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CHAPTER I 
INTRODUCTION 

This chapter explains background knowledge and the importance of buffer-
overflow attacks. We also describe objectives and scope of this research. 

I.1 Background and Problem 
Nowadays, cyber-attacks around the world have intensified, especially, the 

increase of worms and viruses that cause serious damages to systems. Mostly, 
malicious worms and viruses use a buffer-overflow attack to exploit system 
vulnerabilities in order to access the system and destroy or steal data, similar to that 
of the infamous MORRIS worm [1] in 1988. Even recently, on 14th April 2017, there is 
a report VU#676632 on IBM Lotus Domino server mailbox name stack buffer overflow 
[2]. Also, the buffer-overflow vulnerability was found in the file win32k.sys of the 
component Memory Object Handler on 11th December 2013. This affects most 
Microsoft Windows, including Microsoft Windows 8.1 SP0 [3]. Moreover, the well-known 
WannaCry ransomware attack in May 2017 exploits a buffer-overflow vulnerability in 
the most Microsoft Windows as well, including Microsoft Windows 10 SP1 [4]. 

Buffer-overflow attacks generally occur when the length of input data is bigger 
than the buffer size. When that happens, some data will overflow outside the buffer 
and overwrite memory adjacent to the buffer. The overwritten memory may contain 
control data or non-control data. In addition to this general method, there is another 
way to overwrite data that is outside the scope, named “Array-indexing Error”, which 
will be described in the next chapter. 

Although a lot of buffer-overflow solutions have been proposed, they mostly 
focused on control data. Few of them focus on non-control data. When control data 
are protected, the next target will be non-control data which is no less important than 
control data. 

Therefore, this research proposes a new solution, called “Boundary Bit”, which 
is expected to not only protect both control and non-control data, but also prevent 
array-indexing error. We aim to completely eliminate buffer-overflow attacks. 
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I.2 Glossary 
For the sake of clarity in this dissertation, terms are defined as follows: 
1. Buffer means an allocated memory for containing data. 
2. Control Data means data that are generated locally by systems such as 

return addresses and function pointers. 
3. Non-control Data means data declared by users such as local variables 

and arguments. 
4. Buffer Overflows [5] means the condition where in the data transferred 

to a buffer exceeds the storage capacity of the buffer and some of the data overflows 
into another buffer, one that the data was not intended to go into. 

5. Buffer-overflow Attacks [6] means an attack caused by overflowing a 
buffer or writing beyond data boundary with data from another domain which results 
in malicious or unexpected behaviors of a program. Buffer-overflow attacks can be 
classified into 3 types: 1) Stack Overflows 2) Heap Overflows 3) Array Indexing Errors. 

I.3 Objectives 
Objectives of this research are as follows: 
1. To study buffer-overflow attacks and buffer-overflow protections 
2. To propose a new hardware solution for buffer-overflow protection named 

“Boundary Bit” 
3. To apply “Boundary Bit” and to evaluate its (protection) effectiveness and 

efficiency 
 



 

 

CHAPTER II 
BUFFER-OVERFLOW ATTACKS 

This chapter describes the principle of buffer-overflow attacks including their 
characteristics and types. Some background knowledge about buffer-overflow attacks 
involved in this research can be explained as follows. 

II.1 Fundamental of Buffer-Overflow Attacks 
General buffer-overflow attacks have the following main steps. 
1. Allocate memory by declaring an array as a buffer for storing data. 
2. Input data which are bigger than buffer size to the buffer by using array-

copy functions such as strcpy() in C programming language. 
3. The effect of the previous step is that some data will overflow outside the 

buffer, called "Buffer Overflows”, and overwrite memory adjacent to the buffer. The 
overwritten memory may contain control data or non-control data. 

4. If the change of value in memory harms the computer, it will cause 
damage to that computer. 

To ease explaining, the c-language code is provided. 
#include <stdio.h> 

#include <string.h> 

int main(char *p) { 

 char a[8]; 

 int b = 0; 

 strcpy(a,p); 

 printf(“%d”,b); 

 return 0; 

} 

 
The attacks can be done by the following steps. 
5. Declare a string (an array of characters) as buffer, named “a” with 8-byte 

size, and an integer named “b” assigned as 0. This creates a stack memory layout as 
shown in Table 1 
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Table 1 Stack Layout of Allocated Memory 

a b 
- - - - - - - - 0 0 0 0 

6. Call strcpy() function with character pointer “p” as input. If pointer “p” is 
longer than the length of an input will be copied to buffer “a” and overflow to integer 
“b” as shown in Table 2 

Table 2 Stack Layout after Calling strcpy() 

a b 

o v e r f l o w s \0 0 0 
 

7. Print the value of the integer “b”. It is no longer ‘0’ as declared. 
From the example, if the value of variable “b” cannot directly be modified by 

programmers or users, it can be done by a buffer-overflow technique. If a variable “b” 
is a return address, programmers or users can change the control flow by modifying 
the return address. The result can be harmful. 

In summary, the buffer-overflow technique allows attackers with no privilege 
to modify arbitrary value. However, this technique is just a preparation step for 
attacking the system. 

II.2 Types of Buffer-Overflow Attacks 
Buffer-overflow attacks can be classified using various criteria. This research 

categorizes them by locations and characteristics. 

II.2.1 Classification by Attack Locations 
With this criterion, there are 3 main types of buffer-overflow attacks as follows. 

II.2.1.1 Stack Overflows 
Stack-overflow attacks modify values in the stack memory of the 

process. The main target is a return address in the stack. Typical attacks are conducted 
by copying data bigger than the size of allocated buffer in the same stack. As a result, 
the overflowed data will overwrite the return address, which is control data of the 
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function. The return address value can be changed to any value specified by attackers. 
When the function ends, it will return to execute attackers’ code instead of the normal 
process flow. 

Here are two examples of Stack-overflow attacks. 

II.2.1.1.1 Example 1:  Stack-Overflow Attacks on Control Data 
The c-language code is given as follows: 

#include <stdio.h> 

#include <string.h> 

void foo(const char* input) { 

  char buf[10]; 

  //View stack 

  printf("My stack looks like:\n%p\n%p\n%p\n%p\n%p\n%p\n%p\n\n"); 

 

  //Pass input to buf 

  strcpy(buf,input); 

  printf("%s\n",buf); 

 

  printf("Now stack looks like:\n%p\n%p\n%p\n%p\n%p\n%p\n%p\n\n"); 

} 

void bar() { 

  printf("Pongo hack YOU!\n"); 

} 

int main(int argc, char *argv[]) { 

  printf("Address of foo = %p\n",foo); 

  printf("Address of bar = %p\n",bar); 

  if(argc != 2){ 

    printf("Enter string as an argument!\n"); 

    return -1; 

  } 

  foo(argv[1]); 

  return 0; 

} 

 
From the example, an attacker wants to modify the return 

address, which is control data, for returning to attacker’s target function (in this context: 
calling the “bar” function). The procedure can be described as follows: 

1. Find the return address of the “foo” function by using the 
following code and calculate distance between the return address and the declared 
buffer in the “foo” function. 

printf("My stack looks like:\n%p\n%p\n%p\n%p\n%p\n%p\n%p\n\n"); 

 
This line will show data in the stack memory of the process 

during runtime. The first %p will show the data at the top of the stack (lower address) 
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in hexadecimal number and the following %p will show the second one (higher 
address) respectively. The program can be executed using the following command. 

# ./stack_control 01234567890 

 
The result will be: 
Address of foo = 0x8048400 

Address of bar = 0x8048444 

My stack looks like: 

0xbffffb98 

0x401081ec 

0xbffffb98 

0xbffffb98 

0x80484ae 

0xbffffcd7 

0xbffffbb8 

 

01234567890 

Now stack looks like: 

0x33323130 

0x37363534 

0x303938 

0xbffffb98 

0x80484ae 

0xbffffcd7 

0xbffffbb8 

 
From the result, the address of the “foo” function is 804840016 

(0x8048400 in hexadecimal). the address of the “bar” function is 804844416. The stack 
layout before calling strcpy() is shown in Table 3. 

Table 3 Stack Layout before Calling strcpy() 

Address Content Symbol 

[E]SP+0x00 0xbffffb98 

buf [E]SP+0x04 0x401081ec 

[E]SP+0x08 0xbffffb98 

[E]SP+0x0c 0xbffffb98 - 

[E]SP+0x10 0x80484ae return address 

[E]SP+0x14 0xbffffcd7 - 

[E]SP+0x18 0xbffffbb8 - 

Note: [E]SP (a register in the processor) stores “stack pointer” address (the top of the 
stack) at the time. 
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From Table 3, the “buf” variable is a buffer in the “foo” 
function. The addresses from [E]SP+0x00 to [E]SP+0x08 are the “buf” variable. 
However, the amount of memory allocated is always in the number of words (4 times 
in bytes) because 1 word is 4 bytes. Moreover, the address [E]SP+0x10 is close to the 
addresses of both function and the program code is always loaded on the same 
memory area. It can be concluded that the address [E]SP+0x10 is the return address 
of the “foo” function. 

After calling strcpy(), the input argument was copied to the 
declared buffer in “foo” function. The stack layout after copying is shown in Table 4. 

Table 4 Stack Layout after Calling strcpy() 

Address Content Symbol 

[E]SP+0x00 0x33323130 

buf [E]SP+0x04 0x37363534 

[E]SP+0x08 0x00303938 

[E]SP+0x0c 0xbffffb98 - 

[E]SP+0x10 0x80484ae return address 

[E]SP+0x14 0xbffffcd7 - 

[E]SP+0x18 0xbffffbb8 - 

 
From Table 4, the return address is 16 bytes away from the 

address of the declared buffer. The stack stores data in ASCII. For instance, the ASCII 
of the character “0” (zero) is 3016 (30 in hexadecimal) or 4810 (48 in decimal). The data 
is stored in reverse order of the input argument. 

2. Modify the return address to the address of “bar” function 
by inputting 16 characters (16 bytes) together with the reverse order of the “bar” 
function, which are ASCII 4416 8416 0416 0816 (or 6810 13210 410 810). There are 2 ways to 
input ASCII. First, press a left “Alt” button on a keyboard + ASCII in decimal on numeric 
keypad. Second, press a right “Alt” button + ASCII in hexadecimal. For example, press 
Alt + 68 and then a character “D” will show up. To run the program, use the following 
command. 
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# ./stack_control 0123456789012345Dä♦◘ 

 
The result will be: 
Address of foo = 0x8048400 

Address of bar = 0x8048444 

My stack looks like: 

0xbffffba8 

0x401081ec 

0xbffffba8 

0xbffffba8 

0x80484ae 

0xbffffcdf 

0xbffffbc8 

 

0123456789012345D 

Now stack looks like: 

0x33323130 

0x37363534 

0x31303938 

0x35343332 

0x8040044 

0xbffffcdf 

0xbffffbc8 

 

Pongo hack YOU! 

Segmentation fault (core dumped) 

 
Although the “bar” function is not called in the code, it can be 

called at runtime. The stack layout after the strcpy() function is called is shown in 
Table 5. 

Table 5 Stack Layout after Calling strcpy() 

Address Content Symbol 

[E]SP+0x00 0x33323130 

buf [E]SP+0x04 0x37363534 

[E]SP+0x08 0x31303938 

[E]SP+0x0c 0x35343332 - 

[E]SP+0x10 0x8048444 bar 

[E]SP+0x14 0xbffffce5 - 

[E]SP+0x18 0xbffffbc8 - 
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From Table 5, the return address stores the address which the 
program will jump back after the “foo” function ends. When it is modified to the 
address of “bar” function, the program will run the “bar” function instead of going 
back to the “main” function. 

II.2.1.1.2 Example 2:  Stack-Overflow Attacks on Non-Control Data 
Beside a return address, the target can be non-control data, 

such as local variables, which are stored in the stack as same as the declared buffer. 
The c-language code is given as follows: 

int main(int argc,char* argv[]) 

{ 

  int data2 = 0; 

  char buf[10]; 

 

  if(argc != 2) 

  { 

    printf("Enter an argument! e.g. 01234567890123456\n"); 

    return -1; 

  } 

 

  printf("buf at %p\ndata2 at %p\n",buf,data2); 

 

  printf("Before copy\nbuf = %s\n",buf); 

  printf("data2 = %d at %p\n",data2,&data2); 

 

  strcpy(buf,argv[1]); 

 

  printf("After copy\nbuf = %s\n",buf); 

  printf("data2 = %d at %p\n",data2,&data2); 

 

  return 0; 

} 

 
From the code, copying data from the input argument to the 

declared buffer with data bigger than this buffer, the integer variable adjacent to this 
buffer may be modified because local variables are stored in the same stack. If there 
are many variables, memory will be allocated sequentially. The last declared variable 
will be at the top of the stack. Thus, “data2” and “buf” variables are adjacent in the 
stack. 

# ./stack_noncontrol 01234567890123456 
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The result will be: 
buf at 0xbffffb98 

data2 at 0xbffffba4 

Before copy 

buf = ¨ûÿ¿+„€–

                                 

data2 = 0 at 0xbffffba4 

After copy 

buf = 01234567890123456 

data2 = 892613426 at 0xbffffba4 

 
From the result, the “data2” variable is not assigned at the 

second time in the code, but its value can be modified at runtime. The stack layout 
after calling strcpy() is shown in Table 6. 

Table 6 Stack Layout after Calling strcpy() 

Address Content Symbol 

buf+0x00 0x33323130 

buf buf+0x04 0x37363534 

buf+0x08 0x31303938 

buf+0x0c 0x35343332 data2 

 
From Table 6, the value of the “data2” variable (an integer with 

4-byte size) change from 0 to 3534333216 or 39261342610 because of the overflowed 
data from buffer. 

II.2.1.2 Heap Overflows 
Heap-overflow attacks are similar to stack-overflow attacks but the 

modified target is the heap memory instead of the stack memory of the process. The 
heap memory stores function pointers and dynamically-allocated data at runtime, 
such allocation can be done by calling “malloc” function in C language. Similar to 
stack-overflow attacks, heap-overflow attacks can modify data by overwriting adjacent 
memory as attackers wanted. For example, a function pointer is changed to point to 
an attacker’s code.  
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II.2.1.3 Array Indexing Errors 
Array-indexing-error attacks are different from other types because they 

do not copy the bigger data than an allocated buffer like stack-overflow and heap-
overflow attacks. Array-indexing-error attacks use an array variable declared in the 
function and index or refer to outside the boundary of this array. One example is a 
reference to -1 or 10 in a 10-element array. The referred target is any address in the 
memory that attackers need to alter the value for exploitation. 

The c-language code of array-indexing-error attacks is as follows: 
#include <stdio.h> 

#include <stdlib.h> 

#include <string.h> 

 

int* IntVector; 

 

void bar() 

{ 

  printf("Pongo hack YOU!\n"); 

} 

 

void InsertInt(unsigned long index, unsigned long value) 

{ 

  printf("Address of index = %p, index = %x\n",&index,index); 

  printf("My stack looks like:\n%p\n%p\n%p\n%p\n%p\n"); 

  printf("Writing memory at %p\n",&(IntVector[index])); 

  IntVector[index] = value; 

  printf("Wrote successfully\n"); 

} 

bool InitVector(int size) 

{ 

  IntVector = (int*)malloc(sizeof(int)*size); 

  printf("Address of IntVector is %p\n",IntVector); 

  if(IntVector == NULL) 

    return false; 

  else 

    return true; 

} 

 

int main(int argc, char *argv[]) 

{ 

  unsigned long index, value; 

 

  if(argc != 3) 

  { 

    printf("Usage is %s [index] [value]\n"); 

    return -1; 

  } 

 

  printf("Address of bar = %p\n",bar); 

 

  //Let's initialize our vector - 64 KB ought to be enough for 

anyone <g>. 
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  if(!InitVector(0xffff)) 

  { 

    printf("Cannot initialize vector!"); 

    return -1; 

  } 

 

  index = atol(argv[1]); 

  value = atol(argv[2]); 

  InsertInt(index, value); 

  return 0; 

} 

From the code, an attacker wants to modify the return address to return 
to attacker’s target function (in this context: the “bar” function). The procedure is as 
follows: 

1. Find the return address of the “InsertInt” function by the following 
code and calculate distance between the return address and the first element of the 
declared array “IntVector” containing ffff16 or 6553510 (4-byte) integers in the 
“InitVector” function. 

# ./array_control 1234567890 9876543210 

 
The result will be: 

Address of bar = 0x8048430 

Address of IntVector is 0x4010d008 

Address of index = 0xbffffb68, index = 499602d2 

My stack looks like: 

0x401081ec 

0xbffffb78 

0x80485a5 

0x499602d2 

0x7fffffff 

Writing memory at 0x6668db50 

Segmentation fault (core dumped) 

 
From the result, the address of the “bar” function is 804843016 or 

13451371210. The address of the first element of the array “IntVector” is 4010d00816. 
The address of the “InsertInt” function argument named “index” is bffffb6816. 

When calling a function with many arguments, the arguments and the 
return address are pushed into stack in respective order starting from the last argument 
to the first argument and the return address. Note that the return address is next to 
the first function argument. Therefore, the address of the return address is bffffb6816 - 
416 = bffffb6416. To ease understanding, the stack layout is shown as Table 7. 
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Table 7 Stack Layout Example 

Address Content Symbol 

0xbffffb6c 0x401081ec - 

0xbffffb70 0xbffffb78 - 

0xbffffb74 0x80485a5 return address 

0xbffffb78 0x499602d2 index 

0xbffffb7c 0x7fffffff value 

 
2. Calculate the new index to reference the return address from the 

following equation. 

Address of the “index”th element = Address of first element + 4 × Index 
Index = (Address of the “index”th element – Address of first element)) ÷ 4 
So, New index = (Address of return address – Address of first element) ÷ 4 
New index = (1bffffb6416 - 4010d00816) ÷ 416 = 5ffbcad76 = 161033698310 

Note: 1bffffb6416 and bffffb6416 in 32-bit architecture are the same value because only 
32 bits are contained. The “1” in the 33th bit is ignored. 

Using “malloc” function for allocating an array in the heap memory, 
indexes arrange in ascending order (from low to high address). In the equation, the 
address of the element is calculated by adding from the the first element. 

3. Modify the return address to the address of “bar” function by 
inputting the first argument with the new index as 1610336983 and the second 
argument with the address of “bar” function as 134513712. When running the program 
as below. 

# ./array_control 1610336983 134513712 

 
The result will be: 

Address of bar = 0x8048430 

Address of IntVector is 0x4010d008 

Address of index = 0xbffffb68, index = 5ffbcad7 

My stack looks like: 

0x401081ec 

0xbffffb78 

0x80485a5 

0x5ffbcadb 

0x8048430 

Writing memory at 0xbffffb64 
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Wrote successfully 

Pongo hack YOU! 

Segmentation fault (core dumped) 

 
From the result, although the “bar” function is not called in the code, 

it can be called at runtime. 
This type of buffer-overflow attacks can be modified any address in the 

memory. Unlike stack overflow, the target address is not necessary to be a higher 
address. Stack overflows only happen in one direction from low to high address. Thus, 
they can only modify addresses higher than the address of the stack. 

There is another example which can be used as an array-indexing-error 
attack. That is “Placement New” Expression in C++. 

II.2.1.3.1 “Placement New” Expression in C++ 
According to [7], “placement new” is an expression in C++ 

language shown as follows: 
void *operator new (size_t,void *p) throw(){return p;} 
void *operator new[](size_t,void *p) throw(){return p;} 

This expression is used for allocating a dynamically-created 
object or an array at a given address that refers to a memory area that has already 
been allocated to the process. A usage example is shown as follows: 

char *text = new char(10); 

//Place newtext at the starting address of ‘‘text’’ 

char *newtext = new (text) char(10); //uses placement-new 

If it is misused, it will cause security threats such as buffer-
overflow attacks. There are 5 security issues of “placement new” shown as follows: 

1. Allows any address allocated to the process to be used to 
place an object 

2. Does not enforce any (compile-time/runtime) bounds 
checking 

3. Invocation does not carry out any type-checking 
4. Does not enforce any checking of alignment, it may lead to 

incorrect semantics, and to program termination 
5. May lead to memory leaks 
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II.2.2 Classification Using Characteristics 
Besides being classified using locations, buffer-overflow attacks can also be 

categorized into 4 classes, according to [8], as follows: 

II.2.2.1 Direct Executable Buffer Overflows 
The target of direct executable buffer-overflow attacks is to change the 

control flow of the process. The example of this class is stack-overflow attacks on 
control data (see in Example 1:  Stack-Overflow Attacks on Control Data on page 5) 
because they alter the return address of the function in order to return to execute 
attacker’s code instead of the normal process flow when the function ends. In this 
way, there are 5 preconditions defined by [8] as follows: 

P1. The length of the (possibly transformed) input string is longer than that of the 
buffer. 

P2. The input (and possibly transformed) string contains instructions and/or 
addresses. 

P3. Input can change the stored return address without the change being 
countered. 

P4. The program can jump to memory in the stack. 
P5. The program can execute instructions stored in the stack. 

 

II.2.2.2 Indirect Executable Buffer Overflows 
Like direct executable buffer-overflow attacks, indirect executable 

buffer-overflow attacks change the process control flow. However, the difference is 
that the process state information, such as a return address, is not altered but indirect 
ones alter a function pointer instead. When the function pointer is invoked, attacker’s 
code will be executed. The similar example of this class is stack-overflow attacks on 
non-control data (see in Example 2:  Stack-Overflow Attacks on Non-Control Data on 
page 9) assuming that the variable “data2” in this example is a function pointer. 
Therefore, there are 5 preconditions defined by [8] as follows: 
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P6. The length of the (possibly transformed) input string is longer than that of the 
buffer. 

P7. The input (and possibly transformed) string contains addresses. 
P8. Input can change the value in the function pointer variable without being 

countered. 
P9. The program can jump to in the heap. 
P10. The program can execute instructions in the heap. 

 

II.2.2.3 Direct Data Buffer Overflows 
Data buffer-overflow attacks are different from executable buffer-

overflow attacks in that no new instructions (attacker’s code) are executed. Direct data 
buffer-overflow attacks modify some data which make the execution path change. The 
example of this class is stack-overflow attacks on non-control data (see in Example 2:  
Stack-Overflow Attacks on Non-Control Data on page 9). This example can be applied 
to bypass a “Login” process. Consequently, there are 4 preconditions defined by [8] 
as follows: 

P11. The length of the (possibly transformed) input string is longer than that of the 
buffer. 

P12. The input (and possibly transformed) string contains data of the type of the 
particular variable. 

P13. The value stored in the particular variable can be changed without being 
countered. 

P14. The particular variable determines which execution path is to be taken at a 
future point in the execution of the process. 

 

II.2.2.4 Indirect Data Buffer Overflows 
Almost same as direct ones, the target of indirect data buffer-overflow 

attacks is a pointer referring to the data that can change the execution path. Thereby, 
there are 4 preconditions defined by [8] as follows: 
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P15. The length of the (possibly transformed) input string is longer than that of the 
buffer. 

P16. The input (and possibly transformed) string contains addresses. 
P17. The address stored in the particular pointer variable can be changed without 

being countered. 
P18. The value pointed to by the particular pointer variable determines which 

execution path is to be taken at a future point in the execution of the process. 

II.2.3 Characteristics 
According to [8], some preconditions are the same. As a result, they can be 

concluded as buffer-overflow characteristics as shown in Table 8. 

Table 8 Characteristics and Preconditions [8]  

Characteristics Pseudo-Code Preconditions 
len:buff len(input) < len(buffer) P1, P6, P11, P15 
con:addr contains(input,type(addr)) P2, P7, P16 
con:inst contains(input,type(inst)) P2 
con:ctrl contains(input,type(ctrlvar)) P12 
mod:radd modify(retnadd) P3 
mod:fptr modify(funcptr) P8 
mod:cvar modify(ctrlvar) P13 
mod:cptr modify(ctrlptr) P17 
jmp:stack jump(stack) P4 
jmp:heap jump(heap) P9 
exe:stack execute(stack) P5 
exe:heap execute(heap) P10 
flow:ctrl flow(ctrlvar) P14, P18 

 
In summary, the associated sets of characteristics for 4 classes of buffer-

overflow attacks are shown as follows: 
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II.2.3.1 Direct Executable Buffer Overflows 
dir:exec = 

  {len:buff, con:addr, con:inst, mod:radd, jmp:stack, 

exe:stack} 

 
This class is equivalent to Stack overflows on control data. 

II.2.3.2 Indirect Executable Buffer Overflows 
ind:exec = 

  {len:buff, con:addr, mod:fptr, jmp:heap, exe:heap} 

 
This class is equivalent to Heap overflows on control data. 

II.2.3.3 Direct Data Buffer Overflows 
dir:data = 

  {len:buff, con:ctrl, mod:cvar, flow:ctrl} 

 
This class is equivalent to Stack overflows on non-control data. 

II.2.3.4 Indirect Data Buffer Overflows 
ind:data =  

  {len:buff, con:addr, mod:cptr, flow:ctrl} 

 
This class is equivalent to Heap overflows on non-control data. 
 

Note that there is no array-indexing error included, the characteristic 
“out:buff” is defined for the precondition of this attack type that there is a reference 
to outside the buffer boundary. 

These buffer-overflow characteristics will be used in the next chapter for the 
summary (see in Table 13 on page 30). 
 



 

 

CHAPTER III 
LITERATURE REVIEWS 

This chapter provides the overall of current approaches of buffer-overflow 
protection and related works. 

The best solution for preventing buffer-overflow attacks is to write a correct 
code, such as adding if-condition to check the boundary. However, it makes 
applications run slower and most programmers ignore this. Sometimes they try to take 
care of boundary checking, but cannot find all cases. The vulnerabilities still exist and 
can be exploited. Therefore, researchers have proposed many buffer-overflow 
protection solutions shown in Figure 1. 

 

Figure 1 Buffer-Overflow Protections [9]  

From the above figure, these solutions are classified into 3 categories [9] as 
follows. 

III.1 Static Analysis 
Static analysis approaches are to notify programmers to edit or to replace 

vulnerable functions or parts of program code that can cause buffer overflow before 
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deployment. For instance, using strcpy() may easily make vulnerability. It should be 
replaced by strncpy() with bound checking. 

Nonetheless, there are some limitations for user-defined functions and macros. 
The weak points are that they can detect only known attack patterns without runtime 
information. As a result, it is impossible to find all cases and may cause false alarms. 
Moreover, the final decision of modifying code (as suggestion from tools) depends on 
programmers. 

This category can be divided into 2 subcategories as follows. 

III.1.1 Lexical Analysis 
The algorithm is to check in program code in order to find a word or a group 

of words which may cause buffer overflow. The examples of this approach are ITS4 
[10], FlawFinder [11], RATS [12], STOBO [13] and LibSafe [14].  

III.1.2 Semantic Analysis 
It is different from lexical analysis. It uses parser to analyze the meaning of 

code instead of a word or a group of words. The examples of this approach are Splint 
[15] and BOON [16]. 

III.2 Dynamic Solution 
To validate the data integrity in run-time environment, these solutions verify 

the metadata or data description. The verified data can be control data, such as return 
addresses, or non-control data, such as variables.  

There are 2 major types of metadata: hardware supported and software 
managed. 

These solutions can be divided into 4 subcategories by assumption, types of 
metadata, metadata management and handling routine as follows. 

III.2.1 Address Protection 
This subcategory is classified into many schemes with the same assumption 

that only protects the memory containing addresses. The reason is that addresses are 
critical data and should be tagged. Metadata will be created by address instruction 
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and verified when that address is used. Each scheme applies various types of metadata. 
The examples are as follows. 

III.2.1.1 Canary Word 
The concept is to add 1 word, called Canary Word, in the memory 

between each address or each pointer. The hypothesis is that buffer overflows only 
happen in one direction. When the address is modified, its Canary Word should be 
modified as well. Then the value of Canary Word must be verified before using that 
address as shown in Figure 2. 

 

Figure 2 Stack Layout of Canary Word [6]  

The weakness of this scheme is that it can easily be bypassed by 
retaining the same value of Canary Word after buffer-overflow attacking. It cannot 
confirm whether address is modified because no mechanism for protecting Canary 
Word itself as shown in Table 9. 

Table 9 Stack Layout for Bypassing Canary Word 

Before attacking 
Type Buffer Canary Word Pointer 

Value - - - 0 5 

After attacking 
Type Buffer Canary Word Pointer 

Value A A A 0 A 

 
The examples of this scheme are StackGuard [15, 17-20], which protects 

return addresses, and ProPolice [21], which protects function pointers by declaration 
statement. 
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III.2.1.2 Address Encoding 
This scheme encodes addresses for the integrity of the addresses. The 

concept is to encode addresses before storing in the memory and decode them when 
reading back to the processor. The metadata of this scheme is the per-process random 
key for encryption. Thus, the long-term key management is the main point. However, 
there are some problems with array and string in C language and value assignment in 
the compile time. 

The examples of this scheme are PointGuard [22] and Hardware 
Supported PointGuard [23, 24]. These solutions assume that when pointers are created, 
their value will not change.  

III.2.1.3 Copy of Address 
This scheme copies an address for the integrity of the addresses. When 

creating an address, copies it and stores the copy safely. Before the address is used, it 
should be verified with its copy. 

This scheme is classified into many methods by the address copy 
management. The examples of this scheme are as follows: 1. StackGhost [25], using 
register window of SPARC processor, 2. RAS [26-28], using return address stack (the 
hardware for predicting return addresses in some processors), 3. Split Stack [27], 
SmashGuard [29], RAD Compiler [30], RAD Binary Rewrite [31], DISE [32], StackShield 
[33] and LibVerify [15], allocating memory as return address stack, and 4. SCACHE [34], 
using cache for managing a copy of return address. 

III.2.1.4 Tags 
Tags are for identifying type of data, such as normal data or address. 

The limitation is that they cannot apply on applications without modification for this 
scheme. 

The example of this scheme is Tagged Architecture [35]. 

III.2.1.5 HeapDefender [36]  
HeapDefender is a fine-grained instruction stream monitoring hardware 

defense mechanism. This hardware module is located inside of embedded processor 
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and works in parallel with processor pipeline. Its concept is to extract a pre-defined 
heap memory range and check whether address of heap operations of instructions 
exceeds heap address range. Thus, this scheme neither modifies program nor destroys 
pipeline integrity. Also, it is transparent to both processor and software programmer. 
However, it protects embedded processors against heap overflow attacks, in other 
words, it protects heap memory only. 

III.2.2 Input Protection 
This subcategory is classified into many schemes with the same assumption 

that input data should not be used as control data. Therefore, there must be some 
differences between input data and control data. Although there is no way to recognize 
data as control data or non-control data in the hardware level, it can be done in the 
programmer/compiler level. Each scheme applies various metadata management with 
different implementation. The examples are as follows. 

III.2.2.1 Secure Bit [37]  
The concept is to add 1 bit, called Secure Bit, to each byte/word in the 

memory. This bit is used for identifying that input data are from outside the process 
via kernel. If Secure Bit is set, it contains input data which should not be used as 
control data, e.g. return addresses, as shown in Figure 3 and Table 10. 

 

 

Figure 3 Stack Layout of Secure Bit 
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Table 10 Stack Layout for Secure Bit 

Before attacking 
Type Buffer Return Address 
Value - - - - - 5 

Secure Bit 0 0 0 0 0 0 

After attacking 
Type Buffer Return Address 
Value A A A A A A 

Secure Bit 1 1 1 1 1 1 
 
In addition, Secure Bit is transparent. Software developers do not need 

to edit or compile software again for applying Secure Bit. Even though the detection 
mechanism of buffer-overflow attacks is embedded in the hardware level, this scheme 
is not able to protect non-control data. For instance, there are 2 variables: a and b. 
First, variable b is assigned as 5 and the Secure Bit of variable b is set. When overflowing 
variable a with “AAAAA”, the value of variable b will be 0. In this case, it cannot detect 
this buffer-overflow attack because the Secure Bit of variable b is still set as shown in 
Table 11. 

Table 11 Stack Layout of the Undetected Case for Secure Bit 

Before attacking 
Type a b 
Value - - - - - 5 

Secure Bit 0 0 0 0 0 1 

After attacking 
Type a b 
Value A A A A A \0 

Secure Bit 1 1 1 1 1 1 
 

III.2.2.2 Minos [38] [39] 
Its concept is similar to Secure Bit but the input data are from another 

segment, using segmentation as a boundary. The weak point is that segmentation does 
not exist on all systems and it is not transparent, unlike Secure Bit. As a result, this 
scheme will be hard to implementation. 
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III.2.2.3 Tainted Pointer [40]  
The objective of this scheme is to prevent input data to be used as 

pointers. The input data are from I/O subsystem of operating system. However, 
sometimes input data may be used for calculating pointer, such as indexing, and there 
are some problems with multi-threaded program which sending address values 
between threads in the process. Consequently, the instruction for clearing taint values 
of pointers is needed and this could be another vulnerability. 

III.2.2.4 Efficient Dynamic Taint Analysis Using Multicore Machines [41]  
This scheme uses static binary rewriting to transform a binary to contain 

an original thread and a shadow thread for taint computation. These two threads are 
executed on different processor cores. Dynamic taint analyses start with marking the 
values from external sources as untrusted, i.e., tainted. Then, taint values are 
propagated as its rules. Finally, this scheme uses taint values to detect possible 
exploits. 

III.2.3 Bound Checking 
This subcategory is classified into many schemes with the same assumption 

that access to data should be within variable boundary only. The metadata is related 
to every block of the allocated memory and is used to limit the boundary. The 
examples are as follows. 

III.2.3.1 Hardware 
This scheme uses segmentation with base address for boundary 

checking. Segmentation and ring is implemented on I432 processor [42]. The weak 
point is that mostly operating systems avoid using segmentation by setting all memory 
as 1 big segment in order to work with this processor and improve efficiency.  

The reason is that its processing time is more than 10-20 times as shown 
on VAX 11/780 [43]. 
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III.2.3.2 Software 
This scheme is backward compatible with standard C library but its 

weakness is high overhead making program run slower. 
The examples of this scheme are as follows: 1. Array Bound Checking 

[44], defining that pointer value is valid only for the specific memory region but causing 
program slow down more than 30 times, 2. Rational PurifyPlus [45], BoundsChecker 
[46], SafeC [47] and Fail-Safe [48, 49], segmentation by using symbol table as segment 
descriptor. 

III.2.4 Obfuscation 
The concept is that confusion makes it harder to attack, such as Address 

Obfuscation [50]. The weak point is that vulnerabilities still exist. 
The example of this subcategory is PAX [51] or Address Space Layout 

Randomization (ASLR). 

III.2.5 Mixed Solution 
Some solutions are mixed from above schemes. 

III.2.5.1 Secure Canary Word [6] 
Secure Canary Word is an architectural approach based on two existing 

schemes, Secure Bit (Input Protection) and Canary Word (Address Protection), for 
protecting against buffer-overflow attacks on non-control data (variables/arguments). 
Canary Word is inserted between each variable/argument to protect non-control data. 
Then, Secure Bit is used to protect Canary Word as control data. Its stack layout is 
shown in Figure 4 and Table 12. However, it cannot prevent array indexing errors on 
non-control data because it is no need to write canary word to bypass these attacks. 

 

Figure 4 Stack Layout of Secure Canary Word 
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Table 12 Stack Layout for Secure Canary Word 

Before 
attacking 

Type Buffer Canary Word Pointer 
Value - - - - - 0 5 

Secure Bit 0 0 0 0 0 0 0 

After 
attacking 

Type Buffer Canary Word Pointer 
Value A A A A A 0 A 

Secure Bit 1 1 1 1 1 1 1 

III.3 Isolation 
These approaches confine attack damage instead of preventing, such as 

confining the application not to run outside the defined scope. This category can be 
divided into 2 subcategories as follows. 

III.3.1 Non-Executable Memory 
The assumption of this solution is from the observation that buffer-overflow 

attacks usually occur on Stack or memory storing data. Thus, Stack memory should 
not be used for storing program code. This solution, called NX, is implemented on 
many processors [52]. 

The weakness is that not all attacks are code injection. This solution prevents 
only code injection attacks. 

III.3.2 Sandboxing 
Sandboxing solution uses policy-enforcement mechanism which is to run 

untrusted applications in the restrict environment. For instance, application 
downloaded from the internet must not edit system files or call some operating-
system API. Therefore, if they are attacked, the damages will be limited and not effect 
on the overall system. The example is Java Applet that runs in Sandbox. It cannot read 
or write any file in user computers. 

Furthermore, this solution can be implemented on any level, such as kernel 
level [53], user level [54-56] and hardware-supported level, e.g. Intel LaGrande [57], 
TCPA [58, 59], TrustZone [60], Microsoft NGSCB [61], ChipLock [62] and Bear [58]. 
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The success of this solution depends on a proper combination of security 
policy and implementation. 

III.4 Comparison and Summary 
From the taxonomy of buffer-overflow characteristics (section II.2.3 

Characteristics on page 17) and some buffer-overflow protection solutions, the 
summary table can be shown as Table 13. The symbol “” means this solution can 
prevent this characteristic. The symbol “?” means this solution may prevent this 
characteristic. 

From Table 13, which some details are based on [8], it can be summarized with 
types of buffer-overflow attacks as Table 14. 

Segmentation, Type-Assisted Buffer Overflow Detection [49] and C Range Error 
Detector (CRED) [63] are range-checking solutions at runtime. These prevent len:buff 
characteristic and may prevent out:buff characteristic, up to the implementation. As 
a result, they can prevent stack/heap overflow attacks on both control and non-
control data. It may also prevent array indexing error attacks on both control and 
non-control data. 

Integer Analysis to Determine Buffer Overflow [16] and STOBO [13] check the 
range of the buffer and the input. Their designs are not suitable for checking the 
index of the buffer/array. Both prevent only len:buff characteristic. As a result, they 
can prevent stack/heap overflow attacks on both control and non-control data. They 
cannot prevent array indexing error attacks. 

Jump Pointer Control [23] is a hardware/software address protection. It handles 
function pointers and pointer variables. It prevents mod:fptr and mod:cptr 
characteristics. As a result, it can prevent stack/heap overflow attacks on non-control 
data (indirect executable and indirect data buffer overflows). It also prevents jmp:stack 
characteristic by return-address bound-checking on the stack. Thus, it can prevent stack 
overflow attacks on control data (direct executable buffer overflows) as well. 

StackGuard [20] is a return-address protection using canary word. It prevents 
mod:radd characteristic. As a result, it can prevent only stack overflow attacks on 
control data. 
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PointGuard [22] is similar to StackGuard. It prevents mod:fptr and mod:cptr 
characteristics. As a result, it can prevent heap overflow attacks on both control and 
non-control data (indirect executable and indirect data buffer overflows). 

SmashGuard [29] is an address protection by address copying. Minezone RAD 
and Read-only RAD [30] are an address protection schemes using write-protected 
location. They prevent mod:radd characteristic. As a result, they can prevent stack 
overflow attacks on control data. However, they may prevent array indexing error 
attacks on control data, up to the implementation. 

MemGuard [20] protects specific memory locations. It prevents mod:radd, 
mod:fptr, mod:cvar and mod:cptr characteristics. As a result, they can prevent 
stack/heap overflow attacks on both control and non-control data. However, they may 
prevent array indexing error attacks on both control and non-control data. 

Secure Bit [37] and Efficient Dynamic Taint Analysis Using Multicore Machines 
[41] are input protection solutions. They prevent mod:radd and mod:fptr 
characteristics. As a result, they can prevent all attacks on control data. 

HeapDefender [36] is an address protection on heap. It prevents jmp:heap 
characteristic. As a result, it can prevent heap overflow attacks on both control and 
non-control data. It may prevent len:buff and out:buff characteristics but it still no 
proof. 

Secure Canary Word [6] is an architectural approach based on Secure Bit and 
Canary Word. It prevents mod:radd, mod:fptr, mod:cvar and mod:cptr characteristics. 
As a result, it can prevent stack/heap overflow attacks on both control and non-control 
data. It can also prevent array indexing error attacks on control data. However, it cannot 
prevent array indexing error attacks on non-control data. 

Boundary Bit is our bound-checking solution. It designs to prevent both len:buff 
and out:buff characteristics. We believe that it can prevent all buffer-overflow attacks 
on both control and non-control data.
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Table 13 Summary with Buffer-Overflow Characteristics 

Characteristics 
len: 
buff 

con: 
addr 

con: 
inst 

con: 
ctrlr 

mod: 
radd 

mod: 
fptr 

mod: 
cvar 

mod: 
cptr 

jmp: 
stack 

jmp: 
heap 

exe: 
stack 

exe: 
heap 

flow: 
ctrl 

out: 
buff 

Segmentation              ? 
Integer Analysis to 
Determine Buffer 

Overflow 
              

STOBO               
Type-Assisted Buffer 
Overflow Detection              ? 

C Range Error 
Detector (CRED)              ? 

Jump Pointer 
Control 

              

StackGuard               
MemGuard               
PointGuard               
SmashGuard               

Minezone RAD                
Read-only RAD               

Efficient Dynamic 
Taint Analysis Using 
Multicore Machines 

              

HeapDefender ?             ? 
Secure Bit               

Secure Canary Word               
Boundary Bit               

 
In conclusion, the buffer-overflow protection summary table with types of 

buffer-overflow attacks can be provided as Table 14. The symbol “” means this 
solution can prevent this attack type. The symbol “?” means this solution may prevent 
this attack type. 
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Table 14 Summary with Types of Buffer-Overflow Attacks 

Types 

Stack overflow 
on control data 

(Direct 
Executable) 

Stack overflow 
on non-control 

data 
(Direct Data) 

Heap overflow 
on control data 

(Indirect 
Executable) 

Heap overflow 
on non-control 

data 
(Indirect Data) 

Array indexing 
error on  

control data 

Array indexing 
error on  

non-control 
data 

Segmentation     ? ? 
Integer Analysis to 
Determine Buffer 

Overflow 
      

STOBO       
Type-Assisted 

Buffer Overflow 
Detection 

    ? ? 

C Range Error 
Detector (CRED)     ? ? 

Jump Pointer 
Control       

StackGuard       
MemGuard     ? ? 
PointGuard       

SmashGuard     ?  
Minezone RAD     ?  
Read-only RAD     ?  

Efficient Dynamic 
Taint Analysis 

Using Multicore 
Machines 

      

HeapDefender       
Secure Bit       

Secure Canary 
Word       

Boundary Bit       
 
However, Table 14 shows only which types of buffer-overflow attacks can be 

prevented but does not show the performance and the limitation of the protection 
solutions. 



 

 

CHAPTER IV 
THE CONCEPT OF BOUNDARY BIT 

From the CHAPTER III, most of the buffer-overflow solutions focus on control 
data. They do not pay attention to array-indexing error that is also one of the buffer-
overflow attacks. Therefore, this research proposes a new solution, namely Boundary 
Bit, to not only protect both control and non-control data, but also to prevent array-
indexing error. This chapter explains the concept of Boundary Bit. 

IV.1 The Concept of Boundary Bit 
The main concept of Boundary Bit is bound-checking. The idea is to ensure that 

transferring data do not exceed the allocated capacity of variables or buffers. That is, 
we attempts to prevent len:buff and out:buff characteristics of buffer-overflow 
attacks. We aim to provide a complete solution against all types of buffer-overflow 
attacks. 

Due to the fact that software approaches cause very high overhead, hardware 
approaches could be a better choice. The proposed solution uses an additional 
hardware bit (called Boundary Bit) associated to each byte or word in the memory for 
marking the end of variables or buffers.  Due to memory alignment, marking the end 
of buffer provides a better protection. 

Programmers or compilers have to tell the system to set a bit at the end of 
any variable or buffer to mark the boundary. At the runtime, when writing data to any 
variable or buffer, the system will check whether there is a boundary bit set in a given 
range. Assuming that the input size is n bytes (the maximum index is n – 1). If the 
buffer starts at the address st, the range of scanned bits will start from st to st + 
n – 2. This is to avoid the case of the 1-byte variable where scanning should stop 
before the end of the variable or buffer. To ease understanding, an example is 
provided. 

IV.2 Examples 
In this example, a c-language code is provided. In the code, a function contains 

a 4-byte integer, an 8-byte buffer and a 1-byte character. 
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void func(char *p) { 

  int i; //4 byte 

  char b[8]; //8 byte 

  char ch; //1 byte 

  … 

} 

 
From the given code, the stack memory layout while allocating memory is 

shown in Table 15. 

Table 15 Stack Layout of Boundary Bit while Allocating Memory 

Address 

0x
28

ac
57

 

0x
28

ac
58

 
     

0x
28

ac
5e

 
0x

28
ac

5f
 

0x
28

ac
64

 
  

0x
28

ac
67

 
… 

Before 
allocating 

Type - - - - - - - - - - - - - - 
Boundary Bit 0 0 0 0 0 0 0 0 0 0 0 0 0 … 

After 
allocating 

Type Char Buffer Integer … 

Boundary Bit 1 0 0 0 0 0 0 0 1 0 0 0 1 … 
 
Some addresses are not continuous owing to memory alignment.  

IV.2.1 Stack-Overflow Detection 
This section demonstrates stack-overflow detection. In this code, a strcpy() 

function is given. 
void func(char *p) { 

  int i; //4 byte 

  char b[8]; //8 byte 

  char ch; //1 byte 

  strcpy(b,p); 

} 

 
If the length of input is 8 bytes, the system will scan bits starting at address 

0x28ac58 ending at address (0x28ac58 + 8 – 2) = 0x28ac5e. There is no 
Boundary Bit set in this range. 

If the length of input is 9 bytes, the system will scan bits starting at address 
0x28ac58 ending at address (0x28ac58 + 9 – 2) = 0x28ac5f. In this case, 
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there is, however, a Boundary Bit set at address 0x28ac5f. Thus, the attack will be 
detected with no false positive or false alarm. 

IV.2.2 Array-Indexing-Error Detection 
In this section, an array-indexing-error detection will be demonstrated. The 

following code shows a case where a reference is inside the boundary (no array-
indexing error). 

 
void func(char *p) { 

  int i; //4 byte 

  char b[8]; //8 byte 

  char ch; //1 byte 

  b[7] = p[0]; 

} 

 
If the index is 7, n = 8 (n – 1 = 7), the system will scan bits starting at 

address 0x28ac58 ending at address (0x28ac58 + 8 – 2) = 0x28ac5e. There 
is no Boundary Bit set in this range. 

The following code shows a case where a reference is outside the boundary 
(accessing with array-indexing error). 

 
void func(char *p) { 

  int i; //4 byte 

  char b[8]; //8 byte 

  char ch; //1 byte 

  b[8] = p[0]; 

} 

 
If the index is 8, n = 9 (n – 1 = 8), the system will scan bits starting at 

address 0x28ac58 ending at address (0x28ac58 + 9 – 2) = 0x28ac5f. In this 
case, there is a Boundary Bit set at address 0x28ac5f. Thus, the attack will be 
detected with no false positive or false alarm. 

IV.2.3 One-Byte Variable 
In case of attacking 1-byte variables, both Stack-overflow and Array-indexing-

error attacks will be explained as follows. 
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IV.2.3.1 Stack-Overflow Detection 
Supposing that the function has a 7-byte buffer and two 1-byte 

characters, the c-language code is provided. 
 

void func(char *p) { 

  char b[7]; //7 byte 

  char ch1; //1 byte 

  char ch2; //1 byte 

  strcpy(&ch1,p); 

} 

 
From the code, the stack memory layout while allocating memory is 

shown in the following Table 16. 

Table 16 Stack Layout of Boundary Bit in case of 1-byte Variables 

Address 

0x
28

ac
57

 

0x
28

ac
58

 

0x
28

ac
59

 
     

0x
28

ac
5f

 
0x

28
ac

60
 

… 

Before 
allocating 

Type - - - - - - - - - - - 

Boundary Bit 0 0 0 0 0 0 0 0 0 0 … 

After 
allocating 

Type Char Char Buffer … 

Boundary Bit 1 1 0 0 0 0 0 0 0 1 … 

 
If the input size is 1 byte, the system will scan bits starting at address 

0x28ac58 ending at address (0x28ac58 + 1 – 2) = 0x28ac57. Nonetheless, 
0x28ac57 is less than 0x28ac58. It can be concluded that there is no attack shown 
as no false negative. 

If the input size is 2 bytes, the system will scan bits starting from address 
0x28ac58 to address (0x28ac58 + 2 – 2) = 0x28ac58. In this case, there is a 
Boundary Bit set at address 0x28ac58. Thus, the attack will be detected with no false 
positive or false alarm. 
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IV.2.3.2 Array-Indexing-Error Detection 
Supposing that the function has a 1-byte buffer and a 1-byte character, 

the c-language code is as follows: 
 

void func(char *p) { 

  char ch1; //1 byte 

  char b[1]; //1 byte 

  char ch2; //1 byte 

  … 

} 

 
From the code, the stack memory layout while allocating memory is 

shown in the following Table 17. 

Table 17 Stack Layout of Boundary Bit in case of 1-byte Buffer 

Address 

0x
28

ac
57

 

0x
28

ac
58

 

0x
28

ac
59

 

… 
Before 

allocating 
Type - - - - 

Boundary Bit 0 0 0 … 

After 
allocating 

Type Char Buffer Char … 
Boundary Bit 1 1 1 … 

 
In case of referencing inside the boundary (no array-indexing error), the 

code is as follows: 
void func(char *p) { 

  char ch1; //1 byte 

  char b[1]; //1 byte 

  char ch2; //1 byte 

  b[0] = p[0]; 

} 

 
If the index is 0, n = 1 (n – 1 = 0), the system will scan bits starting 

at address 0x28ac58 ending at address (0x28ac58 + 1 – 2) = 0x28ac57. 
Nonetheless, 0x28ac57 is less than 0x28ac58. It can be concluded that there is no 
attack shown as false negative. 
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In case of referring to outside the boundary with Array Indexing Error, 
the code is as follows: 

void func(char *p) { 

  char ch1; //1 byte 

  char b[1]; //1 byte 

  char ch2; //1 byte 

  b[1] = p[0]; 

} 

 
If the index is 1, n = 2 (n – 1 = 1), the system will scan bits starting 

at address 0x28ac58 ending at address (0x28ac58 + 2 – 2) = 0x28ac58. In 
this case, there is a Boundary Bit set at address 0x28ac58. Thus, the attack will be 
detected with no false positive or false alarm. 



 

 

CHAPTER V 
THE IMPLEMENTATION OF BOUNDARY BIT 

The implementation of Boundary Bit is stated in this chapter. The guideline is 
divided into 2 parts: hardware and software. 

V.1 Hardware 
Two modifications are necessary to implement Boundary Bit. 
1. An additional hardware bit associated to each byte or word in the memory 

will be added as boundary bit for marking the end of variables or buffers. 
2. A processor will be modified by 

a) adding a new instruction to set/clear boundary bit when memory is 
allocated/deallocated and 

b) adding a new instruction or modified memory-written instructions with 
boundary bit checked. 

However, the performance of bit-scanning is a concern. To efficiently check for 
boundary, a possible solution is to implement the boundary-bit cache (bitmap). The 
benefits are not only faster access time, but also various bit representation for the 
large amount of bit scanning. To ease understanding, we will elaborate on the details 
of this bitmap. 

V.1.1 Boundary Bits and Bitmap  
For write through cache, Store (memory-written) instruction is much slower 

than other instructions. To make it faster, several architectures introduce a write buffer 
between processor and memory. To write to memory, a processor can simply write 
data to the write buffer. The write buffer will then write to memory during later in 
background. This is useful in the pipeline processor. To avoid the saturation, the 
second-level (L2) cache is usually used with the write buffer as shown in Figure 5. 
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Figure 5 Write Buffer and L2 Cache Architecture 

To improve the performance of boundary scan, we can add boundary-bit cache 
(bitmap) at the same level of L2 cache. Moreover, this also allows the bit-scanning 
process to be executed in parallel with the memory-written process. 

The boundary-bit cache can be implemented as a bitmap to store the pack of 
boundary bits of the nearby memory locations. When scanning the pack of boundary 
bits, this behavior provides more spatial locality1 than temporal locality2 [64]. 

For the n-to-1 bitmap, a bit in boundary-bit cache can represent the n 
boundary bits of the address A to A + n - 1. If there is a boundary bit set in the 
range, it will be represented as “1” in the bitmap (an OR of associated bits). For 
example, “01000000” bits in the Boundary Bit section can be represented as “1” in 
the 8-to-1 bitmap of boundary-bit cache, as shown in Figure 6. The bitmap can be 
implemented as multilevel of n-to-1 bitmap to improve the scanning speed of larger 
memory range. 

The concepts are to manage the up-to-date bitmap with a low overhead and 
to balance the size of n that is suitable for the scan of boundary bits. 

                                           
1 Spatial locality is a situation where a nearby reference memory is likely to be referenced in the near future. 
 
2 Temporal locality is a situation where a recently referenced memory is likely to be referenced again in the near future.  
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Figure 6 Boundary-Bit Bitmap Diagram 

V.1.2 Memory Architecture 
Our boundary bit concept from V.1.1 can be designed as shown in Figure 7, 

Figure 8, Figure 9 and Figure 10. To make the implementation simple, this design stores 
boundary bits separated from normal data in the traditional memory without adding 
an additional hardware bit associated to each byte or word in the memory. 

In Figure 9 and Figure 10, bitmap (boundary bit cache) will reduce boundary-
bit scan cycles by trading off more hardware and bitmap management cycles. Bitmap 
can be added more than 1 level, such as in Figure 11. However, it wastes not more 
than 1 cycle to manage bitmap, when setting/clearing boundary bit bitmap, because 
it can be parallel with boundary bit management. 

Moreover, this memory architecture leads to boundary bit protection. If 
attackers need to modify any boundary bit, they must have a root privilege to access 
memory in the boundary bit section. 
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Figure 7 Boundary Bit Memory Interface without Bitmap 

 

Figure 8 Boundary-Bit Memory Interface Controller 
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Figure 9 Boundary-Bit Memory Interface with Bitmap 

 

Figure 10 Bitmap Interface Controller 
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Figure 11 Boundary-Bit Memory Interface with 2-Level Bitmap 

V.1.3 Instructions for Boundary Bits 
The first instruction, setbb, is for setting boundary bit. It is required for memory 

allocation. The operand of the setbb instruction is the address of the last byte of 
each variable, argument or pointer (not the address of that). The instruction format is 
as follows: 

setbb ADDRESS 

 
The second instruction, clrbb, is for clearing boundary bit. It is required for 

memory deallocation. The operand of the clrbb instruction is the same as setbb 
instruction. The instruction format is as follows: 

clrbb ADDRESS 

 
The third new instruction, scnbb, is for scanning boundary bits. The first 

operand is the start address of each variable, argument or pointer. The second operand 
is the value of scanning range which is calculated from variable size or index of array 
Assuming that the scanning range is n, if the starting address is st, the range of scanned 
bits will start from st to st + n - 2. The instruction format is as follows: 

scnbb ADDRESS,N 

V.2 Software 
Besides modifying some hardware to use boundary bit, the system must be 

informed to set a boundary bit at the end of any variable or buffer to mark the 
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boundary by using the new memory-allocated instructions. When writing data to any 
variable or buffer, the system will check whether there is a boundary bit set in a given 
range by using the new memory-written instructions at the runtime. The new 
instructions can be called by in-line assembly code. 

For example, the given c-language code will produce the following assembly 
code. 

void func(char *p) { 

  int i; //4 byte 

  char b[8]; //8 byte 

  char ch; //1 byte 

  b[7] = p[0]; 

} 

 
 Assembly code (generated from Microsoft Visual Studio compiler) is shown as 

follows: 
00000000 push ebp 

00000001 mov ebp,esp 

00000003 sub esp,1Ch 

00000006 xor eax,eax 

00000008 mov dword ptr [ebp-14h],eax 

0000000b mov dword ptr [ebp-18h],eax 

0000000e mov dword ptr [ebp-4],9DC86C9Bh 

00000015 mov dword ptr [ebp-10h],ecx 

00000018 cmp dword ptr ds:[01474288h],0 

0000001f je 00000026 

00000021 call 5B013C60 

00000026 mov eax,dword ptr [ebp-10h] 

00000029 movsx eax,byte ptr [eax] 

0000002c lea edx,[ebp-0Ch] 

0000002f mov byte ptr [edx+7],al 

 
When setting boundary bits, the new instruction, setbb, will be added in the 

memory-allocated section. It must know the size of all variables, argument or pointer 
before allocating memory to calculate the address of their boundary bits. 

Therefore, this part of the assembly code will be: 
… 

mov dword ptr [ebp-14h],eax 

setbb dword ptr [ebp-14h]     ; for ch 

mov dword ptr [ebp-18h],eax 

setbb dword ptr [ebp-15h ]    ; for i 

setbb dword ptr [ebp-5]       ; for b[] 

mov dword ptr [ebp-4],9DC86C9Bh 

mov dword ptr [ebp-10h],ecx 

setbb dword ptr [ebp-0Dh]     ; for *p 

… 
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When scanning boundary bits, the new instruction, scnbb, will be added 

before writing to memory, such as mov instruction with memory as destination (first 
operand).  

Therefore, this part of the assembly code will be: 
… 

mov eax,dword ptr [ebp-10h] ; Get address of *p 

movsx eax,byte ptr [eax]    ; Read value of p[0] to eax 

lea edx,[ebp-0Ch]           ; Get address of b[0] 

scnbb [edx],8               ; Scan Boundary Bit of b[] 

mov byte ptr [edx+7],al     ; Write value from eax to b[7] 

… 

 
From the above example, the mov instruction with displacement addressing 

mode can be embedded with boundary-bit scanning. There is the index number of 
array in this instruction that can be used to calculate the scanning range. 

 



 

 

CHAPTER VI 
EVALUATION 

To evaluate, we create some boundary bit simulations. Then, we evaluate 
boundary-bit approach in 2 aspects: protection efficiency and performance. 

VI.1 Simulation Tools 
Our C++ simulation tools are created on Microsoft Visual Studio 2015. There 

are 2 main parts of these tools. 

VI.1.1 Trace File Generation 
At the beginning, we generate some trace files from our benchmark manually. 

There are 5 instructions that we are interested:  

VI.1.1.1 Set Boundary Bit Instruction 
This setbb instruction is for setting boundary bit. It is required for 

memory allocation. The operand is the address of the last byte of each variable, 
argument or pointer (not the address of that). The instruction format is as follows: 

setbb ADDRESS 

For example, this instruction in the assembly code is shown as follows: 
setbb dword ptr [ebp-5] 

In the trace file, we represent this instruction as follows: 
B ADDRESS 

Note that ADDRESS is hexadecimal. For example, this instruction in the 
trace file is shown as follows:  

B 11E76B 

From the above code, it means to set boundary bit on address 
0x11E76B. 

VI.1.1.2 Clear Boundary Bit Instruction 
This clrbb instruction is for clearing boundary bit. It is required for 

memory deallocation. The operand is the address of the last byte of each variable, 
argument or pointer (not the address of that). The instruction format is similar to setbb 
instruction as follows: 
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clrbb ADDRESS 

For example, this instruction in the assembly code is shown as follows: 
clr dword ptr [ebp-5] 

In the trace file, we represent this instruction as follows: 
C ADDRESS 

Note that ADDRESS is hexadecimal. For example, this instruction in the 
trace file is shown as follows:  

C 11E76B 

From the above code, it means to clear boundary bit on address 
0x11E76B. 

VI.1.1.3 Scan Boundary Bit Instruction 
The scnbb instruction is for scanning boundary bits. The first operand 

is the start address of each variable, argument or pointer. The second operand is the 
value of scanning range which is calculated from variable size or index of array 
Assuming that the scanning range is n, if the starting address is st, the range of scanned 
bits will start from st to st + n - 2. The instruction format is as follows: 

scnbb ADDRESS,N 

For example, this instruction in the assembly code is shown as follows: 
scnbb [edx],128 

In the trace file, we represent this instruction as follows: 
S ADDRESS N 

Note that ADDRESS and N are hexadecimal. For example, this 
instruction in the trace file is shown as follows:  

S 11E770 14 

From the above code, it means to scan boundary bits from address 
0x11E770 to 0x11E770 + 14 – 2 = 0x11E782. 

VI.1.1.4 Read Memory Instruction 
There are many instructions considered as read-memory instructions. 

For example,  

• mov (move) / movsx (move with sign-extension) instructions with 
memory as source (second operand) 

• cmp (compare) instructions with memory 
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• inc (increment) / dec (decrement) instructions with memory 

• add (add) / sub (subtract) / mul (multiply) / div (divide) 
instructions with memory as source (second operand) 

• push instructions from memory 
In the trace file, we represent this instruction as follows: 

R ADDRESS N 

Note that ADDRESS and N are hexadecimal. For example, this 
instruction in the trace file is shown as follows:  

R 11E768 4 

From the above code, it means to read 4-byte data from memory 
address 0x11E768. 

VI.1.1.5 Write Memory Instruction 
There are many instructions considered as write-memory instructions. 

For example,  

• mov (move) instructions with memory as destination (first operand) 

• inc (increment) / dec (decrement) instructions with memory 

• add (add) / sub (subtract) / mul (multiply) / div (divide) 
instructions with memory as destination (first operand) 

• pop instructions into memory 
In the trace file, we represent this instruction as follows: 

W ADDRESS N 

Note that ADDRESS and N are hexadecimal. For example, this 
instruction in the trace file is shown as follows:  

W 11E768 4 

From the above code, it means to write 4-byte data to memory address 
0x11E768. 

VI.1.2 Simulation 
Our architectural design is as shown in Figure 12. 
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Figure 12 Architectural Design for the Test Environment 

There are 3 major parts of the simulation as follows. 

VI.1.2.1 Boundary Bit Set/Clear Management 
When allocating memory, the system must set a boundary bit for each 

variable/buffer. Also, when deallocating memory, the system must clear a boundary 
bit for each variable/buffer. In our design, the memory that contains Boundary Bit 
section is separated from data section (main memory). The system needs address 
translation for boundary bits. 

From Figure 12, the first boundary bit (high-order bit), which is set to 
“0”, in the highest address in the boundary bit section contains the boundary bit of 



 

 

50 

address A. That means the boundary bit of address A is not set. The second boundary 
bit, which is set to “1”, in the same row contains the boundary bit of address A + 1. 
That means the boundary bit of address A + 1 is set. 

For example, if we set boundary bits at address 0x01, 0x0E and 0xA3, 
the boundary bit section will be shown as the following Table 18. 

Table 18 Boundary Bit Section Example 1 

Address Boundary Bits 

0x00-0x07 
0x08-0x0F 

… 
0xA0-0xA7 

0100 0000 
0000 0010 

… 
0001 0000 

VI.1.2.2 Bitmap Set/Clear Management 
Our boundary-bit cache is implemented as a 16-to-1 bitmap. After 

setting/clearing each boundary bit, the bitmap must be updated immediately. 
From Figure 12, the first bit (high-order bit), which is set to “1”, in the 

highest address in the bitmap represents the boundary bits of address A to A + 15. 
That means there is at least a boundary bit of address between address A to A + 15 
is set. 

For example, if we set boundary bits at address 0x01, 0x0E and 0xA3, 
the first two bytes of boundary bits, “0100 0000” and “0000 0010”, which represents 
the boundary bits of address 0x00 to 0x0F, will show in the first byte of 16-to-1 
bitmap as “1000 0000”. The boundary bit of address 0xA3 is show in the second byte 
of bitmap as “0010 0000” because the second byte of bitmap represents the boundary 
bits of address 0x80 to 0xFF. Therefore, the 16-to-1 bitmap will be shown as the 
following Table 19. 

Table 19 16-to-1 Bitmap Section Example 1 

Address Bitmap 
0x00-0x7F 
0x80-0xFF 

1000 0000 
0010 0000 
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VI.1.2.3 Boundary-Bit/Bitmap Scanning 
Boundary-bit/bitmap scanning mechanism is the most delicate. We 

separate into 2 cases: 1) boundary bit only and 2) boundary bit and bitmap. 
In the first case, each byte in the boundary bit section can contain 8 

boundary bits, i.e., each byte contains the boundary bits of address A to A + 7. 
When scanning, it can scan every 8 addresses simultaneously.  However, if the start 
address cannot be exactly divided by 8, the bit offset will be calculated and every 
boundary bit must be checked start from that bit offset. In the same way, if the end 
address cannot be exactly divided by 8, the system will check boundary bit set must 
not belong to the address that more than the end address. From Figure 12, we assume 
that the boundary bit section is shown in the following Table 20. 

Table 20 Boundary Bit Section Example 2 

Address Boundary Bits 
0x000-0x007 
0x008-0x00F 
0x010-0x017 
0x018-0x01F 
0x020-0x027 

… 
0x1A0-0x1A7 
0x1A8-0x1AF 

0001 0000 
0000 0000 
0000 0000 
0001 0001 
0000 0000 

… 
0000 0000 
0001 0000 

 
From above, when scanning from address 0x004 to 0x01A, in the first 

byte “0001 0000”, the system will scan bits starting at bit offset = 4 (address = 0x004) 
and ending at bit offset = 7 (address = 0x007). After that, 2 bytes of boundary bits of 
address 0x008 to 0x017 are scanned but all are no boundary bit set. In the last 
byte “0001 0001”, the system will detect the boundary bit set on bit offset = 3 (address 
= 0x01B) but it is out of scanning scope. Thus, there is no boundary bit set address 
0x004 to 0x01A. 
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In the second case, the system will search in the bitmap first. If there is 
any bit set, it will search deeply in the boundary bit section which the set bit in the 
bitmap is represented. From Figure 12 and Table 20, we assume that the 16-to-1 
bitmap will be shown in the following Table 21. 

Table 21 16-to-1 Bitmap Section Example 2 
Address Bitmap 

0x000-0x07F 
0x080-0x0FF 
0x100-0x17F 
0x180-0x1FF 

1100 0000 
0000 0000 
0000 0000 
0010 0000 

 
From above, when scanning from address 0x070 to 0x1AF, in the first 

byte “1100 0000”, the system will scan bits starting at bit offset = 7 (address = 0x070). 
After that, 2 bytes of bitmap of address 0x080 to 0x17F are scanned but all are no 
boundary bit set. In the last byte “0010 0000”, the system will detect the boundary 
bit set on bit offset = 2 (address = 0x1A0). Thus, there is at least a boundary bit set 
between address 0x1A0 and 0x1AF. Then, the system will search deeply in the 
boundary bit section as Table 20. The byte “0010 0000” is detected that the boundary 
bit set on bit offset = 2 (address = 0x1AB). It is found that there is a boundary bit set 
address 0x1AB. 

To reduce boundary-bit scanning cycles in case of a big array, we have 
2 solutions. First, we modify the 16-to-1 bitmap to 256-to-1 bitmap. Another solution 
is to be 2-level bitmap by adding another bitmap (16-to-1 or 32-to-1 bitmap) as shown 
in Figure 11 on page 43. 

VI.1.3 Simulation Test Environment 
The simulation is written in Microsoft Visual C++. Our test environment is 

conducted on 64-bit Windows 10 with 8 GB RAM.  Because of the limitation of Microsoft 
Visual Studio 2015, we assume our test environment as follows: 

1. There is 1 byte of memory per 1 boundary bit. 
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2. Memory size is 4 MB. 
3. Boundary Bit section size is Memory size / 8 = 512 KB. 
4. Boundary-bit caches are implemented into 3 cases: 

a. 1-level 16-to-1 bitmap 
16-to-1 Bitmap size is Boundary Bit section size / 16 = 32 KB 
b. 1-level 256-to-1 bitmap 
256-to-1 Bitmap size is Boundary Bit section size / 256 = 2 KB 
c. 2-level bitmap 
Level-2 16-to-1 Bitmap size is 32 KB 
Level-1 16-to-1 Bitmap size is 2 KB / 32-to-1 Bitmap size is 1 KB 

VI.2 Evaluation Aspects 
We focus on both protection efficiency and performance aspects.  

VI.2.1 Protection Efficiency  
Before running the simulation, the compiler option needs to disable “/GS 

(Security Check)”. This setting is in the project properties > C/C++ > Code Generation 
> Security Check. It needs to modify to “Disable Security Check (/GS-)” [65]. 

The following example codes are tested. They are all detected using boundary-
bit solution. 

VI.2.1.1 Stack Overflows 
As we mentioned in section II.2.1.1 on page 4. We test 2 types of these 

attacks: on control data and non-control data. 

VI.2.1.1.1 Stack-Overflow Attack on Control Data 
 The test code is given as follows: 

void hack() { 

  Console::WriteLine("HACKED!!!"); 

  Console::ReadLine(); 

} 

void func(char *p) { 

  Console::WriteLine("p address = {0:X}", (int)&p); 

  __asm {   

    setbb dword ptr [ebp-0Ch+3h] 

  } 
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  char b[8]; //8 bytes 

  Console::WriteLine("b address = {0:X}", (int)&b); 

  __asm {   

    setbb dword ptr [ebp-14h+7h] 

  } 

 

  strcpy(b,p); 

  __asm {   

    scnbb dword ptr [ebp-14h], 1Bh 

    clrbb dword ptr [ebp-0Ch+3h] 

    clrbb dword ptr [ebp-14h+7h] 

  } 

 

} 

int main(array<System::String ^> ^args) 

{ 

  String^ s = Convert::ToString((int)&hack, 16); 

  if (s->Length % 2 != 0) 

    s = "0" + s; 

  char ch[] = "00000000"; 

  for (int i = 0; i < s->Length; i+=2) 

  { 

    ch[s->Length - i - 2] = s[i]; 

    ch[s->Length - i - 1] = s[i+1]; 

  } 

  String^ s2 = gcnew String(ch); 

  char ch2[8] = {0,0,0,0,0,0,0,0}; 

  for (int i = 0; i < s->Length; i += 2) 

    ch2[i/2] = (char)Convert::ToInt32(s2->Substring(i, 2), 

16); 

  s2 = gcnew String(ch2); 

  for (int i = 0; i < 0x18; i++) 

    s2 = "0" + s2; 

func((char*)Marshal::StringToHGlobalAnsi(s2).ToPointer()); 

  return 0; 

} 
 
The above code will execute hack() function without calling 

it. The beginning of the code is to calculate the address of the hack() function and 
modify it as the proper input for func() function, as the same way in section II.2.1.1.1 
on page 5. From the experiment, we know that the address of the return address of 
func() function is 0x18 bytes away from variable b. After the end of the func() 
function, the hack() function will be executed. 

If it is detected, the result will be: 
p address = 1EEEA0 

b address = 1EEE98 

BB FOUND! @ 1EEE9F 

HACKED!!! 
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VI.2.1.1.2 Stack-Overflow Attack on Non-Control Data 
The test code is given as follows: 

void func(char *p) { 

  __asm {   

    setbb dword ptr [ebp-0Ch+3h] 

  } 

   

  int i = 0; //4 bytes 

  __asm {   

    setbb dword ptr [ebp-10h+3h] 

  } 

   

  char b[8]; //8 bytes 

  __asm {   

    setbb dword ptr [ebp-18h+7h] 

  } 

  Console::WriteLine("i address = {0:X}", (int)&i); 

  Console::WriteLine("b address = {0:X}", (int)&b); 

 

  Console::WriteLine("Before b = {0}", gcnew String(b)); 

  Console::WriteLine("Before i = {0:X}", i); 

  strcpy(b,p); 

  __asm {   

    scnbb dword ptr [ebp-18h], 0Ch 

  } 

  Console::WriteLine("After b = {0}", gcnew String(b)); 

  Console::WriteLine("After i = {0:X}", i); 

  __asm {   

    clrbb dword ptr [ebp-0Ch+3h] 

    clrbb dword ptr [ebp-10h+3h] 

    clrbb dword ptr [ebp-18h+7h] 

  } 

} 

int main(array<System::String ^> ^args) 

{ 

  func("01234567AAAA"); 

  return 0; 

} 
 
The above code will modify the value of integer i without 

assigning it directly. From the experiment, we know that the address of integer i is 
0x1DEE44 – 0x1DEE3C = 8 bytes away from variable b. Thus, we can calculate 
and modify it as the proper input for func() function, as the same way in section 
II.2.1.1.2 on page 9. After doing strcpy() function, the value of integer i will be 
modified. 

If it is detected, the result will be: 
i address = 2FEE44 

b address = 2FEE3C 

Before b = 
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Before i = 0 

BB FOUND! @ 2FEE43 

After b = 01234567AAAA 

After i = 41414141 

VI.2.1.2 Heap Overflows 
The test code is given as follows: 

void func(char *p) { 

  Console::WriteLine("p address = {0:X}", (int)&p); 

  __asm {   

    setbb dword ptr [ebp-0Ch+3h] 

  } 

 

  char *b = (char *)malloc(8); //8 bytes 

  __asm {   

    setbb dword ptr [ebp-10h+3h] 

    mov   eax, dword ptr [ebp-10h] 

    setbb dword ptr [eax+7h] 

  } 

  Console::WriteLine("b address = {0:X}", (int)&b); 

  Console::WriteLine("b = {0:X}", (int)b); 

   

  strcpy(b, p); 

  __asm {   

    scnbb dword ptr [ebp-10h], 0Ah 

    mov   eax, dword ptr [ebp-10h] 

    clrbb dword ptr [eax+7h] 

    clrbb dword ptr [ebp-0Ch+3h] 

    clrbb dword ptr [ebp-10h+3h] 

  } 

} 

int main(array<System::String ^> ^args) 

{ 

  func("0123456789"); 

  return 0; 

} 
 
The above code will overflow the allocated memory referred by pointer 

b. When the allocated memory is written, it will be scanned and the attack is detected. 
If it is detected, the result will be: 

p address = 13F06B 

b address = 13F067 

b = 99848 

BB FOUND! @ 9984F 

 

VI.2.1.3 Array Indexing Errors 
As we mentioned in section II.2.1.3 on page 11. We test 3 types of these 

attacks: stack (on control/non-control data) and heap. 
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VI.2.1.3.1 Array-Indexing-Errors (Stack) on Control Data 
The test code is given as follows: 

void hack() { 

  Console::WriteLine("HACKED!!!"); 

  Console::ReadLine(); 

} 

void func(char *p) { 

  Console::WriteLine("p address = {0:X}", (int)&p); 

  __asm {   

    setbb dword ptr [ebp-0Ch+3h] 

  } 

 

  char b[8]; //8 bytes 

  Console::WriteLine("b address = {0:X}", (int)&b); 

  __asm {   

    setbb dword ptr [ebp-14h+7h] 

  } 

 

  b[0x18] = p[0]; 

  __asm {   

    scnbb dword ptr [ebp-14h], 19h 

  } 

 

  b[0x19] = p[1]; 

  __asm {   

    scnbb dword ptr [ebp-14h], 1Ah 

  } 

 

  b[0x1A] = p[2]; 

  __asm {   

    scnbb dword ptr [ebp-14h], 1Bh 

  } 

 

  b[0x1B] = p[3]; 

  __asm {   

    scnbb dword ptr [ebp-14h], 1Ch 

  } 

 

  __asm {   

    clrbb dword ptr [ebp-0Ch+3h] 

    clrbb dword ptr [ebp-14h+7h] 

  } 

 

} 

int main(array<System::String ^> ^args) 

{ 

  String^ s = Convert::ToString((int)&hack, 16); 

  if (s->Length % 2 != 0) 

    s = "0" + s; 

  char ch[8] = {0,0,0,0}; 

  for (int i = 0; (s->Length - (2 * i) - 2) >= 0; i++) 

    ch[i] = (char)Convert::ToInt32( 

            s->Substring((s->Length - (2*i) - 2), 2), 16); 

  func(ch); 

  return 0; 

} 
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The above code will execute hack() function without calling 
it. The beginning of the code is to calculate the address of the hack() function and 
modify it as the proper input for func() function, as the same way in section II.2.1.3 
on page 11. From the experiment, we know that the address of the return address of 
func() function is 0x18 bytes away from variable b. After the end of the func() 
function, the hack() function will be executed. 

If it is detected, the result will be: 
p address = 13ED54 

b address = 13ED4C 

BB FOUND! @ 13ED53 

BB FOUND! @ 13ED53 

BB FOUND! @ 13ED53 

BB FOUND! @ 13ED53 

HACKED!!! 

VI.2.1.3.2 Array-Indexing-Errors (Stack) on Non-Control Data 
The test code is given as follows: 

void func(char *p) { 

  __asm {   

    setbb dword ptr [ebp-0Ch+3h] 

  } 

   

  int i = 0; //4 bytes 

  __asm {   

    setbb dword ptr [ebp-14h+3h] 

  } 

   

  char b[8]; //8 bytes 

  __asm {   

    setbb dword ptr [ebp-1Ch+7h] 

  } 

  Console::WriteLine("i address = {0:X}", (int)&i); 

  Console::WriteLine("b address = {0:X}", (int)&b); 

 

  Console::WriteLine("Before i = {0:X}", i); 

 

  int diff = (int)&i - (int)&b; 

  __asm {   

    setbb dword ptr [ebp-10h+3h] 

  } 

 

  b[diff] = p[14]; 

  __asm { 

    mov   eax, dword ptr [ebp-10h] 

    scnbb dword ptr [ebp-1Ch], eax 

  } 

  Console::WriteLine("After i = {0:X}", i); 

  __asm {   

    clrbb dword ptr [ebp-0Ch+3h] 

    clrbb dword ptr [ebp-10h+3h] 
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    clrbb dword ptr [ebp-14h+3h] 

    clrbb dword ptr [ebp-1Ch+7h] 

  } 

} 

int main(array<System::String ^> ^args) 

{ 

  func("01234567890AAAA"); 

  return 0; 

} 
 
The above code will modify the value of integer i without 

assigning it directly. From the experiment, we know that the address of integer i is 
diff = 0x3FF230 – 0x3FF228 = 8 bytes away from variable b. Thus, we can 
calculate and modify it as the proper input for func() function, as the same way in 
section II.2.1.3 on page 11. After assigning a new value to b[diff], the value of integer 
i will be modified. 

If it is detected, the result will be: 
i address = 3FF230 

b address = 3FF228 

Before i = 0 

BB FOUND! @ 3FF22F 

After i = 41 

VI.2.1.3.3 Array-Indexing-Errors (Heap) 
The test code is given as follows: 

void func(char *p) { 

  Console::WriteLine("p address = {0:X}", (int)&p); 

  __asm {   

    setbb dword ptr [ebp-0Ch+3h] 

  } 

 

  char *b = (char *)malloc(8); //8 bytes 

  __asm {   

    setbb dword ptr [ebp-10h+3h] 

    mov   eax, dword ptr [ebp-10h] 

    setbb dword ptr [eax+7h] 

  } 

  Console::WriteLine("b address = {0:X}", (int)&b); 

  Console::WriteLine("b = {0:X}", (int)b); 

   

  *(b + 12) = p[0]; 

  __asm {   

    scnbb dword ptr [ebp-10h], 0Ch 

    mov   eax, dword ptr [ebp-10h] 

    clrbb dword ptr [eax+7h] 

    clrbb dword ptr [ebp-0Ch+3h] 

    clrbb dword ptr [ebp-10h+3h] 

  } 

} 
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int main(array<System::String ^> ^args) 

{ 

  func("0123456789"); 

  return 0; 

} 
 
The above code will access outside the allocated memory 

referred by pointer b. When accessing memory, it will be scanned and the attack is 
detected. 

If it is detected, the result will be: 
p address = 2FEF28 

b address = 2FEF24 

b = 234398 

BB FOUND! @ 23439F 

VI.2.2 Performance 
For clarity, we count clock cycles of all instruction executions as mentioned in 

section VI.1.2 on page 48. Thus, we make the following assumptions about our test 
environment: 

1. Boundary Bit Set/Clear management uses 1 cycle per instruction. 
2. Bitmap Set/Clear management uses 1 cycle per instruction. 
3. Boundary Bit and Bitmap scanning uses 1 cycle per byte of boundary bits. 

(Up to scanning method) 
4. Read Memory instruction uses 1 cycles per byte. [66] 
5. Write Memory instruction uses 2 cycles per byte. [66] 

There are some examples of codes and instruction representations in the trace 
files. 

VI.2.2.1 Variable/Argument Declaration 
When declaring a variable/argument, the system will allocate the 

memory up to the size of variable/argument type. For example, the size of “char”, 
“int”, “double” for Visual C++ in Microsoft Visual Studio 2015 are 1, 4, 8 bytes 
respectively. To calculate the address of boundary bit set for each variable/argument, 
which is the last byte of each variable/argument, we must know the address and the 
size of this variable/argument. For instance, we declare an integer which is allocated 
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at address A. The address of boundary bit will be A + size – 1 = A + 4 – 1 = 
A + 3. Thus, we represent this instruction as B A+3. 

The same method also applies to a buffer/array, if a character array is 
allocated at address A and the array size is n bytes, the address of boundary bit will 
be A + n – 1. 

In case of a pointer, we set a boundary bit of the pointer and a 
boundary bit of the memory block which the pointer points to. Normally, the pointer 
size is 4 bytes in the 32-bit system. If a pointer is allocated at address PA, the address 
of boundary bit will be PA + 4 – 1. If a memory block is allocated at address MA 
and the block size is n bytes, the address of boundary bit will be MA + n – 1. 
Therefore, the set instructions will be B PA+3 and B MA+n-1. 

VI.2.2.2 The End of Variable/Argument Existence 
At the end of variable/argument existence, the system will deallocate 

the memory. The instructions will use the same address as setting a boundary bit. If 
an integer is allocated at address A, this clear instruction will be C A+3. 

VI.2.2.3 Variable/Argument Access 
There are some example codes as shown in Table 22. To reduce 

unnecessary scanning cycles, some write memory instructions will not scan before 
write memory. 

The following table, some operands can be described as follows: 

• i_address means the address of variable i 

• i_size means the size of variable i 

• mem_address means the address of allocated memory block 

• p means the value of variable p 
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Table 22 Example Codes and Instruction in Trace Files 

Example Codes Instruction in Trace Files 
int i B i_address+i_size-1 

i++ R i_address i_size 

W i_address i_size 

i = 1 W i_address i_size 

a = b R b_address b_size 

S a_address b_size 

W a_address b_size 

a > b R a_address a_size 

R b_address b_size 

buf[i] = n R i_address i_size 

R n_address n_size 

S buf_address (i+1)*buf[i]_size 

W buf[i]_address n_size 

n = buf[i] R i_address i_size 

R buf[i]_address buf[i]_size 

S n_address buf[i]_size 

W n_address buf[i]_size 

p = (char*)malloc(n) R n_address n_size 

B mem_address+n-1 

S p_address p_size 

W p_address p_size 

*(p + i) = a R a_address a_size 

R i_address i_size 

R p_address p_size 

S p i+1 

W p+i a_size 

strncpy(arr2, arr1, n) R n_address n_size 

R arr1_address n 

S arr2_address n 

W arr2_address n 

 

VI.3 Simulation Results 
We create 2 cases for simulation. 

VI.3.1.1 Case 1: Intensive Read/Write Buffer (Bubble Sort) 
This bubble-sort program is a good simple example to show how to 

implement boundary bit approach with a buffer. Overall instruction cycles and 
slowdown of boundary-bit implementation with/without Bitmap are shown in Table 
23 and Figure 13. Slowdown percentage is calculated as follows: 

𝑆𝑙𝑜𝑤𝑑𝑜𝑤𝑛 = (
ReadWrite + Overhead

ReadWrite
 –  1) ×100 % 
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“ReadWrite” means instruction cycles from read/write memory 
instruction in VI.1.1.4 and VI.1.1.5. “Overhead” means instruction cycles from 
set/clear/scan boundary bit instructions in section VI.1.1.1, VI.1.1.2 and VI.1.1.3 on page 
46 - 47. 

Overhead cycles of boundary bits without bitmap are shown in Table 
25 and Figure 14. Overhead cycles of boundary bits with 1-level 16-to-1 bitmap are 
shown in Table 26 and Figure 15. For optimization by changing to 1-level 256-to-1 
bitmap, optimized instruction cycles are shown in Table 24. These optimized scan 
cycles of boundary bits are shown in Table 27. In case of 2-level bitmap, they are 
shown in Table 28. In case of data size = 10000, the detailed scan cycles are shown in 
Figure 16. 

Table 23 Overall Instruction Cycles vs Data Size in the Bubble-Sort Program 

Data 
Size 

Original 
Cycles 

Boundary Bit Boundary Bit with Bitmap 
Cycles Slow (%) Cycles Slow (%) 

10 3624 3942 8.77 3935 8.58 
100 309154 332567 38.22 427316 7.57 
1000 31552131 143247583 354.00 41213399 30.62 
10000 3145601035 113991054552 3523.82 10271375417 226.53 

Table 24 Optimized Instruction Cycles vs Data Size in the Bubble-Sort Program 
Data 
Size 

256-to-1 Bitmap 2-Level 16/16 Bitmap 2-Level 32/16 Bitmap 
Cycles Slow (%) Cycles Slow (%) Cycles Slow (%) 

1000 33833687 7.23 35347054 12.02 36096664 14.40 

10000 3765474362 19.71 3890471569 23.67 3770446711 19.86 

Note: “32/16 Bitmap” means level-1 bitmap is a 32-to-1 bitmap and level-2 bitmap is 
a 16-to-1 bitmap. 
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Table 25 Overhead Cycles without Bitmap in the Bubble-Sort Program 

Data Size 
Boundary Bit 

Set/Clear Scan 
10 32 286 
100 204 117958 

1000 1946 111693506 
10000 19794 110845433723 

Table 26 Overhead Cycles with 16-to-1 Bitmap in the Bubble-Sort Program 

Data Size 
Boundary Bit Bitmap 

Set/Clear Scan Set/Clear Scan 
10 32 103 32 144 
100 204 5137 204 17868 
1000 1946 1513367 1946 8144009 
10000 19794 124674311 19794 7001060483 

Table 27 Overhead Cycles with 256-to-1 Bitmap in the Bubble-Sort Program 

Data Size 
Boundary Bit Bitmap 

Set/Clear Scan Set/Clear Scan 
1000 1946 1008244 1946 1269420 
10000 19794 99720276 19794 520113463 

Table 28 Scan Cycles with 2-Level Bitmap in the Bubble-Sort Program 

Data Size Boundary Bit 
16/16 Bitmap 32/16 Bitmap 

Level 1 Level 2 Level 1 Level 2 
1000 1513367 1269420 1008244 1010786 2016488 

10000 124674311 520113463 100043172 297417913 202713864 
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Figure 13 Overall Instruction Cycles vs Data Size in the Bubble-Sort Program 

 

Figure 14 Overhead Cycles without Bitmap in the Bubble-Sort Program 
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Figure 15 Overhead Cycles with 1-Level Bitmap in the Bubble-Sort Program 

 

Figure 16 Scan Cycles with 1-Level and 2-Level Bitmap in the Bubble-Sort Program 

As the simulation result, the smallest data size is 10. Their slowdown of 
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However, bitmap (boundary bit cache) can reduce the slowdown by 
reducing scan cycles. To decrease more scan cycles in case of big data size, we have 
2 solutions. First, we change a 1-level bitmap from 16-to-1 bitmap to 256-to-1 bitmap. 
Second, we add another level of a 16-to-1 bitmap. The slowdown result shows that 
the first solution can decrease scan cycles more than the second solution. Thus, we 
try another solution by changing a level-1 bitmap from 16-to-1 bitmap to 32-to-1 
bitmap. In case of data size = 1000, the slowdown result does not decrease. Even 
though the scan cycles of level-1 bitmap is decreased, the scan cycles of level-2 
bitmap is more increased. In case of data size = 10000, the slowdown result decreases 
as expected. 

We conclude that the optimization solution is to add the proper size of 
a n-to-1 bitmap. The bigger n value is suitable for a bigger array/buffer. 

VI.3.1.2 Case 2: Random Write Memory 
This program randomly simulates intensive write memory in many ways, 

such as: 

• Write to character variables 

• Write to integer variables 

• Write to double variables 

• Access a big array/buffer (100,000 entries) 

• Access a big memory block using a pointer (100,000 B) 

• Write data vary in size to a big array/buffer (100,000 entries) 
We randomize for 10,000/100,000/1,000,000/10,000,000 times. Overall 

instruction cycles and slowdown of boundary-bit implementation with/without Bitmap 
are shown in Table 29 and Figure 17. 

Overhead cycles of boundary bits without bitmap are shown in Table 
31 and Figure 18. Also, overhead cycles of boundary bits with 1-level 16-to-1 bitmap 
are shown in Table 32 and Figure 19. For optimization by changing to 1-level 256-to-1 
bitmap, and to 2-level bitmap, these optimized instruction cycles are shown in Table 
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30 and optimized scan cycles of boundary bits are shown in Table 33. In case of 
10,000,000 times, the detailed scan cycles are shown in Figure 20. 

Table 29 Overall Instruction Cycles in the Random Write Memory Program 

Random 
Times 

Original 
Cycles 

Boundary Bit Boundary Bit with Bitmap 
Cycles Slow (%) Cycles Slow (%) 

10000 23204503 39077311 68.40 24317852 4.80 
100000 234273934 396420226 69.21 245566672 4.82 

1000000 2358780502 3983282338 68.87 2472176919 4.81 
10000000 23650789851 39880930514 68.62 24785993009 4.80 

Table 30 Optimized Instruction Cycles in the Random Write Memory Program 

Random 
Times 

256-to-1 Bitmap 2-Level 16/16 Bitmap 

Cycles Slow (%) Cycles Slow (%) 
10000 23392359 0.81 23731308 2.27 
100000 236190074 0.81 237300290 1.29 
1000000 2377615868 0.80 2392061404 1.41 

10000000 23837868276 0.79 23995229307 1.46 

Table 31 Overhead Cycles without Bitmap in the Random Write Memory Program 

Random 
Times 

Boundary Bit 
Set/Clear Scan 

10000 40086 15832722 
100000 399542 161746750 
1000000 3998336 1620503500 
10000000 39989702 16190150961 

Table 32 Overhead Cycles with Bitmap in the Random Write Memory Program 

Random 
Times 

Boundary Bit Bitmap 

Set/Clear Scan Set/Clear Scan 
10000 40086 25077 40086 1008100 
100000 399542 216704 399542 10276950 

1000000 3998336 2499966 3998336 102899779 
10000000 39989702 25000066 39989702 1030223688 
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Table 33 Scan Cycles in the Random Write Memory Program 

Random 
Times 

256-to-1 Bitmap 2-Level 16/16 Bitmap 
Boundary Bit Bitmap Boundary Bit Level 1 Level 2 

10000 26928 80756 25077 80756 340800 
100000 300598 816458 249964 816458 1160850 

1000000 2673404 8165290 2499966 8165290 14618974 
10000000 25072101 82026920 25000066 82026920 157433066 

 

 

Figure 17 Overall Instruction Cycles in the Random Write Memory Program 
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Figure 18 Overhead Cycles without Bitmap in the Random Write Memory Program 

 

Figure 19 Overhead Cycles with 1-Level 16-to-1 Bitmap in the Random Write Memory 
Program 
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Figure 20 Scan Cycles with 1-Level and 2-Level Bitmap in the Intensive Write Memory 
Program 

The simulation result shows that the more random times causes the 
more overall instruction cycles. The slowdown is 4.8 % using 1-level 16-to-1 bitmap. 

If we want to reduce scan cycles, we also have 2 solutions. First, we 
change a 1-level bitmap from 16-to-1 bitmap to 256-to-1 bitmap. Its slowdown is 
reduced to 0.8 %. Second, we add another level of a 16-to-1 bitmap. Its average 
slowdown is reduced to 1.6 %. The slowdown result shows that the first solution can 
decrease scan cycles more than the second solution. 

Furthermore, the average miss rate from our test is shown in Table 34. 

Table 34 The Miss Rate in the Intensive Write Memory Program 

Bitmap Types 
Average Miss Rate 

Level 1 Level 2 

1-level 16-to-1 bitmap 0.013 
1-level 256-to-1 bitmap 0.166 
2-level 16/16 bitmap 0.321 0.095 
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The simulation result shows that the miss rate of 256-to-1 bitmap is 
higher than the miss rate of 16-to-1 bitmap. For 2-level bitmap, the miss rate of level-
1 bitmap is much higher than the miss rate of 1-level 256-to-1 bitmap. 

In the same way, we can conclude that the optimization solution is to 
add the proper size of a 1-level bitmap may be better than 2-level bitmap. 

VI.3.2 Discussion 
The evaluation is concluded into 2 aspects. First, in aspect of protection 

efficiency, our approach can protect all types of buffer-overflow attacks we tested. 
Second, in aspect of performance, our assumption about instruction cycles in 

section VI.2.2 (on page 60) reflects the upper-bound simulation results. In other words, 
the overall instruction cycles may be less than our simulations because the real 
hardware implementation can be parallel. For example, overhead cycles for boundary 
bits and bitmap can be reduced to half. Moreover, during the written memory, it is no 
need to wait until the process finishes scanning boundary bits.



 

 

CHAPTER VII 
ANALYSIS 

In this chapter, we will analyze the advantages and potential disadvantages 
issues of boundary bit. We will also address the performance issue of boundary bit. 

VII.1 Advantages 
There are many advantages of our solution as follows. 

VII.1.1 Prevent All Types of Buffer-Overflow Attacks 
This approach prevents 2 buffer-overflow characteristics: len:buff and 

out:buff, which cover both legacy types and new types of buffer-overflow attacks. 
No matter what the target is control data or non-control data, our approach can 
protect all. 

VII.1.2 Fixed and Low Additional Memory Usage 
Additional memory usage for storing all boundary bits is fixed and it uses less 

memory for metadata. Besides using less memory than most software solutions, 
boundary bit uses less memory for metadata comparing to most hardware solutions 
as well. For x86 architecture, Segmentation uses additional 3 words per variable for 
metadata, containing starting address, ending address (or limit) and current address. 
However, Boundary Bit uses a fixed cost 1 bit per memory word/byte. In directly, this 
is equivalent to 1 bit per variable. 

If there are 100 variables with 4-byte size, Segmentation consumes 3 x 100 = 
300 words for metadata. Assuming that a word contains 4 bytes, segmentation would 
require 300 x 4 = 1200 bytes. Boundary Bit only consumes 100 x 4 / 8 = 50 bytes. In 
this case, comparing to Segmentation, Boundary Bit requires 24 times less memory. 

VII.1.3 Low Performance Overhead 
Scanning every bit does not make it slow because the hardware mechanism 

for scanning can be parallel. On minimal, a byte scan can cover up to 8 bits. Therefore, 
its performance overhead will not be too high comparing to software approach. 



 

 

74 

VII.2 Disadvantages 
Although, hardware approach has many strengths, it does introduce 

compatibility issue. 

VII.2.1 Hardware Incompatibility 
To apply Boundary Bit, the existing hardware cannot be used. However, 

hardware has its life expectancy. When it is time to change, the new hardware with 
the Boundary Bit can be a good choice for enhancing security. 

VII.2.2 Software Incompatibility 
Because of the design, programmers or compilers must tell the system to set 

bit at the end of any variable or buffer for setting the boundary. Thus, Boundary Bit is 
not completely transparent. However, every nowadays software must be updated 
regularly to fix bugs and vulnerabilities. Besides, it provides a light-weight mechanism 
for software to set a boundary. The setting can be embedded into memory allocation. 

VII.3 Performance Analysis 
Hardware-software co-design and optimization is very important to improve the 

performance. The caching bitmap can improve the boundary-bit scanning efficiency. 
The memory access time of bit-scanning can be greatly reduced, although it is not in 
parallel. It can be modelled as follows: 

𝑆𝑐𝑎𝑛 𝐶𝑦𝑐𝑙𝑒𝑠 = 𝐻𝑖𝑡 𝐶𝑦𝑐𝑙𝑒𝑠 + (𝑀𝑖𝑠𝑠 𝑅𝑎𝑡𝑒 × 𝑀𝑖𝑠𝑠 𝐶𝑦𝑐𝑙𝑒𝑠) 
• Scan Cycles is the average number of boundary-bit scanning cycles for 1 

Kbytes of boundary bits. 

• Hit Cycles is the max number of cycles when scanning in the boundary-
bit cache (bitmap). It is up to the bitmap size. 

• Miss Cycles is the max number of cycles when scanning in the boundary-
bit section (in the memory) after scanning in the bitmap is insufficient. 

• Miss Rate is the fraction of accesses which are a miss. 
From our assumption in section VI.2.2 (on page 60), 1 cycle can scan 1 byte (8 

bits) of boundary bits. The miss rate from our test is shown in Table 34 on page 71. 
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In the case of the 1-level 16-to-1 bitmap, when it hits, the hit cycle is 1024 / 
16 = 64 cycles for 1 Kbytes. When it misses, the miss cycle is 16 / 8 = 2 cycles. As a 
result, its scan cycles will be 64 + (0.013 × 2) = 64.026 cycles. 

In the case of the 1-level 256-to-1 bitmap, when it hits, the hit cycle is 1024 / 
256 = 4 cycles for 1 Kbytes. When it misses, the miss cycle is 256 / 8 = 32 cycles. As a 
result, its scan cycles will be 4 + (0.166 × 32) = 9.312 cycles. 

In the case of the 2-level 16/16 bitmap, when it hits in level 1, the hit cycle is 
1024 / (16 × 16) = 4 cycles. When it misses in level 1, the miss cycle is calculated by 
scan cycles in level 2. When it hits in level 2, the hit cycle is 1024 / 16 = 64 cycles. 
When it misses in level 2, the miss cycle is 16 / 8 = 2 cycles. its level-2 scan cycles will 
be 64 + 0.095 × 2 = 64.19 cycles. As a result, its level-1 scan cycles will be 4 + (0.321 
× (64 + 0.095 × 2)) = 24.60499 cycles. 

The scan cycles of 1-level 256-to-1 bitmap is less than the scan cycles of 2-
level 16/16 bitmap. Therefore, from the model and from simulation results, we suggest 
an optimization solution by using the proper “n” of level-1 n-to-1 bitmap as for the 
better performance. 

Moreover, the scanning can be done in parallel with their associated data by 
modifying the processor. Given that there are several hardware-level parallelisms that 
can be implemented to hide the overhead of boundary scanning, we conclude that 
very little performance penalty is introduced. 

VII.4 Cost Analysis 
To implement our boundary bit approach, described in CHAPTER V on page 38, 

it needs to modify both hardware and software. 
Firstly, in the hardware part, additional memory usage is a fixed cost. In other 

words, it does not vary on the program size because the system allocates the block 
of memory for storing all boundary bits. 

Secondly, a processor must be modified to add more instruction set about 
boundary bit mechanism. That can be parallel. Thus, this cost is a little performance 
penalty. It is a trade-off between performance and security. 
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Lastly, the boundary bit instruction must be called in the software. This can be 
implemented by modifying a compiler. This is not transparent to the current software 
but this cost can be accepted for more security. 

VII.5 The Impact of Virtual Memory 
Addresses we mentioned before in this thesis are all physical addresses. In this 

issue, we will describe how virtual memory impacts the boundary bit management. 
Virtual memory extends physical memory capacity by using swap space from 

hard disk. It separates into “pages”, which makes a program relocatable. 
The block of the Boundary Bit section is simply managed by following the page 

of the data section. When the page is swapped out from memory to hard disk, all 
boundary bits in the range of the page’s addresses are swapped out to hard disk as 
well. In the same way, when the page is swapped into memory from hard disk, their 
boundary bits are swapped back into memory. 

VII.6 Boundary Bit Protection 
The boundary bit storage, from our design in section V.1.2 on page 40, is not 

only to store boundary bits but also to protect them. Only the root privilege can 
modify boundary bits, no matter using any type of buffer overflow attacks or using the 
boundary bit instruction such as clear boundary bit (clrBB). 

To clarity, if an attacker wants to attack the system by bypassing the boundary 
bits to exploit a buffer overflow vulnerability. Their target is to modify boundary bit 
stored in the memory and bitmap. They may write the code for clearing all boundary 
bits. Then they want to execute the code. However, they must have already own the 
privilege to execute. If they have the privilege, that means they own the system and 
they do not need to hack anymore.



 

 

CHAPTER VIII 
CONCLUSION 

In this chapter, we provide contributions and conclusion of this research. 

VIII.1 Contributions 
The contributions are as follows: 
1. Purpose a new hardware solution, namely “Boundary Bit”, for preventing 

buffer-overflow attacks. 
2. Analyze the effectiveness that this solution can prevent which types of 

buffer-overflow attacks 
3. Analyze the efficiency that tradeoffs are worth to implement this solution 

VIII.2 Conclusion 
The underlying concept of Boundary-Bit is using bound-checking to ensure that 

transferring data do not exceed the allocated capacity of variables or buffers. The goal 
is to provide a hardware solution against all types of buffer-overflow attacks, including 
non-control data attacks and array-indexing errors, with the lower overhead than other 
software solutions. 

To trade few performance and new hardware for more security, the key point 
is to reduce scanning cycles by using bitmap as a boundary-bit cache. 

Moreover, Boundary Bit is easy to implement. It requires few software 
modification to deploy this scheme. 

Though we have demonstrated viability at the architectural level, this solution 
can also be implemented in software run-time environment such as Java Virtual 
Machine or .NET framework. 

Boundary Bit provides bound checking at the architectural level. This 
mechanism should provide protection against future buffer-overflow attacks. Giving the 
security provided, we believe Boundary Bit is a solution of buffer-overflow attacks. 
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