1A59N1S

N15L3gUNSaRULNBLESUUS dUN1Sad

valasen1s  svisanysallunsiadiadetuns
Perfect codes in unitary Cayley graphs

Yailan WIENTIVEY]  BUYAAT) 5833502323

AR ANAAENSLAZINGINITADUNILADS
#1013 ARAENS

Unrsnen 2561

AMZINGIANENT  JUIRINTAINNNINEIAY

unAntdauazuilndeyaaiuifinaaslasesaumisiainisi Wisnisluadsiloyauiqing (CUIR)

T 9

o

Huuindioyaeatidnianaedlas s un1ReIn1aNgesinun 1A ndsin
The abstract and full text of senior projects in Chulalongkorn University Intellectual Repository(CUIR)

are the senior project authors' files submitted through the faculty.



sviaauysallunsmindiadeduns

WILNTIVEY] DUANT

IﬂmmﬁLﬂuﬁ’;uwﬁwmmiﬁﬂmmwé’ﬂqmﬁwmmamiﬁ’msﬁm
1NV IAAFIEAST N1AITIAINFIEASLAINYINITADUNILADS
ANEINEIANENT PNAINTIUMINESY
Un1sAnwl 2561

AUANSYRIPIRINTAILNINENGY



Perfect codes in unitary Cayley graphs

Mr. Korawich Anuttra

A Project Submitted in Partial Fulfillment of the Requirements
for the Degree of Bachelor of Science Program in Mathematics
Department of Mathematics and Computer Science
Faculty of Science
Chulalongkorn University
Academic Year 2018
Copyright of Chulalongkorn University



WL ot ¥ L b 3
widelasaau ELGGENTE allunsviat Lagguins

Lot wie AT ayanT leulsedh 5833502323
aruia AGIRFATERS

-'J o ot E- |
a1asiAlinwlaganu ANARSTINIE0 Ao IuIn

mndpiatindEailasInenseeniawed pazinamans Puaansaiuivends pylin
Tifulassnuaduifiudumils veansdnemmingay3ayntndn Tusedn 2301499
Tasaimemiaad (Senior Project)

............ l & : t s haERdlRenaRS

waInenRauEIwme s
(FNARTTD15E HT.00 WL HIDLUG])

AEIEASTRASADULATIN

P —
.......................... 213ERUIAEILAS MY

g
AL "’3"5} © f?"?“’.-’?.".(‘)ﬁ.h{.\./ ....... NS

(Man313158 AT AT aANNgITIIY)

. f???”f‘"f‘f‘r . .LL.W.Y."P. ....... 554013

(SRIFNARTINTTH FTASEY TraTuy)



nTite) ounnt: suaanyIailunTiadadyliuns (PERFECT CODES IN UNITARY
CAYLEY GRAPHS) 8 #iuTnwilasasw: aes.oadud fann, 28 wih

-=‘i‘ o o o = = e 1 = w
sl wlddeulwdnluwazifisanaiiseiingldos H veos Z, Wuiva
auysaflunsml Cay(Z,, 2X) wasismansiuingutes SL(F,), U, A war K, Wy

eIl GLy(¥,) way fevimndeiingudesmaninusdaauysalivmaveq
GL,(F,) wialy

. ]
aedvr . adlesaniusyivennnaeeniowed . aelieBeldn | TIUTRY | BuIATE
a E Iy oAl =
afien . ademand | aediefe o Mutawlesan KR, I
Umsdnwn ... 2561 ...



## 5833502323 ¢ MAJOR MATHEMATICS.

KEYWORDS: CAYLEY GRAPHS, PERFECT CODES, TOTAL PERFECT CODES.
KORAWICH ANUTTRA: PERFECT CODES IN UNITARY CAYLEY GRAPHS.
ADVISOR: FROF, YOTSANAN MEEMARK, PH.D., 28 FP.

In this project, we find a criterion in which there exists a subgroup H of Z,
being a petfect code in the graph Cay(Z,., Z7 ). We also show that the subgroups
SLa(F,), U, A and Kj are perfect codes of GLy{#,) and determine if they are total
perfect codes.

Departenent  Mathematics and Computer Science  Spydent's Signature Kﬂfﬂ@idi A’VMH‘F&

Field of Study . Mathermatics .. Advisar’s Sienature .

Acadermic Year R N ) I



Acknowledgment

| would like to express my sincere thanks of gratitude to my project advi-
sor, Professor Dr. Yotsanan Meemark for his vital support, invaluable help and
constant encouragement throughout the course of this project, without with this
project would not have come forth. | receive many work experiences and advice
from him. He is the person | respect.

| would like to express my special thanks to my project committee: Professor
Dr. Patanee Udomkavanich and Associate Professor Dr. Tuangrat Chaichana for
their keen interest on me at every stage of my project. Their suggestions and
comments are my sincere appreciation

Moreover, | feel very thankful to all of my teachers who have taught me abun-
dant knowledsge for supporting me to do the project comfortably. | lastly wish to
express my thankfulness to my friends and my family for their encouragement

throughout my study.

Vi



Contents

Abstract in Thai iv
Abstract in English v
Acknowledgments v
Contents vii
1  Perfect codes of graphs 1
2  Perfect codes in Cay(Z,,Z)) 3
3 Subgroups of GL,(F,) 5
4  Perfect codes of GLy(F,) 7
Appendix Proposal 17

Author’s Profile 21



Chapter 1
Perfect codes of graphs

Let ' = (V(I'),E(T")) be a simple undirected graph on n vertices. For
u,v € V(') and u # v. The distance of u and v, denoted by d(u,v), is the
number of edges of a shortest path connecting them. if u = v, d(u,v) = 0. Let ¢
be a positive integer and C a subset of V(I"). We say that C' is a perfect ¢-code
in T if for every vertex v € V(T') there exists a unique ¢ € C such that d(c,v) < t.
A perfect 1-code is called a perfect code. In addition, C'is a total perfect code
in T if for every vertex v € V(I') there exists a unique ¢ € C such that d(c,v) = 1.
In other words, C'is a total perfect code in T if every vertex of V(T') has exactly
one neighbor in C.

Lemma 1.1. [5] If C is a total perfect code of T, then |C| is even.

Proof. By the above definition of total perfect code, C is a total perfect code in
[ if every vertex of V(I') has exactly one neighbor in C. So for each ¢ € C there
is unique ¢ € C such that ¢ # ¢ and d(¢,¢') = 1. We can pair elements in C and

so |C] is even. []

The concept of perfect codes in graphs were developed from the work of
Biggs [1]. In Coding Theory, codes that attain the Hamming bound are said to be
perfect. The g-ary perfect codes of length n are precisely the perfect 1-codes in
the Hamming graph H(n,q). The vertex set of H(n,q) is FX and two words are
adjacent if they have Hamming distance one.

We shall be interested in perfect codes in Cayley graphs.

Let G be a group and S a nonempty subset of G such thate ¢ Sand S = S
The Cayley graph Cay(G, S) of G with respect the connection set S is the graph

1



with vertex set G such that for any =,y € G, = and y are adjacent if and only if
yr~' € S. Since e ¢ S and S~! = S, the graph is undirected and has no loops.

Let C' be a nonempty subset of a group G. Then C' is a perfect code (re-
spectively, total perfect code) of G if C is a perfect code (respectively, total
perfect code) in some Caley graph of G. That is, there is a nonempty subset S
of G with e ¢ S and S = S~! such that C is a perfect code (respectively, total
perfect code) in Cay(G, S).

Let H be a subgroup of a group G. If we choose a subset {z,} of G such that G
is a disjoint union of that right cosets {z,H}, then {z,} is called a left transversal
of right coset representatives of H in G. The right transversal can be defined in

an analogous way. Huang et al. [5] showed the following criteria.

Theorem 1.2. [5] Let H be a subgroup of a group G. Then

(a) H is a perfect code in Cay(G, S) if and only if SU{e} is a left transversal of
Hin G.

(b) H is a total perfect code in Cay(G,S) if and only if S is a left transversal of
Hin G.

Theorem 1.3. [5] Let G be a group and H a normal subgroup of G. Then

(a) H is a perfect of G if and only if for any g € G, ¢*> € H implies (gh)* = e for
some h € H.

(b) H is a total perfect of G if and only if |H| is even and for any g € G, ¢* € H
implies (gh)? = e for some h € H.

Theorem 1.4. [5] Let G be a cyclic group and H a subgroup of G. Then H is a
perfect code of G if and only if either |H| or |G/H| is odd.

In what follows, we shall use Huang’s results to study perfect codes in the
graph Cay(Z,, Z, ) and perfect codes of GLy(F,) in Chapters 2 and 4, respectively.
Chapter 3 presents all subgroups that we shall study in Chapter 4.



Chapter 2
Perfect codes in Cay(Z,,, Z)

Let n > 2 be a positive integer and consider the group G = (Z,,+). Feng et
al. [3] gave a necessary and sufficient condition for the graph Cay(Z,,, S) to admit

a perfect code as follows.

Theorem 2.1. [3] Let n be a positive integer and p be an odd prime. Then

(a) A Cay(Z,,S) with |S| = p — 1 admits a perfect code if and only if p | n and
s £ s mod p for all distinct s,s" € SU{0}.

(b) A Cay(Z,, S) with |S| = p admits a total perfect code if and only if p | n and
s #s mod p for all distinct s,s" € S.

Theorem 2.2. [3] Let n,l be positive integers and p be an odd prime such that
p' | nbut pttin. Then

(a) A Cay(Z,,S) with |S| = p' — 1 admits a perfect code if and only if s # &'
mod p! for all distinct s,s" € S U{0}.

(b) A Cay(Z,,S) with |S| = p' admits a total perfect code if and only if s # s
mod p! for all distinct s,s' € S.

Now, we concern about S = Z,;. The graph Cay(Z,,Z,;) is called the unitary
Cayley graph of Z,. Its vertex setis Z,, and a, b € Z, are adjacent if gcd(a—b,n) =
1. Write ¢(n) = |Z, |, the cardinality of the group of units of Z,. It is well known
that ¢(n) is even for all n > 3.

Theorem 2.3. Let n be a positive integer and n > 3. Then there exists a subgroup
H of Z, such that H is a perfect code in Cay(Zy,Zy) if and only if ¢(n) + 1| n.



Proof. Assume that H is a subgroup of Z, such that H is a perfect code in

Cay(Z,,Zy). By Theorem 1.2 (a), Z; U {0} is a left transversal of H in Z,, so
|Z, U{0}] = ’éﬁ‘. Thus, (¢(n) + 1)|H| =n, so ¢(n) + 1 | n.

Conversely, assume that ¢(n) +1 | n. Then n = (¢(n) 4+ 1)d for some d € N.
Let H = dZ,. Then H is subgroup of Z,, of order % = ¢(n) + 1. Since ¢(n) + 1 is

odd, H is a perfect code of Z,, by Theorem 1.4. ]

Theorem 2.4. If n = p or 2p for an odd prime p, then ¢(n) +1 | n.

Proof. Since pis an odd prime, ¢(p) =p—1and ¢(2p) = p—1, s0 ¢(p) +1 | p and
é(2p) + 1| 2p. []

Gay [4] asked for other n > 2 such that ¢(n) + 1 divides n, called Schinzel’s
problem. This problem is related to a problem of Lehmer [6]. Some progression
on this problem can be found in [2]. We suspect that there are no other n > 2
such that ¢(n) + 1 divides n.



Chapter 3

Subgroups of GLy(F)

Let ¢ be a prime power and let F, denote the finite field of ¢ elements.
Consider the general linear group of 2 x 2 matrices over F, given by

b
GL(F,) = { (Z d) L abc,d € F, and ad # bc}.

It is well known that | GLy(F,)| = (¢* — 1)(¢* — ¢). Define ¢ : GLy(F,) — F,~{0}
by ¢(A) = det(A) for all A € GLy(F,). Then ¢ is an onto homomorphism with
kernel

SLy(F,) = {A | A€ GLy(F,) and det(A) = 1}.

Thus, SLy(FF,) is @ normal subgroup of GL,(F,) of cardinality

G (F)l (¢*=1)(¢* =¢)

’SLZ(Fq)’— |]Fq\{0}’ o g—1

=q(g® = 1).

It is called the special linear group of 2 x 2 matrices over F,. Let

U—{(s 0):56Fq\{0}}andA—{<1 t>:t€Fq}.
01 01

Next, consider ¢ is odd. Then there is an element § in F, which is not a square

inIF,. Let
x Yo
K; = :x,y € F, not both zero ;.
Yy e

Then |U| = q — 1, |A] = q and |Ks| = ¢* — q. We proceed to show that they are
subgroups of GLy(F,).



Proposition 3.1. The above sets U, A and K are subgroups of GLy(F,).

1 0
Proof. It is obvious that U, A and K; contain ( ) Let a,z € F,~{0}. Then
01

—1
a 0\ [z 0O a 0 ™10 ar™t 0
ey s == E U
0 1 0 1 01 0 1 0 1
Let b,y € F,. Then

6 G L))

Assume that ¢ is odd. Let a,b € F, not both zero and z,y € F, not both zero.
Since ¢ is not a square, a* — b*¢ and 2 — y*d are nonzero, so K5 C GLy(F,). Then

-1
a bo\ [z yo 7 1 a bo r —yo
b a Yy x =420 \b a —y
1 —byd (br —ay)o
4 (ax yo  (br — ay) ) € K,

% — Y20 br —ay  axr — byd

Therefore, U, A and Kj are subgroups of GLy(F,). ]



Chapter 4

Perfect codes of GLy(IF)

In this chapter, we show that the subgroups of GL(F,) in Chapter 3 are perfect
codes by using Huang’s criteria [5]. We also determine if they are total perfect
codes.

Let ¢ be a prime power. Since SLy(F,) is a normal subgroup of GLy(F,) and
we can show that its cardinality is even, we may use Theorem 1.3 to prove that
it is a total perfect code of GL,(F,) as follows.

Theorem 4.1. SLy(F,) is a total perfect code of GLy(F,).

Proof. Let A € GLy(F,) such that det(A?) = 1. Then det(4) = £1.
Case 1. det(A) = 1. Then A € SLy(F,). Since SLy(F,) is a subgroup of GLy(F,),

10 10
there is a B € SLy(F,) such that AB = (O 1). Then (AB)? = (() 1).

1
Case 2. det(A) = —1. Choose C = (2 0) € GLy(F,). Thus, det(CA) =
det(C)det(A) = (—1)(—1) = 1, so CA € SLy(F,). Since SLy(F,) is a subgroup

10
of GLy(F,), there is a B € SLy(F,) such that (CA)B = (O 1). Then

amec (30) = (7 1) mecanr= ().
01 10 01

10
Therefore, there is a B € SLy(F,) such that (AB)? = (0 1). Thus, SLy(F,) is a



perfect code of GLy(F,) by Theorem 1.3 (a). We also have

_GL(Fy)|  (¢* = 1)(¢* —q)

’SLZ(Fq)’— |Fq\{0}’ o g—1

=q(¢* - 1),

so | SLy(F,x)| is even. Hence, SLy(IF,) is a total perfect code of GLy(F,) by Theo-
rem 1.3 (b). []

Next, we study the subgroups U, A and K of GLy(IF,) in Proposition 3.1. Note
that these subgroups may not be normal in GLy(F,). So we cannot use Theorem
1.3. In order to apply Theorem 1.2, we study their left transversals.

b Fy
Lemma 4.2. For [ , “ € GLy(F,),
c d d d

a

b oy
“ = Uifand only if ¥ =b, d = d, d = as, and
c d d d

¢ = cs for some s € F,~{0}.

b Ly b Ly
Proof. Let ¢ : ¢ € GLy(F,). Assume that ¢ v=|" U.
c d d d c d cd d
Then
-1
a b a v B 1 d —b a v
c d d d ad —bc \ —¢ ¢ d d

1 a'd—bd bd—bd
— eU
ad —be \ qc —a'c ad — Ve

It follows that
Vd=0bd, ad =dc, ad —b'c=ad—bcand a'd—bd = (ad — bc)s
for some s € F,~{0}. Then (ad — b'c)b = (ad — be)b. Since b'd = bd', we have
(ad — be)b' = (ad — be)b,

so b = b because ad — be # 0. Also, (a'd — b’ )a = (ad — be)as impiles (ad — be)a’ =
(ad — bc)as. Since ad — be # 0, we get o’ = as. Similarly, we can show that d' = d
and ¢ = cs.

Conversely, assume thatt = b, d' = d, o’ = asand ¢ = csforsome s € F~{0}.

8



Then

-1
a b a v B 1 d —b as b
c d ¢ d) ad—bc\_¢ 4 cs d
1 d—b 0 0
_ (a c)s N cU
ad — be 0 ad — be 0 1
b Ty
Therefore, ¢ U= ¢ U. ]
¢ d d d

Lemma 4.2 says that the coset representatives of U in GL,(F,) are parametrized

Z) € GLy(F,).

by the second column of the representatives. Now, let (a
C

Case 1. b=0. Then a # 0 and

(a O) U= (as 0) U for all s € F,~{0}.
c d cs d

-1 0
Thus, let s = —1/a, we may choose its representative to be < B d) where
C

¢ = —c/a.

Case 2. b#0and d=0. Then ¢ # 0 and

b b
(a ) = (as ) U for all s € F,~{0}.
c 0 cs O

Thus, let s = —1/cb, we have the representative ( Z‘l

Case 3. b# 0 and d # 0. We consider the following subcases.
Subcase 3.1. ¢=0. Then a # 0 and

b b
(a ) U= (as ) U for all s € F,~{0}.
0 d 0 d

1 b
Since a # 0, let s = 1/a, we have the representative (O d>'

b
0) where a = —a/cb.

Subcase 3.2. ¢ # 0 and a = 0. Then

(0 b)U:<O b)UforaLLsqu\{O}.
c d cs d

9



0 b
Since ¢ # 0, let s = —1/bc, we have the representative ( - d).

Subcase 3.3. ¢ # 0 and a # 0. Then

b b
(“ ) U = (as ) U for all s € F,~ {0}.
c d cs d

Since a # 0and ¢ # 0, let s =

ad — be

) a b
, we have the representative ( d>

)]

ad — be andczad—bc

Theorem 4.3. If

-1 0 a b

W1:{< ):c,dGqundd%O},WQ:{< ):a,beIanndbyéO},
c d —b=1 0
) 0 b

W3 = {(0 d) :b,dE]Fq\{O}},W4 # {(—bl d) :b,dqu\{O}} and

b
Wy = {(a d> ra,b,c,d € F,n {0} and ad — be = —1},

C

where a = . Hence, we have shown:

then Wy U Wy U W3 U W, U W is a left transversal of U in GLy(F,). Moreover,

1 0
if q Is odd, this transversal does not contain (O 1).

Theorem 4.4. Let q be a prime power. Then

(a) If q is odd, then U is a total perfect code of GLy(F,).

(b) If q is even, then U is a perfect code of GLy(F,) but it is not a total perfect
code.

Proof. Let S =W, U Wy U W3 U W, U W;5 be the left transversal of U in GLy(F,)

-1 0
as in Theorem 4.3. Next, we show that S = S~'. Let A € W;. Then 4 = ( d>
C

for some ¢,d € F, and d # 0. Thus,
g Lfd o) _ (-1 0
d \—¢ —1 cd b d7!

10



. i 1 b
isin Wy, so Wy =W, . Let B € W3, then B = 0 for some b,d € F,~{0}.

B_1_1 d —b\ (1 —bd™!
d\o 1 0 d!

- 1 a b
isin Wi, so Wy =W, . Let C € W,. Then C' = N for some a,b € F, and

o1 0 -=b
N ' a

0
is in Wy, so W, = W, L. Conversely, Let D € W,. Then D = (

b1
d —b
D' =

. . o a b
isin Wy, so D € Wy and we have W, = W, ", let E € W5, then E = .
C

Thus,

b # 0. Thus,

b
for some
d)

b,d € F, and b # 0. Thus,

where a,b,c,d € F,~\{0} and ad — be = —1. Then

gL (d b)Y [-d b
~ad —be —c a ¥ c —a
and ad — bc = —1, so E~' € W;. Hence, W5 = Wy . Therefore, S = S~1.
Assume that ¢ is odd. Then the left transversal S of U does not contain

10
(0 1) and S = S~1 By Theorem 1.2 (b), U is a total perfect code of Cay(GLy(F,), S).

10
Finally, we assume that ¢ is even. Then 1 = —1in F,, so (0 1) € S. Choose

10
S = S\< ) Then §' = 7! and S’ U {e} = S is a left transversal od U in

0 1
GL(F,), so U is a perfect code in Cay(GL, S") by Theorem 1.2 (a). Since |U| = ¢—1
is odd, U is not a total perfect code by Lemma 1.1. ]

11



b Fy
Lemma 4.5. For , ¢ € GLy(F,),
c d d d

b Ty
¢ A= A ifandonlyifa =a, ¢ =c¢, b =b+at,
c d d d

and d' = d + ct for some t € F,.

a b a v a b a v
Proof. Let , € GLy(F,). Assume that A = A.
¢ d d d c d d d

Then

1 a'd—bcd bd—bd
= c A.
ad —bc \ ac —ad'c ad — Ve

ad—bd =ad—be, ad =d'c, ad —bc=ad—becand b'd —bd = (ad — be)t

It follows that

for some t € F,. Then (a'd — bc)c = (ad — be)e. Since d’c = ad, we have
(ad — be)c = (ad — be)c,
so ¢ = ¢ because ad — be # 0. Also, (ad’ — V'c)b = (ad — be)b implies
a(t'd — (ad — be)t) —b'eb = (ad — be)b.

Since ad — be # 0, we get b/ = b+ at. Similarly, we can show that a = ¢’ and
d =d+ ct.
Conversely, we assume that o’ =a, ¢ = ¢, V) = b+at and d’ = d + ct for some

t € F,. Then
-1
a b a v B 1 d —b a b+at
c d d d ad —bc \ —¢ ¢ c d+ct
1 ad —be  (ad — be)t
ad — bc 0 ad — be

1t
= e A

12




b "y
Therefore, ¢ A= “ A. ]
c d d d

Lemma 4.5 says that the right coset representatives of A in GLy(F,) are

b
parametrized by the first column of the representatives. Now, let (a d) €
C

GLy(F,). Then we distinguish two cases, namely, a = 0 and a # 0.
Case 1. a=0. Then ¢ # 0 and

b b
’ A= ! Aforallt e F,.
c d c d+ct

0 b
Thus, let t = —d/c, we may choose its representative to be ( 0).
C

Case 2. a #0. Then
b b+ at
¢ =P Aforall t € F,.
c d c d+ct
be

0 _
Since a # 0, let t = —b/a, we have the representative (a J) whered =d— — =
C

a

ad — be

# 0. Hence, we have shown:

Theorem 4.6. If

b
v {(0 0) ;b,cqu\{O}} T {(a 3) ta,d € F {0} ondcqu},
IS &

then Vi U V; is a left transversal of A in GLy(F,).

Theorem 4.7. Let q be a prime power. Then
(a)If ¢ is odd, then A is a perfect code of GL,(F,) but is not a total perfect code.
(b) If q is even, then A is a total perfect code of GLy(F,).

Proof. Let S = (Vi U V%) be the left transversal of A in GLy(F,) in Theorem

0 b
4.6. Next, we show that S = S~'. Let A € V4. Then A = (

for some
c 0

b,c € F,~{0}. Thus,



isinVy,soV, =V ! Let BeV, Then B = (a
C

B_l—l d 0\ a ! 0
ad \ —¢ q —c(ad)™t d™!

is in V4, so Va =V, *. Therefore, S = S~L.

10 10
Assume ¢ is odd. Let S’ = S\{ <O 1) } Then S’ = §8~1 and S"U { (O 1) }

is a left transversal of A is GLy(F,) by Theorem 4.6. By Theorem 1.2 (a), A is a
perfect code of Cay(GLy(F,),S’). Since |A| = ¢ is odd, A is not a total perfect
code of GLy(F,) by Lemma 1.1.

2

. . . 1] 1 1 1 0
Finally, we assume that ¢ is even. Since € A and = ,
0 1 0 1 0 1

o)) et (1)} mensr s

and S” is a left transversal of A in GLy(FF,). By Theorem 1.2 (b), A is a total perfect
code of Cay(GLy(F,),S"). []

0
d) for some a,c,d € F, and

a,d # 0. Thus,

Finally, we assume that ¢ is an odd prime power and let § be a nonsquare
element in F,. We now study the subgroup K. First, we determine its left
transversal.

Theorem 4.8. The set

a b
{(0 1>K5:a,b€annda7€O}

consists of all right cosets of K, in GLy(F,). Hence,

T:{(E b1> :a,bEannda%O}

10
is a left transversal of K in GLy(F,). Moreover, T does not contain ( >
0 1

14



b d
Proof. Let a,b,c,d € F, and a,c # 0 be such that (3 1) Ks = (C ) Ks.

Then

It follows that ca™* =1 and (d — b)a™! = 0. Since a # 0, a = ¢ and b = d. Thus,

a b
H(O 1>K5:a,b€]annda7é0}

Ceq [GLa(F)| — (¢* —1)(*—q) _ ,
(GLa(Fy) : K] = K| N -1 =7 — 4

=q(¢—1)=¢"—q.

Also,

b
Hence, the set { (g 1) Ks:a,beF,and a # 0} consists of all right cosets of
Ks in GLy(F,). Therefore, T is a left transversal of K; in GLy(F,). Since ¢ is odd,

1 0
1# —1inF, so T does not contain ( ) []
0 1

Theorem 4.9. Kj is a total perfect code of GLy(F,).
Proof. Let S =T. By Proposition 4.8, S is a left transversal of K in GLy(F,). Next,

a

b
we show that S = S~ Let < ) € S. Thena # 0 and

0 -1

-1
a b -1 -1 -b B a ' ba7!
0 —1 a 0 a 0 -1

is also in S. By Theorem 1.2, K; is a total perfect code of Cay(GLy(F,), S). ]
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Background and Rationale and Scope

U, v

Let ' = (V(I'),E(T")) be a simple undirected graph on n vertices. For
€ V(I') and u # v. The distance of « and v, denoted by d(u,v), is the

number of edges of a shortest path connecting them. If u = v, d(u,v) = 0. Let ¢

be a positive integer and C' a subset of V(T'). We say that C is a perfect t-code

in T if for every vertex v € V(I') there exists a unique ¢ € C such that d(c,v) < t.

Ap

Ina

erfect 1-code is called a perfect code.
ddition, C'is a total perfect code in T if for every vertex v € V(T') there exists

a unique ¢ € C such that d(c¢,v) = 1. In other words, C'is a total perfect code in

rif

every vertex of V(I') has exactly one neighbor in C.
Let G be a finite group and S a subset of G with e ¢ S and S = S~'. The

Cayley graph Cay(G, S) with respect to the connection set S is the graph with

vertex set G such that =,y € G are adjacent if and only if zy~! € S.

Huang et al. [1] showed that for a subgroup H of G, we have

(a) H is a perfect code in T' if and only if SU{e} is a left transversal of H in G.

(b)

H is a total perfect code in I' if and only if S is a left transversal of H in G.

Later, Feng et al. [2] gave a necessary and sufficient condition for Cay(Z,, S)
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graph of degree p—1 admit a perfect code and degree p admit a total perfect
code, where p is an odd prime. Here, degree is |S|.

Let R be a finite commutative ring with identity 1. The unitary Cayley graph
of R is the Cayley graph Cay(R, R*) where R* is the group of units of R.

In this project we shall study a perfect code in the unitary Cayley graph of
R. We plan to determine R such that a perfect code or a total perfect code in
Cay(R, R*) exists by using the work of Huang [1] and Feng [2].

Objectives

To find some characteristics of a finite commutative ring R such that a perfect
code or a total perfect code in Cay(R, R*) exists.

Project Activities
1. Study the work of Huang [1] and Feng [2].

2. Review basic knowledge on Number Theory, Abstract Algebra and Algebraic

Graph Theory which relates to our project.

3. Use properties of a perfect code and a total perfect code of G to find
some properties in S such that Cay(Z,, S) exists a perfect code and a total

perfect code.
4. Work on condition of a perfect code and a total perfect code in Cay(R, R*).

5. Write a report.
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Activities Table

Project Activities

August 2018 - April 2019

1.Study the work of
Huang [1] and Feng
[2].

2.Review basic know-
ledge on Number
Theory, Abstract Al-
gebra and Algebraic
Graph Theory which
relates to our pro-
ject.

Aug | Sep

Oct | Nov | Dec | Jan | Feb

Mar

Apr

3.Use properties of
a perfect code and
a total perfect code
of G to find some
properties in S such
that Cay(Z,, S) exists
a perfect code and a
total perfect code.

4 Work on condition
of a perfect code and
a total perfect code
in Cay(R, R™).

5.Write a report.
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Benefits

To obtain some characteristics of a finite commutative ring R such that a
perfect code and total perfect code in Cay(R, R*) exists by using results of Huing

and Feng.
Equipment
1. Computer
2. Paper
3. Printer
4. Stationery

Reference

[1] H. Huang, B. Xia and S. Zhou. Perfect codes in Cayley graphs, SIAM J.
Discrete Math., 32(2017), 548-559.

[2] R. Feng, H. Huang and S. Zhou, Perfect codes in circulant graphs. Discrete
Math., 340(2017), 1522-1527.
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