in I-beam. It was noted that three-tip cracks are usually symmetric in I-beams.  
Figure 2.7 shows the stages of fatigue crack in the I-beam with a stiffener welded to 
the web. 

 
Figure 2.7. Stage of fatigue crack growth in a stiffener welded to the web [23] 
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Table 2.2. Coefficients of correction factors for   = 0.91 to 2.01. [20] 

Coefficient 
Full flange Half flange 

/
f s

E E    /
f s

E E   

 0.75 1.125 1.5 0.75 1.125 1.5 

c1 0.26 0.65 0.87 0.16 0.84 0.69 

c2 4.37 3.21 2.48 5.72 4.48 3.65 

c3 2.18 2.01 1.95 2.07 1.52 2.14 

c4 211.78 138.27 59.03 272.72 111.82 85.09 

c5 -53.98 -94.37 -107.88 -88.74 -25.46 -148.50 

c6 -1393.84 -1218.76 -1042.38 -1516.15 -1352.67 -1161.49 

c7 2.32 1.69 1.00 1.96 1.52 0.67 

c8 -18.930 -12.166 -3757 -20.518 -10746 -903.73 

c9 -0.29 -0.17 -0.13 -0.21 0.02 -0.20 

c10 -3.01 -2.88 -2.71 -3.41 -3.28 -2.97 

c11 -163.31 -104.23 -60.94 -140.74 -53.41 -0.79 

c12 8999.36 10289.00 7704.27 8445.87 7856.95 6121.60 

c13 62279 42164 29930 70.234 46901 30528 

c14 -19.91 -18.29 -10.49 -10.14 -38.34 4.04 

c15 0.47 0.37 0.29 0.40 0.28 0.37 

c16 637.47 749.62 731.56 583.85 716.72 726.77 

c17 -3.48 -3.18 -2.59 -3.19 -3.16 -2.84 

 
Albrecht et al. [23] developed the SIF solutions for two-tip web cracks and symmetric 
three-tip cracks in I-beams under tension or bending. Figure 2.8 illustrates cross-
sectional information of cracked I-beams. 
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Figure 2.8. Cross-sectional information of cracked I-beams: 

(a) Two-tip web crack; (b) symmetric three-tip crack. [23] 

The SIF solution for a two-tip web crack subjected to tension or bending was proposed 
to be 

, , ( , , )A B A B
w wK f a                                                              (2.14) 

where  wa : a half of the web crack length, mm 
           : tensile or bending stress at the junction of the web and flange, MPa 
The SIF solution for a symmetric three-tip crack subjected to tension or bending was 
proposed to be 

, ,

,
( , , )

w f w f

w f w f
K f a                                                                           (2.15) 

where  
  wa and 

fa : Web crack length and flange crack length, respectively, mm       
 The normalized parameters in Equations (2.14) and (2.15) are defined as follows: 
- The normalized crack eccentricity: / ( / 2)je d   (two-tip web crack) 
- The normalized flange crack length: / ( /2)f f fa b    
- The normalized web crack length for two-tip web crack (2.16a) and three-tip crack 
(2.16b): 

      
( )

/ 2

/ ( )

w

jw

w j

a
a

d e

a d b




  



                                                                       (2.16) 

- The flange-to-web area ratio: 2 /f wA A    
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Correction factors of stress intensity factors 
- Two-tip web crack 

, 2

1 2 3 4 5 6

2 2 2 2

7 8 9 10 11

2 2 2

12 13 14

( , , )A B

w o w w w

w w w

w w w

f a a a a a a a

a a a a a

a a a

        

      

   

      

    

  

                         (2.17) 

where 0 14a a  are regression coefficients given in Table 2.3.  
- Symmetric three-tip crack 

 
2 2 3 2 3 2 2 2 2

1 2 3 4 5 6 7 8 9 10 11 12 13,

2 2 3 2 3 2 2 2 2

14 15 16 17 18 19 20 21 22 23 24 25

( )
, ,

(1 )

w w w f f f w f w f w f w fw f

w f

w w w f f f w f w f w f w f

a a a a a a a a a a a a a
f

a a a a a a a a a a a a

               
  

               

           


           

 

(2.18) 

where 1 25a a  are regression coefficients given in Table 2.4. 
It was shown that the flange-to-web area ratio  , which accounts for the constraining 
effect of the flange on two-tip web cracks and the interaction effect on the three-tip 
web cracks, can sufficiently characterize W shapes in the calculation of SIF. 
 
2.3. Stress intensity factors for cracked plates with non-overlapping crack surface 

The non-overlapping problem was first studied by Paris and Tada [24], which was 
applied for a central crack in an infinite plate under bending, as shown in Figure 2.9.  

 

Figure 2.9. Infinite center-cracked plate under bending after crack closure [24] 
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By superimposing the solutions of bending and uniform tension cases, the analytical 
solution of SIF, as well as the crack closure length, were determined with assumption 
that the SIF was zero at the compression-side crack tip.  
It was found that / 2b a  with zero SIF for the new crack tip at x a  , where b  is 
the eccentricity of the new crack. 
The stress intensity factor K at the tension-side crack tip was obtained as follow 

,

2 2
0.544

3 3
A eff b b

K a a                                                               (2.19) 

 
Table 2.3. Coefficients for two-tip web cracks in I-beams [23] 

Coefficient Tension Bending 
Upper crack tip Lower crack tip Upper crack tip Lower crack tip 

a0 1 1 0 0 

a1 -0.07184 -0.03591 1.02395 1.02052 

a2 0.05916 0.03257 -0.02824 -0.03142 

a3 0.07266 0.01609 -0.02660 -0.02841 

a4 0.16801 0.17113 -0.51095 0.48403 

a5 -0.15810 -0.17469 -0.00309 -0.02169 

a6 -0.09645 0.00540 0.66587 -0.19538 

a7 0.13248 0.19882 0.02106 0.10116 

a8 0.11124 0.10355 -0.03243 -0.02670 

a9 -0.01464 -0.01573 0.00337 0.00206 

a10 -0.03299 0.00399 0.02660 0.03282 

a11 0.04288 0.05901 0.00483 0.01704 

a12 -0.14373 -0.13149 -0.14302 -0.20652 

a13 -0.09648 -0.16125 -0.01281 -0.06069 

a14 -0.03380 -0.27916 -0.04610 -0.28079 
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Table 2.4. Coefficients for symmetric three-tip cracks in I-beams [23] 
Coefficient Tension Bending 

Web crack tip Flange crack tip Web crack tip Flange crack tip 

a1 0.82991 1.48266 0.82922 1.39283 

a2 -0.67499 0.29636 -0.58551 0.06970 

a3 0.21031 0.07549 0.16098 0.04610 

a4 5.48154 4.44880 3.18865 3.37633 

a5 -7.24174 2.74806 -1.92470 -2.78526 

a6 6.51764 -8.92438 -5.45652 -1.04763 

a7 -1.22688 -9.01819 -0.87320 -7.16218 

a8 2.27070 10.67798 1.30689 9.95421 

a9 -0.04335 -2.79219 0.75006 -3.94745 

a10 -3.53419 39.40912 1.92329 24.63084 

a11 5.23305 -33.56530 -1.28348 -20.37830 

a12 1.11541 -32.7345 -2.84890 -19.76580 

a13 -2.53266 30.52621 3.09458 18.05231 

a14 -0.67489 0.31779 -0.67725 0.14847 

a15 0.19608 0.08256 0.17624 0.04106 

a16 9.15477 2.56783 7.93375 1.27056 

a17 -13.48190 -6.28871 -0.68127 -3.72795 

a18 10.74853 3.32973 1.25324 2.41420 

a19 -2.99836 -6.42741 -2.47185 -5.07106 

a20 5.46394 8.44963 4.36222 7.53843 

a21 -2.86079 -2.83403 -2.15147 -3.33554 

a22 -6.27909 38.11440 -3.59192 23.75073 

a23 10.41571 -35.78230 11.11301 -20.20160 

a24 3.65483 -38.73570 1.49894 -23.70230 

a25 -7.95641 36.97307 -11.80580 20.59509 
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Bowie and Freese [25] developed an exact solution of SIF for cracks in an infinite plate 
under bending by modifying the Muskhelishvili method (Figure 2.10). A combination of 
Modified Mapping Collocation (MMC) and finite element methods was used to 
determine the non-overlapping SIF solution of cracks in the finite-width plate. It was 
indicated that the classical solution underestimated the SIFs at crack tip in tension by 
approximately 9% for both infinite and finite-width plates.  
The SIFs at the tension-side crack tip B were shown in the following formulae 

3/2 3

3/2 2

( / 2) sin

( / 2) sin cos

IB

IIB

K T L

K T L



 



 
                                                                           (2.20) 

 where IBK  and IIBK  are stress intensity factors for mode I and mode II, respectively. 

The effective crack length 2L/3 after crack closure was then obtained. For the center-
cracked infinite plate under bending, the effective SIF was given by 

3/2 3

3/2 2

(2 / 3) sin

(2 / 3) sin cos

eff

IB

eff

IIB

K T L

K T L



 



 
                                                                  (2.21) 

It is clearly seen that 3/2/ / 2(2 / 3) 1.09eff eff

IB IB IIB IIBK K K K   . 

             

 

                               (a)                                                                     (b) 

Figure 2.10. Non-overlapping model of center-cracked infinite plate under bending. (a) Original 
crack; (b) newly formed crack (after closure) [25] 

For a crack in the finite-width plate as shown in Figure 2.11, where a closed-form 
cannot be found, the SIF solution was determined by using the Modified Mapping 
Collocation (MMC) method combined with the finite elements.  
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                                (a)                                                                    (b) 

Figure 2.11. Non-overlapping model of a strip under bending. (a) Original crack; (b) newly formed 
crack (after closure) [25] 

Woo et al. [26] used a collocation method to obtain the SIF solutions of a finite-width 
plate under bending, as shown in Figure 2.12(a).  
For each step of this process, the crack tip in compression that has negative SIF value 
changed its position closer to tension-side crack tip. If the crack tip in compression 
reached the zero SIF value, the procedure would be ended. Figures 2.12(b) and 2.12(c) 
illustrate this process. With the assumption that 1 0i

IBK   , the approximate crack length 

1ia   in the 1i   step is given by 
1

1
1 1

i i

IB i IB i
i i i

IB IB

K a K a
a

K K




 





                                                                             (2.22) 

The actual value of 1i

IBK  was then calculated. If 1 0i

IBK   , the procedure repeated 
again until IBK  differed from zero by acceptable error. 
It was found that the effective length of crack was reduced by 30% and correction 
factor at tension-side crack tip increased by more than 30% in comparison with 
classical solutions. 
 
Albrecht and Lenwari [27] proposed a closed-form solution for the infinite plate under 
linear stress distribution using superposition principle for the overlapping solutions. 
Figure 2.13 and Figure 2.14 show the non-overlapping model of a center-cracked 
infinite plate under in-plane bending and linear stress distribution, respectively.  
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                                   (a)                                                                (b)                 

 
                                                                   (c) 

Figure 2.12. A finite-width plate under bending. (a) Original crack; (b) newly formed crack (after 
closure); (c) Crack length at each step [26] 

 

                           (a)                                                                                 (b)  

Figure 2.13. Non-overlapping model of center-cracked infinite plate under in-plane bending. (a) 
Original crack; (b) newly formed crack (after closure) [27] 

'
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Based on the superposition principle, the effective SIF at the crack tip A was obtained 
by applying the necessary condition ' 0BK   for a physically acceptable solution. 

'

'

,
' ' 0.544 '

2

b

A eff a b
K a a a


                                                           (2.23) 

where ' 2 / 3a a  , ' / 3a b   and  ' 2 / 3b b       
The crack closure length 2 / 3c a  was also determined in this process.                                  
This solution of the effective stress intensity factor at the crack tip A totally coincides 
with the result given by Paris and Tada [24]. 
The effective SIF solution at the tension-side crack tip A was given by 

 
3/2'

'

,

2
1

2 3

b

A eff a b
K a s a


      
   
     

                                                (2.24) 

where  
2

' 1
3

a s a  ,   ' 1
1

3
a bs     and   ' 2

1
3

b bs    

          /a bs    : The axial-to-bending stress ratio. 
 

 

                          (a)                                                                                 (b) 

Figure 2.14. Non-overlapping model of center-cracked infinite plate under linear stress 
distribution. (a) Original crack; (b) newly formed crack (after closure). [27] 

A further calculation using the weight function method was conducted to obtain the 
SIF solution for finite-width plate under polynomial stress distribution. The plate 
configuration is shown in Figure 2.15.  
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The m -degree form of polynomial stress distribution was as follow 

0

( ) ( / )
m

m

mx D x W                                                                                  (2.25) 

The crack tip SIF solution was then represented as 

 
0

( , , ) '
m

mK D F m a   
 

  
 
                                                                     (2.26) 

where  /e W  : the normalized crack eccentricity 

           '/ ( )a W e   : the normalized crack length 

           m : the polynomial degree; 0m   for axial, 1m   for bending … 

           ( , , )F m  : correction factor for the SIF  

 

Figure 2.15. Configuration of center-cracked finite-width plate under polynomial stress 
distribution. [27] 

By applying the necessary condition ' 0BK   or 
0

( , , ) 0
m

m
D F m   , the effective SIF 

solution was determined as following expression 
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,

0

( , , m) ( / / (2 )
m

A eff m
K D F W a W c W                                                   (2.27) 

It was found that the classical solution underestimated the SIF at tension-side crack 
tip at maximum 15% for the finite-width plate subjected to in-plane bending.  
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CHAPTER 3  
THEORETICAL BACKGROUND 

This chapter presents a brief description of theoretical concepts that relate to the 
research problem. The particular attentions are given on linear-elastic fracture 
mechanics (especially the stress intensity factor), the J- Integral method and the non-
overlapping problem (crack surface interference). 
3.1. Linear-elastic fracture mechanics 

The fundamental of linear elastic fracture mechanics (LEFM) is one of the most 
essential concepts in fracture mechanics. 
Stress analysis of crack 
Considering a linear elastic body subjected to external loading, the closed-form 
solutions can be derived for the certain crack configurations. Such solutions were first 
studied by Irwin [1]. In the defined polar coordinate system as shown in Figure 3.1, the 
stress field for any linear elastic cracked body is represented by 

/2 ( )

0

( ) ( )m m

ij ij m ij

m

k
f A r g

r
  





 
  
 

                                                                          (3.1) 

where 
ij : stress tensor;  

          k  : constant value 
          

ijf  : non-dimensional function of   

It is obvious that stress field in the vicinity of the crack tip varies with 1/ r . The stress 
singularity is described in Equation (3.1) since stress field approaches infinity when

0r  . 
The stress fields near crack-tips can be divided into three basic types, each associated 
with a local mode of deformation as illustrated in Figure 3.2. The superposition of 
these three modes is sufficient to describe the most general three-dimensional case 
of local crack-tip deformation and stress fields. Modes I and mode II can be regarded 
as two-dimensional plane-extensional problems (opening and in-plane shear). Mode III 
can be analyzed as the two-dimensional pure shear (or torsion) problem. 
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Figure 3.1. The coordinate system at a crack tip. [28] 

The stress intensity factor 
The constants k and 

ijf  depend on the mode of deformation and change 
proportionally with the level of applied load. For convenience, constant k can be 
replaced by the stress intensity 2K k  . Consequently, the stress fields around a 
crack tip in an isotropic linear elastic body can be expressed as 

( ) ( )

0

lim ( )
2

I II

ij ij
r

K
f

r
 



                                                  (3.2)     

( ) ( )

0

lim ( )
2

II IIII

ij ij
r

K
f

r
 



                                                    (3.3) 

( ) ( )

0

lim ( )
2

III IIIIII

ij ij
r

K
f

r
 



                                                     (3.4) 

for Mode I, II and III, respectively. 
 
The stress intensity factors ( IK , IIK and IIIK ) which are not functions of coordinates 
represent the strength of the stress fields surrounding the crack tip that can be used 
to predict the failure of a cracked structure. The SIFs depend on the geometries as 
well as the loading conditions of the body. Consequently, all components of stress, 
strain and displacement can be determined as a function of r and  when the SIF is 
known. For this reason, the crack tip SIF is one of the most important concept in 
fracture mechanics. 
The singular stress field expressions for Mode I and Mode II are given in Table 3.1.  
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Figure 3.2. The three basic modes of crack extension. [5] 

Table 3.1. Linear elastic, isotropic stress fields around the crack tip for Mode I and 
Mode II [28] 

 Mode I Mode II 

xx
   3

cos 1 sin sin
2 2 22

I
K

r

  




      
            

  
3

sin 2 cos cos
2 2 22

II
K

r

  


 

      
            

 

yy
   3

cos 1 sin sin
2 2 22

I
K

r

  




      
            

  

xy   3
cos sin cos

2 2 22

I
K

r

  



     
     
     

 
3

cos 1 sin sin
2 2 22

II
K

r

  




      
            

 

zz
   0 (Plane stress) 

( )
xx yy

      (Plane strain) 

0 (Plane stress) 

( )
xx yy

     (Plane strain) 

,
xz yz

    0 0 

Note:   is Poisson’s ratio. 

 
Displacement field expressions for Mode I and Mode II are represented in Table 3.2.  

 

3
sin cos cos

2 2 22

II
K
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  



     
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Table 3.2. Linear elastic, isotropic displacement fields for Mode I and Mode II [28] 

 Mode I Mode II 

x
u  

2
cos 1 2sin

2 2 2 2

I
K r  


 

 
    
        

 
2

sin 1 2 cos
2 2 2 2

II
K r  


 

 
    
        

 

y
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2
sin 1 2 cos

2 2 2 2

I
K r  


 

 
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        

 
2

cos 1 2sin
2 2 2 2

II
K r  


 

  
    
        

 

Note:   is the shear modulus, 3 4   (plane strain) and (3 )(1 )     (plane stress) 

 
Table 3.3 lists the out-of-plane stress and displacement components for Mode III. 
Table 3.3. Out-of-plane components of linear elastic, isotropic stress and 
displacement in Mode III [28] 
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III
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
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
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The J contour integral 
 Rice [29] proposed a path-independent contour integral, J  contour integral, 
for the analysis of cracks. It was shown that the value of J - integral is path- 
independent of integration around the crack tip. Consider an arbitrary counter-
clockwise path ( ) around the crack tip, as illustrated in Figure 3.3. The - integral is 
given by 

i
i

u
J wdy T ds

x

 
  

 
                                                                       (3.5) 

where 
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0

ij

ij ijw d

   : strain energy density, N/mm2 

    i ij jT n : the components of the traction vector, N 
    

ij and
ij : the stress and strain tensors, respectively, MPa 

    jn : the components of the unit vector normal to    
    iu : displacement vector components, mm 
    ds : the length increment along the contour  , mm  

 

Figure 3.3. Arbitrary contour around the tip of a crack. [28] 

The relationship between stress intensity factor K  and J - integral is represented as 
follows 

2 2 2

' ' 2

I II IIIK K K
J

E E 
                                                                                      (3.6) 

where  
 IK , IIK and IIIK  : stress intensity factors for mode I, II and III, respectively, N/mm3/2     
 'E E  for plane stress, MPa 

 
2

'
1

E
E





 for plane strain, MPa 

 E  : Young’s modulus, MPa 
   : Poisson’s ratio 
  : shear modulus 
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3.2. Non-overlapping crack (crack surface interference) 

 
Figure 3.4. The center-cracked infinite plate subjected to in-plane bending. [5] 

Table 3.4. Summarized solutions of the infinite plate under in-plane bending. [5] 
 Overlapping behavior Non-overlapping behavior 

Mode I 
SIF 

1

2
I aK p a    

, /3 0I x aK    
3/2

,

2
0.5443

3
I x aK p a p a 

 
  
 

 

Stress 
variatio
n  near 

the 
crack tip 

2

2

1

2
( ,0)

1

y

x a

x

x a
x p

x x

a




 
 

 


 
 

 

 
/3,

2 / 3
( ,0)

3
y

x a x a

p a x a
x x

a x a

 

 
  

 
 

COD 
profile 

2
2

2 ( ,0) . 1
'x a

pa x x
x

E a a




   
    

   

 
/3

2
2 ( ,0) . ( )

' 3 3a x a

p a a
x x x a x

E

  

   
      

   

 
Crack 

opening 
area 

2

0

2

3 '
x

pa
A

E
   

24 2

9 3 '

pa
A

E

 
  
 

 

 
In linear elastic fracture mechanics (LEFM), the negative values of both the stress 
intensity factors and the crack opening displacements (COD) at the crack tips were 
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usually predicted by the classical solutions that allow crack surfaces to overlap. Due 
to the impenetrability of the continuous material, the overlapping solutions are not 
acceptable in physical viewpoint and, consequently, solutions involving negative SIF 
are not valid by themselves. This leads to the assumption of non-overlapping behavior 
in which prevent the penetration of crack surfaces and accept a part of crack length 
to close. The SIF at the tension-side crack tip as well as the COD profile are then 
influenced by such crack closure. 
Based on [5], some general traits of non-overlapping crack are given below 
- The stress variation on the closed crack near the new compression side crack tip and 
COD profile of the crack surfaces are in the form of a parabola ( 2r ) and a semi-
cubical parabola ( 3/2r ), respectively (Table 3.4). 
- 0IK   at the new crack tip in compression is a necessary condition for an acceptable 
solution in physical viewpoint, that produces the finite stresses and a smooth COD of 
the surfaces at that tip. (Figure 3.4). 
- Once the crack surfaces closed, they became a part of the continuum body and 
might be negligible in the subsequent analysis of crack.  
- The non-overlapping crack surface naturally increased the SIF at the tension-side 
crack tip as well as the crack opening area. For the center-cracked plate under in-plane 
bending, IK and the crack opening area became 3/22(2 / 3) 1.089  and 4 / 9 1.396   
times, respectively, to the overlapping solutions. 
- A compression side crack tip did not necessarily close. In Fig 3.4, it is clearly seen that 

0IK   when the left tip was still in the compression region ( / 3 0a x   ) and the 
crack, thus, remained open. 
- Referring to Figure 3.5, it is evident that the final geometry of cracks is unique (i.e., 
the positions of the cuspidal ends, regardless of the level of the applied load. For the 
linearly varying 

y at infinity (in-plane bending), the proportional loading is determined 
when the position of zero crossing of 

y (i.e., the axis of moment) is fixed. Figure 3.5a 
obviously shows that both tips of the crack are in the tensile region and the crack 
surfaces are always open. In Figure 3.5b, the left crack tip is in compressive region, but 
the compression side crack length is less than one-third of the tension side crack (

/ 3c ta a ), and the surfaces of the crack still remain open. When / 3c ta a  (Figure 
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3.5c), the cuspidal end is always formed at / 3tx a  . The position of the cuspidal 
end is uniquely determined by the length on the tension side, regardless of the level 
of the applied load, or the presence of cracks in / 3tx a  . Only the COD profile 
changes proportionally to the applied load. 

 
Figure 3.5. The “unique geometry” of cracks under proportional loads. [5] 
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CHAPTER 4  
DEVELOPMENT OF FINITE ELEMENT MODEL 

4.1. Finite element model 

The commercial finite element program ANSYS was employed to simulate the non-
overlapping behavior of steel I-beams containing a crack on the web, as shown in 
Figure 4.1. The J-integral method was employed to calculate the mode I SIFs of cracked 
steel I-beams. Eventually, the obtained SIFs were normalized with applied stress and 
crack length to determine the correction factors. This chapter describes the detailed 
information of the FEM model such as element type, geometry and boundary 
conditions of the W-shapes. 

 
Figure 4.1. Coordinate and symbols for two-tip web crack in I-beam 

4.1.1. W-shape details 

Table 4.1 lists the W-shapes selected in this research. The W-shapes were chosen from 
the Manual of Steel Construction [30], with the range of the flange-to-web area ratio   
( 2 /f wA A  ) from 0.83 to 2.11; where fA and wA are the cross-sectional areas of 
the flange and the web, respectively. 

The isotropic linear elastic material represented the constitutive behavior of steel was 
used, including the elastic modulus of 200 GPa and the Poisson’s ratio of 0.3. 
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Table 4.1. W-shapes used in finite element analysis. [30] 

Flange-
to-web 
area 
ratio 

  

W-shape 
Equivalent 
SI W-shape 

 
Depth-

to-
width 
ratio 

  

dj 

(mm) 
tw 

(mm) 
bf 

(mm) 
tf 

(mm) 
Type 

0.83 W40X149a-c W1000X222 3.16 948.9 16 300 21.1 1 
0.83 W24X62b W610X92 3.28 587 10.9 179 15 2 

1.00 W40X167c W1000X249 3.18 953.8 16.5 300 26.2 - 
1.13 W40X294b W1000X438 3.22 981 26.9 305 49 2 
1.13 W36X194b,c W920X289 2.92 895 19.4 307 32 1 

1.31 W24X94 b,c W610X140 2.59 594.8 13.1 230 22.2 2 
1.31 W21X83 b W530X123 2.47 522.8 13.1 212 21.2 1 

1.50 W40X324c W1000X483 2.41 974 25.4 404 46 - 
1.68 W24X117b,c W610X174 1.83 595.4 14 325 21.6 1 

1.68 W30X173b W760X257 1.95 744.8 16.6 381 27.2 2 
1.92 W21X122b,c W530X182 1.67 526.6 15.2 315 24.4 1 
1.92 W27X281b W690X419 1.9 695 26.9 366 49 2 
2.11 W21X201c W530X300 1.7 542.6 23.1 320 41.4 - 

aW-shapes for validation of the finite element model. 
bW-shapes for validation of parameter  . 
cW-shapes for parametric study. 

Notes: - 2 /
f w

A A  is the flange-to-web area ratio. 

          - /
j f

d b   is the depth-to-width ratio. 

Flange-to-web area ratio and depth-to-width ratio 

The relationship between the flange-to-web area ratio (  ) and the depth-to-width 
ratio ( ) of all 273 W-shapes listed in The Steel Construction Manual [30] is showed 
in Figure 4.2. Each data point represents one W shape. Almost 60% of the data points 
are in the range of  values from 1 to 2. 

Five pairs of the cracked W-shapes, specified by the footnote b in Table 4.1, were 
chosen to assess the effect of the parameter depth-to-width ratio . Each pair has the 
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same   value but different   values. Type 1 denotes the W-shapes with lower depth-
to-width ratio in comparison with Type 2 (Figure 4.2).  

The overlapping and non-overlapping SIF solutions at the lower crack tip were 
calculated with the combination of:  = 0.83, 1.13, 1.31, 1.68 and 1.92; w = 0.3 and 
0.7;  = 0. For both overlapping and non-overlapping behaviors, the difference 
between the shapes in each type was less than 1% (Table 4.2) that is similar to the 
conclusion of Albrecht et al. [23]. 

It is apparent that the effect of the depth-to-width ratio was not significant and the 
flange-to-web area ratio could be sufficient to characterize the W- shapes for both 
overlapping and non-overlapping behaviors. 
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Figure 4.2. Relationship between  and  of AISC W-shapes. [30] 
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Table 4.2. Effect of the depth-to-width ratio to the correction factor 

Flange
-to-
web 
area 
ratio 

  

W-shape 

Depth
-to-

width 
ratio 

  

w

 

Correction factor at lower crack tip Difference % 
 
 
 
 
 

(N-M)/M 

Albrecht 
et al.  
[23] 
FLIT 

 
(M) 

ANSYS 
solution 

Overlapping 
 
 

(N) 

ANSYS 
solution 

Non-
overlapping 

 
(O) 

0.83 

W40x149 
(A) 

3.16 
0.3 0.1479 0.1429 0.1989 -3.4 

0.7 0.3593 0.3510 0.4730 -2.3 

W24x62 (B) 3.28 
0.3 0.1479 0.1429 0.1989 -3.4 

0.7 0.3593 0.3507 0.4723 -2.4 

Difference % 
(B-A)/A*100 

0.3  0.0 0.0  

0.7  -0.1 -0.1  

1.13 

W36x194 
(C) 

2.92 
0.3 0.1473 0.1424 0.1664 -3.3 

0.7 0.3529 0.3466 0.4033 -1.8 

W40x294 
(D) 

3.22 
0.3 0.1473 0.1424 0.1662 -3.4 

0.7 0.3529 0.3459 0.4019 -2.0 

Difference % 
(D-C)/C*100 

0.3  -0.1 -0.1  

0.7  -0.2 -0.3  

1.31 

W21x83 (E) 2.47 
0.3 0.1474 0.1421 0.1660 -3.6 

0.7 0.3500 0.3447 0.4003 -1.5 

W24x94 (F) 2.59 
0.3 0.1474 0.1419 0.1658 -3.7 

0.7 0.3500 0.3474 0.4032 -0.7 

Difference % 
(F-E)/E*100 

0.3  -0.1 -0.2  

0.7  0.8 0.7  

1.68 

W24x117 
(G) 

1.83 
0.3 0.1486 0.1408 0.1646 -5.3 

0.7 0.3466 0.3405 0.3948 -1.8 

W30x173 
(H) 

1.95 
0.3 0.1486 0.1411 0.1649 -5.1 

0.7 0.3466 0.3410 0.3952 -1.6 

Difference % 
(H-G)/G*100 

0.3  0.2 0.2  

0.7  0.1 0.1  

1.92 

W21x122 (I) 1.67 
0.3 0.1502 0.1400 0.1606 -6.8 

0.7 0.3461 0.3378 0.3911 -2.4 

W27x281 
(J) 

1.90 
0.3 0.1502 0.1400 0.1605 -6.8 

0.7 0.3461 0.3368 0.3890 -2.7 

Difference % 
(J-I)/I*100 

0.3  0.0 0.0  

0.7  -0.3 -0.5  
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4.1.2. Boundary condition 

Due to the symmetry of the I-beam geometry, the definition of symmetry boundary 
condition supported by ANSYS was utilized to reduce computational expenses, as 
shown in Figure 4.3. The length of the W-shape was maintained at a constant ratio of 
two times of the beam height, jL d . In-plane linear stress was applied directly on 
the outmost lines of the web and the flange of I-beams. The I-beam was constrained 
by a simply support along the edge of a flange, i.e. a roller support. 

 
Figure 4.3. Geometry of the W-shapes containing two-tip web crack. 

4.1.3. Element type 

The eight-node quadrilateral shell elements (SHELL281) were selected for modeling 
the I-beams. Each node of SHELL281 element has three translational and three 
rotational degrees of freedom. Typically, this element is used to simulate the thin or 
moderate shape of structural members for both linear and non-linear behavior (Figure 
4.4). The W-shapes were simulated by one web plate combined with two flange plates, 
supported by the command “AGLUE” in ANSYS program to ensure the strain 
compatibility of the nodes along the junction lines. The shell element plates were 
modeled by their mid-plane and thickness, with both membrane and bending 
characteristics.  
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To include the non-overlapping behavior, the 3-D contact elements (CONTA177 and 
TARGE170) were placed between two sides of crack surfaces. These elements 
prevented the crack surfaces from penetrating each other under compressive loading. 
Figure 4.5 illustrates a 3-D contact pair consisting of contact surface (CONTA177) and 
target surface (TARGE170). 

 
Figure 4.4. Eight-node quadrilateral shell elements (SHELL281) [31] 

 

 
Figure 4.5. 3D Contact elements (TARGE170 and CONTA177) [31] 

In finite element program ANSYS, 3D line-to-surface contact element CONTA177 which 
has two or three nodes is used to simulate flexible-flexible or rigid-flexible (used in 
the present model) contact between a 3D beam and a surface, or between a shell 
edge and a surface (with or without mid-side nodes) [31].  

To model the target surface for the I-beams, an arbitrary sized zone (length jl d ; 
width fw b ) which was adequate to capture all necessary contact was created at 
crack plane (Figure 4.6a). Subsequently, to decrease the computational cost, the ANSYS 
command “CNCHECK, TRIM” was used to eliminate the contact and target elements 
which were initially in far field, i.e. open or not near contact (Figure 4.6b). 
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Normally, the 3D contact and target elements that used for W-shape model were 
defined with the default properties in ANSYS program, i.e. “Contact algorithm” 
(KEYOPT(2)) and “Behavior of contact surface” (KEYOPT(12)) were set as “Augmented 
Lagrange method” and “Standard”, respectively. In “Augmented Lagrange method”, 
“Normal penalty stiffness” (FKN) and “Penetration tolerance” (FTOLN) were set by 
default to the values “1” and “0.1”, respectively. 

 

                   
                     (a)                                                              (b) 

Figure 4.6. 3D target surface (TARGE170): (a) before and (b) after using “CNCHECK, TRIM”. 

However, for some cases especially with short crack ( 0.2w  ), the penetration of the 
crack surfaces in compression side after contact were still too large that might lead to 
an un-satisfied SIF solution (Figure 4.7). The x-axis and y-axis of Figure 4.7 illustrate the 
crack length and deformation of the crack surface, respectively. The negative value of 
deformation represented the overlap of crack surface. To avoid those situations, the 
“Normal penalty stiffness” property have to be adjusted to a larger value, i.e. FKN = 
10. On the other hand, the global convergence difficulty would occur due to the high 
stiffness value. So, before the analysis was solved, the nonlinear convergence criteria 
of solution controls had to be set as “based on Displacement U” instead of default 
options “based on Force F and Moment M”. 
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(a) 

          
(b) 

           
(c) 

Figure 4.7. Deformations of the web cracks of shape W40x149 under bending ( 100 MPa  ,
0.1w  ) for: (a) Model without contact elements;  

(b) and (c): Models including contact elements with FKN = 1 and FKN =10, respectively. 
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4.1.4. Mesh design 

For the web of the W- shapes, a mesh refinement zone (shaded area) was defined 
depending on the crack length around the crack-tip region, as illustrated in Figure 4.8. 

The mesh pattern of the refinement zone is shown in Figure 4.9. Parameter m  defines 
the number of elements along the short edge of rectangular refine-mesh area. The 
effect of mesh density around the crack tip was evaluated by conducting a sensitivity 
analysis on the center-cracked steel plate (plate A, table 4.3) under tensile loading 
(Figure 4.10).  

 
                       0 < aw/W <0.5                   aw/W = 0.5                    0.5 < aw/W< 1 

Figure 4.8. Mesh scheme for different crack length 

Table 4.3. Plates used in finite element analysis   

Plate 

Thickness 

b   

(mm) 

Width 

W  

(mm) 

Height 

h  

(mm) 

Remote  

loading  
(MPa) 

Element 
 type 

Young’s 
modulus 

(GPa) 

Poisson’s 
ratio 

Plate Aa 10 50 150 100 SHELL281 200 0.3 

Plate Bb 16 100 300 100 SHELL281 200 0.3 

Plate Cb,c 16 474.45 948.9 100 SHELL281 200 0.3 

aFor sensitivity analysis               bFor validation of model                   cFor parametric study 
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The SIFs of centered cracks ( FEMK ) were compared with the solutions of Tada et al. 
[4] ( LITK ) for two cases of the crack length ( /a W = 0.2 and 0.8), as shown in Table 
4.4. The J- Integral values in Table 4.4 were obtained by only a half of the model. 
Therefore, the SIF of full plate in plane stress condition can be represented as: 

2
half

K JE J E                                                                                         (4.1) 

According to [5], the SIF of finite-width plate under tension is expressed as 
2 4

1 0.0025 0.06 sec
2

LIT

a a a
K

W W W

    
      

     

                                                 (4.2)    

 
Figure 4.9. Mesh pattern of the refinement zone around crack tip 

         

                      
Figure 4.10. Center-cracked plate under tension [5] 

The path-independence of the SIF values was also examined. For / 0.2a W   and
45m  , the SIFs obtained by the counterclockwise paths 1, 2 and 3 (Figure 4.9) were 
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574.83, 574.61 and 574.37 3/2/N mm , respectively (Table 4.4). In this study, the paths 
along the edge of the refinement mesh area were used to calculate the J- Integral 
values around the web crack tips of I-beams. 

It was apparent that the mesh with 30m   was fine enough to capture the singularity 
in the vicinity of the crack tip (Figure 4.11). The maximum difference for both /a W = 
0.2 and 0.8 was within 2%. Figure 4.12 shows the typical mesh pattern of two-tip web 
crack in the ANSYS program. 

Number of element along the short edge 
of the mesh refinement zone, m
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Figure 4.11. Sensitivity analysis of mesh density to SIFs 
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 Table 4.4. Sensitivity analysis of the mesh density around crack tip region to SIFs 
/a W  Number of 

element 
division along 
crack length 

m  

PATH J- Integral 
for a half 
model 

FEMK  

 

 

 

( 3/2/N mm ) 

LITK   

Equation (4.2) 
[5] 
 

( 3/2/N mm ) 

Difference 
% 

0.2 5 1 0.81306 570.28 

574.74 

-0.77 
2 0.81142 569.71 -0.88 
3 0.81040 569.35 -0.94 

15 1 0.82270 573.65 -0.19 
2 0.82223 573.49 -0.22 
3 0.82137 573.19 -0.27 

30 1 0.82530 574.56 -0.03 

2 0.82467 574.34 -0.07 
3 0.82406 574.13 -0.11 

45 1 0.82608 574.83 0.02 
2 0.82544 574.61 -0.02 

3 0.82476 574.37 -0.06 
0.8 5 1 10.194 2019.31 

2062.90 

-2.11 
2 10.176 2017.52 -2.20 

3 10.209 2020.79 -2.04 
15 1 10.339 2033.62 -1.42 

2 10.347 2034.40 -1.38 
3 10.364 2036.08 -1.30 

30 1 10.377 2037.35 -1.24 
2 10.384 2038.04 -1.21 

3 10.402 2039.80 -1.12 
45 1 10.388 2038.43 -1.19 

2 10.397 2039.31 -1.14 

3 10.413 2040.88 -1.07 
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                         (a)                                                                         (b) 

Figure 4.12. Typical mesh for two-tip web crack: (a) Entire beam; (b) web only. 

4.2. Development of SIF solution for W-shapes subjected to polynomial stress 
distribution  

The steel I-beam subjected to polynomial stress distribution was examined in this 
section.  The configuration of the newly formed web crack is illustrated in Figure 4.13. 

The m -degree form of polynomial stress distribution in I-beam was as follow 

0

( ) / ( / 2)
m

m

m jx D x d                                                                               (4.3) 

The SIFs solution after crack closure were then represented as 

 , ' , '

0

( ', ' , , ) '
m

A B A B

m w wK D f m a    
 

  
 
                                                            (4.4) 

where  ' '/ ( / 2)je d  : the new normalized crack eccentricity 

          ' ' / ( / 2 ')w w ja d e   : the new normalized crack length 

          m : the polynomial degree; 0m   for tension, 1m   for bending (Albrecht et 
al., [23]). 

           'e : the new eccentricity 
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          , '
( ', ' , , )

A B

wf m   : correction factors for the SIF at crack tip A and B’. 

 
Figure 4.13. Newly formed web crack after crack closure 

 

After crack closure, the crack became more eccentric, and the parameters of the new 
web crack was determined as follow  

' ( ' )w wa a e e                                                                                                               (4.5) 

' ( ' ) / ( / 2)je e d                                                                                       (4.6) 

(1 ) ( ' ) / ( / 2)' ( ' )
'

/ 2 ' 1 ( ' ) / ( / 2)

w jw
w

j j

e e da e e

d e e e d

 




    
 

   
                                               (4.7) 

where / ( / 2)je d  : the original normalized eccentricity 

         e : the original eccentricity 

         
/ 2

w
w

j

a

d e
 


: the original normalized crack length 

By applying the necessary condition  

B' 0K   or B'

0

( ', ' , , ) 0
m

m wD f m                                                                  (4.8) 

 

'
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The effective SIF solution was determined as following expression 

 

0

0

( ', ' , , ) '

( ', ' , , ) ( ' )

m
A A

eff m w w

m
A

m w w

K D f m a

D f m a e e

    

    



  




                                                  (4.9) 
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CHAPTER 5 
VALIDATION OF MODEL  

5.1. Plate subjected to bending 

A simple model of center-cracked finite-width plate under bending (Plate B, Table 4.2) 
was performed to verify the non-overlapping behavior in crack.  

The SIF results from this model agreed very well with the previously conducted 
numerical study (Albrecht and Lenwari, [27]). The differences were within 4% for both 
overlapping and non-overlapping models (Figure 5.1).  

Besides, an additional model of eccentric-cracked finite width plate under bending was 
simulated for plate B to validate the overlapping crack.  

The correction factors of eccentric cracks ( / 0.1e W   ) were compared with the 
solution of Chen and Albrecht [32] for the range of / ( )a W e    from 0.1 to 0.9, as 
shown in Figure 5.2. The maximum difference was less than 4% for both lower and 
upper crack tip. 
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Figure 5.1. SIF solution of center-cracked plate under bending (Plate B, Table 4.2) 
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Figure 5.2. SIF solution of eccentric-cracked plate under bending (Plate B, Table 4.2,  =0.1) 

From the above solution, it was obvious that the singularity around the crack tip region 
in the overlapping and non-overlapping conditions could be captured by the proposed 
model. 

5.2. W-shape subjected to bending without contact elements 

A finite element model of shape W40x149 ( 0.83  ) subjected to both tension and 
bending was performed in overlapping condition for the range of web crack length w  
from 0.2 to 0.8.  

Figure 5.3 and Figure 5.4 show the comparison of correction factors between the 
overlapping finite element models and solution of Albrecht et al. [23], for both upper 
and lower crack tips under tension and bending, respectively. 

It was apparent that the finite element model under bending agreed well with the 
results in [23]. For the model subjected to tension, although the form of the straight 
line was not totally fitted with the literature line, the maximum difference was still 
within 2%. 
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Figure 5.3. Correction factors for both lower and upper crack tips in overlapping I-beam under 

tension (W40x149,   = 0) 
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Figure 5.4. Correction factors for both lower and upper crack tips in overlapping I-beam under 

bending (W40x149,   = 0) 
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5.3. W-shape subjected to bending with contact elements. 

Superposition solution – Section 4.2 

The form of bending stress in I-beam was as follow 

( ) / ( / 2)jx x d       

where   is the stress at the junction lines of the W-shapes. 

According to Equation (2.14), the overlapping SIF for central web crack of shape 
W40x149 ( 0.83  ) was 

, , (0, ,0.83,1)A B A B

w wK f a                                                                      (5.1) 

The coefficients of the correction factor for bending case ( 1m  ) were shown in Table 
2.3. [23] 

According to Equation (4.4), the non-overlapping SIF for central web crack of shape 
W40x149 was 

( ', ' ,0.83,1) 'A A

w wK f a                                                                           (5.2) 

' ' ( ', ' ,0.83,1) 'B B

w wK f a                                                                        (5.3) 

where  0e  , ' ( ' ) / ( / 2) '/ ( / 2)j je e d e d                                                (5.4) 

           
'/ ( / 2)

'
1 '/ ( / 2)

w j

w

j

e d

e d








                                                                         (5.5) 

By applying the necessary condition  

' 0BK   or '( ', ' ,0.83,1) 0B

wf                                                                       (5.6) 

The effective SIF solution was determined as following expression 

 

( ', ' ,0.83,1) '

( ', ' ,0.83,1) '

A A

eff eff w w

A

eff w w

K f a

f a e

   

   



 
                                                             (5.7) 
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By using Secant method to determine the root of Equation (5.6) in Matlab program, 
the values of 'e  were calculated for the range of w  from 0.1 to 0.9, as shown in Table 
5.1. 

Table 5.1. Correction factors for central web crack in shape W40x149 under bending 
with w  from 0.1 to 0.9. 

w  'e  

(mm) 
'  Crack 

closure 
length 

(mm) 

'w  Correction factor, Af  /A A

efff f  

Overlapping Non-
overlapping 

0.1 15.90 0.034 31.80 0.0688 0.0483 0.0659 1.365 
0.2 31.61 0.067 63.22 0.1429 0.0976 0.1331 1.363 

0.3 47.14 0.099 94.28 0.2228 0.1479 0.2012 1.360 
0.4 62.50 0.132 125.01 0.3090 0.1992 0.2701 1.356 

0.5 77.73 0.164 155.47 0.4021 0.2516 0.3394 1.349 
0.6 92.85 0.196 185.71 0.5027 0.3049 0.4085 1.340 
0.7 107.90 0.227 215.81 0.6117 0.3593 0.4769 1.327 

0.8 122.93 0.259 245.87 0.7301 0.4147 0.5437 1.311 
0.9 138.01 0.291 276.02 0.8590 0.4711 0.6078 1.290 

 

Finite element solution 

A non-overlapping finite element model of shape W40x149 ( 0.83  ) subjected to 
bending was performed for the range of central web crack length w  from 0.1 to 0.9. 
The correction factors of the non-overlapping web crack were compared with the 
result in Table 5.1, as shown in Figure 5.5.  

Figure 5.6 shows the crack closure length of non-overlapping central web crack in 
shape W40x149.  

The non-overlapping correction factor of the lower crack tip and the crack closure 
length in the finite element model of shape W40x149 agreed well with the 
superposition result in section 4.2 for most of the data points. 



 

 

59 

Web crack length, 
w

0.0 0.2 0.4 0.6 0.8 1.0

C
o
rr

e
c
ti
o
n
 f

a
c
to

r,
 f

A
,e

ff

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Superposition- Equation (5.7)

FEM

 
Figure 5.5. Correction factors for the lower crack tip in non-overlapping I-beam under bending 

(W40x149,   = 0) 

The numerical solution in section 4.2 can be further developed for the higher-order 
polynomial stress distribution if the forms of correction factor equations are 
determined (i.e. ( , , , )wf m    with 2m  ). 
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Figure 5.6. Crack closure length of non-overlapping I-beam under bending (W40x149,   = 0) 
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5.4. W-shape subjected to linear stress distribution with contact elements. 

Superposition solution – Section 4.2 

The form of linear stress distribution in I-beam was as follow 

 
1

0 1

0

( ) / ( / 2) / ( / 2)
m

m

m j jx D x d D D x d  


           

where m : the polynomial degree ( 0m   for tension, 1m   for bending) 

According to Equation (2.14), the overlapping SIF for central web crack of shape 
W40x149 ( 0.83  ) under linear stress distribution was 

1
, ,

0

, ,

0 1

(0, ,0.83, )

(0, ,0.83,0) (0, ,0.83,1)

m
A B A B

m w w

A B A B

w w w

K D f m a

D f D f a

  

   

 
  
 

     


                      (5.8) 

The coefficients of the correction factor for tension and bending cases were shown in 
Table 2.3. [23] 

According to Equation (4.4), the non-overlapping SIF for central web crack of shape 
W40x149 was 

1

0

0 1

( ', ' ,0.83, ) '

( ', ' ,0.83,0) ( ', ' ,0.83,1) '

m
A A

m w w

A A

w w w

K D f m a

D f D f a

   

     

 
  
 

     


                           (5.9) 

1
' '

0

' '

0 1

( ', ' ,0.83, ) '

( ', ' ,0.83,0) ( ', ' ,0.83,1) '

m
B B

m w w

B B

w w w

K D f m a

D f D f a

   

     

 
  
 

     


                       (5.10) 

where 0e  , ' ( ' ) / ( / 2) '/ ( / 2)j je e d e d                                                (5.11) 

           
'/ ( / 2)

'
1 '/ ( / 2)

w j

w

j

e d

e d








                                                                        (5.12) 

By applying the necessary condition  

' 0BK   or ' '

0 1( ', ' ,0.83,0) ( ', ' ,0.83,1) 0B B

w wD f D f                              (5.13) 

The effective SIF solution was determined as following expression 
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1

0

0 1

( ', ' ,0.83, ) '

( ', ' ,0.83,0) ( ', ' ,0.83,1) ( ')

m
A A

eff m eff w w

A A

eff w eff w w

K D f m a

D f D f a e

   

     

 
  
 

      


             (5.14) 

By using Secant method to determine the root of Equation (5.13) in Matlab program, 
the values of 'e  were calculated for the range of w  from 0.1 to 0.9 with 0.25oD 

and 1 1D  , as shown in Table 5.2. 

Table 5.2. Correction factors for central web crack in shape W40x149 under linear 
stress distribution with w  from 0.1 to 0.9 ( 0.25oD  and 1 1D  ) 

w  'e  

(mm) 
'  Crack 

closure 
length 

(mm) 

'w  Correction factor, 
1

0

m
A A

mF D f


  

/A A

effF F  

Overlapping Non-
overlapping 

0.1 0.000 0.000 0.00 0.100 0.3001 0.3001 1.00 
0.2 0.000 0.000 0.00 0.200 0.3516 0.3516 1.00 

0.3 0.000 0.000 0.00 0.300 0.4044 0.4044 1.00 
0.4 0.000 0.000 0.00 0.400 0.4585 0.4585 1.00 

0.5 0.000 0.000 0.00 0.500 0.5140 0.5140 1.00 
0.6 11.613 0.024 23.23 0.590 0.5708 0.5834 1.02 
0.7 25.806 0.054 51.61 0.683 0.6290 0.6561 1.04 
0.8 39.792 0.084 79.58 0.782 0.6885 0.7286 1.06 
0.9 53.592 0.113 107.18 0.887 0.7493 0.8001 1.07 

Finite element solution 

The overlapping and non-overlapping finite element models of shape W40x149 (
0.83  ) subjected to the linear stress distribution in form of

 
1

0

( ) / ( / 2) 0.25 1 / ( / 2)
m

m

m j jx D x d x d  


           were performed for the 

range of central web crack length w  from 0.1 to 0.9. The correction factors of the 
overlapping and non-overlapping web cracks were compared with the result in Table 
5.2, as shown in Figure 5.7.  
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Figure 5.8 shows the crack closure length of non-overlapping central web crack in 
shape W40x149.  
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Figure 5.7. Correction factors for the lower crack tip in non-overlapping I-beam under linear 

stress distribution (W40x149,   = 0) 
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Figure 5.8. Crack closure length of non-overlapping I-beam under linear stress distribution 

(W40x149,   = 0) 
 



 

 

63 

CHAPTER 6  
PARAMETRIC STUDY 

6.1. Effect of the length of the W-shape 

In this section, the effect of the length to the I-beam (W40x149) which contains central 
web crack ( =0) was examined for a combination of five values of the half-beam 
length ( / jL d = 0.25, 0.5, 1, 1.5 and 2); two values of the normalized crack length ( w

=0.2 and 0.7) and two types of loading (tension and bending) (Tables 6.1 and 6.2). 

Table 6.1. Effect of the length on the SIF of center-cracked W40x149 under tension 

w  / jL d  Albrecht et al. [23] 

AlbrechtK  

Overlapping  

FEMK  

Differences % 

( ) /FEM Albrecht AlbrechtK K K  

Upper 
crack tip 

Lower 
crack tip 

Upper 
crack tip 

Lower 
crack tip 

Upper crack 
tip 

Lower crack 
tip 

0.2 0.25 

1753.37 1754.40 

2016.23 2017.32 15.0 15.0 

0.5 1817.53 1816.98 3.7 3.6 

1 1740.10 1739.36 -0.8 -0.9 

1.5 1733.76 1733.02 -1.1 -1.2 

2 1732.84 1732.10 -1.2 -1.3 

0.7 0.25 

3463.58 3484.54 

9219.98 9216.94 166.2 164.5 

0.5 5065.49 5055.57 46.3 45.1 

1 3595.44 3583.80 3.8 2.8 

1.5 3521.99 3510.33 1.7 0.7 

2 3519.03 3507.36 1.6 0.7 
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Table 6.2. Effect of the length on the SIF of center-cracked W40x149 under bending 

w  / jL d  Albrecht et al. [23] 

AlbrechtK  

Overlapping  

FEMK  

Differences % 

( ) /FEM Albrecht AlbrechtK K K

 

Upper 
crack tip 

Lower 
crack tip 

Upper 
crack tip 

Lower 
crack tip 

Upper crack 
tip 

Lower crack 
tip 

0.2 0.25 

-175.48 168.51 

-172.55 176.53 -1.7 4.8 

0.5 -172.17 172.30 -1.9 2.2 

1 -172.47 169.88 -1.7 0.8 

1.5 -172.38 169.53 -1.8 0.6 

2 -172.13 169.26 -1.9 0.4 

0.7 0.25 

-1137.25 1160.84 

-1615.51 1625.34 42.1 40.0 

0.5 -1186.22 1179.80 4.3 1.6 

1 -1145.22 1134.07 0.7 -2.3 

1.5 -1144.97 1133.65 0.7 -2.3 

2 -1144.80 1133.45 0.7 -2.4 

For both lower and upper crack tips, the values of /FEM AlbrechtK K  approached the 
reference line ( / 1FEM AlbrechtK K  ) when the half-length of beam L  increased (Figures 
6.1a and 6.1b). 

From the Figure 6.1, it is also obvious that the value of jL d  is adequate for an 
acceptable SIF solution of I-beam in this study. 
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    (b) 

Figure 6.1 Effect of the length to center-cracked SIF of shape W40x149 under tension and 
bending for: (a) Upper crack tip; (b) Lower crack tip. 
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6.2. Effect of the magnitude of applied load on the crack opening displacement 
(COD) 

The effect of the magnitude of the applied load on the COD profile for shape W40x149 
( 0  ) under bending was investigated with a combination of two values of the 
normalized crack length ( w =0.2 and 0.7) and three levels of the bending magnitude   
( =100, 150 and 200 MPa), as shown in Figures 6.2 and 6.3. The x-axis and y-axis of 
the Figures show the crack length and deformation of the crack surface, respectively. 

Table 6.3. COD profile of shape W40x149 containing center-cracked web.  

w
  

  

(MPa) 

Stress intensity factor 
(N/mm3/2) 

Crack opening 
displacement Umax (mm) 

Umax/  (mm3/N) 
Crack 

closure 
length 
(Non-

overlapping) 

(mm) 

Overlapping 
Non-

overlapping 
Overlapping 

Non-
overlapping 

Overlapping 
Non-

overlapping 

0.2 

100 169.53 184.51 0.004637 0.005351 4.637x10-5 5.351x10-5 

71.19 150 254.29 276.76 0.006956 0.008027 4.637x10-5 5.351x10-5 

200 339.05 369.01 0.009275 0.010704 4.638x10-5 5.352x10-5 

0.7 

100 1134.07 1255.26 0.05848 0.06905 5.848x10-4 6.905x10-4 

216.01 150 1701.12 1882.88 0.08772 0.10358 5.848x10-4 6.905x10-4 

200 2268.13 2510.54 0.11697 0.13811 5.849x10-4 6.906x10-4 

From the Table 6.3, the crack closure lengths for both w =0.2 and w =0.7 were 
constant (71.19 mm and 216.01 mm, respectively). It means that the position of the 
newly formed crack tip in compression are unique, regardless of the level of the 
bending load. On contrary, the SIFs and the crack opening displacements varied 
proportionally to the applied loads: Umax/ maintained constant for both overlapping 
and non-overlapping models (with w =0.2, Umax/ were equal to 4.637x10-5 and 
5.351x10-5, respectively). 
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This phenomenon is also observed by Tada et al. [5] for the non-overlapping crack in 
plate (Section 3.2). 

(a)   

(b)    

(c)    

Figure 6.2. COD profile of shape W40x149 (
w

 = 0.2,  =0) with: (a) =100 MPa, (b)  =150 MPa 
and (c)  =200 MPa for both overlapping and non-overlapping cracks. 
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(a)    

(b)    

(c)    

Figure 6.3. COD profile of shape W40x149 (
w

 = 0.7,  =0) with: (a) =100 MPa, (b)  =150 MPa 
and (c)  =200 MPa for both overlapping and non-overlapping cracks. 
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6.3. Effects of parameters on correction factor (  , w and  ) 

To investigate the effect of the parameters including the web crack length w , the 
normalized eccentricity and the flange-to-web area ratio  , a total of 400 finite 
element analyses under in-plane bending were performed with a combination of eight 
W-shapes (  values from 0.83 to 2.11, as listed in Table 4.1), five values of the 
eccentricity ( = 0, 0.1 – 0.7 in steps of 0.2), five values of crack length ( w =0.1 – 0.9 
in steps of 0.2) and two types of models (with and without contact elements). The 
lengths of W-shapes were maintained at a constant ratio of two times of the beam 
height, jL d .  

Figure 6.4 shows the comparison of the correction factors at the lower crack tip in 
models using contact elements between shape W40x149 and plate C (equivalent to 
the web of shape W40x149). Due to the constraining effect of the flange on the web 
crack which is characterized by the flange-to-web area ratio  , the SIFs in plate were 
always larger than I-beam solutions. When   increased, the correction factors 
decreased because of the increase in constraining effect (Figures 6.6). The effect of 
on correction factor became more explicit with the large values of crack eccentricity     
(  ≥ 0.5), when the lower crack tip was closed to the flange. In Figure 6.5 ( = 0),                         
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Figure 6.4. Comparison between W-shape (W40x149,  =0.83) and single plate (plate C, Table 

4.3) solutions of the lower crack tip for models with contact elements under bending 
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the parameter   almost had no effect on the correction factor for each value of w  
because the crack tip was relatively far from the junction line of the web and flange. 
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Figure 6.5. Effects of  and w  on the correction factor (  =0) 
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Figure 6.6. Effects of  and w  on the correction factor (  =0.7) 

For the lower crack tip in W-shape, the stress intensity factor and correction factor 
typically increased with the crack length for both models with and without contact 
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elements. However, they decreased when the crack tip propagated close to the lower 
flange ( w  = 0.9 and   ≥ 0.5), as shown in Figures 6.7 and 6.8. 
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Figure 6.7. Effects of w and   on the correction factor (W36x194,   = 1.13) 
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Figure 6.8. Effects of w and   on the correction factor (W36x194,   = 1.13) 

Figures 6.10 and 6.9 show the correction factors of the W-shape models with and 
without contact elements, respectively. Each value of crack eccentricity was 
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represented by a surface. It is obvious that the correction factors always increase as 
the eccentricity increases.   

For   ≥ 0.3, the crack closure of the W-shapes did not occur and the crack remained 
open for all combinations despite the fact that the upper crack tip still lie in 
compressive region (similar to the crack of infinite plate in Figure 3.5b). This can be 
attributed to the influence of the crack in tension side. When most of crack length was 
under tension, the opening trend turned into dominant and controlled the closing 
trend of the crack in compression. As shown in Table 6.4, the effect of non-overlapping 
behavior ( , /A eff Af f ) became pronounced when   decreased. Figures 6.11 and 6.12 
represent the effect of the crack eccentricity on correction factor in the models using 
contact elements of shapes W40x147 and W21x201, respectively. Each line 
corresponded to one crack length. As  increased, the correction factor of each w  
also rose (except for w = 0.9, the non-overlapping solutions at  =0 and 0.1 were 
higher than correction factor at  = 0.3 which was not influenced by non-overlapping 
crack). 
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Figure 6.10. Correction factors for the lower crack tip of the W-shape model with contact 

elements (200 analyses) 
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Figure 6.11. Effects of  and w  on the correction factor (W40x167,   = 1.00) 
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Figure 6.12. Effects of  and w  on the correction factor (W21x201,   = 2.11) 
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Figure 6.13. Correction factor at lower crack tip in model using contact element (W40x149) 

The correction factor at lower crack tip and the crack closure length in comparison 
between finite element and superposition solutions (as represented in Section 5.3) of 
shape W40x149 (  = 0.83) under bending were plotted in Figures 6.13 and 6.14, 
respectively. 
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Table 6.4. Correction factor of lower crack tip in shape W40x149 

  w
  Albrecht et al. [23] Closure 

length 
(mm) 

FEM Closure 
length 
(mm) fA fA,eff fA,eff/fA fA fA,eff fA,eff/fA 

0 

0.1 0.048 0.066 1.37 31.80 0.054 0.070 1.31 30.85 

0.3 0.148 0.201 1.36 94.28 0.143 0.199 1.39 106.78 

0.5 0.252 0.339 1.35 155.47 0.238 0.322 1.35 154.25 

0.7 0.359 0.477 1.33 215.81 0.351 0.473 1.35 216.01 

0.9 0.471 0.608 1.29 276.02 0.455 0.610 1.34 277.64 

0.1 

0.1 0.145 0.145 1.00 0.00 0.145 0.146 1.00 0.00 

0.3 0.238 0.249 1.05 20.90 0.231 0.249 1.08 32.04 

0.5 0.332 0.374 1.13 75.69 0.321 0.360 1.12 74.75 

0.7 0.428 0.497 1.16 129.91 0.423 0.497 1.17 134.55 

0.9 0.527 0.614 1.17 184.12 0.510 0.586 1.15 172.99 

0.3 

0.1 0.338 0.338 1.00 0.00 0.333 0.333 1.00 0.00 

0.3 0.414 0.414 1.00 0.00 0.404 0.404 1.00 0.00 

0.5 0.487 0.487 1.00 0.00 0.478 0.479 1.00 0.00 

0.7 0.558 0.558 1.00 0.00 0.558 0.558 1.00 0.00 

0.9 0.626 0.626 1.00 0.35 0.608 0.605 1.00 0.00 

0.5 

0.1 0.528 0.528 1.00 0.00 0.516 0.517 1.00 0.00 

0.3 0.585 0.585 1.00 0.00 0.572 0.574 1.00 0.00 

0.5 0.634 0.634 1.00 0.00 0.626 0.627 1.00 0.00 

0.7 0.676 0.676 1.00 0.00 0.675 0.676 1.00 0.00 

0.9 0.711 0.711 1.00 0.00 0.672 0.675 1.00 0.00 

0.7 

0.1 0.718 0.718 1.00 0.00 0.704 0.707 1.00 0.00 

0.3 0.751 0.751 1.00 0.00 0.736 0.740 1.00 0.00 

0.5 0.772 0.772 1.00 0.00 0.759 0.761 1.00 0.00 

0.7 0.782 0.782 1.00 0.00 0.770 0.771 1.00 0.00 

0.9 0.780 0.780 1.00 0.00 0.700 0.700 1.00 0.00 
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Figure 6.14. Closure length of web crack in model using contact element (W40x149) 

It is apparent that the FEM and superposition solutions agreed well with each other, 
except for  ≥ 0.5 and w = 0.9 because this crack length was not included in the 
regression equation (2.17) from the finite element analyses of Albrecht et al. [23].  The 
present finite element solution became more different in comparison with result in 
[23] due to the increase in the constraining effect when the crack tip approached the 
web-to-flange junction line. In practice, some cases with large eccentricity cannot be 
applicable because the lower crack tip were propagated across the flange, i.e. the W-
shapes with  =0.7, w =0.9 and  ≥ 1.13. 

Figures 6.15 and 6.16 plot the correction factors for W-shape models with and without 
contact elements for   = 0 and   = 0.1, respectively. As   decreased, the difference 
in correction factor between models with and without element increased.  

It was found that the overlapping finite element solutions underestimated the SIFs at 
lower crack tip up to 11% (at   = 0 and w  = 0.5). This number for the single plate 
(plate C, Table 4.3) were 14%. For the correction factor, the maximum values of 
enhancement were 39% and 37% for I-beam and plate, respectively (as shown in Table 
6.4). 

 



 

 

77 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9

1.0

1.2

1.4

1.6

1.8

C
o
rr

e
c
ti
o
n
 f

a
c
to

r,
 f

A

Web crack le
ngth, w

Flange-to-web area ratio, 

With contact element

Without contact element

 
Figure 6.15. Correction factors of the W-shape models with and without contact elements 

(   = 0) 

 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9

1.0

1.2

1.4

1.6

1.8

C
o
rr

e
c
ti
o
n
 f

a
c
to

r,
 f

A

Web crack length, w

Flange-to-web area ratio, 

With contact element

Without contact element

 
Figure 6.16. Correction factors of the W-shape model with and without contact elements 

(   = 0.1) 
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CHAPTER 7 
CONCLUSIONS 

Summary  

The physically acceptable analysis of stress intensity factors (SIFs) for cracked steel I-
beams under bending was presented in this study. Based on the linear elastic fracture 
mechanics (LEFM), a three-dimensional finite element analysis of the stress intensity 
factor for a two-tip web crack in W-shape (AISC 2010) was performed considering the 
non-overlapping crack surfaces. The W-shapes were selected with the range of flange-
to-web area ratio from 0.83 to 2.11 because almost 60% of the AISC W- shapes are 
within this range. Besides, a numerical solution based on the superposition of previous 
finite element result of Albrecht et al. [23] was subsequently developed to verify with 
the non-overlapping finite element model. The effects of beam length, magnitude of 
applied load, crack length, crack eccentricity and flange-to-web area ratio on the 
correction factor of the non-overlapping model were also discussed. The main 
conclusions in this research are as follows 

a. The overlapping solutions were not conservative due to the underestimation 
of SIF at the tension side crack tip, especially in case of small eccentricities (

0.1  ). The maximum difference of the SIF between overlapping and non-
overlapping solutions was up to 11%. For 0.3  , the overlapping crack 
surfaces did not occur. Therefore, the SIF equation proposed by Albrecht et al. 
[23] still can be applicable for W-shapes in practice with a minor modification: 
a safety factor of 1.1 should be considered in SIF equation for 0.1  in cracked 
beam under bending.  

b. It was found that the position of the new crack tip in compression are unique, 
regardless of the magnitude of the bending load in I-beam. On contrary, the 
crack tip opening displacement (CTOD) varied proportionally to the applied 
load for the model with contact elements. Similar phenomenon on cracked 
plate under bending was observed by Tada et al. [5], as mentioned in section 
3.2. 
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c. For the case of tension and bending, the SIF values approached the solution 
of Albrecht et al. [23] as the length of I-beam increased. It was point out that 
the half-beam length of jL d  was adequate for an acceptable solution in 
this study.  

d. Due to the constraining effect which is characterized by the flange-to-web area 
ratio  , the non-overlapping SIF values and the percentage of the SIF 
underestimation in a single plate were always larger than the I-beam solutions. 
When   increased, the correction factors decreased because of the increase 
in constraining effect. The effect of   became pronounced with the large 
values of w  and  , when the crack tip propagated close to the junction line 
of the web to the flange. 

e. The correction factor typically increased with the crack length for both models 
with and without contact elements. However, it decreased when the crack tip 
approached the flange ( w  = 0.9 and   ≥ 0.5). 

f. The correction factors always rose as the eccentricity increased. In contrast, 
the effect of non-overlapping behavior ( , /A eff Af f ) became prominent when 
  decreased. 

Extension of the research for the future work 

The numerical solution in Section 4.2 can be further developed for the two-tip web 
crack and symmetric three-tip crack of the W-shape subjected to polynomial stress 
distribution if the forms of the overlapping SIF equations are determined in the 
following researches (for 2m  ). More combinations of the stress distribution can give 
a more clearly behavior of the non-overlapping crack surfaces through the SIFs at the 
tension side crack tip as well as the COD profile in the opened portion.  
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THE FINITE ELEMENT MODEL OF STEEL I-BEAMS 
 WITH NON-OVERLAPPING CRACK SURFACE 

IN ANSYS MECHANICAL APDL 

1. Description of the problem 

 
W-shape details: W40x167 (  =1.0, 

jd = 953.8 mm, 
wt = 16.5 mm, 

fb = 300 mm, 
ft = 

26.2 mm) 

- A half of the web crack length: wa = 143.07 mm ( w = 0.3). 
- Bending stress at the junction of the web and flange:   = 100 MPa 
- The crack eccentricity: e  = 0 mm 
- Half length of the I-beam: L = 953.8 mm 
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2. Analysis of the problem 
 STEP 1 : Choose the discipline to show in the GUI 

GUI: Main menu > Preferences  
Click on “Structural”. 
 

 
 
Batch text: 
/NOPR    
KEYW,PR_SET,1    
KEYW,PR_STRUC,1  
KEYW,PR_THERM,0  
KEYW,PR_FLUID,0  
KEYW,PR_ELMAG,0  
KEYW,MAGNOD,0    
KEYW,MAGEDG,0    
KEYW,MAGHFE,0    
KEYW,MAGELC,0    
KEYW,PR_MULTI,0  
/GO  
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 STEP 2 : Define element types 

GUI: Main menu > Preprocessor > Element Type > Add/Edit/Delete  
Element types 1, 2 and are defined as “8 node 281 shell element”, “3D Target element 
TARGE170” and “3D line-surface contact element CONTA177”, respectively.  
 

 
Batch text: 
ET,1,SHELL281    
ET,2,TARGE170    
ET,3,CONTA177    

 
 STEP 3 : Define material properties 

GUI: Main Menu > Preprocessor > Material Props > Material Models 
The material is linear elastic isotropic with E = 200 GPa,  = 0.3. 

 



 

 

87 

 
Batch text: 
MPTEMP,,,,,,,,   
MPTEMP,1,0   
MPDATA,EX,1,,2E5 
MPDATA,PRXY,1,,0.3 

 STEP 4 : Define shell sections  
GUI: Main Menu > Preprocessor > Sections > Shell > Lay-up > Add/Edit 
The thickness of the web and the flange are 16.5 and 26.2 mm, respectively. 
Choose “Mid-Plane” for “Section Offset”. 

 
Batch text: 
sect,1,shell,,W  
secdata, 16.5,1,0.0,3    
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secoffset,MID    
seccontrol,,,, , , , 
sect,2,shell,,F  
secdata, 26.2,1,0,3  
secoffset,MID    
seccontrol,0,0,0, 0, 1, 1, 

 
 STEP 5 : Create the I-beam geometry  

GUIs: Main Menu > Preprocessor > Modeling > Create > Keypoints > In Active CS 

 
     Main Menu > Preprocessor > Modeling > Create > Lines > Lines > In Active Coord 

 
 

     Main Menu > Preprocessor > Modeling > Create > Areas > Arbitrary > By Lines 
     Main Menu > Preprocessor > Modeling > Operate > Booleans > Glue > Areas 



 

 

89 

   
Batch text: 
K, ,0,0,,    
K, ,143.07,0,,    
K, ,-143.07,0,,   
K, ,286.14,0,,    
K, ,-286.14,0,,    
K, ,476.9,0,,    
K, ,-476.9,0,,   
FLST,3,7,3,ORDE,2    
FITEM,3,1    
FITEM,3,-7   
K, ,-476.9,0,150,    
K, ,-476.9,0,-150,   
K, ,476.9,0,-150,    
K, ,476.9,0,150, 
FLST,3,11,3,ORDE,2   
FITEM,3,1    
FITEM,3,-11  
KGEN,2,P51X, , , ,143.07, , ,0    
FLST,3,11,3,ORDE,2   
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FITEM,3,1    
FITEM,3,-11  
KGEN,2,P51X, , , ,953.8, , ,0    
L,      30,      31  
L,      30,      19  
L,      19,      20  
L,      20,      31  
L,      19,       8  
L,       8,       9  
L,       9,      20  
L,      33,      32  
L,      33,      22  
L,      22,      21  
L,      21,      32  
L,      22,      11  
L,      11,      10  
L,      10,      21  
L,       6,      17  
L,      17,      28  
L,      29,      18  
L,      18,       7  
L,       7,       5  
L,       5,       3  
L,       3,       1  
L,       1,       2  
L,       2,       4  
L,       4,       6  
L,      18,      16  
L,      16,      14  
L,      14,      12  
L,      12,      13  
L,      13,      15  
L,      15,      17  
L,      29,      27  
L,      27,      25  
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L,      25,      23  
L,      23,      24  
L,      24,      26  
L,      26,      28  
L,      27,      16  
L,      25,      14  
L,      23,      12  
L,      24,      13  
L,      26,      15  
L,      16,       5  
L,      14,       3  
L,      12,       1  
L,      13,       2  
L,      15,       4  
FLST,2,4,4   
FITEM,2,2    
FITEM,2,1    
FITEM,2,4    
FITEM,2,3    
AL,P51X  
FLST,2,4,4   
FITEM,2,5    
FITEM,2,6    
FITEM,2,7    
FITEM,2,3    
AL,P51X  
FLST,2,4,4   
FITEM,2,12   
FITEM,2,10   
FITEM,2,14   
FITEM,2,13   
AL,P51X  
FLST,2,4,4   
FITEM,2,10   
FITEM,2,11   
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FITEM,2,8    
FITEM,2,9    
AL,P51X  
FLST,2,4,4   
FITEM,2,17   
FITEM,2,31   
FITEM,2,37   
FITEM,2,25   
AL,P51X  
FLST,2,4,4   
FITEM,2,25   
FITEM,2,18   
FITEM,2,19   
FITEM,2,42   
AL,P51X  
FLST,2,4,4   
FITEM,2,16   
FITEM,2,36   
FITEM,2,41   
FITEM,2,30   
AL,P51X  
FLST,2,4,4   
FITEM,2,15   
FITEM,2,24   
FITEM,2,46   
FITEM,2,30   
AL,P51X  
FLST,2,4,4   
FITEM,2,32   
FITEM,2,37   
FITEM,2,38   
FITEM,2,26   
AL,P51X  
FLST,2,4,4   
FITEM,2,33   
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FITEM,2,38   
FITEM,2,39   
FITEM,2,27   
AL,P51X  
FLST,2,4,4   
FITEM,2,34   
FITEM,2,39   
FITEM,2,40   
FITEM,2,28   
AL,P51X  
FLST,2,4,4   
FITEM,2,35   
FITEM,2,40   
FITEM,2,41   
FITEM,2,29   
AL,P51X  
FLST,2,4,4   
FITEM,2,26   
FITEM,2,42   
FITEM,2,43   
FITEM,2,20   
AL,P51X  
FLST,2,4,4   
FITEM,2,27   
FITEM,2,43   
FITEM,2,44   
FITEM,2,21   
AL,P51X  
FLST,2,4,4   
FITEM,2,28   
FITEM,2,44   
FITEM,2,45   
FITEM,2,22   
AL,P51X  
FLST,2,4,4   
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FITEM,2,29   
FITEM,2,45   
FITEM,2,46   
FITEM,2,23   
AL,P51X  
FLST,2,16,5,ORDE,2   
FITEM,2,1    
FITEM,2,-16  
AGLUE,P51X 

 STEP 6 : Mesh the geometry  
GUIs: Main Menu > Preprocessor > Meshing > Mesh Attributes > Pick Areas 

 
   Main Menu > Preprocessor > Meshing > Size Cntrls > ManualSize > Lines > Picked  
                                                                                                              Lines  
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   Main Menu > Preprocessor > Meshing > Mesh > Areas > Free 

 
Batch text: 
FLST,5,4,5,ORDE,2    
FITEM,5,17   
FITEM,5,-20  
CM,_Y,AREA   
ASEL, , , ,P51X  
CM,_Y1,AREA  
CMSEL,S,_Y   
CMSEL,S,_Y1  
AATT,       1, ,   1,       0,   2   
CMSEL,S,_Y   
CMDELE,_Y    
CMDELE,_Y1   
FLST,5,4,5,ORDE,2    
FITEM,5,21   
FITEM,5,-24  
CM,_Y,AREA   
ASEL, , , ,P51X  
CM,_Y1,AREA  
CMSEL,S,_Y   
CMSEL,S,_Y1  
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AATT,       1, ,   1,       0,   2   
CMSEL,S,_Y   
CMDELE,_Y    
CMDELE,_Y1   
FLST,5,12,5,ORDE,2   
FITEM,5,5    
FITEM,5,-16  
CM,_Y,AREA   
ASEL, , , ,P51X  
CM,_Y1,AREA  
CMSEL,S,_Y   
CMSEL,S,_Y1  
AATT,       1, ,   1,       0,   1   
CMSEL,S,_Y   
CMDELE,_Y    
CMDELE,_Y1   
FLST,5,52,4,ORDE,9   
FITEM,5,2    
FITEM,5,4    
FITEM,5,-5   
FITEM,5,7    
FITEM,5,9    
FITEM,5,11   
FITEM,5,-12  
FITEM,5,14   
FITEM,5,-58  
CM,_Y,LINE   
LSEL, , , ,P51X  
CM,_Y1,LINE  
CMSEL,,_Y    
LESIZE,_Y1, , ,30, , , , ,1  
MSHKEY,0 
FLST,5,20,5,ORDE,2   
FITEM,5,5    
FITEM,5,-24  
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CM,_Y,AREA   
ASEL, , , ,P51X  
CM,_Y1,AREA  
CHKMSH,'AREA'    
CMSEL,S,_Y   
AMESH,_Y1    
CMDELE,_Y    
CMDELE,_Y1   
CMDELE,_Y2 

 
 STEP 7 : Apply the displacement boundary condition 

GUIs: Main Menu > Preprocessor > Loads > Define Loads > Apply > Structural          
                                                                           > Displacement > On Lines 

 
     Main Menu > Preprocessor > Loads > Define Loads > Apply > Structural          
                                                 > Displacement > Symmetry B.C. > On Lines 
Batch text: 
FLST,2,2,4,ORDE,2    
FITEM,2,57   
FITEM,2,-58  
/GO  
DL,P51X, ,UX,    
FLST,2,2,4,ORDE,2    
FITEM,2,57   
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FITEM,2,-58  
/GO  
DL,P51X, ,UZ,    
FLST,2,2,4,ORDE,2    
FITEM,2,57   
FITEM,2,-58  
/GO  
DL,P51X, ,ROTX,  
FLST,2,2,4,ORDE,2    
FITEM,2,57   
FITEM,2,-58  
/GO  
DL,P51X, ,ROTY,  
FLST,2,8,4,ORDE,8    
FITEM,2,19   
FITEM,2,-20  
FITEM,2,23   
FITEM,2,-24  
FITEM,2,51   
FITEM,2,-52  
FITEM,2,57   
FITEM,2,-58  
DL,P51X, ,SYMM 
 
 STEP 8 : Apply the pressure 

GUIs: Main Menu > Preprocessor > Loads > Define Loads > Apply > Functions  
                                                                                           > Define/Edit 
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Main Menu > Preprocessor > Loads > Define Loads > Apply > Functions  
                                                                                      > Read File 
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Main Menu > Preprocessor > Loads > Define Loads > Apply > Structural          
                                                                           > Pressure > On Lines  
On flange > Constant value 

 
On web > Existing table 

 
Batch text: 
FLST,2,2,4,ORDE,2    
FITEM,2,48   
FITEM,2,50   
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/GO  
SFL,P51X,PRES,2620,  
FLST,2,2,4,ORDE,2    
FITEM,2,54   
FITEM,2,56   
/GO  
SFL,P51X,PRES,-2620, 
*DEL,_FNCNAME    
*DEL,_FNCMTID    
*DEL,_FNCCSYS    
*SET,_FNCNAME,'P1650'    
*SET,_FNCCSYS,0  
! /INPUT,.\Desktop\THESIS\ANSYS Load\p1650.func,,,1  
*DIM,%_FNCNAME%,TABLE,6,9,1,,,,%_FNCCSYS%    
!    
! Begin of equation: (-1650/476.9)*{X}   
*SET,%_FNCNAME%(0,0,1), 0.0, -999    
*SET,%_FNCNAME%(2,0,1), 0.0  
*SET,%_FNCNAME%(3,0,1), 0.0  
*SET,%_FNCNAME%(4,0,1), 0.0  
*SET,%_FNCNAME%(5,0,1), 0.0  
*SET,%_FNCNAME%(6,0,1), 0.0  
*SET,%_FNCNAME%(0,1,1), 1.0, -1, 0, 0, 0, 0, 0   
*SET,%_FNCNAME%(0,2,1), 0.0, -2, 0, 1, 0, 0, -1  
*SET,%_FNCNAME%(0,3,1),   0, -3, 0, 1, -1, 2, -2 
*SET,%_FNCNAME%(0,4,1), 0.0, -1, 0, 1650, 0, 0, -3   
*SET,%_FNCNAME%(0,5,1), 0.0, -2, 0, 1, -3, 3, -1 
*SET,%_FNCNAME%(0,6,1), 0.0, -1, 0, 476.9, 0, 0, -2  
*SET,%_FNCNAME%(0,7,1), 0.0, -3, 0, 1, -2, 4, -1 
*SET,%_FNCNAME%(0,8,1), 0.0, -1, 0, 1, -3, 3, 2  
*SET,%_FNCNAME%(0,9,1), 0.0, 99, 0, 1, -1, 0, 0  
! End of equation: (-1650/476.9)*{X  
!--> 
FLST,2,6,4,ORDE,2    
FITEM,2,31   
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FITEM,2,-36  
/GO  
SFL,P51X,PRES, %P1650%   

   
 STEP 9 : Create and mesh the target plane 

GUIs: Main Menu > Preprocessor > Modeling > Create > Areas > Arbitrary > Through  
                                                                                                                   KPs 

 
    Main Menu > Preprocessor > Meshing > Mesh Attributes > Pick Areas 
Pick area #1. 

 
  
   Main Menu > Preprocessor > Meshing > Size Cntrls > ManualSize > Areas > Picked  
                                                                                                              Areas  
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  Main Menu > Preprocessor > Meshing > Mesh > Areas > Free 
Batch text: 
FLST,2,4,3   
FITEM,2,8    
FITEM,2,11   
FITEM,2,10   
FITEM,2,9    
A,P51X   
CM,_Y,AREA   
ASEL, , , ,       1  
CM,_Y1,AREA  
CMSEL,S,_Y   
CMSEL,S,_Y1  
AATT,       1,       1,   1,       0,   1    
CMSEL,S,_Y   
CMDELE,_Y    
CMDELE,_Y1   
FLST,2,1,5,ORDE,1    
FITEM,2,1    
AESIZE,P51X,5,   
MSHKEY,0 
CM,_Y,AREA   
ASEL, , , ,       1  
CM,_Y1,AREA  
CHKMSH,'AREA'    
CMSEL,S,_Y   
AMESH,_Y1    
CMDELE,_Y    
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CMDELE,_Y1   
CMDELE,_Y2   
MSHKEY,0 

 STEP 10 : Assign the target and contact elements 
GUIs: Main Menu > Preprocessor > Modeling > Create > Elements > Elem Attributes 
For contact element CONTA177 along the shell edge of the web 

 
For the target surface TARGE170 

 
    Main Menu > Preprocessor > Modeling > Create > Elements > Surf/Contact  
                                                                                                  > Surf to Surf 
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    Main Menu > Preprocessor > Meshing > Clear > Areas 
    Main Menu > Preprocessor > Modeling > Delete > Areas Only 
Pick area #1. 
“CNCHECK, TRIM” to eliminate the unnecessary contact and target elements. 

 
Batch text: 
FLST,5,2,4,ORDE,2    
FITEM,5,21   
FITEM,5,-22  
LSEL,S, , ,P51X  
NSLL,S,1 
NPLOT    
TYPE,   3    
MAT,       1 
REAL,       1    
ESYS,       0    
SECNUM,   1  
TSHAP,LINE   
FLST,5,121,1,ORDE,7  
FITEM,5,22142    
FITEM,5,24842    
FITEM,5,24902    
FITEM,5,-24960   
FITEM,5,27542    
FITEM,5,27602    
FITEM,5,-27660   
CM,_Y,NODE   
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NSEL, , , ,P51X  
CM,_Y1,NODE  
CMSEL,S,_Y   
CMSEL,,_Y1   
ESURF, ,TOP, 
CMSEL,,_Y    
CMDELE,_Y    
CMDELE,_Y1   
ASEL,S, , ,       1  
NSLA,S,1 
NPLOT    
TYPE,   2    
MAT,       1 
REAL,       1    
ESYS,       0    
SECNUM,   1  
TSHAP,QUA8   
FLST,5,34883,1,ORDE,6    
FITEM,5,38402    
FITEM,5,41102    
FITEM,5,49322    
FITEM,5,52022    
FITEM,5,54722    

FITEM,5,-89600   

CM,_Y,NODE   
NSEL, , , ,P51X  
CM,_Y1,NODE  
CMSEL,S,_Y   
CMSEL,,_Y1   
ESURF, ,TOP, 
CMSEL,,_Y    
CMDELE,_Y    
CMDELE,_Y1 
ACLEAR,       1  
ADELE,       1   
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EPLOT    
ALLSEL,ALL   
CNCHECK,TRIM 

 
 STEP 11 : Solve the problem 

GUIs: Main Menu > Solution > Analysis Type > Sol’n Controls 

 
     Main Menu > Solution > Solve > Current LS 

 
Batch text: 
 /SOL 
CNVTOL,U, ,0.001,2, ,      
/STATUS,SOLU 
SOLVE 



 

 

108 

 

 STEP 12 : Define a path around crack tip 
GUIs: Main Menu > General Postproc > Path Operations > Define Path > By Nodes 
Define the path along the edge of the refinement mesh area around the tension side 
crack tip. 

 
Batch text: 
/POST1 
FLST,2,4,1   
FITEM,2,8463 
FITEM,2,5703 
FITEM,2,13983    
FITEM,2,24842    
PATH,s,4,30,20,  
PPATH,P51X,1 
PATH,STAT   
 

 STEP 13 : Calculate the J- Integral value 
Batch text: 
AVPRIN,0, ,  
ETABLE, ,SENE,   
AVPRIN,0, ,  
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ETABLE, ,VOLU,   
SEXP,sexp,SENE,VOLU,1,-1, 
AVPRIN,0, ,  
PDEF, ,ETAB,SEXP,AVG 
/PBC,PATH, ,0    
PCALC,INTG,WDY,ETABSEXP,YG,1,    
AVPRIN,0, ,  
PDEF, ,S,X,AVG   
/PBC,PATH, ,0    
AVPRIN,0, ,  
PDEF, ,S,Y,AVG   
/PBC,PATH, ,0     
AVPRIN,0, ,  
PDEF, ,S,XY,AVG  
/PBC,PATH, ,0    
PVECT,NORM,NX,NY,NZ  
PCALC,MULT,SXNX,SX,NX,1, 
PCALC,MULT,SXYNY,SXY,NY,1,   
PCALC,MULT,SYNY,SY,NY,1, 
PCALC,MULT,SXYNX,SXY,NX,1,   
PCALC,ADD,TX,SXNX,SXYNY,1,1, ,   
PCALC,ADD,TY,SYNY,SXYNX,1,1, ,   
*GET,DX,PATH,,LAST,S 
*SET,DX,DX/100   
PCAL,ADD,XG,XG,,,,-DX/2  
PDEF,UX1,U,X 
PDEF,UY1,U,Y 
PCAL,ADD,XG,XG,,,,DX 
PDEF,UX2,U,X 
PDEF,UY2,U,Y 
PCAL,ADD,XG,XG,,,,-DX/2  
*SET,C,1/DX  
PCAL,ADD,C1,UX2,UX1,C,-C 
PCAL,ADD,C2,UY2,UY1,C,-C 
PCALC,MULT,TXUX,TX,C1,1, 
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PCALC,MULT,TYUY,TY,C2,1, 
PCALC,ADD,T,TXUX,TYUY,1,1, , 
PCALC,INTG,TDS,T,S,1,    
PCALC,ADD,J,WDY,TDS,1,-1, ,  
PRPATH,WDY,TX,TY,TDS,J   
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