

การป้องกันบัฟเฟอร์โอเวอร์โฟลว์ด้วยวิธีบิตระบุขอบเขต

นางสาวสิริสรา เจียมวงศ์แพทย์

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรดุษฎีบัณฑิต
สาขาวิชาวิศวกรรมคอมพิวเตอร์ ภาควิชาวิศวกรรมคอมพิวเตอร์

คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย
ปีการศึกษา 2559

ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

BUFFER-OVERFLOW PROTECTION USING BOUNDARY BIT

Miss Sirisara Chiamwongpaet

A Dissertation Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy Program in Computer Engineering

Department of Computer Engineering
Faculty of Engineering

Chulalongkorn University
Academic Year 2016

Copyright of Chulalongkorn University

Thesis Title BUFFER-OVERFLOW PROTECTION USING
BOUNDARY BIT

By Miss Sirisara Chiamwongpaet
Field of Study Computer Engineering
Thesis Advisor Assistant Professor Krerk Piromsopa, Ph.D.

 Accepted by the Faculty of Engineering, Chulalongkorn University in Partial
Fulfillment of the Requirements for the Doctoral Degree

 Dean of the Faculty of Engineering

(Associate Professor Supot Teachavorasinskun, Ph.D.)

THESIS COMMITTEE

 Chairman

(Professor Prabhas Chongstitvatana, Ph.D.)

 Thesis Advisor

(Assistant Professor Krerk Piromsopa, Ph.D.)

 Examiner

(Associate Professor Kultida Rojviboonchai, Ph.D.)

 Examiner

(Assistant Professor Natawut Nupairoj, Ph.D.)

 External Examiner

(Assistant Professor Putchong Uthayopas)

 iv

THAI ABSTRACT

สิริสรา เจียมวงศ์แพทย์ : การป้องกันบัฟเฟอร์โอเวอร์โฟลว์ด้วยวิธีบิตระบุขอบเขต
(BUFFER-OVERFLOW PROTECTION USING BOUNDARY BIT) อ.ที่ปรึกษาวิทยานิพนธ์
หลัก: ผศ. ดร.เกริก ภิรมย์โสภา{, 85 หน้า.

การป้องกันบัฟเฟอร์โอเวอร์โฟลว์ด้วยวิธีบิตระบุขอบเขต คือการตรวจสอบขอบเขตด้วยวิธี
ทางสถาปัตยกรรม เพ่ือป้องกันการโจมตีด้วยบัฟเฟอร์โอเวอร์โฟลว์ วิธีนี้จะเพ่ิมบิตระบุขอบเขต 1 บิต
ของหน่วยความจ าทุกแถวส าหรับการตรวจสอบขอบเขต และซอฟต์แวร์จะก าหนดค่าบิตระบุขอบเขต
นี้เพ่ือสร้างขอบเขตขึ้นมา เมื่อต้องการเขียนบนหน่วยความจ านี้ ฮาร์ดแวร์จะตรวจสอบขอบเขตด้วย
บิตระบุขอบเขตนี ้การออกแบบสถาปัตยกรรมนี้สามารถป้องกันการโจมตีด้วยบัฟเฟอร์โอเวอร์โฟลว์ได้
เกือบทุกรูปแบบ ซึ่งรวมถึงการโจมตีข้อมูลส่วนที่ไม่เป็นตัวควบคุมระบบ เช่น ตัวแปร และอาร์กิวเมนต์
เป็นต้น และรูปแบบอาร์เรย์อินเด็กซิงเออเรอร์ (Array Indexing Errors) ด้วย ซอฟต์แวร์สามารถน า
วิธีบิตระบุขอบเขตมาปรับใช้ได้ง่าย นอกจากนี้ วิธีบิตระบุขอบเขตมีประสิทธิภาพในการป้องกันการ
โจมตีด้วยบัฟเฟอร์โอเวอร์โฟลว์ โดยลดสมรรถนะของระบบน้อยมาก เนื่องจากฮาร์ดแวร์สามารถลด
ค่าใช้จ่ายส่วนใหญ่ในการตรวจสอบบิตลงได้ ด้วยการใช้แผนที่บิต (Bitmap) ที่มี 1 ชั้นและมีขนาดที่
เหมาะสม จะดีกว่าการใช้แผนที่บิตที่มี 2 ชั้น

ภาควิชา วิศวกรรมคอมพิวเตอร์

สาขาวิชา วิศวกรรมคอมพิวเตอร์

ปีการศึกษา 2559

ลายมือชื่อนิสิต

ลายมือชื่อ อ.ที่ปรึกษาหลัก

 v

ENGLISH ABSTRACT

5471430621 : MAJOR COMPUTER ENGINEERING
KEYWORDS: INVASIVE SOFTWARE / SECURITY KERNELS / SECURITY AND PROTECTION /
SYSTEM ARCHITECTURES / UNAUTHORIZED ACCESS / BUFFER OVERFLOW

SIRISARA CHIAMWONGPAET: BUFFER-OVERFLOW PROTECTION USING
BOUNDARY BIT. ADVISOR: ASST. PROF. KRERK PIROMSOPA, Ph.D. {, 85 pp.

Boundary Bit is a new architectural bound-checking approach for preventing
against buffer-overflow attacks. It adds an associated bit to each memory entry to
support bound checking. To make a boundary, software can simply set a (boundary)
bit. On memory writing, hardware will dynamically validate limit using the boundary
bit. With a minimal hint from software (compiler), our architectural design eliminates
most (if not all) types of buffer-overflow attacks, including attacks on non-control data
(variables and arguments) and array-indexing errors. Software can easily support
Boundary Bit with few (minor) modification. Boundary Bit is secure and efficient with
few (none) performance degradation. Our implementation shows that hardware can
absorbed most bit-scanning overhead by using bitmap. An 1-level bitmap with proper
size is better than a 2-level bitmap.

Department: Computer Engineering
Field of Study: Computer Engineering
Academic Year: 2016

Student's Signature

Advisor's Signature

 vi

ACKNOWLEDGE MENTS

ACKNOWLEDGEMENTS

I would like to thank everyone who participated in my academic
accomplishments.

First, I would like to thank my advisor Asst. Prof. Krerk Piromsopa, Ph.D.,
Faculty of Engineering, Chulalongkorn University, for everything. He pushes me
towards my dreams and always gives me very good advice when I have any
problem. I would also like to thank all faculty members and friends for educating,
helping and sharing a great experience with me since I studied my bachelor degree.

Second, I would like to acknowledge the Department of Computer
Engineering, Faculty of Engineering, Chulalongkorn University, for giving a CP
Chulalongkorn Graduate Scholarship. I would also like to acknowledge the Graduate
School of Chulalongkorn University for giving a Chulalongkorn University Graduate
Scholarship to Commemorate the 72nd Anniversary of His Majesty King Bhumibol
Adulyadej.

Finally, I must gratitude my parents for always supporting me and believing
in me.

CONTENTS
 Page

THAI ABSTRACT ... iv

ENGLISH ABSTRACT ...v

ACKNOWLEDGEMENTS ... vi

CONTENTS ... vii

CHAPTER I INTRODUCTION .. 1

I.1 Background and Problem ... 1

I.2 Glossary .. 2

I.3 Objectives ... 2

CHAPTER II BUFFER-OVERFLOW ATTACKS ... 3

II.1 Fundamental of Buffer-Overflow Attacks ... 3

II.2 Types of Buffer-Overflow Attacks ... 4

II.2.1 Classification by Attack Locations .. 4

II.2.1.1 Stack Overflows .. 4

II.2.1.1.1 Example 1: Stack-Overflow Attacks on Control Data ... 5

II.2.1.1.2 Example 2: Stack-Overflow Attacks on Non-Control Data 9

II.2.1.2 Heap Overflows .. 10

II.2.1.3 Array Indexing Errors .. 11

II.2.1.3.1 “Placement New” Expression in C++ ... 14

II.2.2 Classification Using Characteristics ... 15

II.2.2.1 Direct Executable Buffer Overflows ... 15

II.2.2.2 Indirect Executable Buffer Overflows .. 15

II.2.2.3 Direct Data Buffer Overflows ... 16

 viii

 Page

II.2.2.4 Indirect Data Buffer Overflows .. 16

II.2.3 Characteristics .. 17

II.2.3.1 Direct Executable Buffer Overflows ... 18

II.2.3.2 Indirect Executable Buffer Overflows .. 18

II.2.3.3 Direct Data Buffer Overflows ... 18

II.2.3.4 Indirect Data Buffer Overflows .. 18

CHAPTER III LITERATURE REVIEWS ... 19

III.1 Static Analysis .. 19

III.1.1 Lexical Analysis ... 20

III.1.2 Semantic Analysis ... 20

III.2 Dynamic Solution .. 20

III.2.1 Address Protection ... 20

III.2.1.1 Canary Word ... 21

III.2.1.2 Address Encoding .. 22

III.2.1.3 Copy of Address .. 22

III.2.1.4 Tags .. 22

III.2.1.5 HeapDefender [36] .. 22

III.2.2 Input Protection .. 23

III.2.2.1 Secure Bit [37] .. 23

III.2.2.2 Minos [38] [39] ... 24

III.2.2.3 Tainted Pointer [40] .. 25

III.2.2.4 Efficient Dynamic Taint Analysis Using Multicore Machines [41] 25

III.2.3 Bound Checking .. 25

 ix

 Page

III.2.3.1 Hardware ... 25

III.2.3.2 Software .. 26

III.2.4 Obfuscation ... 26

III.2.5 Mixed Solution .. 26

III.2.5.1 Secure Canary Word [6] ... 26

III.3 Isolation .. 27

III.3.1 Non-Executable Memory .. 27

III.3.2 Sandboxing .. 27

III.4 Comparison and Summary ... 28

CHAPTER IV THE CONCEPT OF BOUNDARY BIT ... 32

IV.1 The Concept of Boundary Bit .. 32

IV.2 Examples .. 32

IV.2.1 Stack-Overflow Detection .. 33

IV.2.2 Array-Indexing-Error Detection .. 34

IV.2.3 One-Byte Variable .. 34

IV.2.3.1 Stack-Overflow Detection ... 35

IV.2.3.2 Array-Indexing-Error Detection ... 36

CHAPTER V THE IMPLEMENTATION OF BOUNDARY BIT .. 38

V.1 Hardware ... 38

V.1.1 Boundary Bits and Bitmap .. 38

V.1.2 Memory Architecture ... 40

V.1.3 Instructions for Boundary Bits .. 43

V.2 Software .. 43

 x

 Page

CHAPTER VI EVALUATION .. 46

VI.1 Simulation Tools .. 46

VI.1.1 Trace File Generation .. 46

VI.1.1.1 Set Boundary Bit Instruction ... 46

VI.1.1.2 Clear Boundary Bit Instruction ... 46

VI.1.1.3 Scan Boundary Bit Instruction .. 47

VI.1.1.4 Read Memory Instruction .. 47

VI.1.1.5 Write Memory Instruction ... 48

VI.1.2 Simulation ... 48

VI.1.2.1 Boundary Bit Set/Clear Management ... 49

VI.1.2.2 Bitmap Set/Clear Management .. 50

VI.1.2.3 Boundary-Bit/Bitmap Scanning... 51

VI.1.3 Simulation Test Environment .. 52

VI.2 Evaluation Aspects ... 53

VI.2.1 Protection Efficiency.. 53

VI.2.1.1 Stack Overflows .. 53

VI.2.1.1.1 Stack-Overflow Attack on Control Data .. 53

VI.2.1.1.2 Stack-Overflow Attack on Non-Control Data ... 55

VI.2.1.2 Heap Overflows... 56

VI.2.1.3 Array Indexing Errors... 56

VI.2.1.3.1 Array-Indexing-Errors (Stack) on Control Data .. 57

VI.2.1.3.2 Array-Indexing-Errors (Stack) on Non-Control Data ... 58

VI.2.1.3.3 Array-Indexing-Errors (Heap) .. 59

 xi

 Page

VI.2.2 Performance ... 60

VI.2.2.1 Variable/Argument Declaration .. 60

VI.2.2.2 The End of Variable/Argument Existence .. 61

VI.2.2.3 Variable/Argument Access .. 61

VI.3 Simulation Results ... 62

VI.3.1.1 Case 1: Intensive Read/Write Buffer (Bubble Sort) .. 62

VI.3.1.2 Case 2: Random Write Memory ... 67

VI.3.2 Discussion .. 72

CHAPTER VII ANALYSIS ... 73

VII.1 Advantages ... 73

VII.1.1 Prevent All Types of Buffer-Overflow Attacks .. 73

VII.1.2 Fixed and Low Additional Memory Usage ... 73

VII.1.3 Low Performance Overhead ... 73

VII.2 Disadvantages ... 74

VII.2.1 Hardware Incompatibility .. 74

VII.2.2 Software Incompatibility.. 74

VII.3 Performance Analysis ... 74

VII.4 Cost Analysis... 75

VII.5 The Impact of Virtual Memory ... 76

VII.6 Boundary Bit Protection ... 76

CHAPTER VIII CONCLUSION ... 77

VIII.1 Contributions ... 77

VIII.2 Conclusion ... 77

 xii

 Page

REFERENCES ... 78

VITA .. 85

CHAPTER I
INTRODUCTION

This chapter explains background knowledge and the importance of buffer-
overflow attacks. We also describe objectives and scope of this research.

I.1 Background and Problem
Nowadays, cyber-attacks around the world have intensified, especially, the

increase of worms and viruses that cause serious damages to systems. Mostly,
malicious worms and viruses use a buffer-overflow attack to exploit system
vulnerabilities in order to access the system and destroy or steal data, similar to that
of the infamous MORRIS worm [1] in 1988. Even recently, on 14th April 2017, there is
a report VU#676632 on IBM Lotus Domino server mailbox name stack buffer overflow
[2]. Also, the buffer-overflow vulnerability was found in the file win32k.sys of the
component Memory Object Handler on 11th December 2013. This affects most
Microsoft Windows, including Microsoft Windows 8.1 SP0 [3]. Moreover, the well-known
WannaCry ransomware attack in May 2017 exploits a buffer-overflow vulnerability in
the most Microsoft Windows as well, including Microsoft Windows 10 SP1 [4].

Buffer-overflow attacks generally occur when the length of input data is bigger
than the buffer size. When that happens, some data will overflow outside the buffer
and overwrite memory adjacent to the buffer. The overwritten memory may contain
control data or non-control data. In addition to this general method, there is another
way to overwrite data that is outside the scope, named “Array-indexing Error”, which
will be described in the next chapter.

Although a lot of buffer-overflow solutions have been proposed, they mostly
focused on control data. Few of them focus on non-control data. When control data
are protected, the next target will be non-control data which is no less important than
control data.

Therefore, this research proposes a new solution, called “Boundary Bit”, which
is expected to not only protect both control and non-control data, but also prevent
array-indexing error. We aim to completely eliminate buffer-overflow attacks.

2

I.2 Glossary
For the sake of clarity in this dissertation, terms are defined as follows:
1. Buffer means an allocated memory for containing data.
2. Control Data means data that are generated locally by systems such as

return addresses and function pointers.
3. Non-control Data means data declared by users such as local variables

and arguments.
4. Buffer Overflows [5] means the condition where in the data transferred

to a buffer exceeds the storage capacity of the buffer and some of the data overflows
into another buffer, one that the data was not intended to go into.

5. Buffer-overflow Attacks [6] means an attack caused by overflowing a
buffer or writing beyond data boundary with data from another domain which results
in malicious or unexpected behaviors of a program. Buffer-overflow attacks can be
classified into 3 types: 1) Stack Overflows 2) Heap Overflows 3) Array Indexing Errors.

I.3 Objectives
Objectives of this research are as follows:
1. To study buffer-overflow attacks and buffer-overflow protections
2. To propose a new hardware solution for buffer-overflow protection named

“Boundary Bit”
3. To apply “Boundary Bit” and to evaluate its (protection) effectiveness and

efficiency

CHAPTER II
BUFFER-OVERFLOW ATTACKS

This chapter describes the principle of buffer-overflow attacks including their
characteristics and types. Some background knowledge about buffer-overflow attacks
involved in this research can be explained as follows.

II.1 Fundamental of Buffer-Overflow Attacks
General buffer-overflow attacks have the following main steps.
1. Allocate memory by declaring an array as a buffer for storing data.
2. Input data which are bigger than buffer size to the buffer by using array-

copy functions such as strcpy() in C programming language.
3. The effect of the previous step is that some data will overflow outside the

buffer, called "Buffer Overflows”, and overwrite memory adjacent to the buffer. The
overwritten memory may contain control data or non-control data.

4. If the change of value in memory harms the computer, it will cause
damage to that computer.

To ease explaining, the c-language code is provided.
#include <stdio.h>

#include <string.h>

int main(char *p) {

 char a[8];

 int b = 0;

 strcpy(a,p);

 printf(“%d”,b);

 return 0;

}

The attacks can be done by the following steps.
5. Declare a string (an array of characters) as buffer, named “a” with 8-byte

size, and an integer named “b” assigned as 0. This creates a stack memory layout as
shown in Table 1

4

Table 1 Stack Layout of Allocated Memory

a b
- - - - - - - - 0 0 0 0

6. Call strcpy() function with character pointer “p” as input. If pointer “p” is
longer than the length of an input will be copied to buffer “a” and overflow to integer
“b” as shown in Table 2

Table 2 Stack Layout after Calling strcpy()

a b

o v e r f l o w s \0 0 0

7. Print the value of the integer “b”. It is no longer ‘0’ as declared.
From the example, if the value of variable “b” cannot directly be modified by

programmers or users, it can be done by a buffer-overflow technique. If a variable “b”
is a return address, programmers or users can change the control flow by modifying
the return address. The result can be harmful.

In summary, the buffer-overflow technique allows attackers with no privilege
to modify arbitrary value. However, this technique is just a preparation step for
attacking the system.

II.2 Types of Buffer-Overflow Attacks
Buffer-overflow attacks can be classified using various criteria. This research

categorizes them by locations and characteristics.

II.2.1 Classification by Attack Locations
With this criterion, there are 3 main types of buffer-overflow attacks as follows.

II.2.1.1 Stack Overflows
Stack-overflow attacks modify values in the stack memory of the

process. The main target is a return address in the stack. Typical attacks are conducted
by copying data bigger than the size of allocated buffer in the same stack. As a result,
the overflowed data will overwrite the return address, which is control data of the

5

function. The return address value can be changed to any value specified by attackers.
When the function ends, it will return to execute attackers’ code instead of the normal
process flow.

Here are two examples of Stack-overflow attacks.

II.2.1.1.1 Example 1: Stack-Overflow Attacks on Control Data
The c-language code is given as follows:

#include <stdio.h>

#include <string.h>

void foo(const char* input) {

 char buf[10];

 //View stack

 printf("My stack looks like:\n%p\n%p\n%p\n%p\n%p\n%p\n%p\n\n");

 //Pass input to buf

 strcpy(buf,input);

 printf("%s\n",buf);

 printf("Now stack looks like:\n%p\n%p\n%p\n%p\n%p\n%p\n%p\n\n");

}

void bar() {

 printf("Pongo hack YOU!\n");

}

int main(int argc, char *argv[]) {

 printf("Address of foo = %p\n",foo);

 printf("Address of bar = %p\n",bar);

 if(argc != 2){

 printf("Enter string as an argument!\n");

 return -1;

 }

 foo(argv[1]);

 return 0;

}

From the example, an attacker wants to modify the return

address, which is control data, for returning to attacker’s target function (in this context:
calling the “bar” function). The procedure can be described as follows:

1. Find the return address of the “foo” function by using the
following code and calculate distance between the return address and the declared
buffer in the “foo” function.

printf("My stack looks like:\n%p\n%p\n%p\n%p\n%p\n%p\n%p\n\n");

This line will show data in the stack memory of the process

during runtime. The first %p will show the data at the top of the stack (lower address)

6

in hexadecimal number and the following %p will show the second one (higher
address) respectively. The program can be executed using the following command.

./stack_control 01234567890

The result will be:
Address of foo = 0x8048400

Address of bar = 0x8048444

My stack looks like:

0xbffffb98

0x401081ec

0xbffffb98

0xbffffb98

0x80484ae

0xbffffcd7

0xbffffbb8

01234567890

Now stack looks like:

0x33323130

0x37363534

0x303938

0xbffffb98

0x80484ae

0xbffffcd7

0xbffffbb8

From the result, the address of the “foo” function is 804840016

(0x8048400 in hexadecimal). the address of the “bar” function is 804844416. The stack
layout before calling strcpy() is shown in Table 3.

Table 3 Stack Layout before Calling strcpy()

Address Content Symbol

[E]SP+0x00 0xbffffb98

buf [E]SP+0x04 0x401081ec

[E]SP+0x08 0xbffffb98

[E]SP+0x0c 0xbffffb98 -

[E]SP+0x10 0x80484ae return address

[E]SP+0x14 0xbffffcd7 -

[E]SP+0x18 0xbffffbb8 -

Note: [E]SP (a register in the processor) stores “stack pointer” address (the top of the
stack) at the time.

7

From Table 3, the “buf” variable is a buffer in the “foo”
function. The addresses from [E]SP+0x00 to [E]SP+0x08 are the “buf” variable.
However, the amount of memory allocated is always in the number of words (4 times
in bytes) because 1 word is 4 bytes. Moreover, the address [E]SP+0x10 is close to the
addresses of both function and the program code is always loaded on the same
memory area. It can be concluded that the address [E]SP+0x10 is the return address
of the “foo” function.

After calling strcpy(), the input argument was copied to the
declared buffer in “foo” function. The stack layout after copying is shown in Table 4.

Table 4 Stack Layout after Calling strcpy()

Address Content Symbol

[E]SP+0x00 0x33323130

buf [E]SP+0x04 0x37363534

[E]SP+0x08 0x00303938

[E]SP+0x0c 0xbffffb98 -

[E]SP+0x10 0x80484ae return address

[E]SP+0x14 0xbffffcd7 -

[E]SP+0x18 0xbffffbb8 -

From Table 4, the return address is 16 bytes away from the

address of the declared buffer. The stack stores data in ASCII. For instance, the ASCII
of the character “0” (zero) is 3016 (30 in hexadecimal) or 4810 (48 in decimal). The data
is stored in reverse order of the input argument.

2. Modify the return address to the address of “bar” function
by inputting 16 characters (16 bytes) together with the reverse order of the “bar”
function, which are ASCII 4416 8416 0416 0816 (or 6810 13210 410 810). There are 2 ways to
input ASCII. First, press a left “Alt” button on a keyboard + ASCII in decimal on numeric
keypad. Second, press a right “Alt” button + ASCII in hexadecimal. For example, press
Alt + 68 and then a character “D” will show up. To run the program, use the following
command.

8

./stack_control 0123456789012345Dä♦◘

The result will be:
Address of foo = 0x8048400

Address of bar = 0x8048444

My stack looks like:

0xbffffba8

0x401081ec

0xbffffba8

0xbffffba8

0x80484ae

0xbffffcdf

0xbffffbc8

0123456789012345D

Now stack looks like:

0x33323130

0x37363534

0x31303938

0x35343332

0x8040044

0xbffffcdf

0xbffffbc8

Pongo hack YOU!

Segmentation fault (core dumped)

Although the “bar” function is not called in the code, it can be

called at runtime. The stack layout after the strcpy() function is called is shown in
Table 5.

Table 5 Stack Layout after Calling strcpy()

Address Content Symbol

[E]SP+0x00 0x33323130

buf [E]SP+0x04 0x37363534

[E]SP+0x08 0x31303938

[E]SP+0x0c 0x35343332 -

[E]SP+0x10 0x8048444 bar

[E]SP+0x14 0xbffffce5 -

[E]SP+0x18 0xbffffbc8 -

9

From Table 5, the return address stores the address which the
program will jump back after the “foo” function ends. When it is modified to the
address of “bar” function, the program will run the “bar” function instead of going
back to the “main” function.

II.2.1.1.2 Example 2: Stack-Overflow Attacks on Non-Control Data
Beside a return address, the target can be non-control data,

such as local variables, which are stored in the stack as same as the declared buffer.
The c-language code is given as follows:

int main(int argc,char* argv[])

{

 int data2 = 0;

 char buf[10];

 if(argc != 2)

 {

 printf("Enter an argument! e.g. 01234567890123456\n");

 return -1;

 }

 printf("buf at %p\ndata2 at %p\n",buf,data2);

 printf("Before copy\nbuf = %s\n",buf);

 printf("data2 = %d at %p\n",data2,&data2);

 strcpy(buf,argv[1]);

 printf("After copy\nbuf = %s\n",buf);

 printf("data2 = %d at %p\n",data2,&data2);

 return 0;

}

From the code, copying data from the input argument to the

declared buffer with data bigger than this buffer, the integer variable adjacent to this
buffer may be modified because local variables are stored in the same stack. If there
are many variables, memory will be allocated sequentially. The last declared variable
will be at the top of the stack. Thus, “data2” and “buf” variables are adjacent in the
stack.

./stack_noncontrol 01234567890123456

10

The result will be:
buf at 0xbffffb98

data2 at 0xbffffba4

Before copy

buf = ¨ûÿ¿+„€–

data2 = 0 at 0xbffffba4

After copy

buf = 01234567890123456

data2 = 892613426 at 0xbffffba4

From the result, the “data2” variable is not assigned at the

second time in the code, but its value can be modified at runtime. The stack layout
after calling strcpy() is shown in Table 6.

Table 6 Stack Layout after Calling strcpy()

Address Content Symbol

buf+0x00 0x33323130

buf buf+0x04 0x37363534

buf+0x08 0x31303938

buf+0x0c 0x35343332 data2

From Table 6, the value of the “data2” variable (an integer with

4-byte size) change from 0 to 3534333216 or 39261342610 because of the overflowed
data from buffer.

II.2.1.2 Heap Overflows
Heap-overflow attacks are similar to stack-overflow attacks but the

modified target is the heap memory instead of the stack memory of the process. The
heap memory stores function pointers and dynamically-allocated data at runtime,
such allocation can be done by calling “malloc” function in C language. Similar to
stack-overflow attacks, heap-overflow attacks can modify data by overwriting adjacent
memory as attackers wanted. For example, a function pointer is changed to point to
an attacker’s code.

11

II.2.1.3 Array Indexing Errors
Array-indexing-error attacks are different from other types because they

do not copy the bigger data than an allocated buffer like stack-overflow and heap-
overflow attacks. Array-indexing-error attacks use an array variable declared in the
function and index or refer to outside the boundary of this array. One example is a
reference to -1 or 10 in a 10-element array. The referred target is any address in the
memory that attackers need to alter the value for exploitation.

The c-language code of array-indexing-error attacks is as follows:
#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int* IntVector;

void bar()

{

 printf("Pongo hack YOU!\n");

}

void InsertInt(unsigned long index, unsigned long value)

{

 printf("Address of index = %p, index = %x\n",&index,index);

 printf("My stack looks like:\n%p\n%p\n%p\n%p\n%p\n");

 printf("Writing memory at %p\n",&(IntVector[index]));

 IntVector[index] = value;

 printf("Wrote successfully\n");

}

bool InitVector(int size)

{

 IntVector = (int*)malloc(sizeof(int)*size);

 printf("Address of IntVector is %p\n",IntVector);

 if(IntVector == NULL)

 return false;

 else

 return true;

}

int main(int argc, char *argv[])

{

 unsigned long index, value;

 if(argc != 3)

 {

 printf("Usage is %s [index] [value]\n");

 return -1;

 }

 printf("Address of bar = %p\n",bar);

 //Let's initialize our vector - 64 KB ought to be enough for

anyone <g>.

12

 if(!InitVector(0xffff))

 {

 printf("Cannot initialize vector!");

 return -1;

 }

 index = atol(argv[1]);

 value = atol(argv[2]);

 InsertInt(index, value);

 return 0;

}

From the code, an attacker wants to modify the return address to return
to attacker’s target function (in this context: the “bar” function). The procedure is as
follows:

1. Find the return address of the “InsertInt” function by the following
code and calculate distance between the return address and the first element of the
declared array “IntVector” containing ffff16 or 6553510 (4-byte) integers in the
“InitVector” function.

./array_control 1234567890 9876543210

The result will be:

Address of bar = 0x8048430

Address of IntVector is 0x4010d008

Address of index = 0xbffffb68, index = 499602d2

My stack looks like:

0x401081ec

0xbffffb78

0x80485a5

0x499602d2

0x7fffffff

Writing memory at 0x6668db50

Segmentation fault (core dumped)

From the result, the address of the “bar” function is 804843016 or

13451371210. The address of the first element of the array “IntVector” is 4010d00816.
The address of the “InsertInt” function argument named “index” is bffffb6816.

When calling a function with many arguments, the arguments and the
return address are pushed into stack in respective order starting from the last argument
to the first argument and the return address. Note that the return address is next to
the first function argument. Therefore, the address of the return address is bffffb6816 -
416 = bffffb6416. To ease understanding, the stack layout is shown as Table 7.

13

Table 7 Stack Layout Example

Address Content Symbol

0xbffffb6c 0x401081ec -

0xbffffb70 0xbffffb78 -

0xbffffb74 0x80485a5 return address

0xbffffb78 0x499602d2 index

0xbffffb7c 0x7fffffff value

2. Calculate the new index to reference the return address from the

following equation.

Address of the “index”th element = Address of first element + 4 × Index
Index = (Address of the “index”th element – Address of first element)) ÷ 4
So, New index = (Address of return address – Address of first element) ÷ 4
New index = (1bffffb6416 - 4010d00816) ÷ 416 = 5ffbcad76 = 161033698310

Note: 1bffffb6416 and bffffb6416 in 32-bit architecture are the same value because only
32 bits are contained. The “1” in the 33th bit is ignored.

Using “malloc” function for allocating an array in the heap memory,
indexes arrange in ascending order (from low to high address). In the equation, the
address of the element is calculated by adding from the the first element.

3. Modify the return address to the address of “bar” function by
inputting the first argument with the new index as 1610336983 and the second
argument with the address of “bar” function as 134513712. When running the program
as below.

./array_control 1610336983 134513712

The result will be:

Address of bar = 0x8048430

Address of IntVector is 0x4010d008

Address of index = 0xbffffb68, index = 5ffbcad7

My stack looks like:

0x401081ec

0xbffffb78

0x80485a5

0x5ffbcadb

0x8048430

Writing memory at 0xbffffb64

14

Wrote successfully

Pongo hack YOU!

Segmentation fault (core dumped)

From the result, although the “bar” function is not called in the code,

it can be called at runtime.
This type of buffer-overflow attacks can be modified any address in the

memory. Unlike stack overflow, the target address is not necessary to be a higher
address. Stack overflows only happen in one direction from low to high address. Thus,
they can only modify addresses higher than the address of the stack.

There is another example which can be used as an array-indexing-error
attack. That is “Placement New” Expression in C++.

II.2.1.3.1 “Placement New” Expression in C++
According to [7], “placement new” is an expression in C++

language shown as follows:
void *operator new (size_t,void *p) throw(){return p;}
void *operator new[](size_t,void *p) throw(){return p;}

This expression is used for allocating a dynamically-created
object or an array at a given address that refers to a memory area that has already
been allocated to the process. A usage example is shown as follows:

char *text = new char(10);

//Place newtext at the starting address of ‘‘text’’

char *newtext = new (text) char(10); //uses placement-new

If it is misused, it will cause security threats such as buffer-
overflow attacks. There are 5 security issues of “placement new” shown as follows:

1. Allows any address allocated to the process to be used to
place an object

2. Does not enforce any (compile-time/runtime) bounds
checking

3. Invocation does not carry out any type-checking
4. Does not enforce any checking of alignment, it may lead to

incorrect semantics, and to program termination
5. May lead to memory leaks

15

II.2.2 Classification Using Characteristics
Besides being classified using locations, buffer-overflow attacks can also be

categorized into 4 classes, according to [8], as follows:

II.2.2.1 Direct Executable Buffer Overflows
The target of direct executable buffer-overflow attacks is to change the

control flow of the process. The example of this class is stack-overflow attacks on
control data (see in Example 1: Stack-Overflow Attacks on Control Data on page 5)
because they alter the return address of the function in order to return to execute
attacker’s code instead of the normal process flow when the function ends. In this
way, there are 5 preconditions defined by [8] as follows:

P1. The length of the (possibly transformed) input string is longer than that of the
buffer.

P2. The input (and possibly transformed) string contains instructions and/or
addresses.

P3. Input can change the stored return address without the change being
countered.

P4. The program can jump to memory in the stack.
P5. The program can execute instructions stored in the stack.

II.2.2.2 Indirect Executable Buffer Overflows
Like direct executable buffer-overflow attacks, indirect executable

buffer-overflow attacks change the process control flow. However, the difference is
that the process state information, such as a return address, is not altered but indirect
ones alter a function pointer instead. When the function pointer is invoked, attacker’s
code will be executed. The similar example of this class is stack-overflow attacks on
non-control data (see in Example 2: Stack-Overflow Attacks on Non-Control Data on
page 9) assuming that the variable “data2” in this example is a function pointer.
Therefore, there are 5 preconditions defined by [8] as follows:

16

P6. The length of the (possibly transformed) input string is longer than that of the
buffer.

P7. The input (and possibly transformed) string contains addresses.
P8. Input can change the value in the function pointer variable without being

countered.
P9. The program can jump to in the heap.
P10. The program can execute instructions in the heap.

II.2.2.3 Direct Data Buffer Overflows
Data buffer-overflow attacks are different from executable buffer-

overflow attacks in that no new instructions (attacker’s code) are executed. Direct data
buffer-overflow attacks modify some data which make the execution path change. The
example of this class is stack-overflow attacks on non-control data (see in Example 2:
Stack-Overflow Attacks on Non-Control Data on page 9). This example can be applied
to bypass a “Login” process. Consequently, there are 4 preconditions defined by [8]
as follows:

P11. The length of the (possibly transformed) input string is longer than that of the
buffer.

P12. The input (and possibly transformed) string contains data of the type of the
particular variable.

P13. The value stored in the particular variable can be changed without being
countered.

P14. The particular variable determines which execution path is to be taken at a
future point in the execution of the process.

II.2.2.4 Indirect Data Buffer Overflows
Almost same as direct ones, the target of indirect data buffer-overflow

attacks is a pointer referring to the data that can change the execution path. Thereby,
there are 4 preconditions defined by [8] as follows:

17

P15. The length of the (possibly transformed) input string is longer than that of the
buffer.

P16. The input (and possibly transformed) string contains addresses.
P17. The address stored in the particular pointer variable can be changed without

being countered.
P18. The value pointed to by the particular pointer variable determines which

execution path is to be taken at a future point in the execution of the process.

II.2.3 Characteristics
According to [8], some preconditions are the same. As a result, they can be

concluded as buffer-overflow characteristics as shown in Table 8.

Table 8 Characteristics and Preconditions [8]

Characteristics Pseudo-Code Preconditions
len:buff len(input) < len(buffer) P1, P6, P11, P15
con:addr contains(input,type(addr)) P2, P7, P16
con:inst contains(input,type(inst)) P2
con:ctrl contains(input,type(ctrlvar)) P12
mod:radd modify(retnadd) P3
mod:fptr modify(funcptr) P8
mod:cvar modify(ctrlvar) P13
mod:cptr modify(ctrlptr) P17
jmp:stack jump(stack) P4
jmp:heap jump(heap) P9
exe:stack execute(stack) P5
exe:heap execute(heap) P10
flow:ctrl flow(ctrlvar) P14, P18

In summary, the associated sets of characteristics for 4 classes of buffer-

overflow attacks are shown as follows:

18

II.2.3.1 Direct Executable Buffer Overflows
dir:exec =

 {len:buff, con:addr, con:inst, mod:radd, jmp:stack,

exe:stack}

This class is equivalent to Stack overflows on control data.

II.2.3.2 Indirect Executable Buffer Overflows
ind:exec =

 {len:buff, con:addr, mod:fptr, jmp:heap, exe:heap}

This class is equivalent to Heap overflows on control data.

II.2.3.3 Direct Data Buffer Overflows
dir:data =

 {len:buff, con:ctrl, mod:cvar, flow:ctrl}

This class is equivalent to Stack overflows on non-control data.

II.2.3.4 Indirect Data Buffer Overflows
ind:data =

 {len:buff, con:addr, mod:cptr, flow:ctrl}

This class is equivalent to Heap overflows on non-control data.

Note that there is no array-indexing error included, the characteristic
“out:buff” is defined for the precondition of this attack type that there is a reference
to outside the buffer boundary.

These buffer-overflow characteristics will be used in the next chapter for the
summary (see in Table 13 on page 30).

CHAPTER III
LITERATURE REVIEWS

This chapter provides the overall of current approaches of buffer-overflow
protection and related works.

The best solution for preventing buffer-overflow attacks is to write a correct
code, such as adding if-condition to check the boundary. However, it makes
applications run slower and most programmers ignore this. Sometimes they try to take
care of boundary checking, but cannot find all cases. The vulnerabilities still exist and
can be exploited. Therefore, researchers have proposed many buffer-overflow
protection solutions shown in Figure 1.

Figure 1 Buffer-Overflow Protections [9]

From the above figure, these solutions are classified into 3 categories [9] as
follows.

III.1 Static Analysis
Static analysis approaches are to notify programmers to edit or to replace

vulnerable functions or parts of program code that can cause buffer overflow before

Buffer-overflow Protections

Static Analysis Dynamic Solutions Isolation

Semantic Analysis

Lexical Analysis Address Protection

Input Protection

Bounds Checking

Obfuscation

NX

Sandboxing

20

deployment. For instance, using strcpy() may easily make vulnerability. It should be
replaced by strncpy() with bound checking.

Nonetheless, there are some limitations for user-defined functions and macros.
The weak points are that they can detect only known attack patterns without runtime
information. As a result, it is impossible to find all cases and may cause false alarms.
Moreover, the final decision of modifying code (as suggestion from tools) depends on
programmers.

This category can be divided into 2 subcategories as follows.

III.1.1 Lexical Analysis
The algorithm is to check in program code in order to find a word or a group

of words which may cause buffer overflow. The examples of this approach are ITS4
[10], FlawFinder [11], RATS [12], STOBO [13] and LibSafe [14].

III.1.2 Semantic Analysis
It is different from lexical analysis. It uses parser to analyze the meaning of

code instead of a word or a group of words. The examples of this approach are Splint
[15] and BOON [16].

III.2 Dynamic Solution
To validate the data integrity in run-time environment, these solutions verify

the metadata or data description. The verified data can be control data, such as return
addresses, or non-control data, such as variables.

There are 2 major types of metadata: hardware supported and software
managed.

These solutions can be divided into 4 subcategories by assumption, types of
metadata, metadata management and handling routine as follows.

III.2.1 Address Protection
This subcategory is classified into many schemes with the same assumption

that only protects the memory containing addresses. The reason is that addresses are
critical data and should be tagged. Metadata will be created by address instruction

21

and verified when that address is used. Each scheme applies various types of metadata.
The examples are as follows.

III.2.1.1 Canary Word
The concept is to add 1 word, called Canary Word, in the memory

between each address or each pointer. The hypothesis is that buffer overflows only
happen in one direction. When the address is modified, its Canary Word should be
modified as well. Then the value of Canary Word must be verified before using that
address as shown in Figure 2.

Figure 2 Stack Layout of Canary Word [6]

The weakness of this scheme is that it can easily be bypassed by
retaining the same value of Canary Word after buffer-overflow attacking. It cannot
confirm whether address is modified because no mechanism for protecting Canary
Word itself as shown in Table 9.

Table 9 Stack Layout for Bypassing Canary Word

Before attacking
Type Buffer Canary Word Pointer

Value - - - 0 5

After attacking
Type Buffer Canary Word Pointer

Value A A A 0 A

The examples of this scheme are StackGuard [15, 17-20], which protects

return addresses, and ProPolice [21], which protects function pointers by declaration
statement.

22

III.2.1.2 Address Encoding
This scheme encodes addresses for the integrity of the addresses. The

concept is to encode addresses before storing in the memory and decode them when
reading back to the processor. The metadata of this scheme is the per-process random
key for encryption. Thus, the long-term key management is the main point. However,
there are some problems with array and string in C language and value assignment in
the compile time.

The examples of this scheme are PointGuard [22] and Hardware
Supported PointGuard [23, 24]. These solutions assume that when pointers are created,
their value will not change.

III.2.1.3 Copy of Address
This scheme copies an address for the integrity of the addresses. When

creating an address, copies it and stores the copy safely. Before the address is used, it
should be verified with its copy.

This scheme is classified into many methods by the address copy
management. The examples of this scheme are as follows: 1. StackGhost [25], using
register window of SPARC processor, 2. RAS [26-28], using return address stack (the
hardware for predicting return addresses in some processors), 3. Split Stack [27],
SmashGuard [29], RAD Compiler [30], RAD Binary Rewrite [31], DISE [32], StackShield
[33] and LibVerify [15], allocating memory as return address stack, and 4. SCACHE [34],
using cache for managing a copy of return address.

III.2.1.4 Tags
Tags are for identifying type of data, such as normal data or address.

The limitation is that they cannot apply on applications without modification for this
scheme.

The example of this scheme is Tagged Architecture [35].

III.2.1.5 HeapDefender [36]
HeapDefender is a fine-grained instruction stream monitoring hardware

defense mechanism. This hardware module is located inside of embedded processor

23

and works in parallel with processor pipeline. Its concept is to extract a pre-defined
heap memory range and check whether address of heap operations of instructions
exceeds heap address range. Thus, this scheme neither modifies program nor destroys
pipeline integrity. Also, it is transparent to both processor and software programmer.
However, it protects embedded processors against heap overflow attacks, in other
words, it protects heap memory only.

III.2.2 Input Protection
This subcategory is classified into many schemes with the same assumption

that input data should not be used as control data. Therefore, there must be some
differences between input data and control data. Although there is no way to recognize
data as control data or non-control data in the hardware level, it can be done in the
programmer/compiler level. Each scheme applies various metadata management with
different implementation. The examples are as follows.

III.2.2.1 Secure Bit [37]
The concept is to add 1 bit, called Secure Bit, to each byte/word in the

memory. This bit is used for identifying that input data are from outside the process
via kernel. If Secure Bit is set, it contains input data which should not be used as
control data, e.g. return addresses, as shown in Figure 3 and Table 10.

Figure 3 Stack Layout of Secure Bit

24

Table 10 Stack Layout for Secure Bit

Before attacking
Type Buffer Return Address
Value - - - - - 5

Secure Bit 0 0 0 0 0 0

After attacking
Type Buffer Return Address
Value A A A A A A

Secure Bit 1 1 1 1 1 1

In addition, Secure Bit is transparent. Software developers do not need

to edit or compile software again for applying Secure Bit. Even though the detection
mechanism of buffer-overflow attacks is embedded in the hardware level, this scheme
is not able to protect non-control data. For instance, there are 2 variables: a and b.
First, variable b is assigned as 5 and the Secure Bit of variable b is set. When overflowing
variable a with “AAAAA”, the value of variable b will be 0. In this case, it cannot detect
this buffer-overflow attack because the Secure Bit of variable b is still set as shown in
Table 11.

Table 11 Stack Layout of the Undetected Case for Secure Bit

Before attacking
Type a b
Value - - - - - 5

Secure Bit 0 0 0 0 0 1

After attacking
Type a b
Value A A A A A \0

Secure Bit 1 1 1 1 1 1

III.2.2.2 Minos [38] [39]
Its concept is similar to Secure Bit but the input data are from another

segment, using segmentation as a boundary. The weak point is that segmentation does
not exist on all systems and it is not transparent, unlike Secure Bit. As a result, this
scheme will be hard to implementation.

25

III.2.2.3 Tainted Pointer [40]
The objective of this scheme is to prevent input data to be used as

pointers. The input data are from I/O subsystem of operating system. However,
sometimes input data may be used for calculating pointer, such as indexing, and there
are some problems with multi-threaded program which sending address values
between threads in the process. Consequently, the instruction for clearing taint values
of pointers is needed and this could be another vulnerability.

III.2.2.4 Efficient Dynamic Taint Analysis Using Multicore Machines [41]
This scheme uses static binary rewriting to transform a binary to contain

an original thread and a shadow thread for taint computation. These two threads are
executed on different processor cores. Dynamic taint analyses start with marking the
values from external sources as untrusted, i.e., tainted. Then, taint values are
propagated as its rules. Finally, this scheme uses taint values to detect possible
exploits.

III.2.3 Bound Checking
This subcategory is classified into many schemes with the same assumption

that access to data should be within variable boundary only. The metadata is related
to every block of the allocated memory and is used to limit the boundary. The
examples are as follows.

III.2.3.1 Hardware
This scheme uses segmentation with base address for boundary

checking. Segmentation and ring is implemented on I432 processor [42]. The weak
point is that mostly operating systems avoid using segmentation by setting all memory
as 1 big segment in order to work with this processor and improve efficiency.

The reason is that its processing time is more than 10-20 times as shown
on VAX 11/780 [43].

26

III.2.3.2 Software
This scheme is backward compatible with standard C library but its

weakness is high overhead making program run slower.
The examples of this scheme are as follows: 1. Array Bound Checking

[44], defining that pointer value is valid only for the specific memory region but causing
program slow down more than 30 times, 2. Rational PurifyPlus [45], BoundsChecker
[46], SafeC [47] and Fail-Safe [48, 49], segmentation by using symbol table as segment
descriptor.

III.2.4 Obfuscation
The concept is that confusion makes it harder to attack, such as Address

Obfuscation [50]. The weak point is that vulnerabilities still exist.
The example of this subcategory is PAX [51] or Address Space Layout

Randomization (ASLR).

III.2.5 Mixed Solution
Some solutions are mixed from above schemes.

III.2.5.1 Secure Canary Word [6]
Secure Canary Word is an architectural approach based on two existing

schemes, Secure Bit (Input Protection) and Canary Word (Address Protection), for
protecting against buffer-overflow attacks on non-control data (variables/arguments).
Canary Word is inserted between each variable/argument to protect non-control data.
Then, Secure Bit is used to protect Canary Word as control data. Its stack layout is
shown in Figure 4 and Table 12. However, it cannot prevent array indexing errors on
non-control data because it is no need to write canary word to bypass these attacks.

Figure 4 Stack Layout of Secure Canary Word

27

Table 12 Stack Layout for Secure Canary Word

Before
attacking

Type Buffer Canary Word Pointer
Value - - - - - 0 5

Secure Bit 0 0 0 0 0 0 0

After
attacking

Type Buffer Canary Word Pointer
Value A A A A A 0 A

Secure Bit 1 1 1 1 1 1 1

III.3 Isolation
These approaches confine attack damage instead of preventing, such as

confining the application not to run outside the defined scope. This category can be
divided into 2 subcategories as follows.

III.3.1 Non-Executable Memory
The assumption of this solution is from the observation that buffer-overflow

attacks usually occur on Stack or memory storing data. Thus, Stack memory should
not be used for storing program code. This solution, called NX, is implemented on
many processors [52].

The weakness is that not all attacks are code injection. This solution prevents
only code injection attacks.

III.3.2 Sandboxing
Sandboxing solution uses policy-enforcement mechanism which is to run

untrusted applications in the restrict environment. For instance, application
downloaded from the internet must not edit system files or call some operating-
system API. Therefore, if they are attacked, the damages will be limited and not effect
on the overall system. The example is Java Applet that runs in Sandbox. It cannot read
or write any file in user computers.

Furthermore, this solution can be implemented on any level, such as kernel
level [53], user level [54-56] and hardware-supported level, e.g. Intel LaGrande [57],
TCPA [58, 59], TrustZone [60], Microsoft NGSCB [61], ChipLock [62] and Bear [58].

28

The success of this solution depends on a proper combination of security
policy and implementation.

III.4 Comparison and Summary
From the taxonomy of buffer-overflow characteristics (section II.2.3

Characteristics on page 17) and some buffer-overflow protection solutions, the
summary table can be shown as Table 13. The symbol “” means this solution can
prevent this characteristic. The symbol “?” means this solution may prevent this
characteristic.

From Table 13, which some details are based on [8], it can be summarized with
types of buffer-overflow attacks as Table 14.

Segmentation, Type-Assisted Buffer Overflow Detection [49] and C Range Error
Detector (CRED) [63] are range-checking solutions at runtime. These prevent len:buff
characteristic and may prevent out:buff characteristic, up to the implementation. As
a result, they can prevent stack/heap overflow attacks on both control and non-
control data. It may also prevent array indexing error attacks on both control and
non-control data.

Integer Analysis to Determine Buffer Overflow [16] and STOBO [13] check the
range of the buffer and the input. Their designs are not suitable for checking the
index of the buffer/array. Both prevent only len:buff characteristic. As a result, they
can prevent stack/heap overflow attacks on both control and non-control data. They
cannot prevent array indexing error attacks.

Jump Pointer Control [23] is a hardware/software address protection. It handles
function pointers and pointer variables. It prevents mod:fptr and mod:cptr
characteristics. As a result, it can prevent stack/heap overflow attacks on non-control
data (indirect executable and indirect data buffer overflows). It also prevents jmp:stack
characteristic by return-address bound-checking on the stack. Thus, it can prevent stack
overflow attacks on control data (direct executable buffer overflows) as well.

StackGuard [20] is a return-address protection using canary word. It prevents
mod:radd characteristic. As a result, it can prevent only stack overflow attacks on
control data.

29

PointGuard [22] is similar to StackGuard. It prevents mod:fptr and mod:cptr
characteristics. As a result, it can prevent heap overflow attacks on both control and
non-control data (indirect executable and indirect data buffer overflows).

SmashGuard [29] is an address protection by address copying. Minezone RAD
and Read-only RAD [30] are an address protection schemes using write-protected
location. They prevent mod:radd characteristic. As a result, they can prevent stack
overflow attacks on control data. However, they may prevent array indexing error
attacks on control data, up to the implementation.

MemGuard [20] protects specific memory locations. It prevents mod:radd,
mod:fptr, mod:cvar and mod:cptr characteristics. As a result, they can prevent
stack/heap overflow attacks on both control and non-control data. However, they may
prevent array indexing error attacks on both control and non-control data.

Secure Bit [37] and Efficient Dynamic Taint Analysis Using Multicore Machines
[41] are input protection solutions. They prevent mod:radd and mod:fptr
characteristics. As a result, they can prevent all attacks on control data.

HeapDefender [36] is an address protection on heap. It prevents jmp:heap
characteristic. As a result, it can prevent heap overflow attacks on both control and
non-control data. It may prevent len:buff and out:buff characteristics but it still no
proof.

Secure Canary Word [6] is an architectural approach based on Secure Bit and
Canary Word. It prevents mod:radd, mod:fptr, mod:cvar and mod:cptr characteristics.
As a result, it can prevent stack/heap overflow attacks on both control and non-control
data. It can also prevent array indexing error attacks on control data. However, it cannot
prevent array indexing error attacks on non-control data.

Boundary Bit is our bound-checking solution. It designs to prevent both len:buff
and out:buff characteristics. We believe that it can prevent all buffer-overflow attacks
on both control and non-control data.

30

Table 13 Summary with Buffer-Overflow Characteristics

Characteristics
len:
buff

con:
addr

con:
inst

con:
ctrlr

mod:
radd

mod:
fptr

mod:
cvar

mod:
cptr

jmp:
stack

jmp:
heap

exe:
stack

exe:
heap

flow:
ctrl

out:
buff

Segmentation  ?
Integer Analysis to
Determine Buffer

Overflow


STOBO 
Type-Assisted Buffer
Overflow Detection  ?

C Range Error
Detector (CRED)  ?

Jump Pointer
Control

   

StackGuard 
MemGuard    
PointGuard  
SmashGuard 

Minezone RAD 
Read-only RAD 

Efficient Dynamic
Taint Analysis Using
Multicore Machines

  

HeapDefender ?  ?
Secure Bit   

Secure Canary Word    
Boundary Bit  

In conclusion, the buffer-overflow protection summary table with types of

buffer-overflow attacks can be provided as Table 14. The symbol “” means this
solution can prevent this attack type. The symbol “?” means this solution may prevent
this attack type.

31

Table 14 Summary with Types of Buffer-Overflow Attacks

Types

Stack overflow
on control data

(Direct
Executable)

Stack overflow
on non-control

data
(Direct Data)

Heap overflow
on control data

(Indirect
Executable)

Heap overflow
on non-control

data
(Indirect Data)

Array indexing
error on

control data

Array indexing
error on

non-control
data

Segmentation     ? ?
Integer Analysis to
Determine Buffer

Overflow
   

STOBO    
Type-Assisted

Buffer Overflow
Detection

    ? ?

C Range Error
Detector (CRED)     ? ?

Jump Pointer
Control   

StackGuard 
MemGuard     ? ?
PointGuard  

SmashGuard  ?
Minezone RAD  ?
Read-only RAD  ?

Efficient Dynamic
Taint Analysis

Using Multicore
Machines

  

HeapDefender  
Secure Bit   

Secure Canary
Word     

Boundary Bit      

However, Table 14 shows only which types of buffer-overflow attacks can be

prevented but does not show the performance and the limitation of the protection
solutions.

CHAPTER IV
THE CONCEPT OF BOUNDARY BIT

From the CHAPTER III, most of the buffer-overflow solutions focus on control
data. They do not pay attention to array-indexing error that is also one of the buffer-
overflow attacks. Therefore, this research proposes a new solution, namely Boundary
Bit, to not only protect both control and non-control data, but also to prevent array-
indexing error. This chapter explains the concept of Boundary Bit.

IV.1 The Concept of Boundary Bit
The main concept of Boundary Bit is bound-checking. The idea is to ensure that

transferring data do not exceed the allocated capacity of variables or buffers. That is,
we attempts to prevent len:buff and out:buff characteristics of buffer-overflow
attacks. We aim to provide a complete solution against all types of buffer-overflow
attacks.

Due to the fact that software approaches cause very high overhead, hardware
approaches could be a better choice. The proposed solution uses an additional
hardware bit (called Boundary Bit) associated to each byte or word in the memory for
marking the end of variables or buffers. Due to memory alignment, marking the end
of buffer provides a better protection.

Programmers or compilers have to tell the system to set a bit at the end of
any variable or buffer to mark the boundary. At the runtime, when writing data to any
variable or buffer, the system will check whether there is a boundary bit set in a given
range. Assuming that the input size is n bytes (the maximum index is n – 1). If the
buffer starts at the address st, the range of scanned bits will start from st to st +
n – 2. This is to avoid the case of the 1-byte variable where scanning should stop
before the end of the variable or buffer. To ease understanding, an example is
provided.

IV.2 Examples
In this example, a c-language code is provided. In the code, a function contains

a 4-byte integer, an 8-byte buffer and a 1-byte character.

33

void func(char *p) {

 int i; //4 byte

 char b[8]; //8 byte

 char ch; //1 byte

 …

}

From the given code, the stack memory layout while allocating memory is

shown in Table 15.

Table 15 Stack Layout of Boundary Bit while Allocating Memory

Address

0x
28

ac
57

0x
28

ac
58

0x
28

ac
5e

0x

28
ac

5f

0x
28

ac
64

0x
28

ac
67

…

Before
allocating

Type - - - - - - - - - - - - - -
Boundary Bit 0 0 0 0 0 0 0 0 0 0 0 0 0 …

After
allocating

Type Char Buffer Integer …

Boundary Bit 1 0 0 0 0 0 0 0 1 0 0 0 1 …

Some addresses are not continuous owing to memory alignment.

IV.2.1 Stack-Overflow Detection
This section demonstrates stack-overflow detection. In this code, a strcpy()

function is given.
void func(char *p) {

 int i; //4 byte

 char b[8]; //8 byte

 char ch; //1 byte

 strcpy(b,p);

}

If the length of input is 8 bytes, the system will scan bits starting at address

0x28ac58 ending at address (0x28ac58 + 8 – 2) = 0x28ac5e. There is no
Boundary Bit set in this range.

If the length of input is 9 bytes, the system will scan bits starting at address
0x28ac58 ending at address (0x28ac58 + 9 – 2) = 0x28ac5f. In this case,

34

there is, however, a Boundary Bit set at address 0x28ac5f. Thus, the attack will be
detected with no false positive or false alarm.

IV.2.2 Array-Indexing-Error Detection
In this section, an array-indexing-error detection will be demonstrated. The

following code shows a case where a reference is inside the boundary (no array-
indexing error).

void func(char *p) {

 int i; //4 byte

 char b[8]; //8 byte

 char ch; //1 byte

 b[7] = p[0];

}

If the index is 7, n = 8 (n – 1 = 7), the system will scan bits starting at

address 0x28ac58 ending at address (0x28ac58 + 8 – 2) = 0x28ac5e. There
is no Boundary Bit set in this range.

The following code shows a case where a reference is outside the boundary
(accessing with array-indexing error).

void func(char *p) {

 int i; //4 byte

 char b[8]; //8 byte

 char ch; //1 byte

 b[8] = p[0];

}

If the index is 8, n = 9 (n – 1 = 8), the system will scan bits starting at

address 0x28ac58 ending at address (0x28ac58 + 9 – 2) = 0x28ac5f. In this
case, there is a Boundary Bit set at address 0x28ac5f. Thus, the attack will be
detected with no false positive or false alarm.

IV.2.3 One-Byte Variable
In case of attacking 1-byte variables, both Stack-overflow and Array-indexing-

error attacks will be explained as follows.

35

IV.2.3.1 Stack-Overflow Detection
Supposing that the function has a 7-byte buffer and two 1-byte

characters, the c-language code is provided.

void func(char *p) {

 char b[7]; //7 byte

 char ch1; //1 byte

 char ch2; //1 byte

 strcpy(&ch1,p);

}

From the code, the stack memory layout while allocating memory is

shown in the following Table 16.

Table 16 Stack Layout of Boundary Bit in case of 1-byte Variables

Address

0x
28

ac
57

0x
28

ac
58

0x
28

ac
59

0x
28

ac
5f

0x

28
ac

60

…

Before
allocating

Type - - - - - - - - - - -

Boundary Bit 0 0 0 0 0 0 0 0 0 0 …

After
allocating

Type Char Char Buffer …

Boundary Bit 1 1 0 0 0 0 0 0 0 1 …

If the input size is 1 byte, the system will scan bits starting at address

0x28ac58 ending at address (0x28ac58 + 1 – 2) = 0x28ac57. Nonetheless,
0x28ac57 is less than 0x28ac58. It can be concluded that there is no attack shown
as no false negative.

If the input size is 2 bytes, the system will scan bits starting from address
0x28ac58 to address (0x28ac58 + 2 – 2) = 0x28ac58. In this case, there is a
Boundary Bit set at address 0x28ac58. Thus, the attack will be detected with no false
positive or false alarm.

36

IV.2.3.2 Array-Indexing-Error Detection
Supposing that the function has a 1-byte buffer and a 1-byte character,

the c-language code is as follows:

void func(char *p) {

 char ch1; //1 byte

 char b[1]; //1 byte

 char ch2; //1 byte

 …

}

From the code, the stack memory layout while allocating memory is

shown in the following Table 17.

Table 17 Stack Layout of Boundary Bit in case of 1-byte Buffer

Address

0x
28

ac
57

0x
28

ac
58

0x
28

ac
59

…
Before

allocating
Type - - - -

Boundary Bit 0 0 0 …

After
allocating

Type Char Buffer Char …
Boundary Bit 1 1 1 …

In case of referencing inside the boundary (no array-indexing error), the

code is as follows:
void func(char *p) {

 char ch1; //1 byte

 char b[1]; //1 byte

 char ch2; //1 byte

 b[0] = p[0];

}

If the index is 0, n = 1 (n – 1 = 0), the system will scan bits starting

at address 0x28ac58 ending at address (0x28ac58 + 1 – 2) = 0x28ac57.
Nonetheless, 0x28ac57 is less than 0x28ac58. It can be concluded that there is no
attack shown as false negative.

37

In case of referring to outside the boundary with Array Indexing Error,
the code is as follows:

void func(char *p) {

 char ch1; //1 byte

 char b[1]; //1 byte

 char ch2; //1 byte

 b[1] = p[0];

}

If the index is 1, n = 2 (n – 1 = 1), the system will scan bits starting

at address 0x28ac58 ending at address (0x28ac58 + 2 – 2) = 0x28ac58. In
this case, there is a Boundary Bit set at address 0x28ac58. Thus, the attack will be
detected with no false positive or false alarm.

CHAPTER V
THE IMPLEMENTATION OF BOUNDARY BIT

The implementation of Boundary Bit is stated in this chapter. The guideline is
divided into 2 parts: hardware and software.

V.1 Hardware
Two modifications are necessary to implement Boundary Bit.
1. An additional hardware bit associated to each byte or word in the memory

will be added as boundary bit for marking the end of variables or buffers.
2. A processor will be modified by

a) adding a new instruction to set/clear boundary bit when memory is
allocated/deallocated and

b) adding a new instruction or modified memory-written instructions with
boundary bit checked.

However, the performance of bit-scanning is a concern. To efficiently check for
boundary, a possible solution is to implement the boundary-bit cache (bitmap). The
benefits are not only faster access time, but also various bit representation for the
large amount of bit scanning. To ease understanding, we will elaborate on the details
of this bitmap.

V.1.1 Boundary Bits and Bitmap
For write through cache, Store (memory-written) instruction is much slower

than other instructions. To make it faster, several architectures introduce a write buffer
between processor and memory. To write to memory, a processor can simply write
data to the write buffer. The write buffer will then write to memory during later in
background. This is useful in the pipeline processor. To avoid the saturation, the
second-level (L2) cache is usually used with the write buffer as shown in Figure 5.

39

Figure 5 Write Buffer and L2 Cache Architecture

To improve the performance of boundary scan, we can add boundary-bit cache
(bitmap) at the same level of L2 cache. Moreover, this also allows the bit-scanning
process to be executed in parallel with the memory-written process.

The boundary-bit cache can be implemented as a bitmap to store the pack of
boundary bits of the nearby memory locations. When scanning the pack of boundary
bits, this behavior provides more spatial locality1 than temporal locality2 [64].

For the n-to-1 bitmap, a bit in boundary-bit cache can represent the n
boundary bits of the address A to A + n - 1. If there is a boundary bit set in the
range, it will be represented as “1” in the bitmap (an OR of associated bits). For
example, “01000000” bits in the Boundary Bit section can be represented as “1” in
the 8-to-1 bitmap of boundary-bit cache, as shown in Figure 6. The bitmap can be
implemented as multilevel of n-to-1 bitmap to improve the scanning speed of larger
memory range.

The concepts are to manage the up-to-date bitmap with a low overhead and
to balance the size of n that is suitable for the scan of boundary bits.

1 Spatial locality is a situation where a nearby reference memory is likely to be referenced in the near future.

2 Temporal locality is a situation where a recently referenced memory is likely to be referenced again in the near future.

40

Figure 6 Boundary-Bit Bitmap Diagram

V.1.2 Memory Architecture
Our boundary bit concept from V.1.1 can be designed as shown in Figure 7,

Figure 8, Figure 9 and Figure 10. To make the implementation simple, this design stores
boundary bits separated from normal data in the traditional memory without adding
an additional hardware bit associated to each byte or word in the memory.

In Figure 9 and Figure 10, bitmap (boundary bit cache) will reduce boundary-
bit scan cycles by trading off more hardware and bitmap management cycles. Bitmap
can be added more than 1 level, such as in Figure 11. However, it wastes not more
than 1 cycle to manage bitmap, when setting/clearing boundary bit bitmap, because
it can be parallel with boundary bit management.

Moreover, this memory architecture leads to boundary bit protection. If
attackers need to modify any boundary bit, they must have a root privilege to access
memory in the boundary bit section.

41

Figure 7 Boundary Bit Memory Interface without Bitmap

Figure 8 Boundary-Bit Memory Interface Controller

42

Figure 9 Boundary-Bit Memory Interface with Bitmap

Figure 10 Bitmap Interface Controller

43

Figure 11 Boundary-Bit Memory Interface with 2-Level Bitmap

V.1.3 Instructions for Boundary Bits
The first instruction, setbb, is for setting boundary bit. It is required for memory

allocation. The operand of the setbb instruction is the address of the last byte of
each variable, argument or pointer (not the address of that). The instruction format is
as follows:

setbb ADDRESS

The second instruction, clrbb, is for clearing boundary bit. It is required for

memory deallocation. The operand of the clrbb instruction is the same as setbb
instruction. The instruction format is as follows:

clrbb ADDRESS

The third new instruction, scnbb, is for scanning boundary bits. The first

operand is the start address of each variable, argument or pointer. The second operand
is the value of scanning range which is calculated from variable size or index of array
Assuming that the scanning range is n, if the starting address is st, the range of scanned
bits will start from st to st + n - 2. The instruction format is as follows:

scnbb ADDRESS,N

V.2 Software
Besides modifying some hardware to use boundary bit, the system must be

informed to set a boundary bit at the end of any variable or buffer to mark the

44

boundary by using the new memory-allocated instructions. When writing data to any
variable or buffer, the system will check whether there is a boundary bit set in a given
range by using the new memory-written instructions at the runtime. The new
instructions can be called by in-line assembly code.

For example, the given c-language code will produce the following assembly
code.

void func(char *p) {

 int i; //4 byte

 char b[8]; //8 byte

 char ch; //1 byte

 b[7] = p[0];

}

 Assembly code (generated from Microsoft Visual Studio compiler) is shown as

follows:
00000000 push ebp

00000001 mov ebp,esp

00000003 sub esp,1Ch

00000006 xor eax,eax

00000008 mov dword ptr [ebp-14h],eax

0000000b mov dword ptr [ebp-18h],eax

0000000e mov dword ptr [ebp-4],9DC86C9Bh

00000015 mov dword ptr [ebp-10h],ecx

00000018 cmp dword ptr ds:[01474288h],0

0000001f je 00000026

00000021 call 5B013C60

00000026 mov eax,dword ptr [ebp-10h]

00000029 movsx eax,byte ptr [eax]

0000002c lea edx,[ebp-0Ch]

0000002f mov byte ptr [edx+7],al

When setting boundary bits, the new instruction, setbb, will be added in the

memory-allocated section. It must know the size of all variables, argument or pointer
before allocating memory to calculate the address of their boundary bits.

Therefore, this part of the assembly code will be:
…

mov dword ptr [ebp-14h],eax

setbb dword ptr [ebp-14h] ; for ch

mov dword ptr [ebp-18h],eax

setbb dword ptr [ebp-15h] ; for i

setbb dword ptr [ebp-5] ; for b[]

mov dword ptr [ebp-4],9DC86C9Bh

mov dword ptr [ebp-10h],ecx

setbb dword ptr [ebp-0Dh] ; for *p

…

45

When scanning boundary bits, the new instruction, scnbb, will be added

before writing to memory, such as mov instruction with memory as destination (first
operand).

Therefore, this part of the assembly code will be:
…

mov eax,dword ptr [ebp-10h] ; Get address of *p

movsx eax,byte ptr [eax] ; Read value of p[0] to eax

lea edx,[ebp-0Ch] ; Get address of b[0]

scnbb [edx],8 ; Scan Boundary Bit of b[]

mov byte ptr [edx+7],al ; Write value from eax to b[7]

…

From the above example, the mov instruction with displacement addressing

mode can be embedded with boundary-bit scanning. There is the index number of
array in this instruction that can be used to calculate the scanning range.

CHAPTER VI
EVALUATION

To evaluate, we create some boundary bit simulations. Then, we evaluate
boundary-bit approach in 2 aspects: protection efficiency and performance.

VI.1 Simulation Tools
Our C++ simulation tools are created on Microsoft Visual Studio 2015. There

are 2 main parts of these tools.

VI.1.1 Trace File Generation
At the beginning, we generate some trace files from our benchmark manually.

There are 5 instructions that we are interested:

VI.1.1.1 Set Boundary Bit Instruction
This setbb instruction is for setting boundary bit. It is required for

memory allocation. The operand is the address of the last byte of each variable,
argument or pointer (not the address of that). The instruction format is as follows:

setbb ADDRESS

For example, this instruction in the assembly code is shown as follows:
setbb dword ptr [ebp-5]

In the trace file, we represent this instruction as follows:
B ADDRESS

Note that ADDRESS is hexadecimal. For example, this instruction in the
trace file is shown as follows:

B 11E76B

From the above code, it means to set boundary bit on address
0x11E76B.

VI.1.1.2 Clear Boundary Bit Instruction
This clrbb instruction is for clearing boundary bit. It is required for

memory deallocation. The operand is the address of the last byte of each variable,
argument or pointer (not the address of that). The instruction format is similar to setbb
instruction as follows:

47

clrbb ADDRESS

For example, this instruction in the assembly code is shown as follows:
clr dword ptr [ebp-5]

In the trace file, we represent this instruction as follows:
C ADDRESS

Note that ADDRESS is hexadecimal. For example, this instruction in the
trace file is shown as follows:

C 11E76B

From the above code, it means to clear boundary bit on address
0x11E76B.

VI.1.1.3 Scan Boundary Bit Instruction
The scnbb instruction is for scanning boundary bits. The first operand

is the start address of each variable, argument or pointer. The second operand is the
value of scanning range which is calculated from variable size or index of array
Assuming that the scanning range is n, if the starting address is st, the range of scanned
bits will start from st to st + n - 2. The instruction format is as follows:

scnbb ADDRESS,N

For example, this instruction in the assembly code is shown as follows:
scnbb [edx],128

In the trace file, we represent this instruction as follows:
S ADDRESS N

Note that ADDRESS and N are hexadecimal. For example, this
instruction in the trace file is shown as follows:

S 11E770 14

From the above code, it means to scan boundary bits from address
0x11E770 to 0x11E770 + 14 – 2 = 0x11E782.

VI.1.1.4 Read Memory Instruction
There are many instructions considered as read-memory instructions.

For example,

• mov (move) / movsx (move with sign-extension) instructions with
memory as source (second operand)

• cmp (compare) instructions with memory

48

• inc (increment) / dec (decrement) instructions with memory

• add (add) / sub (subtract) / mul (multiply) / div (divide)
instructions with memory as source (second operand)

• push instructions from memory
In the trace file, we represent this instruction as follows:

R ADDRESS N

Note that ADDRESS and N are hexadecimal. For example, this
instruction in the trace file is shown as follows:

R 11E768 4

From the above code, it means to read 4-byte data from memory
address 0x11E768.

VI.1.1.5 Write Memory Instruction
There are many instructions considered as write-memory instructions.

For example,

• mov (move) instructions with memory as destination (first operand)

• inc (increment) / dec (decrement) instructions with memory

• add (add) / sub (subtract) / mul (multiply) / div (divide)
instructions with memory as destination (first operand)

• pop instructions into memory
In the trace file, we represent this instruction as follows:

W ADDRESS N

Note that ADDRESS and N are hexadecimal. For example, this
instruction in the trace file is shown as follows:

W 11E768 4

From the above code, it means to write 4-byte data to memory address
0x11E768.

VI.1.2 Simulation
Our architectural design is as shown in Figure 12.

49

Figure 12 Architectural Design for the Test Environment

There are 3 major parts of the simulation as follows.

VI.1.2.1 Boundary Bit Set/Clear Management
When allocating memory, the system must set a boundary bit for each

variable/buffer. Also, when deallocating memory, the system must clear a boundary
bit for each variable/buffer. In our design, the memory that contains Boundary Bit
section is separated from data section (main memory). The system needs address
translation for boundary bits.

From Figure 12, the first boundary bit (high-order bit), which is set to
“0”, in the highest address in the boundary bit section contains the boundary bit of

50

address A. That means the boundary bit of address A is not set. The second boundary
bit, which is set to “1”, in the same row contains the boundary bit of address A + 1.
That means the boundary bit of address A + 1 is set.

For example, if we set boundary bits at address 0x01, 0x0E and 0xA3,
the boundary bit section will be shown as the following Table 18.

Table 18 Boundary Bit Section Example 1

Address Boundary Bits

0x00-0x07
0x08-0x0F

…
0xA0-0xA7

0100 0000
0000 0010

…
0001 0000

VI.1.2.2 Bitmap Set/Clear Management
Our boundary-bit cache is implemented as a 16-to-1 bitmap. After

setting/clearing each boundary bit, the bitmap must be updated immediately.
From Figure 12, the first bit (high-order bit), which is set to “1”, in the

highest address in the bitmap represents the boundary bits of address A to A + 15.
That means there is at least a boundary bit of address between address A to A + 15
is set.

For example, if we set boundary bits at address 0x01, 0x0E and 0xA3,
the first two bytes of boundary bits, “0100 0000” and “0000 0010”, which represents
the boundary bits of address 0x00 to 0x0F, will show in the first byte of 16-to-1
bitmap as “1000 0000”. The boundary bit of address 0xA3 is show in the second byte
of bitmap as “0010 0000” because the second byte of bitmap represents the boundary
bits of address 0x80 to 0xFF. Therefore, the 16-to-1 bitmap will be shown as the
following Table 19.

Table 19 16-to-1 Bitmap Section Example 1

Address Bitmap
0x00-0x7F
0x80-0xFF

1000 0000
0010 0000

51

VI.1.2.3 Boundary-Bit/Bitmap Scanning
Boundary-bit/bitmap scanning mechanism is the most delicate. We

separate into 2 cases: 1) boundary bit only and 2) boundary bit and bitmap.
In the first case, each byte in the boundary bit section can contain 8

boundary bits, i.e., each byte contains the boundary bits of address A to A + 7.
When scanning, it can scan every 8 addresses simultaneously. However, if the start
address cannot be exactly divided by 8, the bit offset will be calculated and every
boundary bit must be checked start from that bit offset. In the same way, if the end
address cannot be exactly divided by 8, the system will check boundary bit set must
not belong to the address that more than the end address. From Figure 12, we assume
that the boundary bit section is shown in the following Table 20.

Table 20 Boundary Bit Section Example 2

Address Boundary Bits
0x000-0x007
0x008-0x00F
0x010-0x017
0x018-0x01F
0x020-0x027

…
0x1A0-0x1A7
0x1A8-0x1AF

0001 0000
0000 0000
0000 0000
0001 0001
0000 0000

…
0000 0000
0001 0000

From above, when scanning from address 0x004 to 0x01A, in the first

byte “0001 0000”, the system will scan bits starting at bit offset = 4 (address = 0x004)
and ending at bit offset = 7 (address = 0x007). After that, 2 bytes of boundary bits of
address 0x008 to 0x017 are scanned but all are no boundary bit set. In the last
byte “0001 0001”, the system will detect the boundary bit set on bit offset = 3 (address
= 0x01B) but it is out of scanning scope. Thus, there is no boundary bit set address
0x004 to 0x01A.

52

In the second case, the system will search in the bitmap first. If there is
any bit set, it will search deeply in the boundary bit section which the set bit in the
bitmap is represented. From Figure 12 and Table 20, we assume that the 16-to-1
bitmap will be shown in the following Table 21.

Table 21 16-to-1 Bitmap Section Example 2
Address Bitmap

0x000-0x07F
0x080-0x0FF
0x100-0x17F
0x180-0x1FF

1100 0000
0000 0000
0000 0000
0010 0000

From above, when scanning from address 0x070 to 0x1AF, in the first

byte “1100 0000”, the system will scan bits starting at bit offset = 7 (address = 0x070).
After that, 2 bytes of bitmap of address 0x080 to 0x17F are scanned but all are no
boundary bit set. In the last byte “0010 0000”, the system will detect the boundary
bit set on bit offset = 2 (address = 0x1A0). Thus, there is at least a boundary bit set
between address 0x1A0 and 0x1AF. Then, the system will search deeply in the
boundary bit section as Table 20. The byte “0010 0000” is detected that the boundary
bit set on bit offset = 2 (address = 0x1AB). It is found that there is a boundary bit set
address 0x1AB.

To reduce boundary-bit scanning cycles in case of a big array, we have
2 solutions. First, we modify the 16-to-1 bitmap to 256-to-1 bitmap. Another solution
is to be 2-level bitmap by adding another bitmap (16-to-1 or 32-to-1 bitmap) as shown
in Figure 11 on page 43.

VI.1.3 Simulation Test Environment
The simulation is written in Microsoft Visual C++. Our test environment is

conducted on 64-bit Windows 10 with 8 GB RAM. Because of the limitation of Microsoft
Visual Studio 2015, we assume our test environment as follows:

1. There is 1 byte of memory per 1 boundary bit.

53

2. Memory size is 4 MB.
3. Boundary Bit section size is Memory size / 8 = 512 KB.
4. Boundary-bit caches are implemented into 3 cases:

a. 1-level 16-to-1 bitmap
16-to-1 Bitmap size is Boundary Bit section size / 16 = 32 KB
b. 1-level 256-to-1 bitmap
256-to-1 Bitmap size is Boundary Bit section size / 256 = 2 KB
c. 2-level bitmap
Level-2 16-to-1 Bitmap size is 32 KB
Level-1 16-to-1 Bitmap size is 2 KB / 32-to-1 Bitmap size is 1 KB

VI.2 Evaluation Aspects
We focus on both protection efficiency and performance aspects.

VI.2.1 Protection Efficiency
Before running the simulation, the compiler option needs to disable “/GS

(Security Check)”. This setting is in the project properties > C/C++ > Code Generation
> Security Check. It needs to modify to “Disable Security Check (/GS-)” [65].

The following example codes are tested. They are all detected using boundary-
bit solution.

VI.2.1.1 Stack Overflows
As we mentioned in section II.2.1.1 on page 4. We test 2 types of these

attacks: on control data and non-control data.

VI.2.1.1.1 Stack-Overflow Attack on Control Data
 The test code is given as follows:

void hack() {

 Console::WriteLine("HACKED!!!");

 Console::ReadLine();

}

void func(char *p) {

 Console::WriteLine("p address = {0:X}", (int)&p);

 __asm {

 setbb dword ptr [ebp-0Ch+3h]

 }

54

 char b[8]; //8 bytes

 Console::WriteLine("b address = {0:X}", (int)&b);

 __asm {

 setbb dword ptr [ebp-14h+7h]

 }

 strcpy(b,p);

 __asm {

 scnbb dword ptr [ebp-14h], 1Bh

 clrbb dword ptr [ebp-0Ch+3h]

 clrbb dword ptr [ebp-14h+7h]

 }

}

int main(array<System::String ^> ^args)

{

 String^ s = Convert::ToString((int)&hack, 16);

 if (s->Length % 2 != 0)

 s = "0" + s;

 char ch[] = "00000000";

 for (int i = 0; i < s->Length; i+=2)

 {

 ch[s->Length - i - 2] = s[i];

 ch[s->Length - i - 1] = s[i+1];

 }

 String^ s2 = gcnew String(ch);

 char ch2[8] = {0,0,0,0,0,0,0,0};

 for (int i = 0; i < s->Length; i += 2)

 ch2[i/2] = (char)Convert::ToInt32(s2->Substring(i, 2),

16);

 s2 = gcnew String(ch2);

 for (int i = 0; i < 0x18; i++)

 s2 = "0" + s2;

func((char*)Marshal::StringToHGlobalAnsi(s2).ToPointer());

 return 0;

}

The above code will execute hack() function without calling

it. The beginning of the code is to calculate the address of the hack() function and
modify it as the proper input for func() function, as the same way in section II.2.1.1.1
on page 5. From the experiment, we know that the address of the return address of
func() function is 0x18 bytes away from variable b. After the end of the func()
function, the hack() function will be executed.

If it is detected, the result will be:
p address = 1EEEA0

b address = 1EEE98

BB FOUND! @ 1EEE9F

HACKED!!!

55

VI.2.1.1.2 Stack-Overflow Attack on Non-Control Data
The test code is given as follows:

void func(char *p) {

 __asm {

 setbb dword ptr [ebp-0Ch+3h]

 }

 int i = 0; //4 bytes

 __asm {

 setbb dword ptr [ebp-10h+3h]

 }

 char b[8]; //8 bytes

 __asm {

 setbb dword ptr [ebp-18h+7h]

 }

 Console::WriteLine("i address = {0:X}", (int)&i);

 Console::WriteLine("b address = {0:X}", (int)&b);

 Console::WriteLine("Before b = {0}", gcnew String(b));

 Console::WriteLine("Before i = {0:X}", i);

 strcpy(b,p);

 __asm {

 scnbb dword ptr [ebp-18h], 0Ch

 }

 Console::WriteLine("After b = {0}", gcnew String(b));

 Console::WriteLine("After i = {0:X}", i);

 __asm {

 clrbb dword ptr [ebp-0Ch+3h]

 clrbb dword ptr [ebp-10h+3h]

 clrbb dword ptr [ebp-18h+7h]

 }

}

int main(array<System::String ^> ^args)

{

 func("01234567AAAA");

 return 0;

}

The above code will modify the value of integer i without

assigning it directly. From the experiment, we know that the address of integer i is
0x1DEE44 – 0x1DEE3C = 8 bytes away from variable b. Thus, we can calculate
and modify it as the proper input for func() function, as the same way in section
II.2.1.1.2 on page 9. After doing strcpy() function, the value of integer i will be
modified.

If it is detected, the result will be:
i address = 2FEE44

b address = 2FEE3C

Before b =

56

Before i = 0

BB FOUND! @ 2FEE43

After b = 01234567AAAA

After i = 41414141

VI.2.1.2 Heap Overflows
The test code is given as follows:

void func(char *p) {

 Console::WriteLine("p address = {0:X}", (int)&p);

 __asm {

 setbb dword ptr [ebp-0Ch+3h]

 }

 char *b = (char *)malloc(8); //8 bytes

 __asm {

 setbb dword ptr [ebp-10h+3h]

 mov eax, dword ptr [ebp-10h]

 setbb dword ptr [eax+7h]

 }

 Console::WriteLine("b address = {0:X}", (int)&b);

 Console::WriteLine("b = {0:X}", (int)b);

 strcpy(b, p);

 __asm {

 scnbb dword ptr [ebp-10h], 0Ah

 mov eax, dword ptr [ebp-10h]

 clrbb dword ptr [eax+7h]

 clrbb dword ptr [ebp-0Ch+3h]

 clrbb dword ptr [ebp-10h+3h]

 }

}

int main(array<System::String ^> ^args)

{

 func("0123456789");

 return 0;

}

The above code will overflow the allocated memory referred by pointer

b. When the allocated memory is written, it will be scanned and the attack is detected.
If it is detected, the result will be:

p address = 13F06B

b address = 13F067

b = 99848

BB FOUND! @ 9984F

VI.2.1.3 Array Indexing Errors
As we mentioned in section II.2.1.3 on page 11. We test 3 types of these

attacks: stack (on control/non-control data) and heap.

57

VI.2.1.3.1 Array-Indexing-Errors (Stack) on Control Data
The test code is given as follows:

void hack() {

 Console::WriteLine("HACKED!!!");

 Console::ReadLine();

}

void func(char *p) {

 Console::WriteLine("p address = {0:X}", (int)&p);

 __asm {

 setbb dword ptr [ebp-0Ch+3h]

 }

 char b[8]; //8 bytes

 Console::WriteLine("b address = {0:X}", (int)&b);

 __asm {

 setbb dword ptr [ebp-14h+7h]

 }

 b[0x18] = p[0];

 __asm {

 scnbb dword ptr [ebp-14h], 19h

 }

 b[0x19] = p[1];

 __asm {

 scnbb dword ptr [ebp-14h], 1Ah

 }

 b[0x1A] = p[2];

 __asm {

 scnbb dword ptr [ebp-14h], 1Bh

 }

 b[0x1B] = p[3];

 __asm {

 scnbb dword ptr [ebp-14h], 1Ch

 }

 __asm {

 clrbb dword ptr [ebp-0Ch+3h]

 clrbb dword ptr [ebp-14h+7h]

 }

}

int main(array<System::String ^> ^args)

{

 String^ s = Convert::ToString((int)&hack, 16);

 if (s->Length % 2 != 0)

 s = "0" + s;

 char ch[8] = {0,0,0,0};

 for (int i = 0; (s->Length - (2 * i) - 2) >= 0; i++)

 ch[i] = (char)Convert::ToInt32(

 s->Substring((s->Length - (2*i) - 2), 2), 16);

 func(ch);

 return 0;

}

58

The above code will execute hack() function without calling
it. The beginning of the code is to calculate the address of the hack() function and
modify it as the proper input for func() function, as the same way in section II.2.1.3
on page 11. From the experiment, we know that the address of the return address of
func() function is 0x18 bytes away from variable b. After the end of the func()
function, the hack() function will be executed.

If it is detected, the result will be:
p address = 13ED54

b address = 13ED4C

BB FOUND! @ 13ED53

BB FOUND! @ 13ED53

BB FOUND! @ 13ED53

BB FOUND! @ 13ED53

HACKED!!!

VI.2.1.3.2 Array-Indexing-Errors (Stack) on Non-Control Data
The test code is given as follows:

void func(char *p) {

 __asm {

 setbb dword ptr [ebp-0Ch+3h]

 }

 int i = 0; //4 bytes

 __asm {

 setbb dword ptr [ebp-14h+3h]

 }

 char b[8]; //8 bytes

 __asm {

 setbb dword ptr [ebp-1Ch+7h]

 }

 Console::WriteLine("i address = {0:X}", (int)&i);

 Console::WriteLine("b address = {0:X}", (int)&b);

 Console::WriteLine("Before i = {0:X}", i);

 int diff = (int)&i - (int)&b;

 __asm {

 setbb dword ptr [ebp-10h+3h]

 }

 b[diff] = p[14];

 __asm {

 mov eax, dword ptr [ebp-10h]

 scnbb dword ptr [ebp-1Ch], eax

 }

 Console::WriteLine("After i = {0:X}", i);

 __asm {

 clrbb dword ptr [ebp-0Ch+3h]

 clrbb dword ptr [ebp-10h+3h]

59

 clrbb dword ptr [ebp-14h+3h]

 clrbb dword ptr [ebp-1Ch+7h]

 }

}

int main(array<System::String ^> ^args)

{

 func("01234567890AAAA");

 return 0;

}

The above code will modify the value of integer i without

assigning it directly. From the experiment, we know that the address of integer i is
diff = 0x3FF230 – 0x3FF228 = 8 bytes away from variable b. Thus, we can
calculate and modify it as the proper input for func() function, as the same way in
section II.2.1.3 on page 11. After assigning a new value to b[diff], the value of integer
i will be modified.

If it is detected, the result will be:
i address = 3FF230

b address = 3FF228

Before i = 0

BB FOUND! @ 3FF22F

After i = 41

VI.2.1.3.3 Array-Indexing-Errors (Heap)
The test code is given as follows:

void func(char *p) {

 Console::WriteLine("p address = {0:X}", (int)&p);

 __asm {

 setbb dword ptr [ebp-0Ch+3h]

 }

 char *b = (char *)malloc(8); //8 bytes

 __asm {

 setbb dword ptr [ebp-10h+3h]

 mov eax, dword ptr [ebp-10h]

 setbb dword ptr [eax+7h]

 }

 Console::WriteLine("b address = {0:X}", (int)&b);

 Console::WriteLine("b = {0:X}", (int)b);

 *(b + 12) = p[0];

 __asm {

 scnbb dword ptr [ebp-10h], 0Ch

 mov eax, dword ptr [ebp-10h]

 clrbb dword ptr [eax+7h]

 clrbb dword ptr [ebp-0Ch+3h]

 clrbb dword ptr [ebp-10h+3h]

 }

}

60

int main(array<System::String ^> ^args)

{

 func("0123456789");

 return 0;

}

The above code will access outside the allocated memory

referred by pointer b. When accessing memory, it will be scanned and the attack is
detected.

If it is detected, the result will be:
p address = 2FEF28

b address = 2FEF24

b = 234398

BB FOUND! @ 23439F

VI.2.2 Performance
For clarity, we count clock cycles of all instruction executions as mentioned in

section VI.1.2 on page 48. Thus, we make the following assumptions about our test
environment:

1. Boundary Bit Set/Clear management uses 1 cycle per instruction.
2. Bitmap Set/Clear management uses 1 cycle per instruction.
3. Boundary Bit and Bitmap scanning uses 1 cycle per byte of boundary bits.

(Up to scanning method)
4. Read Memory instruction uses 1 cycles per byte. [66]
5. Write Memory instruction uses 2 cycles per byte. [66]

There are some examples of codes and instruction representations in the trace
files.

VI.2.2.1 Variable/Argument Declaration
When declaring a variable/argument, the system will allocate the

memory up to the size of variable/argument type. For example, the size of “char”,
“int”, “double” for Visual C++ in Microsoft Visual Studio 2015 are 1, 4, 8 bytes
respectively. To calculate the address of boundary bit set for each variable/argument,
which is the last byte of each variable/argument, we must know the address and the
size of this variable/argument. For instance, we declare an integer which is allocated

61

at address A. The address of boundary bit will be A + size – 1 = A + 4 – 1 =
A + 3. Thus, we represent this instruction as B A+3.

The same method also applies to a buffer/array, if a character array is
allocated at address A and the array size is n bytes, the address of boundary bit will
be A + n – 1.

In case of a pointer, we set a boundary bit of the pointer and a
boundary bit of the memory block which the pointer points to. Normally, the pointer
size is 4 bytes in the 32-bit system. If a pointer is allocated at address PA, the address
of boundary bit will be PA + 4 – 1. If a memory block is allocated at address MA
and the block size is n bytes, the address of boundary bit will be MA + n – 1.
Therefore, the set instructions will be B PA+3 and B MA+n-1.

VI.2.2.2 The End of Variable/Argument Existence
At the end of variable/argument existence, the system will deallocate

the memory. The instructions will use the same address as setting a boundary bit. If
an integer is allocated at address A, this clear instruction will be C A+3.

VI.2.2.3 Variable/Argument Access
There are some example codes as shown in Table 22. To reduce

unnecessary scanning cycles, some write memory instructions will not scan before
write memory.

The following table, some operands can be described as follows:

• i_address means the address of variable i

• i_size means the size of variable i

• mem_address means the address of allocated memory block

• p means the value of variable p

62

Table 22 Example Codes and Instruction in Trace Files

Example Codes Instruction in Trace Files
int i B i_address+i_size-1

i++ R i_address i_size

W i_address i_size

i = 1 W i_address i_size

a = b R b_address b_size

S a_address b_size

W a_address b_size

a > b R a_address a_size

R b_address b_size

buf[i] = n R i_address i_size

R n_address n_size

S buf_address (i+1)*buf[i]_size

W buf[i]_address n_size

n = buf[i] R i_address i_size

R buf[i]_address buf[i]_size

S n_address buf[i]_size

W n_address buf[i]_size

p = (char*)malloc(n) R n_address n_size

B mem_address+n-1

S p_address p_size

W p_address p_size

*(p + i) = a R a_address a_size

R i_address i_size

R p_address p_size

S p i+1

W p+i a_size

strncpy(arr2, arr1, n) R n_address n_size

R arr1_address n

S arr2_address n

W arr2_address n

VI.3 Simulation Results
We create 2 cases for simulation.

VI.3.1.1 Case 1: Intensive Read/Write Buffer (Bubble Sort)
This bubble-sort program is a good simple example to show how to

implement boundary bit approach with a buffer. Overall instruction cycles and
slowdown of boundary-bit implementation with/without Bitmap are shown in Table
23 and Figure 13. Slowdown percentage is calculated as follows:

𝑆𝑙𝑜𝑤𝑑𝑜𝑤𝑛 = (
ReadWrite + Overhead

ReadWrite
 – 1) ×100 %

63

“ReadWrite” means instruction cycles from read/write memory
instruction in VI.1.1.4 and VI.1.1.5. “Overhead” means instruction cycles from
set/clear/scan boundary bit instructions in section VI.1.1.1, VI.1.1.2 and VI.1.1.3 on page
46 - 47.

Overhead cycles of boundary bits without bitmap are shown in Table
25 and Figure 14. Overhead cycles of boundary bits with 1-level 16-to-1 bitmap are
shown in Table 26 and Figure 15. For optimization by changing to 1-level 256-to-1
bitmap, optimized instruction cycles are shown in Table 24. These optimized scan
cycles of boundary bits are shown in Table 27. In case of 2-level bitmap, they are
shown in Table 28. In case of data size = 10000, the detailed scan cycles are shown in
Figure 16.

Table 23 Overall Instruction Cycles vs Data Size in the Bubble-Sort Program

Data
Size

Original
Cycles

Boundary Bit Boundary Bit with Bitmap
Cycles Slow (%) Cycles Slow (%)

10 3624 3942 8.77 3935 8.58
100 309154 332567 38.22 427316 7.57
1000 31552131 143247583 354.00 41213399 30.62
10000 3145601035 113991054552 3523.82 10271375417 226.53

Table 24 Optimized Instruction Cycles vs Data Size in the Bubble-Sort Program
Data
Size

256-to-1 Bitmap 2-Level 16/16 Bitmap 2-Level 32/16 Bitmap
Cycles Slow (%) Cycles Slow (%) Cycles Slow (%)

1000 33833687 7.23 35347054 12.02 36096664 14.40

10000 3765474362 19.71 3890471569 23.67 3770446711 19.86

Note: “32/16 Bitmap” means level-1 bitmap is a 32-to-1 bitmap and level-2 bitmap is
a 16-to-1 bitmap.

64

Table 25 Overhead Cycles without Bitmap in the Bubble-Sort Program

Data Size
Boundary Bit

Set/Clear Scan
10 32 286
100 204 117958

1000 1946 111693506
10000 19794 110845433723

Table 26 Overhead Cycles with 16-to-1 Bitmap in the Bubble-Sort Program

Data Size
Boundary Bit Bitmap

Set/Clear Scan Set/Clear Scan
10 32 103 32 144
100 204 5137 204 17868
1000 1946 1513367 1946 8144009
10000 19794 124674311 19794 7001060483

Table 27 Overhead Cycles with 256-to-1 Bitmap in the Bubble-Sort Program

Data Size
Boundary Bit Bitmap

Set/Clear Scan Set/Clear Scan
1000 1946 1008244 1946 1269420
10000 19794 99720276 19794 520113463

Table 28 Scan Cycles with 2-Level Bitmap in the Bubble-Sort Program

Data Size Boundary Bit
16/16 Bitmap 32/16 Bitmap

Level 1 Level 2 Level 1 Level 2
1000 1513367 1269420 1008244 1010786 2016488

10000 124674311 520113463 100043172 297417913 202713864

65

Figure 13 Overall Instruction Cycles vs Data Size in the Bubble-Sort Program

Figure 14 Overhead Cycles without Bitmap in the Bubble-Sort Program

1

10

100

1000

10000

100000

1000000

10000000

100000000

10 100 1000 10000

Th
o

u
sa

n
d

s

Original Boundary Bit without Bitmap

Boundary Bit with 16-to-1 Bitmap Boundary Bit with 256-to-1 Bitmap

Boundary Bit with 2-Level 16/16 Bitmap

0.01

0.1

1

10

100

1000

10000

100000

1000000

10000000

100000000

10 100 1000 10000

Th
o

u
sa

n
d

s

Set/Clear Boundary Bit Scan Boundary Bit

66

Figure 15 Overhead Cycles with 1-Level Bitmap in the Bubble-Sort Program

Figure 16 Scan Cycles with 1-Level and 2-Level Bitmap in the Bubble-Sort Program

As the simulation result, the smallest data size is 10. Their slowdown of
boundary bit (with/without Bitmap) are about 8 %. We use this value as a baseline for
comparing the optimization result. In other cases, the bigger data size makes the much
more slowdown.

0.01

0.1

1

10

100

1000

10000

100000

1000000

10000000

10 100 1000 10000

Th
o

u
sa

n
d

s

Set/Clear Boundary Bit Set/Clear Bitmap Scan Boundary Bit Scan Bitmap

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

1-Level 16-to-1 1-Level 256-to-1 2-Level 16/16 2-Level 32/16

Th
o

u
sa

n
d

s

Scan Boundary Bit Scan Level-2 Bitmap Scan Level-1 Bitmap

67

However, bitmap (boundary bit cache) can reduce the slowdown by
reducing scan cycles. To decrease more scan cycles in case of big data size, we have
2 solutions. First, we change a 1-level bitmap from 16-to-1 bitmap to 256-to-1 bitmap.
Second, we add another level of a 16-to-1 bitmap. The slowdown result shows that
the first solution can decrease scan cycles more than the second solution. Thus, we
try another solution by changing a level-1 bitmap from 16-to-1 bitmap to 32-to-1
bitmap. In case of data size = 1000, the slowdown result does not decrease. Even
though the scan cycles of level-1 bitmap is decreased, the scan cycles of level-2
bitmap is more increased. In case of data size = 10000, the slowdown result decreases
as expected.

We conclude that the optimization solution is to add the proper size of
a n-to-1 bitmap. The bigger n value is suitable for a bigger array/buffer.

VI.3.1.2 Case 2: Random Write Memory
This program randomly simulates intensive write memory in many ways,

such as:

• Write to character variables

• Write to integer variables

• Write to double variables

• Access a big array/buffer (100,000 entries)

• Access a big memory block using a pointer (100,000 B)

• Write data vary in size to a big array/buffer (100,000 entries)
We randomize for 10,000/100,000/1,000,000/10,000,000 times. Overall

instruction cycles and slowdown of boundary-bit implementation with/without Bitmap
are shown in Table 29 and Figure 17.

Overhead cycles of boundary bits without bitmap are shown in Table
31 and Figure 18. Also, overhead cycles of boundary bits with 1-level 16-to-1 bitmap
are shown in Table 32 and Figure 19. For optimization by changing to 1-level 256-to-1
bitmap, and to 2-level bitmap, these optimized instruction cycles are shown in Table

68

30 and optimized scan cycles of boundary bits are shown in Table 33. In case of
10,000,000 times, the detailed scan cycles are shown in Figure 20.

Table 29 Overall Instruction Cycles in the Random Write Memory Program

Random
Times

Original
Cycles

Boundary Bit Boundary Bit with Bitmap
Cycles Slow (%) Cycles Slow (%)

10000 23204503 39077311 68.40 24317852 4.80
100000 234273934 396420226 69.21 245566672 4.82

1000000 2358780502 3983282338 68.87 2472176919 4.81
10000000 23650789851 39880930514 68.62 24785993009 4.80

Table 30 Optimized Instruction Cycles in the Random Write Memory Program

Random
Times

256-to-1 Bitmap 2-Level 16/16 Bitmap

Cycles Slow (%) Cycles Slow (%)
10000 23392359 0.81 23731308 2.27
100000 236190074 0.81 237300290 1.29
1000000 2377615868 0.80 2392061404 1.41

10000000 23837868276 0.79 23995229307 1.46

Table 31 Overhead Cycles without Bitmap in the Random Write Memory Program

Random
Times

Boundary Bit
Set/Clear Scan

10000 40086 15832722
100000 399542 161746750
1000000 3998336 1620503500
10000000 39989702 16190150961

Table 32 Overhead Cycles with Bitmap in the Random Write Memory Program

Random
Times

Boundary Bit Bitmap

Set/Clear Scan Set/Clear Scan
10000 40086 25077 40086 1008100
100000 399542 216704 399542 10276950

1000000 3998336 2499966 3998336 102899779
10000000 39989702 25000066 39989702 1030223688

69

Table 33 Scan Cycles in the Random Write Memory Program

Random
Times

256-to-1 Bitmap 2-Level 16/16 Bitmap
Boundary Bit Bitmap Boundary Bit Level 1 Level 2

10000 26928 80756 25077 80756 340800
100000 300598 816458 249964 816458 1160850

1000000 2673404 8165290 2499966 8165290 14618974
10000000 25072101 82026920 25000066 82026920 157433066

Figure 17 Overall Instruction Cycles in the Random Write Memory Program

10000

100000

1000000

10000000

100000000

10000 100000 1000000 10000000

Th
o

u
sa

n
d

s

Original Boundary Bit without Bitmap

Boundary Bit with 16-to-1 Bitmap Boundary Bit with 256-to-1 Bitmap

Boundary Bit with 2-Level 16/16 Bitmap

70

Figure 18 Overhead Cycles without Bitmap in the Random Write Memory Program

Figure 19 Overhead Cycles with 1-Level 16-to-1 Bitmap in the Random Write Memory
Program

1

10

100

1000

10000

100000

1000000

10000000

100000000

1000 10000 100000 1000000

Th
o

u
sa

n
d

s

Set/Clear Boundary Bit Scan Boundary Bit

1

10

100

1000

10000

100000

1000000

10000000

10000 100000 1000000 10000000

Th
o

u
sa

n
d

s

Set/Clear Boundary Bit Set/Clear Bitmap Scan Boundary Bit Scan Bitmap

71

Figure 20 Scan Cycles with 1-Level and 2-Level Bitmap in the Intensive Write Memory
Program

The simulation result shows that the more random times causes the
more overall instruction cycles. The slowdown is 4.8 % using 1-level 16-to-1 bitmap.

If we want to reduce scan cycles, we also have 2 solutions. First, we
change a 1-level bitmap from 16-to-1 bitmap to 256-to-1 bitmap. Its slowdown is
reduced to 0.8 %. Second, we add another level of a 16-to-1 bitmap. Its average
slowdown is reduced to 1.6 %. The slowdown result shows that the first solution can
decrease scan cycles more than the second solution.

Furthermore, the average miss rate from our test is shown in Table 34.

Table 34 The Miss Rate in the Intensive Write Memory Program

Bitmap Types
Average Miss Rate

Level 1 Level 2

1-level 16-to-1 bitmap 0.013
1-level 256-to-1 bitmap 0.166
2-level 16/16 bitmap 0.321 0.095

0

200000

400000

600000

800000

1000000

1200000

1-Level 16-to-1 1-Level 256-to-1 2-Level 16/16

Th
o

u
sa

n
d

s

Scan Boundary Bit Scan Level-2 Bitmap Scan Level-1 Bitmap

72

The simulation result shows that the miss rate of 256-to-1 bitmap is
higher than the miss rate of 16-to-1 bitmap. For 2-level bitmap, the miss rate of level-
1 bitmap is much higher than the miss rate of 1-level 256-to-1 bitmap.

In the same way, we can conclude that the optimization solution is to
add the proper size of a 1-level bitmap may be better than 2-level bitmap.

VI.3.2 Discussion
The evaluation is concluded into 2 aspects. First, in aspect of protection

efficiency, our approach can protect all types of buffer-overflow attacks we tested.
Second, in aspect of performance, our assumption about instruction cycles in

section VI.2.2 (on page 60) reflects the upper-bound simulation results. In other words,
the overall instruction cycles may be less than our simulations because the real
hardware implementation can be parallel. For example, overhead cycles for boundary
bits and bitmap can be reduced to half. Moreover, during the written memory, it is no
need to wait until the process finishes scanning boundary bits.

CHAPTER VII
ANALYSIS

In this chapter, we will analyze the advantages and potential disadvantages
issues of boundary bit. We will also address the performance issue of boundary bit.

VII.1 Advantages
There are many advantages of our solution as follows.

VII.1.1 Prevent All Types of Buffer-Overflow Attacks
This approach prevents 2 buffer-overflow characteristics: len:buff and

out:buff, which cover both legacy types and new types of buffer-overflow attacks.
No matter what the target is control data or non-control data, our approach can
protect all.

VII.1.2 Fixed and Low Additional Memory Usage
Additional memory usage for storing all boundary bits is fixed and it uses less

memory for metadata. Besides using less memory than most software solutions,
boundary bit uses less memory for metadata comparing to most hardware solutions
as well. For x86 architecture, Segmentation uses additional 3 words per variable for
metadata, containing starting address, ending address (or limit) and current address.
However, Boundary Bit uses a fixed cost 1 bit per memory word/byte. In directly, this
is equivalent to 1 bit per variable.

If there are 100 variables with 4-byte size, Segmentation consumes 3 x 100 =
300 words for metadata. Assuming that a word contains 4 bytes, segmentation would
require 300 x 4 = 1200 bytes. Boundary Bit only consumes 100 x 4 / 8 = 50 bytes. In
this case, comparing to Segmentation, Boundary Bit requires 24 times less memory.

VII.1.3 Low Performance Overhead
Scanning every bit does not make it slow because the hardware mechanism

for scanning can be parallel. On minimal, a byte scan can cover up to 8 bits. Therefore,
its performance overhead will not be too high comparing to software approach.

74

VII.2 Disadvantages
Although, hardware approach has many strengths, it does introduce

compatibility issue.

VII.2.1 Hardware Incompatibility
To apply Boundary Bit, the existing hardware cannot be used. However,

hardware has its life expectancy. When it is time to change, the new hardware with
the Boundary Bit can be a good choice for enhancing security.

VII.2.2 Software Incompatibility
Because of the design, programmers or compilers must tell the system to set

bit at the end of any variable or buffer for setting the boundary. Thus, Boundary Bit is
not completely transparent. However, every nowadays software must be updated
regularly to fix bugs and vulnerabilities. Besides, it provides a light-weight mechanism
for software to set a boundary. The setting can be embedded into memory allocation.

VII.3 Performance Analysis
Hardware-software co-design and optimization is very important to improve the

performance. The caching bitmap can improve the boundary-bit scanning efficiency.
The memory access time of bit-scanning can be greatly reduced, although it is not in
parallel. It can be modelled as follows:

𝑆𝑐𝑎𝑛 𝐶𝑦𝑐𝑙𝑒𝑠 = 𝐻𝑖𝑡 𝐶𝑦𝑐𝑙𝑒𝑠 + (𝑀𝑖𝑠𝑠 𝑅𝑎𝑡𝑒 × 𝑀𝑖𝑠𝑠 𝐶𝑦𝑐𝑙𝑒𝑠)
• Scan Cycles is the average number of boundary-bit scanning cycles for 1

Kbytes of boundary bits.

• Hit Cycles is the max number of cycles when scanning in the boundary-
bit cache (bitmap). It is up to the bitmap size.

• Miss Cycles is the max number of cycles when scanning in the boundary-
bit section (in the memory) after scanning in the bitmap is insufficient.

• Miss Rate is the fraction of accesses which are a miss.
From our assumption in section VI.2.2 (on page 60), 1 cycle can scan 1 byte (8

bits) of boundary bits. The miss rate from our test is shown in Table 34 on page 71.

75

In the case of the 1-level 16-to-1 bitmap, when it hits, the hit cycle is 1024 /
16 = 64 cycles for 1 Kbytes. When it misses, the miss cycle is 16 / 8 = 2 cycles. As a
result, its scan cycles will be 64 + (0.013 × 2) = 64.026 cycles.

In the case of the 1-level 256-to-1 bitmap, when it hits, the hit cycle is 1024 /
256 = 4 cycles for 1 Kbytes. When it misses, the miss cycle is 256 / 8 = 32 cycles. As a
result, its scan cycles will be 4 + (0.166 × 32) = 9.312 cycles.

In the case of the 2-level 16/16 bitmap, when it hits in level 1, the hit cycle is
1024 / (16 × 16) = 4 cycles. When it misses in level 1, the miss cycle is calculated by
scan cycles in level 2. When it hits in level 2, the hit cycle is 1024 / 16 = 64 cycles.
When it misses in level 2, the miss cycle is 16 / 8 = 2 cycles. its level-2 scan cycles will
be 64 + 0.095 × 2 = 64.19 cycles. As a result, its level-1 scan cycles will be 4 + (0.321
× (64 + 0.095 × 2)) = 24.60499 cycles.

The scan cycles of 1-level 256-to-1 bitmap is less than the scan cycles of 2-
level 16/16 bitmap. Therefore, from the model and from simulation results, we suggest
an optimization solution by using the proper “n” of level-1 n-to-1 bitmap as for the
better performance.

Moreover, the scanning can be done in parallel with their associated data by
modifying the processor. Given that there are several hardware-level parallelisms that
can be implemented to hide the overhead of boundary scanning, we conclude that
very little performance penalty is introduced.

VII.4 Cost Analysis
To implement our boundary bit approach, described in CHAPTER V on page 38,

it needs to modify both hardware and software.
Firstly, in the hardware part, additional memory usage is a fixed cost. In other

words, it does not vary on the program size because the system allocates the block
of memory for storing all boundary bits.

Secondly, a processor must be modified to add more instruction set about
boundary bit mechanism. That can be parallel. Thus, this cost is a little performance
penalty. It is a trade-off between performance and security.

76

Lastly, the boundary bit instruction must be called in the software. This can be
implemented by modifying a compiler. This is not transparent to the current software
but this cost can be accepted for more security.

VII.5 The Impact of Virtual Memory
Addresses we mentioned before in this thesis are all physical addresses. In this

issue, we will describe how virtual memory impacts the boundary bit management.
Virtual memory extends physical memory capacity by using swap space from

hard disk. It separates into “pages”, which makes a program relocatable.
The block of the Boundary Bit section is simply managed by following the page

of the data section. When the page is swapped out from memory to hard disk, all
boundary bits in the range of the page’s addresses are swapped out to hard disk as
well. In the same way, when the page is swapped into memory from hard disk, their
boundary bits are swapped back into memory.

VII.6 Boundary Bit Protection
The boundary bit storage, from our design in section V.1.2 on page 40, is not

only to store boundary bits but also to protect them. Only the root privilege can
modify boundary bits, no matter using any type of buffer overflow attacks or using the
boundary bit instruction such as clear boundary bit (clrBB).

To clarity, if an attacker wants to attack the system by bypassing the boundary
bits to exploit a buffer overflow vulnerability. Their target is to modify boundary bit
stored in the memory and bitmap. They may write the code for clearing all boundary
bits. Then they want to execute the code. However, they must have already own the
privilege to execute. If they have the privilege, that means they own the system and
they do not need to hack anymore.

CHAPTER VIII
CONCLUSION

In this chapter, we provide contributions and conclusion of this research.

VIII.1 Contributions
The contributions are as follows:
1. Purpose a new hardware solution, namely “Boundary Bit”, for preventing

buffer-overflow attacks.
2. Analyze the effectiveness that this solution can prevent which types of

buffer-overflow attacks
3. Analyze the efficiency that tradeoffs are worth to implement this solution

VIII.2 Conclusion
The underlying concept of Boundary-Bit is using bound-checking to ensure that

transferring data do not exceed the allocated capacity of variables or buffers. The goal
is to provide a hardware solution against all types of buffer-overflow attacks, including
non-control data attacks and array-indexing errors, with the lower overhead than other
software solutions.

To trade few performance and new hardware for more security, the key point
is to reduce scanning cycles by using bitmap as a boundary-bit cache.

Moreover, Boundary Bit is easy to implement. It requires few software
modification to deploy this scheme.

Though we have demonstrated viability at the architectural level, this solution
can also be implemented in software run-time environment such as Java Virtual
Machine or .NET framework.

Boundary Bit provides bound checking at the architectural level. This
mechanism should provide protection against future buffer-overflow attacks. Giving the
security provided, we believe Boundary Bit is a solution of buffer-overflow attacks.

REFERENCES

1. Schmidt, C. and T. Darby. The What, Why, and How of the 1988 Internet
Worm. 1988; Available from:
http://www.snowplow.org/tom/worm/worm.html.

2. Security, U.S.D.o.H. Vulnerability Notes Database. 04 May 2017; Available
from: http://www.kb.cert.org/vuls/bypublic.

3. Economou, N. MICROSOFT WINDOWS UP TO 8.1 MEMORY OBJECT WIN32K.SYS
BUFFER OVERFLOW. 2013 04/07/2017; Available from:
http://www.scip.ch/en/?vuldb.11444.

4. Microsoft. MICROSOFT WINDOWS UP TO SERVER 2016 SMB BUFFER
OVERFLOW. 2017 07/14/2017; Available from: https://vuldb.com/?id.98018.

5. Webopedia. buffer overflow. Available from:
http://www.webopedia.com/TERM/B/buffer_overflow.html.

6. Chiamwongpaet, S. and K. Piromsopa. The implementation of Secure Canary
Word for buffer-overflow protection. in 2009 IEEE International Conference on
Electro/Information Technology. 2009.

7. Kundu, A. and E. Bertino. A New Class of Buffer Overflow Attacks. in 2011 31st
International Conference on Distributed Computing Systems. 2011.

8. Bishop, M., et al., A Taxonomy of Buffer Overflow Characteristics. IEEE
Transactions on Dependable and Secure Computing, 2012. 9(3): p. 305-317.

9. Piromsopa, K. and R.J. Enbody, Survey of Protections from Buffer-Overflow
Attacks. Engineering Journal, 2011(2): p. 31-52%V 15.

10. Viega, J., et al. ITS4: a static vulnerability scanner for C and C++ code. in
Computer Security Applications, 2000. ACSAC '00. 16th Annual Conference.
2000.

11. Wheeler, D.A. Flawfinder. Available from:
http://www.dwheeler.com/flawfinder/.

12. RATS. Available from: http://www.securesw.com/rats/.

http://www.snowplow.org/tom/worm/worm.html
http://www.kb.cert.org/vuls/bypublic
http://www.scip.ch/en/?vuldb.11444
https://vuldb.com/?id.98018
http://www.webopedia.com/TERM/B/buffer_overflow.html
http://www.dwheeler.com/flawfinder/
http://www.securesw.com/rats/

79

13. Haugh, E. Testing C programs for buffer overflow vulnerabilities. in In
Proceedings of the Network and Distributed System Security Symposium.
2003.

14. Baratloo, A., N. Singh, and T. Tsai, Transparent run-time defense against stack
smashing attacks, in Proceedings of the annual conference on USENIX
Annual Technical Conference. 2000, USENIX Association: San Diego, California.
p. 21-21.

15. Evans, D. and D. Larochelle, Improving security using extensible lightweight
static analysis. IEEE Software, 2002. 19(1): p. 42-51.

16. Wagner, D., et al. A First Step towards Automated Detection of Buffer Overrun
Vulnerabilities. in IN NETWORK AND DISTRIBUTED SYSTEM SECURITY
SYMPOSIUM. 2000.

17. Walthinsen, C.C.a.S.B.a.R.F.D.a.C.P.a.P.W.a.E. Protecting Systems from Stack
Smashing Attacks with StackGuard. in In Linux Expo. 1999.

18. Cowan, C., et al. Buffer overflows: attacks and defenses for the vulnerability
of the decade. in Foundations of Intrusion Tolerant Systems, 2003
[Organically Assured and Survivable Information Systems]. 2003.

19. Hinton, H., et al. SAM: Security Adaptation Manager. in Computer Security
Applications Conference, 1999. (ACSAC '99) Proceedings. 15th Annual. 1999.

20. Cowan, C., et al., StackGuard: automatic adaptive detection and prevention
of buffer-overflow attacks, in Proceedings of the 7th conference on USENIX
Security Symposium - Volume 7. 1998, USENIX Association: San Antonio,
Texas. p. 5-5.

21. Etoh, H. Gcc extension for protecting applications from stack-smashing
attacks. Available from:
https://www.researchgate.net/publication/243483996_Gcc_extension_for_prot
ecting_applications_from_stack-smashing_attacks.

22. Cowan, C., et al., PointguardTM: protecting pointers from buffer
overflow vulnerabilities, in Proceedings of the 12th conference on USENIX
Security Symposium - Volume 12. 2003, USENIX Association: Washington, DC.
p. 7-7.

https://www.researchgate.net/publication/243483996_Gcc_extension_for_protecting_applications_from_stack-smashing_attacks
https://www.researchgate.net/publication/243483996_Gcc_extension_for_protecting_applications_from_stack-smashing_attacks

80

23. Shao, Z., et al. Defending embedded systems against buffer overflow via
hardware/software. in 19th Annual Computer Security Applications
Conference, 2003. Proceedings. 2003.

24. Tuck, N., B. Calder, and G. Varghese. Hardware and Binary Modification
Support for Code Pointer Protection From Buffer Overflow. in
Microarchitecture, 2004. MICRO-37 2004. 37th International Symposium on.
2004.

25. Frantzen, M. and M. Shuey, StackGhost: Hardware facilitated stack protection,
in Proceedings of the 10th conference on USENIX Security Symposium -
Volume 10. 2001, USENIX Association: Washington, D.C.

26. McGregor, J.P., et al. A processor architecture defense against buffer overflow
attacks. in International Conference on Information Technology: Research
and Education, 2003. Proceedings. ITRE2003. 2003.

27. Xu, J., et al. Architecture Support for Defending Against Buffer Overflow
Attacks. in Proceedings of the Second Workshop on Evaluating and
Architecting. 2002.

28. Ye, D. and D. Kaeli, A reliable return address stack: microarchitectural
features to defeat stack smashing. SIGARCH Comput. Archit. News, 2005.
33(1): p. 73-80.

29. Ozdoganoglu, H., et al., SmashGuard: A Hardware Solution to Prevent
Security Attacks on the Function Return Address. IEEE Transactions on
Computers, 2006. 55(10): p. 1271-1285.

30. Tzi-Cker, C. and H. Fu-Hau. RAD: a compile-time solution to buffer overflow
attacks. in Proceedings 21st International Conference on Distributed
Computing Systems. 2001.

31. Prasad, M. and T.-c. Chiueh. A Binary Rewriting Defense Against Stack based
Buffer Overflow Attacks. in Proceedings of the General Track: 2003 USENIX
Annual Technical Conference. 2003.

32. Corliss, M.L., E.C. Lewis, and A. Roth, Using DISE to protect return addresses
from attack. SIGARCH Comput. Archit. News, 2005. 33(1): p. 65-72.

81

33. Vendicator. Stack Shield. 08 Jan 2000; Available from:
http://www.angelfire.com/sk/stackshield/.

34. Inoue, K., Energy-security tradeoff in a secure cache architecture against
buffer overflow attacks. SIGARCH Comput. Archit. News, 2005. 33(1): p. 81-89.

35. Gehringer, E.F. and J.L. Keedy, Tagged architecture: how compelling are its
advantages? SIGARCH Comput. Archit. News, 1985. 13(3): p. 162-170.

36. Li, D., Z. Liu, and Y. Zhao. HeapDefender: A Mechanism of Defending
Embedded Systems against Heap Overflow via Hardware. in 2012 9th
International Conference on Ubiquitous Intelligence and Computing and 9th
International Conference on Autonomic and Trusted Computing. 2012.

37. Piromsopa, K. and R.J. Enbody, Secure Bit: Transparent, Hardware Buffer-
Overflow Protection. IEEE Transactions on Dependable and Secure
Computing, 2006. 3(4): p. 365-376.

38. Crandall, J.R. and F.T. Chong, A security assessment of the minos architecture.
SIGARCH Comput. Archit. News, 2005. 33(1): p. 48-57.

39. Crandall, J.R. and F.T. Chong. Minos: Control Data Attack Prevention
Orthogonal to Memory Model. in Microarchitecture, 2004. MICRO-37 2004.
37th International Symposium on. 2004.

40. Chen, S., et al. Defeating memory corruption attacks via pointer taintedness
detection. in 2005 International Conference on Dependable Systems and
Networks (DSN'05). 2005.

41. Chabbi, M., et al., Efficient Dynamic Taint Analysis Using Multicore Machines.
2007, The University of Arizona.

42. Organick, E.I., A programmer's view of the Intel 432 system. 1983: McGraw-Hill,
Inc. 418.

43. Colwell, R.P., et al., Instruction Sets and Beyond: Computers, Complexity, and
Controversy. Computer, 1985. 18(9): p. 8-19.

44. Jones, R.W.M. and P.H.J. Kelly. Backwards-compatible bounds checking for
arrays and pointers in C programs. in Distributed Enterprise Applications. HP
Labs Tech Report. 1997.

http://www.angelfire.com/sk/stackshield/

82

45. Corporation, I. IBM Rational Purify & PurifyPlus Divestiture. Available from:
https://www-01.ibm.com/software/rational/products/purifyplus_divestiture/.

46. Focus, M. DevPartner for Visual C++ BoundsChecker Suite, Named Users.
Available from: https://www.componentsource.com/product/devpartner-
visual-c-boundschecker-suite-visual-studio-named-users.

47. Austin, T.M., S.E. Breach, and G.S. Sohi, Efficient detection of all pointer and
array access errors. SIGPLAN Not., 1994. 29(6): p. 290-301.

48. Oiwa, Y., et al., Fail-Safe ANSI-C Compiler: An Approach to Making C Programs
Secure Progress Report, in Software Security — Theories and Systems: Mext-
NSF-JSPS International Symposium, ISSS 2002 Tokyo, Japan, November 8–10,
2002 Revised Papers, M. Okada, et al., Editors. 2003, Springer Berlin
Heidelberg: Berlin, Heidelberg. p. 133-153.

49. Lhee, K.-S. and S.J. Chapin, Buffer overflow and format string overflow
vulnerabilities. Softw. Pract. Exper., 2003. 33(5): p. 423-460.

50. Bhatkar, E., D.C. Duvarney, and R. Sekar. Address obfuscation: an efficient
approach to combat a broad range of memory error exploits. in In
Proceedings of the 12th USENIX Security Symposium. 2003.

51. Team, T.P. Homepage of The PaX Team. 2013.10.02 04:41 GMT; Available
from: https://pax.grsecurity.net/.

52. Krazit, T. AMD Chips Guard Against Trojan Horses. 2004; Available from:
http://www.pcworld.com/article/114328/article.html.

53. Peterson, D.S., M. Bishop, and R. Pandey, A Flexible Containment Mechanism
for Executing Untrusted Code, in Proceedings of the 11th USENIX Security
Symposium. 2002, USENIX Association. p. 207-225.

54. Chang, F., A. Itzkovitz, and V. Karamcheti. User-level resource-constrained
sandboxing. in Proceedings of the 4th conference on USENIX Windows
Systems Symposium. 2000.

55. Wahbe, R., et al., Efficient software-based fault isolation. SIGOPS Oper. Syst.
Rev., 1993. 27(5): p. 203-216.

56. Small, C., A Tool For Constructing Safe Extensible C++ Systems, in 1997
Conference on Object-Oriented Technologies and Systems. 1997.

https://www-01.ibm.com/software/rational/products/purifyplus_divestiture/
https://www.componentsource.com/product/devpartner-visual-c-boundschecker-suite-visual-studio-named-users
https://www.componentsource.com/product/devpartner-visual-c-boundschecker-suite-visual-studio-named-users
https://pax.grsecurity.net/
http://www.pcworld.com/article/114328/article.html

83

57. Corporation, I. LaGrande Technology Architectural Overview. 2003; Available
from:
ftp://download.intel.com/technology/security/downloads/LT_Arch_Overview.
pdf.

58. MacDonald, R., et al., Bear: An Open-Source Virtual Secure Coprocessor
based on TCPA. 2003, Dartmouth College.

59. International, A. ACA's TCPA White Papers. Available from:
http://www.acainternational.org/tcpa/tcpa-research-and-statistics.

60. ARM. ARM TrustZone. Available from:
https://www.arm.com/products/security-on-arm/trustzone.

61. Corporation, M. Next-Generation Secure Computing Base. Available from:
http://www.microsoft.com/resources/ngscb/default.mspx.

62. Kgil, T., L. Falk, and T. Mudge, ChipLock: support for secure
microarchitectures. SIGARCH Comput. Archit. News, 2005. 33(1): p. 134-143.

63. Ruwase, O. and M.S. Lam. A Practical Dynamic Buffer Overflow Detector. in In
Proceedings of the 11th Annual Network and Distributed System Security
Symposium. 2004.

64. Wikipedia. Locality of reference. Available from:
https://en.wikipedia.org/wiki/Locality_of_reference.

65. Microsoft. /GS (Buffer Security Check). 2015; Available from:
https://msdn.microsoft.com/en-us/library/8dbf701c.aspx.

66. Fog, A. Instruction tables. 2017 2017-05-02; Lists of instruction latencies,
throughputs and micro-operation breakdowns for Intel, AMD and VIA CPUs].
Available from: http://www.agner.org/optimize/instruction_tables.pdf.

ftp://download.intel.com/technology/security/downloads/LT_Arch_Overview.pdf
ftp://download.intel.com/technology/security/downloads/LT_Arch_Overview.pdf
http://www.acainternational.org/tcpa/tcpa-research-and-statistics
https://www.arm.com/products/security-on-arm/trustzone
http://www.microsoft.com/resources/ngscb/default.mspx
https://en.wikipedia.org/wiki/Locality_of_reference
https://msdn.microsoft.com/en-us/library/8dbf701c.aspx
http://www.agner.org/optimize/instruction_tables.pdf

APPENDIX

85

VITA

VITA

Miss Sirisara Chiamwongpaet was born on 27th November 1986 in Bangkok,
Thailand. She received the Bachelor's and Master's degrees in Computer Engineering
from Chulalongkorn University in 2008 and 2010, respectively.

Her journal paper, "Boundary Bit: An Architectural Bound Checking towards
Buffer-Overflow Protection", is under active reviews for publishing on IEEE
Transactions on Dependable and Secure Computing (TDSC). This is her dissertation
to complete doctoral degree in Computer Engineering, Chulalongkorn University.

	THAI ABSTRACT
	ENGLISH ABSTRACT
	ACKNOWLEDGEMENTS
	CONTENTS
	CHAPTER I INTRODUCTION
	I.1 Background and Problem
	I.2 Glossary
	I.3 Objectives

	CHAPTER II BUFFER-OVERFLOW ATTACKS
	II.1 Fundamental of Buffer-Overflow Attacks
	II.2 Types of Buffer-Overflow Attacks

	II.2.1 Classification by Attack Locations
	II.2.1.1 Stack Overflows
	II.2.1.1.1 Example 1: Stack-Overflow Attacks on Control Data
	II.2.1.1.2 Example 2: Stack-Overflow Attacks on Non-Control Data
	II.2.1.2 Heap Overflows
	II.2.1.3 Array Indexing Errors
	II.2.1.3.1 “Placement New” Expression in C++
	II.2.2 Classification Using Characteristics
	II.2.2.1 Direct Executable Buffer Overflows
	II.2.2.2 Indirect Executable Buffer Overflows
	II.2.2.3 Direct Data Buffer Overflows
	II.2.2.4 Indirect Data Buffer Overflows
	II.2.3 Characteristics
	II.2.3.1 Direct Executable Buffer Overflows
	II.2.3.2 Indirect Executable Buffer Overflows
	II.2.3.3 Direct Data Buffer Overflows
	II.2.3.4 Indirect Data Buffer Overflows
	CHAPTER III LITERATURE REVIEWS
	III.1 Static Analysis

	III.1.1 Lexical Analysis
	III.1.2 Semantic Analysis
	III.2 Dynamic Solution

	III.2.1 Address Protection
	III.2.1.1 Canary Word
	III.2.1.2 Address Encoding
	III.2.1.3 Copy of Address
	III.2.1.4 Tags
	III.2.1.5 HeapDefender [36]
	III.2.2 Input Protection
	III.2.2.1 Secure Bit [37]
	III.2.2.2 Minos [38] [39]
	III.2.2.3 Tainted Pointer [40]
	III.2.2.4 Efficient Dynamic Taint Analysis Using Multicore Machines [41]
	III.2.3 Bound Checking
	III.2.3.1 Hardware
	III.2.3.2 Software
	III.2.4 Obfuscation
	III.2.5 Mixed Solution
	III.2.5.1 Secure Canary Word [6]
	III.3 Isolation

	III.3.1 Non-Executable Memory
	III.3.2 Sandboxing
	III.4 Comparison and Summary

	CHAPTER IV THE CONCEPT OF BOUNDARY BIT
	IV.1 The Concept of Boundary Bit
	IV.2 Examples

	IV.2.1 Stack-Overflow Detection
	IV.2.2 Array-Indexing-Error Detection
	IV.2.3 One-Byte Variable
	IV.2.3.1 Stack-Overflow Detection
	IV.2.3.2 Array-Indexing-Error Detection
	CHAPTER V THE IMPLEMENTATION OF BOUNDARY BIT
	V.1 Hardware

	V.1.1 Boundary Bits and Bitmap
	V.1.2 Memory Architecture
	V.1.3 Instructions for Boundary Bits
	V.2 Software

	CHAPTER VI EVALUATION
	VI.1 Simulation Tools

	VI.1.1 Trace File Generation
	VI.1.1.1 Set Boundary Bit Instruction
	VI.1.1.2 Clear Boundary Bit Instruction
	VI.1.1.3 Scan Boundary Bit Instruction
	VI.1.1.4 Read Memory Instruction
	VI.1.1.5 Write Memory Instruction
	VI.1.2 Simulation
	VI.1.2.1 Boundary Bit Set/Clear Management
	VI.1.2.2 Bitmap Set/Clear Management
	VI.1.2.3 Boundary-Bit/Bitmap Scanning
	VI.1.3 Simulation Test Environment
	VI.2 Evaluation Aspects

	VI.2.1 Protection Efﬁciency
	VI.2.1.1 Stack Overflows
	VI.2.1.1.1 Stack-Overflow Attack on Control Data
	VI.2.1.1.2 Stack-Overflow Attack on Non-Control Data
	VI.2.1.2 Heap Overflows
	VI.2.1.3 Array Indexing Errors
	VI.2.1.3.1 Array-Indexing-Errors (Stack) on Control Data
	VI.2.1.3.2 Array-Indexing-Errors (Stack) on Non-Control Data
	VI.2.1.3.3 Array-Indexing-Errors (Heap)
	VI.2.2 Performance
	VI.2.2.1 Variable/Argument Declaration
	VI.2.2.2 The End of Variable/Argument Existence
	VI.2.2.3 Variable/Argument Access
	VI.3 Simulation Results

	VI.3.1.1 Case 1: Intensive Read/Write Buffer (Bubble Sort)
	VI.3.1.2 Case 2: Random Write Memory
	VI.3.2 Discussion
	CHAPTER VII ANALYSIS
	VII.1 Advantages

	VII.1.1 Prevent All Types of Buffer-Overflow Attacks
	VII.1.2 Fixed and Low Additional Memory Usage
	VII.1.3 Low Performance Overhead
	VII.2 Disadvantages

	VII.2.1 Hardware Incompatibility
	VII.2.2 Software Incompatibility
	VII.3 Performance Analysis
	VII.4 Cost Analysis
	VII.5 The Impact of Virtual Memory
	VII.6 Boundary Bit Protection

	CHAPTER VIII CONCLUSION
	VIII.1 Contributions
	VIII.2 Conclusion

	REFERENCES
	VITA

