SELECTIVE CO OXIDATION IN THE PRESENCE OF HYDROGEN FOR FUEL CELL APPLICATIONS

Ms. Kaewjai Khumvilaisak

A Thesis Submitted in Partial Fulfilment of the Requirements
for the Degree of Master of Science

The Petroleum and Petrochemical College, Chulalongkorn University
in Academic Partnership with

The University of Michigan, The University of Oklahoma,
and Case Western Reserve University

2001
ISBN 974-13-0678-4

1 1 by. 5, 2546

Thesis Title: Selective CO Oxidation in the Presence of Hydrogen for

Fuel Cell Applications

By : Ms. Kaewjai Khumvilaisak

Program : Petrochemical Technology

Thesis Advisors: Professor Erdogan Gulari

Professor Somchai Osuwan

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

K. Bunyaliat. College Director

(Assoc. Prof. Kunchana Bunyakiat)

Thesis Committee:

(Prof. Erdogan Gulari)

(Prof. Somchai Osuwan)

(Dr. Pramoch Rangsunvigit)

บทคัดย่อ

แก้วใจ คำวิลัยศักดิ์ : การเลือกเกิดปฏิกิริยาออกซิเคชันของก๊าซคาร์บอนมอนอกไซค์ใน บรรยากาศก๊าซไฮโครเจนสำหรับประยุกต์ใช้ในเซลล์เชื้อเพลิง (Selective CO Oxidation in the Presence of Hydrogen for Fuel Cell Applications) อ. ที่ปรึกษา : ศ.คร. เออโค แกน กูลารี่ และ ศ.คร.สมชาย โอสุวรรณ 66 หน้า ISBN 974-13-0678-4

การศึกษาผลของการใช้ตัวเร่งปฏิกิริยาโลหะแพลเลเดียมบนตัวพยุงซีเรีย แพลเลเดียมบน ตัวพยุงเซอร์โคเนีย และแพลเลเดียมบนตัวพยุงผสมระหว่างซีเรียและเซอร์โคเนียต่อความว่องไว ของตัวเร่งปฏิกิริยาและการเลือกเกิดปฏิกิริยาออกซิเดชันของก๊าซคาร์บอนมอนอกไซด์ใน บรรยากาศก๊าซไฮโดรเจนสำหรับประยุกต์ใช้ในเซลล์เชื้อเพลิง ตัวเร่งปฏิกิริยาในงานวิจัยนี้เตรียม ขึ้นโดยใช้วิธีการเตรียมแบบการตกตะกอนร่วม และแบบอิมเพรกเนชันบนโซลเจล ผลการศึกษา ด้วยการวัดเอ็กซเรย์ดิฟแฟรกชันและการวัดพื้นที่ผิวของตัวเร่งปฏิกิริยาแสดงให้เห็นว่า การเตรียม แบบอิมเพรกเนชันบนโซลเจลให้ความเป็นผลึกและพื้นที่ผิวมากกว่าโดยเฉพาะตัวเร่งปฏิกิริยาโลหะแพลเลเดียมบนตัวพยุงผสมระหว่างซีเรียและเซอร์โคเนีย การวิจัยนี้พบว่าอุณหภูมิที่ ใช้ใน การแกลไซน์ สัดส่วนของโลหะแพลเลเดียมต่อตัวพยุงซีเรียและเซอร์โคเนีย และวิธีการเตรียมตัว เร่งปฏิกิริยามีผลต่อความว่องไวของตัวเร่งปฏิกิริยา ที่ร้อยละหนึ่งโดยน้ำหนักของโลหะแพลเลเดียมบนตัวพยุงซีเรียที่เตรียมโดยการตกตะกอนร่วมแล้วแคลไซน์ที่ 300 องศาเซลเซียสเป็นเวลา สองชั่วโมงให้ประสิทธิภาพที่สูงที่สุด และจากการทำรีคักชันด้วยไฮโดรเจนของร้อยละ 10 ที่ อุณหภูมิ 300 องศาเซลเซียสสามารถเพิ่มความว่องไวได้สูงขึ้น โดยสรุปพบว่าตัวเร่งปฏิกิริยาที่ เตรียมโดยการตกตะกอนร่วมให้ประสิทธิภาพที่สูงกว่าตัวเร่งปฏิกิริยาที่เตรียมโดยวิธีอิมเพรกเนชัน บนโชลเจล

ABSTRACT

4271006063 : PETROCHEMICAL TECHNOLOGY PROGRAM

Kaewjai Khumvilaisak: Selective CO Oxidation in the

Presence of Hydrogen for Fuel Cell Applications.

Thesis advisors: Prof. Erdogan Gulari and Prof. Somchai

Osuwan, 66 pp ISBN 974-13-0678-4

Keywords : Pd/CeO₂-ZrO₂/Co-precipitation/Impregnation/sol-gel/

Selective CO oxidation/Fuel cell

The catalytic performance of Pd/CeO₂, Pd/ZrO₂, and Pd/CeO₂-ZrO₂ catalysts in selective CO oxidation in the presence of large amounts of hydrogen were investigated for fuel cell applications. Co-precipitation and impregnation on supports prepared by sol-gel methods were used to prepare the catalysts. The results from XRD and BET revealed that the sol-gel catalysts had high crystallinity and surface area especially for Pd on mixed oxide supports. The calcination temperature, ratio of Pd to Ce and Zr loading, and catalyst preparation method had strong effect on catalyst activity. The catalysts prepared by co-precipitation method had higher activity than catalysts prepared by impregnation method. The 1%Pd/CeO₂ co-precipitation catalyst calcined at 300°C for two hours exhibited the highest activity. Pretreatment of the catalyst by reducing with 10% H₂ at 300°C for three hours maximized the activity.

ACKNOWLEDGEMENTS

This work gave me a very memorable and enjoyable experience. This thesis could not have been possible without the assistance of the following individuals and organizations.

Out a sense of gratefulness, I would like to express my deepest gratitude to Prof. Erdogan Gulari and Prof. Somchai Osuwan for their kindness, helpful guidance, creative discussion, and constant encouragement throughout graduate work.

I sincerely exhibit my appreciation to all professors who guided me through their courses establishing the knowledge base I used in this work. I am indebted to The Petroleum and Petrochemical College and all of staff for their assistance.

I wish to thank Ms. Apanee Luengnaruemitchai and Ms. Siriphong Roatluechai for their hospitality, useful suggestions, and experimental technique. I also reveal appreciation to all my friends for their friendly help, creative suggestions, and encouragement.

Finally, I would like to express my whole-hearted gratitude for the greatest love, and support I received all of my life from my family. Their respect in my decision and understanding and trust in whatever I do contributed so deeply in my work.

TABLE OF CONTENTS

		PAGE
	Title Page	i
	Abstract (in English)	iii
	Abstract (in Thai)	iv
	Acknowledgements	v
	Table of Contents	vi
	List of Tables	ix
	List of Figures	xi
CHAPTEI	R	
I	INTRODUCTION	1
	1.1 Introduction	1
	1.2 Research Objectives	5
II	LITERATURE SURVEY	6
	2.1 Background	6
	2.2 Literature Review	12
Ш	EXPERIMENTAL	16
	3.1 Materials	16
	3.1.1 Gases	16
	3.1.2 Chemicals	16
	3.2 Equipment	17
	3.2.1 Gas Blending System	17
	3.2.2 Catalytic Reactor	17
	3.2.3 Analytical Instrumentation	19

CHAPTER			PAGE
	3.3 Cataly	yst Preparation Procedure	19
	•	Co-precipitation Method	20
		Impregnation on Sol-gel Method	21
		st Characterization	23
	3.4.1	BET Surface Area Measurements	23
	3.4.2	X-ray Diffraction	24
	3.4.3	Atomic Absorption Spectroscopy	25
	3.5 Activ	ity Measurement	25
	3.5.1	Effect of Catalyst Pretreatment	26
	3.5.2	Effect of Palladium Loading	26
	3.5.3	Effect of Calcination Temperature	26
	3.5.4	Effect of Support	26
	3.5.5	Effect of Ratio of Ce and Zr Support	27
	3.5.6	Effect of Catalyst Preparation	27
	3.5.7	Comparison of Activity with Conventional	
		Catalyst	27
	3.6 Exper	riment Plan	28
	3.6.1	Effect of Catalyst Pretreatment	28
	3.6.2	Effect of Palladium Loading	28
	3.6.3	Effect of Calcination Temperature	29
	3.6.4	Effect of Support	29
	3.6.5	Effect of Ratio of Ce and Zr Support	30
	3.6.6	Effect of Catalyst Preparation	30
	3.6.7	Comparison of Activity with Conventional	
		Catalyst	31

CHAPTER			PAGE
IV	RESULT	S AND DISCUSSION	32
	4.1 Cataly	yst Characterization	32
	4.1.1	BET Surface Area	32
	4.1.2	X-ray Diffraction	34
	4.1.3	Atomic Absorption Spectroscopy	35
	4.2 Activi	ity Test	40
	4.2.1	Effect of Catalyst Pretreatment	40
	4.2.2	Effect of Palladium Loading	42
	4.2.3	Effect of Calcination Temperature	42
	4.2.4	Effect of Support	45
	4.2.5	Effect of Ratio of Ce and Zr Support	45
	4.2.6	Effect of Catalyst Preparation	48
	4.2.7	Comparison of Activity with Conventional	50
		Catalyst	
V	CONCLU	USIONS AND RECOMMENDATIONS	52
	5.1 Concl	usions	52
	5.2 Recor	nmendations	52
	REFERE	ENCES	54
	APPEND	DIX	58
	CURRIC	CULUM VITAE	66

LIST OF TABLES

TABLI	\mathbf{E}	PAGE
2.1	Main types of fuel cell classified according to the	
	electrolyte	6
2.2	Fuel cell systems showing anodic and cathodic	
	reactions, and the dominant of ion transport in the	
	electrolyte	7
2.3	Preferred electrocatalysts for the main fuel cell	
	systems	8
3.1	Notation for the 1% by weight of Pd catalysts	20
3.2	Notation for the Pd supported on CeO ₂ catalysts	20
3.3	Molecular weight and concentration of the components	21
3.4	Experimental plan for effect of catalyst pretreatment	28
3.5	Experimental plan for effect of palladium loading	29
3.6	Experimental plan for effect of calcination temperature	29
3.7	Experimental plan for effect of support	29
3.8	Experimental plan for effect of ratio of Ce and	
	Zr support (co-precipitation method)	30
3.9	Experimental plan for effect of ratio of Ce and	
	Zr support (impregnation on sol-gel method)	30
3.10	Experimental plan for effect of catalyst preparation	31
3.11	Experimental plan for comparison of activity	
	with conventional catalyst.	31
4.1	BET surface area of 1% Pd with different Ce and Zr	
	support loadings calcined at 300°C for 2 hours	32

TABL	E	PAGE
4.2	BET surface area of Pd/CeO ₂ co-precipitation catalyst	
	calcined at 300°C for 2 hours with different Pd loadings	33
4.3	BET surface area of 1%Pd/CeO ₂ co-precipitation	
	catalyst with different calcination temperatures	34
4.4	The measured percentages loading of 1% Pd with	
	different Ce and Zr support loadings calcined at 300°C	
	for 2 hours	38
4.5	The measured percentages loading of Pd/CeO ₂	
	co-precipitation catalyst calcined at 300°C for 2 hours	
	with different Pd loadings	38
4.6	The measured percentages loading of 1%Pd/CeO ₂	
	co-precipitation catalyst with different calcination	
	temperatures	39

LIST OF FIGURES

FIGURE		PAGE
1.1	Operation of a polymer electrolyte fuel cell (PEFC)	2
3.1	The schematic flow diagram of experimental	
	equipment	18
4.1	XRD pattern for 1%Pd/CeO ₂ -ZrO ₂ (100:0, 75:25,	
	50:50, 25:75, and 0:100 weight ratio of Ce to Zr)	
	co-precipitation catalysts calcined at 300°C for 2 h.	36
4.2	XRD pattern for 1%Pd/CeO ₂ -ZrO ₂ (100:0, 50:50, and	
1	0:100 weight ratio of Ce to Zr) impregnation on	
;	sol-gel catalysts calcined at 300°C for 2 h.	36
4.3	XRD pattern of Pd/CeO ₂ (1%, 3%, and 5%)	
	co-precipitation catalysts with different Pd loadings	
	calcined at 300°C for 2 h.	37
4.4	XRD pattern of 1%Pd/CeO ₂ co-precipitation catalysts	
	with different calcination temperatures (200, 300, and	
	400°C for 2 h.)	37
4.5(a)	Effect of pretreatment method on CO conversion of	
	1%Pd/CeO ₂ co-precipitation catalyst	41
4.5(b)	Effect of pretreatment method on selectivity of	
	1%Pd/CeO ₂ co-precipitation catalyst	41
4.6(a)	Effect of Pd loading on CO conversion of Pd/CeO ₂	
	co-precipitation catalyst	43
4.6(b)	Effect of Pd loading on selectivity of Pd/CeO ₂	
	co-precipitation catalyst	43

FIGURE		PAGE
4.7(a)	Effect of calcination temperature on CO conversion	
	of 1%Pd/CeO ₂ co-precipitation catalyst	44
4.7(b)	Effect of calcination temperature on selectivity of	
	1%Pd/CeO ₂ co-precipitation catalyst	44
4.8(a)	Effect of support on CO conversion of	
	co-precipitation catalyst calcined at 300°C for 2h	46
4.8(b)	Effect of support on selectivity of co-precipitation	
	catalyst calcined at 300°C for 2h	46
4.9(a)	Effect of ratio of Ce and Zr support on CO	
	conversion of 1%Pd/CeO ₂ -ZrO ₂ co-precipitation	
	catalyst	47
4.9(b)	Effect of ratio of Ce and Zr support on selectivity of	
	1%Pd/CeO ₂ -ZrO ₂ co-precipitation catalyst	47
4.10(a)	Effect of catalyst preparation on CO conversion of	
	1%Pd/CeO ₂ catalyst	49
4.10(b)	Effect of catalyst preparation on selectivity of	
	1%Pd/CeO ₂ catalyst	49
4.11(a)	Comparison of CO conversion between 1%Pd/CeO ₂	
	co-precipitation catalyst and 1%Pd/Al ₂ O ₃ sol-gel	
	catalyst	51
4.11(b)	Comparison of selectivity between 1%Pd/CeO ₂	
	co-precipitation catalyst and 1%Pd/Al ₂ O ₃ sol-gel	
	catalyst	51
A.1(a)	Effect of pretreatment method on CO conversion of	
	1%Pd/CeO ₂ -ZrO ₂ (50:50) co-precipitation catalyst	59

FIGURE		PAGE
A.1(b)	Effect of pretreatment method on selectivity of	
	1%Pd/CeO ₂ -ZrO ₂ (50:50) co-precipitation catalyst	59
A.2(a)	Effect of pretreatment method on CO conversion of	
	1%Pd/CeO ₂ -ZrO ₂ (75:25) co-precipitation catalyst	60
A.2(b)	Effect of pretreatment method on selectivity of	
	1%Pd/CeO ₂ -ZrO ₂ (75:25) co-precipitation catalyst	60
A.3(a)	Effect of pretreatment method on CO conversion of	
	1%Pd/ZrO ₂ co-precipitation catalyst	61
A.3(b)	Effect of pretreatment method on selectivity of	
	1%Pd/ZrO ₂ co-precipitation catalyst	61
A.4(a)	Effect of support on CO conversion of impregnation	
	on sol-gel catalyst calcined at 300°C 2h	62
A.4(b)	Effect of support on selectivity of impregnation on	
	sol-gel catalyst calcined at 300°C 2h	62
A.5(a)	Effect of ratio of Ce and Zr support on CO conversion	
	of 1%Pd/CeO ₂ -ZrO ₂ impregnation on sol-gel catalyst	63
A.5(b)	Effect of ratio of Ce and Zr support on selectivity of	
	1%Pd/CeO ₂ -ZrO ₂ impregnation on sol-gel catalyst	63
A.6(a)	Effect of catalyst preparation on CO conversion of	
	1%Pd/CeO ₂ -ZrO ₂ (50:50) catalyst	64
A.6(b)	Effect of catalyst preparation on selectivity of	
	1%Pd/CeO ₂ -ZrO ₂ (50:50) catalyst	64
A.7(a)	Effect of catalyst preparation on CO conversion of	
	1%Pd/ZrO ₂ catalyst	65
A.7(b)	Effect of catalyst preparation on selectivity of	
	1%Pd/ZrO ₂ catalyst	65