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Chapter 1
Introduction and literature reviews

1.1 Background

Geophysical survey and borehole survey are used to explore subsurface geology of an
interested area. The first type is a ground-based survey which measures physical properties
underneath the Earth surface through the geophysical instruments. For instance, magnetometer
detects anomalies, resulting from the presence of ferrous metal-bearing minerals, in a magnetic
field at the surface. Geophysical methods such as resistivity survey, airborne magnetic survey,
and seismic survey can penetrate through hundreds of meters of depth and collect data over
tens of square kilometers. These methods are useful for understanding subsurface structure (Fig
1.1) but limited on detailed subsurface lithology. Another type of survey is a borehole survey.
The borehole survey involves well drilling process and uses the drilled wells as the
representative of the study area. In contrast to a geophysical survey, each borehole can provide

detailed lithology, porosity, and organic content of the area.

Figure 1.1 Pseudosection of resistivity profile, which is one type of geophysical survey, shows
overview and orientation of subsurface geology

(image source: https://www.appstate.edu/~marshallst/GLY3160/lectures/12_Resistivity.pdf)

In borehole survey, coring might be performed in addition to drilling. Coring is a process
which cuts the rock within the borehole by using diamond cutting device to obtain a cylindrical
core sample. The cores are further studied and analyzed thoroughly to directly identify the
subsurface lithology. However, the full-depth recovery of the core is hardly possible due to the
expensive cost of drilling/coring and the brittleness of rocks (Fig 1.2). Geophysical information
inside a borehole are thus collected by sending specific sensors such as gamma, 77?7, etc. down

the borehole to the depth of interest. This method is known as well logging. Well logging data is



interpreted to indirectly identify the subsurface lithology. For instance, an interval of depth
which has low gamma-ray is interpreted as sandstone. However, the interpretation of well logging
data is a time-consuming process and requires an interpreter’s experience. Well logging has been
widely used in natural resource prospecting, particularly for petroleum and geothermal
resources, because of its practicality. Coring is generally used as a supporting method, especially

in the depth interval that contains poor resolution or conflicting well-logging interpretation.

Figure 1.2 Core samples contain missing intervals because the rocks are broken into

fragments (USGS, 1999)

Quantitative approaches are attempted to improve time efficiency in well log interpretation
(Enikanselu and Ojo, 2012). A study by Busch et al. (1987) applies discriminant analysis on well
log data to classify lithology of the Shublik formation in North Slope, Alaska, USA,. The analysis
used M and N indexes which are calculated from density, neutron, and sonic logs as
independent variables to classify 3 rock types; limestone, shale, and sideritic mudrock. Results
from discriminant analysis report 70-80% accuracy of lithology classification. Even though the
conditions are limited to only 1 formation at a time, the analysis shows a lot of promise. A study
by Dubois et al. (2007) uses well log data from Panoma field in Southwest Kansas, USA to
compare conventional statistical analyses with machine learning models. Statistical analysis often
assumes a specific distribution of input data meanwhile machine learning, which is a form of
applied statistics, concerns less about the distribution. Due to the high dimensionality and
nonlinear-relationship of the data, the assumptions do not perfectly hold for the statistical

analysis and contribute to inferior accuracy or performance as the study demonstrates.



Each datum for a classification machine learning model consists of 2 parts. The first part is a
label, which describes a class or group of each datum. The second part is features or
independent variables, which describe a set of measured properties. The model assumes that
each label has a unique pattern of variables and finds underlying patterns to classify the label.
Error or performance of the model is evaluated, then the machine tries to revise the model
repeatedly to minimize the error; for instance, adjusting the variables’ weight in logistic regression
or recalibrating the cluster centroid in k-means clustering. Using different machine learning
models; for example, k-nearest neighbor, support vector machine, random forest, and artificial
neural network can lead to a significant difference in model performance (Dubois et al., 2007,
Hall and Hall, 2017). Furthermore, preprocessing of variables also contributes to the
improvement of model performance (Bestagini, 2017; Chen and Zeng, 2018). The preprocessing is
also known as feature engineering. For example, a logarithm of resistivity log divided by the
logarithm of neutron-density or M and N index from M-N crossplot are examples of the
engineered feature.

Decision tree is a machine learning model which uses a flowchart-like structure to classify the
data (Navada et al., 2011). Its structure resembles human decision making. However, it tends to
create a complex flowchart and overfit with the training data, so the ensemble tree model is
invented (Breiman, 2001; Chen and Guestrin, 2016). The ensemble tree model is made of many
simple decision trees. Those simple trees are constructed differently, so they might classify the
data differently. Majority voting is used to conclude the classification process. A study by Hall
and Hall (2017) shows that the ensemble tree has the highest classification accuracy among
other models such as support vector machine, deep neural network, k-nearest neighbors,
multilayer perceptron, convolutional neural network.

Through considerable development on both the model and feature engineering, machine
learning could perform some task at the same level as human or even higher; for example, legal
contract reviews, clinical image diagnosis, and playing Go (Silver et al., 2017; Loh, 2018; LawGeex,
2018). Remote sensing also adopts a machine learning model in image classification (Prasad et
al,, 2017). In summary, machine learning is a reliable tool to assist human in many fields.

In this study, well log data are collected from the U.S. Geological Survey database of
National Petroleum Reserves in Alaska. This project thus aims to develop a classification model
based on the ensemble tree models. Data are preprocessed or feature engineered in various

methods to study their effects on the model performance.



1.2 Objectives
1.2.1 To develop ensemble tree model for well-logging lithology classification

1.2.2 To measure the effect of engineered features on the model performance

1.3 Benefits
1.3.1. Own Experiences
- Learn basic well logging interpretation
- Learn statistical analysis and machine learning development including exploratory data
analysis, feature engineering, machine learning model development, and model evaluation
- Learn scientific research methodology and presentation
1.3.2 . Society

- Develop effective feature engineering for well-logging lithology classification

1.4 Literature reviews
1.4.1 Machine learning

Machine learning is the use of statistics and computer algorithm to learn from data and
create model to complete some task without being explicitly programmed (Barber, 2007). In
other word, the problem is given to the machine, and it figures out detailed solution on its own
by using the designed method. Because machine learning is an application of statistics, they both
uses the same form of data, which is table-based. There are two main types of machine learning;
supervised and unsupervised. For the supervised, each row or datum consists of two parts; label
and feature(s). The feature part is a set of independent variable which describes measured or
observed properties while the label is an dependent variable which expresses the outcome of
those feature. The numerical label leads to regression model and the categorical label leads to
classification model (Fig 1.3). In contrast, the unsupervised machine learning does not have the

label, so it focuses on the discovery of clusters or links from the features alone (Fig 1.4).



Figure 1.3 Examples of the classification model and the regression model

(image source: https://cdn-images-1.medium.com/max/1600/0*WE3Sz--1INUEWBmMUR)

Figure 1.4 An example of clustering model shows re-clustering process to locate the most
appropriated centroid point
(image source: https://sandipanweb. files.wordpress.com/2017/03/kmeans8.¢if?w=676)

After the model has learned, its accuracy will be tested and evaluated by the test set which
has not been input to the model before. There are many evaluation metrics for classification
problem, but the metrics from studies related to this study will be described here. First, accuracy
is the most basic evaluation metric. It describes percentage of total correctly classified data.
Accuracy is simple to understand, but on unbalanced data, it does not reflect the performance
of the model very well. An example of unbalanced data is a dataset which has 5% of data

labelled as “positive” and 95% of data labelled as “negative”. The model can show accuracy as



high as 95% when it classify all test data as “negative”. To correctly evaluated the model
performance in that situation, precision and recall are introduced (Kent et al., 1955). The metrics
evaluate the model performance on each label separately. In binary classification, positive and

negative, precision is defined as;

True positive
True positive + F alse positive

Precision = ... (Equation 1)

where True positive is the amount of positive which is classified as positive, False positive is
the amount of negative which is classified as positive. In other word, precision is a percentage of

correct classification from the data classified as one label. Meanwhile, recall is defined as;

True positive
True positive + F alse Negative

Recall = ... (Equation 2)

where False negative is the amount of positive which is classified as negative. In other word,

recall is a completeness in finding one label.

1.4.2 Decision tree model

Decision tree is a machine learning model which uses a flowchart-like structure to classify the
data (Navada et al., 2011). This model is first introduced in a study by Morgan and Sonquist
(1963) and is a foundation of more complex models such as Random Forest (Breiman, 2001) and
XgBoost (Chen and Guestrin, 2016). In order to develop the decision tree model, training data are
input into the model. The label describes a class or group of each datum, and the model
assumes that each label has a unique pattern of variables and finds underlying patterns to
develop a flowchart for classifying the label.

The flowchart has 2 types of node; splitting node and leaf node (Fig 1.5). The splitting node is
a condition to check on the data which is based on the underlying patterns and is used to
decide which path a datum should flow through. Any path leads to a conclusion or label is

called a leaf node, which classifies the label for the datum.



Figure 1.5 Example of the decision tree model. If gamma ray of the datum is more than 90,
the model classifies it as Shale. If the datum doesn’t meet the condition, it will be considered

further by Neutron.

The flowchart might have many splitting nodes which related to each other hierarchically. To
represent the underlying pattern, each splitting node must has the right feature, including its
value, at the right level of the hierarchy. Homogeneity of training data before splitting is
measured, then the decision tree model defines “right” as the highest improvement in
homogeneity after splitting into 2 groups. Homogeneity could be measured by several metrics

such as Gini index and entropy. The entropy is defined as (Shanonn, 1948);

N
H = =3 P(x,) logyP(x;) .. (Equation 3)
=1

where H is Entropy of the data, N is the number of labels within the data, and P(x;) is a

proportion of the number of datum with label x,;to the number of total data. Entropy measures

impurity of the data, so single-label data has 0 entropy while the entropy of N-labels data with
an equal number of each label is 1. Reduction in the entropy is highly correlated to

improvement in the homogeneity.



Likewise, the Gini index is defined as (Ceriani and Paolo, 2011);
N
G=1-) P(xl-)2 .. (Equation 4)
i=1

where G is Gini index of the data, N is the number of labels within the data, and P(x;) is a
proportion of the number of datum with label x,to the number of total data. However, the Gini

index is on a scale of 0 to 1-1/N which is ranging from the highest to lowest homogeneity.

A study by Kotsiantis (2011) shows that decision tree model is widely accepted and used in
practice because it is not restricted by the distribution of training data and uses reasonable time
to classify a large amount of data. Also, the model resembles human decision making, so it is
simple to understand and interpret. However, it has a tendency to overfit with the training data
by constructing a complex or long flowchart. Thus, the model might classify the training data
with almost 100% accuracy, but the accuracy drops significantly with the new data or test data

(Fig 1.6). This problem is commonly known as overfitting.

Figure 1.6 Different types of result in machine learning; underfitting, desired, overfitting.
Underfitting model is too simple to explain the data, while overfitting model is too accurate and
unrealistic.

(image source: https://cdn-images-1.medium.com/max/1600/0*7xAFG32QA2nNEs6N)



To overcome the overfitting problem, the length of the tree is limited, but multiple trees are
constructed and made a decision together (Fig 1.7). The same level of accuracy in training data is
obtained together with better accuracy in the test data. The technique is called ensemble
method. Examples of ensemble tree model are Random Forest (Breiman, 2001) and XGBoost
(Chen and Guestrin, 2016). Random Forest uses a bagging ensemble method, which randomly
repeats sampling the training data for each tree. In contrast, XGBoost uses a boosting ensemble

method, which creates a new tree based on misclassification of the previous tree.

Figure 1.7 Ensemble tree model is composed of multiple decision trees. Each tree is
different, so they might not classify a datum as the same label.

(image source: https://www.kdnuggets.com/wp-content/uploads/rand-forest-1.jpg)

1.4.3 Hyperparameters Tuning

The machine learning model is being widely used, so many pre-built modules are developed;
for instances, scikit-learn python library (Varoquaux et al., 2011). They provide standardized
models which can be used instantly. However, the setting of the model could be configured as
well; for examples, a number of trees and homogeneity metric in an ensemble tree model. The
setting is called hyperparameters in distinction to parameters which are used to describe weight

or coefficient of each independent variable in a mathematical function. In fact, the
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hyperparameters specify details of how the model learn and solve a problem, and they are
contributed to the accuracy of a model too. Examples of hyperparameters are a number of
estimators and minimum impurity decrease. A number of estimators specify the number of trees
in the ensemble model while minimum impurity decrease sets a threshold for the decision tree

to split the node

1.4.4 Well log lithology classification and statistical approach

A study by Busch et al. (1987) examines well logging lithology classification using discriminant
analysis, which is a type of statistical analysis. The study focuses on Shublik Formation of the
Prudhoe Bay, North Slope, Alaska. Neutron, sonic, density, and eamma-ray logs are available, so
M and N indexes are calculated. M index is a combination of sonic and density logs while N
index is a combination of neutron and density logs. These M and N indexes are good lithology
indicators. First, only M index is considered. A total of 3 rock classes; sideritic mudrock, shale, and
limestone show distinctive distributions (Fig 1.8, left), so the classification boundary could be
constructed at the intersection of each pair of the classes (Fig 1.8, right). The analysis obtains

76.20% accuracy.
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Figure 1.8 (Left) Histograms of M (Busch et al., 1987); (a) sideritic mudrock (b) shale (c)
limestone (Right) Distribution function of M (Busch et al., 1987); (a) regular discriminant analysis
(b) discriminant analysis which is weighted by occurring proportion. Classification boundaries are

constructed vertically between sideritic mudrock-shale and shale-limestone.

Then, the full analysis is conducted which includes all 7 rock classes and uses both M and N
index. The full analysis also uses “relative position”, which describes a position of datum relative
to the bottom of Shublik Formation. The model is able to obtain 77.57% accuracy in the
validation data and 75% in the test data. Even though the method is designed to handle a single
rock formation at a time, the test accuracy which is as high as the validation accuracy ensures
robustness of the method. In addition, almost all of the misclassification could be explained by
thin-bed effects, log resolution problems, and core-log misalignment problems.

A study by Dubois et al. (2007) compares 4 classification models from both conventional
statistical analysis and machine learning. These models are discriminant analysis with Bayes’ rule,

fuzzy logic, k-nearest neighbor, and artificial neural network. Geologic observations from core
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samples, which are marine/nonmarine and relative position, are also included in addition to well
log measurements; gamma-ray log (GR), resistivity log (ILD log10), photoelectric log (PE), average
neutron-density log (PHIND), and neutron-density difference (DeltaPHI). Artificial neural network
shows the best accuracy performance (Fig 1.9). The discriminant analysis does not perform well
because the data has high dimensionalities and non-linear relationships. In addition, the data are
often overlapped, which lead to poor performance of this simple model. Even though fuzzy logic

and k-nearest neighbor perform well, they are still behind the neural network.

Figure 1.9 Result of 4 classification models (Dubois et al., 2007); discriminant analysis (linear,
quadratic, Mahalanobis), fuzzy logic, k-nearest neighbor (cumulative density function and degree

of belonging), and artificial neural network.

A study by Hall (2016) demonstrates the performance of a memory-intensive machine
learning model called support vector machine (SVM) in well logging lithology classification
problem. The same dataset from a study by Dubois et al. (2007) is used. The SVM tries to
construct boundary lines to separate the data according to the label. It might even project the
data from the original feature or dimension into a higher dimension to aid classification which
causes it to uses a lot of computational power. Finally, 43% F1 score is obtained (Fig 1.10). F1

score is an evaluation metric for classification problem which takes Type | and Type Il error into
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account. In other words, it is more considerate than accuracy. The score is then set as a baseline

for 2016 machine learning contest which is held by the Society of Exploration Geophysics (SEG).

Figure 1.10 The example of well logging lithology classification by the SVM (Hall, 2016). A
total of 9 labels are phylloid-algal bafflestone (BS), packstone-grainstone (PS), dolomite (D),
wackestone (WS), mudstone (MS), marine siltstone and shale (SiSh), nonmarine fine siltstone

(FSiS), nonmarine coarse siltstone (CSiS), and nonmarine sandstone (SS)
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A study by Hall and Hall (2017) reports the result of SEG machine learning contest on well
log data in 2016. Among 40 participating teams, the winner team, LA team, uses an ensemble
tree model which shows and obtains 64% F1 score (Fig 1.11). They also preprocess or feature
engineer the data by calculating the gradient of well log measurements at each depth. The idea
of the engineered feature comes from the fact that rocks are deposited in form of bedding or
interval, so, the relationship of adjacent data should also be considered. In fact, almost all of the
top half of the participating team use an ensemble method. The result clearly points out
superior performance of an ensemble method over other models such as a neural network,

k-nearest neighbors, support vector machine, and majority voting.
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Figure 1.11 The result of LA team in SEG machine learning contest 2016 (Hall and Hall, 2017)
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A study by Bestagini et al. (2017) examines the solution of SEG 2016 contest winner further.
The study uses the same model but 2 sets of engineered features are generated in addition to
the gradient of well log measurements at each depth. The first set is square of each well log
measurement. The other set is pairwise multiplications between any 2 well log measurements;
for examples, GRXPE and ILD log10xPHIND. Many engineered features have no physical meaning
in Geology and they are even worse when they are not very informative for classifying rocks.
However, some of them might be useful, and the ensemble tree model could avoid selecting
those meaningless and non-informative by itself during its training. Therefore, the study is a
trial-and-error on these arithmetic features and obtains 61% F1 score. Without any feature
engineering process, the ensemble tree model alone could obtain at best 55% F1 score.

A study by Chen and Zeng (2018) also revises the solution of SEG 2016 contest winner.
However, the engineered feature in the study derives from Archies’ equation (Archie, 1942) which
is widely used in well log interpretation by a geologist. The equation describes a relationship

between resistivity and porosity, it is defined as;

F = RJR = C-p™

where F is called formation resistivity, R, is the resistivity of the rock saturated with oil and
water, R, is the resistivity of fluid inside the rock, C is the tortuosity constant, m is the
cementation factor, and p is porosity of the rock. The formation resistivity is measured in a

resistivity log and the porosity is directly reflected from a neutron-density log. This equation is

transformed by taking logarithm function into;

log,,F' =log,,C — mlog,,p

It has a similar form to linear equation y = mx + b where log,F is y-axis variable,
log,,C s y-intercept value, m is a slope, and log,,p is x-axis variable. Since, the study assumes

that the cementation factor is unique for each label (Fig 1.12) and the tortuosity constant of
each datum could not be measured by well-logging, the cementation factor is then
approximately calculated from the proportion of logarithm of resistivity log to logarithm of
neutron-density log. The approximated cementation factor contributes to 5% improvement in

the F1 score.
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Figure 1.12 Scatter plot of the logarithm of neutron density log and the logarithm of resistivity
log (Chen and Zeng, 2018) shows linear trends in nonmarine sandstone (SS), nonmarine fine

siltstone (FSiS), and dolomite (D).
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Chapter 2
Study Area

2.1 National Petroleum Reserves in Alaska

National Petroleum Reserves in Alaska (NPRA) is continental land on the Alaska North Slope
in Northern Alaska, USA (Fig 2.1). It is owned by the United States federal government and
managed by the Department of the Interior, Bureau of Land Management. It has an area of
100,167.79 square kilometers. The NPRA is first established and explored in 1923 with a purpose
for navy activities. The NPRA is estimated to contain 896 million barrels of conventional,
undiscovered oil and 53 trillion cubic feet (1,500 cubic kilometers) of undiscovered,

conventional, natural gas (USGS, 2010).

Figure 2.1 The location of Alaska, USA
(Image source: https://commons.wikimedia.org/wiki/File:Map_of USA AK full.svg)

Studies by Wahrhaftig (1965) and Moore et al. (1994) divide the topography of Northern
Alaska into 3 provinces; Arctic Mountains, Arctic Foothills and Arctic Coastal Plain from south to
north (Fig 2.2). The Arctic Mountains province has linear mountain ranges, ridges and hills at high
altitude on the east side, about 3,000 meters above sea level, then their altitude decline

westward. These mountain ranges are also called the Brook Range orogenic belt (Fig 2.3). Next,
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the Arctic Foothills consists of rolling hills, mesas, east-west ridge. The altitude is between 250 -
550 meters which gradually decrease northward. Last, The Arctic Coastal Plain spreads out
succeeding the northward trend. The North Slope is composed of the Arctic Foothills and the
Arctic Coastal Plain. Northern Alaska is composed of 2 litho-tectonic terranes; Arctic Alaska and
Angayucham (Silbering et al., 1994). The term “terrane” is defined as an area bounded by a fault
which has unique stratigraphic sequence and geologic history (Jones, 1983; Howell et al., 1985).

The North Slope and parts of the Arctic Mountains province are in Arctic Alaska terrane.

Figure 2.2 The NPRA Map showing 3 topographic provinces; Arctic Mountains, Arctic Foothills

and Arctic Coastal Plain
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Figure 2.3 The NPRA map showing related showing major tectonic features (Bird, 2001)

2.2 Stratigraphy
A study by Lerand (1973) suggest to group rock of the NPRA into tectonostratigraphic

sequences, later, it is revised in accordance with new evidence and studies (Bird, 2001).

Therefore, the NPRA is composed of 4 tectonostratigraphic sequences; Frankalinian Sequence,
Ellesmerian Sequence, Beaufortian Sequence, and Brookian Sequence (Fig 2.3). First of all, the
Frankalinian Sequence is the oldest and considered as a basement rock. It has a variety of rock
origin and complex geologic history; ranging from steeply dipping fine-grained marine sedimentary
rocks, gently dipping nonmarine sedimentary rocks, igneous rocks, and metamorphic rocks. The
sequence’s thickness is increased southward from 4,000 feet in the coast area to 30,000 feet in

the northern part of the Arctic Mountains province. It is separated from the Ellesmerian

Sequence with regional angular unconformity.
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Second, the Ellesmerian Sequence has carbonate and clastic continental shelf deposit, so its
depositional environment is a passive margin. The sequence’s thickness is mostly less than 6,000
feet. Seismic reflection shows 3 transgressive-regressive cycles (Bird and Molenaar, 1987);
Mississippian to Early Permian, Early Permian to Early Triassic, and Middle Triassic to Late Triassic.
The first cycle has nonmarine and shallow-marine clastic rocks, known as Endicott Group, and
marine carbonate rocks, known as Lisburne Group. Sedlerochit Group represents the second
cycle; marine sandstone of Echooka Formation, prodelta marine mudstone of Kavik Shale, and
deltaic sandstone of Ivishak Formation. The last cycle has organic-rich calcareous mudstone and
marine sandstone which are named Shublik Formation and Sag River Sandstone, respectively.
Shublik Formation is the major source rock for petroleum system in the NPRA.

Next, the Beaufortian Sequence is a stratigraphically complex which is classified as a syn-rift
deposit during Jurassic to Cretaceous (Hubbard et al.,, 1987). The sediment supply is from the
north or local pre-rift rocks. The lithology is a marine mud-dominated strata with local sandstone
which are named Kingak Shale. Last, the Brook Range orogenic uplift supply Cretaceous to
Tertiary sediments for the Brookian Sequence. It can reach maximum thickness over 25,000 feet
in an area near the source; for instances, Colville foreland basin. The deposit overwrites the old
rift shoulder of Beaufortian Sequence and forms parts of a passive margin, continental shelf and
slope, for the North Slope. Fortress Mountain Formation is the most proximal unit which the
outcrops show at the Arctic Foothills province. Various units are founded along the northward
path of sediments in the passive margin; deltaic deposits of Nanushuk and Colville Group, shelf
mudstones and turbiditic sandstones of Torok Formation and Seabee Formation, condensed
marine mudstone of Hue Shale. Hue Shale is a common source rock in a shallow zone of the

NPRA which is remarked by the high gamma-ray log, the gamma-ray zone (GRZ).

2.3 Tectonic setting

Tectonic setting of the North Slope is summarized as follows; the North Slope is bounded on
the north by the passive continental margin of the Canada Basin and on the south by the Brooks
Range orogenic belt. The boundary between Late Devonian of Frankalinian Sequence and Early
Mississippian shows compressional deformation along the shoreline. Granitoid plutonism also
presents during the same period. Next, sediments are deposited in passive margin environment
until Late Jurassic before rifting of the Arctic Ocean basin begins. The Canada basin margin shows
a record of an extensional structure where the rifting occurred til Early Cretaceous. Since Early to
Middle Eocene, the North Slope rotates in counterclockwise. As a result, thrusting and uplifting

occur on the southern part and supply sediments to the Colville foreland basin.
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Chapter 3
Methodology

The study of engineered features on the ensemble tree model for well-logging lithology
classification progresses througsh many steps; data collection, exploratory data analysis, model

development, respectively (Fig 3.1).

Figure 3.1 Three main steps of this study

3.1 Data collection
There are a total of 218,038 data points collected from 11 wells. The depth of well
ranges from 600 km. to 6,000 km. The types of well-logging include gamma-ray, deep-induction
resistivity, medium-induction resistivity, shallow-induction resistivity, neutron, density, sonic,
self-potential, caliper, laterolog deep, laterolog shallow. Each well has different types of
well-logs but contains 8 logging in common. Well-logging has operated only the depths where it
is economics and necessary because it requires resources such as money and time. Hence, some
wells contain missing values, and they are removed from the analysis. Missing values account for
40% of the total amount of data. The final amount of data 127,784 well-logging data points are
used in this study.
The data contain 6 rock types; mudrock, sandstone, siltstone, limestone, coal, and igneous
rocks (Fig 3.2). Mudrock is the most common, and the second most is sandstone. Both of them
appear in every well. Coal is the most uncommon, it is so rare that the amount is less than 1%

of the mudrock. The rest can only be found in some wells.
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Figure 3.2 Rock types which are used in this study are plotted in a barplot. The Mudrock rock
type has more than 60,000 data while the Coal and Igneous rock type have less than 2,000 data,

so the dataset is quite unbalanced.

In order for the model to learn the pattern of rock types and automated classify, any
interval of well log measurements must be labeled with the rock type beforehand. Hence, core
descriptions are the most suitable and accurate source of information because they are derived
directly from rocks inside the well. Core descriptions are provided in Portable Document Format
(PDF) file which is scanned from the printed report (Fig 3.3), so they are images of texts, not the

text itself. The information from core descriptions is thus challenging to extract.
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DREW FPOINT TEST WELL NO. 1
DRILL CUTTINGS AND CORE DESCRIPTIONS

MOTE: Sample descriptions are not correlated to mechanical control.
DRILLED DEFPTH

(FEET BELOW
KELLY BUSHING]

0- 80 Mo recovery.

80- 500 Sand: light gray, fine grained to wvery fine grained,
unconsolidated, abundant interstitial clay (mushy), grains
angular, some pieces and aggregates of fine crystalline
pyrite,  lignite and wood fragments, some high
ferromagnesian content and scattered dark gray, light
gray. brown siitstone fragments and coarse, angular to
subangular chert,

500- 580 Claystane:; medium to dark gray, micromicaceous,
abundant disseminated pyrite, lignite and woody peat
chips.

590- 520 Sandstone: light gray, wery silty., abundant mica,

disseminated pyrite.

Figure 3.3 An example of core description from Drew Point | well

A Python module named Lasio is used to access the well log measurements and used
them as features in the machine learning. Meanwhile, to collect the label conveniently, many
steps are needed. First of all, the text data are extracted from the core description by optical
character recognition (OCR) from Google Cloud vision application programming interface (API).
The text data composed of an interval of depth followed by a description of rocks in that
interval. The description also has repetitive form; a rock type then its physical observation. In
almost all of the descriptions, the major rock type is described first and the minor are followed.
In this study, the major rock types which are mentioned first are treated as a representative of
each interval. With the recognizable pattern, it is possible to extract the interval of depth
together with its major rock type automatically by Regular Expression (REGEX) which is one of a
programming language.

The REGEX utilizes the fact that text data might have a recognizable form so a defined
sequence of character could capture them. Some of the label or rock type are mistyped and
letter-case sensitive so they are taken care of afterward. Finally, the labels consisted of these
following; Mudrock, Sandstone, Siltstone, Sediment, Limestone, Dolomite, Coal, Igneous rock,
Quartzite and Chert, Anhydrite, Siderite, Redbed. Anhydrite, Siderite, and Redbed are grouped as
Others. Figure 3.4 shows an example of data with label extracted by REGEX.
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Figure 3.4 The rock types which are extracted by REGEX are in the Lithology column

3.2 Data Preparation

Well logging data from 11 wells are split into 3 sets; training set, test set, and validation
set. Training set consists of 9 wells while East Simpson Il and lkpikpuk | wells are reserved as test
and validation sets, respectively. The set for each well is selected by considering the amount of
data of each rock types in that well. The training set is used to train the model while the
validation set is for hyperparameter tuning of the model. The accuracy or performance of the
model is evaluated from the test set. All the rock types must appear in every set, so the model
can be developed and evaluated properly. All log measurements are not measured throughout
a borehole well, and some of them are missing during some intervals of depth especially around
the top and bottom of the well. In other words, at some depth, the gamma-ray log is available,
but the resistivity might be missing. It is possible to fill those missing data with statistical
methods such as median, mean, and estimate function. Because filling the missing log

measurements add biases to the study, it might be better to drop those depths instead.

3.3 Model development

3.3.1 Exploratory data analysis

Exploratory data analysis is a process which analyzes the dataset to investigate their
characteristics. Summary statistics such as arithmetic mean, standard deviation, quartile,
minimum, maximum, skewness, kurtosis, for each well log measurement of each label are
calculated. The rocks have wide ranges of variation, so well log measurements are overlapped.
Multiple well log measurements are also equivalenced to multivariate data. Because of that, the
data are very complex and summary statistics are not the most useful calculation for the
lithology classification. The amount of data for each rock type is plotted as a barplot to compare
the amount of data between the labels. The names of well in which each label appears are

listed to be taken into consideration in the training-test-validation set splitting step. Because
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some intervals of depth inside the well are not interested and are not logged or measured,
those missing data are also needed to be counted. Lastly, the statistical correlation is calculated

to inspect a relationship between 2 well log measurements.

3.3.2 Building basic models

Next, the basic models are developed by using XgBoost and Random Forest algorithms
without any feature engineering or further preprocessing. Performance of the basic models is
used as a baseline for accuracy improvement and build advanced models. Since some rock
types have a small amount of data, the model has a tendency to ignore them to optimize for
homogeneity index. The test data that belong to these minority classes are thus misclassified.
Aside from the small amount of data, some labels are not commonly interpreted in traditional
well log interpretation such as Argillite and Red beds. This study focuses on 4 main rock types;
shale-mudstone, sandstone, limestone, and coal.

3.3.3 Building advanced models

Advanced models are built on basic models by incorporating several feature engineering
and preprocessing steps such as oversampling and undersampling, and M-N crossplot. Generally,
feature engineering is a process to create new features from the original features by using
mathematical operations such as multiplication and division. Ideas for creating the new features
are usually derived from knowledge or understanding in the data, but it might be the result of

the mathematical operations alone and does not have any real meaning.

3.3.3.1 Oversampling and undersampling

The labels are unbalanced, showing a large difference in the amount of data in
each well. Unbalanced data is a common and inevitable problem in machine learning
and can be addressed by oversampling or undersampling technique. Undersampling is a
sampling technique which subsamples large-amount-of-data labels. In other words, some
data from those labels are removed from the training set. Since the data is large enough,
they could be treated as a population. For samples to represent the distribution of the
population, the appropriate sample size is determined by Yamane’s simplified formula
(1967) which is defined as;

, where n is the sample size, N is the population size, and e is the level of

precision. A level of precision is the possible deviation from the sample mean to the
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population mean and has ranged from 0% to 100%. Also, the formula assumes a 95%
confidence level which is the probability that the level of precision holds true. On the
other hand, oversampling is a sampling technique which repeatedly selects samples from
small-amount-of-data labels. In other words, data of those labels in the training set are
duplicate. This technique does not give new insight into the model but it emphasizes the

importance of those labels.

3.3.3.2 MN crossplot
A new feature that can be engineered based on data in this study is called MN
crossplot. It is a technique which uses density, neutron, and sonic log to identify the

well-logging lithology. M and N are defined as follows (Burke et al., 1969);

M = Sﬂuid B Slog
Dy = Dﬂuid
N = Nﬂuid B Nlog

B Dbulk - Dfluid

, where Sﬂm.d is the compressional sonic of the drilling mud, Slog is the
compressional sonic log, D, , is the density log, Dyyig 15 the density of drilling mud,

Nﬂm.d is the neutron of the drilling mud, and N/Og is the neutron log.

3.3.3.3 Scaling and outlier processing

Since gamma-ray log could differ between different wells, the minimum
gamma-ray log value in one well might be more than the maximum gamma-ray log value
in another well. To be able to compare between different wells, the value must be
scaled. A total of 3 scaling methods are used; standardization, normalization, and ranking.

First, standardization is defined as follows;

GR,— GR
GR s.d.

standardized ~—

, Where GRstandardized is a standardized gamma-ray value, GRl- is an original

gamma-ray value, GR is a mean of the gamma-ray, and S.d. is a standard deviation of

the gamma-raya.
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Second, normalization is defined as follows;

GRi — GRmm

GRnormalized - GR,x — GR,,;,

, Where GRnormalized is a normalized gsamma-ray value, GRZ- is an original
gamma-ray value, GRmax is a maximum value of the gamma-ray, GRmm is a minimum

value of the gamma-ray, Next, ranking is ranked ordinally.

For the feature to be scaled, data which greatly differ from the majority or outliers
must be dealt with beforehand because mean, maximum, and minimum are sensitive to
them. A study by Dixon and Yuen (1974) proposed 2 methods to process and deal with
the outliers. First, trimming is a process in which outliers are dropped out. A percentage
to drop the data at the minimum and the maximum ends can be specified and varied.
On the other hand, winsorizing does not drop the outliers but replace their value by new

minimum and maximum which should be obtained after trimming.

Experiments of the preprocessing and feature engineering are conducted separately (Fig
3.5). Each experiment begins with the implementation of one of the preprocessing or feature
engineering before the ensemble tree model is trained. The hyperparameters are tuned on the
validation set and treated as independent variables while the performance is observed as a
dependent variable. Table 3.1 shows a list of hyperparameters which this study focuses on;
subsample Hence, the optimal values for each hyperparameter are determined. After that, the
model will be evaluated using the test set to compare the impact of each experiment on the
model performance. Finally, the advanced models are developed with combinations of all the

preprocessing and feature engineering and the performance is evaluated.



Figure 3.5 Experiments of the preprocessing and feature engineering

Table 3.1 The hyperparameters which are related to ensemble tree model; tree level and

ensemble level
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Hyperparameter Meaning
A threshold of the homogeneity increase for
gamma
splitting the node
Tree level
A maximum number of nodes in each
max_depth

decision tree

Ensemble level

learning rate

n_estimator

A percentage which each additional tree

contribute to the ensemble

A number of decision trees to construct as

the ensemble
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Chapter 4

Results

4.1 Exploratory data analysis

There are a total of 218,038 data points collected from 11 wells. The depth of well
ranges from 600 km. to 6,000 km. The types of well-logging include gamma-ray, deep-induction
resistivity, medium-induction resistivity, shallow-induction resistivity, neutron, density, sonic,
self-potential, caliper, laterolog deep, laterolog shallow. Each well has different types of
well-logs but contains 8 logging in common. Well-logging has operated only the depths where it
is economics and necessary because it requires resources such as money and time. Hence, some
wells contain missing values, and they are removed from the analysis. Missing values account for
40% of the total amount of data. The final amount of data 127,784 well-logging data points are
used in this study.

The data contain 6 rock types; mudrock, sandstone, siltstone, limestone, coal, and
igneous rocks (Fig 4.1). Mudrock is the most common, and the second most is sandstone. Both of
them appear in every well. Coal is the most uncommon, it is so rare that the amount is less than

1% of the mudrock. The rest can only be found in some wells.

Figure 4.1 Bar chart which visualizes the amount of data in each rock type
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Next, to compare gamma and neutron well log measurements between different rock
types, a box and whisker plot is used (Fig 4.2). Gamma-ray log measures gamma-ray which is
emitted from naturally occurring radioactive content in the rock. Neutron log generates high
energy neutron to bombard the rock and the density is estimated from fall off of the neutron. A
box and whisker plot shows many aspects of summary statistics (Potter et al., 2010). The box
represents 50% of the data and the line inside the box represents the median. The 2 lines which
extend from the box allow a possible range for deviation of any datum from the box of majority
data. Length of the lines is calculated from the median and interval between the 25" and 75"
percentile. Beyond the boundaries, any data are treated as outliers which significantly deviate

from the median



Figure 4.2 The boxplot comparing well log measurement between the rock types.
Deep-induction resistivity log is chosen from the 3 resistivity logs which show the same

distribution.
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Within the scope of gamma-ray and neutron log, limestone has a quite unique
characteristic and can be distinguished spontaneously. Igneous rock is also easy to recognize as it
has low gamma-ray and high neutron. The rest have similar characteristic which differs only on a
small detail i.e. about half of the mudrock has gamma ray higher than all the sandstone.
However, taking all logs into consideration at the same time is quite hard, even impossible.

In addition, all pair of well log measurements, the Spearman correlation is visualized in a
heatmap (Figure 4.3). The correlation describes a relationship of the pair. The blue indicates a
direct proportion between the pair while the red indicates an inverse proportion. The intensity of
color describes the strength of the relationship. Certainly, the 3 resistivity logs have a strong
direct relationship with each other. Next, there is a strong inverse relationship between depth
and two of the density logs, sonic and neutron, because the density of rock tends to increase
with depth. However, the density logs itself show a moderate direct relationship with the depth.

The rest have a rather weak relationship.

Self-potential
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Depth Lo
Sonic 075
Gamma-ray 050
Deep-inducticn resistivity {ILD]) 1 L 035
Medium-induction resistivity (ILM] 1
Shallow-induction resistivity (LLE) 4 000
Neutron -—0.25
Density —0.50
Self-potential 075

Figure 4.3 Heatmap of the Spearman correlation between well log measurements



35

4.2 Development of basic model

In order to develop machine learning model for lithology classification, Ikpikpuk | well is
treated as the validation data for optimizing the model’s hyperparameter and East Simpson I
well is treated as the test data for evaluating accuracy or performance of the model. Random
forest and Extreme gradient boosting (XGBoost), which are ensemble tree models that have
shown outstanding prediction performance by several studies (e.g. Wainer, 2016; Hall and Hall,
2017), is used in this study. Sonic, gamma-ray, deep-induction resistivity, neutron, density,
self-potential logs are used as independent variables for the ensemble models.

However, igneous rock is only in 2 wells, so it is impossible to split into 3 sets. Also, well
log interpretation rarely interpret rock as siltstone, so siltstone is ambiguous on how it is different
from sandstone and mudstone. Because of that, those 2 rock types are excluded from the
analysis. The Random forest has random subsampling process and is a stochastic model,
therefore to attain the performance of this model with a 95% confidence level, at most 395
rounds of evaluation are needed (Cochran, 1977). Figure 4.4 shows the accuracy of the models.
In the XGBoost, 73.6% for East Simpson I, 78.2% for Ikpikpuk I, 77.1% for Inigok I, 58.6% for
Kugrua I, 77.3% for South Meade I, and 50.6% for Tunalik I. It is clearly shown that the XGBoost is
better than the Random forest and the latter also has inconsistent performance as a result of its
stochastic character. Therefore, this study uses only XGBoost model.

Aside from accuracy, the performance of the XGBoost is evaluated with precision, recall,
and F1 with respect to each rock types. Table 4.1 - 4.6 show the evaluated. The average F1-score
is 36.7% for East Simpson I, 54.3% for Ikpikpuk I, 61.4% for Inigok I, 60.4% for Kugrua I, 43.4% for
South Meade |, and 44.9% for Tunalik I. In the situation when the model classifies any data as
one rock type, the precision of that rock type reports the chance that this classification is correct.
However, the model could attain a high level of precision by classifying only obvious data and
avoiding ambiguous data. Because of that, precision alone might not point out a good model, so
recall and F1 are used. If the model tries to avoid ambiguous data of any rock type, the recall of
that rock type will be low because the model is failed to find all the data in that rock type.
Lastly, Fl-score is an average score of precision and recall. Afterward, this study attempts to

improve the model performance which is measured by these metrics.
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Figure 4.4 Performance of the ensemble models in East Simpson I, Ikpikpuk I, Inigok I, Kugrua |,

South Meade |, and Tunalik |



Table 4.1 Detailed evaluation of the baseline performance of the XGBoost in East Simpson |I
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Precision Recall F1-Score Amount of data
Mudrock 77.3% 94.9% 85.2% 9,005
Sandstone 39.6% 16.6% 23.4% 2,934
Limestone 98.9% 23.5% 38.0% 374
Coal 0% 0% 0% 76

Table 4.2 Detailed evaluation of the baseline performance of the XGBoost in Ikpikpuk |

Precision Recall F1-Score Amount of data
Mudrock 77.1% 91.1% 83.5% 11,512
Sandstone 57.5% 34.0% 42.8% 4,749
Limestone 91.4% 90.4% 90.9% 5,566
Coal 0% 0% 0% 100

Table 4.3 Detailed evaluation of the baseline performance of the XGBoost in Inigok |

Precision Recall F1-Score Amount of data
Mudrock 60.3% 31.3% 41.2% 872
Sandstone 38.3% 76.1% 51.0% 715
Limestone 95.8% 88.3% 91.9% 3,651
Coal 0% 0% 0% 0




Table 4.4 Detailed evaluation of the baseline performance of the XGBoost in Kugrua |

Precision Recall F1-Score Amount of data
Mudrock 51.0% 83.7% 63.4% 4,767
Sandstone 59.2% 25.5% 35.6% 5,790
Limestone 78.8% 85.6% 82.1% 2,663
Coal 0% 0% 0% 0

Table 4.5 Detailed evaluation of the baseline performance of the XGBoost in South Meade |

Precision Recall F1-Score Amount of data
Mudrock 92.6% 78.7% 85.1% 10,413
Sandstone 46.6% 76.0% 57.8% 2,483
Limestone 18.5% 87.5% 30.6% a0
Coal 0% 0% 0% 160

Table 4.6 Detailed evaluation of the baseline performance of the XGBoost in Tunalik |

Precision Recall F1-Score Amount of data
Mudrock 42.8% 87.8% 57.5% 714
Sandstone 0% 0% 0% 825
Limestone 76.2% 78.2% 77.2% 547
Coal 0% 0% 0% 0

Table 4.1 - 4.6 show 0% precision and recall of coal, which is very poor. Table 4.7 shows
accuracy and average F1 of the performance evaluation when coal rock type is taken out from

the training and test data which shows slightly better performance than before.. Table 4.8 - 4.13

show detailed evaluation without coal rock type.




Table 4.7 Overview of the baseline performance without coal rock type

Test well name Accuracy Average F1
East Simpson |l 73.8% 48.8%
Ikpikpuk | 78.2% 72.3%
Inigok | 77.0% 61.5%
Kugura | 59.0% 61.0%
South Meade | 78.3% 58.1%
Tunalik | 50.23% 44.8%

Table 4.8 The evaluation of the XGBoost in East Simpson Il without Coal

Precision Recall F1-Score Truth

Mudrock 77.5% 95.0% 85.3% 9,005
Sandstone 38.2% 15.3% 21.9% 2,934
Limestone 99.0% 24.3% 39.1% 374

Table 4.9 The evaluation of the XGBoost in Ikpikpuk | without Coal

Precision Recall F1-Score Truth
Mudrock 17.7% 90.6% 83.7% 11,512
Sandstone 55.7% 34.8% 42.8% 4,749

Limestone 91.7% 90.0% 90.6% 5,566




Table 4.10 The evaluation of the XGBoost in Inigok | without Coal
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Precision Recall F1-Score Truth
Mudrock 59.7% 32.1% 41.8% 872
Sandstone 38.3% 76.1% 51.0% 715
Limestone 95.8% 87.9% 91.7% 3,651
Table 4.11 The evaluation of the XGBoost in Kugrua | without Coal
Precision Recall F1-Score Truth
Mudrock 50.9% 84.5% 63.5% 4,767
Sandstone 60.0% 26.2% 36.5% 5,790
Limestone 81.2% 84.6% 82.9% 2,663
Table 4.12 The evaluation of the XGBoost in South Meade | without Coal
Precision Recall F1-Score Truth
Mudrock 94.2% 78.8% 85.8% 10,413
Sandstone 46.7% 76.0% 57.9% 2,483
Limestone 18.6% 87.5% 30.7% 40
Table 4.13 The evaluation of the XGBoost in Tunalik | without Coal
Precision Recall F1-Score Truth
Mudrock 42.7% 87.1% 57.3% 714
Sandstone 0.04% 0.03% 0.01% 825
Limestone 75.7% 77.3% 76.5% 547
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4.3 Development of advanced model

4.3.1 Upsampling and downsampling

Coal is upsampled and downsampled in the training data, then the model is tested and
evaluated. Since both of the processes are related to random sample and stochastic, to attain
the performance of this model with a 95% confidence level, at most 395 rounds of evaluation
are needed (Cochran, 1977). The Average F1 of baseline, upsampled and downsampled model
are compared in Figure 4.5. The effect of downsampling on model performance is inconclusive.
Downsampling is good in East Simpson II, and about the same in Ikpikpuk I, while the model
performance in South Meade | is worse when the model is downsampled. On the other hand,
the performance of the upsampled models are on par with the baseline and even worse in East
Simpson I and South Meade I. Afterword, coal rock type is ignored, and South Meade I is

eliminate from the the test well name because it doesn’t contain all 3 rock types

Figure 4.5 Comparison of baseline, upsampled and downsampled model on average F1 score
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4.3.2 MN crossplot

M and N are calculated from sonic, neutron, and density logs in both the training and test
data. The box and whisker plot is used to compare M and N between different rock types (Fig
4.6). The model performance, both accuracy and average F1, is shown in Figure 4.7. The M and N
have a bad effect on a few tests, but they have stronger good influence on some test well. On

average, the accuracy is increased by 0.4% and the average F1 is increased by 0.1%.

Figure 4.6 The boxplot comparing M and N between the rock types

Fig 4.7 Performance change in all 5 test wells after the M and N are added.

4.3.3 Rescaling and Outlier processing

Gamma-ray log is rescaled with all 3 methods: ranking, standardization, normalization, but
first the outliers and extreme data are handled with trimming and winsorizing. Percentage of the
data which are handled on both minimum and maximum extreme ends are needed to be

determined. A various number of percentage are simulated then the model performances are
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shown in Figure 4.8 for trimming and Figure 4.9 for winsorizing. Afterward, 5% and 10% are
selected to use further because the percentage which is more than 10% has a risk to get lower

performance than before.

Figure 4.8 Model performances which are trimmed at a various percentage of the data at each

extreme end.
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Figure 4.9 Model performances which are trimmed at a various percentage of the data at each

extreme end.

Performance of 12 different models is averaged and shown in Figure 4.10. The models are
combinations of 2 outlier-handling methods, 2 percentage of handled data, and 3 scaling

methods. The useful models are those on the top-right quadrant which are listed in Table 4.14.
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Figure 4.10 Performance of 12 different models from combining outlier-handling methods,

percentage of handled data, scaling method

Table 4.14 Detail of the 5 models on the top right quadrant

Combination of methods Accuracy change (%) | Average F1 change (%)
Trimmed 5% + Normalization 0.24 1.1
Winsorized 5% + Normalization 0.21 1.1
Trimmed 5% + Standardization 0.36 0.74
Winsorized 5% + Standardization 0.24 0.71
Trimmed 5% + Ranking 0.04 0.16

The model which is trimmed 5% at minimum and maximum ends and normalized is

selected because it has good performances in both the accuracy and average F1.

4.4 Final model

After experimenting with the M and N indexes, outlier-handling, scaling, to conclude the
best performance possible for the model, hyperparameters of the model need to be tuned. The
target hyperparameters are gamma, max_depth, learning rate, and n_estimators which are

shown in Table 3.1. The model performance with respect to each of the hyperparameter has
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experimented separately; Figure 4.11 for gamma, Figure 4.12 for max_depth, Figure 4.13 for

learning_rate, and Figure 4.14 for n_estimators. These experiments provide an optimal range of

values for each of the hyperparameter.

Figure 4.11 The model performance with respect to gamma



Figure 4.12 The model performance with respect to max_depth

47



Figure 4.13 The model performance with respect to learning rate

a8



Figure 4.14 The model performance with respect to n_estimators

a9
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Next, by selecting one value from the optimal range of each of the hyperparameters at a
time and combining them with one selected from the other hyperparameter, various
combinations of the hyperparameters are created then all of the hyperparameters are tuned
together. Figure 4.15 shows model performances of 341 models from hyperparameter

combinations.
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Figure 4.15 The model performance of 341 models from combinations of hyperparameters

The model performances are divided into 2 groups. First, a bottom-middle group which
has negative changes in both accuracy and average F1 at the same amount. Another group is a
top-left group which has a positive change in accuracy but a stronger negative change in average
F1 than the former group. Eventually, the model performances are converged to the top-right
group which has positive changes in both accuracy and average Fl1. Table 4.15 shows 5

combinations of hyperparameters of the most top-right models.
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Table 4.15 The hyperparameters of the most top-right models

Accuracy Average F1
max_depth learning rate n_estimators
B B B change (%) change (%)
1 0.07 110 3.23 2.04
1 0.09 90 3.20 2.01
1 0.07 120 3.20 2.00
1 0.07 130 3.14 1.96
1 0.09 100 3.07 1.91

The best hyperparameters combination is used as the best performance possible for the
model. The data is then split into 2 set; training data and test data. The final model is then
developed and evaluated (Fig 4.16 and Table 4.16).

Figure 4.16 The final model performance



Table 4.16 Overview of performances of the model
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Test well name Accuracy Average F1
East Simpson |I 75.6% 45.8%
Ikpikpuk | 79.4% 73.6%
Inigok | 82.5% 69.5%
Kugura | 66.8% 68.6%
Tunalik | 49.3% 44.7%
Table 4.17 The evaluation of the XGBoost in East Simpson |I
Precision Recall F1-Score Truth
Mudrock 78.4% 96.7% 86.6% 9,005
Sandstone 48.0% 19.0% 27.2% 2,934
Limestone 98.0% 13.4% 23.5% 374
Table 4.18 The evaluation of the XGBoost in Ikpikpuk |
Precision Recall F1-Score Truth
Mudrock 78.8% 91.3% 84.6% 11,512
Sandstone 59.8% 36.1% 45.0% 4749
Limestone 90.7% 91.7% 91.1% 5,566




Table 4.19 The evaluation of the XGBoost in Inigok |
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Precision Recall F1-Score Truth

Mudrock 69.4% 53.6% 60.5% 872

Sandstone 47.6% 63.1% 54.3% 715

Limestone 94.1% 93.2% 93.6% 3,651
Table 4.20 The evaluation of the XGBoost in Kugrua |

Precision Recall F1-Score Truth

Mudrock 61.3% 78.8% 69.0% 4,767

Sandstone 68.6% 47.6% 56.2% 5,790

Limestone 75.3% 85.0% 80.7% 2,663
Table 4.21 The evaluation of the XGBoost in Tunalik |

Precision Recall F1-Score Truth

Mudrock 42.3% 83.6% 56.2% 714

Sandstone 0.15% 0.02% 0.03% 825

Limestone 72.9% 75.9% 74.4% 547
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Chapter 5

Discussion and conclusion

5.1 Discussion

5.1.1 Dataset and model performance

Table 5.1 compares the number of classes to classify, the used model, and the final
average F1 between this study and others (Chen and Zeng, 2018; Messer et al., 2017; Hall, 2016).
Those 3 studies used the same dataset. which has 9 classes; non-marine sandstone, non-marine
coarse siltstone, non-marine fine siltstone, marine siltstone and shale, mudstone, wackestone,
dolomite, packstone-grainstone, and phylloid-algal bafflestone. The studies achieve about the
same model performance as this study even though they need to classify more classes. This
might be due to 2 advantages of their studies; geologist-defined feature and depth interval of the
data. First, their studies use various features which including common logs such as gamma-ray,
resistivity, phi neutron-density, delta neutron-density, and photoelectric. However, some
additional features are created by a geologist such as marine/nonmarine indicator and relative
position are provided, and these features are useful for classifying their 9 classes of rocks. For
another advantage, the data in their studies are from about the same depth, so the

heterogeneity might not be as strong as in our study.

Table 5.1 Comparison between this study and others on the number of classes to classify, the

used model, and the F1

Number of classes Model F1 (%)
This study 3 XGBoost 60.5
Chen and Zeng (2018) 9 XGBoost 61.0
Mosser et al. (2017) 9 XGBoost 58.0
Hall (2016) 9 Support Vector Machine 43.0
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5.1.2 Hyperparameters

Table 5.2 compares hyperparameters which are focused in this study with Mosser et al.
(2017) which is the only study that published the hyperparameters among those 3 studies.
Generally, the model with high complexity is required for a large number of classes to classify
and complexity of the XGBoost is partly controlled by max_depth and n_estimators. Complexity
of the XGBoost is directly proportional to max_depth and n_estimators. Thus, due to the number
of classes, the model in a study by Mosser et al. (2017) is more complex than the model in this

study while both studies reaches the same degree of performances.

Table 5.2 Comparison between this study and Mosser et al. (2017) on the complexity

This study Mosser et al. (2017)
Number of classes 3 9
max_depth 1 3
n_estimators 110 150

5.1.3 Features engineering

Out of 4 data preprocessing and feature engineering, upsampling and downsampling is
the only one which is not working well. A study by Ling and Li (1998) demonstrates the effect of
upsampling and downsampling on model performance with business data. The upsampling
method doesn’t improve the model performance while the downsampling method significantly
improves the model performance. Furthermore, a study by Japkowics (2000) also simulates the
effect of upsampling and downsampling on synthetic data. As a result, both of them improve
model performance. Because of that, the downsampling might be a useful preprocessing method

even though it is inconclusive in this study.

5.2 Further study
Machine learning considers each row of data separately. However, because the rock is
thick, well logging data is spatially correlated and should not be considered separately. This fact

might be incorporated to improve the model. Moreover, in general, well log interpretation is
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done on an economic interval of depth or a specific formation. Therefore, the study can focus

on the specific interval to achieve better performance and to respond with a use case.

5.3 Conclusion

In this study, an ensemble tree which is called extreme gradient boosting is used to
classify rock types from well-logging data. The target rock types are mudrock, sandstone, and
limestone. The baseline performances are shown in Table 4.7 and the average accuracy and
average F1 are 67.6% and 57.7% respectively. Originally, coal is also one of the targets, but it is
ignored because of its extremely small amount of data. A total of 4 data preprocessing and
feature engineering are demonstrated; upsampling and downsampling, MN crossplot, rescaling,
and outlier processing.

First of all, after coal rock type is upsampled in the training data, the performances are
worse than the baseline which is shown in almost all of the experimental simulation (Fig 4.5).
Thus, the effect of upsampling on model performance is negative. On the other hand, the effect
of downsampling on model performance can’t be concluded. This is deduct from the
experiment in which the training data is downsampled, and the model performances are better
than the baseline in some test well and are worse than the baseline in some test well (Fig 4.5).

Second, MN crossplot also leads to both increase and decrease of the performance
which is depending on the test well. However, on average, the accuracy and the average F1 are
increased by 0.4% and 1.2%, respectively, so the M and N are probably useful for the model.

Next, rescaling and outlier processing. An appropriate percentage cutoff for the outlier
processing is determined from the experiments (Fig 4.8 - 4.9). Then, outlier preprocessing
methods which are trimming and winsorizing are incorporated with the rescaling methods which
are standardization, normalization, and ranking (Fig 4.10). The 2 methods of outlier processing
show approximately the same model performance and the most fitting cutoff is 5%. The best
rescaling method is normalization. Rescaling and outlier preprocessing averagely improve the
accuracy and average F1 by 0.2% and 1.1%.

Afterward, hyperparameters which are focused in this study; max_depth, n_estimators,
learning_rate, and gamma are tuned. The most fitting values are 1, 110, 0.07, and 0, respectively.
The final model performance is shown in Table 4.16, and on average, the accuracy and average

F1 are 70.7% and 60.5% which are improved from the baseline by 3.1% and 2.8% respectively.
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