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CHAPTER I 

INTRODUCTION 

 

A crystallization process plays an important role in many industries. In 

chemical engineering, crystallization is used in the petrochemical industry for the 

manufacture of polymers. In a specialty chemical industry, crystallization is utilized 

for solid-liquid separation and purification of high-valued chemicals and household 

products. In a pharmaceutical industry, protein crystallization is required for drug 

design. In addition, applications of crystallization have been found in a 

microelectronic industry for silicon production and chemical vapor deposition for 

semiconductor manufactures. Crystallization is also applied in food industries, e.g., in 

the production of butter, cheese, ice cream, sugar, and salt (Patience, 2002). 

Crystallization can generally be operated in continuous and batch operation modes. 

Continuous crystallizers are typically used for large-scale production. However, since 

batch crystallizers can produce a narrow crystal size distribution and a large mean 

crystal size production, they are often used especially in the production of low-

volume and high-value products. Moreover, process operation in the batch mode is 

quite flexible and allows for changing product specification. 

Reactive crystallization or precipitation is a key production step for a wide 

range of industrial process. Many substances such as fine and bulk chemicals, 

pharmaceuticals, biochemicals, catalysts, pigments, photographic materials or 

ceramics are produced by reactive crystallization.  

There is currently a great deal of interest in the development and use of 

alternative non-conventional techniques that allow both the separation and 

purification of the compounds obtained during a process and the use of systems that 

combine reaction and separation into a single process unit to improve process 

performance. Reactive crystallization is a very complex process and much effort has 

been directed towards understanding and interpreting the interplay between the 

reaction, crystallization and mixing kinetics. However, further exploitation of the 
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interplay between these kinetic processes for the optimal operation of reactive 

crystallizers remains a scarcely researched area. 

Semi-batch operation for a reactive crystallization process offers the 

advantages of easily controllable feed rates, which can lead to significant 

improvement in product quality than traditional batch operation. During a semi-batch 

reactive crystallization, two liquid reactants are brought into close contact in a single 

feed or double feed operation, and the crystalline product or precipitate is formed by a 

chemical reaction in concentrations exceeding the solubility of the solute 

(supersturation). Thus, the mixing mechanism and the feed flow rates of the reactants 

exert significant influence on the characteristics of the product crystals. 

The crystal size distribution (CSD) is one of the most important properties to 

control in these processes. CSD is typically characterized by the mean and variance, 

or sometimes upper and lower particle sizes, but the entire shape of the distribution 

can affect the product’s material and processing properties. It is the usual practice to 

control the CSD by controlling its characteristic variables (e.g. the mean) or other 

easily measured variables (e.g. temperatures, pressures, and concentrations) of the 

bulk phase. Recent development of on-line instrumentation for particle sizing makes it 

possible to use on-line CSD data and on-line feedback control of CSD is becoming a 

realistic possibility. Even with an accurate on-line CSD measurement, the use of a 

conventional feedback control strategy (e.g. multi-loop PID control) may be 

unsuitable, because the CSD for different size ranges cannot all be controlled 

independently. In addition, characteristics of most particulate systems are nonlinear 

and time-varying; a fixed parameter controller based on an off-line-data-fitted model 

may perform poorly over a course of large time period. The problem is better handled 

by using an optimization-based control technique coupled with state estimation 

(Rawlings et al., 1993). However, it requires an on-line optimization calculation at 

each time step and hence the computational burden is not always manageable. 

Significant simplification of the model or the simulation/optimization algorithm may 

be needed for on-line control.  

A model-based feedback controller known as a model predictive control 

(MPC) has found to be successful in industrial applications because of its ability to 



 3

handle nonlinear processes, multivariable interactions, constraints, and optimization 

requirements. A nonlinear model predictive control has been applied to various 

process systems. In a MPC algorithm, a dynamic process model is used to predict and 

optimize the future behavior of the process. The basic concept is that it calculates 

future controls based on current measurements via the solution of an optimal control 

problem. Then, the states are measured and used as initial conditions in order to 

recalculate the control action.  

 In this work a semi-batch reactive crystallization that developed by 

Tavare and Garside (1990) is considered. A model predictive control (MPC) with the 

Extended Kalman filter is designed and implemented for control of crystal size 

distribution (CSD) described by population balance models, and its performance has 

been evaluated and compared with conventional controller.  

 

1.1. Research Objective 

The objective of this research is to design a MPC, a modelbased control, for a 

semi-batch reactive crystallization to track optimal operating condition. The model 

predictive control (MPC) is incorporated with the extended Kalman filter (EKF) to 

estimate unknown parameter. The designed MPC with EKF is then tested and 

evaluated in cases of plant/model mismatches. 

 

1.2. Scope of Research 

1. A semi-batch reactive crystallization process by Tavare and Garside (1990) is 

considered. 

2. A mathematical model of a semi-batch reactive crystallization process is studied. 

3. A model predictive control approach is implemented for the semi-batch reactive 

crystallization process. 

4. The performance of model predictive controller is compared with conventional 

controller. 
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5. Programs written to simulate and control the process are based on MATLAB 

Program and MATLAB Toolbox. 

1.3. Contributions 

1. A computational program to simulate the performance of a semi-batch 

reactive crystallization has been developed. 

2. A semi-batch reactive crystallization has been controlled via using the 

model predictive controller to achieve a desire objective. 

3. Unmeasurable state variable and unknown parameter of a semi-batch 

reactive crystallization have been estimated. 

 

1.4. Activity plan 

1. Study and collect the information relating to the research 

- A conventional semi-batch reactive crystallization process 

- Optimization techniques 

- Model predictive control strategy 

- System identification 

2. Study MATLAB programming software 

3. Apply the developed MPC for the control of the semi-batch reactive 

crystallization process. 

4. Compare the performance of the model predictive control with the 

conventional control strategy. 

5. Analyze and summarize the result of the research 
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1.5. Research Framework 

 This thesis is organized as follows: First, the literature reviews related to the 

reactive crystallization process, the model predictive control and the extended Kalman 

filter are presented in Chapter II. Second, the theories of the reactive crystallization 

process, the model predictive control and the parameter estimation approach are 

explained in Chapter III. Next, the application of the model predictive control for 

semi-batch reactive crystallization and simulation results are presented in Chapter IV. 

Finally, the conclusions and the recommendations for future work are given in 

Chapter V. 

 



CHAPTER II  

LITERATURE REVIEW 

 

2.1  Semi-batch reactive crystallization 

Reactive crystallization or precipitation is used commercially for the 

production or purification of valuable substances such as catalysts, ceramics, 

pigments, cosmetics, pharmaceuticals and photographic emulsion. 

The effects of different mixing and process parameters on the formation of 

crystals obtained from semi-batch precipitation and the influence of feed time, feed 

concentration, feed tube diameter and impeller type on particle morphology of the 

crystal are discussed in many research for example Aslund and Rasmuson (1992) 

carried out an experimental study of the semi-batch reactive crystallization of benzoic 

acid. They comprehensively investigated the effects of feed addition time, feed 

concentration, feed point location, stirrer type and mixing intensities on the product 

characteristics of crystals. Houcine et al. (1997), Mahajan and Kirwan (1996), and 

Baldyga et al. (2007) investigated the influence of mixing conditions on the 

precipitation process. Torback and Rasmuson (2004) reviewed the influence of the 

stirring rate and the feed rate on the mean-crystal size in semi-batch reaction 

crystallization processes, Wong et al. (2001) investigated the effect of reactive ions in 

a semi-batch reactor on the crystal size distribution (CSD), mean sizes and 

morphology. 

A study of barium sulfate precipitation in a double-feed, semi-batch mode was 

conducted by Wong et al. (2003). The effects of addition mode, feed location, feed 

molar ratio and stirrer speed on the precipitate characteristics were investigated. It 

was found that stirrer speed had only a limited effect. The most important parameter 

was the local, initial molar ratio of reactants, hence the local supersaturation.  
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2.2  Optimization  

There has been extensive research on the modeling and analysis of reactive 

crystallization through simulation and experimentation. Tavare and Garside (1990) 

simulated a general reactive process in semi-batch crystallizer and concluded that 

variations in the reactant addition profiles can be used to exercise significant control 

over the product-size distribution. 

Not very much research has been directed toward mathematical optimization 

of reaction crystallization processes. Semi-batch operation for a reactive 

crystallization process offers the advantages of easily controllable feed rates, which 

can lead to significant improvement in product quality than traditional batch 

operation. Many studies have been conducted to investigate the effect of feed 

position, the diameter of the feed-pipe, the feeding rate and profile, the hydrodynamic 

within the vessel, and the time of feeding on the CSD in reactive crystallization 

processes. Experimental studies show that feed rates do have an effect on the final 

product CSD (Philips et al. (1999), Torbacke and Rasmuson (2004), and 

Mukhopadhyay and Epstein (1980)) in such process. In addition, under certain 

conditions the importance of mixing, and in particular, the effects of micromixing can 

be neglected.  

Recently an optimization of semi-batch reactive crystallization process has 

received considerable attention as it is a useful tool to design an optimal operating 

temperature which has a direct effect on the final-time CSD. The majority of the 

studies focused on understanding the interplay between mixing and crystallization 

kinetics.  

The study of Choong and Smith (2004) presented a stochastic optimization 

framework, based on Simulated Annealing for optimizing semi-batch reactive 

crystallization processes. The optimization is sought with respect to thee reactants 

feed profiles that maximize the crystal size subject to a specified maximum 

coefficient of variation (CV), or minimize CV subject to a specified minimum crystal 

size. The control strategies that produce the largest average crystal size usually lead to 

high CV. Results indicate that the optimized operation produced significant 
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improvement in the overall crystal quality compared with the conventional semi-

batch operation of constant feeding rate. 

 

2.3  Model Predictive Control 

Model predictive control (MPC) refers to a class of control strategies in which 

control inputs are computed based on an optimization criterion that is formulated over 

a prediction horizon, using an explicit model to predict the effect of future inputs on 

system states or outputs. MPC incorporates feedback by dynamically updating the 

optimization problem to include the effects of process measurements. 

MPC approach has found to be successful in industrial applications. This is 

due to the outstanding characteristics of the MPC for couple with inherent nonlinear 

processes, multivariable systems, and constraints on processes. In general, model 

predictive control can be divided into two classes: linear model predictive control and 

nonlinear model predictive control. Linear MPC refers to a family of MPC schemes in 

which linear models are used to predict the system dynamics even though the 

dynamics of the system is nonlinear, while nonlinear MPC refers to the general cases 

in which the dynamic system models, performance objective, and constraints may be 

in nonlinear function of state, input and output variables.  

Even though, a construction of nonlinear process models is sometime very 

difficult and time-consuming task, they can be used to describe the system in a wide 

range of operation condition. Moreover, due to advanced numerical techniques for 

optimization and powerful computer, it is possible to solve the nonlinear 

programming problem resulting from the formulation of nonlinear MPC. 

Nonlinear MPC has been applied to a wide variety of process systems. For 

instance, Lee and Lee (1997) proposed a novel model predictive control algorithm 

designed specially for nonlinear batch processes. Unlike existing MPCs which 

duplicate the same control error in the repeated batches, the proposed algorithm can 

achieve perfect tracking despite model uncertainty as the number of batch runs 
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increases. As a special case, they also propose a maximum horizon algorithm which 

ensures convergence just as infinite horizon MPC does for continuous processes. 

The proposed of Ju et al. (2000), a nonlinear MPC is applied to control a 

fabric filtration process. The control algorithm formulated in a multiple-objective 

optimization framework takes an economic factor into consideration. The global 

optimization technique is used to compute a manipulated input profile. Simulation 

results showed that the proposed MPC is especially suitable to the filtration process 

where the set point change and process disturbance occur frequently. 

The nonlinear MPC based on a successively linearized nonlinear model is 

formulated and applied to an industrial polypropylene semi-batch reactor process as 

well as to a high density polyethylene (HDPE) continuous stirred tank reactor process 

by Seki et al. (2002). For the semi-batch reactor, the nonlinear MPC successfully 

prevented thermal runaway of the reactor temperature control. For the continuous 

reactor, the nonlinear MPC improved the closed loop performance during the grade 

changeover operation, compared with the conventional linear MPC.  

Cerrillo and MacGregor (2005) presented a latent variable model predictive 

controller (LV-MPC) for use in tracking set point trajectories in batch and semi-batch 

processes. The performance of the LV-MPC is shown to be very good in comparison 

to traditional PI controllers, not only for achieving tighter trajectory tracking, but also 

by doing so with much less effort in the manipulated variables.     

In case of continuous operation of the crystallizers, the objective is often 

stabilization, and the presence of constraints on the manipulated input variables limits 

the set of initial conditions starting from where stabilization can be achieved. For 

batch processes, in contrast, the expression of performance considerations in the form 

of appropriate constraints or in the objective function, and achieving a desired product 

size distribution, are more important issues. Shi et al. (2005) proposed the control of a 

batch protein crystallization process. A predictive controller is designed to achieve the 

objective of maximizing the volume-averaged crystal size while respecting constraints 

on the manipulated input variables and on the process state variables. Simulation 

results showed that the proposed predictive controller was able to increase the 
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volume-averaged crystal size by 30% and 8.5% compared with the constant 

temperature control and constant supersaturation control strategies, respectively, and 

the number of fine crystal is reduced. Moreover; in the presence of plant-model 

mismatch, this method is robust in comparison to open-loop optimal control 

strategies.  

Shi et al. (2006) concentrated on an optimization-based predictive control 

strategy, which incorporated constraints explicitly in the controller design in 

continuous and batch crystallizers. For continuous mode, the objective of stabilization 

under constraints is considered. Using this strategy, a continuous crystallizer at an 

open-loop unstable can be successfully stabilized. On the other hand, the objective is 

to achieve a desired particle size distribution under control and product quality 

constraints for the batch mode. The strategy is shown to be able to reduce the total 

volume of fine crystals by 13.4% compared to a linear cooling strategy.  

In the present of Paengjuntuek (2007), the implementation of a dynamic 

optimization strategy in a batch crystallization process to determine an optimal 

operating temperature policy minimizing the nucleation of fine crystals subject to a 

product quality constraint. An on-line dynamic optimization and advance control 

technique known as Model Predictive Control (MPC) technique have been 

implemented to achieve a desired crystal size distribution (CSD) and an extended 

Kalman filter (EKF) has also been incorporated to provide estimates of non-

measurable states. 

 Ricker (1990) developed a state space formulation of the multivariable model 

predictive controller with provisions for state estimation. Hard constraints on the 

manipulated variables and outputs were accommodated, as in Quadratic Dynamic 

Matrix Control (QDMC) and related algorithms. For unconstrained problems, a low 

order analytical form of the controller is obtained. The potential benefits of MPC with 

state estimation are demonstrated for the case of dual-composition, LV control of the 

high-purity distillation column problem studied previously by Skogestad and Morari, 

which is an especially challenging problem for MPC-type algorithms. It is shown that 

the use of the state estimator with a single tuning parameter (beyond that required for 
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standard MPC) provides robust performance equivalent to the best p-optimal 

controller designed by Skogestad and Morari. 

 Eaton and Rawlings (1992) purposed Model Predictive Control (MPC) a 

scheme in which an open-loop performance objective is optimized over a finite 

moving time horizon. MPC is shown to provide performances superior to 

conversional feedback control for nonminimum phase systems or systems with input 

constraints when future set points are known. Stabilizing unstable linear plants and 

controlling nonlinear plants with multiple steady state are also discussed.  

 Sistu et al., (1993) discussed the implementation of different nonlinear 

strategies in a MPC framework to control an exothermic continuous stirred tank 

reactor. The computational efficiency of a MPC strategy depends on the method used 

to predict model outputs within the optimization loop. The computational 

requirements of collocation and numerical-based methods to solve nonlinear 

differential modeling equations are compared with the nonlinear quadratic dynamic 

matrix control (NLQDMC) formulation. The convolution coefficients for NLQDMC 

are obtained using analytical and numerical methods and their computational time 

requirements are compared. 

 Patwardhant and Madhavan (1993) presented the development of an 

approximate second-order perturbation model, which can be used for single step and 

multistep predictive control. The algorithm has been successfully implemented on two 

continuously stirred tank reactors (CSTRs) control problem where the control 

objective is to operate the reactor at an extremum point. The control problem is 

associated with the singular nature of the operating point has been successful tackled 

by the purposed algorithm. The MPC algorithm based on the proposed second-order 

model is shown to improve the closed loop performance when compared to other 

nonlinear MPC algorithms. The proposed algorithm has been found to be robust for 

moderate variations in the kinetic parameters. 

 Masoud et al., (1995) used the short horizon nonlinear model predictive 

control that concerns nonlinear model predictive control of the multivariable, open-

loop stable processes whose delay-free part is minimum-phase. The control law is 
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derived by using a discrete-time state-space formulation and the shortest useful 

prediction horizon for each controlled output. This derivation allows to establish the 

theoretical connections between the derived nonlinear model predictive control law 

and the discrete-time globally linearizing control, and to deduce the conditions for 

nominal closed-loop stability under the model predictive control law. Under the 

nonlinear model predictive controller, the closed-loop system is partially governed by 

the zero dynamics of the process, which is the nonlinear analog of placing a subset of 

closed-loop poles at the zeros of a process by a model algorithmic controller. 

 Phupaichitkun (1998) applied model predictive control (MPC) to control the 

temperature of a batch reactor with exothermic reactions and its performance is 

compared with generic model control (GMC) to that of individually/simultaneously 

plant/model mismatches. In addition, Kalman Filter that used to estimate the heat 

released of chemical reactions is incorporated into the MPC and GMC. Simulation 

studies are shown that MPC to be as good as GMC for all cases for which both 

controllers are well tuned. 

 Ruksawid (1999) used model predictive control (MPC) with Kalman filter for 

the control of the temperature and the concentration of a reversible exothermic. The 

design MPC with Kalman filter which can give a good control performance and 

guarantee the stability of closed loop nonlinear continuous time systems subject to 

constraints. Several different problems have been considered, such as control 

performance, disturbance rejection, set point tracking and parametric model/plant 

mismatch. Simulation results have shown that the MPC with Kalman filter provides 

better control performances than the conventional PID controller does for the control 

of the temperature and the concentration f a continuous stirred tank reactor in the 

cases of disturbance rejection and set point tracking. In addition, the MPC is more 

robust than the PID in presence of model/ plant mismatch. 

 Ralhan and Badgwell (2000) presented two robust model predictive control 

algorithms for linear integrating plants described by a state space model. The first 

formulation focused on steady state offset whereas the second minimizes output 

deviations over the entire prediction horizon. The input matrix parameters of the plant 

are assumed to lie in a set defined by an ellipsoidal bound. Robustness is achieved 
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through the addition of constraints that prevent the sequence of the optimal 

controller costs from increasing for the true plant. The resulting optimization 

problems solved at each time step are convex and highly structured. Simulation 

example compared the performance of these algorithms with those based on 

minimizing the worst-case controller cost. 

 Tongmeesee (2000) presented the application of MPC to control the 

temperature of a batch polymerization reactor. The performance of MPC with Kalman 

filter is compared to that of a simple nonlinear control technique named generic 

model control (GMC). Simulation results have shown in normal case and presence of 

plant/model mismatch (decrease in heat transfer coefficient and rate of termination 

reaction and increase of the monomer concentration and heat of reactions), MPC with 

Kalman filter give a better control performance than GMC with Kalman filter. 

 Brempt et al. (2001) presented the advanced model predictive control 

technology bsed on rigorous dynamic models. Key requirements of the new 

technology are the realization of a flexible process operation, a large bandwidth 

control enabling tight quality control and low application costs. The flexible operation 

is realized by the combination of a dynamic optimizer over a rigorous model together 

with a model predictive controller in delta-mode. A large band width control is 

enabled by the used of high frequent prediction models. Ultimately, reuse of large 

parts of rigorous models for different applications together with low frequency testing 

on these rigorous models for different applications together with low frequency 

testing on these rigorous models reduces the application cost. The application of the 

before mentioned technology is shown successfully on a polyethylene gasphase 

reactor simulator. A considerable economic benefit can be obtained optimizing the 

transition trajectory as will as the throughput at that time. 

In the present of Paengjuntuek (2007), the implementation of a dynamic 

optimization strategy in a batch crystallization process to determine an optimal 

operating temperature policy minimizing the nucleation of fine crystals subject to a 

product quality constraint. An on-line dynamic optimization and advance control 

technique known as Model Predictive Control (MPC) technique have been 

implemented to achieve a desired crystal size distribution (CSD) and an extended 
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Kalman filter (EKF) has also been incorporated to provide estimates of non-

measurable states. 

 

2.4  Parameter Estimation Approach   

In most industrial processes, the process parameters and state variables are not 

all measurable or, not with sufficient accuracy for control purposes. Furthermore, 

measurements that are available often contain significant amounts of random noise 

and systematic errors. 

State variables of a process determine uniquely the state of the process and are 

either measured directly or estimated using a state estimator. On the other hand, 

process parameters provide a mathematical model with flexibility to fit process 

measurements, are often of great physical importance, and are usually not measured 

directly. Information on unknown process parameters can be obtained indirectly by 

means of a parameter estimator: In 1960, Kalman published a famous paper decribing 

a recursive solution to the discrete data linear filtering problem. The Kalman filter has 

been the subject of extensive research and application, particularly in the area of 

autonomous or assisted navigation. 

The nucleation and growth parameters for a KNO3-H2O system and a 

photochemical-heptane system are estimated by Rawlings et al. (1993), and Matthews 

et al. (1996) respectively. The results show that information obtained from the 

continuous phase (the concentration measurement) is not enough to determine the 

parameter uniquely. In order to reduce the limits of uncertainty in the parameter 

values, it is also necessary to use information on the solid phase (transmittance 

measurement).  

Then, in 1995 Livk et al. determined the nucleation, growth and agglomeration 

kinetic parameters for sodium perborate (SPB) precipitation process by applying an 

optimization estimation procedure posed as a nonlinear programming problem. 

Successive quadratic programming (SQP) has been used to solve this problem. 

Optimal values of parameters were calculated based on either concentration or size 
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distribution data. The least squares objective function was used. First type of the 

objective function is written as a sum of the weighted square-deviations between 

measured and calculated CSD. Another type can be stated in terms of solute 

concentration. The results show that agglomeration kinetics and CSD can not be 

predicted using the concentration information. When both criteria of the objective 

function is formed; however, no significant improvement is observed. The reason is 

that the first objective function already includes the concentration criteria and the 

CSD information. The values of some parameters (growth parameters) are close to 

those obtained by experiments implying isolation methods.  

A model based experimental design procedure is applied in a KNO3-H2O 

crystallization process by Chung et al. (2000) to estimated nucleation and growth 

parameters. Initial parameters estimates are used to compute the first experimental 

design. The collected data are used to compute improved parameter estimates for the 

next laboratory experiment. The procedure was repeated until the relative error in 

each kinetic parameter was less than 2%. The parameter estimation problem is posed 

as a nonlinear optimization problem. The measurements are concentration and 

transmittance (related to the second moment). Highly accurate estimation of these 

parameters can be obtained with four batch experiments. The seed characteristics have 

a much stronger effect on the quality of the parameter estimates.  

 Yang and Wei (2006) said that the traditional empirical correlations obtain 

from experimental data using assumed functional forms cannot give reliable 

predictions, as the highly nonlinear behavior of crystallization kinetics. Hence, a 

neural network model, which is able to reproduce the system behavior with its 

nonlinearities and parameter interaction effects, is developed to predict crystal 

nucleation, growth, and agglomeration rates for a ciprofloxacin hydrochloride, water, 

and ethanol system. The results demonstrated that the neural network approach can 

predict the complex interplays of influential factors in the crystallization process 

result in more accurate prediction of the crystallization kinetics.  

On the other hand, in order to perform the on-line optimization strategy, the 

knowledge of current states and/or process parameters in the process model is 

required. However, some of these variables cannot be known exactly, it is important 
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to include an on-line estimator to estimate these process variables using available 

process measurement as well. As is several estimation techniques, an Extended 

Kalman Filter (EKF) has been widely employed as it is relatively straightforward to 

implement. It has been found that the EKF can be applied to a number of chemical 

process applications with great success. 

 Model Predictive Control (MPC) incorporated with an EKF is presented by 

Kittisupakorn and Hussain to control and estimate the unmeasured a concentration in 

a reactor. The simulation results have been shown that the estimated concentration 

can approach the actual value. Hence, the MPC with EKF can control the reactant 

concentration at the desired set point with less drastic control action and within the 

reactor temperature constraint.  

 An on-line dynamic optimization strategy incorporated with EKF to modify 

optimal temperature set point profile for batch reactor. The EKF is used to updated 

current states, reactant concentrations, from their delayed measurement, to estimate 

the reaction rate constants, and to estimate unmeasurable state variables, heat released 

of reactions (Qr). The simulation results have been shown that the EKF provides an 

excellent estimation of the heat release. In addition, the EKF gives good estimations 

of reactant concentrations and reaction rate constants. Hence, the performance of the 

batch reactor in terms of the amount of a desired product and batch operation time can 

be improved significantly by the proposed strategy. 

 In the crystallization process, the EKF is used as a state estimator to estimates 

for the unmeasured states in the research of Zhang and Rohani (2003), The EKF is 

used as an on-line state estimator to provide estimates for the unmeasured states, and 

to reduce the effect of measurement noise in an on-line optimal control of a seeded 

batch cooling crystallizer. The simulation results have been demonstrated that the 

predicted values of ith moments and the size of seeded crystals converge to the actual 

values quickly with small offset, which indicate that the EKF can provide good 

predictions of the unmeasured state variables. 

In the present of Paengjuntuek (2007), the implementation of a dynamic 

optimization strategy in a batch crystallization process to determine an optimal 
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operating temperature policy minimizing the nucleation of fine crystals subject to a 

product quality constraint. An on-line dynamic optimization and advance control 

technique known as Model Predictive Control (MPC) technique have been 

implemented to achieve a desired crystal size distribution (CSD) and an extended 

Kalman filter (EKF) has also been incorporated to provide estimates of non-

measurable states. 



CHAPTER III  

THEORY 

 

The continuous development of the chemical process industry has been 

accompanied by rising demands for product quality. Crystallization is one of the 

methods to produce particulate material in the chemical industry. In the twenties, the 

first definition of crystallization as a unit operation appeared (Walker et al., 1923). 

This concept was used until the sixties when Randolph and Larson (1971) took 

population balance into account for mathematical treatment for crystallization 

analysis and design. After that, crystallization became recognized as a more complex 

field and as a part of the chemical engineering sciences. Many approaches appeared to 

establish the foundations of industrial crystallization, including chemical precipitation 

(Nielsen, 1964; Strickland-Constable, 1968; Nývlt, 1971; Mullin, 1972 and Garside, 

1985).  

 

3.1  Crystallization process 

 The motivation for modeling a process is to gain an accurate mathematical 

representation of the behavior of the physical system. The developed process model 

can be employed as a useful tool to study, design and improve the systems. 

Furthermore, the model can be used in the formulation of advanced model-based 

control techniques. 

 This chapter outlines a semi-batch crystallizer model using a population 

balance equation (PBE) to describe the evolution of a crystal size distribution (CSD). 

The PBE is augmented by mass and energy balances that model the dynamics of the 

solute concentration in the solution phase and the system temperature, respectively. 

Semi-batch crystallization is driven by the kinetic processes of crystal nucleation and 

growth.  
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 The PBE is a partial differential equation in time and crystal size. 

Consequently, the crystallization model is solved numerically. Although the 

population model can be directly solved, its implementation in an optimization 

problem is very time-consuming. Therefore, the moment model of crystallizers is 

used to formulate the optimization problem in this study.  

 

Crystallization 

 Crystallization is the formation of solid particles within a homogeneous phase. 

It is widely applied for a separation process in inorganic chemical industries, 

particularly where salts are recovered from aqueous media. In the production of 

organic chemicals, crystallization is also used to recover product, to refine 

intermediate chemicals and to remove undesired salts. The feed to a crystallization 

system consists of a solution from which solute is crystallized or precipitated via one 

or more variety of processes. The solids are normally separated from the crystallizer 

liquid, washed, and discharged to downstream equipment for additional treatment. 

High recovery of refined solute is generally the desired design objective, although 

sometimes the crystalline product is a residue (Rousseau, 1987). The solid phase is 

characterized in part by its inherent habit and size distribution. The natural habit of 

the solid phase is important since it influences product purity, yield and capacity of 

the crystallizer system.  

Crystallization offers the following advantages: 

1. Pure product (solute) can be recovered in one separation stage. 

2. A solid phase is formed that is subdivided into discrete particles. 

Generally, conditions are controlled so that the crystals have the desired 

physical form for direct packaging and sale. 

3. The capital and operating cost are relatively low. 

 

 



 20

However, the major disadvantages of crystallization are: 

1. Purification of more than one component is not normally attainable in one 

stage. 

2. The phase behavior of crystallizing systems prohibits full solute recovery 

in one stage; thus, the use of additional equipment to remove solute 

completely from the remaining crystallizer solution is necessary.   

 Crystallization occurs only if the system is supersaturated. In the formation of 

a crystal two steps are required: (1) the birth of a new particle called nucleation and 

(2) its growth to macroscopic size. In a crystallizer, the CSD is determined by the 

interaction of the rates of nucleation and growth, and the overall process is 

complicated kinetically. The driving potential for both rates is the nonequilibrium 

state of the system. The nonequilibrium state is measured by the relative 

supersaturation, S, where 

   ( )
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where Cs is the saturation concentration corresponding to the solution temperature, T .  

 The technique employed to generate supersaturation is strongly influenced by 

the phase-equilibrium characteristics of the system. The common techniques for 

producing solids from a solution include: 

1. If the solubility of the solute increases strongly with increase in 

temperature, as is the case with many common inorganic salts and organic 

substances, a saturated solution becomes supersaturated by simple cooling 

and temperature reduction.  

2. If the solubility is relatively independent of temperature, as is the case with 

common salt, supersaturation may be generated by evaporating a portion 

of the solvent.  
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3. If neither cooling nor evaporation is desirable, as when the solubility is 

very high, supersaturation may be generated by adding a third component. 

The third component may act physically by forming, with the original 

solvent, a mixed solvent in which the solubility of the solvent is sharply 

reduced. This process is called salting. 

4. If a nearly complete precipitation is required, a new solute may be created 

chemically by adding a third component that will react with the original 

solute and form an insoluble substance. This process is called 

precipitation. 

 

3.2  Reactive Separation Process 

 Reactive separation processes are unique in that they couple chemical 

reactions and physical separations into a single unit operation. This fusion of reaction 

and separation operations into one combined operation is prized for the simplicity and 

novelty this approach brings to the process flowsheet. These reactive separations are 

also coveted for the investment and operating cost savings garnered on successful 

scale-up to commercial operations. Reactive separation processes as a whole are not a 

new concept. Numerous applications have been commercialized for traditional 

separation methods over the course of six decades. However, the academic and 

industrial communities have taken renewed interest in the development and 

commercialization of reactive separations in recent years in response to economic 

opportunities and pressures exerted, which have caused the emergence of new 

industries and decline of existing industries, the emergence of new separation and 

process technologies, the demand for higher building block purities for food, 

pharmaceutical, polymer, and electronics products, changes in the availability and 

pricing of key resources, and the growing concern for protecting our environment. 

This interest is reflected in the increased volume of literature issued on the 

development and design of reactive separations and the increasing number of 

technical conferences devoted to the subject. 
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 The applications of reactive separation process design are numerous and 

span a broad range of process operations. The development and application of 

reactive separations is not new. For example, reactive absorption has long been 

practiced for the removal of acid gases in the petroleum production and refining 

industries, and acid/base extractions and reactive distillations have long been 

practiced in the purification of chemicals. However, mention the phrase “reactive 

separations” and chemists and engineers will likely point to the more recent 

commercialization of reactive distillation technologies for the esterification of acetic 

acid to methyl acetate and the etherification of methanol with isobutylene to methyl 

tertiary butyl ether (MTBE) as examples of the art of reactive separation design. 

 The potential advantages for implementation of reactive separations are 

numerous. Perhaps the most sought-after goals in the development of reactive 

separations are the linking of chemical “sources” and “sinks” to enhance reaction 

rates, conversions, or selectivities. Transport of desirable reaction products away from 

the catalyst may lead to enhanced reaction rates and increased feed conversion to 

products in equilibrium-controlled reaction regimes. Elimination of intermediates and 

suppression of side reactions may lead to higher yields of desirable byproducts, 

resulting in lower feedstock costs as a consequence of better feedstock utilization.  

 

3.3  Reactive crystallization  

 Reactive crystallization, also called precipitation, is an area for which 

crystallization as well as reaction engineering aspects are important. Classically, 

crystals are obtained from a solution by (a) cooling, (b) increasing the concentration 

of the solute through solvent evaporation, (c) combining these two processes when the 

solvent evaporation is used both for cooling and for concentrating, or (d) by salting or 

drowning-out with the help of a cosolvent. 

 Reactive crystallization differs from these classical processes in that the 

supersaturation, which is required for the crystallization, no longer results from an 

action on the physical properties of the solution. It is obtained by a chemical reaction 

between two soluble components leading to a less soluble product which crystallizes. 
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The reactants can be molecules or ions. The reaction crystallization may proceed 

via a third intermediate, a dissolved molecule, which becomes solid afterwards. 

Alternatively, the reactants can directly lead to a very sparingly soluble precipitate. 

The generated solids can be crystalline or amorphous. Reticulation of the suspended, 

solid particles may take place, and the suspension is then called a gel. 

 Hence, the study of reactive crystallization is more difficult than that of 

classical crystallization, because the crystal generation depends on several processes, 

which all have their own kinetics (e.g., chemical reaction, crystallization, and mixing). 

The competition between these three steps generally results in (a) rapid crystallization 

and especially nucleation, which is very problematic to keep under control, and (b) 

multiple zones in the apparatus showing different mixing conditions and, 

consequently, very different crystallization and reaction conditions, therefore, it is 

necessary to spit the reactor into ideal zones, each zone having given mixing 

parameters, global reactive crystallization kinetics, and subsequent mechanisms 

influenced by mixing.  

 Due to the complexity of the reaction crystallization, the following steps are to 

be studied: 

1. The kinetics of the chemical reaction leading to the supersaturation. 

These kinetics are often very fast, especially when combining ionic species or for 

acid-base reactions, leading, in turn, to high local supersaturation. In some cases, this 

kinetics can be complex, for gas-liquid reactions or for organic reactions between 

molecules, for example. 

2. The kinetics of crystallization, including primary and secondary 

nucleation, growth, agglomeration and Ostwald ripening, which can be considered as 

important mechanisms during the reactive crystallization of very small particles. The 

species are often ionic components and, as an example, growth can be considered as a 

rather complicated step, because on has to take into account the surface integration 

and the diffusion of two ions.  

3. The kinetics of mixing, which can have a high effect on both reaction 

and crystallization kinetic rates if the are of the same order of magnitude.  
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Driving force of reactive crystallization 

Two possibilities are to be considered, and we will find this duality in all our 

discussions: 

1. The chemical reaction leads to a more or less soluble molecule P, 

which then crystallizes. This is the case for many compounds. 

A+B P S (solid)⎯⎯→ ⎯⎯→←⎯⎯ ←⎯⎯  

The first reaction can either be at equilibrium or with finite rates in both 

directions. For such problems, the solubility of component P can be described as 

the molar concentration of P in the solution at the thermodynamic solid-liquid 

equilibrium. This concentration is a function of temperature. 

2. The chemical reaction does not lead to any intermediate soluble 

species, and the solid crystallizes directly from the reactants. This is the case of many 

ionic reactions, leading to a sparingly soluble salt, between a cation and an anion 

z+ z -
x yxA + yB A B (solid)′ ←⎯→  

with the electroneutrality condition xz=yz′  

 

3.4  The control of crystallizers 

 The objective in the operation of a crystallization process is to meet product 

specifications: (a) a narrow crystal size distribution (CSD), (b) maximum crystal 

purity, (c) high yield, and (d) acceptable crystal morphology. Moreover, the 

manufacturer’s requirements for economic and trouble-free operation should be met. 

Depending on the type of the product, one of the above objectives may be critical. For 

example, in the production of fertilizers, less significance is ascribed to product purity 
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is of utmost importance. A narrow CSD is always required; however, the desirable 

mean crystal size varies depending on the type of the product. Maximum yield with a 

given driving force is to be achieved under all circumstances subject to constraints on 

crystal quality. Finally, well-formed crystals with uniform morphology not 

susceptible to breakage are desirable. 

 It has been demonstrated that a generalized theory for the analysis and 

prediction of the CSD is available; however, the birth and death rates in the 

population equation are poorly understood. The principal reason for this is that 

presently we are unable to make a general prediction of agglomeration, attrition, and 

breakage rates. This is also true for the rates of nucleation. As a rule, the true 

supersaturation in the crystallizer is not known and can oscillate even in continuous 

crystallizers. 

 Furthermore, the process interrelations that determine the CSD in 

mixedmagma crystallizers are extremely complicated. In this information flow 

diagram the population balance is the central equation with reference to the CSD. 

Besides agglomeration and attrition, the rates of nucleation and growth are the main 

kinetic parameters that determine the size distribution. These kinetic parameters 

depend strongly on supersaturation and impurities present in the solution. The true 

supersaturation is influenced not only by the balances of mass and energy but also by 

the kinetics of the crystallization process. The picture becomes even more 

complicated if such processes as clear-liquor advance, fines destruction, and classified 

product removal are taken into account.  

 As discussion in earlier sections, crystallization from solution can be brought 

about by various mechanisms, such as cooling, evaporation, salting out, and reaction 

using a batch or continuous mode of operation. The common feature among these is 

the existence of the crystallization driving force (i.e., supersaturation). The method by 

which supersaturation is generated and various factors affecting its “local” and 

“average” values have a strong influence on all properties of a crystalline material. 

Note that the local and average values of supersaturation affect growth, nucleation, 

and aggregation rates, which, in turn, determine population density and the CSD. The 

crystal size distribution, on the other hand, determines specific surface area and 
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magma density, which strongly affect growth rate, rate of secondary nucleation, 

aggregation rate, and solute mass balance in a feedback fashion. Irrespective of the 

mechanism of generation of supersaturation, impurities exert a strong effect on the 

width of the metastable zone. Impurities also influence crystallization kinetics, crystal 

purity, crystal morphology, and aggregation rate. Other disturbances affecting crystal 

properties are the intensity of mixing, heat losses from the crystallizer, variations in 

the crystallizer head pressure and feed temperature and composition. 

 Any attempt to control a crystallization process to meet the above mentioned 

product qualities should be directed toward generating and maintaining a mild and 

homogeneous supersaturation in the crystallizing magma at the local and average 

levels. This favors growth rate and prevents spontaneous nucleation. In industrial 

crystallizers, this objective is achieved by improving the design of crystallizers as 

well as controlling some of the easily measurable process variables, like temperature, 

pressure, level, and flow rates. Such an approach is not sensitive to frequent variations 

in the feed composition feed temperature, impurities, and local degree of mixedness. 

Consequently, in the presence of disturbances, off-specification product is to be 

expected. Improvement in product quality can be assured if advanced control 

algorithms incorporating sophisticated sensors for on-line measurement or inference 

of product properties using state estimators (the extended Kalman filter) are 

employed. The control algorithm should have knowledge of the prevailing local and 

average supersaturation. If supersaturation is generated in regions where a sufficient 

crystal surface area does not exist, the available supersaturation will be relieved in 

primary nucleation and/or leads to encrustation and fouling. Moreover, the likelihood 

of capturing impurities either in the lattice or in the form of mother liquor inclusion is 

increased. 

 Control over crystal morphology is a very complex process. It can be realized 

either by a controlled growth rate through proper adjustment of supersaturation or by 

the addition of certain habit modifiers. The habit modifiers are either surface-active 

agents that adhere to a specific crystal surface retarding its growth rate or are tailor-

made additives that would be incorporated in the crystal lattice at one end and slow 

down further growth a their other end. There is growing interest in the design and 

manufacture of habit modifiers, which are often product dependent. 
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 Accordingly, in this section, the main emphasis is placed on the control of 

the CSD, crystal purity, and crystal yield from a suspension. Moreover, control 

strategies used in melt crystallization will not be considered. Conventional control 

strategies utilized in industrial crystallizers and recent advances in academic research 

to improve the CSD and product purity for batch and continuous operations are 

summarized. It should be borne in mind that product quality in industrial crystallizers 

is affected not only by the crystallizer but also by the upstream and especially 

downstream processes (i.e., dewatering, filtration, and drying steps). Discussion on 

the nature and extent of such effects, however, is beyond the scope of this chapter. 

Conventional sensors used in the existing control strategies are explained briefly. 

 

3.5  Model Predictive Control 

In the previous study, it is demonstrated that the performance of the on-line 

optimal temperature policy has more robustness than the off-line optimal policy as it 

able to cope with the external disturbance. Hence, an on-line optimal policy is the 

superior control strategy in real applications. Furthermore, in the operation of 

crystallization processes, constraints regarding physical limitations on the capacity of 

actuators and/or the state variables, i.e., temperature and concentration for safety 

and/or product quality requirement are inevitably considered. For these reasons, a 

control technique that provides both on-line optimization computation and ability to 

handle constraints should be considered. 

A model-based feedback controller known as a model predictive control 

(MPC) has been found to be a successful control strategy in several industrial 

applications because of its ability to handle nonlinear processes, multivariable 

interactions, constraints, and optimization requirements (Qin and Badqwell, 2000). 

For a continuous crystallization process, normally, a key control objective is to 

stabilize the system at a specified condition. In the presence of constraints on the 

manipulated input variables, the performance of the controlled system is limited to the 

conditions which stabilization can be achieved. For a batch process, in contrast, the 
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expression of performance considerations in the form of appropriate constraints and 

the achievement of the desired size distribution of a product are much more needed.      

In a MPC algorithm, a mathematical model of a process is used to determine 

and optimize its future dynamic behavior. The feedback control action is then 

calculated based on state values at each time step. In a crystallization process, on-line 

measurements are not all available; only concentration and temperature can be 

measured directly. Hence, an on-line estimator should be incorporated in the MPC 

formulation to estimate un-measurable states. In this study, the implementation of 

MPC algorithm is proposed to achieve the desired crystal size distribution (CSD) 

subject to a product quality constraint. In addition, an EKF is incorporated into the 

proposed algorithm to estimate un-measurable states; the quality of crystals in terms 

of the ith moments. Furthermore, as a model-based control algorithm, MPC requires 

an accurate model to predict exact process behavior and design the controller 

maximizing product quality. Generally, an optimization approach has attracted 

attention for kinetic model identification by a number of authors such as Rawlings et 

al. (1993), Livk et al. (1995), Matthews et al. (1996),  Monnier et al. (1996), Chung et 

al. (2000), Tadayon et al. (2002), Hu et al. (2005a). The concept of a nonlinear 

optimization technique, which is used to generate successive guesses of kinetic 

parameters, is that for each guess, the dynamic equations describing the process are 

solved and the resulting measurement predictions are compared to the data according 

to an optimization criterion which is generally a measure of the prediction errors. 

However, due to unknown disturbances and batch to batch variations in each batch 

operation, the kinetic parameters obtained from an experiment as mentioned earlier 

may not suitable to describe real processes. To overcome this problem, an EKF is also 

designed to on-line estimate these uncertain parameters.    

The concept of MPC is to determine a control profile for a whole time horizon 

minimizing an objective function subject to a dynamic process model with path and/or 

end point constraints. At each control interval, an open-loop sequence of the 

manipulated variables is computed in such a way to optimize the future behavior of 

the plant. Only initial value of the control profile is applied and then the optimization 

procedure, based on new information at the next sampling time, is repeated to modify 
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a new input profile with the control and prediction horizons moving forward one 

sampling time step.  

 

3.5.1 The Principle of Model Predictive Control 

 There are two basic components in MPC approach. A dynamical model 

represents process behavior, and an optimization algorithm modifies the optimal 

solution to the manipulated variables with respect to some performance criterion. The 

optimization procedure is specified by the model structure. For linear model, dynamic 

matrix control (DMC) is an early approach in MPC (Morari and Lee, 1999).  

 On the contrary, nonlinear model predictive control (NMPC) is implemented 

using a nonlinear process model. The optimization problem is solved using a 

nonlinear programming approach. The basic principle of model predictive control is 

shown in Figure 3.1. Based on measurements obtained at time t, the controller 

predicts the future dynamic behavior of the system over a prediction horizon, Tp, and 

determines the input (manipulated variable), u, over the control horizon, Tc. Usually, 

the prediction horizon is greater than the control horizon (Tc ≤ Tp). If there were no 

disturbances and no model-plant mismatch, and if the optimization problem could be 

solved for infinite horizons, then one could apply the sequence of the control input 

profile calculated at time t to the system for all times. However, in reality due to 

disturbances and model-plant mismatch, the system behavior is different from the 

predicted behavior. In order to incorporate some feedback mechanism, only the initial 

value of the control profile is applied and then the optimization procedure, which 

obtains new information at the next sampling time, is repeated to modify a new 

control input with the control and prediction horizons moving forward one sampling 

time step. This causes a feedback control law.   
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3.5.2  Problem Formulation  

 A sequence of control moves is computed to minimize an objective function 

(performance index) which includes predicted future values of the controlled 

variables. The optimization is solved subject to constraints on input and output 

variables. This formulation yields an open-loop optimal controller. Feedback is 

included by implementing only the manipulated inputs computed for the present time 

step, and then moving the prediction horizon forward one step and resolving the 

problem using new process measurements. Calculation of the manipulated input 

sequence requires the on-line solution of a nonlinear programming problem. 

Optimization Problem  

 The nonlinear process model is assumed to have the discrete-time 

representation. 

[ ]( 1) ( ), ( )x k F x k u k+ =                 (3.2) 

[ ]( ) ( )y k h x k=                  (3.3) 

where x is a n-dimensional vector of state variables, u is a m-dimensional vector of  

manipulated variables, and y is a p-dimensional vector of controlled variables.  

The optimization problem for the nonlinear model predictive control 

formulation is 

( | ), ( 1| ),..., ( 1| )
min

cu k k u k k u k T k
J

+ + −
                            (3.4)

        

where  is the input ( |u k j k+ ) )(u k j+  calculated from information available at time 

k, and J are nonlinear function chosen to satisfy a wide variety of objectives, 

including minimization of overall process cost.  
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Figure 3.1 Model predictive control approach  

 The predicted outputs are obtained from the nonlinear process model, 

Equation (3.2)-(3.3). Successive iterations of the model equations yield 

[ ]
[ ]1

( 1| ) ( 1| )

( ), ( | )

y k k h x k k

G x k u k k

+ = +

≡
  

[ ]
[ ]

1

2
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( ), ( | ), ( 1| )

y k k G x k k u k k

G x k u k k u k k

+ = + +

≡ +
  

⋅
⋅
⋅
 

[ ]( | ) ( ), ( | ), ( 1| ),..., ( 1| )jy k j k G x k u k k u k k u k j k+ = + + −  

where ( | ) ( )x k k x k=  is a vector of current state variables. If the control horizon is 

less than the prediction horizon, the output predictions are generated by setting inputs 
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beyond the control horizon equal to the last computed 

value, , Tc ≤ j ≤ Tp. ( | ) ( | )cu k j k u k T k+ = +

 Solution of the nonlinear model predictive control (NMPC) problem yields the 

input sequence{ }( | ), ( 1u k k u k | ),..., ( | )ck u k T k+ +

( ) ( |u k u k k

. Only the first input vector in the 

sequence is actually implemented, ).=  Then the prediction horizon is 

moved forward one time step, and the problem is resolved using new process 

measurements. This receding horizon formulation yields improved closed-loop 

performance in the presence of unmeasured disturbances and modeling errors. 

 

Process Constraints   

An important characteristic of process control problems is the presence of 

constraints on input and output variables. Such constraints take the form. 

min maxu u u≤ ≤

min maxu u uΔ ≤ Δ ≤ Δ

min max

  

 

y y y≤ ≤  

where umin and umax are the minimum and maximum values of the inputs, respectively, 

Δumin and Δumax are the minimum and maximum values of the rate change of the 

inputs, respectively, and ymin and ymax are the minimum and maximum values of the 

outputs, respectively. The state constraints may be specified if appropriate.   

 A major advantage of NMPC when compared to other nonlinear control 

strategies is that it provides the constraint handling capability. This is achieved by 

solving the nonlinear optimization problem, Equation (3.4), subject to the following 

inequality constraints. 

min max( | ) , 0 cu u k j k u j T≤ + ≤ ≤ ≤ −  1             (3.5) 
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min max( | ) , 0 cu u k j k u j TΔ ≤ Δ + ≤ Δ ≤ ≤ −1           )           (3.6

min max( | ) , 1 py y k j k y j T≤ + ≤ ≤ ≤            (3.7) 

It is important to note that input constraints are hard constraints in the sense 

that they must be satisfied. Conversely, output constraints can be viewed as soft 

constraints because their violation may be necessary to obtain a feasible optimization 

problem

 In the formulation of the MPC controller, the knowledge of current states is 

of an on-line optimal control problem. 

However, in practice, not all states can be measured directly. Hence, the estimation of 

n-mea

.  

3.6  Extended Kalman Filter (EKF)  

required in order to compute the solution 

u surable state is needed and incorporated into the MPC algorithm. Extended 

Kalman Filter (EKF), one of state estimation techniques, is a technique where the 

states of a dynamic system are estimated by balancing the contribution made by a 

deterministic dynamic process model with that given by a measurement model. The 

advantage of the EKF is that it requires information only from the previous sampling 

time and allows previous knowledge of a system via process model to be used for the 

estimation. Several successful applications of an EKF for estimation of uncertain/un-

measurable state and/or parameter have been reported in Kittisupakorn and Hussain 

(2000), Zhang and Rohani (2003), and Arpornwichanop et al. (2005). In this work, the 

EKF is designed to determine the non-measurable ith moments and uncertain kinetic 

parameters form the measurable concentration and temperature states.  The EKF 

algorithm can be stated as follows: 
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 The nonlinear crystallization model can be expressed by differential 

equations 

State equation 

( ( ), ( )) ( )x x t u t w t= Ψ +                 (3.8) 

Output equation  

( ( )) ( )y x t v t= Φ +                  (3.9) 

where Ψ and Φ are a vector of system and measurement function , respectively, w 

describes process noise with covariance Q , and v represents measurement noise , with 

covariance R.  

 The EKF algorithm requires only the estimated state from the previous time 

step and the current measurement to compute the estimate for the current state. It 

consists of two phases; prediction and correction as shown in Figure 5.2.  

In the prediction phase, the estimates of the current states ( x̂ ) and the error 

covariance matrix (P) are calculated based on the previous time step estimates.  

/ 1 1/ 1 1ˆ ˆ( ,k k k k kx F x u− − −= )−

)

              (3.10) 

/ 1 1 1/ 1 1/ 1 1 1
T

k k k k k k k k kP A P P A Q− − − − − − − −= + +             (3.11) 

In the correction phase, the Kalman gain (K) is computed, and measurement 

information from the current time step is used to refine the prediction to achieve more 

accurate estimates. Additionally, the estimate covariance is updated.     

 1
/ 1 / 1(T T

k k k k k k k k kK P C C P C R −
− −= +                                  (3.12) 
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1

/ 1

                     (3.13) / / 1 /ˆ ˆ ˆ( )k k k k k k k k kx x K y C x− −= + −

           (3.14) / ( )k k k k k kP I K C P −= −

where A and C are the Jacobians matrices of function Ψ and Φ with respect to the 

state vector, respectively.   
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Figure 3.2 The computational structure of the EKF 

 

 



CHAPTER IV 

SEMI-BATCH REACTIVE CRYSTALLIZATION 

 

During a semi-batch reactive crystallization, two liquid reactants are brought 

into close contact in a single jet or double jet operation, and the crystalline product or 

precipitate is formed by a chemical reaction in concentrations exceeding the solubility 

of the solute (supersturation). If the chemical reaction is fast, and the solubility of the 

product crystal is low compared to the reactant concentrations, the supersaturation at 

the feed point becomes high, which results in rapid nucleation and fast crystal growth. 

Thus, the mixing mechanism and the feed flow rates of the reactants exert significant 

influence on the characteristics of the product crystals, and an optimized 

crystallization process is required to produce a desired CSD. 

 

4.1  Mathematical model of semi-batch reactive crystallization 

The mathematical modeling of semi-batch reactive crystallization is more 

complex than that of non-reactive crystallization. This complexity is due to the 

chemical reaction kinetics and the nature of the crystallization. The supersaturation 

that is the main driving force for crystallization is generated by the chemical reaction. 

However, the definition of the supersaturation is dependent on the system. According 

to Klein and David (1995), there are generally two categories of reactive 

crystallization, Categories I and II.  

Category I refers to chemical reaction that leads to a more or less soluble 

molecule P, which then crystallizes. The supersaturation is simply expressed as 

. Category II refers to chemical reaction that does not lead to an 

intermediate soluble species. The solid crystallizes directly from the reaction. This is 

normally the case for ionic reactions. In this case, the thermodynamic supersaturation 

sC C CΔ = −
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is commonly used to describe the driving force for the crystallization processes.The 

mathematical model developed will include systems of both categories. 

 

 

 

Figure 4.1 The schematic diagram of Semi-batch crystallizer 

 

4.1.1  Population Balance 

 Crystallization is a particulate process and any description of a crystallizing 

system is incomplete without a population balance, which characterizes the particulate 

material by the distribution of size of its particles. The particle size distribution (PSD) 

can be the major determining factor in the ultimate use of a particulate material; 

hence, it is one of the most important design objectives in a crystallization process. 

Randolf and Larsan (1962) first for malized rational techniques for the prediction of 

PSD, based on the population balance in crystallizers. The PSD data are commonly 

presented in several different ways, such as the cumulative totals (or cumulative 

fractions), or the density, of a measured quantity such as the crystal number, area, or 

mass, plotted against the particle size. 
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 The exact shape of the distribution depends on the crystallizer system, and 

is obtained by solving the population balance equation. The complete population 

balance for a size range , for a crystallizer under transient conditions can be given 

as 

L∂

( ) ( ) ( ) 0i i

k

V nn Gn D L B L
t L V

∂ ∂
+ + − + =

∂ ∂ ∑               (4.1) 

The term gives the change in number density with respect to time in the 

batch crystallizer and disappears in the case of a continuously operated, steady-state 

apparatus. The expression describes the difference between crystals growth 

rate . The term 

/n t∂ ∂

( ) /Gn L∂

( /n V t

∂

)/G dL dt= ∂ ∂ describes the difference between crystal volume 

with respect to time. The parameters and( )D L ( )B L represent the death rate and birth 

rate, respectively, which arise due to the agglomeration of crystals. Finally, the term 

gives the sum of all particle flows entering and leaving the crystallizer. ( / )i iV n V
k∑

Assuming that agglomeration and breakage are negligible the population 

balance equation for such a semi-batch reactive crystallizer is 

  ( ) ( ) 0nV nVG
t L

∂ ∂
+ =

∂ ∂
                       (4.2) 

where G is the overall linear growth rate, taken to be size independent. The crystal 

size distribution (CSD) is described by the popular moment equations (Randolph and 

Larson, 1988). The moment is based on unit solvent. The rate of change of the zeroth 

moment can hence be expressed as follows: 

0( )
p

d V B V
dt
μ

=                 (4.3) 
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The remaining moments of the crystals adopt the following form of 

differential equation. For crystal growth that is independent of the crystal size: 

1

( )
1, 2,3...j

j

d V
j GV j

dt
μ

μ −= =               (4.4) 

 The moment model has some significant limitations. First, the CSD cannot be 

easily reconstructed by solving a finite set of moment equations because the inverse 

problem is ill-conditioned. A second disadvantage is the inability to close the model 

equations when general size-dependent functions are included in the integral terms. At 

the same time, for many systems the advantages of the moment formulation outweigh 

its disadvantages. First, the conventional reduction of the PBE to a closed set of four 

coupled ODE’s allows the model to be solved quickly, efficiently, and to a specified 

accuracy by general ODE solution codes. Second, if the CSD cannot be measured 

quantitatively, its calculation is not strictly necessary. Third, as the moments have 

physical meanings, that is, 

 

µ0  :  crystal number 

µ1  :  crystal length 

µ2  :  crystal surface area 

µ3  :  crystal volume 

 

, measurable quantities may often be represented in terms of the moments. Lastly, 

considering size-dependent phenomena, moment-compatible models are available to 

allow preliminary investigations of growth rate dispersion, size-dependent growth, 

crystal breakage, and agglomeration.  
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4.1.2 Mass Balance 

 A perfectly mixed, isothermal semi-batch crystallizer are considered, where 

two feed streams, A and B, react together homogeneously to produce C, which then 

precipitates as solid crystal as the liquid phase becomes supersaturated with respect to 

component C. The chemical reaction is assumed to follow first-order kinetics with 

respect to each of the reacting components. The chemical reaction is normally 

described by the following reaction kinetics.  

A B C D+ → ↓ +                 (4.5) 

C r Ar k C C= B                  (4.6) 

The rate constant, can be dependent on temperature and can be expressed 

in the form of the Arrhenius equation: 

rk

0 exp( / )r ak k E RT= −                (4.7) 

For semi-batch operation, the capacity of the crystallizer varies with time. 

A B
dV F F
dt

= +                          (4.8) 

The mass balance of the reacting species therefore takes the following form of 

ordinary differential equations: 

,
( )A

A f A A
d C V C F r V

dt
= −               (4.9) 
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,
( )B

B f B B
d C V C F r V

dt
= −              

(4.10) 

3( ) (C v c
C

C

d C V k d Vr V
dt M dt

)ρ μ
= −                (4.11) 

( )D
D

d C V r V
dt

=               (4.12) 

where  is the concentration of various reactive components, is the 

concentration of the component i in the feed stream,  is the feed rate, V  is the 

capacity of the crystallizer, 

iC ,i fC

iF

cρ  is the density of crystals,  is the volume shape factor 

of the crystals, and 

vk

3μ  is the third moment of the CSD.  

 

4.1.3 Crystal Nucleation 

 The birth of a crystal nucleation, can be caused by various mechanisms. 

Primary nucleation occurs in the absence of existing crystals and may occur 

spontaneously in a pure solution (homogeneous nucleation) or be included by foreign 

particles such as dust or impurities (heterogeneous nucleation).  Secondary nucleation 

occurs due to the presence of existing crystals. Figure 4.2 gives an overview of the 

different types of nucleation mechanisms. 

 In primary nucleation, solid collisions of single molecules occur 

stochastically, thus leading to a formation of crystals. The higher the supersaturation, 

the higher the probability of such collisions and crystal formation. Further collisions 

of such a crystal with crystals lead to the growth of the crystals. If the crystal reaches 

a critical size, it becomes thermodynamically stable. Classical thermodynamic theory 

and empirical observation both suggest that primary nucleation mechanisms are only 

initiated by very levels of supersaturation, well outside the typical operating regimes 

of solution crystallizers. Moreover, poor crystal quality and control difficulties, the 

primary nucleation have been unsuccessful to predict and scale-up. Secondary 
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nucleation, which is more easily controlled than primary nucleation and  occurs at 

relatively low levels of supersaturation conductive to good crystal quality, is the 

dominant form of crystal birth in industrial and lab-scale crystallizations. 

 

 

 

Figure 4.2 Nucleation mechanisms 

 

In reactive crystallization processes, normally the predominant mode of 

nucleation is through a primary mechanism. There are various expressions for primary 

nucleation. The most common descriptions of primary nucleation are expressed by the 

following equations: 

p
p pB k C= Δ                (4.13) 

  0 2exp[ / ln ]p p aB B A= − S              (4.14) 

Eq. (4.13) is an empirical equation that is commonly used in non-reactive 

crystallization. However, Eq. (4.13) has been used to describe primary nucleation of 
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reactive crystallization in numerous literature studies (Tavare and Garside, 1990; 

Baldyga et al., 1995; Uehara-Nagamine and Armenante, 2001). Eq. (4.14) is based on 

the theoretical derivation of the primary nucleation expression. This theoretical 

expression of the primary nucleation has found relatively widespread use in reactive 

crystallization.  is the thermodynamic supersaturation ratio, which is commonly 

used, in ionic reactive crystallization. The thermodynamic supersaturation is defined 

as follows (Zauner and Jones, 2000; Wei et al., 2001; Mullin, 2001): 

aS

1/[( ) / ]a sS c c K p
ν ν+ −
+ −= ν               (4.15) 

Both +c  and  refer to the concentrations of the cation and anion that are 

formed from the product crystal when it dissociates in the solution. The variable 

−c

ν  

refers to the number of mole of ions in 1 mol of solute. Variables ν +  and ν −  are the 

number of moles of cations and anions in 1 mol of solute. Eq. (4.13) is more 

commonly used for Category I, as the behavior of the solute in this category is similar 

to that in non-reactive crystallization. As for ionic reactive crystallization in Category 

II, Eq. (4.14) has been extensively used in both simulation and data fitting in 

experiments. 

 

4.1.4 Crystal Growth 

 A crystal face is a planar surface that grows as existing steps or kinks on the 

surface area augmented by the incorporation of new solute molecules. Layers spread 

progressively across the face as new molecules attach themselves to the accessible 

and energetically favorable leading edges. At the microscopic level, solute molecules 

moving from the bulk solution adsorb on the crystal solid surface and are incorporated 

into the crystal lattice. A crystal face is a planar surface that grows as existing steps or 

kinks on the surface are augmented by the incorporation of new solute molecules. 

Surface adsorption and diffusion determine whether a solute molecule is incorporated 
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into the crystal or returns to the bulk phase. The observed growth rate is then 

caused by the flow of steps across the surface. 

The overall linear crystal growth rate can be described by several forms of 

expression. Two of the most common forms are the semi-empirical power law 

equations: 

g
gG k C= Δ        (4.16) 

(1 )g
g aG k S= −       (4.17) 

The occurrence of secondary nucleation in reactive crystallization is generally 

considered insignificant (Mullin, 2001). In addition, the supersaturation level in 

reactive crystallization is usually high and this causes the predominance of the 

primary nucleation. The reactive crystallization system is treated as an isothermal 

system in this work. The heat effect of the crystallization is normally negligible. 

In order to evaluate the performance of a perfectly mixed reactive 

crystallization system, the performance of the reactive crystallization is normally 

assessed in terms of its product quality: average crystal size and coefficient of 

variation. Similar to non-reactive crystallization, the desirable crystal characteristics 

are large crystals with narrow crystal size distribution. Genck (2000) stated that when 

it comes to crystal size, the larger the better. The average crystal size can be 

quantified based on number, surface area, volume and weight. A similar basis of 

definition is applied to the coefficient of variation. Generally, the definitions of the 

average crystal size and coefficient of variations are expressed as follows: 

1j
j

j

L
μ
μ

+=                (4.18) 

2
2

1

1 100, 0,1, 2, 3.j j
j

j

CV j
μ μ
μ

+

+

= − × =           (4.19) 
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4.1.5 Nominal Operating Conditions 

During the semi-batch operation, the reactants A and B are charged into the 

crystallizer in a period of 10,000 s. The parameters for physical properties, reaction 

and crystallization kinetics of the system are given in Table 4.1. Following Choong 

and Smith (2004), we consider in the case of double feeds with the same addition 

rates. The concentration profile in the conventional constant feed rate case is shown in 

Fig 4.3. 
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Figure 4.3 The concentration profile under constant feed rate control 
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Table 4.1. Parameters for physical properties, reaction and crystallization  

                  kinetics of  the system. 

Variables Values 

, kg/kmolsrk  100  

, kmol/kgSC  41 10−×  

, no./[kgs(mol/kg) ]b
bk  103.1 10×  

b  4.5  

, m/[s (mol/kg) ]g
gk  87.5 10−×  

g  1.5  

vk  0.52  
3, kg/mcρ  2000  

CM  100  

0 0 , kmol/kgA BC C=  31 10−×  

Amount of reactant  , kgA 100  

Amount of reactant  , kgB 100  
 

 

4.2  Dynamic Optimization Study  

The purpose of a dynamic optimization is to determine control trajectories that 

optimize a performance index for a dynamic system. In semi-batch reactive 

crystallization processes, a large average crystal size favors product quality. On the 

other hand, the large coefficient of variation obtained should be kept in possible lower 

limit as they may cause difficulties in downstream operations e.g. filtration and 

drying. From this reason, the aim of a dynamic optimization is to maximize the 

average crystal size ( ) whereas keeping the coefficient of variations ( ) small.  wL wCV
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 In this work, a MATLAB program is written to solve the optimization 

problem by using a successive quadratic programming (SQP) algorithm in Matlab 

Optimization Toolbox. The written program is tested to determine an optimal 

concentration of the isothermal semi-batch crystallizer studied by Tavare and Garside 

(1990). The optimization results show that this program is effective and applicable to 

determine an optimal concentration of this work. 

 

4.2.1 Dynamic Optimization Formulation 

The semi-batch reactive cyrstallization studied by Tavare and Garside (1990) 

is considered. The reaction can be written as: 

A B C D+ → ↓ +  

where C is the crystalline product  

 The objective function is to maximize the final average crystal size of a semi-

batch reactive crystallization process at the specified final time. The objective 

function can be written as: 

4

( ), ( )
3

Maximize
A B

WQ t Q t
L μ

μ
=               (4.20)         

 Subject to 

3 5
2

4

1 100 18.1%WCV μ μ
μ

= − × ≤  

   ( ) 100=A fQ t kg

   ( ) 100=B fQ t kg

10,000 sft =  
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where 3,μ 4 ,μ  and 5μ  are obtained by solving the moments models of  Eqs.(4.3)-

(4.4). The inequality constraints allow the consideration of maximum 

allowable (18.1 %). These values correspond to the properties of the product CSD 

obtained in an operation with constant rate of feeding. Thus, these constraints ensure 

that the results of the present study are better than those obtained in operations with 

constant feed rate. The equality constraints ensure that the total reactants added is 

exactly equal to the total amount of fresh feed that is available. In the simulation 

wCV

ft  is 

s.  410

The aim of the optimization problem is to compute the optimal concentration 

profile represented by a set of discrete values; the batch operation time is divided into 

a finite number of equally spaced intervals and a constant concentration value is 

assumed in each interval.  A sequential optimization approach is used to solve the 

dynamic optimization problem.  With the initial conditions and a given set of control 

parameters (the concentration in each interval), the model equations are solved with a 

differential algebraic equation solver at each iteration and the value of objective 

function and constraints is computed. The nonlinear programming problem (NLP) is 

solved by a sequential quadratic programming (SQP) method using the fmincon 

routine in Matlab optimization toolbox in order to compute new set of control 

parameters. The sequence continues until the optimal value of the objective function 

is found satisfying a specified accuracy.  

 

4.2.2 Dynamic Optimization Results 

Since the dynamic optimization computes the optimal control trajectory by 

optimizing the objective function, defining such a function for best process 

optimization is important.  

The optimal concentration profile have been solved using time interval with 

equal length varied from 1 to 25 intervals to discretize the profile. The switching time 

is fixed and the length of each interval is specified by dividing the batch operation 
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time ( ft ) by a number of time intervals. Thus, the problem is to seek an optimal 

temperature value (decision variables) in each subinterval. 

Simulation results with different time interval are reported in Table 4.2. 

Optimal concentration profile for each case is shown in Fig. 4.4. As shown in Table 

4.2, when one time interval  is used, the average crystal size ( ) at the final time 

(

wL

ft = 10,000 s) is  1 4.7071 mμ  and the optimal concentration set point is  9.7737 

whereas using ten time interval, the average crystal size is   28 m.9604 μ . It was found 

from these results that the amount of the average crystal size increases as a number of 

interval increases. This is due to that as the number of intervals enlarges, the 

approximated optimal profile with piecewise constant policy is closer to the actual 

optimal profile. 

 

 

Table 4.2  Summary of the results: off-line optimization and perfect tracking 

Time interval ( )wL mμ  (%)wCV  Computation 
Time (s) 

1 
2 
5 
10 
16 
20 
25 

14.7071 
23.1673 
27.6853 
28.9604 
29.5787 
29.7540 
29.8929 

18.1 
18.1 
18.1 
18.1 
18.1 
18.1 
18.1 

30 
32 
66 
99 

189 
169 
271 
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Figure 4.4 Optimal concentration profile: 1 interval (1), 2 intervals (2), 5 

intervals (3), 10 intervals (4), 16 interval (5), 20 interval (6) 

 

4.3 Control Study 

 The purpose of this study is to design the model predictive control for a semi-

batch crystallization process to track the crystallizer concentration set point. A feed 

flow rate is used to control the crystallizer concentration at its desired trajectory. Due 

to the total feed amount of reactant A and B is limited to 100 kg. 

 

4.3.1 Model Predictive Control (MPC) Configuration 

A model-based feedback controller known as a model predictive control 

(MPC) has been found to be a successful control strategy in several industrial 

applications because of its ability to handle nonlinear processes, multivariable 

interactions, constraints, and optimization requirements (Qin and Badqwell, 2000). 

For a continuous crystallization process, normally, a key control objective is to 

stabilize the system at a specified condition. In the presence of constraints on the 
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manipulated input variables, the performance of the controlled system is limited to 

the conditions which stabilization can be achieved. For a batch process, in contrast, 

the expression of performance considerations in the form of appropriate constraints 

and achieving the desired size distribution of a product are much more needed.      

 In a semi-batch crystallization process, the size distribution of crystals can 

affect subsequent operations such as filtration, drying, transport, and storage. Since 

fine crystals cause difficulties in downstream processes and affect product quality, the 

control objective of the process is to determine an concentration profile maximizing 

the average crystals size, , whereas the coefficient of variation, , has to 

satisfy the product quality requirement. Hence, the optimal control problem can be 

formulated as: 

( )w fL t ( )w fCV t

4

( ), ( )
3

Maximize
A B

WQ t Q t
L μ

μ
=               (4.21)         

 Subject to 

3 5
2

4

1 100 18.1%WCV μ μ
μ

= − × ≤  

   ( ) 100=A fQ t kg

   ( ) 100=B fQ t kg

10,000 sft =  

In the MPC algorithm, the crystallizer models consist of the moments model 

Equations (4.3)-(4.4), coupled with the mass balances, Equations (4.9)-(4.12). 

Assuming the reactor Concentration trajectory can be tracked perfectly as in previous 

studies. Considering the time elapsed in the determination of the optimal control 

problem, with 25 time interval,  
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4.3.2 MPC with extended Kalman Filter 

Since the quality of product crystals in terms of the ith moments cannot be on-

line measured for the MPC computation, the EKF is developed to estimate the values 

of the moments of the CSD based on the measurable concentration and temperatures. 

Moreover, process parameters such as nucleation and growth rate exponent (b and ) 

typically determined by experiments may not sufficiently accurate in the control point 

of view.  Therefore, the estimation of these process parameters is required. Here, state 

equations appended for states and parameters estimation are:  

g

State estimation:  

  0ˆ( ) ˆ( ) ( )d V B t V t
dt
μ

=                             (4.22) 

i
i 1

ˆ( ) ˆ ˆ( ) ( ) ( ) 1,2,3,...μ μ −= =
d V iG t t V t i

dt
           (4.23) 

Parameter estimation: 

ˆ
0db

dt
=                                   (4.24) 

ˆ
0dg

dt
=                                   (4.25) 

where B̂  and  are the estimates of nucleation and growth rates computed using the 

estimated values of 

Ĝ

ˆiVμ , and . The tuning parameters of the EKF are given in 

Table 4.3. 

b̂ ĝ
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Table 4.3 The tuning parameters in the EKF algorithm 

Estimate i Vμ using  and V  CC

P = diag[100  100 100 100 100 100 100 100] 

Q = diag[1000  1000 1000 1000 1000 1000 1000 1000] 

R = diag[10 10] 

Estimate b and using  and V  g CC

P = diag[100  100 100 100] 

Q = diag[1000  1000 1000 1000 ] 

R = diag[10 10] 

 

The control strategy proposed in this study is shown in Figure 4.5. The EKF is 

introduced to on-line estimate un-measurable iVμ . With these estimates, the MPC 

determines the manipulated input variable ( ). The performance of the MPC 

controller in the control of the semi-batch crystallizer is evaluated under nominal and 

plant/model mismatch cases. In the nominal case, it is assumed that all parameters in 

the crystallization process are known exactly as given in Table 4.1 whereas in the 

plant/model mismatch case, a mismatch in kinetic parameters (kb and kg) is introduced 

in the formulation of the MPC controller.  

F
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Figure 4.5 The robust MPC control strategy for on-line state measurement and  

                   parameters estimation 

 

4.3.3 Control Results 

 
Nominal Case 

 The control response of a MPC controller in the nominal case is illustrated in 

Figure 4.6. These results are compared with an open-loop control using conventional 

constant feed rate policy. The final product quality in terms of the average crystal size 

is presented in Table 4.4. It is observed that the MPC controller gives better product 

quality compared with the constant feed rate policy. Simulation results have 

demonstrated that the average crystal size,  is increase by 30% compared with the 

constant feed rate strategy. 

wL

In addition, Figure 4.7 shows a comparison of the iVμ between the actual 

values from the process and the estimated values from the EKF. The results 

demonstrate that the EKF gives good estimations; small differences are observed. 

Additionally, this can also be implied that the moment model is reasonably employed 

to describe the dynamic of the first four moments of the population density function 

of the actual process.  
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Figure 4.6 The concentration profiles under MPC control with EKF for state 

estimation 

 

 

Table 4.4 Comparison of the crystal quality in different control strategies 

Control strategy ( ),w fL t mμ  ( ), %fCV t  

Constant feed rate 15.8233 18.1 

MPC with EKF for states 

estimation 20.4103 15.6 
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Figure 4.7 Comparison between the actual and estimated values of the iVμ  
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Model-Plant Mismatch Case 

 

 It has been known that the uncertainty in kinetic parameters is normally 

occurred when implementing a model-based control technique to real processes. 

Table 4.5 shows the variation of parameter that effect to the objective function. The 

result show that the nucleation and growth rate exponent can most effect to the 

objective function.  Here, the proposed control strategy is tested in the presence of 

model mismatch in kinetic parameters (b  and ) in the moment model. Here it is 

assumed that the nucleation and growth rate exponent are decrease 20% and increases 

20% from its actual value respectively. The result shows that the final crystal product 

obtained is less than the specification ( ); the average crystal size ( ) is 

11.2315. The EKF is used to estimate the state and parameters mismatch for robust 

control Figure 4.8 shows the performance of the EKF to estimate uncertain 

parameters. It can be seen that the EKF can estimate the uncertain parameters close to 

the actual values and thus the model mismatch is eliminated during batch operation. 

The MPC control action is quite similar to the nominal case. As a result of this, the 

requirement of crystal quality is satisfied as shown in Table 4.6.  

g

18.1%wCV ≥ wL

 

 

Table 4.5 The kinetic parameter  testing 

Parameters or variables % changed wL  % Changed 
Nominal case 0 15.8233  
b  +30 21.3379 34.85 
 -30 11.2623 28.82 
g  +30 12.1114 23.46 
 -30 20.8762 31.93 

bk  +30 15.0925 4.62 
 -30 16.8751 6.65 

gk  +30 17.8523 12.82 
 -30 13.4389 15.07 

rk  +30 15.8583 0.22 
 -30 15.7725 0.32 

vk  +30 15.0925 4.62 
 -30 16.8751 6.65 
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Table 4.6 The crystal qualities under MPC control in the kinetic mismatch case 

Control strategy ( ),w fL t mμ  ( ), %w fCV t  

MPC with EKF for states 

estimation 

      Case I : b mismatch -20% 

      Case II: g mismatch +20% 

 

 

16.2240 

16.5234 

 

 

19.0% 

22.1% 

MPC with EKF for states and 

parameters estimation 

Case I : b mismatch -20% 

      Case II: g mismatch +20% 

 

 

18.63 

18.91 

 

 

16.1% 

17.5% 
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Figure 4.8  The estimate values of and in the mismatch case b̂ ĝ
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4.3.4 Conclusion 

 A model predictive control (MPC) incorporated with an extended Kalman 

Filter (EKF) is designed and implemented to control the concentration of a semi-batch 

reactive crystallizer.  The aim is to maximize the average crystals size that affect both 

product quality and downstream processing equipment; however, the coefficient of 

variation should satisfy the product quality requirement. Simulation results have 

demonstrated that the average crystal size,  is increase by 30% compared with the 

constant feed rate strategy. Since the MPC is a model-based controller, accurate 

model parameters are necessary in order to obtain the optimal operating condition. 

Furthermore, the EKF performance depends on the model accuracy. The results show 

that when incorrect values of nucleation and growth rate exponent are used in the 

MPC model, the final crystal product does not satisfy the quality specification, and 

the EKF gives poor performance. For this reason, the EKF is proposed in this work to 

estimate the uncertain parameters. When the MPC control action and state estimation 

are computed using the estimated kinetic parameters, the 

wL

iVμ  approach the actual 

values and the requirement of crystal quality is satisfied. These results demonstrate 

that the robustness of the semi-batch reactive crystallizer control is improved using 

the MPC control integrated with the EKF for estimating unmeasurable states and 

uncertain parameters. 

  

 



CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

Reactive crystallization or precipitation is a key production step for a wide 

range of industrial process. Many substances such as fine and bulk chemicals, 

pharmaceuticals, biochemicals, catalysts, pigments, photographic materials or 

ceramics are produced by reactive crystallization. As the widespread utilization of 

crystallization processes, the optimal operation and efficient control strategy are 

necessary in order to enhance their performance in terms of product quality and 

energy usage. 

In this research, the semi-batch reactive crystallization process has been 

studied. The goal is to develop and implement a dynamic optimization approach for 

specifying an optimal operating condition of a semi-batch reactive crystallization 

process to obtain a desired quality of crystal product. Apart from specifying the 

optimal set point profile, a control system implemented to track such a profile is an 

important issue to be considered. Generally, such a system is characterized as a 

nonlinear and complex system in nature. Therefore, a nonlinear control strategy based 

on a the model predictive control (MPC) incorporated with extended Kalman Filter 

(EKF) for unmearurable state estimation is implemented to control the crystallizer 

concentration satisfying the quality requirement. Simulation results have 

demonstrated that the average crystal size is increased by 30% compared with the 

constant feed rate control strategy. Since the MPC is a model-based controller, 

accurate model parameters are necessary in order to obtain the optimal operating 

condition. Furthermore, the EKF performance depends on the model accuracy. 

However, due to unknown disturbances, the kinetic parameters obtained by an 

experiment may not suitable to describe the real process. The results show that when 

incorrect values of nucleation and growth rate exponent are used in the MPC model, 

the final crystal product does not satisfy the quality specification, and the EKF gives 
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poor performance. For this reason, the EKF is also proposed in this work to estimate 

the uncertain parameters. When the MPC control action and state estimation are 

computed using the estimated kinetic parameters, the iVμ  moments approach the 

actual values and the requirement of crystal quality is satisfied. These results 

demonstrate that the robustness of the semi-batch reactive crystallizer control is 

improved by using the MPC control integrated with the EKF for estimating 

unmeasurable states and uncertain parameters.      

 

5.2 Recommendations 

In general, the first step in developing a system is a process simulation design 

based on a mathematical model. In addition, before a complex control system is 

implemented on a process, it is normally tested by simulation. However, 

experimentally optimized system is an interesting idea that is recommended for future 

study. Moreover, the proposed control methodology impacts the way in which 

crystallization processes are designed and will enable more effective control of crystal 

quality that can provide benefit when apply to the real processes. 
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APPENDIX A 

SUCCESSIVE QUADRATIC PROGRAMMING (SQP) 

 

Successive quadratic programming (SQP) method solved a sequence of 

quadratic programming approximation to nonlinear programming problem. Quadratic 

Programs (QPs) have a quadratic objective function and linear constraints, and there 

exist efficient procedures for solving them 

 

Problem formulation with equality constraints 

 

 To derive SQP, we again consider a general NLP 

  
: ( )
: ( )

Minimize f x
Subject to g x b=

               (A.1) 

 

The Langrangian function for this problem is  

                (A.2) ( , ) ( ) ( ( ) )TL x f x g x bλ λ= + −

and the KTC are 

  
1

( ) ( ) 0
m

x i
i

L f x g xλ
=

i∇ =∇ + ∇ =∑              (A.3) 

and 

                  (A.4) ( )g x b=
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The equation (A.1)-(A.2) is a set of ( n m+ ) nonlinear equations in the n  unknowns 

x  and  unknown multipliersm λ . Linearization of (A.2) – (A.3) with respect to x  

and λ  

 

               (A.5) 2 0T
x xL L x g λ∇ −∇ Δ +∇ Δ =

                  (A.6) 0g g x+∇ Δ =

 

 For problem with only equality constraints, we could simply solve the linear 

equations (A.2)-(A.3). To accommodate both equalities and inequality, an alternative 

viewpoint is useful. Consider the quadratic programming problem 

21minimize:
2

Subject to: g 0

T T
xL x x L x

g x

∇ Δ + Δ ∇ Δ

+∇ Δ =
             (A.7) 

 If we call the Lagrange multipliers for (A.7) λΔ , the Lagrangian for the QP is  

2
1

1( , ) (
2

T T T
xL x L x x L x g g xλΔ Δ = ∇ Δ + Δ ∇ Δ + Δ +∇ Δ )λ             (A.8) 

 

Inclusion of the both equality and inequality constraints 

 When the original problem has a mixture of equalities and inequalities, it can 

be transformed into a problem with equalities and simple bounds by adding slacks, so 

the problem has and objective function f , equalities (A.1), and bounds 

I x u≤ ≤                 (A.9) 

 This system is the KTC for the QP in (A.7) with the additional bound 

constraints 

 



 72

I x x≤ + Δ ≤ u                      (A.10) 

 Here the QP sub problem now has both equality constraints and must be 

solved by some iterative QP algorithm. 

 

The approximate Hessiain 

 Solving a QP with a positive-definite Hessian is fairly easy. Several good 

algorithm all converge in finite number of iteration. However, the Hessian of the QP 

presented in (A.7) and (A.10) is 2 ( , )xL x λ∇ is an optimal point. In addition, to 

compute ( , )x λ is an optimal point. In addition, to compute 2
xL∇ by positive-definite 

quasi-Newton approximate B, whith is updated using only values of and L xL∇ . 

Most SQP algorithms use Powell’s modification of BFGS update. Hence the QP 

subproblem becomes ( , )QP x B  

  
1minmize :
2

Subject to: ,

T TL x x B x

g x g I x x u

∇ Δ + Δ Δ

∇ ∇ = − ≤ + Δ ≤
          (A.11) 

 

The SQP line search 

 To arrive at a reliable algorithm, one more difficulty must be over come. 

Newton and quasi-Newton method may not converge if a step of 1.0 is used at each 

step. Both trust region and time search versions of SQP have been developed that 

converge reliablitity. A widely used line search strategy is to use the exact penalty 

function ( . In a line search SQP algorithm, is used only to determine 

the step size along the direction determined by the QP subproblem 

1L

( , )P x w ( , )P x w

( ,x )BQP .  The  

exact penalty function for the NLP problem is  

1L

  
1

( , ) ( ) ( )
m

i i i
i

P x w f x w g x b
=

= + −∑             (A.12) 
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where a separate penalty weight is used for each constraint. The SQP line search 

chooses a positive step size 

iw

α  to find an approximate minimum of  

  ( ) ( , )r P x x wα α= + Δ            (A.13) 

 

 A typical line search algorithm, which uses the derivative of ( )r α evaluated at 

0α =  denote by is     '(0),r

 

1. 1α ←  

2. if  ( ) (0) 0.1 '(0)r r rα α< −              (A.14) 

        stop and return the current α value 

3. Let 1α be the unique minimum of the convex quadratic function that passes 

through (0)r , '(0)r  and ( )r α . Take the new estimate of α  as 

       1max(0.1 , )α α α←               (A.15) 

4. Go to step 2. 

 

 

SQP algorithm 

 Base on this line search and the QP subproblem ( , )QP x B  

1. Initialize: 0  0 0, ,B I x x k← ← ←

2. Solved the QP subproblem ( , ),QP x B  yieldiging a solution kxΔ  and 

Langrange multiplier estimates kλ  

3. Update the penalty weights in penalty function 

4. Apply the line search algorithm, yielding a positive step size kα  

5. 1 1,k k k k kx x x kα λ λ+ += + Δ =  



 74

6. Evaluated all problem function and their gradients at new point. Update 

matrix kB  

7. Replace  k by k+1 , and go to step 2 

 

 

( , )QP x BxΔ kλ

kα

1 1,k k k k k kx x xα λ λ+ += + Δ =

0 00, ,k B x=Initialize: 

Calculated       and       from Subproblem

Update penalty weights

Calculate step length, 

Let, 

Update, kB 1k k= +
 

 

Figure A.1 Flowchart of SQP algorithm 

 



APPENDIX B 

DYNAMIC OPTIMIZATION ARRROACH 

 

B.1 Dynamic Optimization 
 

 Dynamic optimization, also known as an optimal control problem, requires the 

determination of control trajectories that optimize some performance index for a 

dynamic system. Some examples of dynamic optimization problems are the 

determination of optimal operating policies for chemical plants subject to safety, 

operational, and environmental constraints. The dynamic system is usually 

represented by sets of differential and algebraic equations (DAEs). The differential 

equations typically arise from dynamic material and energy balances, while the 

algebraic equations arise from thermodynamic and kinetic relationships (Edgar and 

Himmelblau, 2001). 

 The general formulation of the dynamic optimization problem is as follows: 

 

( )min ( ), ( ), ( ), ,f f f fx t y t u t t pΨ                (B.1) 

 

subject to 

 

( )( ) ( ), ( ), ( ), ,dx t F x t y t u t p t
dt

=                (B.2) 

( )( ), ( ), ( ), , 0h x t y t u t p t =                 (B.3) 

 

initial condition:  

 

0(0)x x=                   (B.4) 

 

bounds:  
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[ ]( ) ,l ux t x x∈  

[ ]( ) ,l uy t y y∈  

[ ]( ) ,l uu t u u∈                   (B.5) 

[ ]( ) ,l up t p p∈  

( ) ,f fl fut t t t⎡ ⎤∈ ⎣ ⎦  

 

where Ψ is a scalar objective function, h are algebraic equation constraints, x are 

differential state variables, x0 are the initial values of x, y are algebraic state variables, 

u are control variables, p are time independent parameters, and tf is a final time. 

 

B.2 Solution of Dynamic Optimization 
 

 Numerical methods for the solution of dynamic optimization problems are 

usually classified into two categories: indirect and direct methods, as described in 

Figure B.1. 

 

B.2.1 Indirect Method 

 

The indirect or variational approach is based on the solution of the first order 

necessary conditions for optimality. For problems without inequality constraints, the 

optimality conditions can be formulated as a set of differential-algebraic equations. 

Obtaining a solution to these equations requires careful attention to the boundary 

conditions. Often the state variables are specified at an initial condition whereas 

adjoint variables are determined at a final condition. This leads to a two-point 

boundary value problem (TPBVP) that can be solved by different approaches, i.e., 

single shooting, invariant embedding, multiple shooting or some discretization 

methods such as collocation on finite elements or finite differences. In general, the 

indirect method requires an analytical differentiation to derive the necessary 

conditions  and   the   application  of   this  approach  is  more  difficult   when   state  
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Figure B.1 Numerical solution of dynamic optimization problems 

 

 

constraints are present in the dynamic optimization problem (Kameswaran and 

Biegler, 2006).   

 

B.2.2 Direct Method 

  

Deterministic Direct Methods 

 

 The concept of this method is to transform an original dynamic optimization 

problem into a finite dimensional optimization problem, typically a nonlinear 

programming problem (NLP), using discretization techniques on either only control 

variables (partial discretization) or both state and control variables (complete 

discretization). Based on this consideration, two solution strategies can be classified. 
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Sequential strategy 

 

 In the sequential strategy, also called a control vector parameterization (CVP), 

only a control (manipulated) variable profile is discretized as a piecewise constant, a 

piecewise linear, or a piecewise polynomial function over a time interval. 

Computational procedure of this strategy is shown in Figure B.2. With the initial 

conditions and a given set of control parameters, the model equations are solved with 

a differential algebraic equation solver at each iteration. The value of an objective 

function and constraints is computed and then a NLP solver determines a new set of 

the control parameters and sends it back to the model solver. This procedure is 

repeated until the optimal value of the objective function satisfies a specified 

accuracy. 

 Sequential strategies are relatively easy to construct and apply as they contain 

the component of reliable NLP solvers. The main advantage of this strategy is that the 

control profile is discretized and considered as a decision variable and thus, the 

obtained NLP is a small scale problem.  However, since the state variables are not 

directly included in the NLP, a constraint on state variables (path constraints) is 

difficult to handle. 

 

Simultaneous strategy   

 

 In this strategy, both state and control variable profiles are discretized by 

approximating functions and treated as decision variables in the optimization 

problem. The dynamic process model and the optimization problems are solved at one 

step, which avoids solving the model equations at each iteration in the optimization 

algorithm as in the sequential strategy. With this approach, the dynamic process 

model constraints are transformed to a set of algebraic equations that is posed as 

equality constraints in NLP.  

 Since the constraints can be included directly in the optimization problem as 

additional constraints, this approach has a capability in handing constraints on state 

variables. However, due to the discretization on both state and control variables, a 

large scale NLP problem is obtained, compared with the sequential approach 
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Stochastic Direct Methods 

 

 As a NLP problem arising from the application of direct approaches is 

frequently multimodal, deterministic (gradient based) local optimization techniques 

may converge to local optima, especially if they are started far away from a global 

solution. Adaptive stochastic methods have been suggested as robust alternatives to 

overcome these difficulties. Other types of stochastic algorithms have also been used, 

including different random search algorithms and genetic algorithms. These 

algorithms; however, would be slower than most other gradient-based algorithms. 
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Figure B.2 Dynamic optimization via the sequential strategy 
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