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Chapter 1
Introduction

As a generalization of rings, Γ-rings were introduced by N. Nobusawa [7] in 1964.
Also, as a generalization of semirings and Γ-rings, the notion of Γ-semirings was intro-
duced by M. K. Rao [8] in 1995. Some properties of ideals and k-ideals in a Γ-semiring
were also discussed by M. K. Rao [8] in 1995 and T. K. Dutta and S. K. Sardar [3] in 2000.
T. K. Dutta and S. K. Sardar [4] in 2001 gave the definition of prime ideals in Γ-semirings
and studied some of their properties. In 2017, M. K. Rao and B. Venkateswarlu [11]
initiated the definition of primary ideals in Γ-semirings which is a generalization of
prime ideals in Γ-semirings.

The concept of 2-absorbing ideals in commutative rings was introduced by A.
Badawi [1] in 2007 which is a generalization of prime ideals in commutative rings.
Recently, A. Badawi [2] in 2014 introduced the concept of 2- absorbing primary ide-
als in commutative rings and gave some characterizations related to it. This was also
extended to commutative semiring. The notion of 2-absorbing primary ideals in com-
mutative semirings was introduced by P. Kumar [6] in 2016. Moreover, M. Y. Elkettani
and A. Kasem [5] in 2016 extended the concept of prime ideals and primary ideals in
Γ-rings to 2-absorbing δ-primary ideals in Γ-rings which unify 2-absorbing ideals and
2-absorbing primary ideals in Γ-rings.

These inspired us to generalize those concepts to commutative Γ-semiring. Our
main goal is to provide the notion of 2-absorbing primary ideals and 2-absorbing
δ-primary ideals in commutative Γ-semirings. Also, we study these properties and
provide some of their characterizations.

This report is organized as follows:

1
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In Chapter 2, we provide some basic results which will be applied later.
In Chapter 3, radical ideals are introduced and are studied.
In Chapter 4, one of our main results, 2-absorbing primary ideals are provided.

Moreover, some properties are studied. At the end, some characterizations are given.
In Chapter 5, expansion of ideals are proposed. These will be a main tool for

Chapter 6.
In Chapter 6, the other of our main results, 2-absorbing δ-primary ideals are given.

We investigate their properties and characterizations.



Chapter 2
Preliminaries

In this chapter, we recall some of fundamental concepts and definitions which
are necessary for this project.

Definition 2.1. [8] For any commutative semigroups (R,+) and (Γ,+), R is called
a Γ-semiring if there exists a function · from R × Γ × R into R, where ·(x, γ, y) is
denoted by xγy for all x, y ∈ R and γ ∈ Γ, satisfying the following properties: for all
x, y, z ∈ R and γ, β ∈ Γ,
1. xγ(y + z) = xγy + xγz and (x+ y)γz = xγz + yγz;

2. x(γ + β)y = xγy + xβy; and
3. (xγy)βz = xγ(yβz).

Throughout this project, let Z+
0 be the set of non-negative integers. Then Z+

0 is
a semigroup under the usual addition. For a Γ-semiring R, A,B ⊆ R and β ∈ Γ, let
AΓB = { aγb | a ∈ A, γ ∈ Γ and b ∈ B } and AβB = { aβb | a ∈ A and b ∈ B }.

Example 2.2. (1) Let R be the commutative semigroup containing all m×n matrices
over Z+

0 under the usual addition and Γ be the commutative semigroup containing
all n×m matrices over Z+

0 under the usual addition. Then R is a Γ-semiring where
aγb is the usual matrix product for any a, b ∈ R and γ ∈ Γ.
(2) For each n ∈ N, recall that nZ+

0 = { na | a ∈ Z+
0 } is a commutative semigroup

under the usual addition of integers. Then nZ+
0 is an mZ+

0 -semiring for all m,n ∈ N

where xγy is the usual multiplication of integers for all x, y ∈ nZ+
0 and γ ∈ mZ+

0 .

Definition 2.3. [8] A Γ-semiring R is said to have a zero element if there exists an
element 0 ∈ R such that x+ 0 = x and 0αx = xα0 = 0 for all x ∈ R and α ∈ Γ.

3
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Definition 2.4. [10] A Γ-semiring R is said to have a unity element if there exists an
element 1 ∈ R such that for all x ∈ R, there exists α ∈ Γ such that 1αx = x = xα1.

Definition 2.5. [8] A Γ-semiring R is said to be commutative if xαy = yαx for all
x, y ∈ R and α ∈ Γ.

Definition 2.6. [8] Let R be a Γ-semiring and A be a subset of R. Then A is called
a Γ-subsemiring of R if A is a subsemigroup of (R,+) and AΓA ⊆ A.

Proposition 2.7. [8] Let Ri be a Γi-semiring for all i ∈ {1, 2, . . . , n}. Then
R1 ×R2 × · · ·× Rn is a (Γ1 × Γ2 × · · ·× Γn)-semiring where

(x1, x1, . . . , xn) + (y1, y2, . . . , yn) = (x1 + y1, x2 + y2, . . . , xn + yn) and
(x1, x1, . . . , xn)(γ1, γ2, . . . , γn)(y1, y2, . . . , yn) = (x1γ1y1, x2γ2y2, . . . , xnγnyn)

for all xi, yi ∈ Ri, γi ∈ Γi and i ∈ {1, 2, . . . , n}.
Moreover, if Ri is commutative for all i ∈ {1, 2, . . . , n}, then the (Γ1×Γ2× · · ·×

Γn)-semiring is also commutative.

Definition 2.8. [8] A subset I of a Γ-semiring R is called an ideal in R if I is a
subsemigroup of (R,+), IΓR ⊆ I and RΓI ⊆ I .

It is clear that a Γ-semiring R is an ideal in R. Moreover, if R is a Γ-semiring with
zero 0, then 0 ∈ I for all ideal I in R.

Definition 2.9. [8] An ideal I in a Γ-semiring R is called a k-ideal in R if for all
x, y ∈ R, x+ y ∈ I and x ∈ I implies y ∈ I .

Example 2.10. From Example 2.2 (2), Z+
0 is a 5Z+

0 -semiring. Then 3Z+
0 is a k-ideal

in Z+
0 . However, 3Z+

0 − {3} is an ideal in Z+
0 but it is not a k-ideal in Z+

0 because
6 + 3 ∈ 3Z+

0 − {3}, 6 ∈ 3Z+
0 − {3} but 3 /∈ 3Z+

0 − {3}.

Proposition 2.11. [4] Let R be a Γ-semiring with zero and a ∈ R. Define

⟨a⟩ = { na+
p∑

j=1

aηjtj +
q∑

k=1

ukδka+
s∑

l=1

vlµlaλlwl |

n ∈ Z+
0 , p, q, s ∈ Z+, tj, uk, vl, wl ∈ R and ηj, δk, µl,λl ∈ Γ }.

Then ⟨a⟩ is an ideal in R containing a.
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Proposition 2.12. Let Ri be a commutative Γi-semiring for all i ∈ {1, 2}. Then I is
an ideal in the (Γ1 × Γ2)-semiring R1 ×R2 if and only if I = I1 × I2 for some ideals
I1 in R1 and I2 in R2.

Proof. First, suppose that I is an ideal in R1 × R2. Let I1 = {x | (x, y) ∈ I for some
y ∈ R2} and I2 = {y | (x, y) ∈ I for some x ∈ R1}. Since I ̸= ∅, it follows that I1 ̸= ∅

and I2 ̸= ∅. Let a, b ∈ I1, γ ∈ Γ1 and r ∈ R1. Since I2 ̸= ∅ and Γ2 ̸= ∅, let y ∈ I2 and
β ∈ Γ2. Since I is an ideal in R1 × R2, we have (a + b, y + y) = (a, y) + (b, y) ∈ I ,
(aγr, yβy) = (a, y)(γ, β)(r, y) ∈ I and (rγa, yβy) = (r, y)(γ, β)(a, y) ∈ I . So, a+ b ∈

I1, aγr ∈ I1 and rγa ∈ I1. Hence, I1 is a subsemigroup of (R1,+), I1Γ1R1 ⊆ I1 and
R1Γ1I1 ⊆ I1. Therefore, I1 is an ideal in R1. Similarly, I2 is an ideal in R2.

Next, suppose that I = I1 × I2 for some ideals I1 in R1 and I2 in R2. Since
I1 ̸= ∅ and I2 ̸= ∅, we have I = I1 × I2 ̸= ∅. Let x1, x2 ∈ I1, y1, y2 ∈ I2, γ ∈

Γ1, β ∈ Γ2, r1 ∈ R1 and r2 ∈ R2. Since x1 + x2 ∈ I1 and y1 + y2 ∈ I2, it follows
that (x1 + x2, y1 + y2) ∈ I1 × I2 = I . Since x1γr1, r1γx1 ∈ I1 and y1βr2, r2βy1 ∈ I2,
(x1, y1)(γ, β)(r1, r2) ∈ I1×I2 = I and (r1, r2)(γ, β)(x1, y1) ∈ I1×I2 = I . Hence, I is a
subsemigroup of (R1×R2,+), (I)(Γ1×Γ2)(R1×R2) ⊆ I and (R1×R2)(Γ1×Γ2)(I) ⊆

I . Therefore, I is an ideal in R1 ×R2.



Chapter 3
Radical Ideals

Throughout this chapter, properties of radical ideals in commutative Γ-semirings
are investigated. However, we focus on those which are involving with 2-absorbing
primary ideals and 2-absorbing δ-primary ideals which will be applied later. In this
chapter, let R be a commutative Γ-semiring.

We begin this chapter by providing the definition of the radical ideal.

Proposition 3.1. [11] Let I be an ideal in R. Then
√
I := {x ∈ R | there exists n ∈ N such that (xγ)n−1x ∈ I for all γ ∈ Γ}

is an ideal in R containing I where (xγ)0x = x and (xγ)nx = (xγ)n−1xγx for all
x ∈ R, γ ∈ Γ and n ∈ N. The ideal √I is called the radical ideal of I .

Proof. If x ∈ I , then (xγ)1−1x = x ∈ I so that x ∈
√
I . Hence, I ⊆

√
I .

To show that √I is a subsemigroup of (R,+), let x, y ∈
√
I . Then there exist

n,m ∈ N such that (xγ)n−1x ∈ I and (yβ)m−1y ∈ I for all γ, β ∈ Γ. So,

[(x+ y)γ](m+n)−1(x+ y) =
(m+n)−1∑

k=0

(
(m+ n)− 1

k

)
(xγ)k(yγ)(m+n)−1−k(x+ y)

=
(m+n)−1∑

k=0

(
(m+ n)− 1

k

)
(xγ)k(yγ)(m+n)−1−kx+

(m+n)−1∑

k=0

(
(m+ n)− 1

k

)
(xγ)k(yγ)(m+n)−1−ky

∈ I

6



7

for all γ ∈ Γ. Thus, x+ y ∈
√
I . Hence, √I is a subsemigroup of (R,+).

Next, let x ∈
√
I, γ ∈ Γ and r ∈ R. Then there exists n ∈ N such that (xβ)n−1x ∈

I for all β ∈ Γ. Since R is commutative, we have [((xγr)β)n−1xγr] ∈ I for all β ∈ Γ.
Hence, √IΓR ⊆

√
I . Since R is commutative, we have RΓ

√
I ⊆

√
I .

Therefore, √I is an ideal in R containing I .

Note that √R = R.

Proposition 3.2. Let I and J be ideals in R. If I ⊆ J , then √
I ⊆

√
J .

Proof. Suppose I ⊆ J . Let x ∈
√
I . Then there exists n ∈ N such that (xγ)n−1x ∈ I

for all γ ∈ Γ. Since I ⊆ J , it follows that (xγ)n−1x ∈ J for all γ ∈ Γ. So, x ∈
√
J .

Hence, √I ⊆
√
J .

Proposition 3.3. Let I and J be ideals in R such that I ∩ J ̸= ∅. Then √
I ∩ J =

√
I ∩

√
J .

Proof. Clearly, I ∩ J is an ideal in R. Since √
I ∩ J ⊆

√
I and √

I ∩ J ⊆
√
J , we

have √
I ∩ J ⊆

√
I ∩

√
J .

Next, let x ∈
√
I ∩

√
J . Then there exist n,m ∈ N such that (xγ)n−1x ∈ I for all

γ ∈ Γ and (xβ)m−1x ∈ J for all β ∈ Γ. So, (xγ)m+n−1x ∈ I ∩ J for all γ ∈ Γ. Hence,
x ∈

√
I ∩ J . Thus, √I ∩

√
J ⊆

√
I ∩ J .

Therefore, √I ∩ J =
√
I ∩

√
J .

Proposition 3.4. Let Ri be a commutative Γi-semiring for all i ∈ {1, 2}. If I1 and I2

are ideals in R1 and R2, respectively, then
√
I1 ×

√
I2 =

√
I1 × I2.

Proof. Let I1 and I2 be ideals in R1 and R2, respectively.
First, let a ∈

√
I1 and b ∈

√
I2. Then there exist n,m ∈ N such that (aα1)n−1a ∈ I1

and (bα2)m−1b ∈ I2 for all α1 ∈ Γ1 and α2 ∈ Γ2. So,

((a, b)(α1,α2))
n+m−1(a, b) ∈ I1 × I2 for all α1 ∈ Γ1 and α2 ∈ Γ2.

Thus, (a, b) ∈ √
I1 × I2. Hence,

√
I1 ×

√
I2 ⊆

√
I1 × I2.

Next, let (p, q) ∈ √
I1 × I2. Then, there exists m ∈ N such that

((p, q)(α1,α2))
m−1(p, q) ∈ I1 × I2 for all α1 ∈ Γ1 and α2 ∈ Γ2.
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Hence, (pα1)m−1p ∈ I1 and (qα2)m−1q ∈ I2 for all α1 ∈ Γ1 and α2 ∈ Γ2. So,
(p, q) ∈

√
I1 ×

√
I2. Thus,

√
I1 × I2 ⊆

√
I1 ×

√
I2.

Therefore, √I1 ×
√
I2 =

√
I1 × I2.

For each proper ideal I in a commutative Γ-semiring R, the commutative Γ-
semiring R/I is proposed by T.K. Dutta and S.K. Sardar in [4].

Definition 3.5. [4] Let ρ be an equivalence relation on a commutative Γ-semiring R.
Then ρ is called a Γ-congruence on R if xρx′ and yρy′ implies (x+ y)ρ(x′ + y′) and
(xγy)ρ(x′γy′) for all γ ∈ Γ and x, y, x′, y′ ∈ R.

Definition 3.6. [4] Let I be a proper ideal in a commutative Γ-semiring R and ρI be
a Γ-congruence on R. Then ρI is called the Bourne Γ-congruence on R if for all
x, y ∈ R, xρIy if and only if x+ i1 = y + i2 for some i1, i2 ∈ I .

The Bourne Γ-congruence class of an element r of R is denoted by r/ρI or simply
r/I and the set of all such Γ-congruence classes of the elements of R is denoted
by R/ρI or simply by R/I .

For any proper ideal I in R, R/I is a commutative Γ-semiring where

r/I + r′/I = (r + r′)/I and (r/I)α(r′/I) = (rαr′)/I

for all α ∈ Γ and r, r′ ∈ R.

Proposition 3.7. [9] If I and J are ideals in R and I ! J , then

(i) I is also an ideal in the Γ-subsemiring J ; and

(ii) J/I is an ideal in the Γ-semiring R/I .

Lemma 3.8. Let I be a proper ideal in R and P be a k-ideal in R such that I ! P .
Then, for all a ∈ R, a/I ∈ P/I if and only if a ∈ P .

Proof. Note that P/I is a commutative Γ-semiring because I ! P . Let a ∈ R. If
a ∈ P , then it is obvious that a/I ∈ P/I .

Next, let a/I ∈ P/I . Then, a/I = p/I for some p ∈ P . Thus, there exist i1, i2 ∈ I

such that a+ i1 = p+ i2. Since i1, i2 ∈ I ⊆ P and P is a k-ideal, a ∈ P .
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Proposition 3.9. Let I be a proper ideal in R and P be a k-ideal in R such that
I ! P . Then √

P/I ⊆
√
P/I .

Proof. Note that I !
√
P so that both √

P/I and P/I are commutative Γ-semirings.
Let r ∈

√
P . Then there exists n ∈ N such that (rα)n−1r ∈ P for any α ∈ Γ. So,

((r/I)α)n−1(r/I) = ((rα)n−1r)/I ∈ P/I for any α ∈ Γ. Thus, r/I ∈
√

P/I .
Therefore, √P/I ⊆

√
P/I .

We end this chapter by introducing homomorphism between Γ-semirings.

Definition 3.10. [8] Let R1 and R2 be Γ-semirings (not necessary commutative). Then
g : R1 → R2 is called a homomorphism if g(x + y) = g(x) + g(y) and g(xγy) =

g(x)γg(y) for all x, y ∈ R1 and γ ∈ Γ.

Definition 3.11. Let R1 and R2 be Γ-semirings (not necessary commutative) and
g : R1 → R2 be a homomorphism. Then g is called an epimorphism if g is surjective.

Example 3.12. Note that 3Z+
0 and Z+

0 /7Z+
0 are 5Z+

0 -semirings. Define f : 3Z+
0 →

Z+
0 /7Z+

0 by f(x) = x/7Z+
0 for all x ∈ 3Z+

0 . Then f is an epimorphism.

Proposition 3.13. Let R1 and R2 be commutative Γ-semirings, g : R1 → R2 be a
homomorphism and I be an ideal in R2. Then g−1(

√
I) =

√
g−1(I).

Proof. Clearly, g−1(I) is an ideal in R1.
First, let a ∈ g−1(

√
I).Then, g(a) ∈

√
I . So, there exists n ∈ N such that

(g(a)α)n−1g(a) ∈ I for all α ∈ Γ. Thus, g((aα)n−1a) = (g(a)α)n−1g(a) ∈ I for
all α ∈ Γ. Then, (aα)n−1a ∈ g−1(I) for all α ∈ Γ. So, a ∈

√
g−1(I). Hence,

g−1(
√
I) ⊆

√
g−1(I).

Next, let a ∈
√

g−1(I). Then, there exists n ∈ N such that (aα)n−1a ∈ g−1(I) for
all α ∈ Γ. Thus, (g(a)α)n−1g(a) = g((aα)n−1a) ∈ I for all α ∈ Γ. So, g(a) ∈

√
I .

Then, √g−1(I) ⊆ g−1(
√
I).

Therefore, g−1(
√
I) =

√
g−1(I).



Chapter 4
2-absorbing Primary Ideals

In this chapter, we introduce the concept of 2-absorbing primary ideals in a com-
mutative Γ-semiring and investigate some results related to it. Throughout this chap-
ter, let R be a commutative Γ-semiring.

Definition 4.1. [4] A proper ideal I in a commutative Γ-semiring R is called a prime
ideal in R if whenever a, b ∈ R, aΓb ⊆ P implies a ∈ P or b ∈ P .

Example 4.2. From Example 2.2 (2), Z+
0 is a commutative 5Z+

0 -semiring. Then 2Z+
0

is a prime ideal in Z+
0 .

Proof. Let x, y ∈ Z+
0 be such that xΓy ⊆ 2Z+

0 . So, 2 | (x)(5)(y). Hence, 2 | x or 2 | y.
Thus, x ∈ 2Z+

0 or y ∈ 2Z+
0 . Therefore, 2Z+

0 is a prime ideal in Z+
0 .

Definition 4.3. [11] A proper ideal I in a commutative Γ-semiring R is called a pri-
mary ideal in R if whenever a, b ∈ R, aΓb ⊆ I implies a ∈ I or b ∈ √

I .

The following is the immediate result obtained from the definitions.

Remark 4.4. Every prime ideal in R is a primary ideal in R.

The following definitions that are given in the context of Γ-semirings were inspired
by [5].

Definition 4.5. A proper ideal I in a commutative Γ-semiringR is called a 2-absorbing
ideal in R if whenever x, y, z ∈ R, γ, β ∈ Γ and xγyβz ∈ I implies xγy ∈ I or
xβz ∈ I or yβz ∈ I .

10
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Definition 4.6. A proper ideal I in a commutative Γ-semiringR is called a 2-absorbing
primary ideal in R if whenever x, y, z ∈ R, γ, β ∈ Γ and xγyβz ∈ I, then xγy ∈ I

or xβz ∈
√
I or yβz ∈

√
I .

Definition 4.5 and Definition 4.6 lead to the following remark.

Remark 4.7. Every 2-absorbing ideal in R is a 2-absorbing primary ideal in R.

However, the converse of the above remark does not hold.

Example 4.8. From Example 2.2 (2), Z+
0 is a commutative 5Z+

0 -semiring. Then 8Z+
0

is a 2-absorbing primary ideal in Z+
0 but it is not a 2-absorbing ideal in Z+

0 .

Proof. Let x, y, z ∈ Z+
0 and γ, β ∈ 5Z+

0 be such that xγyβz ∈ 8Z+
0 . If 8 | xγy, we

are done. Suppose 8 ̸ | xγy. Then, 2 | βz. So, 8 | (xβzα)2xβz for all α ∈ Γ, that is
xβz ∈

√
8Z+

0 . Thus, 8Z+
0 is a 2-absorbing primary ideal in Z+

0 .
Since (2)(5)(2)(5)(2) ∈ 8Z+

0 and (2)(5)(2) /∈ 8Z+
0 , it follows that 8Z+

0 is not
2-absorbing ideal in Z+

0 .

We can see from the next example that primary ideals need not be 2-absorbing
ideals or prime ideals.

Example 4.9. From Example 2.2 (2), Z+
0 is a commutative 5Z+

0 -semiring. Then 27Z+
0

is a primary ideal in Z+
0 but it is not a 2-absorbing ideal so that it is not a prime ideal

in Z+
0 .

Proof. Let x, y ∈ Z+
0 be such that xΓy ⊆ 27Z+

0 . If 27 | x, then x ∈ 27Z+
0 . Suppose

27 ̸ | x. Since xΓy ⊆ 27Z+
0 , 3 | αy for all α ∈ 5Z+

0 . Hence, 27 | (yα)3y for all α ∈ 5Z+
0 .

So, y ∈
√

27Z+
0 . Thus, 27Z+

0 is a primary ideal in Z+
0 .

Since (3)(5)(3)(5)(3) ∈ 27Z+
0 and (3)(5)(3) /∈ 27Z+

0 , it follows that 27Z+
0 is not a

2-absorbing ideal in Z+
0 .

Next, we present a relationship between prime ideals and 2-absorbing ideals as
well as a relationship between primary ideals and 2-absorbing primary ideals.

Proposition 4.10. Every prime ideal in R is a 2-absorbing ideal in R and then it is a
2-absorbing primary ideal in R.



12

Proof. Suppose that I is a prime ideal in R. Let x, y, z ∈ R and γ, β ∈ Γ be such
that xγyβz ∈ I . Then, xγyΓyβz ⊆ I . Since I is a prime ideal, we have xγy ∈ I or
yβz ∈ I .

Therefore, I is a 2-absorbing ideal in R.

Proposition 4.11. Every primary ideal in R is a 2-absorbing primary ideal in R.

Proof. Suppose that I is a primary ideal in R. Let x, y, z ∈ R and γ, β ∈ Γ be such
that xγyβz ∈ I . Then, xγyΓyβz ⊆ I . Since I is a primary ideal, we have xγy ∈ I or
yβz ∈

√
I . Thus, I is a 2-absorbing primary ideal in R.

We can see from the next example that 2-absorbing ideals and 2-absorbing pri-
mary ideals need not be primary ideals.

Example 4.12. From Example 2.2 (2), Z+
0 is a commutative 5Z+

0 -semiring. Then 10Z+
0

is a 2-absorbing ideal in Z+
0 so that it is a 2-absorbing primary ideal. However, it is

not a primary ideal in Z+
0 .

Proof. Let x, y, z ∈ Z+
0 and γ, β ∈ 5Z+

0 be such that xγyβz ∈ 10Z+
0 . Then, 10 | xγyβz.

So, 2 | x or 2 | γ or 2 | y or 2 | β or 2 | z. If 2 | x or 2 | y, then 10 | xγy. If 2 | z,
then 10 | yβz. If 2 | γ or 2 | β, then 10 | xγy or 10 | xβz. Hence, xγy ∈ 10Z+

0 or
xβz ∈ 15Z+

0 or yβz ∈ 10Z+
0 . Thus, 10Z+

0 is a 2-absorbing ideal in Z+
0 and then it is a

2-absorbing primary ideal.
Since 2(5Z+

0 )1 ⊆ 10Z+
0 , 2 /∈ 10Z+

0 and 1 /∈
√

10Z+
0 , it follows that 10Z+

0 is not a
primary ideal in Z+

0 .

The following results are inspired by results in [2] and [6]. The next result shows a
relationship between 2-absorbing primary ideals in R and 2-absorbing primary ideals
in R/I .

Theorem 4.13. Let I be a proper ideal in R and P be a k-ideal in R such that
I ! P . Then P is a 2-absorbing primary ideal in R if and only if P/I is a 2-absorbing
primary ideal in R/I .

Proof. First, suppose that P is a 2-absorbing primary ideal in R. Then, P/I is a
proper ideal in R/I . Let x, y, z ∈ R and γ, β ∈ Γ be such that (x/I)γ(y/I)β(z/I) ∈
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P/I . Hence, (xγyβz)/I ∈ P/I and then by Lemma 3.8, xγyβz ∈ P . Since P

is a 2-absorbing primary ideal, xγy ∈ P or xβz ∈
√
P or yβz ∈

√
P . Hence,

(x/I)γ(y/I) = (xγy)/I ∈ P/I or (x/I)β(z/I) = (xβz)/I ∈
√
P/I ⊆

√
P/I or

(y/I)β(z/I) = (yβz)/I ∈
√
P/I ⊆

√
P/I . Thus, P/I is a 2-absorbing primary ideal

in R/I .
Next, suppose that P/I is a 2-absorbing primary ideal in R/I . By Lemma 3.8,

P is a proper ideal in R. Let x, y, z ∈ R and γ, β ∈ Γ be such that xγyβz ∈ P .
Hence, (x/I)γ(y/I)β(z/I) = (xγyβz)/I ∈ P/I. Since P/I is a 2-absorbing pri-
mary ideal, (xγy)/I = (x/I)γ(y/I) ∈ P/I or (xβz)/I = (x/I)β(z/I) ∈

√
P/I or

(yβz)/I = (y/I)β(z/I) ∈
√

P/I. If (xγy)/I ∈ P/I , then xγy ∈ P by Lemma 3.8.
Suppose (xβz)/I ∈

√
P/I . Then there exists n ∈ N such that ((xβzα)n−1xβz)/I =

(((xβz)/I)α)n−1((xβz)/I) ∈ P/I for all α ∈ Γ. By Lemma 3.8, (xβzα)n−1xβz ∈ P

for all α ∈ Γ. Hence, xβz ∈
√
P . Similarly, if (yβz)/I ∈

√
P/I , then yβz ∈

√
P .

Thus, P is a 2-absorbing primary ideal in R.

Proposition 4.14. If I is an ideal in R, then

(I : x) := { r ∈ R | rγx ∈ I for all γ ∈ Γ }

is an ideal in R containing I for all x ∈ R.

Proof. Let I be an ideal in R and x ∈ R. If r ∈ I , then rγx ∈ I for all γ ∈ Γ. Hence,
I ⊆ (I : x).

Next, let a, b ∈ (I : x) and γ ∈ Γ. Then, aγx, bγx ∈ I . So, (a + b)γx ∈ I , i.e.,
a+ b ∈ (I : x). Hence, (I : x) is a subsemigroup of (R,+).

Moreover, let a ∈ (I : x),α ∈ Γ and r ∈ R. Then, aγx ∈ I for all γ ∈ Γ. So,
aαrγx = rαaγx ∈ I for all γ ∈ Γ. Thus, aαr ∈ (I : x). Hence, (I : x)ΓR ⊆ (I : x).
Since R is commutative, we have RΓ(I : x) ⊆ (I : x).

Therefore, (I : x) is an ideal in R containing I .

We provide examples of 2-absorbing primary ideals in R.

Theorem 4.15. Let I be a 2-absorbing primary ideal in R and √
I be a prime ideal

in R. Then (I : x) is a 2-absorbing primary ideal in R for all x ∈ R \
√
I .
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Proof. Let x ∈ R \
√
I and a ∈ (I : x). Then aΓx ⊆ I ⊆

√
I . Since √

I is a prime
ideal and x /∈

√
I , it follows that a ∈

√
I . So, (I : x) ⊆

√
I . Since √

I is a proper
ideal in R, it follows that (I : x) is a proper ideal in R.

Next, let a, b, c ∈ R and γ, β ∈ Γ be such that aγbβc ∈ (I : x). Hence,
aγ(bβc)βx ∈ I . Since I is a 2-absorbing primary ideal, aγbβc ∈ I or aβx ∈

√
I

or bβcβx ∈
√
I .

Case 1. aγbβc ∈ I . Since I is a 2-absorbing primary ideal, aγb ∈ I ⊆ (I : x) or
aβc ⊆

√
I ⊆

√
(I : x) or bβc ⊆ √

I ⊆
√
(I : x).

Case 2. aβx ∈
√
I . Hence, aβcΓx ⊆

√
I . Since x /∈

√
I and √

I is a prime ideal, we
have aβc ∈

√
I ⊆

√
(I : x).

Case 3. bβcβx ∈
√
I . Hence, bβcβcΓx ⊆

√
I . Since x /∈

√
I and √

I is a prime ideal,
we have bβcβc ∈

√
I . Then there exists n ∈ N such that (bβcβcα)n−1bβcβc ∈ I for

all α ∈ Γ. So, (bβcα)2n−1bβc ∈ I for all α ∈ Γ. It follows that bβc ∈ √
I ⊆

√
(I : x).

Therefore, (I : x) is a 2-absorbing primary ideal in R.

Example 4.16. From Example 2.2 (2), Z+
0 is a commutative 5Z+

0 -semiring. Then 8Z+
0

and 10Z+
0 are 2-absorbing primary ideals by Example 4.8 and Example 4.12, respec-

tively. And so
√

8Z+
0 =

√
10Z+

0 = 2Z+
0 . Moreover,

√
8Z+

0 =
√
10Z+

0 = 2Z+
0 is a

prime ideal in Z+
0 by Example 4.2.

Proof. To show that
√

8Z+
0 = 2Z+

0 , let x ∈
√

8Z+
0 . So, there exists n ∈ N such

that (xγ)n−1x ∈ 8Z+
0 for all γ ∈ 5Z+

0 . Hence, 8 | [(x)(5)]n−1(x). Then, 2 | x. Thus
√

8Z+
0 ⊆ 2Z+

0 . Next, let x ∈ 2Z+
0 . Hence, [(x)(γ)]3−1x ∈ 8Z+

0 for all γ ∈ 5Z+
0 . Then,

x ∈
√

8Z+
0 . Thus, 2Z+

0 ⊆
√
8Z+

0 . Therefore,
√

8Z+
0 = 2Z+

0 .
To show that

√
10Z+

0 = 2Z+
0 , let x ∈

√
10Z+

0 . So, there exists n ∈ N such that
(xγ)n−1x ∈ 10Z+

0 for all γ ∈ 5Z+
0 . Hence, 10 | [(x)(5)]n−1(x). Then, 2 | x. Thus

√
10Z+

0 ⊆ 2Z+
0 . Next, let x ∈ 2Z+

0 . Hence, [(x)(γ)]2−1x ∈ 10Z+
0 for all γ ∈ 5Z+

0 .
Then, x ∈

√
10Z+

0 . Thus, 2Z+
0 ⊆

√
10Z+

0 . Therefore,
√

10Z+
0 = 2Z+

0 .

This chapter is ended by providing 2-absorbing primary ideals in a commutative
(Γ1 × Γ2)-semiring R1 ×R2.

Theorem 4.17. Let Ri be a commutative Γi-semiring for all i ∈ {1, 2}.
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(i) If I1 is a 2-absorbing primary ideal in R1, then I1×R2 is a 2-absorbing primary
ideal in R1 ×R2.

(ii) If I2 is a 2-absorbing primary ideal in R2, then R1× I2 is a 2-absorbing primary
ideal in R1 ×R2.

Proof. Note that R1 ×R2 is a commutative (Γ1 × Γ2)-semiring.
(i) Suppose that I1 is a 2-absorbing primary ideal in R1. Then, I1 ×R2 is a proper

ideal in R1 × R2. Let x1, y1, z1 ∈ R1, x2, y2, z2 ∈ R2, γ1, β1 ∈ Γ1 and γ2, β2 ∈ Γ2 be
such that (x1, x2)(γ1, γ2)(y1, y2)(β1, β2)(z1, z2) ∈ I1 × R2. Hence, x1γ1y1β1z1 ∈ I1.
Since I1 is a 2-absorbing primary ideal, x1γ1y1 ∈ I1 or x1β1z1 ∈

√
I1 or y1β1z1 ∈

√
I1. If x1γ1y1 ∈ I1, then (x1, x2)(γ1, γ2)(y1, y2) ∈ I1 × R2. If x1β1z1 ∈

√
I1, then

(x1, x2)(β1, β2)(z1, z2) ∈
√
I1 × R2 ⊆

√
I1 ×R2. Similarly, if y1β1z1 ∈

√
I1, then

(y1, y2)(β1, β2)(z1, z2) ∈
√
I1 ×R2. Therefore, I1 ×R2 is 2-absorbing primary ideal in

R1 ×R2.
The proof of (ii) is similar to the proof of (i).

Theorem 4.18. Let Ri be a commutative Γi-semiring with zero 0Ri and unity 1Ri

such that 0Ri ̸= 1Ri for all i ∈ {1, 2}. If I is a 2-absorbing primary ideal in R1 × R2,
exactly one of these holds:

(i) I = I1 ×R2 for some 2-absorbing primary ideal I1 in R1;

(ii) I = R1 × I2 for some 2-absorbing primary ideal I2 in R2;

(iii) I = I1 × I2 for some primary ideal Ii in Ri for all i ∈ {1, 2}.

Proof. Suppose that I is a 2-absorbing primary ideal in R1 × R2. Then, I = I1 × I2

for some ideals I1 in R1 and I2 in R2. Assume I2 = R2. Then I1 must be a
proper ideal in R1. Let x, y, z ∈ R1 and γ, β ∈ Γ1 be such that xγyβz ∈ I1. Let
a ∈ R2 and δ ∈ Γ2. So (x, a)(γ, δ)(y, a)(β, δ)(z, a) ∈ I1 × R2. Since I = I1 × R2

is a 2-absorbing primary ideal, (x, a)(γ, δ)(y, a) ∈ I1 × R2 or (x, a)(β, δ)(z, a) ∈
√
I1 ×R2 or (y, a)(β, δ)(z, a) ∈

√
I1 ×R2. If (x, a)(γ, δ)(y, a) ∈ I1 × R2, then

xγy ∈ I1. If (x, a)(β, δ)(z, a) ∈
√
I1 ×R2 =

√
I1 × R2, then xβz ∈

√
I1. Simi-

larly, if (y, a)(β, δ)(z, a) ∈
√
I1 ×R2, then, yβz ∈

√
I1. Thus, I1 is a 2-absorbing

primary ideal in R1.
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By similar argument, if I1 = R1, then I2 is a 2-absorbing primary ideal in R2.
Now, suppose that I1 ̸= R1 and I2 ̸= R2. Suppose that I1 is not a primary ideal

in R1. If 1R2 ∈
√
I2, then 1R2 ∈ I2, so I2 = R2 which is a contradiction. Hence,

1R2 /∈
√
I2. Since I1 is not a primary ideal in R1, there exist b, c ∈ R1 such that

bΓc ⊆ I1 but neither b ∈ I1 nor c ∈ √
I1. Since 1R1 and 1R2 are unities, there exists

α,α′ ∈ Γ1 and α′′ ∈ Γ2 such that bα1R1 = bR1 , 1R1α
′c = c and 1R2α

′′1R2 = 1R2 .
Since bΓc ⊆ I1, we have bαc ∈ I1. Hence, (b, 1R2)(α,α

′)(1R1 , 0R2)(α
′,α′′)(c, 1R2) =

(bαc, 0R2) ∈ I1 × I2 = I . Since I is a 2-absorbing primary ideal, we have

(b, 0R2) = (b, 1R2)(α,α
′)(1R1 , 0R2) ∈ I or

(bαc, 1R2) = (b, 1R2)(α,α
′)(c, 1R2) ∈

√
I =

√
I1 ×

√
I2 or

(c, 0R2) = (1R1 , 0R2)(α
′,α′′)(c, 1R2) ∈

√
I =

√
I1 ×

√
I2.

Hence b ∈ I1 or 1R2 ∈
√
I2 or c ∈

√
I1, which is a contradiction. So I1 is a primary

ideal in R1. Analogously, I2 is a primary ideal in R2.



Chapter 5
Expansion of Ideals

In a commutative ring, D. Zhao [12] defined a mapping δ to substitute √
I by δ(I)

in the definition of primary ideals, called δ-primary ideals, which are more general
than primary ideals. In this chapter, properties of expansion of ideals in commutative
Γ-semirings are investigated. However, we focus on those which are involving with
2-absorbing δ-primary ideals which will be applied in the sixth chapter. Throughout
this chapter, let R be a commutative Γ-semiring and J(R) be the set of all ideals
in R.

First, we give the definition of ideal expansions in the context of Γ-semirings which
were inspired by [12].

Definition 5.1. An expansion of ideals in a commutative Γ-simiring R (or an ideal
expansion of R) is defined to be a function δ : J(R) → J(R) such that:
1. I ⊆ δ(I) for all I ∈ J(R); and
2. I ⊆ J implies δ(I) ⊆ δ(J) for all I, J ∈ J(R).

Example 5.2. (1) The constant function c : J(R) → J(R) defined by I ,→ R is an ideal
expansion of R.
(2) The identity function Id : J(R) → J(R) defined by I ,→ I is an ideal expansion
of R.
(3) The radical function √ : J(R) → J(R) defined by I ,→

√
I is an ideal expansion

of R.

The following definitions that are given in the context of Γ-semirings were inspired
by [12].

17
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Definition 5.3. Let δ be an ideal expansion of a commutative Γ-semiring R. A proper
ideal I in a commutative Γ-semiring R is called a δ-primary ideal in R if whenever
a, b ∈ R, aΓb ⊆ I implies a ∈ I or b ∈ δ(I).

Definition 5.3 leads to the following remark.

Remark 5.4. Let δ be an ideal expansion of R. Then every prime ideal in R is a
δ-primary ideal in R.

Definition 5.5. An ideal expansion δ of a commutative Γ-semiring R is said to be
intersection preserving if for any ideals I and J in R with I ∩ J ̸= ∅,

δ(I ∩ J) = δ(I) ∩ δ(J).

Definition 5.6. Let δR1 and δR2 be ideal expansions of commutative Γ-semirings R1

and R2, respectively. Then (δR1 , δR2) is said to be global if for any homomorphism
g : R1 → R2 and ideal I in R2,

δR1(g
−1(I)) = g−1(δR2(I)).

Example 5.7. Let R1 and R2 be commutative Γ-semirings.
(1) According to Example 5.2 (2), let IdR1

and IdR2
be the identity functions which are

ideal expansions of R1 and R2, respectively. Then IdR1
is intersection preserving and

(IdR1
, IdR2

) is global.
(2) According to Example 5.2 (3), let √

R1
and √

R2
be the radical functions which are

ideal expansions of R1 and R2, respectively. Then √
R1

is intersection preserving by
Proposition 3.3 and (√

R1
,√

R2
) is global by Proposition 3.13.

Lemma 5.8. Let R1 and R2 be commutative Γ-semirings, g : R1 → R2 be an epi-
morphism and I be an ideal in R2. Then I = g(g−1(I)).

Proof. Clearly, g(g−1(I)) ⊆ I .
Next, let y ∈ I . Since g is surjective, there exists x ∈ R1 such that g(x) = y ∈ I .

So, x ∈ g−1(I). Then, y = g(x) ∈ g(g−1(I)). Hence, I ⊆ g(g−1(I)).
Therefore, I = g(g−1(I)).
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Lemma 5.9. Let R1 and R2 be commutative Γ-semirings, g : R1 → R2 be a ho-
momorphism and I be a k-ideal in R1 such that { x ∈ R1 | ∃ a, b ∈ R1 such that
x = a+ b and g(a) = g(b) } ⊆ I . Then I = g−1(g(I)).

Proof. Clearly, I ⊆ g−1(g(I)).
Next, let y ∈ g−1(g(I)). Then, g(y) ∈ g(I). So, there exists p ∈ I such that g(p) =

g(y). Then, p+ y ∈ { x ∈ R1 | ∃ a, b ∈ R1 such that x = a+ b and g(a) = g(b) } ⊆ I .
Since I is a k-ideal and p ∈ I , we have y ∈ I . Hence, g−1(g(I)) ⊆ I .

Therefore, I = g−1(g(I)).

The next result presents the homomorphic image of an ideal is an ideal under
some conditions.

Proposition 5.10. Let R1 and R2 be commutative Γ-semirings, δi be an ideal ex-
pansion of Ri for all i ∈ {1, 2} such that (δ1, δ2) is global, g : R1 → R2 be an
epimorphism and I be a k-ideal in R1 such that { x ∈ R1 | ∃ a, b ∈ R1 such that
x = a+b and g(a) = g(b) } ⊆ I . Then g(I) is an ideal in R2 and g(δ1(I)) = δ2(g(I)).

Proof. Since I ̸= ∅ and g is surjective, we have g(I) ̸= ∅. Let u, v ∈ g(I), γ ∈ Γ

and r ∈ R2. Then, there exist p, q ∈ I such that g(p) = u and g(q) = v. Hence,
u + v = g(p) + g(q) = g(p + q) and p + q ∈ I . So, u + v ∈ g(I). Since g is surjec-
tive, there exists t ∈ R1 such that g(t) = r. So, uγr = g(p)γg(t) = g(pγt), rγu =

g(t)γg(p) = g(tγp), pγt ∈ I and tγp ∈ I . So, uγr, rγu ∈ g(I). Hence, g(I) is an
ideal in R2.

Since (δ1, δ2) is global, by Lemma 5.9, we have δ1(I) = δ1(g−1(g(I))) = g−1(δ2((g(I))).
By Lemma 5.8, g(δ1(I)) = g(g−1(δ2(g(I))) = δ2(g(I)).



Chapter 6
2-absorbing δ-primary Ideals

This final chapter is another main result of our project. We introduce the concept
of 2-absorbing δ-primary ideals in a commutative Γ-semiring and investigate some
results related to it. These ideals are generalization of 2-absorbing primary ideals.
Throughout this chapter, let R be a commutative Γ-semiring and J(R) be the set of
all ideals in R.

The following definitions that are given in the context of Γ-semirings were inspired
by [5].

Definition 6.1. Let δ be an ideal expansion of a commutative Γ-semiring R. A proper
ideal I in R is called a 2-absorbing δ-primary in R if whenever x, y, z ∈ R, γ, β ∈ Γ

and xγyβz ∈ I, then xγy ∈ I or xβz ∈ δ(I) or yβz ∈ δ(I).

Example 6.2. (1) Let R be a commutative Γ-semiring and Id be the identity function
in Example 5.2 (2). Then I is a 2-absorbing Id-primary ideal in R if and only if I is a
2-absorbing ideal in R.
(2) Let R be a commutative Γ-semiring and √ be the radical function in Example
5.2 (3). Then I is a 2-absorbing √-primary ideal in R if and only if I is a 2-absorbing
primary ideal in R.

The following results are inspired by results in [5].

Proposition 6.3. Let δ be an ideal expansion of R. Then every δ-primary ideal in R

is a 2-absorbing δ-primary ideal in R.
Proof. Suppose that I is a δ-primary ideal in R. Let x, y, z ∈ R and γ, β ∈ Γ be such
that xγyβz ∈ I . Then, xγyΓyβz ⊆ I . Since I is a δ-primary ideal, we have xγy ∈ I

20
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or yβz ∈ δ(I).
Therefore, I is a 2-absorbing δ-primary ideal in R.

Proposition 6.4. Let δ and η be ideal expansions of R. If δ(I) ⊆ η(I) for all I ∈ J(R),
then every 2-absorbing δ-primary ideal in R is also a 2-absorbing η-primary ideal in
R.

Proof. Suppose that δ(I) ⊆ η(I) for all I ∈ J(R). Let I be a 2-absorbing δ-primary
ideal in R. Let a, b, c ∈ R and α, β ∈ η be such that aαbβc ∈ I . Then, aαb ∈ I or
aβc ∈ δ(I) or bβc ∈ δ(I). Since δ(I) ⊆ η(I), we have aαb ∈ I or aβc ∈ η(I) or
bβc ∈ η(I). Therefore, I is a 2-absorbing η-primary ideal in R.

Proposition 6.5. Let δ be an ideal expansion of R. For any subset S of R, let Jδ(S)
be the intersection of all 2-absorbing δ-primary ideals in R containing S. Then the
function h : J(R) → J(R), given by

h(I) =

⎧
⎪⎨

⎪⎩

Jδ(I) if there exists a 2-absorbing δ-primary ideal in R containing I,
R otherwise,

for all I ∈ J(R), is an ideal expansion of R.

Proof. Let I and J be ideals in R. If there are no 2-absorbing δ-primary ideals in R

containing I , then h(I) = R is an ideal in R.
Suppose there exists a 2-absorbing δ-primary ideal inR containing I . Then, h(I) =

Jδ(I) ̸= ∅. To show that Jδ(I) is an ideal in R, let x, y ∈ Jδ(I), γ ∈ Γ, r ∈ R and H

be a 2-absorbing δ-primary ideal in R containing I . Then, x, y ∈ H . Since H is an
ideal in R, we have x+ y ∈ H , xγr ∈ H and rγx ∈ H . Note that H is arbitrary. So,
x+ y ∈ Jδ(I), RΓJδ(I) ⊆ Jδ(I) and Jδ(I)ΓR ⊆ Jδ(I). Thus h(I) = Jδ(I) is an ideal in
R containing I .

This shows that h(I) is an ideal in R for any cases.
Clearly, I ⊆ h(I).
Next, suppose I ⊆ J . If there are no 2-absorbing δ-primary ideals in R containing

J , then h(I) ⊆ R = h(J). Now, we assume that there exists a 2-absorbing δ-primary
ideal in R containing J . Since I ⊆ J , that 2-absorbing δ-primary ideal in R must
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contain I . So,

h(I) = Jδ(I) =
⋂

{H ∈ J(R) | I ⊆ H and H is a 2−absorbing δ−primary ideal in R}

⊆
⋂

{H ∈ J(R) | J ⊆ H and H is a 2−absorbing δ−primary ideal in R}

= Jδ(J) = h(J).

Therefore, h is an ideal expansion of R.

We show that any finite intersections of 2-absorbing δ-primary ideals are 2-absorbing
δ-primary ideals with some conditions.

Proposition 6.6. Let δ be an ideal expansion of R which is intersection preserving.
If I1, I2, . . . , In are 2-absorbing δ-primary ideals in R, δ(I1) = δ(I2) = . . . = δ(Ik) for
all k ∈ { 1, 2, . . . , n } and ⋂n

k=1 Ik ̸= ∅, then ⋂n
k=1 Ik is a 2-absorbing δ-primary ideal

in R.

Proof. Suppose that I1, I2, . . . , In are 2-absorbing δ-primary ideals in R, J = δ(Ik) for
all k ∈ { 1, 2, . . . , n } and ⋂n

k=1 Ik ̸= ∅. Clearly, ⋂n
k=1 Ik is a proper ideal in R. Let

x, y, z ∈ R and γ, β ∈ Γ be such that xγyβz ∈
⋂n

k=1 Ik and xγy /∈
⋂n

k=1 Ik. Then,
xγy /∈ Im for some m ∈ { 1, 2, . . . , n }. Since xγyβz ∈

⋂n
k=1 Ik ⊆ Im and Im is

a 2-absorbing δ-primary ideal, xβz ∈ δ(Im) or yβz ∈ δ(Im). Since δ is intersection
preserving, we have

δ(
n⋂

k=1

Ik) =
n⋂

k=1

δ(Ik) = δ(Im).

So, xβz ∈ δ(
⋂n

k=1 Ik) or yβz ∈ δ(
⋂n

k=1 Ik).
Therefore, ⋂n

k=1 Ik is a 2-absorbing δ-primary ideal in R.

Next, we present a characterization of 2-absorbing δ-primary ideals. However, the
following lemma is needed.

Lemma 6.7. Let δ be an ideal expansion of R, I be a 2-absorbing δ-primary ideal
in R and δ(I) be a k-ideal in R. Suppose that there exist a, b ∈ R, an ideal J in R

and γ, β ∈ Γ such that aγbβJ ⊆ I . If aγb /∈ I , then aβJ ⊆ δ(I) or bβJ ⊆ δ(I).

Proof. Suppose aγb /∈ I , aβJ ̸⊆ δ(I) and bβJ ̸⊆ δ(I). Then, there exist j1, j2 ∈ J

such that aβj1 /∈ δ(I) and bβj2 /∈ δ(I). Since aγbβj1 ∈ I , aγb /∈ I and aβj1 /∈
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δ(I), we have bβj1 ∈ δ(I). Since aγbβj2 ∈ I , aγb /∈ I and bβj2 /∈ δ(I), we have
aβj2 ∈ δ(I). Since aγbβ(j1 + j2) ∈ I and aγb /∈ I , we have aβ(j1 + j2) ∈ δ(I) or
bβ(j1 + j2) ∈ δ(I).
Case 1. aβ(j1 + j2) ∈ δ(I). Since δ(I) is a k-ideal in R and aβj2 ∈ δ(I), it follows
that aβj1 ∈ δ(I), which is a contradiction.
Case 2. bβ(j1 + j2) ∈ δ(I). Since δ(I) is a k-ideal in R and bβj1 ∈ δ(I), it follows
that bβj2 ∈ δ(I), which is a contradiction.

Therefore, aβJ ⊆ δ(I) or bβJ ⊆ δ(I).

Theorem 6.8. LetR be a commutative Γ-semiring with zero, δ be an ideal expansion
of R, I be a proper k-ideal in R and δ(I) be a k-ideal in R. Then I is a 2-absorbing
δ-primary ideal in R if and only if whenever ideals I1, I2, I3 in R and γ, β ∈ Γ with
I1γI2βI3 ⊆ I , then I1γI2 ⊆ I or I1βI3 ⊆ δ(I) or I2βI3 ⊆ δ(I).
Proof. First, suppose that I is a 2-absorbing δ-primary ideal in R and let I1, I2 and
I3 be ideals in R and γ, β ∈ Γ such that I1γI2βI3 ⊆ I . Suppose to the contrary
that I1γI2 ̸⊆ I and I1βI3 ̸⊆ δ(I) and I2βI3 ̸⊆ δ(I). Then, there exist a, q1 ∈ I1 and
b, q2 ∈ I2 such that aγb /∈ I and q1βI3 ̸⊆ δ(I) and q2βI3 ̸⊆ δ(I). Since q1γq2βI3 ⊆ I

and q1βI3 ̸⊆ δ(I) and q2βI3 ̸⊆ δ(I), by Lemma 6.7, we have q1γq2 ∈ I . Since
aγbβI3 ⊆ I and aγb /∈ I , by Lemma 6.7, we have aβI3 ⊆ δ(I) or bβI3 ⊆ δ(I).
Case 1. aβI3 ⊆ δ(I) and bβI3 ̸⊆ δ(I). Since q1γbβI3 ⊆ I and bβI3 ̸⊆ δ(I) and
q1βI3 ̸⊆ δ(I), by Lemma 6.7, we have q1γb ∈ I . Since δ(I) is a k-ideal and aβI3 ⊆

δ(I) and q1βI3 ̸⊆ δ(I), we have (a + q1)βI3 ̸⊆ δ(I). Since (a + q1)γbβI3 ⊆ I ,
(a+ q1)βI3 ̸⊆ δ(I) and bβI3 ̸⊆ δ(I), by Lemma 6.7, we have (a+ q1)γb ∈ I . Since I

is a k-ideal and q1γb ∈ I , we have aγb ∈ I , which is a contradiction.
Case 2. aβI3 ̸⊆ δ(I) and bβI3 ⊆ δ(I). This case is not possible similarly to Case 1.
Case 3. aβI3 ⊆ δ(I) and bβI3 ⊆ δ(I). Since δ(I) is a k-ideal, bβI3 ⊆ δ(I) and
q2βI3 ̸⊆ δ(I), we have (b + q2)βI3 ̸⊆ δ(I). Since δ(I) is a k-ideal, aβI3 ⊆ δ(I) and
q1βI3 ̸⊆ δ(I), we have (a + q1)βI3 ̸⊆ δ(I). Since q1γ(b + q2)βI3 ⊆ I , q1βI3 ̸⊆ δ(I)

and (b+ q2)βI3 ̸⊆ δ(I), by Lemma 6.7, we have q1γ(b+ q2) ∈ I . Since I is a k-ideal
and q1γq2 ∈ I , we have q1γb ∈ I . Since (a + q1)γq2βI3 ⊆ I , q2βI3 ̸⊆ δ(I) and
(a+ q1)βI3 ̸⊆ δ(I), by Lemma 6.7, we have (a+ q1)γq2 ∈ I . Since I is a k-ideal and
q1γq2 ∈ I , we have aγq2 ∈ I . Since (a+ q1)γ(b+ q2)βI3 ⊆ I , (a+ q1)βI3 ̸⊆ δ(I) and
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(b+ q2)βI3 ̸⊆ δ(I), by Lemma 6.7, we have (a+ q1)γ(b+ q2) ∈ I . Since I is a k-ideal,
q1γq2 ∈ I , aγq2 ∈ I and q1γb ∈ I , we have aγb ∈ I , which is a contradiction.
Hence, I1γI2 ⊆ I or I1βI3 ⊆ δ(I) or I2βI3 ⊆ δ(I).

On the other hand, suppose that whenever ideals I1, I2, I3 in R and γ, β ∈ Γ

with I1γI2βI3 ⊆ I , then I1γI2 ⊆ I or I1βI3 ⊆ δ(I) or I2βI3 ⊆ δ(I). Let x, y, z ∈ I

and γ, β ∈ Γ be such that xγyβz ∈ I . Then, ⟨x⟩γ⟨y⟩β⟨z⟩ ⊆ I . By assumption,
xγy ∈ ⟨x⟩γ⟨y⟩ ⊆ I or xβz ∈ ⟨x⟩β⟨z⟩ ⊆ δ(I) or yβz ∈ ⟨y⟩β⟨z⟩ ⊆ δ(I). So, I is a
2-absorbing δ-primary ideal in R.

Finally, we present results involving homomorphisms.

Theorem 6.9. Let R1 and R2 be commutative Γ-semirings, δi be an ideal expansion
of Ri for all i ∈ {1, 2} such that (δ1, δ2) is global and g : R1 → R2 be a homo-
morphism. If I is a 2-absorbing δ2-primary ideal in R2 such that g−1(I) ̸= R1, then
g−1(I) is a 2-absorbing δ1-primary in R1.

Proof. Suppose that I is a 2-absorbing δ2-primary ideal in R2 such that g−1(I) ̸= R1.
Then, g−1(I) is a proper ideal in R1. Let x, y, z ∈ R and β, γ ∈ Γ be such that
xβyγz ∈ g−1(I). Then, g(x)βg(y)γg(z) = g(xβyγz) ∈ I . Since I is a 2-absorbing
δ2-primary ideal in R2, we have g(xβy) = g(x)βg(y) ∈ I or g(xγz) = g(x)γg(z) ∈

δ2(I) or g(yγz) = g(y)γg(z) ∈ δ2(I). Hence, xβy ∈ g−1(I) or xγz ∈ g−1(δ2(I)) =

δ1(g−1(I)) or yγz ∈ g−1(δ2(I)) = δ1(g−1(I)).
Therefore, g−1(I) is a 2-absorbing δ1-primary ideal in R1.

Unlike the previous theorem, g(δ(I)) = δ(g(I)) holds provided that g must also
be surjective and I has to be a k-ideal.

Theorem 6.10. LetR1 andR2 be commutative Γ-semirings, δi be an ideal expansion
of Ri for all i ∈ {1, 2} such that (δ1, δ2) is global, g : R1 → R2 be an epimorphism
and I be a k-ideal in R1. If I is a 2-absorbing δ1-primary ideal in R1 such that
g(I) ̸= R2 and { x ∈ R1 | ∃ a, b ∈ R1 such that x = a + b and g(a) = g(b) } ⊆ I ,
then g(I) is a 2-absorbing δ2-primary ideal in R2.

Proof. Suppose that I is a 2-absorbing δ1-primary ideal in R1 such that g(I) ̸= R2

and { x ∈ R1 | ∃ a, b ∈ R1 such that x = a+ b and g(a) = g(b) } ⊆ I . Then, g(I) is a
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proper ideal in R2. Let x, y, z ∈ R2 and γ, β ∈ Γ be such that xγyβz ∈ g(I). Then,
there exists t ∈ I such that xγyβz = g(t). Since g is surjective, there exist p, q, r ∈ R

such that g(p) = x, g(q) = y and g(r) = z. Hence, g(pγqβr) = g(p)γg(q)βg(r) =

xγyβz = g(t). So, pγqβr + t ∈ { x ∈ R1 | ∃ a, b ∈ R1 such that x = a + b and
g(a) = g(b) } ⊆ I . Since t ∈ I and I is a k-ideal, pγqβr ∈ I . Since I is a 2-
absorbing δ1-primary ideal, pγq ∈ I or pβr ∈ δ1(I) or qβr ∈ δ1(I). Hence, xγy =

g(p)γg(q) = g(pγq) ∈ g(I) or xβz = g(p)βg(r) = g(pβr) ∈ g(δ1(I)) = δ2(g(I)) or
yβz = g(p)βg(r) = g(qβr) ∈ g(δ1(I)) = δ2(g(I)).

Therefore, g(I) is a 2-absorbing δ2-primary ideal in R2.
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Background and Rationale

As a generalization of rings, semirings were introduced by H.S. Vandiver [7] in
1934. The notion of Γ-rings was introduced by N. Nobusawa [4] in 1964. Also, as
a generalization of semirings and Γ-rings, the notion of Γ-semirings was introduced
by M.K. Rao [5] in 1995 that is for any commutative semigroups (R,+) and (Γ,+),
R is said to be a Γ-semiring if there exists a function ·, called a Γ-operation, from
R × Γ × R into R, where ·(x, γ, y) is denote by xγy for all x, y ∈ R and γ ∈ Γ,
satisfying the following properties: for all x, y ∈ R and γ, β ∈ Γ

1. xγ(y + z) = xγy + xγz and (x+ y)γz = xγz + yγz;

2. x(γ + β)y = xγy + xβy; and
3. (xγy)βz = xγ(yβz).



30

For example, let R be the additive commutative semigroup containing all
m × n matrices over the set of all non-negative integers and let Γ be the
additive commutative semigroup containing all n × m matrices over the same set.
Then we can verify that R is a Γ-semiring, where aγb is the usual matrix product for
any a, b ∈ R and γ ∈ Γ.

Ideals and k-ideals in Γ-semirings were extensively studied by S. Kyuno [3] in 1978.
A subsemigroup I of a Γ-semiring R is called an ideal in R if IΓR ⊆ I and RΓI ⊆ I

where IΓR = {xγr | x ∈ I, r ∈ R and γ ∈ Γ} and RΓI is defined similarly. An ideal
I in a Γ-semiring R is called a k-ideal in R if for all x, y ∈ R, x + y ∈ I and x ∈ I

implies y ∈ I . For example, let Γ be the additive semigroup of natural numbers.
Then (Z+

0 ,+) is a Γ-semiring, where xγy is the usual multiplication of integers, so
3Z+

0 is a k-ideal in Z+
0 and 3Z+

0 − {3} is an ideal in Z+
0 but it is not a k-ideal in Z+

0

because 6 + 3 ∈ 3Z+
0 − {3}, 6 ∈ 3Z+

0 − {3} but 3 /∈ 3Z+
0 − {3}.

T.K. Dutta and S.K. Sardar [1] in 2001 gave the definition of prime ideals which
states that in a Γ-semiring R, a proper ideal I in R is said to be a prime ideal if for
any two ideals H and K in R, HΓK ⊆ I implies that either H ⊆ I or K ⊆ I . For
example, let Γ be the additive semigroup pZ+

0 where p is a prime number. Then
(Z+

0 ,+) is a Γ-semiring, where xγy is the usual multiplication of integers, so qZ+
0 is a

prime ideal in Z+
0 for all prime numbers q with p ̸= q.

M.K. Rao and B. Venkateswarlu [6] in 2017 studied properties of primary
ideals. In a Γ-semiring R, a proper ideal I in R is said to be a primary
ideal if for all x, y ∈ R, γ ∈ Γ, xγy ∈ I and x /∈ I implies y ∈

√
I where √

I =

{x ∈ R | there exists n ∈ N such that (xγ)n−1x ∈ I for all γ ∈ Γ}, (xγ)0x = x and
(xγ)nx = (xγ)n−1xγx for all x ∈ R, γ ∈ Γ and n ∈ N. For example, let Γ be the
additive semigroup of natural numbers. Then (Z+

0 ,+) is a Γ-semiring, where xγy is
the usual multiplication of integers. Let I = {x ∈ Z+

0 | x ≥ c} for some positive
integer c. So I is a primary ideal in Z+

0 .
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In a commutative ring, D. Zhao [8] defined a mapping δ to substitute √
I by

δ(I) in the definition of primary ideals, called δ-primary ideals in commutative rings,
which are more general than primary ideals. Let J(M) be the set of all ideals of a
commutative ring M . An expansion of ideals in M (or an ideal expansion of M ) is
defined to be a function δ : J(M) → J(M) such that:
1. for all I ∈ J(M), I ⊆ δ(I); and
2. for all I, J ∈ J(M), I ⊆ J implies δ(I) ⊆ δ(J).
For example, the constant function c : J(M) → J(M) defined by I ,→ M is an ideal
expansion of a commutative ring M . Given an ideal expansion δ of a commutative
ring M , an ideal I ∈ J(M) is said to be a δ-primary ideal if for all x, y ∈ M,xy ∈ I

and x /∈ I implies y ∈ δ(I).
In 2016, M.Y. Elkettani and A. Kasem [2] also extended a concept of prime

ideals and primary ideals in Γ-rings to 2-absorbing ideals and 2-absorbing
primary ideals which were unified to 2-absorbing δ-primary ideals. They gave the
definitions of 2-absorbing ideals, 2-absorbing primary ideals and 2-absorbing
δ-primary ideals in Γ-rings. A proper ideal I in a Γ-ring R is called a 2-absorbing
ideal in R if whenever x, y, z ∈ R, γ, β ∈ Γ and xγyβz ∈ I, then xγy ∈ I

or xβz ∈ I or yβz ∈ I . A proper ideal I in a Γ-ring R is called a 2-absorbing
primary ideal in R if whenever x, y, z ∈ R, γ, β ∈ Γ and xγyβz ∈ I, then xγy ∈ I

or xβz ∈
√
I or yβz ∈

√
I . Given an ideal expansion δ of a Γ-ring R, an ideal I ∈ J(R)

is said to be a 2-absorbing δ-primary ideal in R if for all x, y, z ∈ R, γ, β ∈ Γ and
xγyβz ∈ I implies xγy ∈ I or xβz ∈ δ(I) or yβz ∈ δ(I). Note that an ideal expansion
δ of a Γ-ring R is defined in the same way as an ideal expansion of a commutative
ring M by replacing M by R.

Our main goal is to extend the concepts of 2-absorbing primary ideals and 2-
absorbing δ-primary ideals in Γ-ring to those in Γ-semiring.

Objectives

To study some properties of 2-absorbing primary ideals and 2-absorbing
δ-primary ideals in Γ-semirings.
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Scope

In this project, some algebraic properties of 2-absorbing primary ideals and
2-absorbing δ-primary ideals which are some generalized prime ideals in
Γ-semirings are studied.

Project Activities

1. Literature reviews on Γ-semirings.

2. Study properties of 2-absorbing primary ideals in Γ-semirings.

3. Study properties of 2-absorbing δ-primary ideals in Γ-semirings.

4. Write a report.

Activities Table

August 2018 - April 2019
Project Activity

Aug Sep Oct Nov Dec Jan Feb Mar Apr

1. Literature reviews on

Γ-semirings.

2. Study properties of

2-absorbing primary ideals

in Γ-semirings.

3. Study properties of

2-absorbing δ-primary

ideals in Γ-semirings.

4. Write a report.
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Benefits

Obtain some properties and results of 2-absorbing primary ideals and
2-absorbing δ-primary ideals in Γ-semirings.

Equipment

1. Computer

2. Printer

Budget

1. Two reams of A4 paper 200 Bahts

2. Magic Macbook Mouse 2,300 Bahts

Total 2,500 Bahts
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